

CERTIFICATION TEST REPORT

Report Number. : 4790406759-E5V1

Applicant : SAMSUNG ELECTRONICS CO., LTD.

129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI,

GYEONGGI-DO, 16677, KOREA

Model : SM-T636B, SM-T638B

FCC ID : A3LSMT636B

EUT Description: GSM/WCDMA/LTE/5G NR Tablet + BT/BLE, DTS/UNII a/b/g/n/ac/ax

and NFC.

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

Date Of Issue:

2022-07-26

Prepared by:

UL Korea. Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Issue ev. Date Revisions		Revised By	
V1	2022-07-26	Initial issue	Dexter(Hyunsik) Yun	

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	DE	ECISION RULES AND MEASUREMENT UNCERTAINTY	7
4	.1.	METROLOGICAL TRACEABILITY	7
4	.2.	SAMPLE CALCULATION	7
4	.3.	MEASUREMENT UNCERTAINTY	7
4	.4.	DECISION RULES	7
5.	EQ	QUIPMENT UNDER TEST	8
5	.1.	EUT DESCRIPTION	8
5	.2.	MAXIMUM OUTPUT POWER	8
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5	.4.	WORST-CASE CONFIGURATION AND MODE	9
5	.5.	DESCRIPTION OF TEST SETUP	9
6.	TE	ST AND MEASUREMENT EQUIPMENT	11
7.	TE	ST RESULTS SUMMARY	12
		OT NEGOETO GOMMANT	
8.	ME	EASUREMENT METHODS	
8. 9.			13
9.		EASUREMENT METHODS	13
9.	AN	ITENNA PORT TEST RESULTSON TIME AND DUTY CYCLE	13 14
9.	AN .1. .2. 9.2	ITENNA PORT TEST RESULTSON TIME AND DUTY CYCLE	131415
9. 9	AN .1. .2. 9.2 9.2	ASUREMENT METHODS	13141515
9. 9	AN .1. .2. 9.2 9.2	ITENNA PORT TEST RESULTS	13141515
9. 9	AN .1. 9.2 9.2 9.3	ASUREMENT METHODS	1314151515
9. 9 9	AN .1. 9.2 9.2 9.3 9.3	ITENNA PORT TEST RESULTS	131415151819
9. 9 9	AN 9.2 9.2 9.3 9.3 9.3	ITENNA PORT TEST RESULTS	131415151819
 9 9 9 	AN 1.1. 9.2 9.2 1.3. 9.3 9.3 9.4 9.4	ASUREMENT METHODS ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH 2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 2.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION HOPPING FREQUENCY SEPARATION 3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION NUMBER OF HOPPING CHANNELS 4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	1314151819192023
 9 9 9 	AN 2.1. 9.2 9.3 9.3 9.3 9.4 9.4	ITENNA PORT TEST RESULTS	13141518192021
 9 9 9 	AN 2.1. 9.2 9.2 9.3 9.3 9.4 9.4 9.4	ASUREMENT METHODS ITENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH 2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 2.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION HOPPING FREQUENCY SEPARATION 3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION NUMBER OF HOPPING CHANNELS 4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION 4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	131415151919202123
 9. 9 9 9 	AN 9.2 9.2 9.3 9.3 9.3 9.4 9.4 9.5 9.5	TENNA PORT TEST RESULTS	131415181920212325
 9. 9 9 9 	AN 1.1. 9.2 9.3 9.3 9.4 9.4 9.5 9.5 9.5 9.6 9.6	ITENNA PORT TEST RESULTS	1314151518192123253434

9.6.3. ENHANCED DATA RATE 8PSK MODUL	.ATION35
9.6.4. OUTPUT POWER PLOTS	36
9.7. AVERAGE POWER	30
9.7.1. BASIC DATA RATE GFSK MODULATION	N39
9.7.2. ENHANCED DATA RATE PI/4-DQPSK N	
9.7.3. ENHANCED DATA RATE 8PSK MODUL	.ATION40
9.8. CONDUCTED SPURIOUS EMISSIONS	41
9.8.1. BLUETOOTH BASIC DATA RATE GFSk	MODULATION42
9.8.2. BLUETOOTH ENHANCED DATA RATE	8PSK MODULATION46
10. RADIATED TEST RESULTS	50
10.1. TRANSMITTER ABOVE 1 GHz	52
10.1.1. BLUETOOTH BASIC DATA RATE GF	SK MODULATION52
10.1.2. BLUETOOTH ENHANCED DATA RAT	E 8PSK MODULATION66
10.2. WORST CASE BELOW 1 GHZ	80
11. AC POWER LINE CONDUCTED EMISSIONS	81
11.1.1. AC Power Line(C to C)	82
11.1.2. AC Power Line(C to A)	84

REPORT NO: 4790406759-E5V1 FCC ID: A3LSMT636B

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE/5G NR Tablet + BT/BLE, DTS/UNII a/b/q/n/ac/ax

and NFC

MODEL: SM-T636B, SM-T638B

SERIAL NUMBER: R32T5003C8X, R32T50052FD (CONDUCTED);

R32T5003G0W, R32T5004ZEX, R32T5004ZHZ (RADIATED);

DATE TESTED: 2022-06-20 ~ 2022-07-26

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Complies

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Korea, Ltd. By:

Tested By:

Seokhwan Hong Suwon Lab Engineer UL Korea, Ltd. Dexter(Hyunsik) Yun Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 15.
- 3. KDB 558074 D01 15.247 Meas Guidance v05r02.
- 4. ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro				
□ Chamber 1(3m semi-anechoic chamber)				
☐ Chamber 2(3m semi-anechoic chamber)				
☐ Chamber 3(3m semi-anechoic chamber)				
☐ Chamber 4(3m Full-anechoic chamber)				
☐ Chamber 5(3m Full-anechoic chamber)				

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.02 dB
Radiated Disturbance, 30 MHz to 1 GHz	4.05 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.78 dB
Radiated Disturbance, 18 GHz to 40 GHz	5.58 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. DECISION RULES

Decision rule for statement(s) of conformity is based on Procedure 2, Clause 4.4.3 in IEC Guide 115:2007.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a GSM/WCDMA/LTE/5G NR Tablet + BT/BLE, DTS/UNII a/b/g/n/ac/ax and NFC. This test report addresses the BT(DSS) operational mode.

SM-T638B model is same hardware thus, SM-T636B was set for final test.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range [MHz]	Mode	Power Mode	Output Power [dBm]	Output Power [mW]
	Basic GFSK	Average	18.314	67.827
	Dasic Gran	Peak	18.782	75.544
2 402 ~ 2 480	Enhanced Pi/4-DPSK Enhanced 8PSK	Average	16.353	43.182
2 402 ~ 2 400		Peak	18.827	76.331
		Average	16.365	43.301
		Peak	19.240	83.946

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna was Permanently attached. Therefore this E.U.T Complies with the requirement of §15.203.

The radio utilizes an internal antennas, with ANT 1's maximum gain of -2.5 dBi and ANT 2's maximum gain of -2.5 dBi.

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emission above 1GHz was performed with the EUT set to transmit low/mid/high channels.

Worst axis

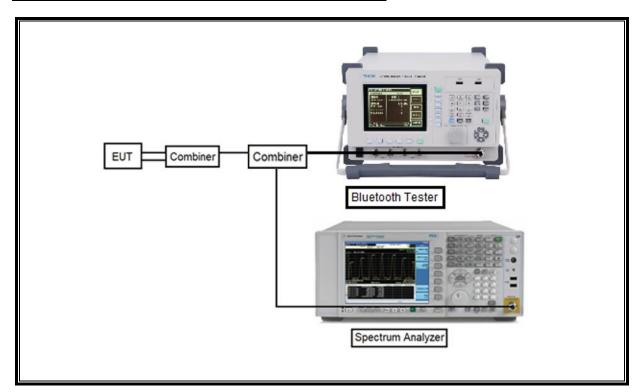
ANT1	ANT2
Y	Z

GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance.

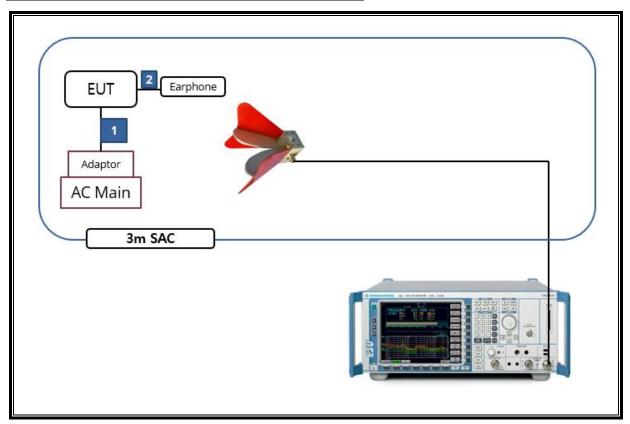
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC							
Charger	SAMSUNG	EP-TA200	R37N6K421B2SE3	N/A			
Data Cable	SAMSUNG	EP-DT725BWE	GH39-02020A	N/A			
Charger	SAMSUNG	EP-TA800	R37N3MAH988DK3	N/A			
Data Cable	SAMSUNG	EP-DN980	GH39-02115A	N/A			
Earphone	SAMSUNG	GH59-15055A	EHS64AVFWE	N/A			


I/O CABLE

I/O Cable List						
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC Power	1	A to C Type	Shielded	1.0 m	N/A
2	DC Power	1	C to C Type	Shielded	1.0 m	N/A
3	Audio	2	Mini-Jack	Unshielded	0.7 m	N/A


TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests. Test software enable BT communications.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

<u>SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)</u>

Page 10 of 85

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description Manufacturer Model S/N Cal Due							
•							
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	2022-08-19			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	2022-08-13			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	2022-08-13			
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	2023-10-06			
Antenna, Horn, 18 GHz	ETS	3115	00167211	2022-07-27			
Antenna, Horn, 18 GHz	ETS	3115	00161451	2022-08-15			
Antenna, Horn, 18 GHz	ETS	3117	00168724	2022-07-27			
Antenna, Horn, 18 GHz	ETS	3117	00168717	2022-08-15			
Antenna, Horn, 40 GHz	ETS	3116C	00166155	2022-08-04			
Preamplifier	ETS	3116C-PA	00168841	2022-08-04			
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A			
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	110367-0003	N/A			
Preamplifier, 1000 MHz	Sonoma	310N	341282	2022-08-02			
Preamplifier, 1000 MHz	Sonoma	310N	351741	2022-08-02			
Preamplifier, 1000 MHz	Sonoma	310N	370599	2022-08-02			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	2022-08-02			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	2022-08-02			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029168	2022-08-02			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	2022-08-04			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	2022-08-04			
Spectrum Analyzer, 44 GHz	KEYSIGHT	N9030B	MY60070693	2023-01-18			
Spectrum Analyzer, 44 GHz	KEYSIGHT	N9040B	MY60080268	2023-01-19			
Average Power Sensor	Agilent / HP	U2000	MY54270007	2022-08-04			
Average Power Sensor	Agilent / HP	U2000	MY54260010	2022-08-04			
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	2022-08-04			
Power Splitter	MINI-CIRCUITS	WA1534	UL003	2023-01-11			
Power Splitter	MINI-CIRCUITS	WA1534	UL004	2023-01-11			
Attenuator	PASTERNACK	PE7087-10	A009	2022-08-03			
Attenuator	PASTERNACK	PE7087-10	A001	2022-08-03			
Attenuator	PASTERNACK	PE7087-10	A008	2022-08-03			
Attenuator	PASTERNACK	PE7004-10	2	2022-08-02			
EMI Test Receive, 40 GHz	R&S	ESU40	100439	2022-08-02			
EMI Test Receive, 40 GHz	R&S	ESU40	100457	2022-08-02			
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	009	2022-08-02			
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	015	2022-08-02			
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	019	2022-08-02			
High Pass Filter 3GHz	Micro-Tronics	HPM17543	010	2022-08-02			
High Pass Filter 3GHz	Micro-Tronics	HPM17543	015	2022-08-02			
High Pass Filter 3GHz	Micro-Tronics	HPM17543	020	2022-08-02			
High Pass Filter 6GHz	Micro-Tronics	HPS17542	009	2022-08-02			
High Pass Filter 6GHz	Micro-Tronics	HPS17542	016	2022-08-02			
High Pass Filter 6GHz	Micro-Tronics	HPS17542	020	2022-08-02			
LISN	R&S	ENV-216	101837	2022-08-05			
Termination	WEINSCHEL	M1406A	T09	2022-08-03			
Tommadon		L Software	100	2022 00 00			
Description	Manufacturer	Model	Ve	rsion			
Radiated software	UL	UL EMC		er 9.5			
AC Line Conducted software	UL	UL EMC		er 9.5			
AC LINE CONGUCIEG SORWATE	UL	OL LIVIC	VE	,ı J.J			

7. TEST RESULTS SUMMARY

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1051, 15.247(d)	Band Edge / Conducted Spurious Emission	-20 dBc		PASS
15.247 (b)(1)	TX conducted output power	< 21 dBm		PASS
15.247 (a)(1)	Hopping frequency separation	> two-thirds of the 20 dB bandwidth	Conducted	PASS
15.247 (a)(1)(iii)	Number of Hopping channels	More than 15 non- overlapping channels		PASS
15.247 (a)(1)(iii)	Avg Time of Occupancy	< 8 dBm		PASS
15.207(a)	AC Power Line conducted emissions	Section 11	Power Line conducted	PASS
15.205, 15.209	Radiated Spurious Emission	< 54dBuV/m(Av)	Radiated	PASS

8. MEASUREMENT METHODS

20dB BW: ANSI C63.10, Section 6.9.2

99% BW: ANSI C63.10, Section 6.9.3

HOPPING FREQUENCY SEPARATION: ANSI C63.10, Section 7.8.2

NUMBER OF HOPPING CHANNELS: ANSI C63.10, Section 7.8.3

AVERAGE TIME OF OCCUPANCY: ANSI C63.10, Section 7.8.4

OUTPUT POWER: ANSI C63.10, Section 7.8.5.

Out-of-band EMISSIONS (Conducted): ANSI C63.10, Section 7.8.6, 7.8.8

Out-of-band EMISSIONS IN NON-RESTRICTED BANDS: ANSI C63.10, Section 6.

Out-of-band EMISSIONS IN RESTRICTED BANDS: ANSI C63.10, Section 6.

AC Power Line Conducted Emission: ANSI C63.10-2013, Section 6.2.

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6 : Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	On time [msec]	Period [msec]	Duty Cycle [%]	1/T Minimum VBW [kHz]
BDR	2.874	3.748	76.681	0.35
EDR	2.882	3.748	76.894	0.35

9.2. 20 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

9.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Ant.	Channel	Frequency	20 dB Bandwidth
AIII.		[MHz]	[kHz]
	0	2 402	928.8
ANT1	39	2 441	929.8
	78	2 480	927.7
	0	2 402	930.2
ANT2	39	2 441	927.3
	78	2 480	928.0
	Worst	930.2	

9.2.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

Ant.	Channel	Frequency	20 dB Bandwidth
AIII.		[MHz]	[kHz]
	0	2 402	1 272.0
ANT1	39	2 441	1 273.0
	78	2 480	1 271.0
	0	2 402	1 271.0
ANT2	39	2 441	1 271.0
	78	2 480	1 272.0
	Worst	1 273.0	

20 dB bandwidth / 78 CHANNEL

9.3. HOPPING FREQUENCY SEPARATION

LIMITS

FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to VBW >= RBW. The sweep time is coupled.

RESULTS

9.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

9.3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

9.4. NUMBER OF HOPPING CHANNELS

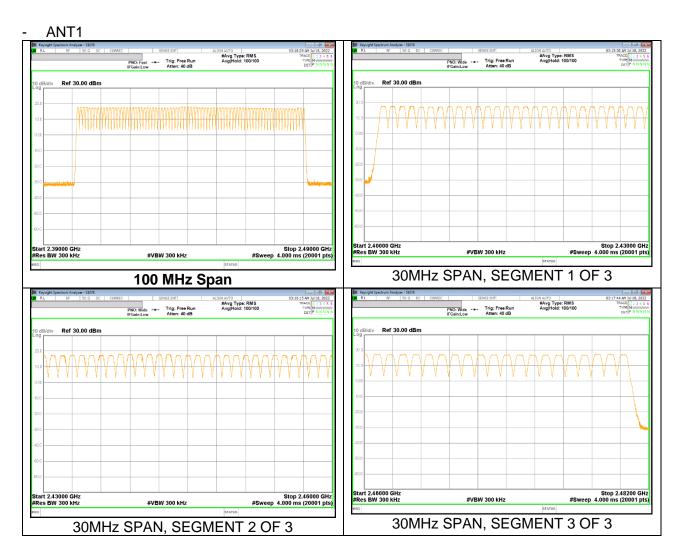
LIMITS

FCC §15.247 (a) (1) (iii)

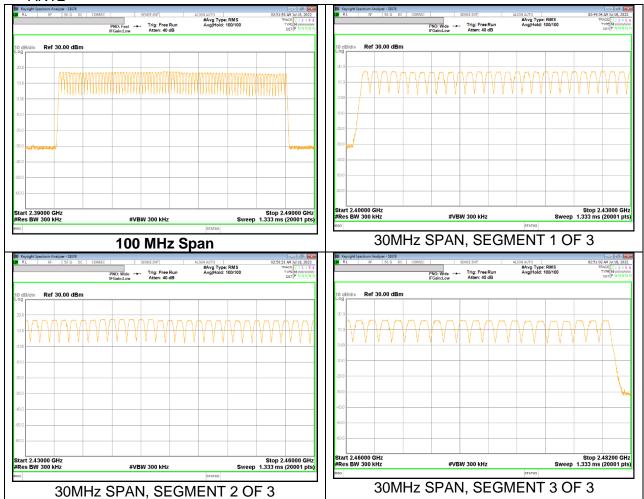
RSS-247 (5.1) (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

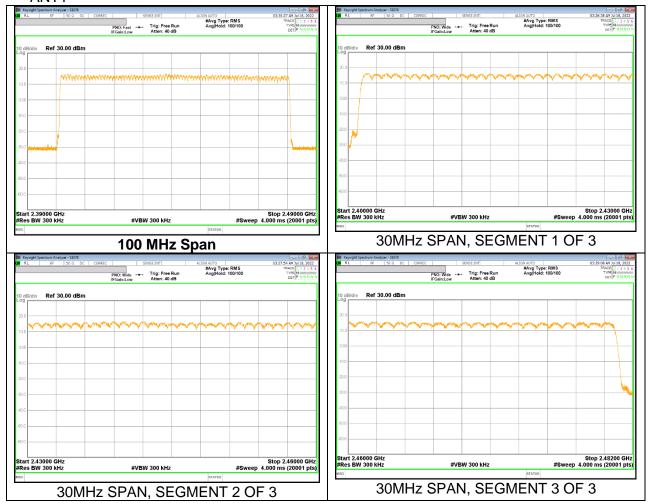

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

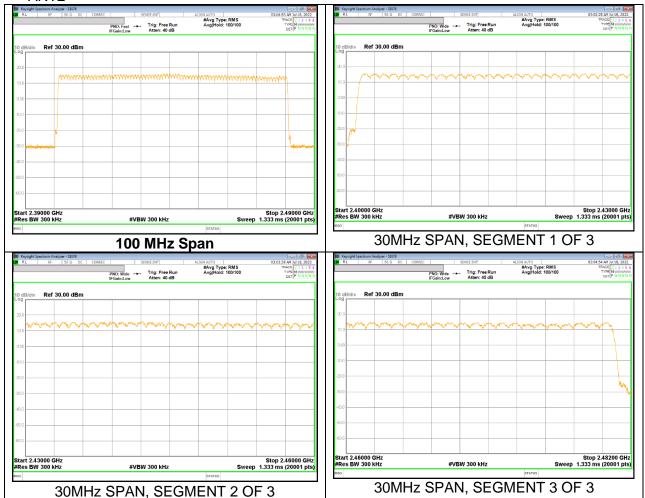

Normal Mode: All Channels Observed

DATE: 2022-07-26

9.4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION



ANT2



9.4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

- ANT1

ANT2

9.5. AVERAGE TIME OF OCCUPANCY

LIMITS

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

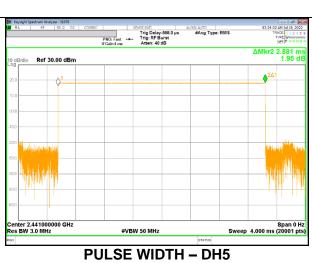
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

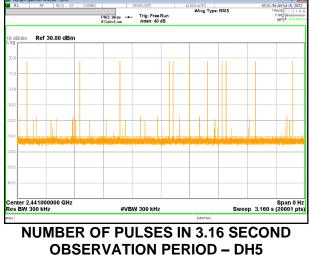
For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.


RESULTS

9.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	3.16	[sec]	[sec]	[sec]
		seconds			
		GFSK ANT1 No	ormal		
DH1	0.377	32	0.121	0.4	-0.279
DH3	1.632	15	0.245	0.4	-0.155
DH5	2.881	11	0.317	0.4	-0.083
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
		GFSK ANT1 A	AFH		
DH1	0.377	8	0.030	0.4	-0.370
DH3	1.632	3.75	0.061	0.4	-0.339
DH5	2.881	2.75	0.079	0.4	-0.321

Ref 30.00 dBm


Center 2.441000000 GHz Res BW 3.0 MHz


#VBW 50 MHz

PULSE WIDTH - DH3

PULSE WIDTH - DH1

DH Packet	Pulse Width	Number of Pulses in	Average Time of Occupancy	Limit	Margin	
	[msec]	0.8 seconds	[sec]	[sec]	[sec]	
	GFSK ANT2 AFH					
DH1	0.376	8	0.030	0.4	-0.370	
DH3	1.630	4	0.065	0.4	-0.335	
DH5	2.880	2.5	0.072	0.4	-0.328	

9.5.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

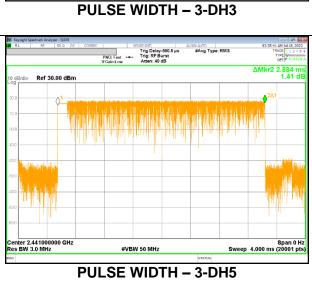
DH Packet	Pulse Width	Number of Pulses in	Average Time of Occupancy	Limit	Margin
	[msec]	3.16	[sec]	[sec]	[sec]
		seconds			
		8PSK ANT1 N	ormal		
DH1	0.384	32	0.123	0.4	-0.277
DH3	1.634	15	0.245	0.4	-0.155
DH5	2.884	12	0.346	0.4	-0.054
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
		8PSK ANT1 /	AFH		
DH1	0.384	8	0.031	0.4	-0.369
DH3	1.634	3.75	0.061	0.4	-0.339

3

0.087

0.4

-0.313


DH5

2.884

Ref 30.00 dBm

Center 2.441000000 GHz Res BW 3.0 MHz

DATE: 2022-07-26

#VBW 50 MHz

PULSE WIDTH - 3-DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - 3-DH5

DH Packet	Pulse Width [msec]	Number of Pulses in 3.16 seconds	Average Time of Occupancy [sec]	Limit [sec]	Margin [sec]	
		8PSK ANT2 No	ormal			
DH1	0.383	32	0.123	0.4	-0.277	
DH3	1.634	16	0.261	0.4	-0.139	
DH5	2.884	11	11 0.317		-0.083	
DH Packet	Pulse	Number of	Average Time	Limit	Margin	
	Width	Pulses in	of Occupancy			
	[msec]	0.8 seconds	[sec]	[sec]	[sec]	
8PSK ANT2 AFH						

8

4

2.75

0.031

0.065

0.079

0.4

0.4

0.4

-0.369

-0.335

-0.321

DH1

DH3

DH5

0.383

1.634

2.884

PULSE WIDTH - 3-DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD – 3-DH5

9.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

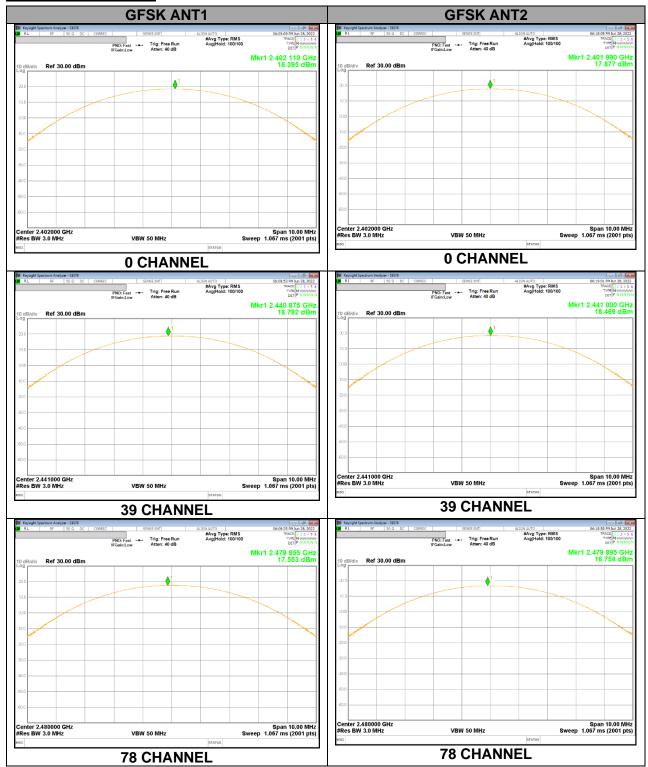
The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

9.6.1. BASIC DATA RATE GFSK MODULATION

Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
		[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	18.395		-2.605
ANT1	39	2 441	18.782	21.000	-2.218
	78	2 480	17.553		-3.447
	0	2 402	17.877		-3.123
ANT2	39	2 441	18.469		-2.531
	78	2 480	16.754		-4.246
	Worst		18.782		-2.218

9.6.2. ENHANCED DATA RATE PI/4-DPSK MODULATION


Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
		[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	18.451	21.000	-2.549
ANT1	39	2 441	18.827		-2.173
	78	2 480	17.571		-3.429
	0	2 402	17.962		-3.038
ANT2	39	2 441	18.499		-2.501
	78	2 480	16.785		-4.215
	Worst		18.827		-2.173

9.6.3. ENHANCED DATA RATE 8PSK MODULATION

Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
		[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	18.865	21.000	-2.135
ANT1	39	2 441	19.240		-1.760
	78	2 480	18.016		-2.984
	0	2 402	18.261		-2.739
ANT2	39	2 441	18.966		-2.034
	78	2 480	17.273		-3.727
	Worst		19.240		-1.760

9.6.4. OUTPUT POWER PLOTS

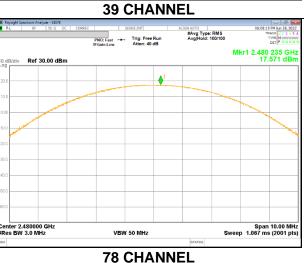
PEAK OUTPUT POWER

Pi/4-DPSK ANT1

0 CHANNEL

PNO: Fast --- Trig: Free Run

VBW 50 MHz


Ref 30.00 dBm

Center 2.441000 GHz #Res BW 3.0 MHz

PNO: Fast --- Trig: Free Run

#Avg Type: RMS AvgiHold: 100/100

#Avg Type: RMS Avg|Hold: 100/100

Ref 30.00 dBm

Ref 30.00 dBm

Center 2.480000 GHz #Res BW 3.0 MHz

VBW 50 MHz

78 CHANNEL

78 CHANNEL

Span 10.00 MHz Sweep 1.067 ms (2001 pts)

DATE: 2022-07-26

Span 10.00 MHz Sweep 1.067 ms (2001 pts

9.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

9.7.1. BASIC DATA RATE GFSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]
ANT1	0	2 402	17.942	62.259
	39	2 441	18.314	67.827
	78	2 480	17.132	51.665
ANT2	0	2 402	17.615	57.743
	39	2 441	18.195	65.993
	78	2 480	16.462	44.279

9.7.2. ENHANCED DATA RATE PI/4-DQPSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]
ANT1	0	2 402	15.970	39.537
	39	2 441	16.353	43.182
	78	2 480	15.125	32.546
ANT2	0	2 402	15.716	37.291
	39	2 441	16.240	42.073
	78	2 480	14.422	27.682

REPORT NO: 4790406759-E5V1 FCC ID: A3LSMT636B

9.7.3. ENHANCED DATA RATE 8PSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]
ANT1	0	2 402	15.983	39.655
	39	2 441	16.365	43.301
	78	2 480	15.149	32.727
ANT2	0	2 402	15.705	37.196
	39	2 441	16.254	42.209
	78	2 480	14.439	27.791

9.8. CONDUCTED SPURIOUS EMISSIONS

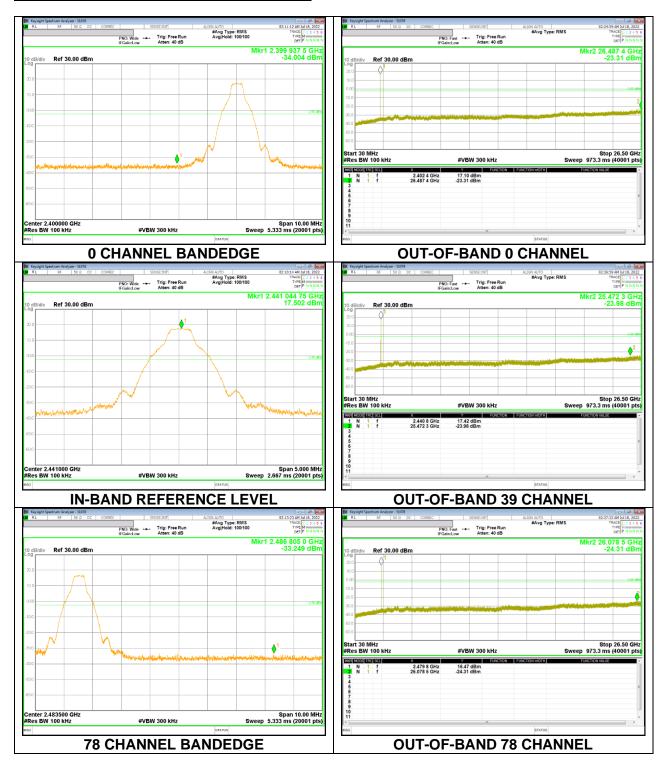
LIMITS

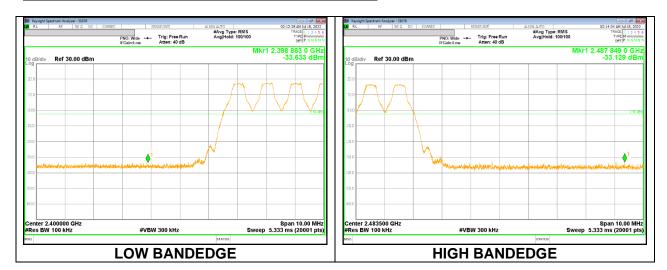
FCC §15.247 (d)

Limit = -20 dBc

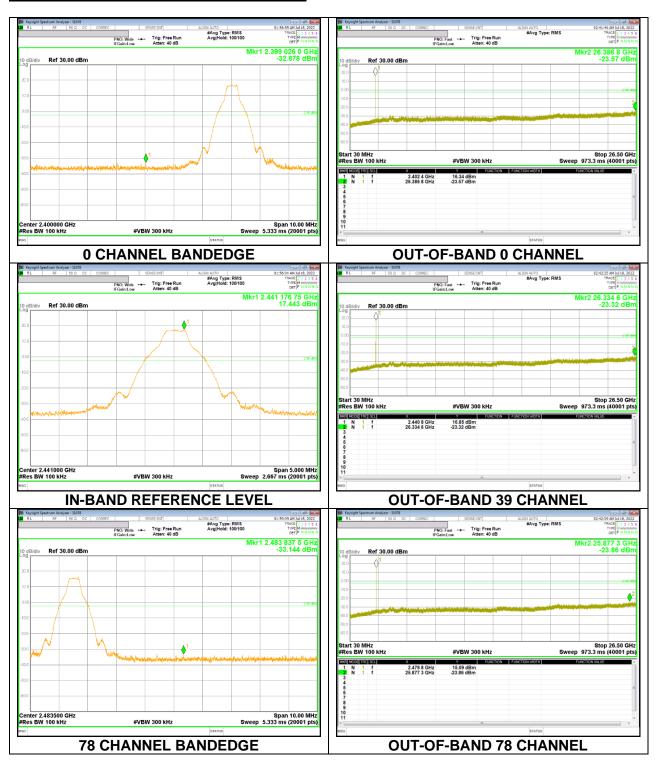
TEST PROCEDURE

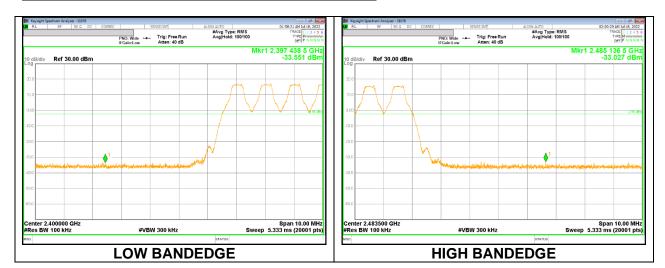
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

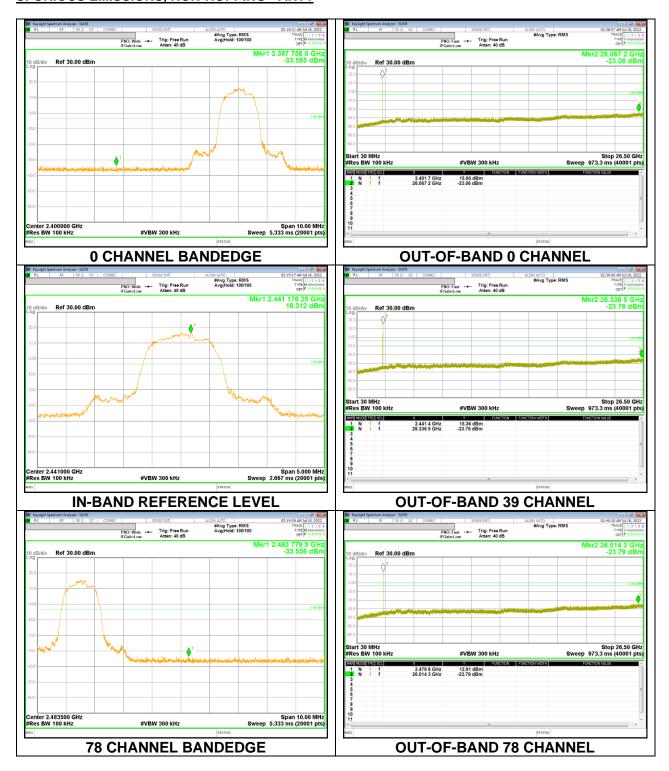

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


The band-edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

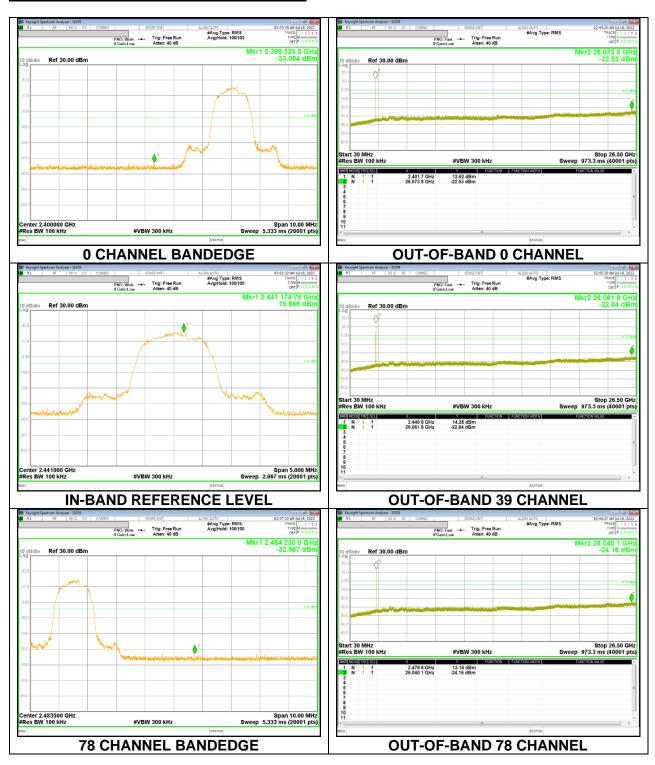
RESULTS

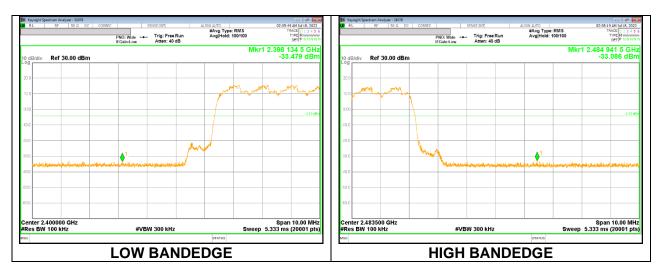

9.8.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION


SPURIOUS EMISSIONS, NON-HOPPING - ANT1




SPURIOUS EMISSIONS, NON-HOPPING - ANT2




SPURIOUS EMISSIONS, NON-HOPPING - ANT1

SPURIOUS EMISSIONS, NON-HOPPING - ANT2

10. RADIATED TEST RESULTS

LIMITS

FCC §15.205 and §15.209

Limits for radiated disturbance of an intentional radiator				
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)		
0.009 - 0.490	2400 / F (kHz)	300		
0.490 – 1.705	24000 / F (kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100**	3		
88 - 216	150**	3		
216 – 960	200**	3		
Above 960	500	3		

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.

FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.17	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	167.72 ~ 173.2	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	240 ~ 285	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	322 ~ 335.4	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	399.90 ~ 410	3345.8 ~ 3358		
		608 ~ 614	3600 ~ 4400		
		960 ~ 1240			

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150 cm for above 1GHz. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements.(Pre-scans to detect harmonic and spurious emissions, the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 kHz for peak measurements.)

For band edge measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1/T (on time) for average measurement.

GFSK = 1/T = 1 / 0.00287s = 348Hz.

The minimum VBW was 347Hz, but test receiver(ESU40) couldn't set value 348Hz. Due to this reason, testing VBW was set to 500Hz(Worst cases).

The spectrum from 1GHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

(From 30MHz to 1GHz, test was performed with the EUT set to transmit at the channel with highest output power)

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Note: Emission was pre-scanned from 9kHz to 30MHz; No emissions were detected which was at least 20dB below the specification limit (consider distance correction factor). Per FCC part 15.31(o), test results were not reported.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open are test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the one of tests made in an open field based on KDB 414788.