

On your side

TEST REPORT

FCC ANT+ Test for SM-T725 Certification

APPLICANT
SAMSUNG Electronics Co., Ltd.

REPORT NO.
HCT-RF-1906-FC008-R2

DATE OF ISSUE
June 20, 2019

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

74, Seocheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC ANT+ Test for SM-T725	REPORT NO. HCT-RF-1906-FC008-R2
	DATE OF ISSUE June 20, 2019
	Other Model SM-T725N, SM-T727

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Eut Type Model Name	Tablet SM-T725
FCC ID	A3LSMT725U
Max. RF Output Power	88.80 dBuV/m @3 m
Modulation type	GFSK
FCC Classification	Low Power communication Device Transmitter(DXX)
FCC Rule Part(s)	Part 15 subpart C 15.249

Tested by
Jeong Ho Kim

Technical Manager
Jong Seok Lee

HCT CO., LTD.
Soo Chan Lee
SooChan Lee / CEO

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	June 05, 2019	Initial Release
1	June 17, 2019	<ul style="list-style-type: none">1. On Page 15~16, 21 Revised2. On Page 18. Revised procedure3. On Page 27. Edit typos.
2	June 20, 2019	<ul style="list-style-type: none">1. Added the position of loop antenna on page 16, 22.2. Deleted the step 10 on page 16.3. Added the chamber of worst case on page 17.

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

CONTENTS

1. EUT DESCRIPTION.....	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION.....	6
EUT EXERCISE.....	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES.....	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS.....	7
FACILITIES.....	7
EQUIPMENT.....	7
5. ANTENNA REQUIREMENTS.....	8
6. MEASUREMENT UNCERTAINTY.....	8
7. DESCRIPTION OF TESTS.....	9
8. SUMMARY TEST OF RESULTS.....	23
9. TEST RESULT	24
9.1 DUTY CYCLE	24
9.2 OCCUPIED BANDWIDTH	26
9.3 RADIATED MEASUREMENT	28
9.3.1 FUNDAMENTAL FIELD STRENGTH LEVEL MEASUREMENT	28
9.3.2 RADIATED SPURIOUS EMISSIONS	30
9.3.3 RADIATED RESTRICTED BAND EDGES.....	33
9.6 POWERLINE CONDUCTED EMISSIONS.....	35
10. LIST OF TEST EQUIPMENT.....	39
11. ANNEX A_ TEST SETUP PHOTO	41

1. EUT DESCRIPTION

Model	SM-T725
Additional Model	SM-T725N, SM-T727
EUT Type	Tablet
Power Supply	DC 3.85 V
Battery Information	Model: EB-BT725ABU Type: Li-ion Battery
Travel Adapter Information	Model : EP-TA200 Manufacture: SOLUM
Keyboard Information	Model : EJ-FT720 Manufacture: SAMSUNG
Charging Doc Information	Model : EE-D3200 Manufacture: SAMSUNG
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	Peak : 88.80 dBuV/m @3 m Average : 56.92 dBuV/m @3 m
Modulation Type	GFSK
Number of Channels	79 Channels
Antenna Specification	Antenna type: Metal Peak Gain : -5.50 dBi
Date(s) of Tests	May 10, 2019~ June 05, 2019

2. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) Operating Under § 15.249" were used in the measurement.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.249 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the

analyzer was set to peak detector with a reduced VBW setting($\text{RBW} = 1 \text{ MHz}$, $\text{VBW} = 1/T \text{ Hz}$, where $T = \text{Pulse width}$).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- * The antennas of this E.U.T are permanently attached.
- * The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

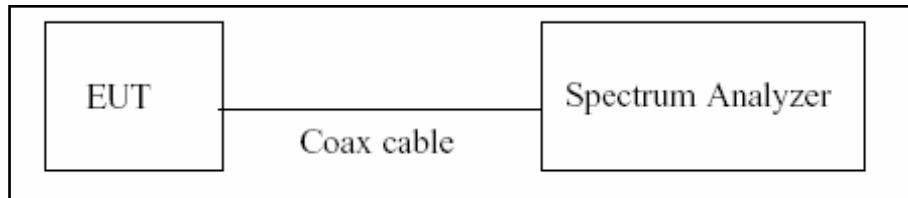
All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.71

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

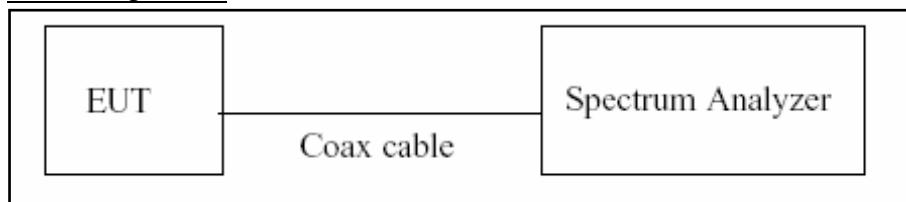

Test overview

§ 15.35(c)

: Unless otherwise specified, e.g. § 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification

Test Configuration



7.2. Occupied Bandwidth

Test overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.


- 1) RBW = 1% to 3% of the 99% bandwidth.
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize

Note :

We tested Occupied Bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer.

7.3. 20dB Bandwidth

Test Configuration

Test Procedure

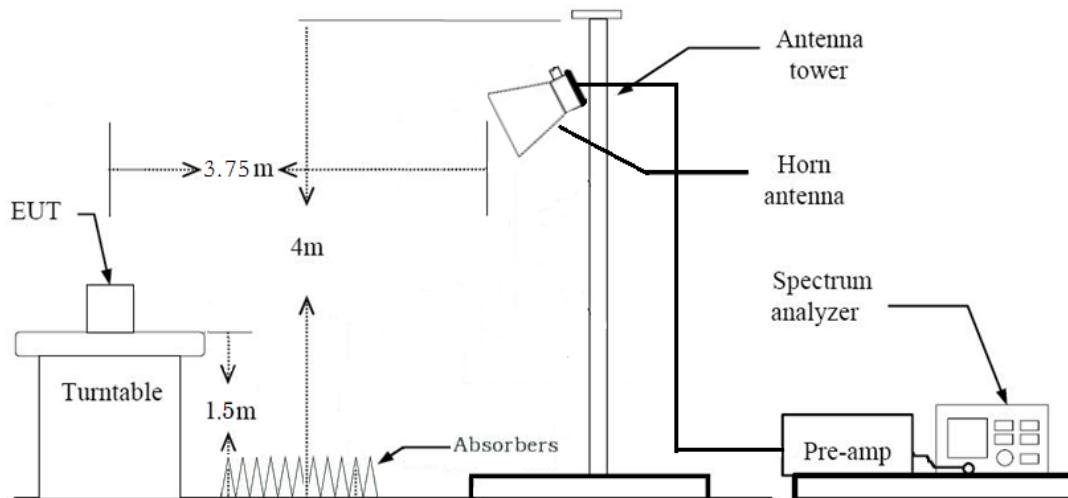
The transmitter output is connected to the Spectrum Analyzer.

- 1) RBW = 1% to 5% of the 20dB bandwidth.
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize

Note :

We tested 20dB Bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer.

7.4. Fundamental Field Strength Level


Limit

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
2400-2483.5 MHz	50	500

§ 15.249(e):
The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

The maximum permissible average field strength level is 50 mV/m (93.98 dBuV/m).
The maximum permissible peak field strength level is 500 mV/m (113.98 dBuV/m).

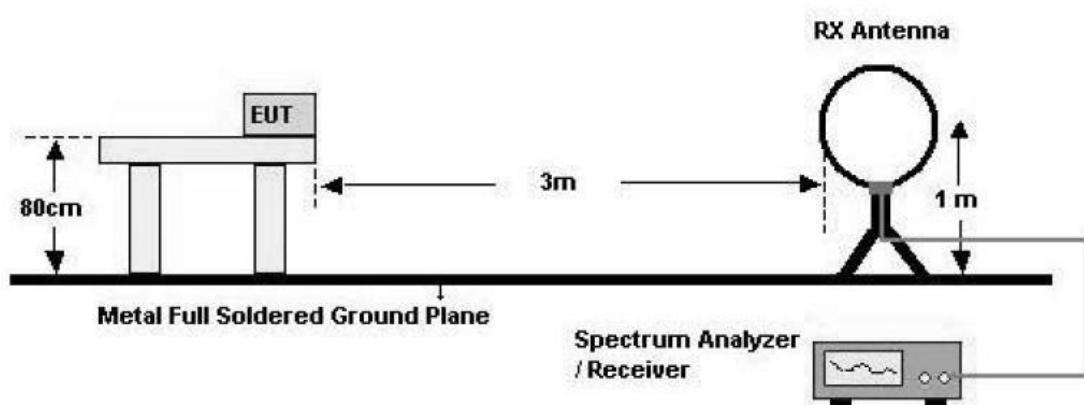
Test Configuration

Test Procedure

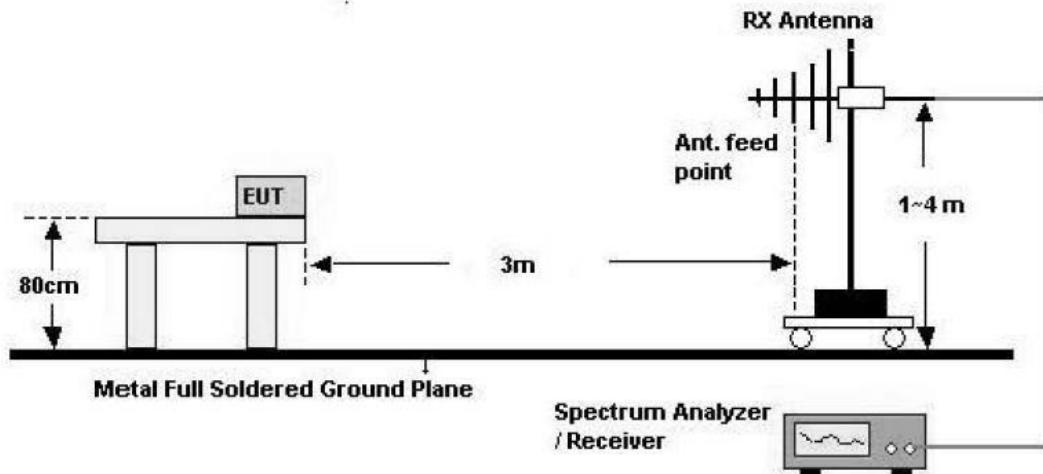
1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
*Distance extrapolation factor = $20 \log_{10}(\text{test distance} / \text{specific distance})$ (dB)
6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
7. The unit was tested with its standard battery.
8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency : 2402MHz, 2441MHz, 2480MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3*RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall be determined from the peak field strength after correcting for the worst-case duty cycle as described in section 9.1.
 - DCCF = $20 \log_{10}(\text{Pulse width} / \text{Period of the pulse train})$
9. Total(Peak) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
+Attenuator(ATT) – AMP Gain (A.G)
Total(Average) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
+ Duty Cycle Correction Factor +Attenuator(ATT) – AMP Gain (A.G)

7.5. Radiated Test

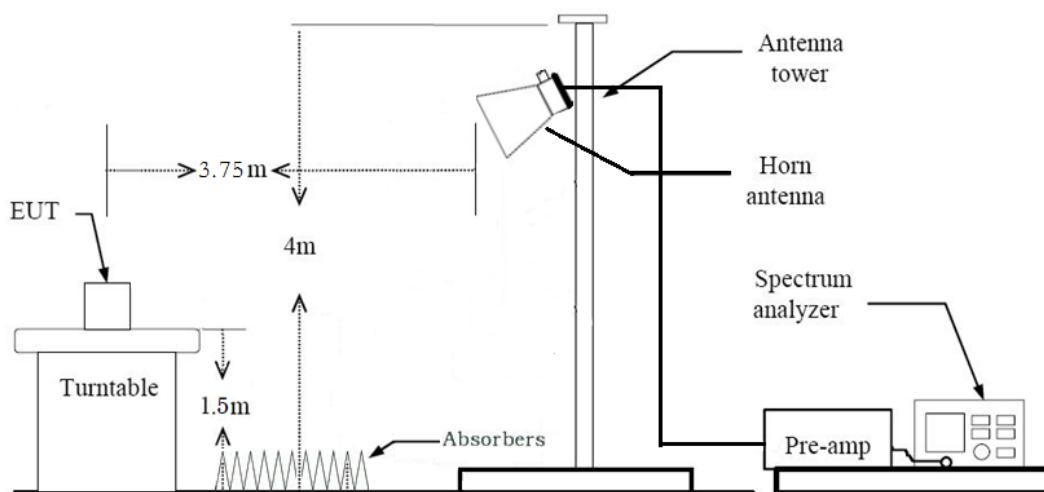
Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

§ 15.249(d):
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.


§ 15.249(e):
The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Test Configuration


Below 30 MHz

30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
2. The loop antenna was placed at a location 3m from the EUT
3. The EUT is placed on a turntable, which is 0.8m above ground plane.
4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
6. Distance Correction Factor($0.009\text{ MHz} - 0.490\text{ MHz}$) = $40 * \log(3\text{ m}/300\text{ m}) = -80\text{ dB}$
Measurement Distance : 3 m
7. Distance Correction Factor($0.490\text{ MHz} - 30\text{ MHz}$) = $40 * \log(3\text{ m}/30\text{ m}) = -40\text{ dB}$
Measurement Distance : 3 m
8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW $\geq 3 * \text{RBW}$
9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

(Worst case: semi-anechoic chamber(10 m chamber))

Test Procedure of Radiated spurious emissions(Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
2. The EUT is placed on a turntable, which is 0.8m above ground plane.
3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

5. Spectrum Setting

(1) Measurement Type(Peak):

- Measured Frequency Range : 30 MHz – 1 GHz
- Detector = Peak
- Trace = Maxhold
- RBW = 100 kHz
- VBW \geq 3*RBW

(2) Measurement Type(Quasi-peak):

- Measured Frequency Range : 30 MHz – 1 GHz
- Detector = Quasi-Peak
- RBW = 120 kHz

*In general, (1) is used mainly

6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
*Distance extrapolation factor = $20 \log \left(\frac{\text{test distance}}{\text{specific distance}} \right) \text{ (dB)}$
6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
8. The unit was tested with its standard battery.
9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz – 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 3 \times \text{RBW}$
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz – 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau \text{ Hz}$, where τ = pulse width in seconds
The actual setting value of VBW = 10 kHz
10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
11. Total(Peak) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) -Amp Gain + Distance Factor(D.F)
Total(Average) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) -Amp Gain + Distance Factor(D.F) + Duty Cycle Correction Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
*Distance extrapolation factor = $20 \log_{10}(\text{test distance} / \text{specific distance})$ (dB)
6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
7. The unit was tested with its standard battery.
8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range = 2310 MHz ~ 2400 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 3 \times$ RBW
 - (2) Measurement Type(Average):
 - Measured Frequency Range = 2310 MHz ~ 2400 MHz/ 2483.5 MHz ~ 2500 MHz
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall be determined from the peak field strength after correcting for the worst-case duty cycle as described in section 9.1.
 - DCCF = $20 \log_{10}(\text{Pulse width} / \text{Period of the pulse train})$
9. Total(Peak) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
+Attenuator(ATT) - AMP Gain (A.G)
- Total(Average) = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
+ Duty Cycle Correction Factor +Attenuator(ATT) - AMP Gain (A.G)

7.6. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to a test power supply.
3. The measurement results are obtained as described below:
4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.7. Worst case configuration and mode

Fundamental Field Strength Level & Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Keyboard, Charging Doc, Earphone, etc)
 - Worstcase : Stand alone
2. EUT Axis
 - Fundamental Field Strength Level : X
 - Radiated test : X
3. All period were investigated and the worst case period results are reported.
 - All period : Period 128, Period 256, Period 512, Period 1024, Period 2048, Period 4096, Period 8192, Period 32768
 - Worstcase : Period 128
4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane
5. SM-T725, SM-T725N, SM-T727 were tested and the worst case results are reported.
(Worst case : SM-T725)

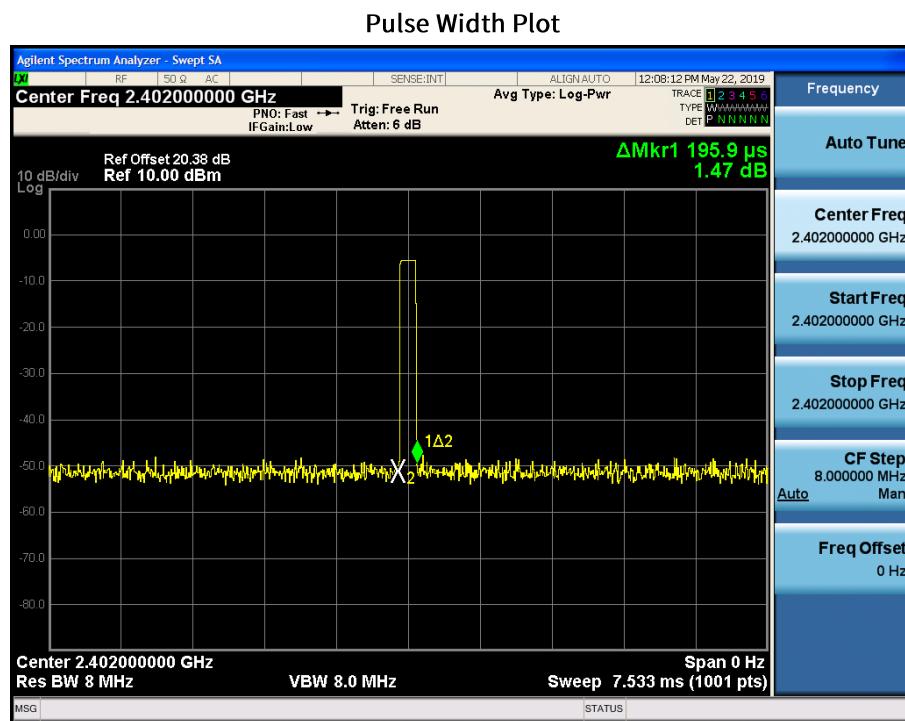
AC Power line Conducted Emissions

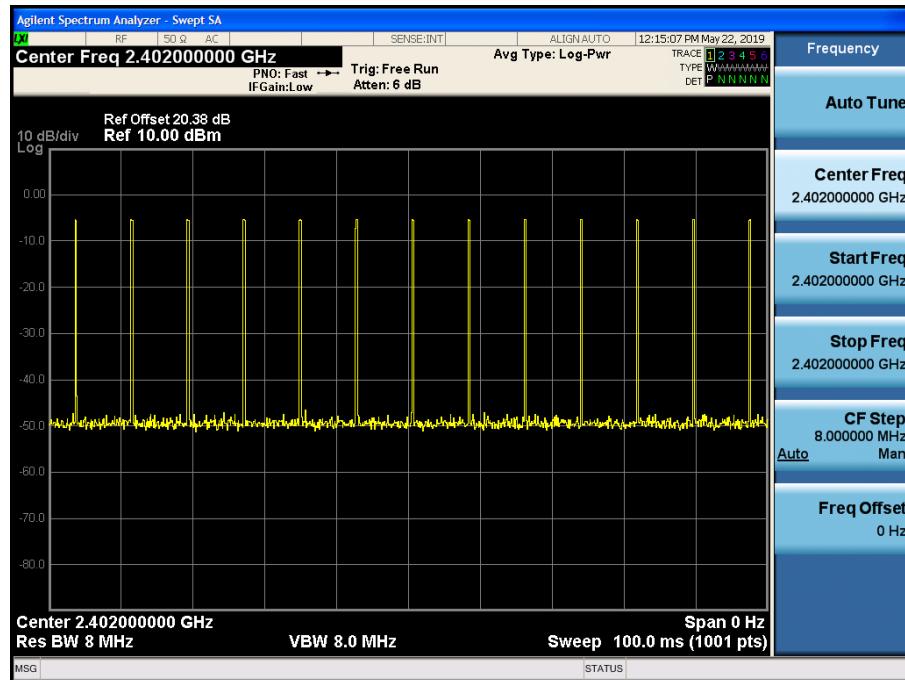
1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Keyboard, Charging Doc, Earphone, etc)+Travel Adapter, Stand alone + Travel Adapter
 - Worstcase : Stand alone + Travel Adapter
2. SM-T725, SM-T725N, SM-T727 were tested and the worst case results are reported.
(Worst case : SM-T725)

Duty Cycle & Occupied Bandwidth

1. All period were investigated and the worst case period results are reported.
 - All period : Period 128, Period 256, Period 512, Period 1024, Period 2048, Period 4096, Period 8192, Period 32768
 - Worstcase : Period 128
2. SM-T725, SM-T725N, SM-T727 were tested and the worst case results are reported.
(Worst case : SM-T725)

8. SUMMARY TEST OF RESULTS


Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
Occupied Bandwidth	§2.1049	N/A	Conducted	PASS
20dB Bandwidth	§15.215	N/A		PASS
Duty Cycle	§15.35(c)	N/A		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 7.5		PASS
Fundamental Field Strength Level	§15.249(a)(e)	< 50 mV/m	Radiated	PASS
Harmonic Field Strength Level	§15.249(a)(e)	< 500 uV/m		PASS
General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	§15.205, §15.209, §15.249(d)(e)	< 15.209 limits or 50dB below the level of the fundamental		PASS


9. TEST RESULT

9.1 DUTY CYCLE

$$\text{DCCF} = 20 \cdot \log_{10}(\text{Pulse width} / \text{Period of the pulse train})$$
$$= 20 \cdot \log_{10}(13 \times 0.1959 \text{ ms} / 100 \text{ ms}) = -31.88 \text{ dB}$$

■ Test Plots



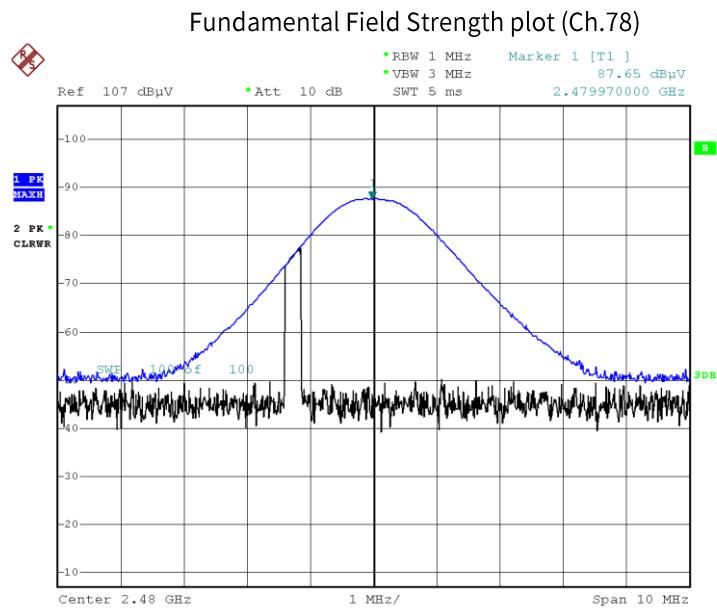
Period of the Pulse Train

9.2 OCCUPIED BANDWIDTH

Frequency[MHz]	99% Bandwidth (kHz)
2402	768.98
2441	765.46
2480	746.50

□ Test Plots

Occupied Bandwidth plot (Mid)


Occupied Bandwidth plot (High)

9.3 RADIATED MEASUREMENT

9.3.1 FUNDAMENTAL FIELD STRENGTH LEVEL MEASUREMENT

Frequency [MHz]	Reading [dBuV/m]	A.F+C.L -A.G+D.F +ATT [dB]	Ant. Pol. [H/V]	D.C.C.F [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2402	83.80	0.49	V	0.00	84.29	113.98	29.69	PK
2402	83.80	0.49	V	-31.88	52.41	93.98	41.57	AV
2402	85.92	0.49	H	0.00	86.41	113.98	27.57	PK
2402	85.92	0.49	H	-31.88	54.53	93.98	39.45	AV
2441	84.49	1.28	V	0.00	85.77	113.98	28.21	PK
2441	84.49	1.28	V	-31.88	53.89	93.98	40.09	AV
2441	86.18	1.28	H	0.00	87.46	113.98	26.52	PK
2441	86.18	1.28	H	-31.88	55.58	93.98	38.40	AV
2480	85.72	1.15	V	0.00	86.87	113.98	27.11	PK
2480	85.72	1.15	V	-31.88	54.99	93.98	38.99	AV
2480	87.65	1.15	H	0.00	88.80	113.98	25.18	PK
2480	87.65	1.15	H	-31.88	56.92	93.98	37.06	AV

□ Test Plots (Worst case : X-H)

Date: 27.MAY.2019 11:57:15

Note:

Plot of worst case are only reported.

9.3.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
2. Distance extrapolation factor = $40 * \log(\text{specific distance} / \text{test distance})$ (dB)
3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
4. The test results for below 30 MHz is correlated to an open site.

The result on OFS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

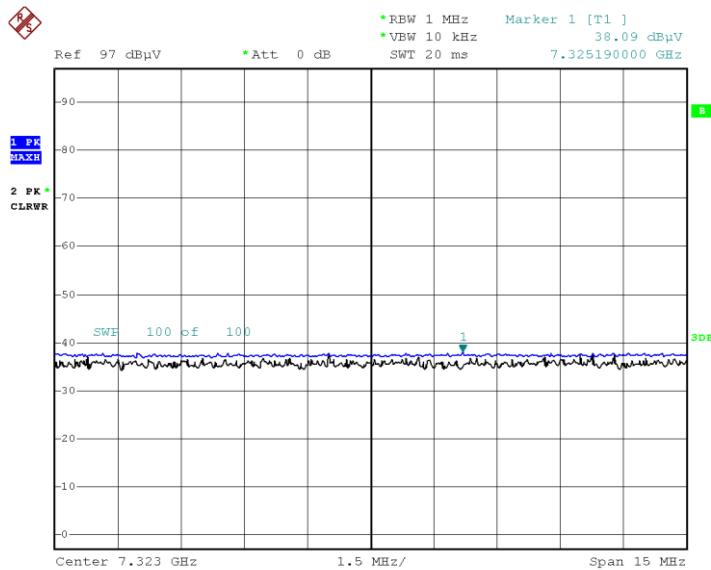
1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Operation Frequency: 2402 MHz

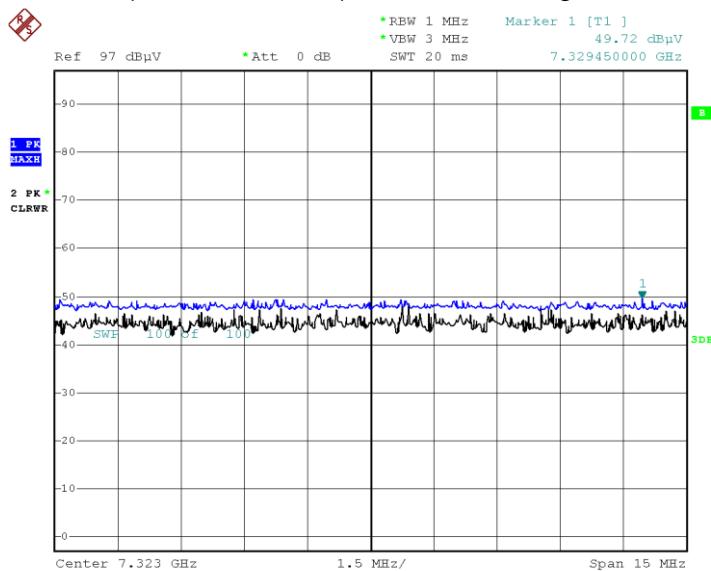
Frequency [MHz]	Reading [dBuV]	A.F.+C.L.-A.G+D.F. [dB]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4804	50.67	1.83	V	52.50	73.98	21.48	PK
4804	39.04	1.83	V	40.87	53.98	13.11	AV
7206	49.59	9.65	V	59.24	73.98	14.74	PK
7206	38.11	9.65	V	47.76	53.98	6.22	AV
4804	50.05	1.83	H	51.88	73.98	22.10	PK
4804	38.50	1.83	H	40.33	53.98	13.65	AV
7206	49.27	9.65	H	58.92	73.98	15.06	PK
7206	37.95	9.65	H	47.60	53.98	6.38	AV

Operation Frequency: 2441 MHz


Frequency [MHz]	Reading [dBuV]	A.F.+C.L.-A.G+D.F. [dB]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4882	50.45	2.31	V	52.76	73.98	21.22	PK
4882	38.53	2.31	V	40.84	53.98	13.14	AV
7323	49.72	9.96	V	59.68	73.98	14.30	PK
7323	38.09	9.96	V	48.05	53.98	5.93	AV
4882	48.61	2.31	H	50.92	73.98	23.06	PK
4882	37.62	2.31	H	39.93	53.98	14.05	AV
7323	49.35	9.96	H	59.31	73.98	14.67	PK
7323	37.66	9.96	H	47.62	53.98	6.36	AV

Operation Frequency: 2480 MHz

Frequency [MHz]	Reading [dBuV]	A.F.+C.L.-A.G+D.F. [dB]	ANT. POL [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	50.28	2.26	V	52.54	73.98	21.44	PK
4960	38.62	2.26	V	40.88	53.98	13.10	AV
7440	49.48	9.78	V	59.26	73.98	14.72	PK
7440	37.93	9.78	V	47.71	53.98	6.27	AV
4960	49.76	2.26	H	52.02	73.98	21.96	PK
4960	38.20	2.26	H	40.46	53.98	13.52	AV
7440	48.78	9.78	H	58.56	73.98	15.42	PK
7440	37.52	9.78	H	47.30	53.98	6.68	AV


□ Test Plots (Worst case : X-H)

Radiated Spurious Emissions plot – Average Reading (Ch.39 3rd Harmonic)

Date: 27.MAY.2019 14:08:09

Radiated Spurious Emissions plot – Peak Reading (Ch.39 3rd Harmonic)

Date: 27.MAY.2019 13:58:46

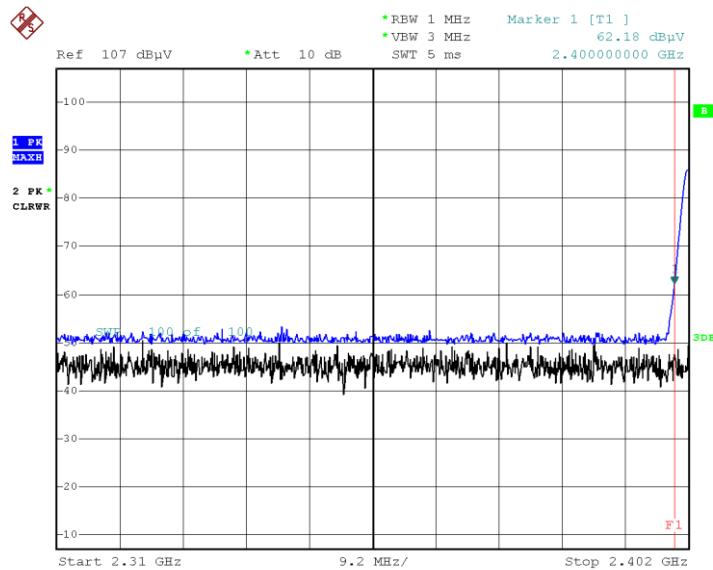
Note:

Plot of worst case are only reported.

9.3.3 RADIATED RESTRICTED BAND EDGESOperation Mode: ANT+

Transfer Rate: 2402 MHz

Frequency [MHz]	Reading [dBuV]	A.F+C.L -A.G+D.F +ATT [dB]	Pol. [H/V]	D.C.C.F [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2400.0	62.18	0.85	H	0	63.03	73.98	10.95	PK
2400.0	62.18	0.85	H	-31.88	31.15	53.98	22.83	AV
2400.0	60.06	0.85	V	0	60.91	73.98	13.07	PK
2400.0	60.06	0.85	V	-31.88	29.03	53.98	24.95	AV


Operation Mode: ANT+

Transfer Rate: 2480 MHz

Frequency [MHz]	Reading [dBuV]	A.F+C.L -A.G+D.F +ATT [dB]	Pol. [H/V]	D.C.C.F [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2483.5	51.60	1.15	H	0	52.75	73.98	21.23	PK
2483.5	51.60	1.15	H	-31.88	20.87	53.98	33.11	AV
2483.5	51.26	1.15	V	0	52.41	73.98	21.57	PK
2483.5	51.26	1.15	V	-31.88	20.53	53.98	33.45	AV

□ Test Plots (Worst case : X-H)

Radiated Band Edges plot – Peak Reading (Ch.0)

Date: 27.MAY.2019 12:05:03

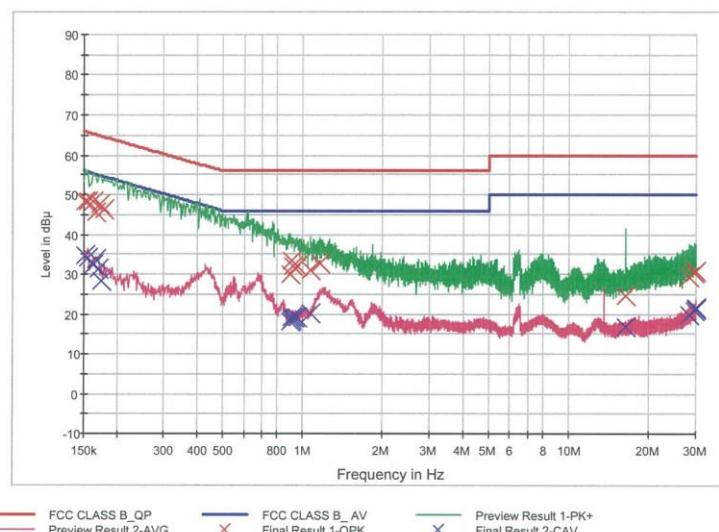
Note:

Plot of worst case are only reported.

9.6 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

ANT+_L1


1 / 2

HCT TEST Report

Common Information

EUT: SM-T725
Manufacturer: SAMSUNG
Test Site: SHIELD ROOM
Operating Conditions: ANT+_L1

FCC CLASS B_Exten Cable

Final Result 1

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.152000	48.4	9.000	Off	L1	9.7	17.5	65.9
0.156000	48.2	9.000	Off	L1	9.7	17.5	65.7
0.162000	48.3	9.000	Off	L1	9.7	17.0	65.4
0.166000	45.4	9.000	Off	L1	9.7	19.7	65.2
0.172000	47.5	9.000	Off	L1	9.7	17.4	64.9
0.178000	46.4	9.000	Off	L1	9.7	18.2	64.6
0.894000	29.9	9.000	Off	L1	9.8	26.1	56.0
0.908000	33.5	9.000	Off	L1	9.8	22.5	56.0
0.916000	32.1	9.000	Off	L1	9.8	23.9	56.0
0.948000	32.2	9.000	Off	L1	9.8	23.8	56.0
1.070000	30.9	9.000	Off	L1	9.8	25.1	56.0
1.168000	32.6	9.000	Off	L1	9.8	23.4	56.0
16.286000	24.5	9.000	Off	L1	10.5	35.5	60.0
28.426000	29.3	9.000	Off	L1	10.8	30.7	60.0
29.736000	30.4	9.000	Off	L1	10.9	29.6	60.0
29.814000	30.4	9.000	Off	L1	10.9	29.6	60.0
29.890000	30.8	9.000	Off	L1	10.9	29.2	60.0
29.996000	30.8	9.000	Off	L1	10.9	29.2	60.0

2019-05-16

오후 8:15:30

ANT+_L1

2 / 2

Final Result 2

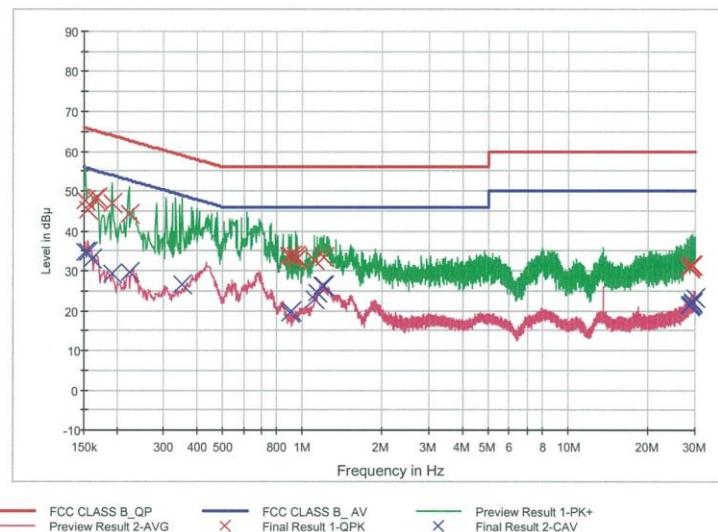
Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	34.6	9.000	Off	L1	9.7	21.3	55.9
0.156000	34.2	9.000	Off	L1	9.7	21.4	55.7
0.162000	32.4	9.000	Off	L1	9.7	23.0	55.4
0.166000	33.7	9.000	Off	L1	9.7	21.4	55.2
0.170000	31.5	9.000	Off	L1	9.7	23.5	55.0
0.174000	28.5	9.000	Off	L1	9.7	26.3	54.8
0.896000	18.0	9.000	Off	L1	9.8	28.0	46.0
0.904000	18.5	9.000	Off	L1	9.8	27.5	46.0
0.908000	19.3	9.000	Off	L1	9.8	26.7	46.0
0.926000	19.3	9.000	Off	L1	9.8	26.7	46.0
0.948000	19.3	9.000	Off	L1	9.8	26.7	46.0
1.070000	20.2	9.000	Off	L1	9.8	25.8	46.0
16.286000	16.9	9.000	Off	L1	10.5	33.1	50.0
28.426000	19.8	9.000	Off	L1	10.8	30.2	50.0
29.516000	20.8	9.000	Off	L1	10.9	29.2	50.0
29.890000	21.3	9.000	Off	L1	10.9	28.7	50.0
29.912000	21.5	9.000	Off	L1	10.9	28.5	50.0
29.996000	21.6	9.000	Off	L1	10.9	28.4	50.0

2019-05-16

오늘 8:15:30

Conducted Emissions (Line 2)

ANT+_N


1 / 2

HCT TEST Report

Common Information

EUT: SM-T725
Manufacturer: SAMSUNG
Test Site: SHIELD ROOM
Operating Conditions: ANT+_N

FCC CLASS B_Exten Cable

Final Result 1

Final Result 1							
Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	47.5	9.000	Off	N	9.8	18.4	65.9
0.156000	45.3	9.000	Off	N	9.8	20.4	65.7
0.164000	47.9	9.000	Off	N	9.8	17.4	65.3
0.168000	48.3	9.000	Off	N	9.8	16.7	65.1
0.192000	47.1	9.000	Off	N	9.8	16.8	63.9
0.222000	44.3	9.000	Off	N	9.9	18.4	62.7
0.890000	33.6	9.000	Off	N	10.0	22.4	56.0
0.906000	33.8	9.000	Off	N	10.0	22.2	56.0
0.938000	33.7	9.000	Off	N	10.0	22.3	56.0
0.956000	33.0	9.000	Off	N	10.0	23.0	56.0
1.106000	32.7	9.000	Off	N	10.0	23.3	56.0
1.200000	33.3	9.000	Off	N	10.0	22.7	56.0
28.630000	30.9	9.000	Off	N	11.1	29.1	60.0
28.718000	30.8	9.000	Off	N	11.1	29.2	60.0
28.958000	31.2	9.000	Off	N	11.1	28.8	60.0
29.148000	31.3	9.000	Off	N	11.1	28.7	60.0
29.210000	31.4	9.000	Off	N	11.1	28.6	60.0
29.452000	31.3	9.000	Off	N	11.1	28.7	60.0

2019-05-16

오후 8:06:52

ANT+_N

2 / 2

Final Result 2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	34.7	9.000	Off	N	9.8	21.2	55.9
0.156000	34.8	9.000	Off	N	9.8	20.9	55.7
0.160000	33.1	9.000	Off	N	9.8	22.4	55.5
0.192000	29.2	9.000	Off	N	9.8	24.7	53.9
0.222000	29.6	9.000	Off	N	9.9	23.1	52.7
0.352000	26.5	9.000	Off	N	9.9	22.4	48.9
0.898000	19.6	9.000	Off	N	10.0	26.4	46.0
0.906000	19.8	9.000	Off	N	10.0	26.2	46.0
1.106000	23.0	9.000	Off	N	10.0	23.0	46.0
1.132000	24.4	9.000	Off	N	10.0	21.6	46.0
1.184000	26.2	9.000	Off	N	10.0	19.8	46.0
1.200000	26.4	9.000	Off	N	10.0	19.6	46.0
28.630000	21.3	9.000	Off	N	11.1	28.7	50.0
28.718000	21.4	9.000	Off	N	11.1	28.6	50.0
28.958000	21.7	9.000	Off	N	11.1	28.3	50.0
29.210000	21.8	9.000	Off	N	11.1	28.2	50.0
29.452000	22.2	9.000	Off	N	11.1	27.8	50.0
29.980000	23.1	9.000	Off	N	11.2	26.9	50.0

2019-05-16

오후 8:06:52

10. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/12/2018	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/27/2018	Annual	100033
ESPAC	SU-642 /Temperature Chamber	03/12/2019	Annual	0093008124
Agilent	N9020A / Signal Analyzer	06/08/2018	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	11/20/2018	Annual	MY49431210
Agilent	N1911A / Power Meter	04/10/2019	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/10/2019	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/20/2018	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/07/2018	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/26/2018	Annual	KR75303960
WEINSCHEL	2-20 / Attenuator(20 dB)	10/26/2018	Annual	BR0592
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
Rohde & Schwarz	CBT / Bluetooth Tester	03/07/2019	Annual	100808

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	08/23/2018	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/31/2018	Biennial	00895
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/09/2018	Annual	3368
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	12/04/2017	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 40 GHz) / Spectrum Analyzer	07/24/2018	Annual	100843
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	01/03/2019	Annual	F6
Wainwright Instruments	WHFX7.0/18G-8SS / High Pass Filter	05/03/2019	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	06/29/2018	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/03/2019	Annual	2
Weinschel	2-3 / Attenuator (3 dB)	10/10/2018	Annual	BR0617
H+S	5910-N-50-010 / Attenuator(10 dB)	11/08/2018	Annual	NONE
CERNEX	CBLU1183540B-01 / Power Amplifier	12/21/2018	Annual	25540
CERNEX	CBL06185030 / Power Amplifier	03/26/2019	Annual	28550
CERNEX	CBL18265035 / Power Amplifier	01/03/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/29/2018	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/26/2019	Annual	3000C000276

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1906-FC008-P