

6.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6 Mbps for "a" mode, 6.5/7.2Mbps for 20MHz BW "n" mode, 13.5/15Mbps for 40MHz "n", and 29.3/32.5Mbps for 80MHz "ac" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 9.1).

Test Procedure Used

KDB 558074 v03r01 – Section 11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 6-5. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 65 01 122
© 2014 PCTEST Engineering L	aboratory. Inc.			V 5.0

Antenna-1 Conducted Emissions at the Band Edge

Plot 6-74. Band Edge Plot (802.11b - Ch. 11)

FCC ID: A3LSMT700	PCTEST	FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT	SAMSONE	Reviewed by:	
	ENGINEERING LABORATORY, INC.	(CERTIFICATION)		Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 66 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 66 01 122	
© 2014 PCTEST Engineering Laboratory. Inc.					

Plot 6-75. Band Edge Plot (802.11g- Ch. 1)

Plot 6-76. Band Edge Plot (802.11g – Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 67 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 67 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-77. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

Plot 6-78. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 69 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 66 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Agilent	t Spectrur	n Analyz	zer - Swept	5A								
L <mark>XI</mark> R	L	RF	50 Ω	DC	CORREC	SEN	VSE:INT		ALIGN AUTO	04:31:55 Pf	MApr 25, 2014	Frequency
Cen	ter Fr	eq 5	.72500	00000	GHz	Tains Franc		#Avg Typ	e: RMS	TRAC		riequency
					PNO: Fast ++	Atten: 26	a Run			D	PNNNN	
					IFGain:Low	Attent 20						
										/lkr1 26.0	75 MHz	Auto Tune
10 di	3/div	Ref	15.00 (dBm						- 4	7.40 dB	
Log												
												Center Fred
5 00												
3.00												5.725000000 GHZ
										1∆	2	
-5.00										Y	<u> </u>	
								alAti	habouternalite	mound	* I	Start Freq
								۳. °	and sold a sec		T, I	5 69000000 GHz
-15.0										¥		
											1	
-25.0								<u></u>			<u>\</u>	04 F
2010								1			<u>h</u>	StopFreq
											<u>A</u>	5.76000000 GHz
-35.0	<u> </u>										├── ┃	
15.0												CF Step
-45.U												7.000000 MHz
						- v	S Ish. addl	W.			Υ.	<u>Auto</u> Man
-55.0	and a said the	dd		All attacks		Anternation	S ANALALAN ANA	-			W44	
	and the second	n white	k i Alis de difes	ad a data data data data data data data	anadalahi sanamaha	a halalan tates a						
												Freq Offset
-65.0												0 Hz
-75.0												
-70.0												
Cen	ter 5./	2500	GHZ		10.0				_	span /	0.00 MHz	
#Re	s BW	100 k	HZ		#VBW	1.0 MHz			sweep	6.533 ms (2001 pts)	
MSG	Alian	ment (Complete	ed					STAT	US		
	4											

Plot 6-79. Band Edge Plot (802.11a - Ch. 149)

Plot 6-80. Band Edge Plot (802.11a - Ch. 165)

FCC ID: A3LSMT700	CA PCTEST	FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT	SAMERNE	Reviewed by:	
		(CERTIFICATION)	Charlente	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 60 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 69 01 122	
© 2014 PCTEST Engineering Laboratory. Inc.					

Plot 6-81. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 149)

Plot 6-82. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 165)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 70 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

Agilent	Spectrur	n Analyze	r - Swept SA								
lxi ri	-	RF	50 Ω DC	CORREC	SEN	ISE:INT		ALIGN AUTO	05:16:06 P	M Apr 25, 2014	Frequency
Cen	ter Fr	req 5.1	725000000) GHz	T	-	#Avg Typ	e: RMS	TRA	CE 123456	riequency
				PNO: Fast ↔→	Atton: 26	a Run			D		
	_			IFGain:Low	Atten. 20	uD					
								Δ	Mkr1 31.	20 MHz	Autorune
10 de	Ridio	Ref 1	5.00 dBm						3	2.36 dB	
Log	Jair		0.00 00111					1			
											Contor From
											Center Freq
5.00											5.725000000 GHz
E 00								<u>_</u> 1∆	2		
-5.00											Otort Eron
							A LLL		ويتناف والمرار	in the A	StartFreq
-15.0							AN IN THE WORLD	AND AN AND A DECK	A BARANANA ANA ANA ANA ANA ANA ANA ANA ANA	all a sufficient of the second se	5.675000000 GHz
-13.0											
									W	{	
-25.0							4		<u> </u>	_ _	Oton Eron
							1			1	Stopried
							1			l 1	5.775000000 GHz
-35.0							N				
					¥		ľ				
					11.4 เป	All the second second					CF Step
-45.0				le . 14	u Liun M'						10.000000 MHz
					Male of the second						Auto Man
FF 0			- I	di wanani i							
-55.0	distant	ALL UNITED	LALIANT MARAN	₩ ^M							
	a de la ser	العبيا بالفرال	discourse and st								Eron Offort
65.0											Frequiser
-05.0											0 Hz
-75.0											
		20500	0						0		
Cen	ter 5./	2000	GHZ						span 1	UU.U MIHZ	
#Res	s BW	100 KH	Z	#VBW	1.0 MHz			Sweep	9.333 ms ((2001 pts)	
MSG	Point	s chang	ed: all traces	cleared				STATI	IS		
		o onang	cu, un traces	ciculou				UIAIG			

Plot 6-83. Band Edge Plot (40MHz BW 802.11n (5.8GHz) - Ch. 151)

Plot 6-84. Band Edge Plot (40MHz BW 802.11n (5.8GHz) - Ch. 159)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 71 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page / 1 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Plot 6-85. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

Plot 6-86. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) – Ch. 155)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 70 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 72 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Antenna-2 Conducted Emissions at the Band Edge

Plot 6-87. Band Edge Plot (802.11b - Ch. 1)

Plot 6-88. Band Edge Plot (802.11b - Ch. 11)

FCC ID: A3LSMT700	PCTEST	FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT	SAMSUND	Reviewed by:
	Y ENGINEERING LEFORTOFT, INC.	(CERTIFICATION)		Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 75 01 122
© 2014 PCTEST Engineering L	aboratory. Inc.			V 5.0

Plot 6-89. Band Edge Plot (802.11g- Ch. 1)

Plot 6-90. Band Edge Plot (802.11g - Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 74 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 74 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-91. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)

Plot 6-92. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 75 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 75 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	·		V 5.0

Plot 6-93. Band Edge Plot (802.11a – Ch. 149)

Plot 6-94. Band Edge Plot (802.11a - Ch. 165)

FCC ID: A3I SMT700	CA PCTEST	FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT	SAMSOND	Reviewed by:			
FUCID. ASLSMITTO		(CERTIFICATION)		Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dege 76 of 100			
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 76 01 122			
© 2014 PCTEST Engineering Laboratory, Inc.							

Plot 6-95. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 149)

Plot 6-96. Band Edge Plot (20MHz BW 802.11n (5.8GHz) - Ch. 165)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dogo 77 of 100			
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page // 01 122			
© 2014 PCTEST Engineering Laboratory, Inc.							

Plot 6-97. Band Edge Plot (40MHz BW 802.11n (5.8GHz) - Ch. 151)

Plot 6-98. Band Edge Plot (40MHz BW 802.11n (5.8GHz) - Ch. 159)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 70 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 76 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Plot 6-99. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

Plot 6-100. Band Edge Plot (80MHz BW 802.11ac (5.8GHz) - Ch. 155)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 79 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

6.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "a", "n", and "ac" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below. The worst case spurious emissions for the 5.8GHz band were found while transmitting in "a" mode at 6 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 v03r01.

Test Procedure Used

KDB 558074 v03r01 – Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz for 2.4GHz frequencies and 40GHz for 5GHz frequencies (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 6-6. Test Instrument & Measurement Setup

	A POTEST	ECC Pt 15 247 802 11a/b/g/n/ac MEASUREMENT REPORT		Reviewed by:
FCC ID: A3LSMT700		(CERTIFICATION)	SAMSONE	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 90 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 60 01 122
© 2014 PCTEST Engineering I	aboratory Inc.			V 5 0

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 01 of 100		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page of 01 122		
© 2014 PCTEST Engineering Laboratory, Inc.						

Antenna-1 Conducted Spurious Emissions

Plot 6-102. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 92 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Faye 02 01 122
@ 0044 DOTEOT Fasting and	ala anatany. Ina			

Agilent	t Spectrun	a Analyze	r - Swept S	SA										
L <mark>XI</mark> RI	L	RF	50 Ω	DC	CORF	REC		SENSE:INT		ALIGN AU	TO 04:18	:55 PM Apr 25, 2014		Frequency
Cen	ter Fr	eq 5.0	01500	0000) GH	Z	Tains Fr		#Avg Typ	e: RMS		TRACE 1 2 3 4 5	6	riequency
					PN	0: Fast G	Atten:	26 dB				DET P N N N N	N	
					IFG	ain:Low	Auen.	20 40						
											Mkr1 4.	082 8 GH:	Z	Auto Tune
10 dE	3/div	Ref 1	5.00 d	Bm							-4	41.77 dBn	1	
Log														
														Center Fred
5.00				1										Genterrieq
5.00														5.015000000 GHz
-5.00														
														Start Fred
														20 000000 MU-
-15.0														30.000000 WHZ
-25.0												-26.15 dBl		Stop Freq
														10 00000000 GHz
-35.0														10.00000000000000
55.0							<u> </u> 1							
						4.	N.							CE Stop
-45.0	<u> </u>						e in the second seco	di ila kant	والغديان والدوار والمرابع	State of the second	جيده بلحال يبتبلي	بالانبيسة حيشانيه فاليبينة		
				, Jan P	A DOUGHT	A CANADA AND	النظر بسريا أت	مركد 📥 والعد	المرجع ومعالية المرابط أأتروا	Section And	Allow to Descention	والالاستقاده وبالأهد الأكرساة		997.000000 MHz
		de Andrea	Water and	بالعرجان	السلاليك	the state of the second							-	ivian ivian
-55.0	All and a second	ألتلخد بطفاء	فللم فالمغاليه											
	distantial line													
-65.0														Frequiser
-05.0														0 Hz
-75.0														
Star	+ 30 M	Hz									Stor	10 000 CH		
#Do			-			#\/P\	N 2 0 ML	-		woon	10 00 m	c /20001 ptc		
#IKC	5 DW		2			#VD1	- 3.0 WI	12		aweeh	10.00 111	s (accor his	2	
MSG 🤇	Points	s chang	ed; all t	races	cleare	d				ST	ATUS			
	-	_			_								_	

Plot 6-103. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 6-104. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 92 of 100		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet	Page 03 01 122			
© 2014 PCTEST Engineering Laboratory, Inc.						

Agilent	t Spectrun	1 Analy	zer - Swept	SA												
l XI RI	L	RF	50 Ω	DC	CORR	EC		SENSE:IN	IT		ALIGN AUT	0 04:2	0:40 PM	1 Apr 25, 2014		Frequency
Cen	ter Fr	eq 5	.01500	0000	0 GH:	Z	Triat			#Avg Typ	e: RMS		TRAC	E 1 2 3 4 5 6		riequency
					PN	0:Fast 🗔	⊃ Ing.i Atten	· 26 dB	•				DE	PNNNN		
					IFG	am.Low	ricceri	. 20 48	_							Auto Tune
												vikr1 4	.03	5 6 GHz		Auto Tune
10 dE	3/div	Ref	15.00 (dBm									-39.	91 dBm		
Log																
																Center Fred
5.00															5	015000000 GHz
															J 3.	015000000 0112
-5.00	\vdash															
																StartFree
-15.0																30.000000 MHz
10.0																
-25.0														-26.74 dBm		Stop Fred
															10	
25 O							1								10.	00000000000000
-33,0							� '									
						dat	L									CE Sten
-45.0	<u> </u>					William Mark	a she the state of	nad sait sai	الا " ال	No. Line . Attach	يبور المشاركين	in the product of the second	فليناقب	al North Contraction	6	97 000000 MHz
			1.55.44	and and	and a fight.		and the second second	in the second	44.	Continue (procession)	- Marine	Alterna Manufacture	بالتر والت	A STREET BOARD	Auto	Man
<i>55</i> 0	ANN	ana pa	All the second	a Minetille	i distilició	in the second										-
-35.0	And States	wite plat	out the little little little													
																Freg Offset
-65.0	<u> </u>															0.11-
																0112
75.0																
-75.0																
star	t 30 M	HZ										Sto	p 10	.000 GHz		
#Re	s BW '	1.0 IV	HZ			#VBV	V 3.0 M	HZ		4	weep	18.00 n	ns (3	0001 pts;		
MSG 🤇	Point	s char	nged; all	traces	cleare	d					STA	ATUS				
							_		_				_		_	

Plot 6-105. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 6-106. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 94 of 100		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet	Page 64 01 122			
© 2014 PCTEST Engineering Laboratory, Inc.						

Agilent Spectrum Analyzer - Swept SA						
LXI RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN A	UTO 04:32:43 PM	Apr 25, 2014	Amplitude
Ref Level 5.00 dBm	PNO: Fast 🕠	Trig: Free Run	worg type. Gut	TYP		
	IFGain:Low	Atten: 16 dB		DE	T P IN N N N N	Ref Level
			l	Mkr1 11.492	2 3 GHz	5.00 dBm
10 dB/div Ref 5.00 dBm				-41.8	59 dBm	
						Attenuation
-5.00						[16 dB]
-15.0						O la (Div
						Scale/Div
-25.0	-					10 dB
-35.0					-37.53 dBm	Scale Type
		•				log lin
-45.0						
	A.I			1	وروافية فالعليون	
-55.0	Y Y Monard Annaly Stations	glage, Sydlaw Periods	train distances in a submission	and the first of the second second		Brocol Contor
and the second	A Construction And in the	والمتحد الشناع المتحدث				FieseiGeniei
-65.0						
No. of Concession, Name						_
-75 0						Presel Adjust
						0 Hz
-85.0						
-03.0						More
						1 of 2
Start 30 MHz				Stop 20.	000 GHz	1012
#Res BW 1.0 MHz	#VBW 3	.0 MHz	Sweep	o 34.67 ms (4)	0001 pts)	
MSG			5	STATUS		

Plot 6-107. Conducted Spurious Plot (802.11a – Ch. 149)

Plot 6-108. Conducted Spurious Plot (802.11a – Ch. 149)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 85 of 122	
© 2014 PCTEST Engineering Laboratory, Inc.					

Agilent	Spectrum	Analyzer - Sw	ept SA								
l,XI RI	L	RF 51	DQ DC	CORREC	SEI	ISE:INT	#Ava Typ	ALIGN AUTO	0 04:34:50 P	MApr 25, 2014	Frequency
				PNO: Fast	🔊 Trig: Free	Run	word the	e. Nino	TY		
				IFGain:Low	Atten: 16	dB			D	et ip nin nin n	A
								M	kr1 11.56	8 7 GHz	Auto Tune
10 dE	3/div	Ref 5.00	dBm						-40.	88 dBm	
Log				1							
											Center Freq
-5.00											10.015000000 GHz
-15.0											
											Start Freq
-25.0											30.000000 MHz
-35.0						•				-35.03 dBm	Oton Erog
											StopFreq
.45.0											20.00000000 GHZ
-40.0											
			In such	a la mara a	يبلانه فارتأه أرارين أراري	i a haladan ha	الأقار وأمعر	a standard h	ALANDER SAMPLE	Provide a post of the state	CF Step
-55.U		0.00 ⁰ 0.00,000	Alleran		a alata a da da a	بالمستحربات أدبال بال	فأشقارهم والتشعاليون		and a state of the second s	(Harrison and States	1.997000000 GHz
	الموطوري	all and a second second second		נישונייין רי	4 m - 4 m - 1 m						<u>Auto</u> Man
-65.0	and the second state										
											Freq Offset
-75.0											0 Hz
-85.0											
0 4									Oton 20		
star #Do	CJU IVI SBM 1	NH7		#\/B	W 3.0 MHz		6	ween	Stop 20 34 67 mc (4	0001 ptc)	
witter	5 0 9 9	.0 10112		# • •	W 5.0 WINZ		3	weep	34.07 IIIS (4	ooo r pis)	
MSG								STA	TUS		

Plot 6-109. Conducted Spurious Plot (802.11a – Ch. 157)

Plot 6-110. Conducted Spurious Plot (802.11a – Ch. 157)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 96 of 100		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 86 of 122		
© 2014 PCTEST Engineering Laboratory, Inc.						

Agilent Spec	trum Analyzer - Swept SA							
L <mark>XI</mark> RL	RF 50 Q DC	CORREC	SENSE:I		ALIGNAUTO	04:49:47 PM Ap	r 25, 2014	Frequency
		PNO: Fast 🗔	Trig: Free Ru	in in	pe. rano	TYPE	10000000	
		IFGain:Low	Atten: 16 dB			DET	N N N N N	A
					MI	kr1 3.883 i	7 GHz	Auto Tune
10 dB/div	Ref 5.00 dBm					-42.11	dBm	
		1						
								Center Freq
-5.00								10.015000000 GHz
-15.0								
								Start Freq
-25.0								30.000000 MHz
-35.0							-35.25 dBm	Stop Erog
	≜ 1							Stop Freq
-45.0								20.00000000 GHZ
-40.0								
77.0	يطار والأر	ويواديهم والمراجع المراجع	والأعراق والمتحاوية والمح	ويربعه والارباط ومعاومه	and the section of the	A state of the state of the	and the second states of	CF Step
-33.0	Section of the sectio	A & Banuakaa	أقبأ السميان فيشرعهم	فبمرافق ومأصفاتها	Handhidson, Augusta			1.997000000 GHz
المربري المحاد	All and the second s							<u>Auto</u> Man
-65.0								
								Freq Offset
-75.0								0 Hz
-85.0								
						O tem 200 0/		
#Pes B		#V/BIA	3.0 MHz		Sween 3/	5100 20.00	01 nte	
wittes D	W 1.0 WI12	#0D00	5.0 WH12		oweep 34		or proj	
MSG					STATU	S		

Plot 6-111. Conducted Spurious Plot (802.11a – Ch. 165)

Plot 6-112. Conducted Spurious Plot (802.11a - Ch. 165)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dece 97 of 100		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 87 of 122		
© 2014 PCTEST Engineering Laboratory, Inc.						

Antenna-2 Conducted Spurious Emissions

Plot 6-114. Conducted Spurious Plot (802.11b - Ch. 1)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 00 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 66 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	·		V 5.0

Agilent	t Spectrun	a Analyze	r - Swept S	5A									
lxi R	L	RF	50 Ω	DC	COR	REC	SE	ENSE:INT		ALIGN AUT	0 05:26:17	M Apr 25, 2014	Frequency
Cen	iter Fr	eq 5.0	01500	000	0 GH	Z	Tei er Fre		#Avg Typ	e: RMS	TRA		rrequeriey
					PN IEG	NO:Fast C	Atten: 2	6 dB				DET P N N N N N	
	_				ire	Jam.LOw		• • •					Auto Tune
										N	/IKF1 3.80	4 5 GHZ	, late i alle
10 di	B/div	Ref 1	5.00 d	Bm							-40	.80 dBm	
Log													
													Center Freq
5.00	<u> </u>												5 015000000 GHz
													0.01000000000112
-5.00													Otent Free
													StartFreq
-15.0													30.000000 MHz
-25.0												-25.65 dBm	Stop Freq
													10 00000000 GHz
-35.0													10.00000000000000
-33.0							≜ ¦						
							ويعادر بالار	A La Com					CE Sten
-45.0						autical in a second		a a a a a a a a a a a a a a a a a a a	() the state of th	e e e	a dina a dalara da a da a da a da a da a da a	al fin an fin an that an an diffe	997.000000 MHz
			الماليول ورور	ndar.	1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			1 .A.A. A.	a la contrata de la c	and the second	All of the second second second		Auto Man
65 O	Mathematic	tradin da a	Survey of the local division of the	o literati	d al mente								
-33.0	- And and a state of the last												
													Freg Offset
-65.0													0 47
													0112
75.0													
-75.0													
											6 4 4		
Star		HZ	_				WOAN				Stop 1	0.000 GHZ	
#Re	SBW	I.U IVII	Z			#VB	W 3.0 WH	2	S	weep	18.00 ms (30001 pts)	
MSG 🤇	Points	s chang	ed; all t	races	clear	ed				STA	TUS		

Plot 6-115. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 6-116. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 90 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet	: Tablet		
© 2014 PCTEST Engineering Laboratory, Inc.					

Agilent	t Spectrun	n Analyz	er - Swept	SA									
L <mark>XI</mark> R	L	RF	50 Ω	DC	CORREC		SE	NSE:INT		ALIGN AUT	0 05:29:13	PM Apr 25, 2014	Frequency
Cen	iter Fr	eq 5.	.01500	0000	GHz		Tria: Ero	o Dun	#Avg Typ	e: RMS	TR. T		Trequency
					PNO:	Fast ⊆	Atten: 26	6 dB				DET P N N N N N	
					ii Gain						1		Auto Tune
										P	VIKET 3.7	8 I GHZ	
10 di	B/div	Ref	15.00 d	Bm							-41	.49 aBm	
Log													
													Center Freq
5.00	<u> </u>			<u> </u>								I	5.015000000 GHz
-5.00													Otort Eron
													StartFreq
-15.0	L												30.000000 MHz
-25.0												-26.71 dDm	Stop Freq
													10.000000000 GHz
-35.0													
						≜ !							
							a collate	L		a		k. an 100 addres	CF Step
-45.0					1	A HIL	an ar yn a'r		aye Alala is on de la falletter i	an she she	a an		997.000000 MHz
		und	كالمسارية ومعارسان	A March	al an ann an Airtean		A also soft	যু জ জাজ	and the second	al toilthe			<u>Auto</u> Man
-55.0	Redo Profile	the form	 لىمىر يىن تەسەرى	all of the local division of the local divis									
	AND ROOM STOLEN												
													Freq Offset
-65.U													0 Hz
-75.0	L												
Star	t 30 M	Hz		_							Stop 1	0.000 GHz	
#Re	sBW	1.0 M	Hz			#VBW	3.0 MHz		s	weep	18.00 ms (30001 pts)	
100	Dei		nodu ol' i								7110		
MSG 🤇	Point	s chan	ged; all t	races of	cleared					STA	lius		

Plot 6-117. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 6-118. Conducted Spurious Plot (802.11b – Ch. 11)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 90 of 122	
© 2014 PCTEST Engineering Laboratory, Inc.					

Plot 6-119. Conducted Spurious Plot (802.11a - Ch. 149)

Plot 6-120. Conducted Spurious Plot (802.11a - Ch. 149)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 01 of 100	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 91 of 122	
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0	

Plot 6-121. Conducted Spurious Plot (802.11a - Ch. 157)

Plot 6-122. Conducted Spurious Plot (802.11a – Ch. 157)

	A POTEST	ECC Pt 15 247 802 11a/b/g/n/ac MEASUREMENT REPORT		Reviewed by:
FCC ID: A3LSMT700	TREINTERING LANGENTOFY, INC.	(CERTIFICATION)	SAMSONE	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 02 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 92 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	•		V 5.0

Plot 6-123. Conducted Spurious Plot (802.11a - Ch. 165)

Plot 6-124. Conducted Spurious Plot (802.11a - Ch. 165)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 02 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 95 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	•		V 5.0

6.7 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle (>98%), at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 6-31 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 6-31. Radiated Limits

Test Procedures Used

KDB 558074 v03r01 – Section 12.1, 12.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 04 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 94 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 6-7. Test Instrument & Measurement Setup

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego OF of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 95 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	·		V 5.0

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 v03r01 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-10.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

Sample Calculations

Determining Spurious Emissions Levels

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 6.8 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 06 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 96 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

802.11b
1 Mbps
3 Meters
2412MHz
01

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	-99.27	Avg	Н	Н	42.16	49.89	53.98	-4.08
4824.00	-92.86	Peak	Н	Н	42.16	56.30	73.98	-17.67
12060.00	-114.89	Avg	Н	Н	51.82	43.93	53.98	-10.05
12060.00	-103.59	Peak	Н	Н	51.82	55.23	73.98	-18.75

Table 6-32. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b	
1 Mbps	
3 Meters	
2437MHz	
06	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-98.40	Avg	Н	Н	42.37	50.97	53.98	-3.01
4874.00	-93.22	Peak	Н	Н	42.37	56.15	73.98	-17.83
7311.00	-114.84	Avg	Н	Н	43.89	36.04	53.98	-17.94
7311.00	-102.94	Peak	Н	Н	43.89	47.94	73.98	-26.04
12185.00	-115.83	Avg	Н	Н	52.47	43.64	53.98	-10.34
12185.00	-103.52	Peak	Н	Н	52.47	55.95	73.98	-18.03

Table 6-33. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 97 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	-101.78	Avg	Н	Н	41.56	46.78	53.98	-7.20
4924.00	-94.48	Peak	Н	Н	41.76	54.28	73.98	-19.70
7386.00	-113.78	Avg	Н	Н	44.00	37.22	53.98	-16.76
7386.00	-102.31	Peak	Н	Н	44.00	48.69	73.98	-25.29
12310.00	-115.28	Avg	Н	Н	53.56	45.28	53.98	-8.70
12310.00	-102.97	Peak	Н	Н	53.56	57.59	73.98	-16.39

Table 6-34. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5745MHz
149

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3830.00	-105.73	Avg	Н	Н	47.18	0.00	48.45	53.98	-5.53
3830.00	-99.85	Peak	Н	Н	47.18	0.00	54.33	73.98	-19.65
11490.00	-109.42	Avg	Н	Н	48.14	0.00	45.72	53.98	-8.26
11490.00	-97.27	Peak	Н	Н	48.14	0.00	57.87	73.98	-16.11
22980.00	-106.38	Avg	V	V	44.46	-9.54	35.54	53.98	-18.44
22980.00	-100.79	Peak	V	V	44.46	-9.54	41.13	73.98	-32.85

Table 6-35. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT	SAMSUNE	Reviewed by:
	A Superior of the second of the light			Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 09 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 96 01 122
© 2014 DOTECT Engineering	abaratan (Inc			

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6 Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5785MHz			
Channel:	157			

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3856.67	-109.09	Avg	н	Н	47.22	0.00	45.12	53.98	-8.86
3856.67	-99.23	Peak	н	Н	47.22	0.00	54.98	73.98	-19.00
11570.00	-110.43	Avg	Н	Н	48.39	0.00	44.96	53.98	-9.02
11570.00	-97.91	Peak	Н	Н	48.39	0.00	57.48	73.98	-16.50

Table 6-36. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5825MHz	
165	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3883.35	-105.34	Avg	н	Н	48.42	0.00	50.08	53.98	-3.89
3883.35	-92.31	Peak	н	Н	48.42	0.00	63.11	73.98	-10.86
11650.00	-109.58	Avg	н	Н	48.42	0.00	45.84	53.98	-8.13
11650.00	-97.39	Peak	н	Н	48.42	0.00	58.03	73.98	-15.94

Table 6-37. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dago 00 of 122		
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 99 01 122		
© 2014 PCTEST Engineering Laboratory, Inc.						

Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

802.11b
1 Mbps
3 Meters
2412MHz
01

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	-100.57	Avg	н	Н	42.16	48.59	53.98	-5.38
4824.00	-96.27	Peak	Н	Н	42.16	52.89	73.98	-21.08
12060.00	-115.75	Avg	н	Н	51.82	43.07	53.98	-10.91
12060.00	-103.57	Peak	н	Н	51.82	55.25	73.98	-18.73

Table 6-38. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b	
1 Mbps	
3 Meters	
2437MHz	
06	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-100.61	Avg	Н	Н	42.37	48.76	53.98	-5.22
4874.00	-97.34	Peak	Н	Н	42.37	52.03	73.98	-21.95
7311.00	-114.34	Avg	Н	Н	43.89	36.54	53.98	-17.44
7311.00	-102.07	Peak	Н	Н	43.89	48.81	73.98	-25.17
12185.00	-115.53	Avg	Н	Н	52.47	43.94	53.98	-10.04
12185.00	-105.52	Peak	Н	Н	52.47	53.95	73.98	-20.03

Table 6-39. Radiated Measurements

				Deviewed by
FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 100 01 122
© 2014 PCTEST Engineering	Laboratory, Inc.			V 5.0

01/13/2014

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11
-	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	-100.67	Avg	н	Н	42.45	48.78	53.98	-5.20
4924.00	-96.54	Peak	н	Н	42.45	52.91	73.98	-21.07
7386.00	-114.02	Avg	н	Н	44.00	36.98	53.98	-17.00
7386.00	-101.91	Peak	н	Н	44.00	49.09	73.98	-24.89
12310.00	-115.44	Avg	н	Н	53.56	45.12	53.98	-8.86
12310.00	-102.41	Peak	н	Н	53.56	58.15	73.98	-15.83

Table 6-40. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5745MHz	
149	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3830.00	-104.36	Avg	Н	Н	47.18	0.00	49.82	53.98	-4.16
3830.00	-97.55	Peak	Н	Н	47.18	0.00	56.63	73.98	-17.35
11490.00	-104.86	Avg	Н	Н	48.14	0.00	50.28	53.98	-3.70
11490.00	-92.28	Peak	Н	Н	48.14	0.00	62.86	73.98	-11.12
22980.00	-107.08	Avg	V	V	44.46	-9.54	34.84	53.98	-19.14
22980.00	-102.06	Peak	V	V	44.46	-9.54	39.86	73.98	-34.12

Table 6-41. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dana 404 of 400
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 101 of 122
© 2014 DOTECT Engineering	abaratan (Ina			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3856.67	-104.78	Avg	Н	Н	47.22	0.00	49.43	53.98	-4.55
3856.67	-97.63	Peak	н	Н	47.22	0.00	56.58	73.98	-17.40
11570.00	-104.67	Avg	Н	Н	48.39	0.00	50.72	53.98	-3.26
11570.00	-91.61	Peak	н	Н	48.39	0.00	63.78	73.98	-10.20

Table 6-42. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3883.35	-105.88	Avg	Н	Н	47.25	0.00	48.37	53.98	-5.61
3883.35	-98.64	Peak	н	н	47.25	0.00	55.61	73.98	-18.37
11650.00	-104.62	Avg	н	Н	48.42	0.00	50.80	53.98	-3.17
11650.00	-89.86	Peak	н	Н	48.42	0.00	65.56	73.98	-8.41

Table 6-43. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 102 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 102 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

MIMO Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

802.11n
MCS8
3 Meters
2412MHz
01

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	-109.76	Avg	Н	Н	42.16	39.40	53.98	-14.57
4824.00	-97.59	Peak	н	Н	42.16	51.57	73.98	-22.40
12060.00	-114.32	Avg	н	Н	51.82	44.50	53.98	-9.48
12060.00	-101.33	Peak	Н	Н	51.82	57.49	73.98	-16.49

Table 6-44. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11n	
MCS8	
3 Meters	
2437MHz	
06	

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	-111.39	Avg	Н	Н	42.37	37.98	53.98	-16.00
4874.00	-99.05	Peak	Н	Н	42.37	50.32	73.98	-23.66
7311.00	-114.74	Avg	Н	Н	43.89	36.14	53.98	-17.84
7311.00	-102.30	Peak	Н	Н	43.89	48.58	73.98	-25.40
12185.00	-115.94	Avg	н	Н	52.47	43.53	53.98	-10.45
12185.00	-103.62	Peak	Н	Н	52.47	55.85	73.98	-18.13

Table 6-45. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 102	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 103 01 122	
© 2014 PCTEST Engineering Laboratory, Inc.					

01/13/2014

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS8
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	-110.35	Avg	н	Н	42.45	39.10	53.98	-14.88
4924.00	-98.38	Peak	н	Н	42.45	51.07	73.98	-22.91
7386.00	-114.08	Avg	н	Н	44.00	36.92	53.98	-17.06
7386.00	-102.28	Peak	н	Н	44.00	48.72	73.98	-25.26
12310.00	-115.45	Avg	н	Н	53.56	45.11	53.98	-8.87
12310.00	-103.46	Peak	н	Н	53.56	57.10	73.98	-16.88

Table 6-46. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11n
MCS8
1 & 3 Meters
5745MHz
149

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3830.00	-105.27	Avg	H	Н	47.18	0.00	48.91	53.98	-5.07
3830.00	-99.73	Peak	Н	Н	47.18	0.00	54.45	73.98	-19.53
11490.00	-116.84	Avg	Н	Н	48.14	0.00	38.30	53.98	-15.68
11490.00	-104.95	Peak	н	Н	48.14	0.00	50.19	73.98	-23.79
22980.00	-103.60	Avg	V	V	44.46	-9.54	38.32	53.98	-15.66
22980.00	-100.11	Peak	V	V	44.46	-9.54	41.81	73.98	-32.17

Table 6-47. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 104 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 104 01 122
© 2014 DOTECT Engineering	abaratan (Inc			VEC

802.11n
MCS8
1 & 3 Meters
5785MHz
157

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3856.67	-105.99	Avg	Н	Н	47.22	0.00	48.22	53.98	-5.76
3856.67	-99.56	Peak	Н	Н	47.22	0.00	54.65	73.98	-19.33
11570.00	-116.83	Avg	н	Н	48.39	0.00	38.56	53.98	-15.42
11570.00	-104.38	Peak	Н	Н	48.39	0.00	51.01	73.98	-22.97

Table 6-48. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11n
MCS8
1 & 3 Meters
5825MHz
165

Frequency [MHz]	Analyzer Level [dBm]	Detector	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
3883.35	-106.06	Avg	Н	Н	47.25	0.00	48.19	53.98	-5.79
3883.35	-99.83	Peak	н	н	47.25	0.00	54.42	73.98	-19.56
11650.00	-116.37	Avg	Н	Н	48.42	0.00	39.05	53.98	-14.92
11650.00	-103.95	Peak	Н	Н	48.42	0.00	51.47	73.98	-22.50

Table 6-49. Radiated Measurements

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 105 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 105 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Date: 7.MAY.2014 21:21:58

Plot 6-125. Radiated Restricted Lower Band Edge Measurement (Average)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 106 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 106 of 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

Date: 18.APR.2014 16:09:42

Plot 6-126. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 107 of 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

Date: 7.MAY.2014 21:41:42

Plot 6-127. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 106 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Date: 7.MAY.2014 21:42:31

Plot 6-128. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 109 01 122
© 2014 PCTEST Engineering Laboratory, Inc.			V 5.0	

6.9 Antenna-2 Radiated Restricted Band Edge Measurements §15.205 §15.209

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Date: 18.APR.2014 16:20:35

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 110 0f 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

01/13/2014

Date: 18.APR.2014 16:21:05

Plot 6-130. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 111 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 11101122
© 2014 PCTEST Engineering Laboratory, Inc.			V 5.0	

Date: 18.APR.2014 16:25:15

Plot 6-131. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 112 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 112 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Date: 7.MAY.2014 21:47:52

Plot 6-132. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 112 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 113 of 122
© 2014 PCTEST Engineering Laboratory, Inc.				V 5.0

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Date: 18.APR.2014 16:34:48

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 114 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 114 01 122
© 2014 PCTEST Engineering Laboratory, Inc.				

Date: 18.APR.2014 16:35:31

Plot 6-134. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 115 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 115 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Date: 18.APR.2014 16:30:26

Plot 6-135. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 116 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 116 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.			V 5.0

Date: 7.MAY.2014 21:51:48

Plot 6-136. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 117 01 122
© 2014 PCTEST Engineering L	aboratory, Inc.	•		V 5.0

Line-Conducted Test Data 6.11 §15.207

FCC Part 15 Class B Voltage on Mains QP.LimitLine Final Result 1-QPK FCC Part 15 Class B Voltage on Mains AV.LimitLine Final Result 2-AVG Preview Result 1-PK+

Plot 6-137.	Line	Conducted	Plot with	802.11b	(L1))
-------------	------	-----------	-----------	---------	------	---

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.150	L1	0.2	49.30	66.00	16.70	31.50	56.00	24.50
0.283	L1	0.1	42.80	60.70	17.90	26.10	50.70	24.60
0.438	L1	0.1	38.80	57.10	18.30	18.70	47.10	28.40
0.870	L1	0.1	33.30	56.00	22.70	17.60	46.00	28.40
0.985	L1	0.1	28.60	56.00	27.40	12.40	46.00	33.60
1.435	L1	0.1	27.50	56.00	28.50	12.70	46.00	33.30
		Table 6-5	0. Line Cor	nducted Da	ata with 80	2.11b (L1)	-	

Notes:

- 1. All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3. Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dBµV) = QP/AV Analyzer/Receiver Level (dBµV) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 119 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 116 01 122
© 2014 PCTEST Engineering L	aboratory. Inc.			V 5.0

Line-Conducted Test Data §15.207

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+ Final Result 1-QPK Final Result 2-AVG

Plot 6-138.	Line	Conducted	Plot with	802.11b	(N)
-------------	------	-----------	-----------	---------	-----

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.886	Ν	0.1	38.80	56.00	17.20	17.40	46.00	28.60
1.010	Ν	0.1	33.40	56.00	22.60	16.60	46.00	29.40
1.327	Ν	0.1	34.60	56.00	21.40	13.90	46.00	32.10
1.412	Ν	0.1	35.00	56.00	21.00	17.00	46.00	29.00
2.031	Ν	0.2	33.30	56.00	22.70	15.50	46.00	30.50
2.063	N	0.2	31.90	56.00	24.10	14.10	46.00	31.90
p		Table 6-5	1. Line Co	nducted D	ata with 80	02.11b (N)		-

Notes:

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11b mode using 1Mbps on Channel 6. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSM1700		(CERTIFICATION)	SAMSONC	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 110 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 119 01 122

Line-Conducted Test Data §15.207

FCC Part 15 Class B Voltage on Mains QP.LimitLine Final Result 1-QPK FCC Part 15 Class B Voltage on Mains AV.LimitLine Final Result 2-AVG Preview Result 1-PK+

Plot 6-139. Li	ne Conducted	l Plot with	802.11a	(L1)
----------------	--------------	-------------	---------	------

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz	Line	dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.697	L1	0.1	32.40	56.00	23.60	16.70	46.00	29.30
0.870	L1	0.1	30.80	56.00	25.20	13.30	46.00	32.70
1.100	L1	0.1	28.40	56.00	27.60	12.60	46.00	33.40
1.397	L1	0.1	21.70	56.00	34.30	7.40	46.00	38.60
1.725	L1	0.1	24.20	56.00	31.80	9.80	46.00	36.20
4.927	L1	0.2	22.60	56.00	33.40	11.30	46.00	34.70
	-	Table 6-5	2. Line Cor	nducted Da	ata with 80	2.11a (L1)	-	-

Notes:

1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11a mode using 6Mbps on Channel 157. The emissions found were not affected by the choice of channel used during testing.

2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.

3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)

4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)

5.Margin (dB) = QP/AV Limit (dB μ V) – QP/AV Level (dB μ V)

6.Traces shown in plot are made using a peak detector.

7. Deviations to the Specifications: None.

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 120 of 122
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 120 01 122
© 2014 PCTEST Engineering L	aboratory. Inc.			V 5.0

Line-Conducted Test Data §15.207

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+

Plot 6-140.	Line	Conducted	Plot with	802.11a	(N)
-------------	------	-----------	-----------	---------	-----

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.688	Ν	0.1	35.60	56.00	20.40	16.50	46.00	29.50
0.870	Ν	0.1	39.70	56.00	16.30	21.30	46.00	24.70
1.016	Ν	0.1	33.00	56.00	23.00	15.80	46.00	30.20
1.183	Ν	0.1	26.80	56.00	29.20	8.80	46.00	37.20
1.325	Ν	0.1	33.20	56.00	22.80	12.70	46.00	33.30
1.471	Ν	0.1	34.50	56.00	21.50	13.80	46.00	32.20
Table 6-53. Line Conducted Data with 802.11a (N)								

Notes:

- 1.All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in 802.11a mode using 6Mbps on Channel 157. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3.Factor (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4.QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Factor (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 100
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Page 121 01 122

CONCLUSION 7.0

The data collected relate only the item(s) tested and show that the Samsung Portable Tablet FCC ID: A3LSMT700 is in compliance with Part 15C of the FCC Rules.

FCC ID: A3LSMT700		FCC Pt. 15.247 802.11a/b/g/n/ac MEASUREMENT REPORT (CERTIFICATION)	SAMSONE	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 122 of 122	
0Y1404110750.A3L	4/11 - 5/7/2014	Portable Tablet		Fage 122 01 122	
© 2014 PCTEST Engineering Laboratory, Inc.					