

SAR EVALUATION REPORT

**FCC 47 CFR § 2.1093
IEEE Std 1528-2013**

The model FCC ID: A3LSMT355 shares the same enclosure and circuit board as model FCC ID: A3LSMT350. The WLAN/Bluetooth circuitry and layout, including antenna, are almost identical between the two units. The WLAN/Bluetooth antenna and surrounding circuitry is the same between these two units, and tune up power targets are identical for WLAN and Bluetooth operations. For these reasons, the SAR data for the WLAN, and Bluetooth operations for FCC ID: A3LSMT355 is considered representative for FCC ID: A3LSMT350.

For
BT/BLE, DTS/UNII a/b/g/n and ANT+ Tablet

**FCC ID: A3LSMT350
Model Name: SM-T350**

**Report Number: 15I19924-S1
Issue Date: 3/3/2015**

Prepared for
**SAMSUNG ELECTRONICS CO., LTD.
129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI
GYEONGGI-DO 443-742, SOUTH KOREA**

Prepared by
**UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888**

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
--	3/3/2015	Initial Issue	--

Table of Contents

1. Attestation of Test Results	5
2. Test Specification, Methods and Procedures.....	6
3. Facilities and Accreditation.....	6
4. SAR Measurement System & Test Equipment	7
4.1. <i>SAR Measurement System.....</i>	7
4.2. <i>SAR Scan Procedures.....</i>	8
4.3. <i>Test Equipment.....</i>	10
5. Measurement Uncertainty.....	11
6. Device Under Test (DUT) Information	12
6.1. <i>DUT Description</i>	12
6.2. <i>Wireless Technologies.....</i>	13
6.3. <i>Nominal and Maximum Output Power.....</i>	14
6.4. <i>Power Reduction by Proximity Sensing</i>	15
6.4.1. <i>Proximity Sensor Triggering Distance (KDB 616217 §6.2)</i>	15
6.4.2. <i>Proximity Sensor Triggering Distance Measurement Results.....</i>	16
6.4.3. <i>Proximity Sensor Coverage (KDB 616217 §6.3)</i>	18
6.4.4. <i>Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4).....</i>	18
7. RF Exposure Conditions (Test Configurations)	19
7.1. <i>Standalone SAR Test Exclusion Considerations.....</i>	19
7.2. <i>Required Test Configurations</i>	20
8. Dielectric Property Measurements & System Check	21
8.1. <i>Dielectric Property Measurements</i>	21
8.2. <i>System Check.....</i>	23
9. Conducted Output Power Measurements.....	25
9.1. <i>Wi-Fi 2.4GHz</i>	25
9.2. <i>Wi-Fi 5GHz</i>	26
9.3. <i>Bluetooth</i>	27
10. Measured and Reported (Scaled) SAR Results.....	28
10.1. <i>Wi-Fi (DTS Band)</i>	29
10.2. <i>Wi-Fi (U-NII Band).....</i>	29
10.3. <i>Bluetooth.....</i>	29
11. SAR Measurement Variability.....	30

12. Simultaneous Transmission SAR Analysis.....	30
12.1. <i>Sum of the SAR for Wi-Fi & BT</i>	30
Appendices	31
A_15I19924v0 SAR Photos & Ant. Locations	31
B_15I19924v0 SAR System Check Plots	31
C_15I19924v0 SAR Highest Test Plots	31
D_15I19924v0 SAR Tissue Ingredients.....	31
E_15I19924v0 SAR Probe Cal. Certificates.....	31
F_15I19924v0 SAR Dipole Cal. Certificates	31

1. Attestation of Test Results

Applicant Name	SAMSUNG ELECTRONICS CO., LTD.			
FCC ID	A3LSMT350			
Model Name	SM-T350			
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013			
SAR Limits (W/Kg)				
Exposure Category	Peak spatial-average(1g of tissue)			
General population / Uncontrolled exposure	1.6			
The Highest Reported SAR (W/kg)				
RF Exposure Conditions	Equipment Class			
	Licensed	DTS	U-NII	DSS (BT)
Body	N/A	0.545	0.654	0.009
Simultaneous Tx Body		N/A	0.663	N/A
Date Tested	2/5/2015 to 2/14/2015			
Test Results	Pass			
<p>UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.</p> <p>Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.</p>				
Approved & Released By:	<p>Prepared By:</p>			
Bobby Bayani Senior Engineer UL Verification Services Inc.	 Chakrit Thammanavarat Laboratory Engineer UL Verification Services Inc.			

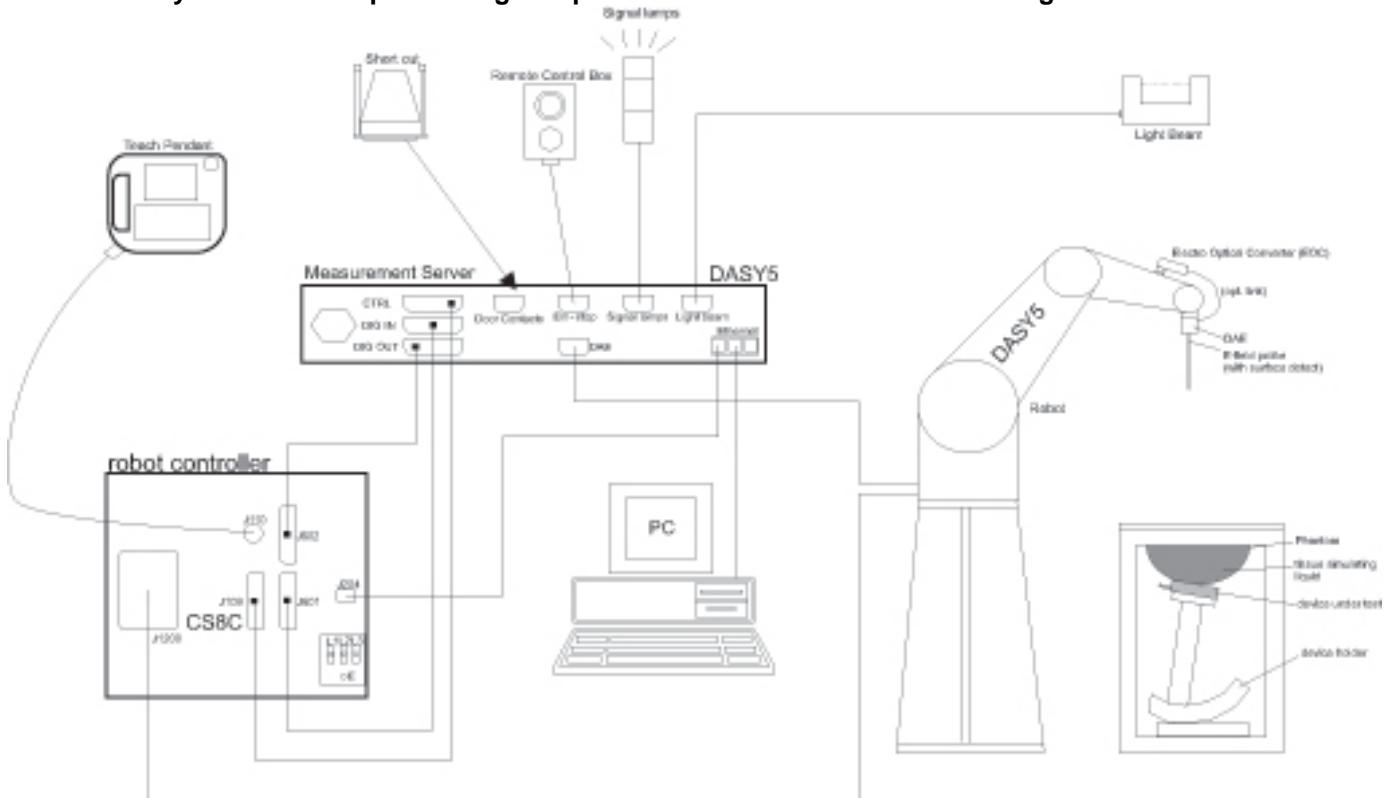
2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure [KDB](#) procedures:

- 248227 D01 SAR meas for 802.11 v02
- 447498 D01 General RF Exposure Guidance v05r02
- 447498 D03 Supplement C Cross-Reference
- 616217 D04 SAR for laptop and tablets v01r01
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- 865664 D02 RF Exposure Reporting v01r01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

		≤ 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm	
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm	
Minimum zoom scan volume		$\Delta z_{Zoom}(n > 1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
x, y, z		≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the *reported* SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	7/17/2015
Dielectronic Probe kit	SPEAG	DAK-3.5	1087	11/11/2015
Dielectronic Probe kit	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Traceable Calibration Control Co.	4242	122529162	10/8/2015

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	HP	8665B	3744A01084	5/20/2015
Power Meter	Agilent	N1912A	MY53040016	5/5/2015
Power Sensor	Agilent	E9323A	MY53070005	5/1/2015
Power Sensor	Agilent	E9323A	MY53070009	5/28/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Directional coupler	Werlatone	C8060-102	2149	N/A
DC Power Supply	AMETEK	XT 15-4	1319A02778	N/A
E-Field Probe (SAR Lab A)	SPEAG	EX3DV4	3772	2/26/2015
E-Field Probe (SAR Lab A)	SPEAG	EX3DV4	3901	1/27/2016
Data Acquisition Electronics (SAR Lab A)	SPEAG	DAE4	1433	4/14/2015
System Validation Dipole	SPEAG	D2450V2	706	5/20/2015
System Validation Dipole	SPEAG	D2450V2	899	9/10/2015
System Validation Dipole	SPEAG	D5GHzV2	1138	9/18/2015

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Power Meter	Agilent	N1911A	MY53060016	8/3/2014
Power Sensor	Agilent	E9323A	MY53070003	5/1/2015

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall (Length x Width): 209 mm x 139 mm Overall Diagonal: 242 mm Display Diagonal: 205 mm
Battery Back Cover	<input checked="" type="checkbox"/> The rechargeable battery is not user accessible.
Battery Options	<input checked="" type="checkbox"/> The rechargeable battery is not user accessible.
Wi-Fi Direct	Wi-Fi Direct enabled devices transfer data directly between each other <input checked="" type="checkbox"/> Wi-Fi Direct (Wi-Fi 2.4 GHz) <input checked="" type="checkbox"/> Wi-Fi Direct (Wi-Fi 5 GHz)

6.2. Wireless Technologies

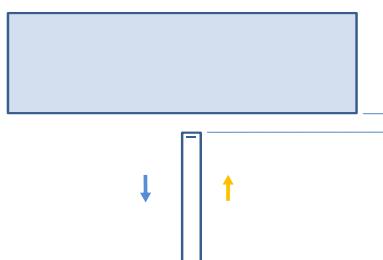
Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)	100%
	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40)	100%
	Does this device support TDWR (Terminal Doppler Weather Radar)? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
	Does this device support Band gap channel? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
Bluetooth	2.4 GHz	Version 1.2 Version 2.0 + EDR Version 2.1 + EDR Version 3.0 + HS Version 4.0 LE	77.52% (DH5)

6.3. Nominal and Maximum Output Power

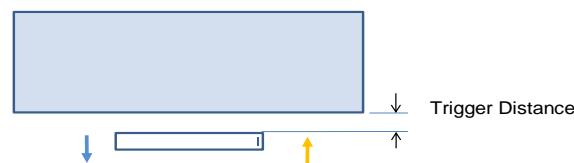
KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB): 0.5		Max. RF Output Power (dBm)		Reduced RF Output Power (dBm)	
RF Air interface	Mode	Target	Max. tune-up tolerance limit	Target	Max. tune-up tolerance limit
WiFi 2.4 GHz	802.11b	16.0	16.5	11.0	11.5
	802.11g	13.0	13.5	11.0	11.5
	802.11n HT20	12.0	12.5	11.0	11.5
WiFi 5 GHz	802.11a	11.0	11.5	6.0	6.5
	802.11n HT20	11.0	11.5	6.0	6.5
	802.11n HT40	9.0	9.5	6.0	6.5
Bluetooth		10.0	10.5	N/A	
Bluetooth LE		0.5	1.0	N/A	

6.4. Power Reduction by Proximity Sensing


6.4.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Edge 1 of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.


The measurement was then repeated for the Rear surface.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

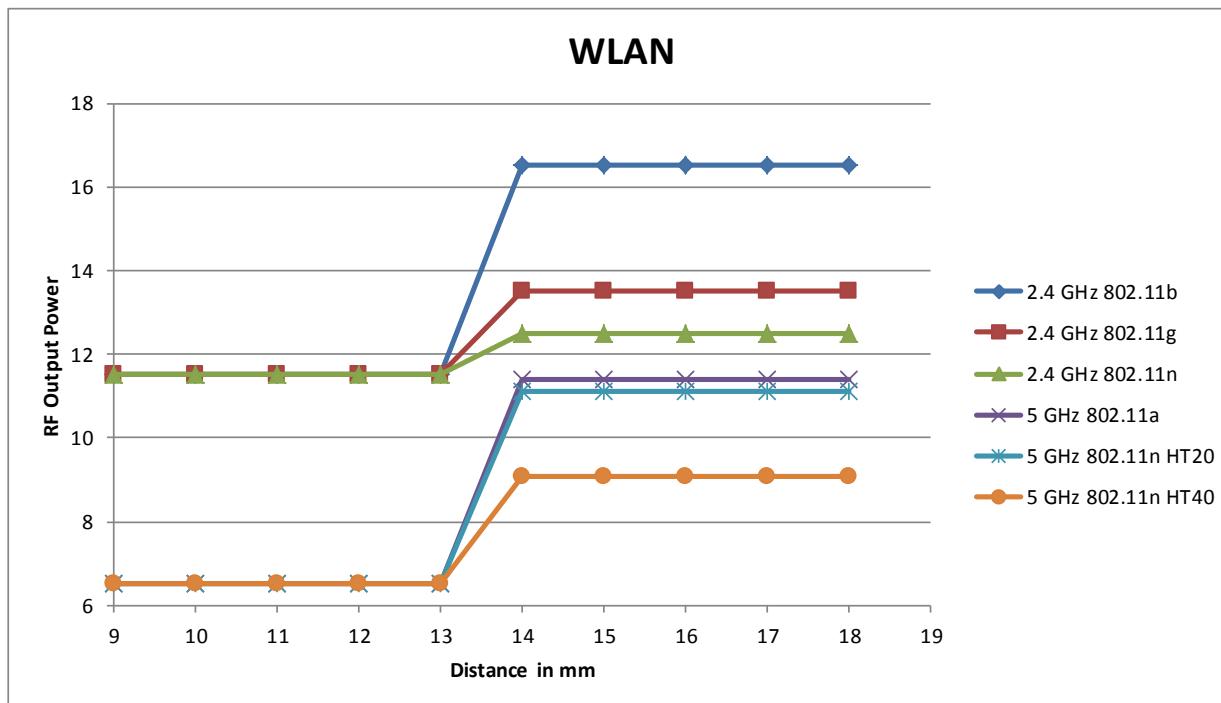
Proximity Sensor Trigger Distance Assessment
KDB 616217 §6.2, **Edge 1**

Proximity Sensor Trigger Distance Assessment
KDB 616217 §6.2, **Rear**

LEGEND

- Direction of DUT travel for determination of power reduction triggering point
- Direction of DUT travel for determination of full power resumption triggering point

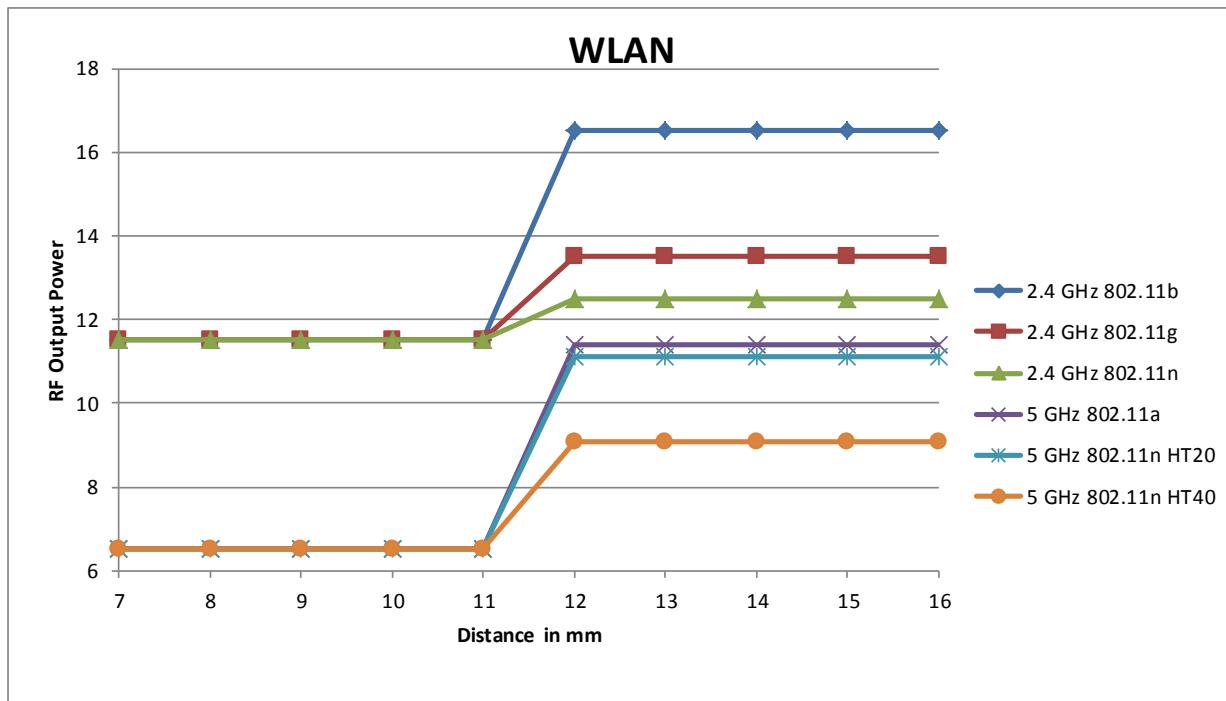
Summary of Trigger Distances for Wi-Fi


Tissue simulating liquid	Trigger distance - Rear		Trigger distance – Edge 1	
	Moving toward phantom	Moving from phantom	Moving from phantom	Moving toward phantom
2450 muscle	13mm	13mm	11mm	11mm
5000 muscle	13mm	13mm	11mm	11mm

6.4.2. Proximity Sensor Triggering Distance Measurement Results

Wi-Fi 2.4GHz and 5GHz

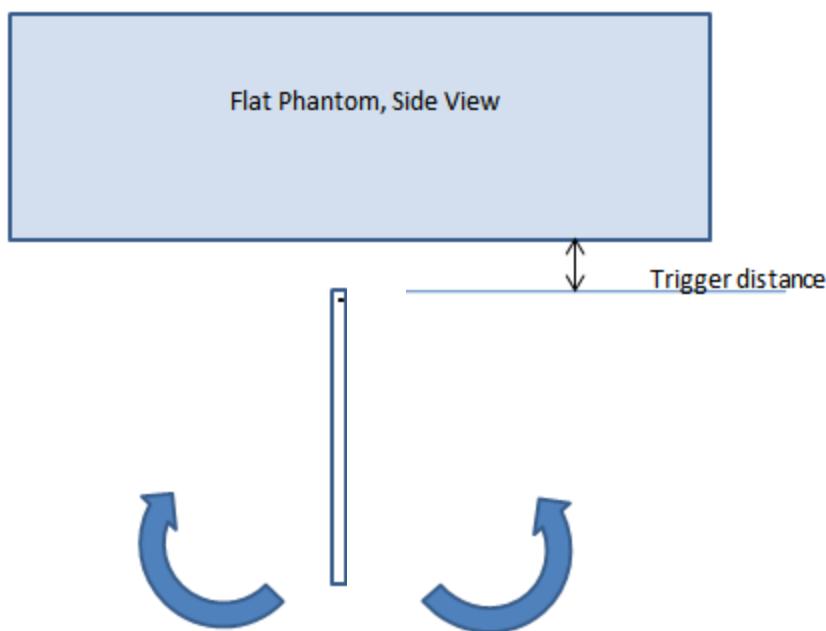
Rear, DUT Moving Toward (Trigger) and Away (Release) from the Phantom


Distance	Distance to DUT vs. Output Power in dBm									
	9	10	11	12	13	14	15	16	17	18
2.4 GHz 802.11b	11.50	11.50	11.50	11.50	11.50	16.50	16.50	16.50	16.50	16.50
2.4 GHz 802.11g	11.50	11.50	11.50	11.50	11.50	13.50	13.50	13.50	13.50	13.50
2.4 GHz 802.11n	11.50	11.50	11.50	11.50	11.50	12.50	12.50	12.50	12.50	12.50
5 GHz 802.11a	6.50	6.50	6.50	6.50	6.50	11.40	11.40	11.40	11.40	11.40
5 GHz 802.11n HT20	6.50	6.50	6.50	6.50	6.50	11.10	11.10	11.10	11.10	11.10
5 GHz 802.11n HT40	6.50	6.50	6.50	6.50	6.50	9.10	9.10	9.10	9.10	9.10

Wi-Fi 2.4GHz and 5GHz

Edge 1, DUT Moving Toward (Trigger) and Away (Release) from the Phantom

Distance	Distance to DUT vs. Output Power in dBm									
	7	8	9	10	11	12	13	14	15	16
2.4 GHz 802.11b	11.50	11.50	11.50	11.50	11.50	16.50	16.50	16.50	16.50	16.50
2.4 GHz 802.11g	11.50	11.50	11.50	11.50	11.50	13.50	13.50	13.50	13.50	13.50
2.4 GHz 802.11n	11.50	11.50	11.50	11.50	11.50	12.50	12.50	12.50	12.50	12.50
5 GHz 802.11a	6.50	6.50	6.50	6.50	6.50	11.40	11.40	11.40	11.40	11.40
5 GHz 802.11n HT20	6.50	6.50	6.50	6.50	6.50	11.10	11.10	11.10	11.10	11.10
5 GHz 802.11n HT40	6.50	6.50	6.50	6.50	6.50	9.10	9.10	9.10	9.10	9.10


6.4.3. Proximity Sensor Coverage (KDB 616217 §6.3)

As there is no spatial offset between the antenna and the proximity sensor element, proximity sensor coverage did not need to be assessed.

6.4.4. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 1 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 1 for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°.

Proximity sensor tilt angle assessment (Edge 1) KDB 616217 §6.4

Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering for Edge 1

Band (MHz)	Minimum trigger distance measured according to KDB 616217 §6.2	Minimum distance at which power reduction was maintained over +/-45°	Power reduction status										
			-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°
2400	2 mm	2 mm	On	On	On	On	On	On	On	On	On	On	On
5000	2 mm	2 mm	On	On	On	On	On	On	On	On	On	On	On

7. RF Exposure Conditions (Test Configurations)

Refer to “SAR Photos and Ant locations” Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 §

4.3.1 is applied in conjunction with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

SAR Test Exclusion Calculations for WLAN

Antennas < 50mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		Separation Distances (mm)						Calculated Threshold Value					
		dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
Full Power															
Wi-Fi 2.4 GHz	2462	16.50	45	12	22	14.5	190	98		5.9 -MEASURE-	3.2 -MEASURE-	4.7 -MEASURE-	> 50 mm	> 50 mm	
Wi-Fi 5.2 GHz	5180	11.50	14	12	22	14.5	190	98		2.7 -EXEM PT-	1.4 -EXEM PT-	2.1 -EXEM PT-	> 50 mm	> 50 mm	
Wi-Fi 5.3 GHz	5260	11.50	14	12	22	14.5	190	98		2.7 -EXEM PT-	1.5 -EXEM PT-	2.1 -EXEM PT-	> 50 mm	> 50 mm	
Wi-Fi 5.5 GHz	5580	11.50	14	12	22	14.5	190	98		2.8 -EXEM PT-	1.5 -EXEM PT-	2.2 -EXEM PT-	> 50 mm	> 50 mm	
Wi-Fi 5.8 GHz	5825	11.50	14	12	22	14.5	190	98		2.8 -EXEM PT-	1.5 -EXEM PT-	2.3 -EXEM PT-	> 50 mm	> 50 mm	
Bluetooth	2480	10.50	11	5	12	14.5	190	98		3.5 -MEASURE-	1.4 -EXEM PT-	1.2 -EXEM PT-	> 50 mm	> 50 mm	
Power Back Off															
Wi-Fi 2.4 GHz	2462	11.50	14	5	12					4.4 -MEASURE-	1.8 -EXEM PT-				
Wi-Fi 5.2 GHz	5180	6.50	4	5	12					1.8 -EXEM PT-	0.8 -EXEM PT-				
Wi-Fi 5.3 GHz	5260	6.50	4	5	12					1.8 -EXEM PT-	0.8 -EXEM PT-				
Wi-Fi 5.5 GHz	5580	6.50	4	5	12					1.9 -EXEM PT-	0.8 -EXEM PT-				
Wi-Fi 5.8 GHz	5825	6.50	4	5	12					1.9 -EXEM PT-	0.8 -EXEM PT-				

Note(s):

- According to KDB 447498, if the calculated threshold value is > 3 then SAR testing is required.

Antennas > 50mm to adjacent edges

Tx Interface	Frequency (MHz)	Output Power		Separation Distances (mm)						Calculated Threshold Value					
		dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
Full Power															
Wi-Fi 2.4 GHz	2462	16.50	45	12	22	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1495.6 mW -EXEM PT-	575.6 mW -EXEM PT-	
Wi-Fi 5.2 GHz	5180	11.50	14	12	22	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1465.9 mW -EXEM PT-	545.9 mW -EXEM PT-	
Wi-Fi 5.3 GHz	5260	11.50	14	12	22	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1465.4 mW -EXEM PT-	545.4 mW -EXEM PT-	
Wi-Fi 5.5 GHz	5580	11.50	14	12	22	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1463.5 mW -EXEM PT-	543.5 mW -EXEM PT-	
Wi-Fi 5.8 GHz	5825	11.50	14	12	22	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1462.2 mW -EXEM PT-	542.2 mW -EXEM PT-	
Bluetooth	2480	10.50	11	5	12	14.5	190	98		< 50 mm	< 50 mm	< 50 mm	1495.3 mW -EXEM PT-	575.3 mW -EXEM PT-	
Power Back Off															
Wi-Fi 2.4 GHz	2462	11.50	14	5	12					< 50 mm	< 50 mm				
Wi-Fi 5.2 GHz	5180	6.50	4	5	12					< 50 mm	< 50 mm				
Wi-Fi 5.3 GHz	5260	6.50	4	5	12					< 50 mm	< 50 mm				
Wi-Fi 5.5 GHz	5580	6.50	4	5	12					< 50 mm	< 50 mm				
Wi-Fi 5.8 GHz	5825	6.50	4	5	12					< 50 mm	< 50 mm				

Note(s):

- According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Test Configurations	Rear	Edge 1	Edge 2	Edge 3	Edge 4
		(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)
Wi-Fi 2.4 GHz Full Power	Yes	Yes	Yes	No	No
Wi-Fi 2.4 GHz w/ Power Reduction	Yes	No	No	No	No
Wi-Fi 5 GHz Full Power	No	No	No	No	No
Wi-Fi 5 GHz w/ Power Reduction	No	No	No	No	No
Bluetooth	Yes	No	No	No	No

Note(s):

1. Yes = Testing is required.
2. No = Testing is not required.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^\circ\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR Lab A

Date tested	Freq. (MHz)	Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)	
2/5/2015	Body 5180	e'	47.7100	Relative Permittivity (ϵ_r):	47.71	49.05	-2.73	5
		e"	18.0900	Conductivity (σ):	5.21	5.27	-1.16	5
	Body 5200	e'	47.6200	Relative Permittivity (ϵ_r):	47.62	49.02	-2.86	5
		e"	18.1100	Conductivity (σ):	5.24	5.29	-1.10	5
	Body 5600	e'	46.5800	Relative Permittivity (ϵ_r):	46.58	48.48	-3.91	5
		e"	18.6000	Conductivity (σ):	5.79	5.76	0.53	5
	Body 5800	e'	46.3900	Relative Permittivity (ϵ_r):	46.39	48.20	-3.76	5
		e"	18.6900	Conductivity (σ):	6.03	6.00	0.46	5
	Body 5825	e'	46.2500	Relative Permittivity (ϵ_r):	46.25	48.20	-4.05	5
		e"	18.7600	Conductivity (σ):	6.08	6.00	1.27	5
2/7/2015	Body 2450	e'	51.0500	Relative Permittivity (ϵ_r):	51.05	52.70	-3.13	5
		e"	15.0200	Conductivity (σ):	2.05	1.95	4.93	5
	Body 2410	e'	51.2300	Relative Permittivity (ϵ_r):	51.23	52.76	-2.90	5
		e"	14.7200	Conductivity (σ):	1.97	1.91	3.41	5
	Body 2475	e'	51.0300	Relative Permittivity (ϵ_r):	51.03	52.67	-3.11	5
		e"	15.0900	Conductivity (σ):	2.08	1.99	4.61	5
2/9/2015	Body 2450	e'	50.7900	Relative Permittivity (ϵ_r):	50.79	52.70	-3.62	5
		e"	14.8400	Conductivity (σ):	2.02	1.95	3.67	5
	Body 2410	e'	50.8900	Relative Permittivity (ϵ_r):	50.89	52.76	-3.54	5
		e"	14.5900	Conductivity (σ):	1.96	1.91	2.50	5
	Body 2475	e'	50.7900	Relative Permittivity (ϵ_r):	50.79	52.67	-3.57	5
		e"	14.8600	Conductivity (σ):	2.04	1.99	3.02	5
2/9/2015	Body 5180	e'	48.2400	Relative Permittivity (ϵ_r):	48.24	49.05	-1.64	5
		e"	18.6000	Conductivity (σ):	5.36	5.27	1.63	5
	Body 5200	e'	48.2400	Relative Permittivity (ϵ_r):	48.24	49.02	-1.59	5
		e"	18.6900	Conductivity (σ):	5.40	5.29	2.06	5
	Body 5600	e'	47.7000	Relative Permittivity (ϵ_r):	47.70	48.48	-1.60	5
		e"	19.0900	Conductivity (σ):	5.94	5.76	3.18	5
	Body 5800	e'	47.4700	Relative Permittivity (ϵ_r):	47.47	48.20	-1.51	5
		e"	19.2400	Conductivity (σ):	6.20	6.00	3.41	5
	Body 5825	e'	47.4100	Relative Permittivity (ϵ_r):	47.41	48.20	-1.64	5
		e"	19.2800	Conductivity (σ):	6.24	6.00	4.08	5
2/12/2015	Body 5180	e'	47.5000	Relative Permittivity (ϵ_r):	47.50	49.05	-3.15	5
		e"	17.9700	Conductivity (σ):	5.18	5.27	-1.81	5
	Body 5200	e'	47.5400	Relative Permittivity (ϵ_r):	47.54	49.02	-3.02	5
		e"	17.9700	Conductivity (σ):	5.20	5.29	-1.87	5
	Body 5600	e'	46.8200	Relative Permittivity (ϵ_r):	46.82	48.48	-3.42	5
		e"	18.6700	Conductivity (σ):	5.81	5.76	0.91	5
	Body 5800	e'	46.7500	Relative Permittivity (ϵ_r):	46.75	48.20	-3.01	5
		e"	19.1400	Conductivity (σ):	6.17	6.00	2.88	5
	Body 5825	e'	46.9100	Relative Permittivity (ϵ_r):	46.91	48.20	-2.68	5
		e"	19.3700	Conductivity (σ):	6.27	6.00	4.56	5
2/13/2015	Body 2450	e'	51.0100	Relative Permittivity (ϵ_r):	51.01	52.70	-3.21	5
		e"	14.3100	Conductivity (σ):	1.95	1.95	-0.03	5
	Body 2410	e'	51.1600	Relative Permittivity (ϵ_r):	51.16	52.76	-3.03	5
		e"	14.2300	Conductivity (σ):	1.91	1.91	-0.03	5
	Body 2475	e'	50.9300	Relative Permittivity (ϵ_r):	50.93	52.67	-3.30	5
		e"	14.3500	Conductivity (σ):	1.97	1.99	-0.52	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 \pm 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements $>$ 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Values (W/kg)		
				1g/10g	Head	Body
D2450V2	706	5/20/2014	2450	1g	53.0	50.2
				10g	24.5	23.4
D2450V2	899	9/10/2014	2450	1g	52.3	50.5
				10g	24.3	23.5
D5GHzV2	1138	9/18/2014	5200	1g	81.4	75.4
				10g	23.3	21.0
		9/18/2014	5600	1g	85.1	81.9
				10g	24.2	22.6
		9/18/2014	5800	1g	80.6	75.2
				10g	23.0	20.8

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab A

Date Tested	System Dipole		T.S. Liquid	Measured Results		Target (Ref. Value)	Delta ±10 %	Plot No.
	Type	Serial #		Zoom Scan to 100 mW	Normalize to 1 W			
2/5/2015	D5GHzV2 (5.2 GHz)	1138	Body	1g	6.97	69.7	75.4	-7.56
				10g	1.96	19.6	21.0	-6.67
2/5/2015	D5GHzV2 (5.6 GHz)	1138	Body	1g	7.90	79.0	81.9	-3.54
				10g	2.18	21.8	22.6	-3.54
2/5/2015	D5GHzV2 (5.8 GHz)	1138	Body	1g	8.03	80.3	75.2	6.78
				10g	2.23	22.3	20.8	7.21
2/9/2015	D5GHzV2 (5.2 GHz)	1138	Body	1g	7.38	73.8	75.4	-2.12
				10g	2.19	21.9	21.0	4.29
2/9/2015	D5GHzV2 (5.6 GHz)	1138	Body	1g	8.13	81.3	81.9	-0.73
				10g	2.24	22.4	22.6	-0.88
2/9/2015	D5GHzV2 (5.8 GHz)	1138	Body	1g	6.95	69.5	75.2	-7.58
				10g	1.93	19.3	20.8	-7.21
2/12/2015	D5GHzV2 (5.2 GHz)	1138	Body	1g	7.66	76.6	75.4	1.59
				10g	2.14	21.4	21.0	1.90
2/12/2015	D5GHzV2 (5.6 GHz)	1138	Body	1g	8.19	81.9	81.9	0.00
				10g	2.26	22.6	22.6	0.00
2/12/2015	D5GHzV2 (5.8 GHz)	1138	Body	1g	7.72	77.2	75.2	2.66
				10g	2.13	21.3	20.8	2.40
2/13/2015	D2450V2	706	Body	1g	5.14	51.4	50.2	2.39
				10g	2.36	23.6	23.4	0.85

9. Conducted Output Power Measurements

9.1. Wi-Fi 2.4GHz

Max Power

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
2.4	802.11b	1 Mbps	1	2412	16.0	16.5	Yes	
			6	2437	16.5			
			11	2462	16.5			
			12	2467	Not Required	10.5	No	2
			13	2472		0.5		
	802.11g	6 Mbps	1	2412	Not Required	13.5	No	1
			6	2437				
			11	2462				
			12	2467		10.5	No	2
			13	2472		0.5		
	802.11n (HT20)	MCS0	1	2412	Not Required	12.5	No	1
			6	2437				
			11	2462				
			12	2467		No	2	
			13	2472				

With Power Back-Off

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
2.4	802.11b	1 Mbps	1	2412	11.4	11.5	Yes	
			6	2437	11.5			
			11	2462	11.5			
			12	2467	Not Required	10.5	No	2
			13	2472		0.5		
	802.11g	6 Mbps	1	2412	Not Required	11.5	No	1
			6	2437				
			11	2462				
			12	2467		10.5	No	2
			13	2472		0.5		
	802.11n (HT20)	MCS0	1	2412	Not Required	11.5	No	1
			6	2437				
			11	2462				
			12	2467		10.5	No	2
			13	2472		0.5		

Note(s):

Per KDB 248227 D01 v02:

1. Output Power and SAR is not required for 802.11g/n HT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
2. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power for these two channels are no greater than those for the default test channels.

9.2. Wi-Fi 5GHz

Max Power

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
5.2 (U-NII 1)	802.11a	6 Mbps	36	5180	11.0	11.5	No	3
			40	5200	11.0			
			44	5220	11.0			
			48	5240	11.0			
	802.11n (HT20)	6.5 Mbps	36	5180	11.0	11.5	No	3
			40	5200	10.9			
			44	5220	10.9			
			48	5240	10.3			
	802.11n (HT40)	13.5 Mbps	38-46	5190 - 5230	Not Required	9.5	No	1
5.3 (U-NII 2A)	802.11a	6 Mbps	52	5260	11.4	11.5	Yes	
			56	5280	11.2			
			60	5300	11.2			
			64	5320	11.2			
	802.11n (HT20)	6.5 Mbps	52	5260	11.0	11.5	No	2
			56	5280	10.9			
			60	5300	10.9			
			64	5320	10.6			
	802.11n (HT40)	13.5 Mbps	54-62	5270 - 5310	Not Required	9.5	No	1
5.5 (U-NII 2C)	802.11a	6 Mbps	100	5500	11.3	11.5	Yes	
			116	5580	11.4			
			124	5620	Not Supported			
			140	5700	11.2			
	802.11n (HT20)	6.5 Mbps	100	5500	11.1	11.5	No	2
			116	5580	11.2			
			124	5620	11.1			
			140	5700	11.2			
	802.11n (HT40)	13.5 Mbps	102-134	5510-5670	Not Required	9.5	No	1
5.8 (U-NII 3)	802.11a	6 Mbps	149	5745	11.2	11.5	Yes	
			157	5785	11.5			
			165	5825	11.3			
	802.11n (HT20)	6.5 Mbps	149	5745	11.0	11.5	No	2
			157	5785	11.0			
			165	5825	11.1			
	802.11n (HT40)	13.5 Mbps	151-159	5755-5795	Not Required	9.5	No	1

Note(s):

1. Output Power and SAR is not required for 802.11n HT20/HT40 channels when the specified tune-up tolerances for 802.11n HT20/HT40 are lower than 802.11a by more than $\frac{1}{2}$ dB and the measured SAR is ≤ 1.2 W/Kg.
2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.
3. When the specified maximum output power is the same for both UNII band 1 and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest reported SAR for UNII band 2A is
 - o ≤ 1.2 W/kg, SAR is not required for UNII band 1
 - o > 1.2 W/kg, both bands should be tested independently for SAR.

With Power Back-Off

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Power (dBm)	SAR Test (Yes/No)	Note(s)
5.2 (U-NII 1)	802.11a	6 Mbps	36-48	5180-5240	Not Required	6.5	No	1
	802.11n (HT20)	6.5 Mbps	36-48	5180 - 5240		6.5	No	1
	802.11n (HT40)	13.5 Mbps	38	5190	6.1	6.5	No	2
			46	5230	6.0			
5.3 (U-NII 2A)	802.11a	6 Mbps	52-64	5260-5320	Not required	6.5	No	1
	802.11n (HT20)	6.5 Mbps	52-64	5260 - 5320		6.5	No	1
	802.11n (HT40)	13.5 Mbps	54	5270	6.5	6.5	Yes	
			62	5310	6.3			
5.5 (U-NII 2C)	802.11a	6 Mbps	100-140	5500-5700	Not Required	6.5	No	1
	802.11n (HT20)	6.5 Mbps	100-140	5500-5700		6.5	No	1
	802.11n (HT40)	13.5 Mbps	102	5510	6.0	6.5	Yes	
			110	5550	6.5			
			118	5590	6.5			
5.8 (U-NII 3)	802.11a	6 Mbps	149-165	5745-5825	Not Required	6.5	No	1
	802.11n (HT20)	6.5 Mbps	149-165	5745-5825		6.5	No	1
	802.11n (HT40)	13.5 Mbps	151	5755	6.5	6.5	Yes	
			159	5795	6.5			

Note(s):

1. Output Power and SAR is not required for 802.11a and 802.11n HT20 channels because the specified tune-up tolerances for 802.11a and 802.11n HT20 are lower than or equal to 802.11n HT40 and the measured SAR is ≤ 1.2 W/Kg.
2. When the specified maximum output power is the same for both UNII band 1 and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest reported SAR for UNII band 2A is
 - a. ≤ 1.2 W/kg, SAR is not required for UNII band 1
 - b. > 1.2 W/kg, both bands should be tested independently for SAR.

9.3. Bluetooth

Band (GHz)	Mode	Ch #	Freq. (MHz)	Avg Pwr (dBm)
2.4	V3.0 + EDR, GFSK	0	2402	9.2
		39	2441	8.6
		78	2480	9.1
	V3.0 + EDR, $\pi/4$ DQPSK	0	2402	8.2
		39	2441	7.6
		78	2480	7.8
	V3.0 + EDR, 8-DPSK	0	2402	8.2
		39	2441	7.6
		78	2480	7.8
	V4.0 LE, GFSK	0	2402	1.0
		19	2440	0.3
		39	2480	0.7

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 248227 D01 SAR meas for 802.11 v02:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the initial test position.

10.1. Wi-Fi (DTS Band)

Frequency Band	Mode	Pwr Back Off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Area Scan Max. SAR (W/kg)	Power (dBm)		1-g SAR (W/kg)		Notes	Plot No.
								Tune-up limit	Meas.	Meas.	Scaled		
2.4GHz	802.11b 1 Mbps	Off	12	Rear	6	2437	0.073	16.5	16.5				
			10	Edge 1	6	2437	0.120	16.5	16.5	0.087	0.087	1	
			0	Edge 2	6	2437	0.072	16.5	16.5				
		On	0	Rear	6	2437	0.599	11.5	11.5	0.545	0.545	2	1
			0	Edge 1	6	2437	0.075	11.5	11.5	0.075	0.075		

10.2. Wi-Fi (U-NII Band)

Frequency Band	Mode	Pwr Back Off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Area Scan Max. SAR (W/kg)	Power (dBm)		1-g SAR (W/kg)		Notes	Plot No.
								Tune-up limit	Meas.	Meas.	Scaled		
5.3 GHz U-NII 2A	802.11a 6 Mbps	Off	12	Rear	52	5260	0.330	11.5	11.4				
			10	Edge 1	52	5260	0.398	11.5	11.4	0.213	0.218	1	
			0	Edge 2	52	5260	0.070	11.5	11.4				
	802.11n HT40	On	0	Rear	54	5270	0.789	6.5	6.5	0.654	0.654	2	2
			0	Edge 1	54	5270	0.505	6.5	6.5	0.250	0.250		
Frequency Band	Mode	Pwr Back Off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Area Scan Max. SAR (W/kg)	Power (dBm)		1-g SAR (W/kg)		Notes	Plot No.
5.5 GHz U-NII 2C	802.11a 6 Mbps	Off	12	Rear	116	5580	0.693	11.5	11.4	0.437	0.447		
			10	Edge 1	116	5580	1.000	11.5	11.4	0.576	0.589	2	3
			0	Edge 2	116	5580	0.253	11.5	11.4				
	802.11n HT40	On	0	Rear	110	5550	0.747	6.5	6.5	0.540	0.540	2	
			0	Edge 1	110	5550	0.568	6.5	6.5	0.215	0.215		
Frequency Band	Mode	Pwr Back Off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Area Scan Max. SAR (W/kg)	Power (dBm)		1-g SAR (W/kg)		Notes	Plot No.
5.8 GHz U-NII 3	802.11a 6 Mbps	Off	12	Rear	157	5785	0.371	11.5	11.5				
			10	Edge 1	157	5785	0.728	11.5	11.5	0.393	0.393	1	
			0	Edge 2	157	5785	0.285	11.5	11.5				
	802.11n HT40	On	0	Rear	159	5795	0.896	6.5	6.5	0.627	0.627	2	4
			0	Edge 1	159	5795	0.568	6.5	6.5	0.215	0.215		

Note(s):

1. Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.
2. Highest reported SAR is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 W/kg was reported.
3. Testing for a second channel was required because the reported SAR for this test position was > 0.8 W/kg.
4. Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

10.3. Bluetooth

Frequency Band	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Power (dBm)		1-g SAR (W/kg)		Plot No.
						Tune-up limit	Meas.	Meas.	Scaled	
2.4 GHz	GFSK	0	Rear	0	2402.0	10.5	8.6	0.006	0.009	5

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
2400	Wi-Fi 802.11b/g/n	Standalone	Rear	No	0.545	N/A	N/A
	Bluetooth	Standalone	Rear	No	0.006	N/A	N/A
5300	Wi-Fi 802.11a/n	Standalone	Rear	No	0.654	N/A	N/A
5500	Wi-Fi 802.11a/n	Standalone	Edge 1	No	0.576	N/A	N/A
5800	Wi-Fi 802.11a/n	Standalone	Rear	No	0.627	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 .

12. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	Item	Capable Transmit Configurations		
Standalone	1	Wi-Fi 5 GHz	+	BT
Notes:				
1. Wi-Fi 2.4 GHz Radio cannot transmit simultaneously with Bluetooth Radio. 2. Wi-Fi 5 GHz Radio can transmit simultaneously with Bluetooth Radio.				

12.1. Sum of the SAR for Wi-Fi & BT

RF Exposure conditions	① U-NII	② BT	① + ③ U-NII + BT	
			Σ 1g SAR (mW/g)	SPLSR (Yes/ No)
Rear	0.654	0.009	0.663	No

Appendices

Refer to separated files for the following appendixes.

A_15I19924v0 SAR Photos & Ant. Locations

B_15I19924v0 SAR System Check Plots

C_15I19924v0 SAR Highest Test Plots

D_15I19924v0 SAR Tissue Ingredients

E_15I19924v0 SAR Probe Cal. Certificates

F_15I19924v0 SAR Dipole Cal. Certificates

END OF REPORT