

### FCC 47 CFR § 2.1093 IEEE Std 1528-2013

# SAR EVALUATION REPORT (Part 0 : SAR CHARACTERIZATION)

FOR

GSM/WCDMA/LTE/5G NR Tablet + BT/BLE, DTS/UNII a/b/g/n/ac/ax, and NFC

MODEL NUMBER: SM-T636B, SM-T638B

FCC ID: A3LSMT636B

REPORT NUMBER: 4790406759-S1V1

**ISSUE DATE: 7/26/2022** 

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433



**Testing Laboratory** 

TL-637

### **Revision History**

| Rev. | Date      | Revisions     | Revised By |
|------|-----------|---------------|------------|
| V1   | 7/26/2022 | Initial Issue |            |
|      |           |               |            |
|      |           |               |            |
|      |           |               |            |

Page 2 of 18

## **Table of Contents**

| 1.   | Attestation of SAR Characterization                        | . 4 |
|------|------------------------------------------------------------|-----|
| 2.   | Introduction                                               | . 5 |
| 3.   | Facilities and Accreditation                               | . 5 |
| 4.   | SAR Measurement System & Test Equipment                    | . 6 |
| 4.1. | SAR Measurement System                                     | . 6 |
| 4.2. | SAR Scan Procedures                                        | . 8 |
| 4.3. | Test Equipment                                             | 10  |
| 5.   | Device Under Test (DUT) Information                        | 12  |
| 5.1. | Wireless Technologies                                      | 12  |
| 5.2. | Time-Averaging for SAR                                     | 13  |
| 5.3. | Nomenclature for Part 0 Report                             | 13  |
| 6.   | SAR Characterizations                                      | 14  |
| 6.1. | SAR Design Target                                          | 14  |
| 6.2. | DSI and SAR Determination                                  | 14  |
| 6.3. | SAR Char                                                   | 15  |
| 7.   | SAR Test results for <i>P<sub>limit</sub></i> calculations | 17  |

Page 3 of 18

# 1. Attestation of SAR Characterization

| Applicant Name       | SAMSUNG ELECTRONICS CO., LTD.                                                                                                                                       |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FCC ID               | A3LSMT636B                                                                                                                                                          |  |
| Model Number         | SM-T636B, SM-T638B                                                                                                                                                  |  |
| Applicable Standards | FCC 47 CFR § 2.1093                                                                                                                                                 |  |
|                      | IEEE Std 1528-2013                                                                                                                                                  |  |
|                      | Published RF exposure KDB procedures                                                                                                                                |  |
| Report type          | Part.0 : SAR Characterization                                                                                                                                       |  |
| Date Tested          | 6/13/2022 to 7/25/2022                                                                                                                                              |  |
| Part 0 Purpose       | Part 0 is the procedures for determining <i>P</i> <sub>Limit</sub> for 2G/3G/4G/5G NR sub6 to satisfy <i>SAR_design_target</i> in order to FCC limit's requirement. |  |

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government

| Approved & Released By:         | Prepared By:                    |  |
|---------------------------------|---------------------------------|--|
| flex                            | 1 th                            |  |
| Justin Park                     | Sunghoon Kim                    |  |
| Operations Leader               | Senior Laboratory Engineer      |  |
| UL Korea, Ltd. Suwon Laboratory | UL Korea, Ltd. Suwon Laboratory |  |

Page 4 of 18

# 2. Introduction

The equipment under test (EUT) is SAMSUNG Smartphone (FCC ID : A3LSMT636B), it contains the Qualcomm modems supporting 2G/3G/4G/5G NR technologies. These modems are enable with Qualcomm Smart Transmit feature to control and manage transmitting power in real time and to ensure at all times the time-averaged RF exposure is in compliance with FCC requirement.

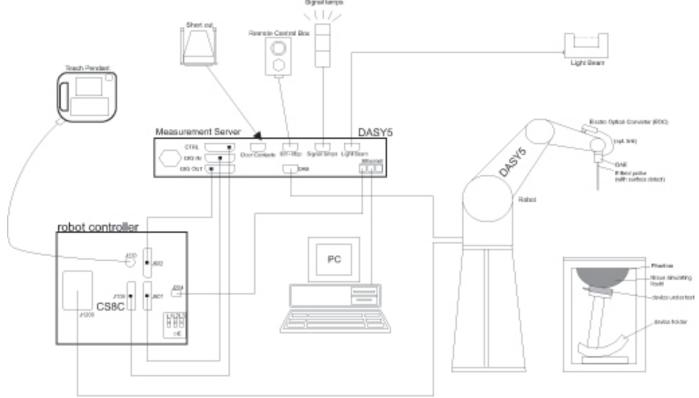
This purpose of the part 0 report is to determine SAR char is derived from SAR test measurements and conducted power measurements to determine *PLimit* for each technology/band. The *PLimit* represents the maximum time-averaged power level for the corresponding radio/antenna configuration.

# 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

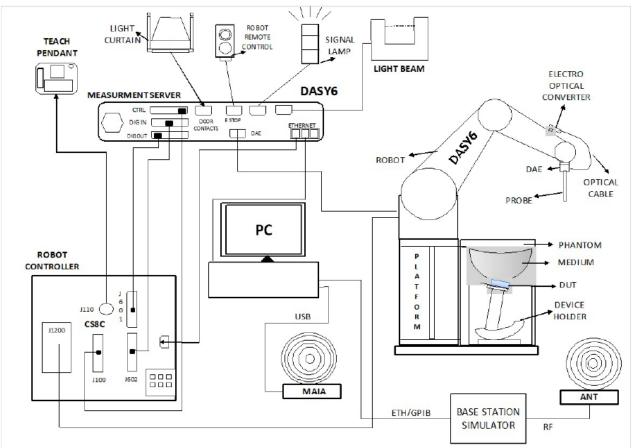
| Suwon      |            |  |  |  |
|------------|------------|--|--|--|
| SAR 1 Room | SAR 6 Room |  |  |  |
| SAR 2 Room | SAR 7 Room |  |  |  |
| SAR 3 Room | SAR 8 Room |  |  |  |
| SAR 4 Room | SAR 9 Room |  |  |  |
| SAR 5 Room |            |  |  |  |

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.


The full scope of accreditation can be viewed at <u>https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.</u>

Page 5 of 18

# 4. SAR Measurement System & Test Equipment


# 4.1. SAR Measurement System

### The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.





- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY6 or 8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

# 4.2. SAR Scan Procedures

### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

|                                                                                                           | $\leq$ 3 GHz                                                                                                                                                                                                                                                           | > 3 GHz                                                                                                               |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                                                                                                                                   | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                            |  |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location                 | $30^{\circ} \pm 1^{\circ}$                                                                                                                                                                                                                                             | $20^\circ\pm1^\circ$                                                                                                  |  |
|                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 - 3 GHz: $\leq$ 12 mm                                                                                                                                                                                                                  | $\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$ |  |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                                                       |  |

Page 8 of 18

### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

|                                                                                                                                            |                                    | $\leq$ 3 GHz                                                                            | > 3 GHz                                                                                                                                    |                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                                                                 |                                    |                                                                                         | $\leq 2 \text{ GHz}: \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$                                                                | 3 – 4 GHz: ≤ 5 mm <sup>*</sup><br>4 – 6 GHz: ≤ 4 mm <sup>*</sup>                                                                                                      |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface                                                                   | uniform grid: $\Delta z_{Zoom}(n)$ |                                                                                         | $\leq$ 5 mm                                                                                                                                | $\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$ |
|                                                                                                                                            | graded<br>grid                     | $\Delta z_{Z_{com}}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | $\leq$ 4 mm                                                                                                                                | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                                                                         |
|                                                                                                                                            |                                    | Δz <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                               | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                                                                                                      |                                                                                                                                                                       |
| Minimum zoom scan<br>volume x, y, z                                                                                                        |                                    | ≥ 30 mm                                                                                 | $\begin{array}{l} 3-4 \text{ GHz} \ge 28 \text{ mm} \\ 4-5 \text{ GHz} \ge 25 \text{ mm} \\ 5-6 \text{ GHz} \ge 22 \text{ mm} \end{array}$ |                                                                                                                                                                       |
| Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. |                                    |                                                                                         |                                                                                                                                            |                                                                                                                                                                       |

When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is  $\leq$  1.4 W/kg,  $\leq$  8 mm,  $\leq$  7 mm and  $\leq$  5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

### Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 9 of 18

# 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

#### **Dielectric Property Measurements**

| Name of Equipment         | Manufacturer    | Type/Model    | Serial No.    | Cal. Due Date |
|---------------------------|-----------------|---------------|---------------|---------------|
| Netw ork Analyzer         | Agilent         | E5071C        | MY46522054    | 8-6-2022      |
| Netw ork Analyzer         | ROHDE & SCHWARZ | ZNB 20        | 102256        | 8-6-2022      |
| Dielectric Assessment Kit | SPEAG           | DAK-3.5       | 1196          | 7-21-2022     |
| Dielectric Assessment Kit | SPEAG           | DAKS-3.5      | 1133          | 3-28-2023     |
| Dielectric Assessment Kit | SPEAG           | DAKS_VNA R140 | 0060221       | 4-22-2023     |
| Shorting block            | SPEAG           | DAK-3.5 Short | SM DAK 200 BA | N/A           |
| Thermometer               | LKM             | DTM3000       | 3851          | 8-4-2022      |
| Thermometer               | LKM             | DTM3000       | 3862          | 8-4-2022      |

#### System Check

| Oystern Oneek                |               |             |                       |               |
|------------------------------|---------------|-------------|-----------------------|---------------|
| Name of Equipment            | Manufacturer  | Type/Model  | Serial No.            | Cal. Due Date |
| MXG Analog Signal Generator  | Agilent       | N5181A      | MY50145882            | 8-4-2022      |
| VIXG Analog Signal Generator | Keysight      | N5181B      | MY59100587            | 8-4-2022      |
| WXG Analog Signal Generator  | Keysight      | N5173B      | MY59101083            | 8-4-2022      |
| Pow er Sensor                | Keysight      | U2000A      | MY60180020            | 8-4-2022      |
| Power Sensor                 | Agilent       | U2000A      | MY54260007            | 8-4-2022      |
| Pow er Sensor                | Agilent       | U2000A      | MY54260010            | 8-4-2022      |
| Power Sensor                 | Keysight      | U2000A      | MY60490008            | 8-4-2022      |
| Pow er Sensor                | Keysight      | U2000A      | MY61060004            | 8-4-2022      |
| Pow er Sensor                | Keysight      | U2000A      | MY61010006            | 8-4-2022      |
| Power Sensor                 | Keysight      | U2000A      | MY61010010            | 8-4-2022      |
| Pow er Amplifier             | EXODUS        | AMP2027     | 1410025-AMP2027-10003 | 8-4-2022      |
| Pow er Amplifier             | EXODUS        | AMP2027ADB  | 10002                 | 8-4-2022      |
| Directional Coupler          | Agilent       | 772D        | MY52180193            | 8-3-2022      |
| Directional Coupler          | H.P           | 778D        | 16133                 | 8-3-2022      |
| Directional Coupler          | MINI-CIRCUITS | ZUDC20-183+ | N/A                   | 8-3-2022      |
| Directional Coupler          | MINI-CIRCUITS | ZUDC20-183+ | N/A                   | 8-3-2022      |
| Low Pass Filter              | MICROLAB      | LA-15N      | 3943                  | 8-3-2022      |
| Low Pass Filter              | FILTRON       | L14012FL    | 1410003S              | 8-3-2022      |
| Low Pass Filter              | MICROLAB      | LA-60N      | 3942                  | 8-3-2022      |
| Low Pass Filter              | MINI-CIRCUITS | NLP-1200    | VUU19301915           | 8-4-2022      |
| Attenuator                   | KEY SIGHT     | 8491B/003   | VE2017A0283           | 8-4-2022      |
| Attenuator                   | KEY SIGHT     | 8491B/010   | MY39271981            | 8-4-2022      |
| Attenuator                   | KEY SIGHT     | 8491B/010   | MY39272011            | 8-4-2022      |
| Attenuator                   | KEYSIGHT      | 8491B/020   | MY39271973            | 8-4-2022      |
| Attenuator                   | MINI-CIRCUITS | BW-N3W5+    | N/A                   | 8-4-2022      |
| Attenuator                   | MINI-CIRCUITS | BW-N10W5+   | N/A                   | 8-4-2022      |
| Attenuator                   | MINI-CIRCUITS | BW-N10W5+   | N/A                   | 8-4-2022      |
| Attenuator                   | MINI-CIRCUITS | BW-N20W5+   | N/A                   | 8-4-2022      |
| Attenuator                   | MINI-CIRCUITS | BW-N20W5+   | N/A                   | 8-4-2022      |
| E-Field Probe                | SPEAG         | EX3DV4      | 7651                  | 5-30-2023     |
| E-Field Probe                | SPEAG         | EX3DV4      | 7313                  | 3-2-2023      |
| E-Field Probe                | SPEAG         | EX3DV4      | 7314                  | 5-31-2023     |
| E-Field Probe                | SPEAG         | EX3DV4      | 7652                  | 4-28-2023     |
| E-Field Probe                | SPEAG         | EX3DV4      | 7376                  | 7-30-2022     |
| E-Field Probe                | SPEAG         | EX3DV4      | 7645                  | 4-29-2023     |
| E-Field Probe                | SPEAG         | EX3DV4      | 7646                  | 3-29-2023     |
| Data Acquisition Electronics | SPEAG         | DAE4        | 1343                  | 8-23-2022     |
| Data Acquisition Electronics | SPEAG         | DAE4        | 912                   | 11-22-2022    |
| Data Acquisition Electronics | SPEAG         | DAE4        | 1671                  | 5-31-2023     |
| Data Acquisition Electronics | SPEAG         | DAE4        | 1591                  | 3-24-2023     |

Page 10 of 18

### Test Equipment\_(Continued)

| Data Acquisition Electronics | SPEAG  | DAE4      | 1670     | 6-7-2023   |
|------------------------------|--------|-----------|----------|------------|
| Data Acquisition Electronics | SPEAG  | DAE4      | 1671     | 5-31-2023  |
| Data Acquisition Electronics | SPEAG  | DAE4      | 1447     | 3-25-2023  |
| System Validation Dipole     | SPEAG  | CLA-13    | 1015     | 10-12-2022 |
| System Validation Dipole     | SPEAG  | D750V3    | 1205     | 4-27-2023  |
| System Validation Dipole     | SPEAG  | D835V2    | 4d174    | 3-17-2023  |
| System Validation Dipole     | SPEAG  | D835V2    | 4d194    | 3-24-2023  |
| System Validation Dipole     | SPEAG  | D1750V2   | 1125     | 2-24-2023  |
| System Validation Dipole     | SPEAG  | D1900V2   | 5d190    | 11-24-2022 |
| System Validation Dipole     | SPEAG  | D2450V2   | 939      | 7-21-2022  |
| System Validation Dipole     | SPEAG  | D2450V2   | 960      | 3-24-2023  |
| System Validation Dipole     | SPEAG  | D2600V2   | 1178     | 4-23-2023  |
| System Validation Dipole     | SPEAG  | D5GHzV2   | 1184     | 12-3-2022  |
| System Validation Dipole     | SPEAG  | D5GHzV2   | 1209     | 11-24-2022 |
| Thermometer                  | Lutron | MHB-382SD | AH.91463 | 8-4-2022   |
| Thermometer                  | Lutron | MHB-382SD | AH.50215 | 8-3-2022   |
| Thermometer                  | Lutron | MHB-382SD | AH.50213 | 8-4-2022   |
| Thermometer                  | Lutron | MHB-382SD | AH.45903 | 8-3-2022   |
| Thermometer                  | Lutron | MHB-382SD | AK.18789 | 8-4-2022   |
| Thermometer                  | Lutron | MHB-382SD | AK.12102 | 8-3-2022   |

#### Others

| Name of Equipment             | Manufacturer | Type/Model | Serial No. | Cal. Due Date |  |
|-------------------------------|--------------|------------|------------|---------------|--|
| Base Station Simulator        | R&S          | CMW500     | 150313     | 8-3-2022      |  |
| Base Station Simulator        | R&S          | CMW500     | 150314     | 8-4-2022      |  |
| Base Station Simulator        | R & S        | CMW500     | 162790     | 8-3-2022      |  |
| Base Station Simulator        | R & S        | CMW500     | 169803     | 5-27-2023     |  |
| Base Station Simulator        | R&S          | CMW500     | 169801     | 8-3-2022      |  |
| Base Station Simulator        | R & S        | CMW500     | 169799     | 8-3-2022      |  |
| Base Station Simulator        | R & S        | CMW500     | 169800     | 8-3-2022      |  |
| Base Station Simulator        | R&S          | CMW500     | 169797     | 8-3-2022      |  |
| Base Station Simulator        | R&S          | CMW500     | 169798     | 8-3-2022      |  |
| UXM 5G Wireless Test Platform | Keysight     | E7515B     | MY59150850 | 12-13-2022    |  |
| UXM 5G Wireless Test Platform | Keysight     | E7515B     | MY58460570 | 12-13-2022    |  |
| UXM 5G Wireless Test Platform | Keysight     | E7515B     | MY57510596 | 8-6-2022      |  |

#### Note(s):

For System Validation Dipole, Calibration interval applied every 2 years according to referencing KDB 865664 guidance.
 Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations. (for blue box items)
 All equipments were used until Cal.Due data.

Page 11 of 18

# 5. Device Under Test (DUT) Information

# 5.1. Wireless Technologies

| Wireless<br>technologie<br>s | Frequency bands                                                                                                                                 | Opera                                                                                           | Duty Cycle used for<br>SAR testing                                                           |      |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|--|--|--|
| GSM                          | 850<br>1900                                                                                                                                     | Voice (GMSK)<br>GPRS (GMSK)<br>EGPRS (8PSK)                                                     | GSM Voice: 12.5%<br>(E)GPRS: 1 Slot: 12.5%<br>2 Slots: 25%<br>3 Slots: 37.5%<br>4 Slots: 50% |      |  |  |  |
|                              | Does this device support DTM (Du                                                                                                                | al Transfer Mode)? 🗆 Yes 🛛                                                                      | ⊠ No                                                                                         |      |  |  |  |
| W-CDMA<br>(UMTS)             | Band II<br>Band IV<br>Band V                                                                                                                    | UMTS Rel. 99 (Voice & Da<br>HSDPA (Category 24)<br>HSUPA (Category 6)<br>DC-HSDPA (Category 24) | 100%                                                                                         |      |  |  |  |
| LTE                          | FDD Band 2<br>FDD Band 4<br>FDD Band 5<br>FDD Band 12<br>FDD Band 13<br>FDD Band 17<br>FDD Band 25<br>FDD Band 26<br>TDD Band 41<br>FDD Band 66 | HSPA+ (DL only)<br>QPSK<br>16QAM<br>64QAM<br>256QAM<br>Rel. 16 Carrier Aggregatio               | 100% (FDD)<br>63.3% (TDD)                                                                    |      |  |  |  |
|                              | Does this device support SV-LTE (1xRTT-LTE)? □ Yes ⊠ No                                                                                         |                                                                                                 |                                                                                              |      |  |  |  |
| 5G NR<br>(Sub 6)             | FDD Band n5<br>FDD Band n66                                                                                                                     | DFT-s-ODFM:<br>■ π/2 BPSK, QPSK, 16Q/<br>CP-ODFM:<br>■ QPSK, 16QAM, 64QAM.                      | 100%                                                                                         |      |  |  |  |
| Wi-Fi                        | 2.4 GHz                                                                                                                                         | 802.11b<br>802.11g<br>802.11n (HT20)<br>802.11ax                                                | SISO : 99.4% (802.11b)<br>MIMO : 96.4% (802.11g)                                             |      |  |  |  |
|                              | 5 GHz                                                                                                                                           | 802.11a<br>802.11n (HT20) & (HT40)<br>802.11ac (VHT20) & (VHT<br>802.11ax (HE20) & (HE40        | SISO & MIMO :<br>96.7% (802.11a)<br>94.5% (802.11ac (VHT80)                                  |      |  |  |  |
|                              | Does this device support bands 5.60 ~ 5.65 GHz? ⊠ Yes □ No                                                                                      |                                                                                                 |                                                                                              |      |  |  |  |
|                              | Does this device support Band gap                                                                                                               |                                                                                                 |                                                                                              |      |  |  |  |
| Bluetooth                    | 2.4 GHz                                                                                                                                         | Version 5.2 LE                                                                                  | 76.7% (DH5)                                                                                  |      |  |  |  |
| NFC                          | 13.56 MHz                                                                                                                                       | Type A/B/F                                                                                      |                                                                                              | 100% |  |  |  |

#### Notes

1. The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 76.7% and was considered and used for SAR Testing.

2. Duty cycle for Wi-Fi is referenced from the DTS and UNII report.

# 5.2. Time-Averaging for SAR

This device is enabled with Qualcomm Smart Transmit algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from 2G/3G/4G/5G NR Sub6 WWAN is compliance with FCC requirement. This part.0 report shows SAR characterization of WWAN radios for 2G/3G/4G/5G NR Sub6. Characterization is achieved by determining *Plimit* for 2G/3G/4G/5G NR Sub6 that correspond to the *SAR\_design\_target* after accounting for all device design related uncertainty. The SAR Characterization is denoted as SAR Char in this report.

# 5.3. Nomenclature for Part 0 Report

| Technology | Term Description  |                                                                                                                                             |  |  |  |
|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | Plimit            | Power level that corresponds to the exposure design target (SAR_design_target) after accounting for all device design related uncertainties |  |  |  |
| 2G/3G/4G/  | Pmax              | Maximum tune up output power                                                                                                                |  |  |  |
| 5G NR Sub6 | SAR_design_target | Target SAR level < FCC SAR limit after accounting for<br>all device design related uncertainties                                            |  |  |  |
|            | SAR Char          | Table containing Plimit for all technologies and bands                                                                                      |  |  |  |

# 6. SAR Characterizations

# 6.1. SAR Design Target

*SAR\_Design\_target* is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer.

| SAR_design_target                                                                        |                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|
| $SAR\_design\_target < SAR\_regulatory\_limit \times 10^{\frac{-Total Uncertainty}{10}}$ |                               |  |  |  |  |  |
| 1g SAR (W/kg)                                                                            |                               |  |  |  |  |  |
| Total Uncertainty 1.0 dB                                                                 |                               |  |  |  |  |  |
| SAR_regulatory_limit                                                                     | SAR_regulatory_limit 1.6 W/kg |  |  |  |  |  |
| SAR_design_target 1.0 W/kg                                                               |                               |  |  |  |  |  |

# 6.2. DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the Tablet, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

The device state index (DSI) conditions used in below table represent different exposure scenarios.

| RF exposure<br>Scenarios                         | DSI No. | Descroption                                                                                                                                                                      | KDB guide<br>For SAR test |
|--------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Standalone exposure<br>Without triggering sensor | 0       | <ul> <li>Proximity sensor is not triggered even if Device was touched to user's body or hands.</li> <li>Proximity sensor is not triggered due to triggering distance.</li> </ul> | KDB 616217 D04            |
| Standalone exposure<br>With triggering sensor    | 1       | ■Proximity sensor is triggered, when Device was touched to user's body or hands.                                                                                                 | KDB 616217 D04            |

### **DSI and Corresponding Exposure Scenarios**

# 6.3. SAR Char

SAR results corresponding to *P<sub>max</sub>* for each antenna/technology/band/DSI can be found in Section.7. *Plimit* is calculated by linearly scaling with the measured SAR at the *P<sub>max</sub>* to correspond to *the SAR\_ design\_target*. *Plimit* determination for each exposure scenario corresponding to *SAR\_design\_target* are shown in table.

| Device<br>State Index<br>(DSI) | Plimit Determination Scenarios                                                                                             |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                | The worst-case SAR exposure is determined as maximum SAR normalized To the limit among;                                    |  |  |  |  |  |
| DSI = 0                        | 1. Standalone SAR measured at 16, 16 mm spacing for Rear, Edge1.<br>Standalone SAR measured at 0 mm for Edge2 (Main Ant.1) |  |  |  |  |  |
|                                | 2. Standalone SAR measured at 14, 11 mm spacing for Rear, Edge1.<br>Standalone SAR measured at 0 mm for Edge2 (Main Ant.2) |  |  |  |  |  |
| DSI = 1                        | 1. Plimit is calculated based on Standalone SAR (1-g SAR) at 0 mm for Rear, Edge1 (Main Ant.1 & Main Ant.2)                |  |  |  |  |  |

### PLimit Determination

### Notes:

For DSI = 0, *Plimit* is calculated by:

Main Ant.1)

Plimit = min{ Plimit corresponding to 1g Standalone SAR evaluation at 16 (Rear), 16 (Edge1) mm spacing, Plimit corresponding to 1g Standalone SAR evaluation at 0 mm for Edge2 surface}

### Main Ant.2)

Plimit = min{ Plimit corresponding to 1g Standalone SAR evaluation at 14 (Rear), 11 (Edge1) mm spacing, Plimit corresponding to 1g Standalone SAR evaluation at 0 mm for Edge2 surface}

| SAR Characterizations                                   |         |                                      |                                     |                                       |  |  |  |
|---------------------------------------------------------|---------|--------------------------------------|-------------------------------------|---------------------------------------|--|--|--|
| Exposure condition<br>Averaging Volume<br>test distance |         | Standalone<br>(Proximity Sensor off) | Standalone<br>(Proximity Sensor On) | Pmax<br>(Maximum<br>tune-up<br>Power) |  |  |  |
|                                                         |         | 1g                                   | 1g                                  |                                       |  |  |  |
|                                                         |         | 16/16/0 mm - Main.1                  | 0                                   |                                       |  |  |  |
|                                                         |         | 14/11/0 mm - Main.2                  | 0 mm                                |                                       |  |  |  |
| DSI:                                                    |         | 0                                    | 1                                   | (dBm)                                 |  |  |  |
| RF Air Interface                                        | Antenna | Plimit corresponding to 1.0 W/       | /kg (SAR_design_target)             |                                       |  |  |  |
| GSM 850                                                 | Main.1  | 26.44                                | 15.00                               | 25.00                                 |  |  |  |
| GSM 1900                                                | Main.1  | 20.34                                | 11.50                               | 19.50                                 |  |  |  |
| WCDMA Band II                                           | Main.1  | 22.80                                | 11.50                               | 21.50                                 |  |  |  |
| WCDMA Band IV                                           | Main.1  | 23.26                                | 12.00                               | 22.00                                 |  |  |  |
| WCDMA Band V                                            | Main.1  | 26.60                                | 14.00                               | 24.00                                 |  |  |  |
| LTE Band 2/25 Main.1                                    |         | 22.62                                | 11.70                               | 21.70                                 |  |  |  |
| LTE Band 4/66 Main.1                                    |         | 23.95                                | 12.00                               | 22.00                                 |  |  |  |
| LTE Band 5 Main.1                                       |         | 27.26                                | 15.00                               | 24.00                                 |  |  |  |
| LTE Band 12                                             | Main.1  | 28.75                                | 14.00                               | 24.00                                 |  |  |  |
| LTE Band 13                                             | Main.1  | 26.50                                | 14.00                               | 24.00                                 |  |  |  |
| LTE Band 17                                             | Main.1  | 28.75                                | 16.00                               | 24.00                                 |  |  |  |
| LTE Band 26                                             | Main.1  | 27.40                                | 16.00                               | 24.00                                 |  |  |  |
| LTE Band 41                                             | Main.2  | 23.98                                | 12.00                               | 21.50                                 |  |  |  |
| NR n5                                                   | Main.1  | 27.68                                | 16.00                               | 24.00                                 |  |  |  |
| NR n66                                                  | Main.1  | 24.29                                | 11.50                               | 22.80                                 |  |  |  |

### Notes:

1. If *P*<sub>limit</sub> is higher than *P*<sub>max</sub> for some modes / bands, The modes/bands will operate at a power level up to *P*<sub>max</sub>.

2. P<sub>max</sub> (Maximum tune-up power) is specified in tune-up document. The maximum allowed power is equal to maximum tune up power + 1 dB device design uncertainty.

3. All *Plimit* EFS and maximum tune up output Pmax levels entered in above Table correspond to average power levels after accounting for duty cycle in the case of LTE TDD modulation schemes.

4. For GSM bands, *Plimit* was calculated according to frame-average output power.

5. *Plimit*(DSI=0) was determined to be the lower of "Body-worn" and "Product Specific 10-g at Max power" in each WWAN Bands.

6. Some band's DSIs were determined more conservative Plimit instead of calculation Plimit in Section.7.

Page 16 of 18

# 7. SAR Test results for *P*<sub>limit</sub> calculations

| RF Exposure<br>Conditions | band                | mode                                              | DSI    | Ch.    | Test distance<br>(mm) | Test position | Output<br>power (dbm) | meas SAR 1g<br>(W/kg) | Plimit<br>(dBm) | Minimim<br>Plimit (dBm) |
|---------------------------|---------------------|---------------------------------------------------|--------|--------|-----------------------|---------------|-----------------------|-----------------------|-----------------|-------------------------|
|                           |                     |                                                   |        | 190    | 16                    | Rear          | 24.73                 | 0.319                 | 29.69           |                         |
| Standalone GSM 850        | GPRS<br>4 Slots     | 0                                                 | 190    | 16     | Edge 1                | 24.73         | 0.166                 | 32.53                 | 26.44           |                         |
|                           | 4 51013             |                                                   | 190    | 0      | Edge 2                | 24.73         | 0.674                 | 26.44                 |                 |                         |
|                           |                     |                                                   |        | 661    | 16                    | Rear          | 18.91                 | 0.714                 | 20.37           | 20.34                   |
| Standalone                | GSM 1900            | GPRS<br>2 Slots                                   | 0      | 661    | 16                    | Edge 1        | 18.91                 | 0.720                 | 20.34           |                         |
|                           |                     | 2 51015                                           |        | 661    | 0                     | Edge 2        | 18.91                 | 0.270                 | 24.60           |                         |
|                           |                     |                                                   |        | 9400   | 16                    | Rear          | 22.16                 | 0.740                 | 23.47           |                         |
| Standalone                | WCDMA<br>Band II    | Rel.99                                            | 0      | 9400   | 16                    | Edge 1        | 22.16                 | 0.863                 | 22.80           | 22.80                   |
|                           | build if            |                                                   |        | 9400   | 0                     | Edge 2        | 22.16                 | 0.378                 | 26.39           |                         |
|                           |                     |                                                   |        | 1413   | 16                    | Rear          | 22.37                 | 0.814                 | 23.26           |                         |
| Standalone                | WCDMA<br>Band IV    | Rel.99                                            | 0      | 1413   | 16                    | Edge 1        | 22.37                 | 0.759                 | 23.57           | 23.26                   |
|                           | band IV             |                                                   |        | 1413   | 0                     | Edge 2        | 22.37                 | 0.516                 | 25.24           |                         |
|                           |                     |                                                   |        | 4183   | 16                    | Rear          | 24.13                 | 0.407                 | 28.03           |                         |
| Standalone                | WCDMA<br>Band V     | Rel.99                                            | 0      | 4183   | 16                    | Edge 1        | 24.13                 | 0.120                 | 33.34           | 26.60                   |
|                           | Band V              |                                                   |        | 4183   | 0                     | Edge 2        | 24.13                 | 0.566                 | 26.60           |                         |
|                           |                     | QPSK BW=10<br>5 RB 1/25                           |        | 20525  | 16                    | Rear          | 23.91                 | 0.317                 | 28.90           | 27.26                   |
| Standalone                | LTE<br>Band 5       |                                                   | 0      | 20525  | 16                    | Edge 1        | 23.91                 | 0.133                 | 32.67           |                         |
|                           | Danu S              |                                                   |        | 20525  | 0                     | Edge 2        | 23.91                 | 0.462                 | 27.26           |                         |
|                           |                     | QPSK BW=10RB 1/49                                 | 0      | 23095  | 16                    | Rear          | 23.22                 | 0.170                 | 30.92           | 28.75                   |
| Standalone                | LTE                 |                                                   |        | 23095  | 16                    | Edge 1        | 23.22                 | 0.063                 | 35.23           |                         |
|                           | Band 12/17          |                                                   |        | 23095  | 0                     | Edge 2        | 23.22                 | 0.280                 | 28.75           |                         |
|                           |                     |                                                   |        | 23230  | 16                    | Rear          | 23.61                 | 0.253                 | 29.58           |                         |
| Standalone                | LTE                 | QPSK BW=10RB 1/25                                 | 0      | 23230  | 16                    | Edge 1        | 23.61                 | 0.120                 | 32.82           | 26.50                   |
|                           | Band 13             |                                                   |        | 23230  | 0                     | Edge 2        | 23.61                 | 0.514                 | 26.50           |                         |
|                           |                     | QPSK BW=20RB 1/0                                  | 0      | 26140  | 16                    | Rear          | 22.02                 | 0.787                 | 23.06           |                         |
| Standalone                | LTE                 |                                                   |        | 26140  | 16                    | Edge 1        | 22.02                 | 0.871                 | 22.62           | 22.62                   |
|                           | Band 25             |                                                   |        | 26140  | 0                     | Edge 2        | 22.02                 | 0.384                 | 26.18           |                         |
|                           |                     |                                                   |        | 26865  | 16                    | Rear          | 23.70                 | 0.203                 | 30.63           | 27.40                   |
| Standalone                | LTE<br>Band 26      | OPSK BW=1588 1/3/                                 | 0      | 26865  | 16                    | Edge 1        | 23.70                 | 0.115                 | 33.09           |                         |
|                           | Band 26             |                                                   |        | 26865  | 0                     | Edge 2        | 23.70                 | 0.427                 | 27.40           |                         |
|                           |                     | LTE QPSK BW=20RB 1/99<br>and 41                   | 0      | 39750  | 14                    | Rear          | 20.93                 | 0.495                 | 23.98           | 23.98                   |
| Standalone                | LTE<br>Rand 41      |                                                   |        | 39750  | 11                    | Edge 1        | 20.93                 | 0.301                 | 26.14           |                         |
|                           | Ddilu 41            |                                                   |        | 39750  | 0                     | Edge 2        | 20.93                 | 0.224                 | 27.43           |                         |
| Standalone LTE<br>Band 66 | OPSK BW = 20RB 1/49 | 0                                                 | 132072 | 16     | Rear                  | 22.49         | 0.715                 | 23.95                 | 23.95           |                         |
|                           |                     |                                                   | 132072 | 16     | Edge 1                | 22.49         | 0.684                 | 24.14                 |                 |                         |
|                           | Band 66             | 6                                                 |        | 132072 | 0                     | Edge 2        | 22.49                 | 0.467                 | 25.80           | 1                       |
|                           |                     |                                                   | 167300 | 16     | Rear                  | 24.10         | 0.221                 | 30.66                 |                 |                         |
| Standalone                | NR<br>Rand 5        | 1) = 1 - s - (1) = 1) M(1) = SK = SW = 2(1) = 1/1 | 0      | 167300 | 16                    | Edge 1        | 24.10                 | 0.113                 | 33.57           | 27.68                   |
| Band 5                    | Dariu S             |                                                   |        | 167300 | 0                     | Edge 2        | 24.10                 | 0.439                 | 27.68           |                         |
|                           |                     |                                                   | 0      | 349000 | 16                    | Rear          | 22.94                 | 0.732                 | 24.29           |                         |
| Standalone                | NR<br>Band CC       | DFT-s-OFDMQPSK BW=20RB 50/28                      |        | 349000 | 16                    | Edge 1        | 22.94                 | 0.492                 | 26.02           | 24.29                   |
| Band 66                   |                     | 66 2010 2010 2010 2010 2010                       |        | 349000 | 0                     | Edge 2        | 22.94                 | 0.330                 | 27.75           | -                       |

### Standalone (Proximity sensor Off) (DSI = 0)

### Notes:

1. The maximum allowed power is equal to maximum tune up power + 1 dB device design uncertainty

2. Measured Output power refer to Sec.9 in SAR part.1 report.

Page 17 of 18

#### **RF** Exposure Test distance meas SAR 1g Minimim Output Plimit band DSI Ch. mode Test position Conditions power (dbm) (W/kg) (dBm) Plimit (dBm) (mm) 128 0 14.89 0.216 21.55 Rear GPRS Standalone GSM 850 1 21.55 4 Slots 128 0 14.89 0.096 25.07 Edge 1 661 0 10.98 0.793 11.99 Rear GPRS Standalone GSM 1900 1 11.99 2 Slots 661 0 Edge 1 10.98 0.544 13.62 9400 0 0.964 Rear 12.30 12.46 WCDMA Standalone **Rel.99** 1 12.46 Band II 9400 0 Edge 1 12.30 0.726 13.69 1413 0 Rear 12.53 0.898 13.00 **WCDMA** Standalone Rel.99 1 13.00 Band IV 0 1413 12.53 0.683 14.19 Edge 1 4183 0 0.317 Rear 13.84 18.83 WCDMA Standalone **Rel.99** 1 18.83 Band V 4183 0 Edge 1 13.84 0.157 21.88 20525 0 14.59 0.315 Rear 19.61 LTE QPSK BW=10 Standalone 1 19.61 RB 25/12 Band 5 20525 0 Edge 1 14.59 0.189 21.83 0 23095 Rear 13.20 0.231 19.56 QPSK BW=10 LTE Standalone 1 19.56 Band 12 RB 25/12 23095 0 13.20 0.151 21.41 Edge 1 23230 0 Rear 13.69 0.211 20.45 LTE QPSK BW=10 Standalone 1 20.45 Band 13 RB 25/25 23230 0 Edge 1 13.69 0.173 21.31 26140 0 15.14 0.307 20.27 Rear LTE QPSK BW=10 Standalone 20.27 1 Band 17 RB 25/12 26140 0 Edge 1 15.14 0.180 22.59 26140 0 Rear 12.30 0.698 13.86 LTE QPSK BW=20 Standalone 1 13.12 Band 25 RB 50/24 0 12.30 0.827 26140 Edge 1 13.12 0 26865 Rear 15.40 0.484 18.55 LTE QPSK BW=15 Standalone 1 18.55 Band 26 RB 36/20 26865 0 Edge 1 15.40 0.236 21.67 39750 0 12.33 0.793 13.34 Rear LTE QPSK BW=20 Standalone 1 13.34 RB 1/99 Band 41 0 39750 Edge 1 12.33 0.150 20.57 132072 0 Rear 12.17 0.803 13.12 LTE QPSK BW=20 Standalone 1 13.12 Band 66 RB 50/24 0 132072 Edge 1 12.17 0.557 14.71 DFT-s-OFDM 0.417 167300 0 Rear 15.90 19.70 NR Standalone QPSK BW=20 1 19.70 Band 5 167300 0 Edge 1 15.90 0.235 22.19 RB 1/1 DFT-s-OFDM 349000 0 12.08 0.826 12.91 Rear NR Standalone QPSK BW=20 1 12.91 Band 66 349000 0 12.08 0.601 Edge 1 14.29 RB 50/28

### Standalone (Proximity sensor On) (DSI = 1)

#### Notes:

1. The maximum allowed power is equal to maximum tune up power + 1 dB device design uncertainty

2. Measured Output power refer to Sec.9 in SAR part.1 report.

3. Some bands were determined more conservative Plimit instead of calculation Plimit.

### END OF REPORT

Page 18 of 18