PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea

Date of Testing: 12/02/13 - 12/17/13:01/30/14-02/05/14 Test Site/Location: PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 0Y1401290244.A3L

FCC ID: A3LSMT321

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Portable Tablet **Application Type:** Certification FCC Rule Part(s): CFR §2.1093 Model(s): SM-T321

(3).						
Equipment	Band & Mode	Tx Frequency	Measured Conducted	SAR		
Class Band & Mode		.xx requeries	Power [dBm]	1 gm Head (W/kg)	1 gm Body (W/kg)	
PCE	GSWGPRS/EDGE 850	824.20 - 848.80 MHz	26.95	0.49	0.67	
PCE	UMTS 850	826.40 - 846.60 MHz	22.50	0.48	1.08	
PCE	GSMGPRS/EDGE 1900	1850.20 - 1909.80 MHz	23.61	0.31	1.10	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	22.65	0.15	0.62	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	11.42	< 0.1	1.04	
DTS	5.8 GHz WLAN	5745 - 5825 MHz	7.07			
DTS	Bluetooth LE	2402 - 2480 MHz	2.75			
NII	5.2 GHz WLAN	5180 - 5240 MHz	7.36	N/A	4	
NII	5.3 GHz WLAN	5260 - 5320 MHz	7.31			
NII	5.5 GHz WLAN	5500 - 5700 MHz	7.23			
DSS	Bluetooth	2402 - 2480 MHz	9.82	N/A	0.10	
Simultaneous	Simultaneous SAR per KDB 690783 D01v01r02:					

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 1 of 47

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3				
2	INTRODU	JCTION	8				
3	DOSIME	TRIC ASSESSMENT	9				
4	DEFINITI	ON OF REFERENCE POINTS	10				
5	TEST CC	NFIGURATION POSITIONS FOR HANDSETS	11				
6	RF EXPOSURE LIMITS						
7	FCC MEASUREMENT PROCEDURES						
8	RF CONI	DUCTED POWERS	17				
9	SYSTEM	VERIFICATION	24				
10	SAR DAT	TA SUMMARY	26				
11	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS						
12	SAR MEASUREMENT VARIABILITY						
13	EQUIPMENT LIST						
14	MEASUR	REMENT UNCERTAINTIES	44				
15	CONCLU	ISION	45				
16	REFERE	NCES	46				
APPEN	IDIX A:	SAR TEST PLOTS					
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS					
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES					
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS					
APPEN	IDIX E:	SAR SYSTEM VALIDATION					
APPEN	IDIX F:	SAR TEST SETUP PHOTOGRAPHS					
APPEN	IDIX G:	SENSOR TRIGGERING INFORMATION					

FCC ID: A3LSMT321	PCTEST SHOULD BE	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 2 of 47

DEVICE UNDER TEST

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth LE	Data	2402-2480 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
ANT+	Data	2402 - 2480 MHz

1.2 **Power Reduction for SAR**

This device uses two proximity sensors for SAR compliance. One sensor is activated when the device is held to ear in voice and data operations, while the other sensor is activated when used in close proximity to the user's body. Both the proximity sensors trigger power reduction for all voice and data modes. There are no operating conditions or exposure conditions that require the power reduction triggering of both sensors. The body proximity sensor is only applicable for tablet operations. There are no bodyworn accessories for this device.

The held-to-ear RF exposure conditions were evaluated at reduced power according to the Head SAR test positions described in IEEE 1528. Since the device is a full size tablet, the Body SAR was evaluated per FCC KDB Publication 616217 D04 for full sized tablets.

1.3 **Nominal and Maximum Output Power Specifications**

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

1.3.1 **Maximum Power:**

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
		1 17 2101	Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	Maximum	33.0	33.0	30.1	28.6	27.2	27.3	25.7	24.0	23.0
GSIVI/GPRS/EDGE 830	Nominal	32.5	32.5	29.6	28.1	26.7	26.8	25.2	23.5	22.5
GSM/GPRS/EDGE 1900	Maximum	28.5	28.5	26.0	24.0	24.0	25.0	22.5	22.5	21.0
	Nominal	28.0	28.0	25.5	23.5	23.5	24.5	22.0	22.0	20.5

FCC ID: A3LSMT321	PCTEST INSTITUTE AND ADDRESS OF THE PERSON O	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 3 of 47

	Modulated Average (dBm)				
Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC- HSDPA Rel 8	
UMTS Band 5 (850 MHz)	Maximum	23.0	22.5	22.5	22.5
OIVITS BAIRD 5 (850 IVITIZ)	Nominal	22.5	22.0	22.0	22.0
UMTS Band 2 (1900 MHz)	Maximum	23.0	22.5	22.5	22.5
	Nominal	22.5	22.0	22.0	22.0

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	11.5
TEEE 802.110 (2.4 GHZ)	Nominal	11.0
IEEE 802.11g (2.4 GHz)	Maximum	11.5
TEEL 802.11g (2.4 GHz)	Nominal	11.0
IEEE 802.11n (2.4 GHz)	Maximum	11.5
TEEE 802.1111 (2.4 GHZ)	Nominal	11.0
JEEE 803 112 /E CH7)	Maximum	7.5
IEEE 802.11a (5 GHz)	Nominal	7.0
IEEE 802.11n - 20 MHz Bandwidth (5 GHz)	Maximum	7.5
TEEE 802.1111 - 20 MHZ Balluwiutii (5 GHZ)	Nominal	7.0
IEEE 802.11n - 40 MHz Bandwidth (5 GHz)	Maximum	7.5
TEEE 802.1111 - 40 MHZ Balluwiutii (5 GHZ)	Nominal	7.0
IFFF 902 11cc 90 MHz Dondwidth /F CH-)	Maximum	7.5
IEEE 802.11ac - 80 MHz Bandwidth (5 GHz)	Nominal	7.0
Divisto ath	Maximum	10.0
Bluetooth	Nominal	9.5
Divisto eth LE	Maximum	3.0
Bluetooth LE	Nominal	2.5

1.3.2 Reduced Power:

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TV Slots	1 TX Slots 2 TX Slots 3	3 TX Slots	4 TX	1 TX	2 TX	3 TX	4 TX
			1 17 31013			Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	Maximum	27.6	27.6	24.6	23.2	22.0	22.5	21.0	19.0	18.0
d3ivi/dFK3/EDGE 830	Nominal	27.1	27.1	24.1	22.7	21.5	22.0	20.5	18.5	17.5
GSM/GPRS/EDGE 1900	Maximum	23.8	23.8	20.8	18.9	17.6	20.0	19.0	16.7	16.0
GSW/GPRS/EDGE 1900	Nominal	23.3	23.3	20.3	18.4	17.1	19.5	18.5	16.2	15.5

	Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP DC-	
Mode / Band	WCDMA	HSDPA	HSUPA	HSDPA	
	Rel 99	Rel 5	Rel 6	Rel 8	
UMTS Band 5 (850 MHz)	Maximum	18.8	17.5	16.5	17.5
OIVITS Ballu 5 (850 IVIHZ)	Nominal	18.3	17.0	16.0	17.0
UMTS Band 2 (1900 MHz)	Maximum	12.5	11.5	10.5	11.5
OIVITS Balla 2 (1900 IVIH2)	Nominal	12.0	11.0	10.0	11.0

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 4 of 47

1.4 DUT Antenna Locations

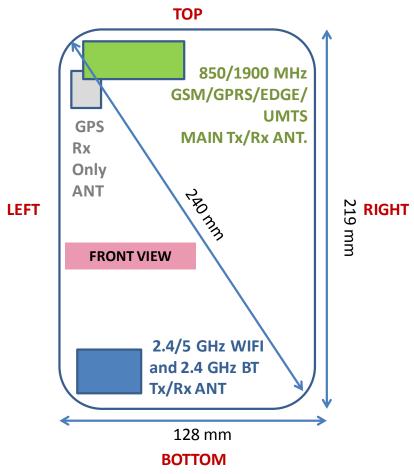


Figure 1-1
DUT Antenna Locations

Table 1-1
Body Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	No	Yes	No	No	Yes
UMTS 850	Yes	No	Yes	No	No	Yes
GPRS 1900	Yes	No	Yes	No	No	Yes
UMTS 1900	Yes	No	Yes	No	No	Yes
2.4 GHz WLAN	Yes	No	No	Yes	No	Yes
5 GHz WLAN	Yes	No	No	Yes	No	Yes
Bluetooth	Yes	No	No	Yes	No	Yes

Note: Per FCC KDB 616217 D04v01r01, Particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v05r01. The antenna document shows the distances between the transmit antennas and the edges of the device.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 5 of 47

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	
4	UMTS voice/data + 2.4 GHz WI-FI	Yes	Yes	
5	UMTS voice/data + 5 GHz WI-FI	Yes	Yes	
6	UMTS voice/data + 2.4 GHz Bluetooth	N/A	Yes	
10	GPRS/EDGE data + 2.4 GHz WI-FI	N/A	Yes	
11	GPRS/EDGE data + 5 GHz WI-FI	N/A	Yes	5 GHz WIFi Direct
12	GPRS/EDGE data + 2.4 GHz Bluetooth	N/A	Yes	

Notes:

- 1. 2.4 GHz WLAN, 2.4 GHz Bluetooth, and 5 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- When the user utilizes multiple services in UMTS 3G mode, it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DOCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 3. Per FCC KDB 616217 D04 4.3, when voice mode is limited to speaker mode or headset operations only for body operations, additional SAR testing for tablet voice use is not required. Therefore, voice standalone and simultaneous combinations are not evaluated for body configurations. Corresponding data modes are used for summation with Bluetooth when applicable.

1.6 SAR Test Exclusions Applied

(A) WIFI/BT

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE SAR was not required; $[(2/5)^* \sqrt{2.44}] = 0.6 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of 5 GHz (rounded to the nearest mW) and the antenna to user separation distance, 5 GHz SAR was not required; $[(6/5)^* \sqrt{5.825}] = 2.9 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 6 of 47

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) No new 5 GHz channels

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

1.7 **Guidance Applied**

- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04 (Tablet SAR Considerations)
- October 2013 TBC Workshop Notes (GPRS Considerations)

1.8 **Device Serial Numbers**

Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

Mode	Head Serial Number	Body Max Serial Number	Body Red. Serial Number
GSM/GPRS/EDGE 850	R#1	M#1	R#1
UMTS 850	R#1	M#1	R#1
GSWGPRS/EDGE 1900	R#2	M#1	R#2
UMTS 1900	R#1	M#1	R#1
2.4 GHz WLAN	FK313-E	FK313-E	-
Bluetooth	-	FK313-C	-

FCC ID: A3LSMT321	PCTEST SEGMENTS LABORATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 7 of 47

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) mass density of the tissue-simulating material (kg/m³)

Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [6]

FCC ID: A3LSMT321	PCTEST SHOULD BE	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 8 of 47

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

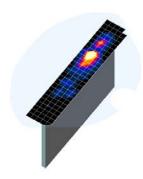


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

_	Maximum Area Scan Maxi		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 9 of 47

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 4-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 4-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

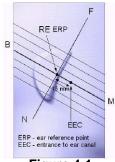


Figure 4-1 Close-Up Side view of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 4-2 Front, back and side view of SAM Twin Phantom

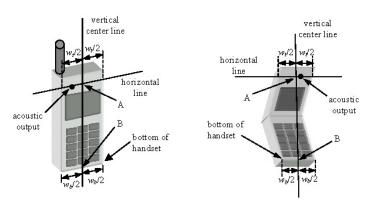


Figure 4-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 10 of 47

5 TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 **Positioning for Cheek**

The test device was positioned with the device close to the surface of the phantom such that 1. point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- While maintaining the vertical centerline in the reference plane, keeping point A on the line 5. passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 5-2).

5.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5-2).

FCC ID: A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 11 of 47

Figure 5-2 Front, Side and Top View of Ear/15° Tilt
Position

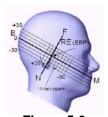


Figure 5-3
Side view w/ relevant markings

5.4 SAR Testing for Tablet per KDB Publication 616217 D04v01

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v05 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

5.5 Additional Test Positions due to Proximity Sensor Considerations

This device uses a proximity sensor to reduce voice/data powers in tablet-device use conditions.

While the device is touching the user on the antenna, the proximity sensors activate and thus reduce the maximum output power allowed. However, when the device is moved beyond the sensor triggering distance, the sensors de-activate and thus maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB 616217 D04 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional exposure conditions. Since the proximity sensor activation distance for the back side of the device is 15 mm, a conservative distance of 14 mm was tested for SAR on the back side at maximum power. Since the proximity sensor activation distance for the device is 12 mm, a conservative distance of 11 mm was tested for SAR on the top edge at maximum power. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antenna.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 12 of 47

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS									
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)							
Peak Spatial Average SAR Head	1.6	8.0							
Whole Body SAR	0.08	0.4							
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20							

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID:	A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document	S/N:	Test Dates:	DUT Type:	
0V1401290244 A3I		12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 13 of 47

^{2.} The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 **Measured and Reported SAR**

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

7.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation. to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

7.3 **SAR Measurement Conditions for UMTS**

7.3.1 **Output Power Verification**

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 14 of 47

7.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

7.3.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

7.3.4 Procedures Used to Establish RF Signal for SAR HSDPA Data Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. Body exposure conditions are typically applicable to these devices, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with UMTS and requires an active DPCCH. The default test configuration is to measure SAR in UMTS without HSDPA, with an established radio link between the DUT and a communication test set with 12.2 kbps RMC mode configured in Test Loop Mode 1; and tested with HSDPA with FRC and a 12.2 kbps RMC using the highest SAR configuration in UMTS. SAR is selectively confirmed for other physical channel configurations according to output power, exposure conditions and device operating capabilities. Maximum output power is verified according to 3GPP TS 23.121 (Release 5) and SAR must be measured according to these maximum output conditions.

Sub- Test	βς	β_d	β _d (SF)	β_c/β_d	β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1: Note 2:	For the HS-I Magnitude (I discontinuity $\Delta_{CQI} = 7 (A_b$	DPCCH pow EVM) with v in clause 5 u _{ss} = 24/15) v	ver mask requested the mask req		ause 5.2C, 5.3.1A, and HS3 (A _{bs} = 30/15)	7A, and the Erro DPA EVM with with $\beta_{hs} = 30/1$	phase 15 * β _c , and
Note 3:		MPR is base	ed on the rela	 For all other continue CM difference releases. 			

Figure 7-1 Table C.10.1.4 of TS 234.121-1

7.3.5 SAR Measurement Conditions for HSUPA Data Devices

SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of the KDB 941225 D01 FCC 3G document. In addition, Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher of that measured without HSPA in 12.2 kbps RMC mode or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than ¼ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurements should be used to test for head exposure.

FCC ID: A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 15 of 47

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and EDCH configurations for HSPA should be configured according to the \(\beta \) values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of the FCC 3G document.

Sub- test	βε	βα	β ₄ (SF)	β_c/β_d	β _{hs} (1)	βec	βed	β _{ed} (SF)	β _{ed} (codes)	(dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15(3)	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15(4)	15/15(4)	_64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 2	DPCCH : For subte	for $\beta_c/\beta_d = 1$ the MPR i est 1 the β_c	2/15, β s based β _d ratio	h _a /β _c =24/1 on the rela of 11/15 t	5. For all tive CM or the TI	other comb difference. C during the	$30/15 * \beta_c$. binations of I he measurem by $\beta_c = 10/15$:	ent per	iod (TF1, 7				

signaled gain factors for the reference TFC (TF1, TF1) to $g_c = 14/15$ and $g_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test3 is not required according to TS 25.306 Table 5.1g

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

7.3.6 SAR Measurement Conditions for DC-HSDPA

SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion. DC-HSDPA uplink maximum output power measurements using the four Rel. 5 HSDPA subtests in Table C.10.1.4 of TS 234.121-1 is required.

When the maximum average output power of each RF channel with DC-HSDPA active is $\leq \frac{1}{4}$ dB higher than that measured using 12.2 kbps RMC, or the maximum reported SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit, SAR evaluation for DC-HSDPA is not required.

7.4 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

7.4.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

7.4.2 Frequency Channel Configurations [24]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode. If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test

FCC ID: A3LSMT321	PCTEST INDINIBILIST INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 16 of 47

channels in the band.

8 RF CONDUCTED POWERS

8.1 GSM Conducted Powers

Table 8-1
Maximum GSM/GPRS/EDGE Average RF Conducted Powers

N	Maximum GSM/GPRS/EDGE Average RF Conducted Powers Maximum Burst-Averaged Output Power										
				Maxim	um Burst-	Averaged	l Output P	ower			
		Voice	GP.	RS/EDGE	Data (GM	SK)	EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	32.18	32.19	29.27	28.10	26.50	26.55	25.10	23.16	22.57	
GSM 850	190	32.25	32.34	29.68	28.26	26.95	26.67	25.02	23.10	22.48	
	251	32.00	32.06	29.48	28.11	26.55	26.69	25.00	23.04	22.44	
	512	28.06	28.00	25.00	23.00	22.00	24.18	21.16	21.14	20.00	
GSM 1900	661	28.21	28.30	25.13	23.50	22.11	24.28	21.43	21.48	20.05	
	810	28.41	28.50	25.70	23.92	22.84	24.75	22.00	22.17	20.79	
			Calc	culated M	avimum l	Frame-Av	eraged O	utnut Pow	er		
			Juit	Julated III	axiiiiaiii i	Tallie-Av	erageu O	atput i on	CI .		
		Voice		RS/EDGE					ta (8-PSK)		
Band	Channel	Voice GSM [dBm] CS (1 Slot)								EDGE [dBm] 4 Tx Slot	
Band	Channel	GSM [dBm] CS	GPRS [dBm] 1 Tx	RS/EDGE GPRS [dBm] 2 Tx	Data (GM GPRS [dBm] 3 Tx	GPRS [dBm] 4 Tx	EDGE [dBm] 1 Tx	EDGE Da EDGE [dBm] 2 Tx	ta (8-PSK) EDGE [dBm] 3 Tx	EDGE [dBm] 4 Tx	
Band GSM 850		GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	RS/EDGE GPRS [dBm] 2 Tx Slot	Data (GM GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE Da EDGE [dBm] 2 Tx Slot	ta (8-PSK) EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	GSM [dBm] CS (1 Slot) 23.15	GPRS [dBm] 1 Tx Slot 23.16	GPRS [dBm] 2 Tx Slot 23.25	GPRS [dBm] 3 Tx Slot 23.84	GPRS [dBm] 4 Tx Slot 23.49	EDGE [dBm] 1 Tx Slot 17.52	EDGE Da. EDGE [dBm] 2 Tx Slot 19.08	EDGE [dBm] 3 Tx Slot 18.90	EDGE [dBm] 4 Tx Slot	
	128 190	GSM [dBm] CS (1 Slot) 23.15 23.22	GPRS [dBm] 1 Tx Slot 23.16 23.31	GPRS [dBm] 2 Tx Slot 23.25 23.66	Data (GM GPRS [dBm] 3 Tx Slot 23.84 24.00	GPRS [dBm] 4 Tx Slot 23.49 23.94	EDGE [dBm] 1 Tx Slot 17.52 17.64	EDGE Da EDGE [dBm] 2 Tx Slot 19.08	EDGE [dBm] 3 Tx Slot 18.90 18.84	EDGE [dBm] 4 Tx Slot 19.56 19.47	
	128 190 251	GSM [dBm] CS (1 Slot) 23.15 23.22 22.97	GPRS [dBm] 1 Tx Slot 23.16 23.31 23.03	RS/EDGE GPRS [dBm] 2 Tx Slot 23.25 23.66 23.46	Data (GM GPRS [dBm] 3 Tx Slot 23.84 24.00 23.85	GPRS [dBm] 4 Tx Slot 23.49 23.54	EDGE [dBm] 1 Tx Slot 17.52 17.64 17.66	EDGE Date	EDGE [dBm] 3 Tx Slot 18.90 18.84	EDGE [dBm] 4 Tx Slot 19.56 19.47 19.43	
GSM 850	128 190 251 512	GSM [dBm] cs (1 Slot) 23.15 23.22 22.97 19.03	GPRS [dBm] 1 Tx Slot 23.16 23.31 23.03	RS/EDGE GPRS [dBm] 2 Tx Slot 23.25 23.66 23.46 18.98	Data (GM GPRS [dBm] 3 Tx Slot 23.84 24.00 23.85 18.74	GPRS [dBm] 4 Tx Slot 23.49 23.54 18.99	EDGE [dBm] 1 Tx Slot 17.52 17.64 17.66 15.15	EDGE Date	EDGE [dBm] 3 Tx Slot 18.90 18.84 18.78 16.88	EDGE [dBm] 4 Tx Slot 19.56 19.47 19.43 16.99	
GSM 850	128 190 251 512 661	GSM [dBm] cs (1 Slot) 23.15 23.22 22.97 19.03 19.18 19.38 23.47	GPRS [dBm] 1 Tx Slot 23.16 23.31 23.03 18.97 19.27	RS/EDGE GPRS [dBm] 2 Tx Slot 23.25 23.66 23.46 18.98 19.11	Data (GM GPRS [dBm] 3 Tx Slot 23.84 24.00 23.85 18.74	GPRS [dBm] 4 Tx Slot 23.49 23.54 18.99 19.10	EDGE [dBm] 1 Tx Slot 17.52 17.64 17.66 15.15 15.25	EDGE Dal EDGE [dBm] 2 Tx Slot 19.08 19.00 18.98 15.14 15.41	EDGE [dBm] 3 Tx Slot 18.90 18.84 16.88 17.22	EDGE [dBm] 4 Tx Slot 19.56 19.47 19.43 16.99 17.04	

Table 8-2
Reduced GSM/GPRS/EDGE Average RF Conducted Powers

18.97 18.97 19.48 19.24 **19.49** 15.47 15.98 17.74 17.49

Reduced Com/of Rojebol Average Ri Conducted Fowers											
	Maximum Burst-Averaged Output Power										
	Voice	GP.	GPRS/EDGE Data (GMSK) EDGE Data					ta (8-PSK)	ta (8-PSK)		
Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
128	27.02	27.31	24.21	22.81	21.58	22.35	20.66	18.82	17.69		
190	26.94	27.27	24.20	22.87	21.61	22.37	20.51	18.70	17.64		
251	26.82	27.10	24.20	22.79	21.58	22.18	20.50	18.67	17.65		
512	23.80	23.69	20.80	18.90	17.58	19.75	18.82	16.67	15.70		
661	23.61	23.63	20.67	18.70	17.55	19.92	18.80	16.63	15.77		
810	23.67	23.68	20.79	18.72	17.60	19.90	18.78	16.54	15.75		
	128 190 251 512 661	Channel GSM [dBm] CS (1 Slot) 128 27.02 190 26.94 251 26.82 512 23.80 661 23.61	Channel GSM [dBm] CS [dBm] 1 Tx Slot 128 27.02 27.31 190 26.94 27.27 251 26.82 27.10 512 23.80 23.69 661 23.61 23.63	Voice GPRS/EDGE GSM [dBm] CS (1 Slot) GPRS [dBm] 2 Tx Slot 11 Tx (1 Slot) Slot 128 27.02 27.31 24.21 24.21 190 26.94 27.27 24.20 251 26.82 27.10 24.20 251 23.80 23.69 20.80 20.67	Channel GSM [dBm] CS (1 Slot) GPRS [dBm] 2 Tx (1 Slot) GPRS [dBm] 3 Tx (1 Slot) GPRS [dBm] 2 Tx (1 Slot) GPRS [dBm] 3 Tx (1 Slot) GPRS [dBm] 2 Tx (1 Slot) GPR [dBm] 2 Tx (1 Slot) GPR [dBm] 2 Tx (1 Slot)	Voice GPRS/EDGE Data (GMSK) GSM (dBm) CS (1 Slot) GPRS (dBm) 2 Tx (1 Slot) GPRS (dBm) 3	Channel GSM [dBm] CS (1 Slot) GPRS [dBm] 2 TX (1 Slot) GPRS [dBm] 3 TX (1 Slot) GPRS [dBm] 2 TX (1 Slot) GPRS [dBm] 3 TX (1 Slot) GPRS [dBm] 4 TX (1 TX Slot) GPRS [dBm] 3 TX (1 Slot) GPRS [dBm] 4 TX (1 TX Slot) GPRS [dBm] 1 TX Slot GPRS [dBm] 2 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 1 TX Slot GPRS [dBm] 2 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 4 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 4 TX Slot GPRS [dBm] 2 TX Slot GPRS [dBm] 3 TX Slot GPRS [dBm] 4 TX Slot GPR S [dBm] 4 TX Slot GPR	Channel GSM [dBm] CS (1 Slot) GPRS [dBm] 1 Tx (1 Slot) GPRS [dBm] 2 Tx Slot GPRS [dBm] 3 Tx Slot GPRS [dBm] 4 Tx Slot GPRS [dBm] 5 Tx Slot GPRS [dBm] 5 Tx Slot EDGE [dBm] 5 Tx 5 Slot EDGE [dBm] 5 Tx 5 Slot EDGE 5 Tx 5 Tx 5 Slot EDGE 5 Tx 5 Tx 5 Slot EDGE 5 Tx 5 Tx 5 Slot EDGE 5 Tx 5 Tx 5 Slot EDGE 5 Tx 5 Slot EDGE 5 Tx 5 Slot EDGE 5 Tx 5 Tx 5 Slot EDGE 5 Tx 5 Slot	Channel GPRS/EDGE Data (GMSK) EDGE Data (8-PSK) Channel GSM [dBm] CS (1 Slot) GPRS [dBm] GBm] GBm] GBm] GBm] GBm] GBm] GBm] G		

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 17 of 47	

GSM 1900

			Calc	ulated M	aximum F	Frame-Av	eraged O	utput Pow	/er	
		Voice	GP	RS/EDGE	Data (GM	SK)	EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	17.99	18.28	18.19	18.55	18.57	13.32	14.64	14.56	14.68
GSM 850	190	17.91	18.24	18.18	18.61	18.60	13.34	14.49	14.44	14.63
	251	17.79	18.07	18.18	18.53	18.57	13.15	14.48	14.41	14.64
	512	14.77	14.66	14.78	14.64	14.57	10.72	12.80	12.41	12.69
GSM 1900	661	14.58	14.60	14.65	14.44	14.54	10.89	12.78	12.37	12.76
	810	14.64	14.65	14.77	14.46	14.59	10.87	12.76	12.28	12.74
GSM 850	Frame	18.07	18.07	18.08	18.44	18.49	12.97	14.48	14.24	14.49
GSM 1900	Avg.Target s:	14.27	14.27	14.28	14.14	14.09	10.47	12.48	11.94	12.49

Notes:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- October 2013 TBC Workshop Notes, the source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for body SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 4. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 33 (Max 4 Tx uplink slots)
EDGE Multislot class: 33 (Max 4 Tx uplink slots)
DTM Multislot Class: N/A

Figure 8-1
Power Measurement Setup

FCC ID: A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 18 of 47

8.2 UMTS Conducted Powers

Table 8-3
Maximum UMTS Average RF Conducted Powers

Maximum OM13 Average RF Conducted Fowers												
3GPP Release	Mode	3GPP 34.121	Subtest		PCS	3GPP MPR [dB]						
Version		Gubicsi	4132	4183	4233	9262	9400	9538	iiii it [ab]			
99	WCDMA	12.2 kbps RMC	22.46	22.50	22.38	22.36	22.65	22.76	-			
99	WCDIVIA	12.2 kbps AMR	22.34	22.35	22.10	22.31	22.60	22.61	-			
6		Subtest 1	21.76	21.59	21.45	21.38	21.43	21.69	0			
6	HCDDV	Subtest 2	21.87	21.42	21.51	21.65	21.41	21.81	0			
6	HSDPA	Subtest 3	21.23	21.06	20.91	21.02	20.83	21.07	0.5			
6		Subtest 4	20.85	20.97	20.85	20.97	20.90	21.15	0.5			
6		Subtest 1	20.75	20.66	20.79	20.83	20.77	20.79	0			
6		Subtest 2	20.26	20.03	20.27	20.48	20.04	20.65	2			
6	HSUPA	Subtest 3	20.40	20.37	20.44	19.66	19.73	20.34	1			
6		Subtest 4	20.22	20.41	20.83	20.61	20.67	21.19	2			
6		Subtest 5	20.84	20.67	20.98	21.63	20.61	21.73	0			
8		Subtest 1	21.86	21.57	21.43	21.42	21.55	21.57	0			
8	DC HEDDA	Subtest 2	21.13	21.40	21.58	21.30	21.32	21.66	0			
8	DC-HSDPA	Subtest 3	21.11	21.03	21.41	21.03	21.71	21.63	0.5			
8		Subtest 4	21.37	21.25	21.62	20.09	20.16	20.59	0.5			

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 19 of 47	

Table 8-4 **Reduced UMTS Average RF Conducted Powers**

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band	[dBm]	PCS	Band [d	Bm]	3GPP MPR [dB]
Version		Sublesi	4132	4183	4233	9262	9400	9538	мгк [авј
99	WCDMA	12.2 kbps RMC	18.68	18.70	18.79	12.41	12.41	11.51	-
99	WCDIVIA	12.2 kbps AMR	18.42	18.54	18.35	12.27	12.29	11.52	-
6		Subtest 1	17.04	17.23	17.36	10.45	10.52	10.00	0
6	HSDPA	Subtest 2	16.56	17.00	16.79	10.12	10.21	9.69	0
6	HODEA	Subtest 3	16.23	16.23	16.20	9.35	9.57	9.03	0.5
6		Subtest 4	16.08	16.41	16.35	9.70	10.00	9.01	0.5
6		Subtest 1	15.80	16.02	15.98	8.98	8.59	9.03	0
6		Subtest 2	14.28	14.50	14.44	7.97	8.00	8.03	2
6	HSUPA	Subtest 3	15.35	15.63	15.24	8.16	8.25	8.08	1
6		Subtest 4	14.36	14.68	14.57	8.54	8.18	8.68	2
6		Subtest 5	16.24	16.22	16.38	9.07	9.02	9.14	0
8		Subtest 1	16.98	17.25	17.32	10.25	10.67	10.03	0
8	DC-HSDPA	Subtest 2	16.51	17.06	17.00	10.17	10.54	10.01	0
8	DO-HODPA	Subtest 3	16.23	16.23	16.20	9.35	9.57	9.03	0.5
8		Subtest 4	16.05	16.59	16.32	9.87	10.06	9.16	0.5

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- Measured maximum output powers for DC-HSDPA were not greater than 1/4 dB higher than the WCDMA 12.2 kbps RMC maximum output, as a result, SAR is not required for DC-HSDPA
- The DUT supports UE category 24 for HSDPA

We, Samsung Electronics Co. Ltd. expect that MPR for some HSPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 8-2 **Power Measurement Setup**

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 20 of 47

8.3 WLAN/Bluetooth Conducted Powers

Table 8-5 IEEE 802.11b Average RF Power

	Freq		802.11b (2	802.11b (2.4 GHz) Conducted Power [dBm]						
Mode	1 104	Channel	Data Rate [Mbps]							
	[MHz]		1	2	5.5	11				
802.11b	2412	1*	11.37	11.49	11.37	11.41				
802.11b	2437	6*	11.42	11.45	11.47	11.48				
802.11b	2462	11*	11.40	11.34	11.33	11.41				

Table 8-6 IEEE 802.11g Average RF Power

	F												
Mode	Freq	Channel		Data Rate [Mbps]									
	[MHz]		6	9	12	18	24	36	48	54			
802.11g	2412	1	11.18	11.17	11.12	10.96	10.98	10.96	10.98	11.08			
802.11g	2437	6	11.37	11.33	11.38	11.09	11.11	11.15	11.12	11.20			
802.11g	2462	11	11.14	11.18	11.14	10.98	10.98	10.89	10.98	11.03			

Table 8-7 IEEE 802.11n Average RF Power

	Frea		802.11n (2.4 GHz) Conducted Power [dBm]										
Mode	rieq	Channel		Data Rate [Mbps]									
	[MHz]		6.5	13	20	26	39	52	58	65			
802.11n	2412	1	11.06	11.01	10.98	11.04	11.06	11.13	11.01	11.00			
802.11n	2437	6	11.34	11.29	11.20	11.28	11.35	11.45	11.22	11.32			
802.11n	2462	11	11.21										

Table 8-8 IEEE 802.11a Average RF Power

	Г				802.11a (5G	Hz) Conduc	ted Powe	r [dBm]		
Mode	Freq	Channel				Data Rate [l	Mbps]			
	[MHz]		6	9	12	18	24	36	48	54
802.11a	5180	36*	6.65	6.67	6.48	6.74	6.50	6.40	6.64	6.63
802.11a	5200	40	6.45	6.45	6.34	6.52	6.28	6.16	6.42	6.40
802.11a	5220	44	6.53	6.62	6.27	6.56	6.40	6.24	6.49	6.48
802.11a	5240	48*	6.49	6.50	6.28	6.55	6.34	6.30	6.53	6.50
802.11a	5260	52*	6.51	6.48	6.62	6.59	6.48	6.50	6.54	6.53
802.11a	5280	56	6.47	6.37	6.58	6.55	6.53	6.46	6.47	6.50
802.11a	5300	60	6.45	6.45	6.52	6.53	6.40	6.38	6.49	6.51
802.11a	5320	64*	6.38	6.32	6.48	6.45	6.30	6.38	6.50	6.36
802.11a	5500	100	6.61	6.67	6.69	6.76	6.84	6.81	6.79	6.85
802.11a	5520	104*	6.42	6.51	6.58	6.64	6.62	6.68	6.51	6.65
802.11a	5540	108	6.33	6.32	6.44	6.44	6.56	6.53	6.49	6.69
802.11a	5560	112	6.25	6.32	6.38	6.39	6.43	6.50	6.44	6.57
802.11a	5580	116*	6.24	6.31	6.25	6.32	6.48	6.52	6.41	6.56
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5660	132	6.20	6.25	6.25	6.32	6.37	6.42	6.34	6.41
802.11a	5680	136*	6.18	6.26	6.22	6.27	6.38	6.50	6.39	6.44
802.11a	5700	140	6.25	6.27	6.25	6.40	6.49	6.50	6.39	6.49
802.11a	5745	149*	6.65	6.70	6.74	6.78	6.62	6.65	6.79	6.75
802.11a	5765	153	6.65	6.69	6.68	6.79	6.64	6.65	6.89	6.76
802.11a	5785	157*	6.49	6.53	6.58	6.62	6.40	6.51	6.67	6.56
802.11a	5805	161*	6.70	6.81	6.81	6.82	6.65	6.70	6.85	6.81
802.11a	5825	165	6.47	6.49	6.51	6.61	6.41	6.41	6.56	6.53

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

FCC ID: A3LSMT321	PCTEST INDINIBILIST INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 21 of 47

Table 8-9
IEEE 802.11n Average RF Power – 20 MHz Bandwidth

	_			20MF	lz BW 802.1	1n (5GHz) Co	onducted	Power [di	3m]	
Mode	Freq	Channel				Data Rate [Mbps]			
	[MHz]		6.5	13	19.5	26	39	52	58.5	65
802.11n	5180	36	6.71	6.61	6.68	6.65	6.57	6.63	6.69	6.50
802.11n	5200	40	6.73	6.60	6.73	6.65	6.55	6.65	6.75	6.49
802.11n	5220	44	6.38	6.28	6.36	6.32	6.17	6.25	6.38	6.14
802.11n	5240	48	6.42	6.27	6.43	6.44	6.29	6.31	6.39	6.24
802.11n	5260	52	6.50	6.54	6.62	6.60	6.44	6.52	6.46	6.57
802.11n	5280	56	6.38	6.35	6.57	6.52	6.39	6.42	6.33	6.46
802.11n	5300	60	6.23	6.31	6.40	6.29	6.10	6.21	6.28	6.23
802.11n	5320	64	6.28	6.36	6.37	6.29	6.20	6.30	6.26	6.37
802.11n	5500	100	7.01	7.06	7.08	7.11	6.98	7.01	7.01	7.03
802.11n	5520	104	7.13	7.03	6.92	6.98	7.12	7.03	7.09	6.94
802.11n	5540	108	6.91	6.84	6.64	6.79	6.86	6.78	6.92	6.77
802.11n	5560	112	6.89	6.88	6.56	6.78	6.80	6.84	6.90	6.74
802.11n	5580	116	6.87	6.73	6.63	6.78	6.76	6.84	6.82	6.62
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5660	132	6.77	6.68	6.58	6.68	6.73	6.63	6.71	6.67
802.11n	5680	136	6.82	6.81	6.54	6.80	6.65	6.74	6.75	6.67
802.11n	5700	140	6.71	6.65	6.51	6.68	6.65	6.60	6.62	6.61
802.11n	5745	149	6.51	6.33	6.40	6.42	6.23	6.39	6.27	6.22
802.11n	5765	153	6.71	6.52	6.52	6.58	6.45	6.56	6.41	6.37
802.11n	5785	157	6.62	6.50	6.55	6.51	6.42	6.52	6.50	6.38
802.11n	5805	161	6.55	6.38	6.43	6.51	6.46	6.51	6.38	6.39
802.11n	5825	165	6.63	6.52	6.56	6.49	6.38	6.51	6.48	6.39

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band

Table 8-10
IEEE 802.11n Average RF Power – 40 MHz Bandwidth

	40MHz BW 802.11n (5GHz) Conducted Power [dBm]													
	Frea			40MF	Iz BW 802.1	1n (5GHz) Co	onducted	Power [de	Bm]					
Mode	rieq	Channel				Data Rate [l	Mbps]							
	[MHz]		13.5	27	40.5	54	81	108	121.5	135				
802.11n	5190	38	6.84	6.70	6.87	6.77	6.71	6.67	6.70	6.63				
802.11n	5230	46	6.77	6.60	6.85	6.74	6.64	6.54	6.68	6.55				
802.11n	5270	54	6.78	6.69	6.77	6.66	6.59	6.79	6.57	6.56				
802.11n	5310	62	6.79	6.66	6.73	6.66	6.53	6.73	6.52	6.56				
802.11n	5510	102	6.59	6.55	6.64	6.55	6.65	6.59	6.49	6.52				
802.11n	5550	110	6.44	6.42	6.50	6.35	6.58	6.38	6.36	6.40				
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
802.11n	5670	134	6.51	6.47	6.57	6.47	6.65	6.52	6.40	6.45				
802.11n	5755	151	6.50	6.48	6.56	6.33	6.42	6.43	6.33	6.48				
802.11n	5795	159	6.28	6.42	6.38	6.14	6.19	6.26	6.15	6.23				

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band

Table 8-11 IEEE 802.11ac Average RF Power – 80 MHz Bandwidth

	80MHz BW 802.11ac (5GHz) Conducted Power [dBm]													
Mode	Freq	Channel		Data Rate [Mbps]										
Wode	[MHz]	Charmer	29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390		
			MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
802.11ac	5210	42	7.12	7.25	7.36	7.33	7.34	7.35	7.32	7.16	7.31	7.33		
802.11ac	5290	58	7.07	7.17	7.31	7.30	7.27	7.31	6.98	7.11	7.31	7.18		
802.11ac	5530	106	6.99	7.11	7.23	7.22	7.21	7.21	7.01	7.03	7.23	7.15		
802.11ac	5775	155	6.87	6.92	7.06	7.07	7.02	7.05	6.83	6.91	7.01	7.02		

Power measurement for signal < 50 MHz Bandwidth

Anithu MA241B Power Meter

Coax cable

Anithu MA241B Power Meter

Power measurement for signal > 50 MHz Bandwidth

Figure 8-3
Power Measurement Setup

FCC ID: A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 22 of 47

Table 8-12 Bluetooth RF Conducted Powers

Defe Services Services												
Frequency	Data Rate	Channel	Peak Condu	icted Power	Avg Conducted Power							
[MHz]	[Mbps]	No.	[dBm]	[mW]	[dBm]	[mW]						
2402	1.0	0	8.14	6.522	7.82	6.047						
2441	1.0	39	10.15	10.356	9.82	9.600						
2480	1.0	78	8.56	7.181	8.22	6.632						
2402	2.0	0	9.15	8.215	6.32	4.283						
2441	2.0	39	11.14	13.014	7.44	5.549						
2480	2.0	78	9.53	8.970	6.00	3.983						
2402	3.0	0	9.35	8.600	6.18	4.147						
2441	3.0	39	11.33	13.583	7.56	5.701						
2480	3.0	78	9.73	9.399	6.37	4.332						

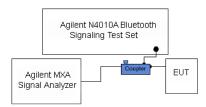


Figure 8-4 **Power Measurement Setup**

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, SAR was not required based on the maximum conducted power of 5 GHz WLAN and the antenna to user separation distance. See section 1.5.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 23 of 47

9 SYSTEM VERIFICATION

9.1 Tissue Verification

Table 9-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε
			820	0.927	42.357	0.899	41.578	3.11%	1.87%
01/30/2014	835H	22.9	835	0.942	42.104	0.900	41.500	4.67%	1.46%
			850	0.955	41.908	0.916	41.500	4.26%	0.98%
			1850	1.389	38.647	1.400	40.000	-0.79%	-3.38%
02/03/2014	1900H	22.0	1880	1.421	38.516	1.400	40.000	1.50%	-3.71%
			1910	1.452	38.379	1.400	40.000	3.71%	-4.05%
			2401	1.686	38.890	1.756	39.287	-3.99%	-1.01%
12/17/2013	2450H	22.8	2450	1.741	38.738	1.800	39.200	-3.28%	-1.18%
			2499	1.791	38.573	1.853	39.138	-3.35%	-1.44%
			820	0.997	54.011	0.969	55.258	2.89%	-2.26%
01/30/2014	835B	23.3	835	1.009	53.818	0.970	55.200	4.02%	-2.50%
			850	1.025	53.664	0.988	55.154	3.74%	-2.70%
			820	0.999	53.826	0.969	55.258	3.10%	-2.59%
02/05/2014	835B	23.1	835	1.014	53.696	0.970	55.200	4.54%	-2.72%
			850	1.027	53.534	0.988	55.154	3.95%	-2.94%
			1850	1.496	52.576	1.520	53.300	-1.58%	-1.36%
02/04/2014	1900B	23.5	1880	1.529	52.458	1.520	53.300	0.59%	-1.58%
			1910	1.567	52.357	1.520	53.300	3.09%	-1.77%
			1850	1.499	52.460	1.520	53.300	-1.38%	-1.58%
02/05/2014	1900B	23.6	1880	1.535	52.362	1.520	53.300	0.99%	-1.76%
			1910	1.568	52.250	1.520	53.300	3.16%	-1.97%
			2401	1.969	51.263	1.903	52.765	3.47%	-2.85%
12/02/2013	2450B	22.4	2450	2.036	51.063	1.950	52.700	4.41%	-3.11%
			2499	2.111	50.908	2.019	52.638	4.56%	-3.29%
			2401	1.891	52.927	1.903	52.765	-0.63%	0.31%
12/12/2013	2450B	23.3	2450	1.958	52.752	1.950	52.700	0.41%	0.10%
			2499	2.025	52.586	2.019	52.638	0.30%	-0.10%
			2401	1.960	52.200	1.903	52.765	3.00%	-1.07%
12/17/2013	2450B	23.1	2450	2.028	52.030	1.950	52.700	4.00%	-1.27%
			2499	2.094	51.880	2.019	52.638	3.71%	-1.44%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMT321	PCTEST INSTITUTE AND ADDRESS OF THE PERSON O	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 24 of 47

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2 System Verification Results

						ystem Vei RGET & M		D				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
1	835	HEAD	01/30/2014	23.9	22.9	0.100	4d119	3319	0.934	9.680	9.340	-3.51%
D	1900	HEAD	02/03/2014	23.0	22.0	0.100	5d148	3022	3.900	39.700	39.000	-1.76%
Н	2450	HEAD	12/17/2013	22.8	21.9	0.100	797	3318	4.890	52.500	48.900	-6.86%
К	835	BODY	01/30/2014	24.5	23.3	0.100	4d119	3333	0.961	9.540	9.610	0.73%
G	835	BODY	02/05/2014	22.9	21.4	0.100	4d119	3209	1.020	9.540	10.200	6.92%
Н	1900	BODY	02/04/2014	23.4	23.5	0.100	5d148	3318	3.840	40.800	38.400	-5.88%
D	1900	BODY	02/05/2014	24.5	23.6	0.100	5d148	3022	3.990	40.800	39.900	-2.21%
D	2450	BODY	12/02/2013	22.2	22.4	0.100	797	3022	5.000	49.600	50.000	0.81%
D	2450	BODY	12/12/2013	23.8	23.3	0.100	797	3022	4.860	49.600	48.600	-2.02%
В	2450	BODY	12/17/2013	24.0	23.0	0.100	882	3288	4.730	49.900	47.300	-5.21%

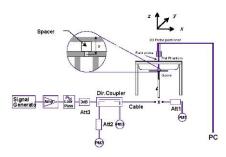


Figure 9-1
System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:			
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 25 of 47		

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1 GSM 850 Head SAR

							1044 0								
	MEASUREMENT RESULTS														
FREQUE	NCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	Factor	(W/kg)		
836.60	190	GSM 850	GSM	27.6	26.94	0.07	Right	Cheek	R#1	1:8.3	0.424	1.164	0.494	A1	
836.60	190	GSM 850	GSM	27.6	26.94	0.04	Right	Tilt	R#1	1:8.3	0.322	1.164	0.375		
836.60	190	GSM 850	GSM	27.6	26.94	0.04	Left	Cheek	R#1	1:8.3	0.157	1.164	0.183		
836.60	190	GSM 850	GSM	27.6	26.94	0.09	Left	Tilt	R#1	1:8.3	0.095	1.164	0.111		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head							
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population									averaged o	ver 1 gram				

Table 10-2 UMTS 850 Head SAR

						MEASUR	EMENT R	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	18.8	18.70	0.18	Right	Cheek	R#1	1:1	0.466	1.023	0.477	A2
836.60	4183	UMTS 850	RMC	18.8	18.70	0.03	Right	Tilt	R#1	1:1	0.361	1.023	0.369	
836.60	4183	UMTS 850	RMC	18.8	18.70	0.03	Left	Cheek	R#1	1:1	0.164	1.023	0.168	
836.60	4183	UMTS 850	RMC	18.8	18.70	0.00	Left	Tilt	R#1	1:1	0.099	1.023	0.101	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak										ead g (mW/g)			
	Uncontrolled Exposure/General Population									averaged	over 1 gram			

Table 10-3 GSM 1900 Head SAR

						• • • • • • • • • • • • • • • • • • • 	00	יותט טגוי						
	MEASUREMENT RESULTS													
FREQUE	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Num ber	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	23.8	23.61	-0.04	Right	Cheek	R#2	1:8.3	0.297	1.045	0.310	A3
1880.00	661	GSM 1900	GSM	23.8	23.61	-0.08	Right	Tilt	R#2	1:8.3	0.211	1.045	0.220	
1880.00	661	GSM 1900	GSM	23.8	23.61	0.04	Left	Cheek	R#2	1:8.3	0.114	1.045	0.119	
1880.00	661	GSM 1900	GSM	23.8	23.61	0.06	Left	Tilt	R#2	1:8.3	0.091	1.045	0.095	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									·	Head			
	Spatial Peak Uncontrolled Exposure/General Population						1.6 W/kg (mW/g)							
		Jncontrolled E	xposure/Gene					average	d over 1 gran	1				

FCC ID:	A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:		Test Dates:	DUT Type:	
0Y14012902		12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 26 of 47

Table 10-4 UMTS 1900 Head SAR

	OM13 1900 Head SAN													
	MEASUREMENT RESULTS													
FREQUE	ENCY	Mode/Band Ser	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number		(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	12.5	12.41	0.17	Right	Cheek	R#1	1:1	0.148	1.021	0.151	A4
1880.00	9400	UMTS 1900	RMC	12.5	12.41	-0.01	Right	Tilt	R#1	1:1	0.100	1.021	0.102	
1880.00	9400	UMTS 1900	RMC	12.5	12.41	0.17	Left	Cheek	R#1	1:1	0.047	1.021	0.048	
1880.00	9400	UMTS 1900	RMC	12.5	12.41	0.06	Left	Tilt	R#1	1:1	0.040	1.021	0.041	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									He	ead			
	Spatial Peak						1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population									averaged	over 1 gram			

Table 10-5 DTS Head SAR

					ME	ASUREM	ENT RE	SULTS							
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	Scalling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)		(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	11.5	11.42	0.04	Right	Cheek	FK313-E	1	1:1	0.000	1.019	0.000	A5
2437	6	IEEE 802.11b	DSSS	11.5	11.42	0.00	Right	Tilt	FK313-E	1	1:1	0.000	1.019	0.000	
2437	6	IEEE 802.11b	DSSS	11.5	11.42	0.07	Left	Cheek	FK313-E	1	1:1	0.000	1.019	0.000	
2437	6	IEEE 802.11b	DSSS	11.5	11.42	0.09	Left	Tilt	FK313-E	1	1:1	0.000	1.019	0.000	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 27 of 47

10.2 Standalone Body SAR Data

Table 10-6
GSM/UMTS Body SAR Data

				G		12 B	oay S	AR Dat	<u>a </u>						
					MEAS	UREME	NT RES	ULTS							
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	Scaled SAR (1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	27.2	26.95	0.03	14 mm	M#1	4	1:2.076	back	0.628	1.059	0.665	A6
836.60	190	GSM 850	GPRS	27.2	26.95	-0.11	11 mm	M#1	4	1:2.076	top	0.309	1.059	0.327	
836.60	190	GSM 850	GPRS	27.2	26.95	0.04	0 mm	M#1	4	1:2.076	left	0.434	1.059	0.460	
836.60	190	GSM 850	GPRS	22.0	21.61	-0.06	0 mm	R#1	4	1:2.076	back	0.608	1.094	0.665	
836.60	190	GSM 850	GPRS	22.0	21.61	0.04	0 mm	R#1	4	1:2.076	top	0.232	1.094	0.254	
836.60	4183	UMTS 850	RMC	23.0	22.50	0.01	14 mm	M#1	N/A	1:1	back	0.553	1.122	0.620	
836.60	4183	UMTS 850	RMC	23.0	22.50	0.02	11 mm	M#1	N/A	1:1	top	0.240	1.122	0.269	
836.60	4183	UMTS 850	RMC	23.0	22.50	0.01	0 mm	M#1	N/A	1:1	left	0.335	1.122	0.376	
826.40	4132	UMTS 850	RMC	18.8	18.68	0.10	0 mm	R#1	N/A	1:1	back	1.030	1.028	1.059	
836.60	4183	UMTS 850	RMC	18.8	18.70	-0.04	0 mm	R#1	N/A	1:1	back	1.060	1.023	1.084	
846.60	4233	UMTS 850	RMC	18.8	18.79	0.07	0 mm	R#1	N/A	1:1	back	1.080	1.002	1.082	A7
836.60	4183	UMTS 850	RMC	18.8	18.70	-0.12	0 mm	R#1	N/A	1:1	top	0.315	1.023	0.322	
846.60	4233	UMTS 850	RMC	18.8	18.79	-0.05	0 mm	R#1	N/A	1:1	back	0.954	1.002	0.956	
1909.80	810	GSM 1900	GPRS	24.0	22.84	0.01	14 mm	M#1	4	1:2.076	back	0.298	1.306	0.389	
1909.80	810	GSM 1900	GPRS	24.0	22.84	-0.05	11 mm	M#1	4	1:2.076	top	0.127	1.306	0.166	
1909.80	810	GSM 1900	GPRS	24.0	22.84	0.03	0 mm	M#1	4	1:2.076	left	0.167	1.306	0.218	
1850.20	512	GSM 1900	GPRS	17.6	17.58	0.03	0 mm	R#2	4	1:2.076	back	1.020	1.005	1.025	
1880.00	661	GSM 1900	GPRS	17.6	17.55	0.01	0 mm	R#2	4	1:2.076	back	0.959	1.012	0.971	
1909.80	810	GSM 1900	GPRS	17.6	17.60	-0.04	0 mm	R#2	4	1:2.076	back	1.100	1.000	1.100	A8
1880.00	661	GSM 1900	GPRS	17.6	17.55	-0.20	0 mm	R#2	4	1:2.076	top	0.211	1.012	0.214	
1909.80	810	GSM 1900	GPRS	17.6	17.60	-0.07	0 mm	R#2	4	1:2.076	back	1.040	1.000	1.040	
1880.00	9400	UMTS 1900	RMC	23.0	22.65	-0.02	14 mm	M#1	N/A	1:1	back	0.573	1.084	0.621	A9
1880.00	9400	UMTS 1900	RMC	23.0	22.65	-0.02	11 mm	M#1	N/A	1:1	top	0.312	1.084	0.338	
1880.00	9400	UMTS 1900	RMC	23.0	22.65	-0.01	0 mm	M#1	N/A	1:1	left	0.546	1.084	0.592	
1880.00	9400	UMTS 1900	RMC	12.5	12.41	-0.04	0 mm	R#1	N/A	1:1	back	0.531	1.021	0.542	
1880.00	9400	UMTS 1900	RMC	12.5	12.41	-0.01	0 mm	R#1	N/A	1:1	top	0.101	1.021	0.103	
			C95.1 1992 - SAF Spatial Peak Exposure/Genera								Body V/kg (mW ed over 1				

Note: Variability tests are highlighted blue in the above table.

FCC ID: A3LSMT321	PCTEST INDINIBILIST INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 28 of 47

Table 10-7 DTS Body SAR

						ם טוט	, -	<i>.</i>							
					ME	EASUREN	IENT RE	SULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2412	1	IEEE 802.11b	DSSS	11.5	11.37	0.02	0 mm	FK313-E	1	back	1:1	0.910	1.030	0.937	
2437	6	IEEE 802.11b	DSSS	11.5	11.42	-0.05	0 mm	FK313-E	1	back	1:1	0.960	1.019	0.978	
2462	11	IEEE 802.11b	DSSS	11.5	11.40	0.01	0 mm	FK313-E	1	back	1:1	1.020	1.023	1.043	A10
2437	6	IEEE 802.11b	DSSS	11.5	11.42	-0.12	0 mm	FK313-E	1	bottom	1:1	0.405	1.019	0.413	
2437	6	IEEE 802.11b	DSSS	11.5	11.42	0.05	0 mm	FK313-E	1	left	1:1	0.132	1.019	0.135	
2462	11	IEEE 802.11b	DSSS	11.5	11.40	0.01	0 mm	FK313-E	1	back	1:1	1.020	1.023	1.043	
		ANSI / IEEE	C95.1 1992	- SAFETY LIN	IIT		•		•		Body	•	•		
			Spatial P	eak			1.6 W/kg (mW/g)								
		Uncontrolled E	xposure/G	eneral Popula	ation					avera	ged over	1 gram			

Note: Variability test is highlighted blue in the above table.

Table 10-8 DSS Body SAR

							· • · · · · ·								
					MEA	SUREME	NT RES	ULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dbill]	[dBm]	[ub]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2441	39	Bluetooth	FHSS	10.0	9.82	-0.02	0 mm	FK313-C	1	back	1:1	0.095	1.042	0.099	A11
2441	39	Bluetooth	FHSS	10.0	9.82	0.03	0 mm	FK313-C	1	bottom	1:1	0.038	1.042	0.040	
2441	39	Bluetooth	FHSS	10.0	9.82	-0.16	0 mm	FK313-C	1	left	1:1	0.026	1.042	0.027	
		ANSI / IEE	E C95.1 19	92 - SAFETY LIMIT	Г		Body								
	Spatial Peak									1.6	W/kg (m	W/g)			
		Uncontrolled	Exposure	/General Populat	ion					averaç	ged over	1 gram			

10.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC KDB 616217 D04, and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Per FCC KDB 865664 D01v01, variability SAR test was performed when the measured SAR result for a frequency band were greater than 0.8 W/kg. Repeat SAR measurement is highlighted blue in the table above for clarity. Please see Section 12 for variability analysis.
- 7. Per FCC KDB 616217 D04 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v05 was applied to determine SAR test exclusion for adjacent edge configurations. SAR tests were required for top and left edge for the main antenna and bottom and left edge for the BT/WLAN antenna.
- 8. Head SAR testing was required for this tablet because it has a speaker/receiver and microphone positioning that allows for a held-to-ear configuration usage. All head SAR tests were performed at reduced power levels for all modes.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 29 of 47

GSM Test Notes:

- Justification for reduced test configurations per KDB Publication 941225 D03v01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for body SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

WLAN/BT Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. There is no sensor power reduction mechanism applied for WIFI/BT modes.
- 3. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 4. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is >1.6 W/kg and the reported 1g averaged SAR is >0.8 W/kg, SAR testing on other default channels was required.

FCC ID: A3LSMT321	PCTEST INCIDENT INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 30 of 47

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 11-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Configurations	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]		[mm]	[W/kg]
5 GHz WLAN	5825	7.50	Touching*: Head, Back, Bottom, Left	5	0.386
5 GHz WLAN	5825	7.50	Back	14	0.138

Note:

- 1. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.
- 2. When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configurations excluded per FCC KDB Publication 447498 D01v05. When the test separation distance was < 50 mm, an estimated SAR was determined per FCC KDB Publication 447498 D01v05.
- 3. (*) Per FCC KDB 447498, when the test separation distance is < 5 mm, a distance of 5 mm is applied to determine estimated SAR.

FCC ID: A3LSMT321	POTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 31 of 47

11.3 Head SAR Simultaneous Transmission Analysis

Table 11-2
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.494	0.000	0.494		Right Cheek	0.477	0.000	0.477
Head SAR	Right Tilt	0.375	0.000	0.375	Head SAR	Right Tilt	0.369	0.000	0.369
Tieau SAIN	Left Cheek	0.183	0.000	0.183	Tieau SAIN	Left Cheek	0.168	0.000	0.168
	Left Tilt	0.111	0.000	0.111		Left Tilt	0.101	0.000	0.101
		0014 4000	2.4 GHz	ΣSAR			UMTS 1900	2.4 GHz	ΣSAR
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)	Simult Tx	Configuration	SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)
Simult Tx	Configuration Right Cheek		SAR	_	Simult Tx	Configuration Right Cheek		SAR	_
	ŭ	SAR (W/kg)	SAR (W/kg)	(W/kg)			SAR (W/kg)	SAR (W/kg)	(W/kg)
Simult Tx Head SAR	Right Cheek	SAR (W/kg) 0.310	SAR (W/kg) 0.000	(W/kg) 0.310	Simult Tx Head SAR	Right Cheek	SAR (W/kg) 0.151	SAR (W/kg) 0.000	(W/kg) 0.151

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.494	0.386	0.880		Right Cheek	0.477	0.386	0.863
Head SAR	Right Tilt	0.375	0.386	0.761	Head SAR	Right Tilt	0.369	0.386	0.755
Tieau SAIN	Left Cheek	0.183	0.386	0.569	Tieau SAIN	Left Cheek	0.168	0.386	0.554
	Left Tilt	0.111	0.386	0.497		Left Tilt	0.101	0.386	0.487
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Simult Tx	Configuration Right Cheek		WLAN SAR	_	Simult Tx	Configuration Right Cheek		WLAN SAR	_
		SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)			SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)
Simult Tx Head SAR	Right Cheek	SAR (W/kg) 0.310	WLAN SAR (W/kg) 0.386	(W/kg) 0.696	Simult Tx Head SAR	Right Cheek	SAR (W/kg) 0.151	WLAN SAR (W/kg) 0.386	(W/kg) 0.537

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 32 of 47

11.4 Body Simultaneous Transmission Analysis

Table 11-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 0.0 cm)

							2 11 101 21 1 21 12 11 (20a) at 010 0111)				
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Back	0.665	1.043	See Note 1	0.01		Back	1.084	1.043	See Note 1	0.02
	Top	0.254	0.400	0.654	N/A		Top	0.322	0.400	0.722	N/A
Body SAR	Bottom	0.400	0.413	0.813	N/A	Body SAR	Bottom	0.400	0.413	0.813	N/A
	Right	0.400	0.400	0.800	N/A		Right	0.400	0.400	0.800	N/A
	Left	0.460	0.135	0.595	N/A		Left	0.376	0.135	0.511	N/A
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Back	1.100	1.043	See Note 1	0.02		Back	0.542	1.043	1.585	N/A
	Top	0.214	0.400	0.614	N/A		Тор	0.103	0.400	0.503	N/A
Body SAR	Bottom	0.400	0.413	0.813	N/A	Body SAR	Bottom	0.400	0.413	0.813	N/A
]	Right	0.400	0.400	0.800	N/A		Right	0.400	0.400	0.800	N/A
	Left	0.218	0.135	0.353	N/A		Left	0.592	0.135	0.727	N/A

Table 11-5
Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 0.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.665	0.386	1.051		Back	1.084	0.386	1.470
	Тор	0.254	0.400	0.654		Top	0.322	0.400	0.722
Body SAR	Bottom	0.400	0.386	0.786	Body SAR	Bottom	0.400	0.386	0.786
	Right	0.400	0.400	0.800		Right	0.400	0.400	0.800
	Left	0.460	0.386	0.846		Left	0.376	0.386	0.762
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	1.100	0.386	1.486		Back	0.542	0.386	0.928
	Тор	0.214	0.400	0.614		Top	0.103	0.400	0.503
Body SAR	Bottom	0.400	0.386	0.786	Body SAR	Bottom	0.400	0.386	0.786
	Right	0.400	0.400	0.800		Right	0.400	0.400	0.800
	Left	0.218	0.386	0.604		Left	0.592	0.386	0.978

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 33 of 47

Table 11-6
Simultaneous Transmission Scenario with Bluetooth (Body at 0.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	Back	0.665	0.099	0.764		Back	1.084	0.099	1.183
	Тор	0.254	0.400	0.654		Top	0.322	0.400	0.722
Body SAR	Bottom	0.400	0.040	0.440	Body SAR	Bottom	0.400	0.040	0.440
	Right	0.400	0.400	0.800		Right	0.400	0.400	0.800
	Left	0.460	0.027	0.487		Left	0.376	0.027	0.403
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	Back	1.100	0.099	1.199		Back	0.542	0.099	0.641
	Тор	0.214	0.400	0.614		Top	0.103	0.400	0.503
Body SAR	Bottom	0.400	0.040	0.440	Body SAR	Bottom	0.400	0.040	0.440
	Right	0.400	0.400	0.800	J	Right	0.400	0.400	0.800
	Left	0.218	0.027	0.245	<u> </u>	Left	0.592	0.027	0.619

Table 11-7
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 1.4 cm)

Configuration	Mode	2G/3G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
Back Side	GSM 850	0.665	<1.043	See Note 1	<.01
Back Side	UMTS 850	0.620	<1.043	See Note 1	<.01
Back Side	GSM 1900	0.389	<1.043	<1.432	N/A
Back Side	UMTS 1900	0.621	<1.043	See Note 1	<.01

Table 11-8
Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 1.4 cm)

Configuration	Mode	2G/3G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.665	0.138	0.803
Back Side	UMTS 850	0.620	0.138	0.758
Back Side	GSM 1900	0.389	0.138	0.527
Back Side	UMTS 1900	0.621	0.138	0.759

Table 11-9
Simultaneous Transmission Scenario with Bluetooth (Body at 1.4 cm)

Configuration	Mode	2G/3G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.665	< 0.099	< 0.764
Back Side	UMTS 850	0.620	< 0.099	< 0.719
Back Side	GSM 1900	0.389	< 0.099	<0.488
Back Side	UMTS 1900	0.621	< 0.099	< 0.720

FCC ID: A3LSMT321	PCTEST INSTITUTE AND ADDRESS OF THE PERSON O	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 34 of 47

Table 11-10
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 1.1 cm)

	Hommoorom oodmane m			.,
Configuration	Mode	2G/3G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Top Edge	GSM 850	0.327	0.400	0.727
Top Edge	UMTS 850	0.269	0.400	0.669
Top Edge	GSM 1900	0.166	0.400	0.566
Top Edge	UMTS 1900	0.338	0.400	0.738

Table 11-11
Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 1.1 cm)

Configuration	Mode	2G/3G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Top Edge	GSM 850	0.327	0.400	0.727
Top Edge	UMTS 850	0.269	0.400	0.669
Top Edge	GSM 1900	0.166	0.400	0.566
Top Edge	UMTS 1900	0.338	0.400	0.738

Table 11-12
Simultaneous Transmission Scenario with Bluetooth (Body at 1.1 cm)

Chinataneous Transmission Coenario With Blactooth (Body at 1.1 oh)						
Configuration	Mode	2G/3G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
Top Edge	GSM 850	0.327	0.400	0.727		
Top Edge	UMTS 850	0.269	0.400	0.669		
Top Edge	GSM 1900	0.166	0.400	0.566		
Top Edge	UMTS 1900	0.338	0.400	0.738		

Notes:

- 1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not higher than 0.04 per FCC KDB 447498 D01v05. See Section 11.5 for detailed SPLS ratio analysis.
- 2. When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configuration excluded per FCC KDB 447498 D01v05. Therefore, an estimated SAR of 0.4 W/kg for 2.4 GHz WLAN, 5 GHz WLAN, and Bluetooth was used to evaluate the simultaneous sums.
- 3. For SAR summations for body 1.4 cm, 2.4 GHz WLAN and Bluetooth SAR values for 0.0 cm were used since the 0.0 cm test distance for 2.4 GHz WLAN and Bluetooth were more conservative. "<" denotes that the 0.0 cm 2.4 GHz WLAN and Bluetooth SAR values were used for summation purposes.
- 4. Estimated SAR for 5 GHz was used in **Table 11-3**, **Table 11-5**, and **Table 11-8**, since 5 GHz SAR was not required to be measured per KDB 447498 D01v05. See **Table 11-1**.
- 5. Per FCC KDB 616217 D04 4.3, when the voice mode is limited to speaker mode or headset operations only for body configurations, additional SAR testing for tablet voice use is not required. Therefore voice standalone and simultaneous combinations with Bluetooth are not evaluated for body configurations.

FCC ID: A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 35 of 47

11.5 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v05, when the sum of the standalone transmitters is more than 1.6 W/kg, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is \leq 0.04, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 0 mm with GPRS 850 MHz antenna operating at limited output power with 2.4 GHz WIFI.

Table 11-13 Peak SAR Locations for Body Back Side at 0 mm GPRS 850 MHz and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
GPRS 850 MHz	11.50	97.00
802.11b	13.60	-82.60

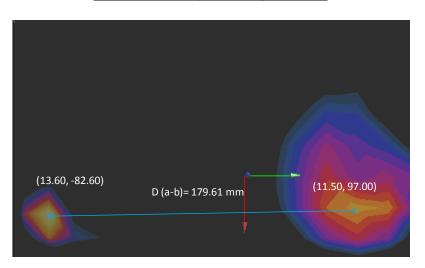


Figure 11-1 Peak SAR Locations of 2.4 GHz WLAN and GPRS 850 MHz

Table 11-14 SAR Sum to Peak Location Separation Ratio Calculation

Antenna Pair		Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	$(a+b)^{1.5}/D_{a-b}$
GPRS 850 MHz	802.11b	0.665	1.043	1.708	179.61	0.01

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 36 of 47

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 0 mm with UMTS 850 MHz antenna operating at limited output power with 2.4 GHz WİFI.

Table 11-15 Peak SAR Locations for Body Back Side at 0 mm UMTS 850 MHz and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
UMTS 850 MHz	27.50	113.00
802.11b	13.60	-82.60

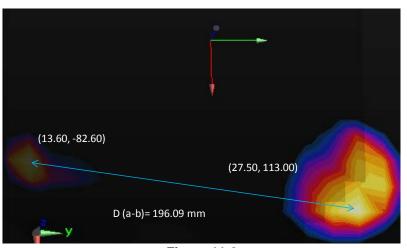


Figure 11-2 Peak SAR Locations of 2.4 GHz WLAN and UMTS 850 MHz

Table 11-16 SAR Sum to Peak Location Separation Ratio Calculation

Antenna I	Pair	Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	$(a+b)^{1.5}/D_{a-b}$
UMTS 850 MHz	802.11b	1.084	1.043	2.127	196.09	0.02

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L 12/02/13 -12/17/13; 01/30/14-02/05/14		Portable Tablet	Page 37 of 47

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 0 mm with GPRS 1900 MHz antenna operating at limited output power with 2.4 GHz WIFI.

Table 11-17
Peak SAR Locations for Body Back Side at 0 mm GPRS 1900 MHz and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
GPRS 1900 MHz	20.00	96.00
802.11b	13.60	-82.60

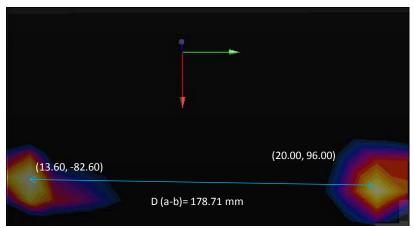


Figure 11-3
Peak SAR Locations of 2.4 GHz WLAN and GPRS 1900 MHz

Table 11-18
SAR Sum to Peak Location Separation Ratio Calculation

Antenna F	Pair	Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	$(a+b)^{1.5}/D_{a-b}$
GPRS 1900 MHz	802.11b	1.100	1.043	2.143	178.71	0.02

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L 12/02/13 -12/17/13; 01/30/14-02/05/14		Portable Tablet	Page 38 of 47

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 14 mm with GPRS 850 MHz antenna operating at maximum output power with 2.4 GHz WIFI.

Table 11-19 Peak SAR Locations for Body Back Side at 14 mm GPRS 850 MHz and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
GPRS 850 MHz	16.00	68.00
802.11b	13.60	-82.60

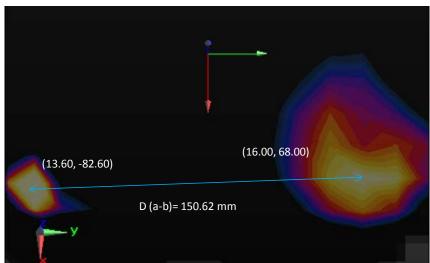


Figure 11-4 Peak SAR Locations of 2.4 GHz WLAN and GRPS 850 MHz

Table 11-20 SAR Sum to Peak Location Separation Ratio Calculation

Antenna I	Pair	Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}
GPRS 850 MHz	802.11b	0.665	<1.043	<1.708	150.62	<.01

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 39 of 47

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 14 mm with UMTS 850 MHz antenna operating at maximum output power with 2.4 GHz WIFI.

Table 11-21
Peak SAR Locations for <u>Body Back Side at 14 mm UMTS 850 MHz</u> and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
UMTS 850 MHz	17.50	77.50
802.11b	13.60	-82.60

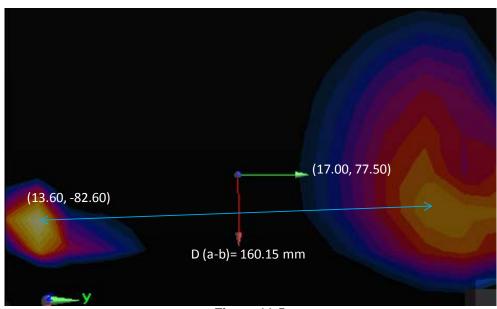


Figure 11-5
Peak SAR Locations of 2.4 GHz WLAN and UMTS 850 MHz

Table 11-22 SAR Sum to Peak Location Separation Ratio Calculation

Antenna F	Pair	Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}
UMTS 850 MHz	802.11b	0.620	<1.043	<1.663	160.15	<0.01

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L 12/02/13 –12/17/13; 01/30/14-02/05/14		Portable Tablet	Page 40 of 47

The sum of the standalone SAR values was above 1.6 W/kg for the Body Back side configuration at a separation distance of 14 mm with UMTS 1900 MHz antenna operating at maximum output power with 2.4 GHz WIFI.

Table 11-23
Peak SAR Locations for Body Back Side at 14 mm UMTS 1900 MHz and 2.4 GHz WLAN

Mode/Band	x (mm)	y (mm)
UMTS 1900 MHz	32.50	96.00
802.11b	13.60	-82.60

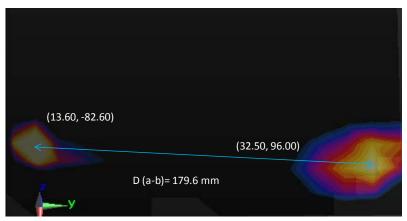


Figure 11-6
Peak SAR Locations of 2.4 GHz WLAN and UMTS 1900 MHz

Table 11-24
SAR Sum to Peak Location Separation Ratio Calculation

Antenna F	Pair	Standalone 1g SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	$(a+b)^{1.5}/D_{a-b}$
UMTS 1900 MHz	802.11b	0.621	<1.043	<1.664	179.60	<0.01

11.6 Simultaneous Transmission Conclusion

The above numerical summed SAR and SPLSR analysis results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: A3LSMT321	POTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 41 of 47

12 SAR MEASUREMENT VARIABILITY

12.1 **Measurement Variability**

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 12-1 Body SAR Measurement Variability Result

	BODY VARIABILITY RESULTS														
Band	FREQUE	NCY	Mode	Mode Service #	# of Time	Data Rate (Mbps)	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.			0.0.0	Siots (MDps)			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	846.60	4233	UMTS 850	RMC	N/A	N/A	back	0 mm	1.080	0.954	1.13	N/A	N/A	N/A	N/A
1900	1909.80	810	GSM 1900	GPRS	4	N/A	back	0 mm	1.100	1.040	1.06	N/A	N/A	N/A	N/A
2450	2462.00	11	IEEE 802.11b	DSSS	N/A	1	back	0 mm	1.020	1.020	1.00	N/A	N/A	N/A	N/A
		AN	ISI / IEEE C95.1 199	2 - SAFETY LIMIT				Body							
			Spatial	Peak							1.6 W/kg	g (mW/g)			
		Unco	ntrolled Exposure	General Populati	ion					а	veraged o	ver 1 gram			

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 42 of 47

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/16/2013	Annual	4/16/2014	JP38020182
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/16/2013	Annual	4/16/2014	MY45470194
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Gigatronics	80701A 8651A	(0.05-18GHz) Power Sensor	10/30/2013	Annual	10/30/2014	1833460 8650319
Gigatronics Pasternack	PE2208-6	Universal Power Meter Bidirectional Coupler	N/A	Annual CBT	N/A	N/A
Pasternack	PE2209-10	Bidirectional Coupler	N/A	CBT	N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/23/2013	Annual	9/23/2014	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	10/12/2012	Biennial	10/12/2014	101695
Rohde & Schwarz	NRVS	Single Channel Power Meter	10/31/2013	Annual	10/31/2014	835360/0079
Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
SPEAG	D2450V2	2450 MHz SAR Dipole	1/8/2013	Annual	1/8/2014	797
SPEAG	ES3DV2	SAR Probe	8/22/2013	Annual	8/22/2014	3022
SPEAG	ES3DV3	SAR Probe	3/15/2013	Annual	3/15/2014	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	4/17/2013	Annual	4/17/2014	DE27259
Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5318
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/17/2013	Annual	4/17/2014	3629U00687
Agilent	E5515C	Wireless Communications Test Set	5/9/2013	Biennial	5/9/2015	GB43304447
Anritsu	ML2495A	Power Meter	10/31/2013	Annual	10/31/2014	1039008
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	N/A	CBT	N/A	21910
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A	CBT	N/A	N/A
MiniCircuits	SLP-2400+	Low Pass Filter	N/A	CBT	N/A	R8979500903
Narda	4772-3	Attenuator (3dB)	N/A	CBT	N/A	9406
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	N/A	CBT	N/A	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	N/A	CBT	N/A	N/A
Agilent	8753E	(30kHz-6GHz) Network Analyzer	7/23/2013	Annual	7/23/2014	US37390350
SPEAG	D835V2	835 MHz SAR Dipole	4/25/2013	Annual	4/25/2014	4d119
Anritsu	MT8820C	Radio Communication Analyzer	12/12/2013	Annual	12/12/2014	6200901190
MiniCircuits	VLF-6000+	Low Pass Filter	N/A	CBT	N/A	N/A
MiniCircuits	VLF-6000+ NC-100	Low Pass Filter	N/A	CBT Triennial	N/A	N/A 21053
Seekonk Rohde & Schwarz	NC-100 CMW500	Torque Wrench (8" lb) Radio Communication Tester	11/29/2011 2/8/2013	Annual	11/29/2014 2/8/2014	101699
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014497
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014488
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
COMTECH	AR85729-5/5759B	Solid State Amplifier	N/A	CBT	N/A	M3W1A00-1002
Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
SPEAG	D1900V2	1900 MHz SAR Dipole	2/6/2013	Annual	2/6/2014	5d148
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/21/2013	Annual	8/21/2014	1322
COMTech	AR85729-5	Solid State Amplifier	N/A	CBT	N/A	M1S5A00-009
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2013	Annual	3/8/2014	1334
Rohde & Schwarz	SME06	Signal Generator	10/30/2013	Annual	10/30/2014	832026
Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2013	Annual	10/4/2014	108798
SPEAG	DAK-3.5	Dielectric Assessment Kit	11/13/2013	Annual	11/13/2014	1091
Anritsu	MA2411B	Pulse Power Sensor	11/14/2013	Annual	11/14/2014	1126066
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122541143
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122541139
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122539615
SPEAG	ES3DV3	SAR Probe	4/29/2013	Annual	4/29/2014	3318
SPEAG	ES3DV3	SAR Probe	4/29/2013	Annual	4/29/2014	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/22/2013	Annual	4/22/2014	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/22/2013	Annual	4/22/2014	1368
Fisher Scientific	15-07BJ	Long Stem Thermometer	1/7/2013	Biennial	1/7/2015	130018204
Fisher Scientific	15-07BJ	Long Stem Thermometer	1/7/2013 6/28/2013	Biennial	1/7/2015 6/28/2014	130018243
Anritsu Rohde & Schwarz	MT8820C CMW500	Radio Communication Analyzer Radio Communication Tester	6/6/2013	Annual Annual	6/6/2014	6201240328 111427
Rohde & Schwarz	CMW500	Radio Communication Tester	12/9/2013	Annual	12/9/2014	109366
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/18/2013	Annual	8/18/2014	109386
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/18/2013	Annual	8/18/2014	1009
Agilent	N5182A	MXG Vector Signal Generator	10/28/2013	Annual	10/28/2014	US46240505
Agilent	8753ES	S-Parameter Network Analyzer	10/29/2013	Annual	10/29/2014	US39170122
VWR	36934-158	Wall-Mounted Thermometer	8/8/2013	Annual	8/8/2014	130477877
	36934-158	Wall-Mounted Thermometer	8/8/2013	Annual	8/8/2014	130258636
VWR		Long Stem Thermometer	9/27/2013	Biennial	9/27/2015	130567447
	4052					3333
VWR Control Company SPEAG	4052 ES3DV3	SAR Probe	11/22/2013	Annual	11/22/2014	3333
Control Company			11/22/2013 1/3/2014	Annual Annual	11/22/2014 1/3/2015	1349513
Control Company SPEAG	ES3DV3	SAR Probe				
Control Company SPEAG Anritsu	ES3DV3 MA24106A	SAR Probe USB Power Sensor	1/3/2014	Annual	1/3/2015	1349513
Control Company SPEAG Anritsu Anritsu	ES3DV3 MA24106A MA24106A	SAR Probe USB Power Sensor USB Power Sensor	1/3/2014 1/3/2014	Annual Annual	1/3/2015 1/3/2015	1349513 1349514
Control Company SPEAG Anritsu Anritsu Anritsu	ES3DV3 MA24106A MA24106A MA24106A	SAR Probe USB Power Sensor USB Power Sensor USB Power Sensor USB Power Sensor	1/3/2014 1/3/2014 1/3/2014	Annual Annual Annual	1/3/2015 1/3/2015 1/3/2015	1349513 1349514 1344554
Control Company SPEAG Anritsu Anritsu Anritsu Anritsu	ES3DV3 MA24106A MA24106A MA24106A MA24106A	SAR Probe USB Power Sensor	1/3/2014 1/3/2014 1/3/2014 1/3/2014	Annual Annual Annual Annual	1/3/2015 1/3/2015 1/3/2015 1/3/2015	1349513 1349514 1344554 1344557
SPEAG Anritsu Anritsu Anritsu Anritsu Anritsu SPEAG	ES3DV3 MA24106A MA24106A MA24106A MA24106A DAE4	SAR Probe USB Power Sensor	1/3/2014 1/3/2014 1/3/2014 1/3/2014 11/19/2013	Annual Annual Annual Annual Annual	1/3/2015 1/3/2015 1/3/2015 1/3/2015 11/19/2014	1349513 1349514 1344554 1344557 1408

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

All equipments were used within its calibration date.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 43 of 47

14 MEASUREMENT UNCERTAINTIES

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
·	000.						(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	oc
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	oc
Boundary Effect	E.2.3	0.4	Z	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	×
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)	•		RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 44 of 47

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID:	A3LSMT321	PCTEST INDIVIDUAL INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document	S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L		12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 45 of 47

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet	Page 46 of 47

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMT321	PCTEST.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1401290244.A3L	12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet		Page 47 of 47

APPENDIX A: SAR TEST DATA

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#1

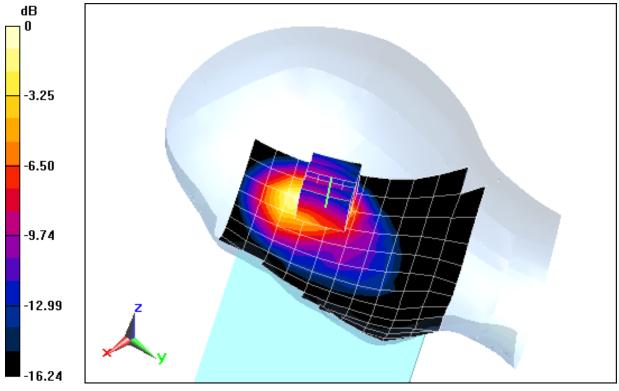
Communication System: UID 0, GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.943 \text{ S/m}; \ \epsilon_{_{\Gamma}} = 42.083; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-30-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3319; ConvF(6.23, 6.23, 6.23); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/22/2013
Phantom: SAM right; Type: QD000P40CD; Serial: TP:1757

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: GSM 850, Right Head, Cheek, Mid.ch


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.025 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.908 W/kg

SAR(1 g) = 0.424 W/kg

0 dB = 0.441 W/kg = -3.56 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#1

Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.943 \text{ S/m}; \ \epsilon_r = 42.083; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

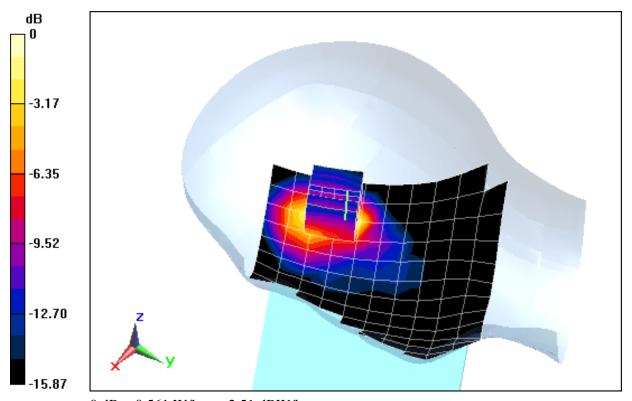
Test Date: 01-30-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3319; ConvF(6.23, 6.23, 6.23); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM right; Type: QD000P40CD; Serial: TP:1757

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.765 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.466 W/kg

0 dB = 0.561 W/kg = -2.51 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#2

Communication System: UID 0, GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used:

f = 1880 MHz; σ = 1.421 S/m; $ε_r$ = 38.516; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 02-03-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

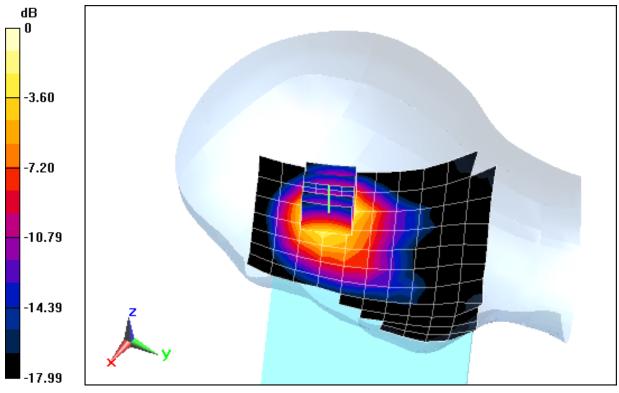
Probe: ES3DV2 - SN3022; ConvF(5.03, 5.03, 5.03); Calibrated: 8/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: GSM 1900, Right Head, Cheek, Mid.ch


Area Scan (11x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.288 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.579 W/kg

SAR(1 g) = 0.297 W/kg

0 dB = 0.308 W/kg = -5.11 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#1

Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used:

f = 1880 MHz; σ = 1.421 S/m; ε_r = 38.516; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 02-03-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

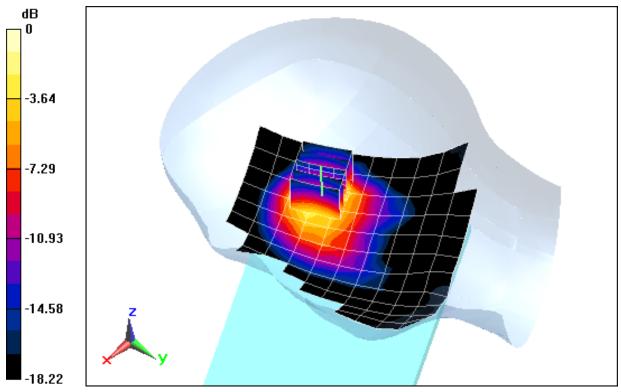
Probe: ES3DV2 - SN3022; ConvF(5.03, 5.03, 5.03); Calibrated: 8/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch


Area Scan (11x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.161 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.148 W/kg

0 dB = 0.168 W/kg = -7.75 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: FK313-E

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.726 \text{ S/m}; \ \epsilon_r = 38.778; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 12/17/2013; Ambient Temp: 22.8°C; Tissue Temp: 21.9°C

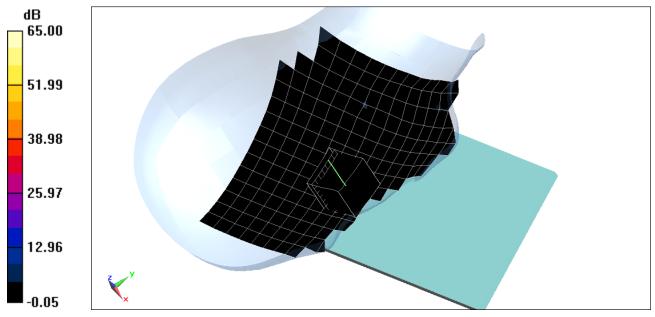
Probe: ES3DV3 - SN3318; ConvF(4.59, 4.59, 4.59); Calibrated: 4/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Thantoin. SAM, Type. QD000140CD, Schal. 11.1736

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Right Head, Cheek, Ch 06, 1 Mbps


Area Scan (16x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.861 V/m; Power Drift = 0.04

Peak SAR (extrapolated) = 0 W/kg

SAR(1 g) = 0 W/kg

0 dB = 0.000856 W/kg = -30.68 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: M#1

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.015 S/m; ϵ_r = 53.679; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 14 mm

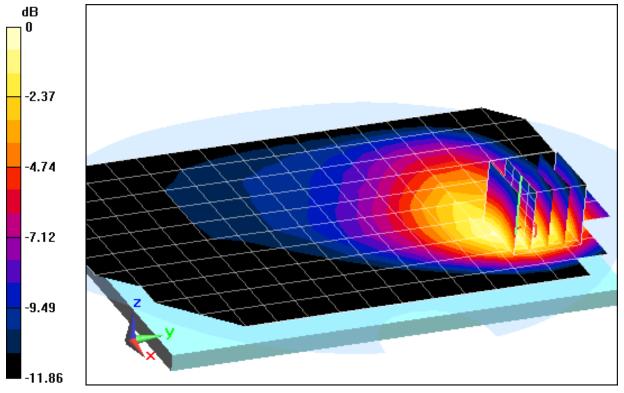
Test Date: 02-05-2014; Ambient Temp: 22.9°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.562 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.986 W/kg

SAR(1 g) = 0.628 W/kg

0 dB = 0.672 W/kg = -1.73 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#1

Communication System: UID 0, UMTS; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 846.6 \text{ MHz}; \ \sigma = 1.021 \text{ S/m}; \ \epsilon_r = 53.699; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 mm

Test Date: 01-30-2014; Ambient Temp: 24.5°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3333; ConvF(6.07, 6.07, 6.07); Calibrated: 11/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 11/19/2013 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 850, Body SAR, Back side, High ch

Area Scan (12x19x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.797 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.33 W/kg

SAR(1 g) = 1.08 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: R#2

Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1910 MHz; Duty Cycle: 1:2.076

Medium: 1900 Body Medium parameters used:

f = 1910 MHz; σ = 1.568 S/m; ε_r = 52.25; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 mm

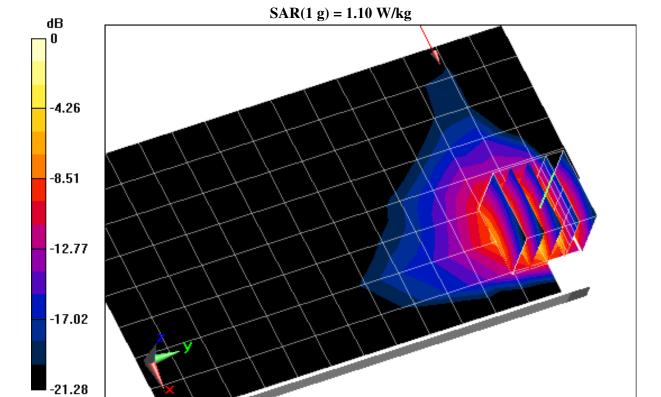
Test Date: 02-05-2014; Ambient Temp: 24.5°C; Tissue Temp: 23.6°C

Probe: ES3DV2 - SN3022; ConvF(4.49, 4.49, 4.49); Calibrated: 8/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646


Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 1900, Body SAR, Back side, 'J li j ch, 4 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.658 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.69 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: M#1

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used:

f = 1880 MHz; σ = 1.529 S/m; $ε_r$ = 52.458; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 14 mm

Test Date: 02-04-2014; Ambient Temp: 23.4°C; Tissue Temp: 23.5°C

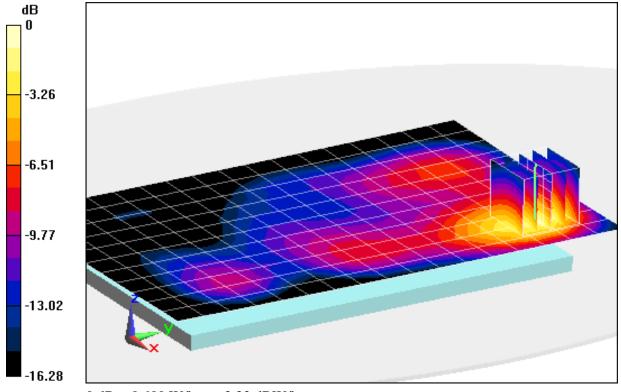
Probe: ES3DV3 - SN3318; ConvF(4.79, 4.79, 4.79); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1364; Calibrated: 4/22/2013 Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (12x18x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.914 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.977 W/kg

SAR(1 g) = 0.573 W/kg

0 dB = 0.600 W/kg = -2.22 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: FK313-E

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated):

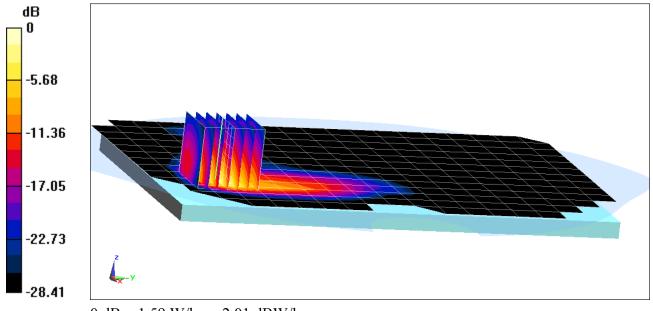
f = 2462 MHz; σ = 1.974 S/m; ε_r = 52.711; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 mm

Test Date: 12-12-2013; Ambient Temp: 23.8°C; Tissue Temp: 23.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013


Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Body SAR, Back Side, Ch 11, 1 Mbps

Area Scan (14x20x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.907 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.09 W/kg

SAR(1 g) = 1.02 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

DUT: A3LSMT321; Type: Portable Tablet; Serial: FK313-C

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.024 \text{ S/m}; \ \epsilon_r = 51.1; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 mm

Test Date: 12-02-2013; Ambient Temp: 22.2°C; Tissue Temp: 22.4°C

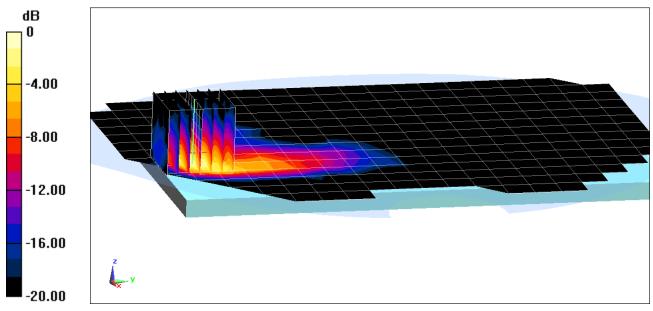
Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: Bluetooth, Body SAR, Back Side, Ch 39, 1 Mbps


Area Scan (15x21x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.348 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.272 W/kg

SAR(1 g) = 0.095 W/kg

0 dB = 0.136 W/kg = -8.66 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used:

f = 835 MHz; σ = 0.942 S/m; ε_r = 42.104; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-30-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3319; ConvF(6.23, 6.23, 6.23); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

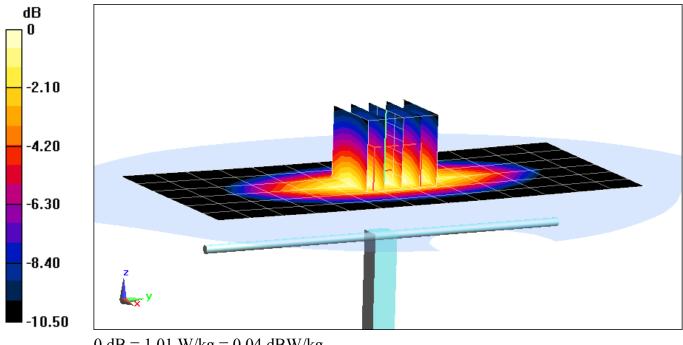
Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM right; Type: QD000P40CD; Serial: TP:1757

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.934 W/kg

Deviation: -3.51%

0 dB = 1.01 W/kg = 0.04 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Head Medium parameters used (interpolated):

f = 1900 MHz; σ = 1.442 S/m; ε_r = 38.425; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-03-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(5.03, 5.03, 5.03); Calibrated: 8/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

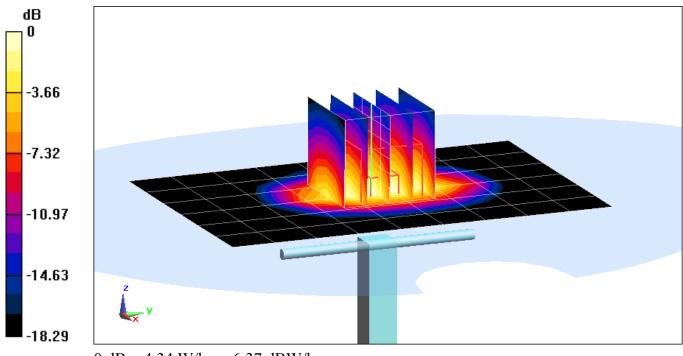
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 7.21 W/kg

SAR(1 g) = 3.9 W/kg

Deviation: -1.76%

0 dB = 4.34 W/kg = 6.37 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

f = 2450 MHz; σ = 1.741 S/m; ε_r = 38.738; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12/17/2013; Ambient Temp: 22.8°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3318; ConvF(4.59, 4.59, 4.59); Calibrated: 4/29/2013;

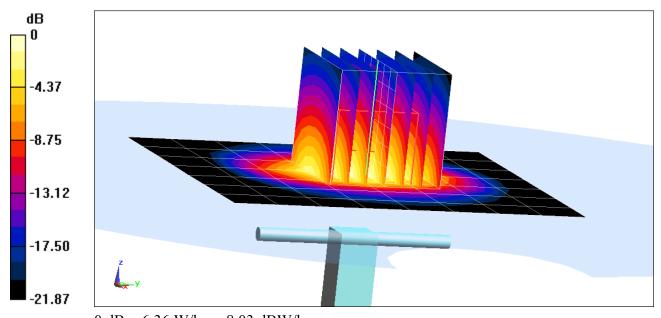
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013

Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 9.82 W/kg

SAR(1 g) = 4.89 W/kg

Deviation = -6.86%

0 dB = 6.36 W/kg = 8.03 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

f = 835 MHz; σ = 1.009 S/m; ε_r = 53.818; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-30-2014; Ambient Temp: 24.5°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3333; ConvF(6.07, 6.07, 6.07); Calibrated: 11/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

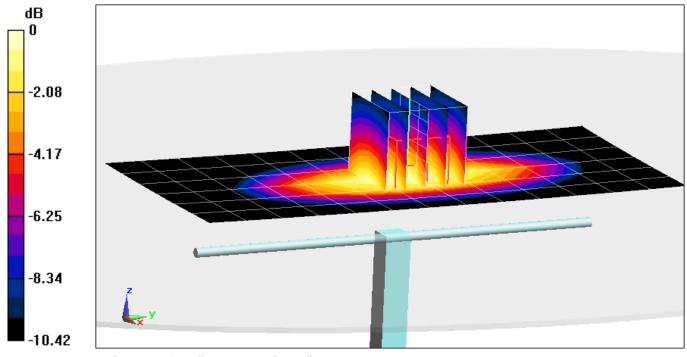
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.961 W/kg

Deviation: 0.73%

0 dB = 1.04 W/kg = 0.17 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

f = 835 MHz; σ = 1.014 S/m; ε_r = 53.696; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-05-2014; Ambient Temp: 22.9°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

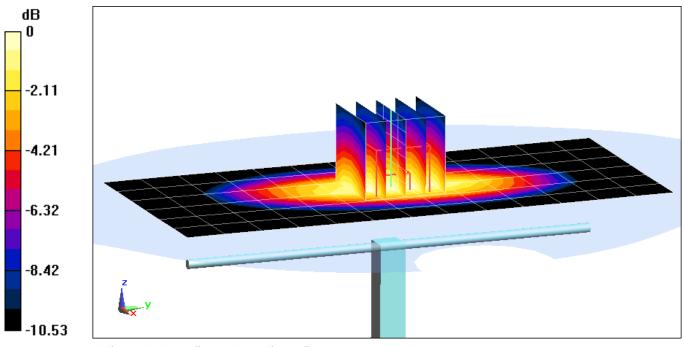
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 1.02 W/kg

Deviation: 6.92%

0 dB = 1.10 W/kg = 0.41 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

f = 1900 MHz; σ = 1.554 S/m; ε_r = 52.391; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-04-2014; Ambient Temp: 23.4°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3318; ConvF(4.79, 4.79, 4.79); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

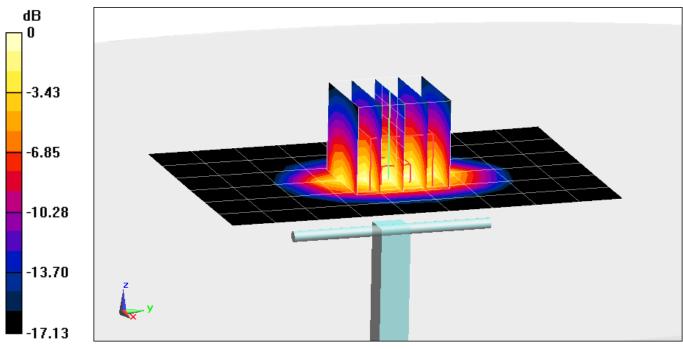
Electronics: DAE4 Sn1364; Calibrated: 4/22/2013

Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 6.81 W/kg

SAR(1 g) = 3.84 W/kg

Deviation: -5.88%

0 dB = 4.32 W/kg = 6.35 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

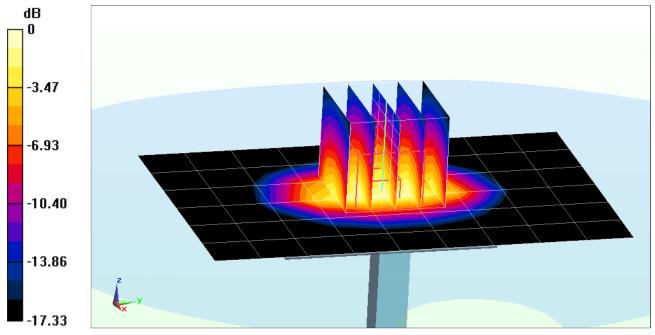
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.557 \text{ S/m}$; $\varepsilon_r = 52.287$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-05-2014; Ambient Temp: 24.5°C; Tissue Temp: 23.6°C

Probe: ES3DV2 - SN3022; ConvF(4.49, 4.49, 4.49); Calibrated: 8/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 7.13 W/kg

SAR(1 g) = 3.99 W/kg

Deviation = -2.21 %

0 dB = 4.49 W/kg = 6.52 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 1.958 S/m; $\epsilon_{_{I}}$ = 52.752; ρ = 1000 kg/m 3

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-12-2013; Ambient Temp: 23.8°C; Tissue Temp: 23.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 10.4 W/kg

SAR(1 g) = 4.86 W/kg

Deviation = -2.02%

0 dB = 6.30 W/kg = 7.99 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 2.028 S/m; ε_r = 52.035; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-17-2013; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3288; ConvF(4.37, 4.37, 4.37); Calibrated: 9/23/2013;

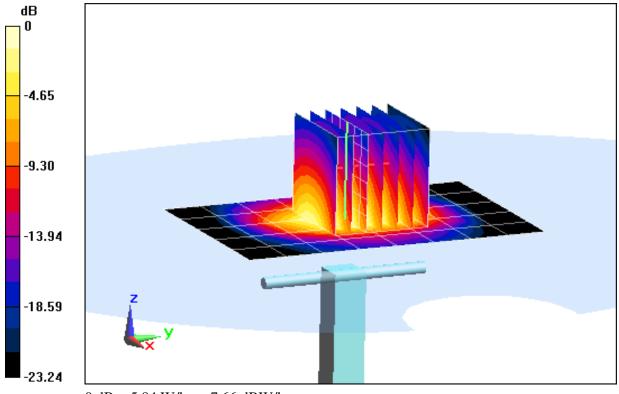
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2013

CAMCAD DE CAMCADA CAMC

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

2450MHz System Verification


Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power: 20 dBm (100 mW) Peak SAR (extrapolated) = 9.90 W/kg

SAR(1 g) = 4.73 W/kg

Deviation: -5.21%

0 dB = 5.84 W/kg = 7.66 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

Certificate No: D835V2-4d119_Apr13

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d119

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

April 25, 2013

Votals

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 909	11-Sep-12 (No. DAE4-909_Sep12)	Sep-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
		_	1 1 1 0 0 0 40
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13

Calibrated by:

Claudio Leublei

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d119_Apr13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

not approable of floring about

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

Certificate No: D835V2-4d119 Apr13

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.68 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.30 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and earlier and the first approximation of the first and the	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.54 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr13 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 4.7 jΩ
Return Loss	- 26.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 6.3 jΩ	
Return Loss	- 22.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.04.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\epsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 11.09.2012

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

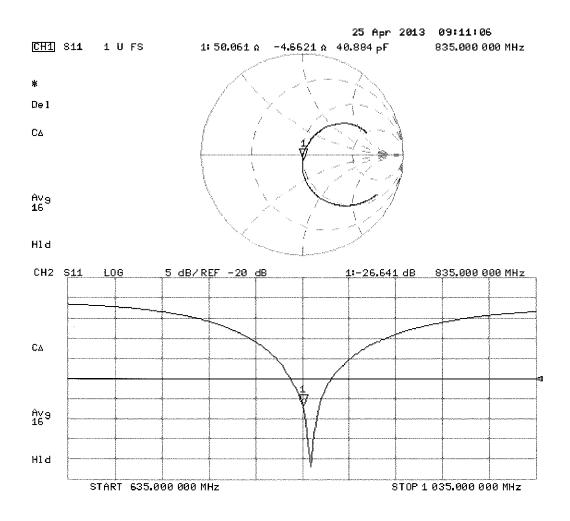
DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.387 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.86 W/kg


SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.04.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;

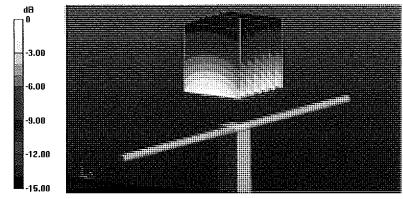
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 11.09.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

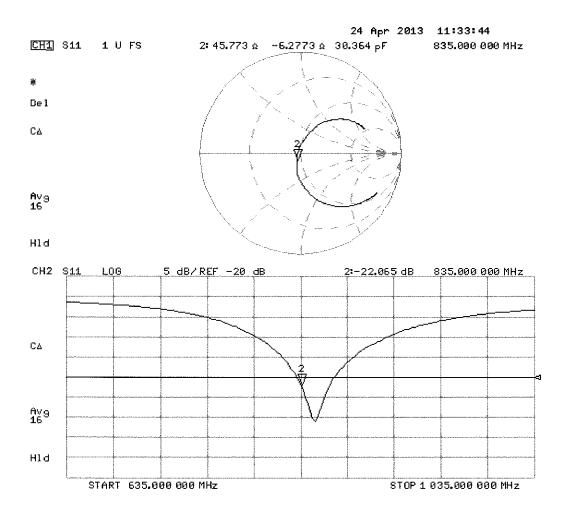
• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.178 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.89 W/kg

0 dB = 2.89 W/kg = 4.61 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S

C

S

Accreditation No.: SCS 108

Client

PC Test

Certificate No: ES3-3319_Apr13

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3319

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

April 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Арг-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Dimce Iliev Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

 ϕ rotation around probe axis

Polarization 9

Certificate No: ES3-3319 Apr13

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3319_Apr13

Probe ES3DV3

SN:3319

Manufactured: January 10, 2012 April 29, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.12	1.20	1.22	± 10.1 %
DCP (mV) ^B	100.7	102.6	102.4	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [□]
			dB	dB√μV		dB	m۷	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	152.0	±3.8 %
		Υ	0.0	0.0	1.0		159.0	
		Z	0.0	0.0	1.0		149.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3319_Apr13

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3319_Apr13

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.49	6.49	6.49	0.28	1.97	± 12.0 %
850	41.5	0.92	6.23	6.23	6.23	0.42	1.57	± 12.0 %
1900	40.0	1.40	5.22	5.22	5.22	0.80	1.24	± 12.0 %
2450	39.2	1.80	4.57	4.57	4.57	0.80	1.32	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

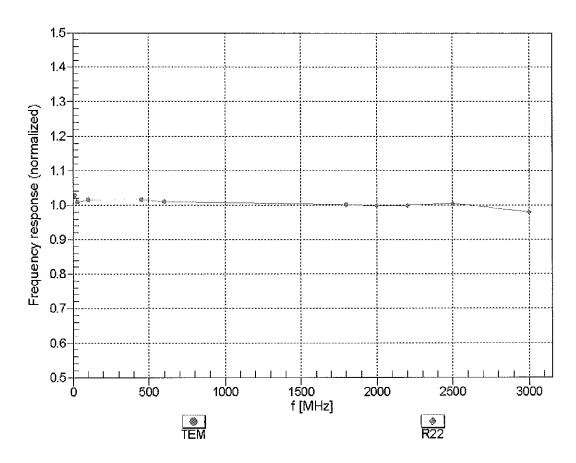
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3- SN:3319 April 29, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

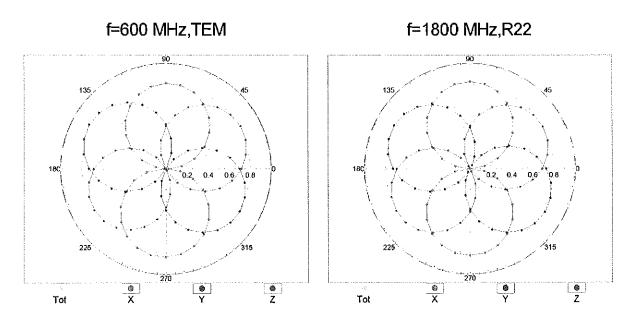
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.45	1.53	± 12.0 %
850	55.2	0.99	6.15	6.15	6.15	0.42	1.65	± 12.0 %
1900	53.3	1.52	4.85	4.85	4.85	0.63	1.49	± 12.0 %
2450	52.7	1.95	4.32	4.32	4.32	0.69	1.20	± 12.0 %

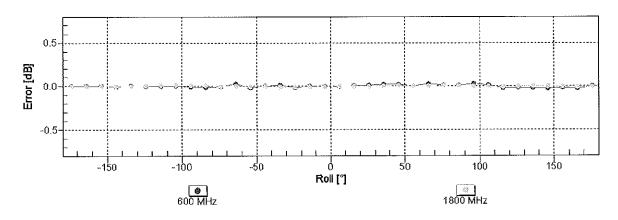

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

Certificate No: ES3-3319_Apr13

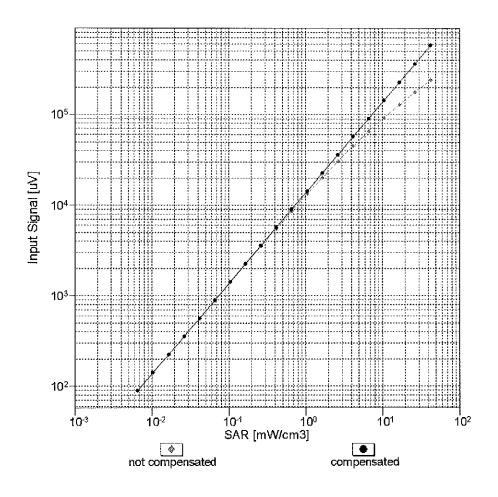
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

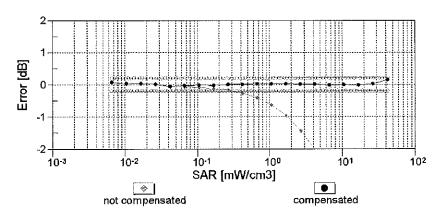

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



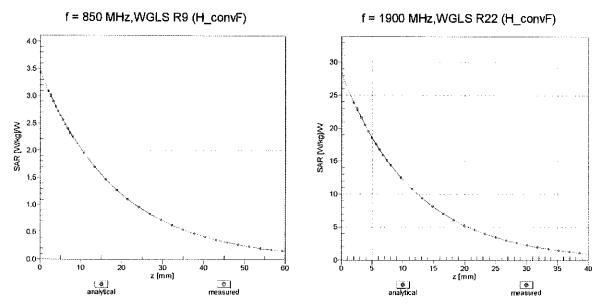
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

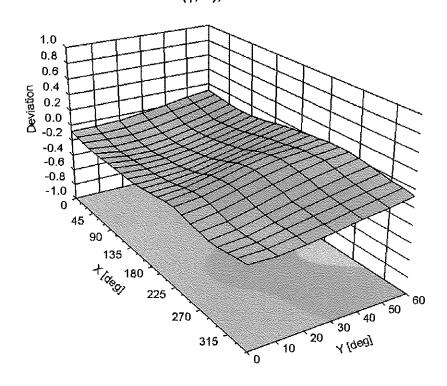
ES3DV3- SN:3319 April 29, 2013

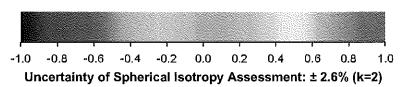

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , θ), f = 900 MHz

ES3DV3-SN:3319

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-104.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3319
Place of Assessment:	Zurich
Date of Assessment:	June 19, 2013
Probe Calibration Date:	April 29, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1900 MHz.

Assessed by:

John John

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3319

Conversion factor (± standard deviation)

 $1750 \pm 50 \text{ MHz}$

ConvF

 $5.59 \pm 7\%$

 $\varepsilon_r = 40.1 \pm 5\%$

 $\sigma = 1.37 \pm 5\% \text{ mho/m}$

(head tissue)

 $1750 \pm 50 \, \mathrm{MHz}$

ConvF

 $5.22 \pm 7\%$

 $\varepsilon_{\rm r} = 53.4 \pm 5\%$

 $\sigma = 1.49 \pm 5\% \text{ mho/m}$

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d148_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 06, 2013

104/2

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check; Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sid Alen-
Approved by:	Katja Pokovic	Technical Manager	LC/LG
		er elia ^k et distribite en trege and distribite betegen av grant en en elektrist en greit.	

Issued: February 6, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d148 Feb13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

Certificate No: D1900V2-5d148_Feb13

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		====

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.9 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.3 \Omega + 6.3 j\Omega$		
Return Loss	- 23.6 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	March 11, 2011		

Certificate No: D1900V2-5d148_Feb13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;

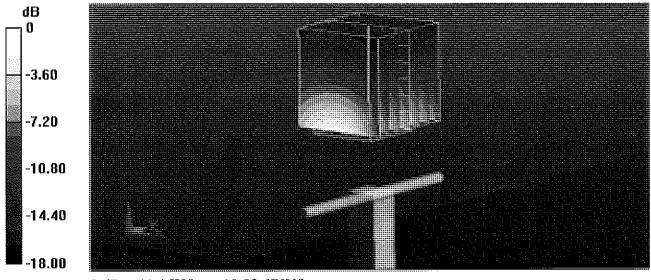
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

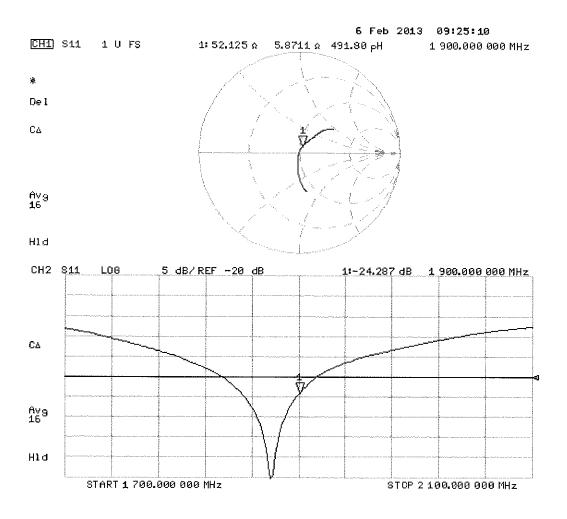
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.534 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ S/m}$; $\varepsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

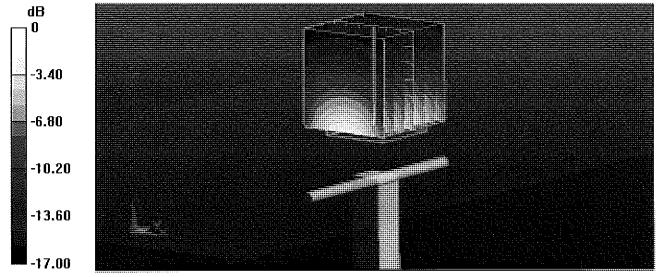
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

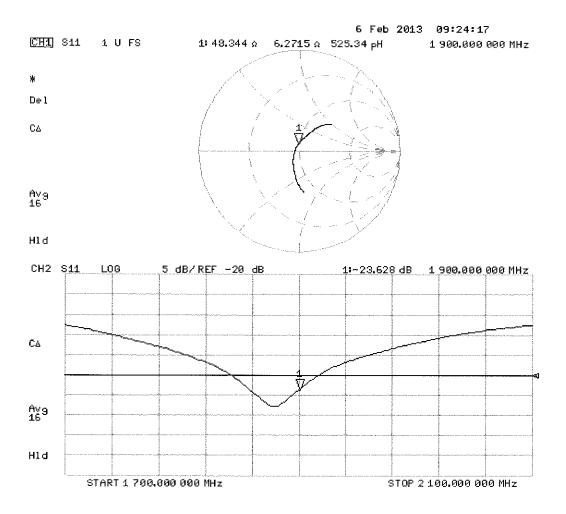
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.534 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.9 W/kg


SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.45 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

C

S

Certificate No: ES3-3022_Aug13

CALIBRATION CERTIFICATE

Object

ES3DV2 - SN:3022

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

August 22, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All catibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	rry Standards ID Cal Date (Ce		Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: August 23, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

Certificate No: ES3-3022_Aug13

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003 August 22, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV2-SN:3022

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.00	1.04	0.99	± 10.1 %
DCP (mV) ^B	100.7	97.4	99.7	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc⁵
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	178.6	±3.0 %
		Y	0.0	0.0	1.0		141.9	
		Z	0.0	0.0	1.0		134.7	.,

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3022_Aug13

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV2-SN:3022 August 22, 2013

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Calibration Parameter Determined in Head Tissue Simulating Media

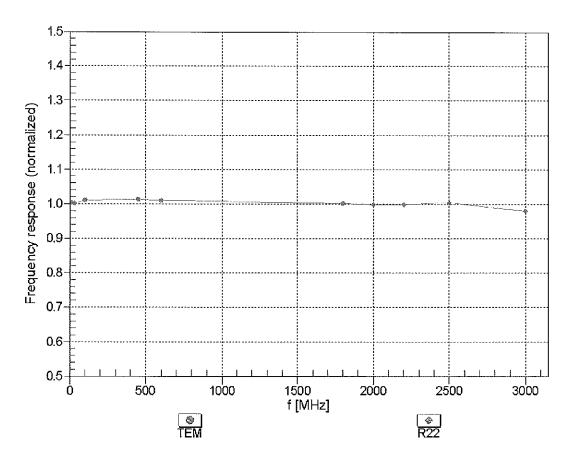
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.21	6.21	6.21	0.19	2.37	± 12.0 %
835	41.5	0.90	6.09	6.09	6.09	0.30	1.70	± 12.0 %
1750	40.1	1.37	5.19	5.19	5.19	0.65	1.23	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.51	1.43	± 12.0 %
2450	39.2	1.80	4.36	4.36	4.36	0.51	1.51	± 12.0 %
2600	39.0	1.96	4.16	4.16	4.16	0.74	1.29	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

August 22, 2013

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

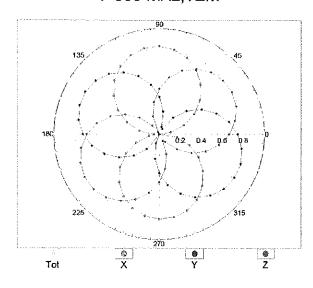

Calibration Parameter Determined in Body Tissue Simulating Media

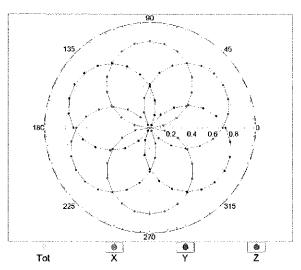
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	5.92	5.92	5.92	0.24	1.99	± 12.0 %
835	55.2	0.97	5.91	5.91	5.91	0.29	1.85	± 12.0 %
1750	53.4	1.49	4.75	4.75	4.75	0.52	1.52	± 12.0 %
1900	53.3	1.52	4.49	4.49	4.49	0.49	1.56	± 12.0 %
2450	52.7	1.95	4.01	4.01	4.01	0.70	1.02	± 12.0 %
2600	52.5	2.16	3.85	3.85	3.85	0.58	0.90	± 12.0 %

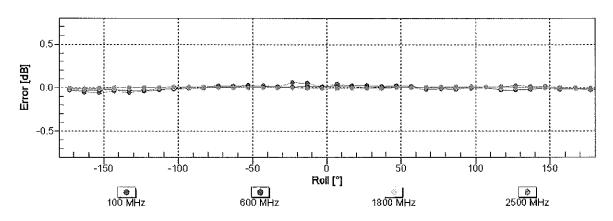
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

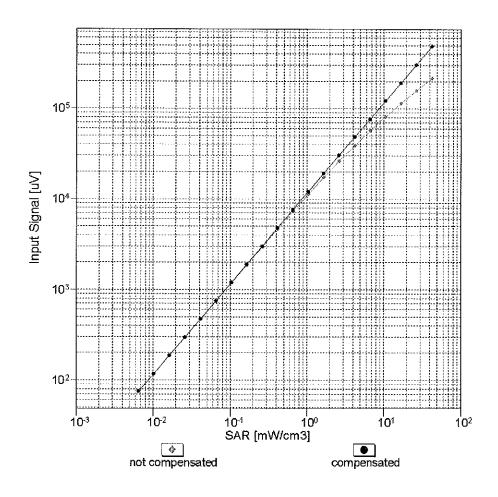


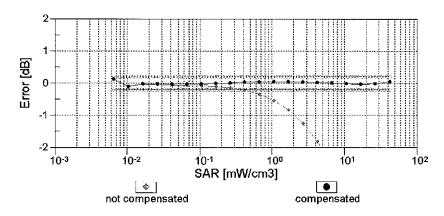

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

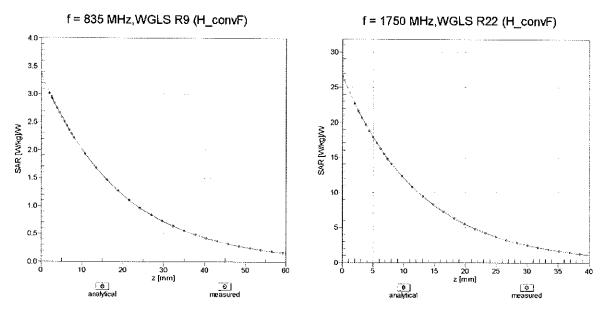
f=600 MHz,TEM

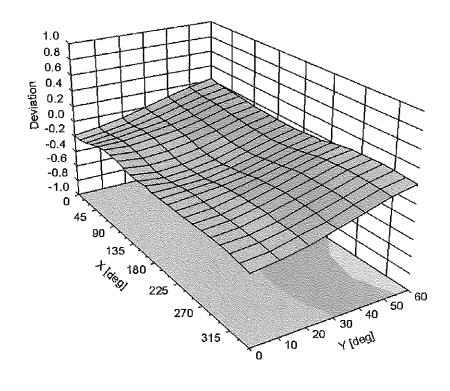
f=1800 MHz,R22

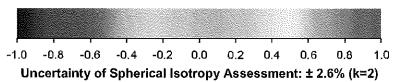




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-83.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	. 3 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3318_Apr13

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3318

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

April 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	etwork Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-12) In house		In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3318

Manufactured: January 10, 2012

Calibrated:

April 29, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k≃2)
Norm (μV/(V/m) ²) ^A	1.15	0.92	1.29	± 10.1 %
DCP (mV) ^B	102.6	105.4	100.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.6	±3.5 %
		Υ	0.0	0.0	1.0		133.8	
		Z	0.0	0.0	1.0		154.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3318_Apr13

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.59	6.59	6.59	0.25	2.12	± 12.0 %
850	41.5	0.92	6.33	6.33	6.33	0.57	1.25	± 12.0 %
1900	40.0	1.40	5.22	5.22	5.22	0.79	1.25	± 12.0 %
2450	39.2	1.80	4.59	4.59	4.59	0.80	1.30	± 12.0 %

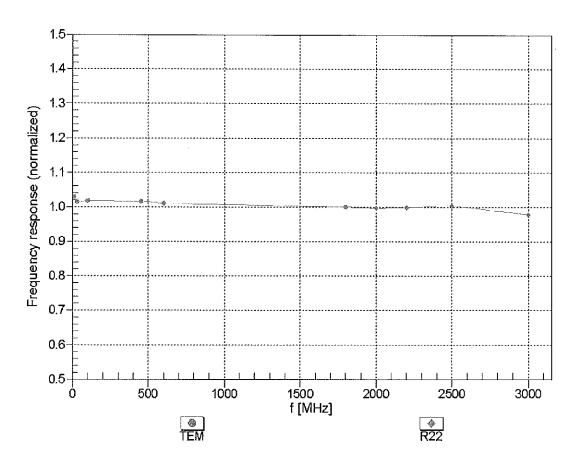
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Calibration Parameter Determined in Body Tissue Simulating Media

			_		_			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.35	6.35	6.35	0.53	1.42	± 12.0 %
850	55.2	0.99	6.21	6.21	6.21	0.57	1.38	± 12.0 %
1900	53.3	1.52	4.79	4.79	4.79	0.46	1.77	± 12.0 %
2450	52.7	1.95	4.31	4.31	4.31	0.80	1.09	± 12.0 %

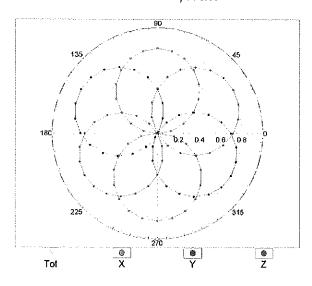

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

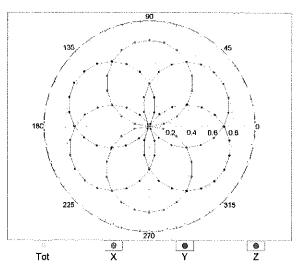
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if figuid compensation formula is applied to

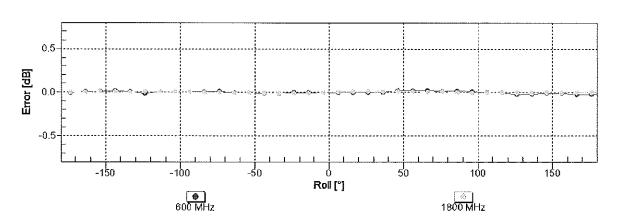
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

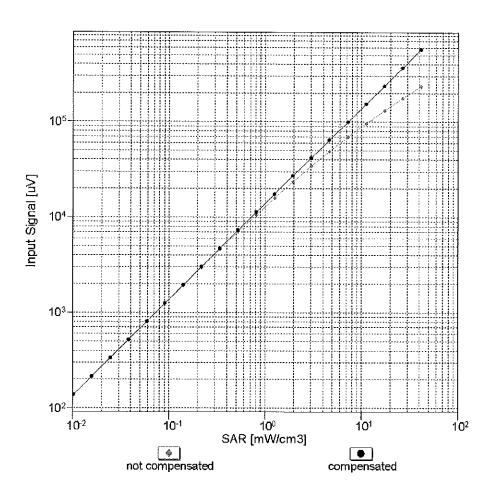


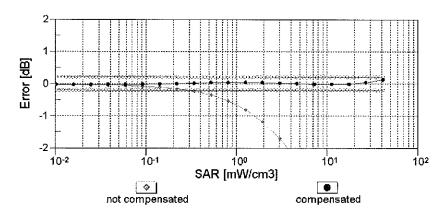

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

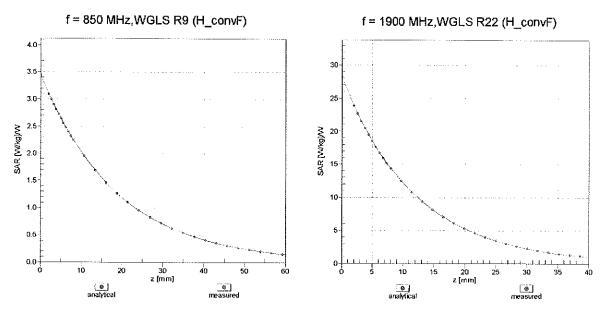
f=600 MHz,TEM

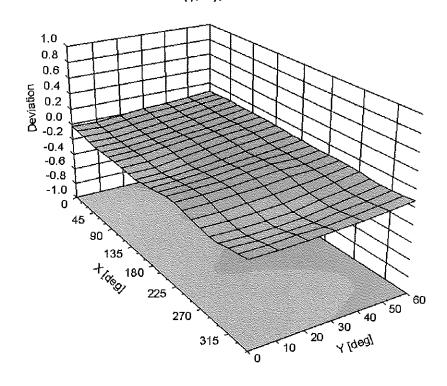
f=1800 MHz,R22





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-103.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3318
Place of Assessment:	Zurich
Date of Assessment:	June 19, 2013
Probe Calibration Date:	April 29, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3318

Conversion factor (± standard deviation)

 $1750 \pm 50 \text{ MHz}$

ConvF

 $5.59 \pm 7\%$

 $\varepsilon_r = 40.1 \pm 5\%$

 $\sigma = 1.37 \pm 5\%$ mho/m

(head tissue)

 $1750 \pm 50 \text{ MHz}$

ConvF

 $5.22\pm7\%$

 $\varepsilon_r = 53.4 \pm 5\%$

 $\sigma = 1.49 \pm 5\%$ mho/m

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3333_Nov13

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3333

Calibration procedure(s)

QA CAL-01 vs. QA CAL-23 vs. QA CAL-25 vs. Calibration procedure for dostmetric E-field probes

Calibration date:

November 22, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Арт-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: November 25, 2013

This calibration certificate shell not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3333_Nov13 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3333

Manufactured:

January 24, 2012

Calibrated:

November 22, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.08	0.90	0.88	± 10.1 %
DCP (mV) ^B	104.9	103.3	101.7	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊨]
			dB	dB√μV		dB	∣mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	140.9	±2.2 %
		Y	0.0	0.0	1.0		132.0	
		Z	0.0	0.0	1.0		170.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3333 November 22, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.44	1.54	± 12.0 %
850	41.5	0.92	6.30	6.30	6.30	0.46	1.48	± 12.0 %
1750	40.1	1.37	5.23	5,23	5.23	0.77	1.17	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.80	1.19	± 12.0 %
2450	39.2	1.80	4.42	4.42	4.42	0.74	1.31	± 12.0 %
2600	39.0	1.96	4.28	4.28	4.28	0.80	1.30	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Figure 10 to 10 MHz the validity of tissue parameters (s. and s.) can be released to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

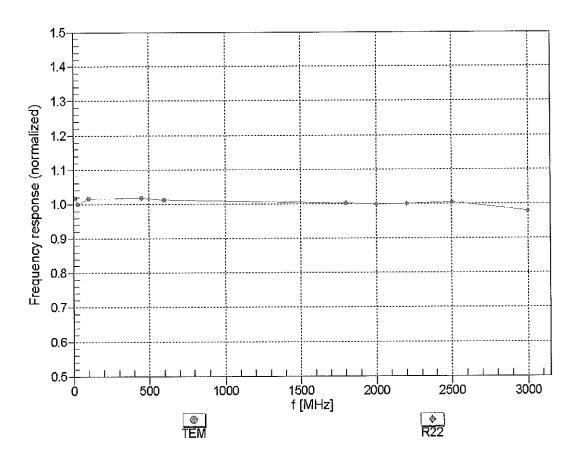
November 22, 2013 ES3DV3-SN:3333

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.11	6.11	6.11	0.33	1.90	± 12.0 %
850	55.2	0.99	6.07	6.07	6.07	0.80	1.19	± 12.0 %
1750	53.4	1.49	4.95	4.95	4.95	0.80	1.26	± 12.0 %
1900	53.3	1.52	4.71	4.71	4.71	0.49	1.54	± 12.0 %
2450	52.7	1.95	4.22	4.22	4.22	0.80	0.95	± 12.0 %
2600	52.5	2.16	4.16	4.16	4.16	0.80	1.07	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

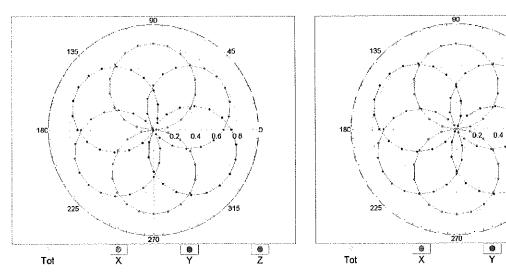

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

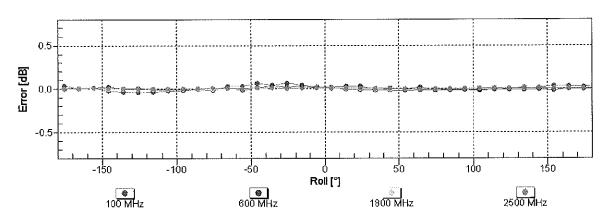
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

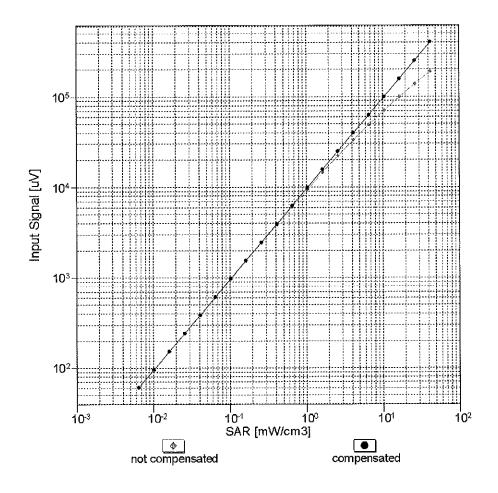


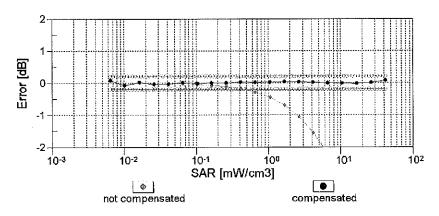

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

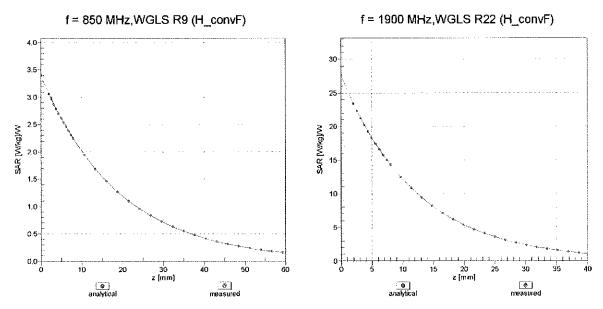


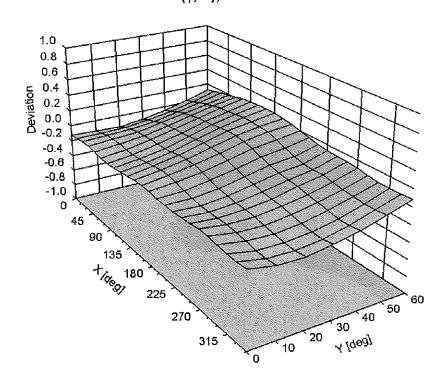


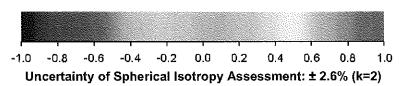
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

November 22, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ES3DV3- SN:3333 November 22, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

November 22, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-35.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm ,
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client P

PC Test

Accreditation No.: SCS 108

S

C

S

Certificate No: ES3-3209 Mar13

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3209

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

March 15, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3209_Mar13

Joy M

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Арг-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature

Calibrated by: Israe El-Naouq Laboratory Technician

Recurrence Calibrated by: Katja Pokovic Technicial Manager

Issued: March 15, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

Certificate No: ES3-3209_Mar13

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ES3DV3 – SN:3209 March 15, 2013

Probe ES3DV3

SN:3209

Manufactured:

October 14, 2008 March 15, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

March 15, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.35	1.33	1.14	± 10.1 %
DCP (mV) ^B	99.2	97.8	98.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	163.6	±3.5 %
		Y	0.0	0.0	1.0		170.3	
		Z	0.0	0.0	1.0		158.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

March 15, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
750	41.9	0.89	6.74	6.74	6.74	0.76	1.18	± 12.0 %	
835	41.5	0.90	6.46	6.46	6.46	0.31	1.81	± 12.0 %	
1750	40.1	1.37	5.39	5.39	5.39	0.80	1.21	± 12.0 %	
1900	40.0	1.40	5.21	5.21	5.21	0.78	1.26	± 12.0 %	
2450	39.2	1.80	4.57	4.57	4.57	0.65	1.43	± 12.0 %	
2600	39.0	1.96	4.43	4.43	4.43	0.75	1.36	± 12.0 %	

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

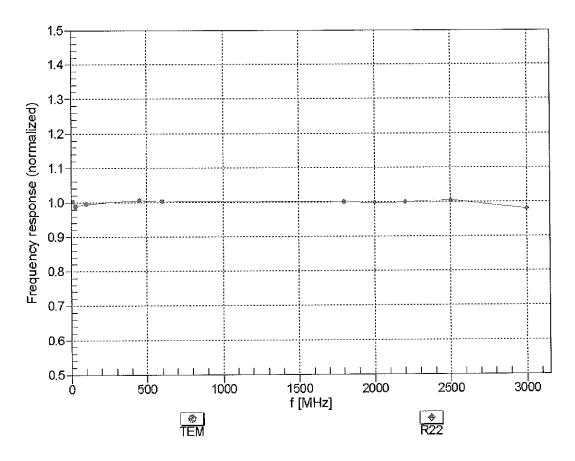
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3- SN:3209 March 15, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Calibration Parameter Determined in Body Tissue Simulating Media

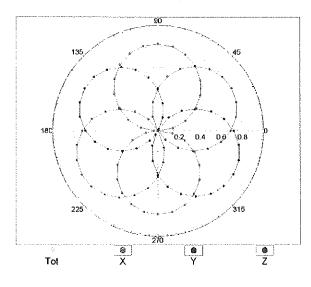

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.38	6.38	6.38	0.80	1.16	± 12.0 %
835	55.2	0.97	6.28	6.28	6.28	0.52	1.45	± 12.0 %
1750	53.4	1.49	5.03	5.03	5.03	0.58	1.45	± 12.0 %
1900	53.3	1.52	4.77	4.77	4.77	0.70	1.36	± 12.0 %
2450	52.7	1.95	4.34	4.34	4.34	0.80	1.15	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.80	1.00	± 12.0 %

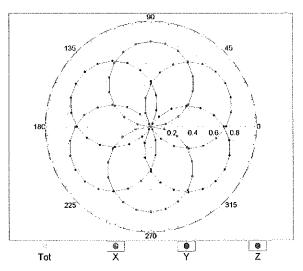
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

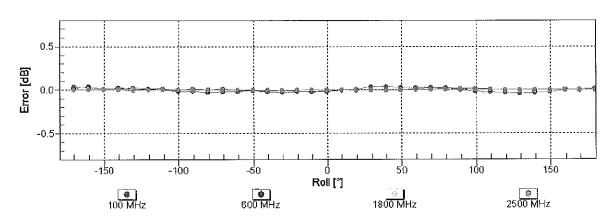
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^r At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

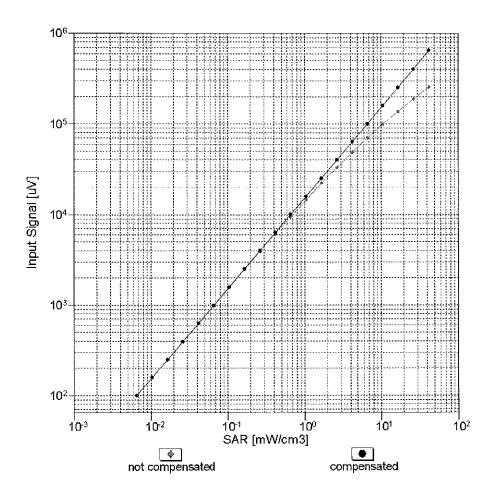

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

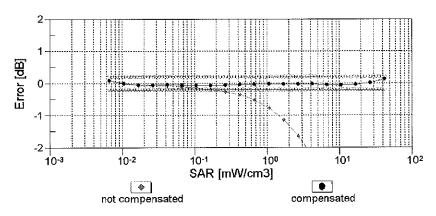

ES3DV3-SN:3209


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

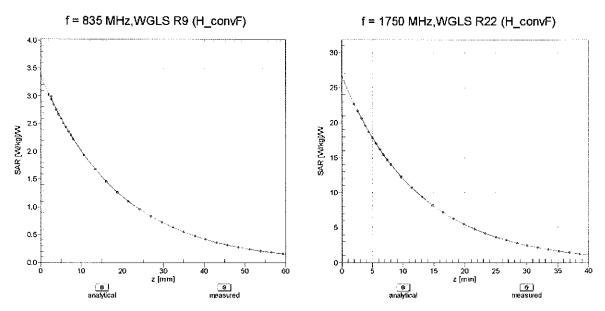
f=600 MHz,TEM

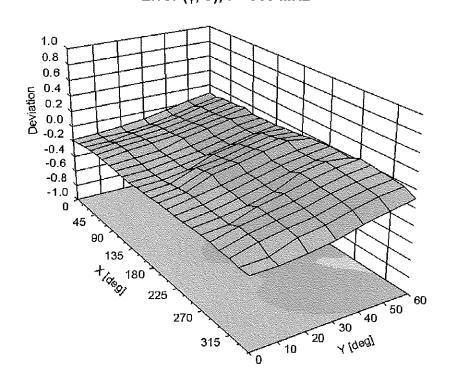
f=1800 MHz,R22

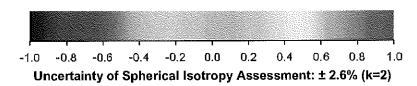




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

ES3DV3- SN:3209

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-40.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

S

Certificate No: D2450V2-797 Jan13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 08, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature

Calibrated by:

Israe El-Naoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Jan13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-797_Jan13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 3.1 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.1 Ω + 4.9 jΩ
Return Loss	- 26.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

Certificate No: D2450V2-797_Jan13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

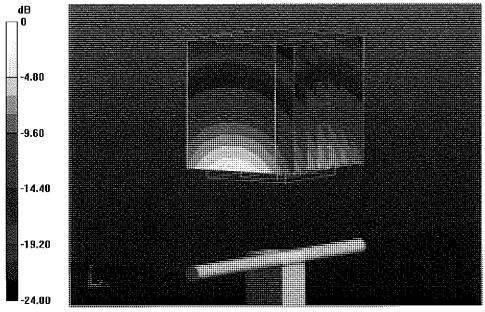
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

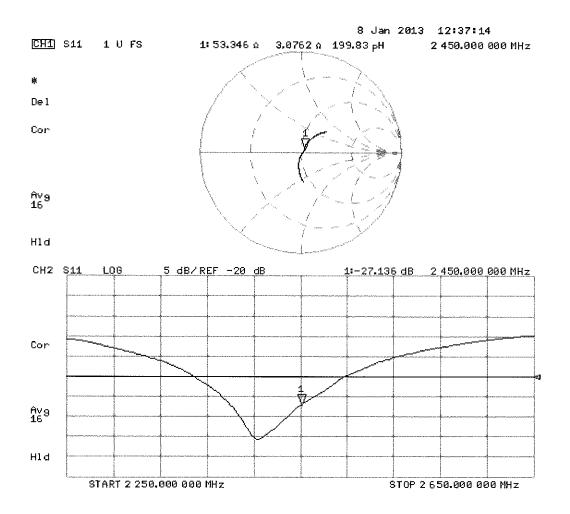
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.154 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

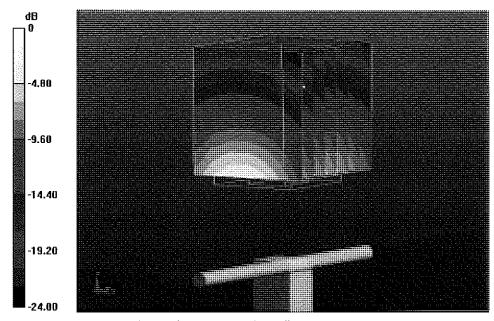
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

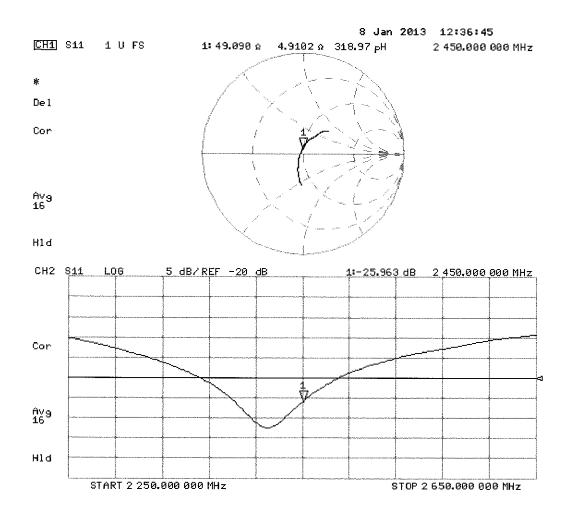
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.935 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg

Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

Certificate No: D2450V2-882_Feb13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 882

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 11, 2013

10 KU/13

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#_	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Orona Holanes
Approved by:	Katja Pokovic	Technical Manager	20 111

Issued: February 11, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-882_Feb13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.0 7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-882_Feb13 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 0.4 jΩ
Return Loss	- 29.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 1.2 jΩ
Return Loss	- 37.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

Certificate No: D2450V2-882_Feb13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

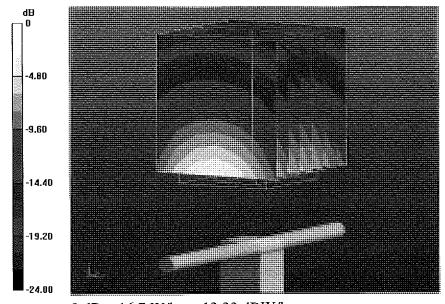
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

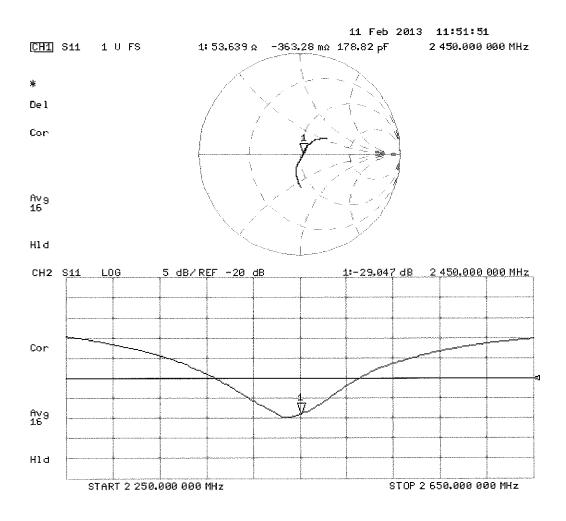
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.806 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.6 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

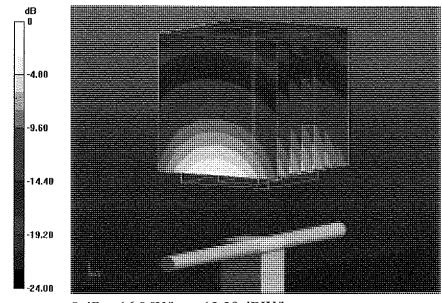
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06,2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

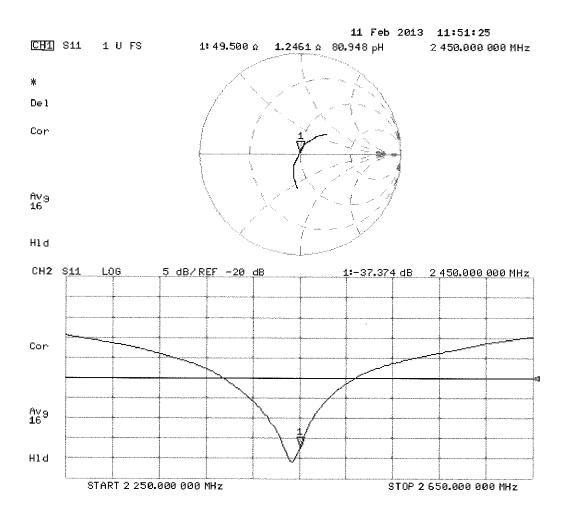
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.474 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.1 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3288_Sep13/2

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE (Replacement of No: ES3-3288_Sep13)

Object

ES3DV3 - SN:3288

CV

1943

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 23, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3288 Sep13/2

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Apr-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature	
Calibrated by:	Jeton Kastrati	Laboratory Technician		
Approved by:	Katja Pokovic	Technical Manager	Ry	·

Issued: October 4, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Probe ES3DV3

SN:3288

Manufactured: July 6, 2010

Calibrated:

September 23, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

Certificate No: ES3-3288 Sep13/2

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

September 23, 2013 ES3DV3-SN:3288

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.87	0.97	0.75	± 10.1 %
DCP (mV) ^B	103.3	103.2	100.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊢] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	171.1	±3.5 %
		Y	0.0	0.0	1.0		135.0	
		Z	0.0	0.0	1.0		154.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3288 September 23, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.32	1.89	± 12.0 %
835	41.5	0.90	6.37	6.37	6.37	0.34	1.82	± 12.0 %
1750	40.1	1.37	5.67	5.67	5.67	0.56	1.51	± 12.0 %
1900	40.0	1.40	5.47	5.47	5.47	0.80	1.29	± 12.0 %
2450	39.2	1.80	4.63	4.63	4.63	0.80	1.34	± 12.0 %
2600	39.0	1.96	4.55	4.55	4.55	0.80	1.41	± 12.0 %

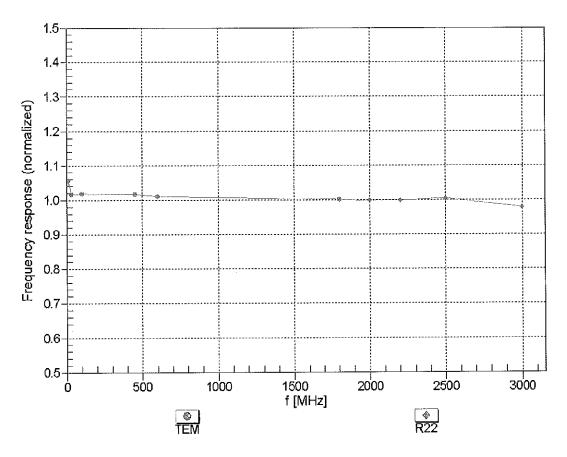
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3-SN:3288

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

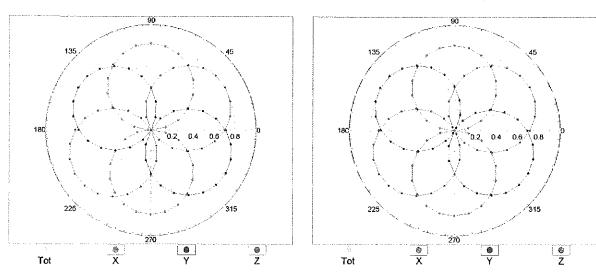

Calibration Parameter Determined in Body Tissue Simulating Media

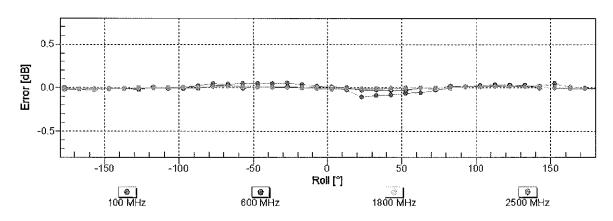
			_		_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.70	1.27	± 12.0 %
835	55.2	0.97	6.27	6.27	6.27	0.75	1.22	± 12.0 %
1750	53.4	1.49	5.10	5.10	5.10	0.59	1.46	± 12.0 %
1900	53.3	1.52	4.82	4.82	4.82	0.53	1.54	± 12.0 %
2450	52.7	1.95	4.37	4.37	4.37	0.80	1.02	± 12.0 %
2600	52.5	2.16	4.14	4.14	4.14	0.64	0.94	± 12.0 %

 $^{^{\}rm C}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

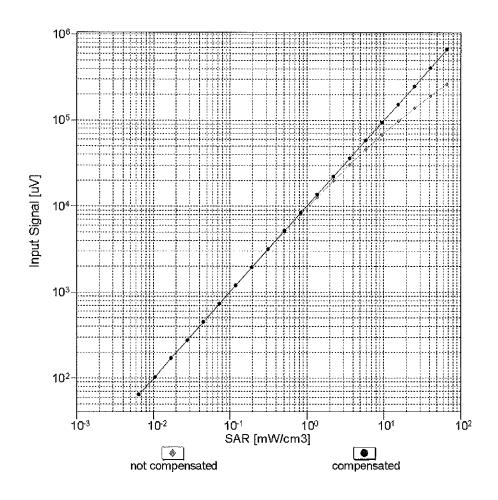
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

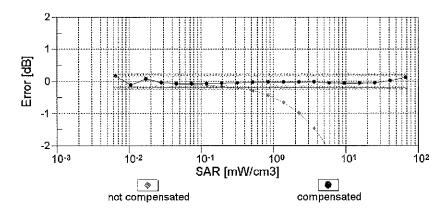



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

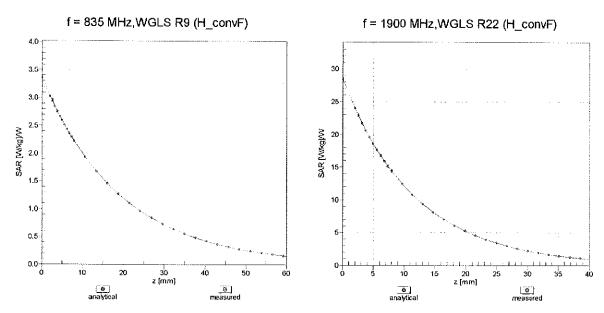
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

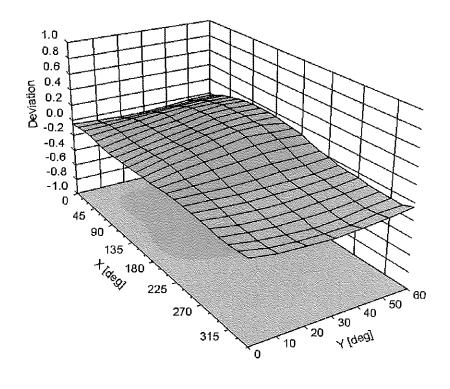
f=600 MHz,TEM

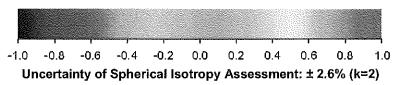

f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ES3DV3-- SN:3288

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3288

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-127.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 5) The network analyzer and probe system was configured and calibrated.
- 6) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 7) The complex admittance with respect to the probe aperture was measured
- 8) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

> Table D-I **Composition of the Tissue Equivalent Matter**

Frequency (MHz)	835	835	1900	1900	2450	2450
Tissue	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)						
Bactericide	0.1	0.1				
DGBE			44.92	29.44		26.7
HEC	1	1			See Next	
NaCl	1.45	0.94	0.18	0.39	Page	0.1
Sucrose	57	44.9				
Water	40.45	53.06	54.9	70.17		73.2

FCC ID: A3LSMT321	PCTEST SECRETARIO LABORATERY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 1 of 2

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

H2O Water, 52 – 75%

C8H18O3 Diethylene glycol monobutyl ether (DGBE), 25 – 48%

(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)

Relevant for safety; Refer to the respective Safety Data Sheet*.

NaCl Sodium Chloride, <1.0%

Figure D-1 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test Item Name Head Tissue Simulating Liquid (HSL2450V2) SL AAH 245 BA (Charge: 130212-2) Product No. Manufacturer SPEAG Measurement Method TSL dielectric parameters measured using calibrated OCP probe. Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards **Test Condition** Ambient Environment temperatur (22 ± 3)°C and humidity < 70%. TSL Temperature 23°C Test Date Operator Additional Information TSL Density 0.988 a/cm TSL Heat-capacity 3.680 kJ/(kg*K) Target Diff.to Target [%] f [MHz] HP-e* HP-e* sigms eps sigma Δ-eps ∆-sigma 7.5 1900 40.4 11.94 1.26 40.0 1.40 -9.9 1925 40.3 12.02 1.29 40.0 1.40 0.7 -8.0 40.2 12.11 1.31 40.0 -6.2 0.0 1975 40.1 12.20 1.34 40.0 1.40 -4.2 å 2000 40.0 12.29 1.37 40.0 1.40 -0.1-2.3 -5.040.0 2025 39.9 12.39 1.40 1.42 -0.2-1.939.9 -10.012.49 1.42 1.44 -1.4 -0.4 1900 2000 2100 2200 2300 2400 2500 2600 2700 2075 39.6 12.57 1.45 39.9 1.47 Frequency MHz 2100 39.5 12.65 1.48 39.8 1.49 -0.7 -0.7 12.74 2125 39.4 1.51 39.8 1,51 -0.9 -0.42150 39.3 12.82 1.53 39.7 1.53 -1.0 0.0 2175 39.2 12,89 1.56 39.7 1.56 0.3 10.0 7.5 2200 39.1 12.97 1.59 39.6 1.58 4.3 0.6 5.0 Conductivity 13.04 1.61 2225 39.0 39.6 1.60 -1.50.9 2.5 38.9 13.11 1.64 39.6 1.62 -1.71.2 0.0 38.8 13.20 1.67 39.5 2300 38.7 13.28 1.70 39.5 1.67 -2.0 2.0 -5.0 Dev 2325 38.6 13.35 1.73 39.4 1.69 2.3 13.42 1.75 39.4 1.71 2350 38.5 -2.3 2.6 -10.0 1.78 39.3 1900 2000 2100 2200 2300 2400 2500 2600 2700 13.50 1.73 2.9 2400 38.3 13.58 1.81 39.3 1.76 3.3 Frequency MHz 2425 38.2 13.65 1.84 39.2 2450 38.1 13.73 1.87 39.2 1.80 -2.9 4.0 1.90 2500 37.9 13.85 1.93 39.1 1.85 3.9 2525 37.8 13.94 1.96 39.1 1.88 -3.44.0 14.02 1.99 39.1 1.91 37.7 -3.64.2 4.3 37.5 14.17 2.05 39.0 1.96 2625 37.4 14.23 2.08 39.0 1.99 4.4 37.3 14.29 2.11 38.9 2.02 38.9 2.05 2650 4.4 14.36 2.14 37.1 4.5

Figure D-2 2.4 GHz Head Tissue Equivalent Matter

		•		
FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 2 of 2

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-I SAR System Validation Summary

	CAR Cystem validation ballinary													
SAR							COND.	COND. PERM. CW VALIDATION			M	MOD. VALIDATION		
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
I	835	7/5/2013	3319	ES3DV3	835	Head	0.906	41.21	PASS	PASS	PASS	GMSK	PASS	N/A
D	1900	9/30/2013	3022	ES3DV2	1900	Head	1.419	39.22	PASS	PASS	PASS	GMSK	PASS	N/A
Н	2450	6/24/2013	3318	ES3DV3	2450	Head	1.819	38.94	PASS	PASS	PASS	OFDM	N/A	PASS
G	835	1/6/2014	3209	ES3DV3	835	Body	0.989	53.83	PASS	PASS	PASS	GMSK	PASS	N/A
K	835	12/19/2013	3333	ES3DV3	835	Body	1.006	53.18	PASS	PASS	PASS	GMSK	PASS	N/A
D	1900	9/10/2013	3022	ES3DV2	1900	Body	1.516	52.49	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1900	6/18/2013	3318	ES3DV3	1900	Body	1.572	52.46	PASS	PASS	PASS	GMSK	PASS	N/A
D	2450	10/11/2013	3022	ES3DV2	2450	Body	2.008	52.50	PASS	PASS	PASS	OFDM	N/A	PASS
В	2450	11/11/2013	3288	ES3DV3	2450	Body	1.991	53.36	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID: A3LSMT321	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
12/02/13 –12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 1 of 1

APPENDIX G: SENSOR TRIGGERING DATA SUMMARY

FCC ID: A3LSMT321	PCTEST:	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/02/13-12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 1 of 5

A3LSMT321 Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04v01, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the back and left edge of the device. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for back side and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01) with the device at maximum output power without power reduction. These SAR Tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

The operational description contains information explaining how this device remains complaint in the event of a sensor malfunction.

Back Side

Moving device toward the phantom:

				KDB61	.6217 6	.2.6					
			Me	easured	Power	[dBm]					
Distance [mm]	20	19	18	17	16	15	14	13	12	11	10
GSM850	32.91	32.90	32.88	32.87	32.87	27.43	27.51	27.51	27.52	27.43	27.52
GSM1900	28.31	28.16	28.30	28.40	28.12	23.78	23.73	23.71	23.76	23.72	23.69
GPRS850 1Tx	32.92	32.94	32.93	32.93	32.86	27.45	27.45	27.42	27.47	27.45	27.45
GPRS850 2Tx	30.02	29.99	30.02	29.98	30.04	24.49	24.41	24.40	24.40	24.38	24.42
GPRS850 3Tx	28.28	28.27	28.26	28.25	28.28	23.15	23.10	23.15	23.08	23.18	23.12
GPRS850 4Tx	26.81	26.90	26.87	26.87	26.91	21.85	21.78	21.75	21.81	21.78	21.74
GPRS1900 1Tx	28.29	28.35	28.16	28.13	28.31	23.75	23.71	23.74	23.67	23.73	23.67
GPRS1900 2Tx	25.88	25.83	25.89	25.83	25.88	20.70	20.66	20.59	20.69	20.71	20.69
GPRS1900 3Tx	23.54	23.54	23.49	23.60	23.54	18.70	18.77	18.78	18.73	18.72	18.69
GPRS1900 4Tx	22.79	22.84	22.85	22.80	22.77	17.51	17.52	17.50	17.49	17.49	17.51
EDGE850 1TX	27.10	27.13	27.14	27.12	27.10	22.33	22.30	22.35	22.28	22.26	22.32
EDGE850 2TX	25.50	25.42	25.50	25.42	25.47	20.69	20.63	20.67	20.63	20.65	20.66
EDGE850 3TX	23.64	23.68	23.63	23.62	23.63	18.60	18.57	18.63	18.61	18.58	18.59
EDGE850 4TX	22.60	22.66	22.66	22.60	22.64	17.60	17.56	17.59	17.60	17.55	17.53
EDGE1900 1TX	24.80	24.81	24.89	24.76	24.89	19.87	19.79	19.84	19.82	19.85	19.79
EDGE1900 2TX	22.31	22.34	22.32	22.36	22.40	18.69	18.81	18.70	18.75	18.79	18.78
EDGE1900 3TX	21.97	22.04	21.91	21.94	21.95	16.54	16.53	16.51	16.57	16.53	16.52
EDGE1900 4TX	20.87	20.83	20.69	20.78	20.73	15.74	15.78	15.73	15.74	15.75	15.75
WCDMA850	22.87	22.86	22.91	22.84	22.85	18.68	18.60	18.59	18.66	18.64	18.61
WCDMA1900	22.81	22.80	22.80	22.85	22.83	12.13	12.15	12.15	12.13	12.20	12.11

FCC ID: A3LSMT321	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/02/13-12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 2 of 5

Moving device away from the phantom:

					KDB	616217	6.2.8 Mea	sured Po	ower [dB	m]							
Distance[mm]	26	23	20	19	18	17	16	15	14	13	12	11	10	7	4	1	0
GSM850	32.9	32.94	32.96	32.88	32.88	32.87	32.87	27.43	27.51	27.51	27.5	27.45	27.52	27.51	27.46	27.53	27.5
GSM1900	28.23	28.27	28.16	28.11	28.3	28.4	28.12	23.78	23.73	23.71	23.74	23.73	23.69	23.7	23.74	23.78	23.75
GPRS 850 1Tx	32.91	32.95	32.93	32.88	32.93	32.93	32.86	27.45	27.45	27.42	27.47	27.43	27.45	27.53	27.44	27.49	27.54
GPRS 850 2Tx	30.02	29.98	30.03	30.05	30.02	29.98	30.04	24.49	24.41	24.4	24.42	24.38	24.42	24.4	24.38	24.42	24.41
GPRS 850 3Tx	28.27	28.3	28.26	28.24	28.26	28.25	28.28	23.15	23.1	23.15	23.09	23.1	23.12	23.03	23.05	23.11	22.98
GPRS 850 4Tx	26.86	26.82	26.82	26.88	26.87	26.87	26.91	21.85	21.78	21.75	21.78	21.76	21.74	21.84	21.74	21.74	21.77
GPRS 1900 1Tx	28.28	28.4	28.32	28.37	28.16	28.13	28.31	23.75	23.71	23.74	23.72	23.67	23.67	23.66	23.71	23.73	23.75
GPRS 1900 2Tx	25.85	25.85	25.83	25.84	25.89	25.83	25.88	20.7	20.66	20.59	20.65	20.61	20.69	20.67	20.59	20.63	20.65
GPRS 1900 3Tx	23.55	23.47	23.65	23.57	23.49	23.6	23.54	18.7	18.77	18.78	18.74	18.76	18.69	18.76	18.69	18.79	18.72
GPRS 1900 4Tx	22.81	22.83	22.8	22.8	22.85	22.8	22.77	17.51	17.52	17.5	17.51	17.47	17.51	17.48	17.51	17.52	17.52
EDGE850 1Tx	27.12	27.11	27.12	27.12	27.14	27.12	27.1	22.33	22.3	22.35	22.33	22.33	22.32	22.33	22.34	22.33	22.3
EDGE850 2Tx	25.47	25.45	25.47	25.49	25.5	25.42	25.47	20.69	20.63	20.67	20.66	20.61	20.66	20.68	20.64	20.67	20.64
EDGE850 3Tx	23.63	23.6	23.67	23.63	23.63	23.62	23.63	18.6	18.57	18.63	18.6	18.58	18.59	18.65	18.57	18.57	18.65
EDGE850 4Tx	22.63	22.61	22.68	22.6	22.66	22.6	22.64	17.6	17.56	17.59	17.58	17.58	17.53	17.6	17.62	17.53	17.62
EDGE1900 1Tx	24.83	24.83	24.84	24.79	24.89	24.76	24.89	19.87	19.79	19.84	19.82	19.79	19.79	19.85	19.81	19.79	19.85
EDGE1900 2Tx	22.37	22.41	22.39	22.31	22.32	22.36	22.4	18.69	18.81	18.7	18.75	18.7	18.78	18.75	18.72	18.73	18.8
EDGE1900 3Tx	21.97	22.05	22.04	21.93	21.91	21.94	21.95	16.54	16.53	16.51	16.53	16.57	16.52	16.56	16.54	16.56	16.49
EDGE1900 4Tx	20.74	20.69	20.67	20.85	20.69	20.78	20.73	15.74	15.78	15.73	15.76	15.75	15.75	15.74	15.78	15.71	15.84
WCDMA 850	22.87	22.9	22.89	22.84	22.91	22.84	22.85	18.68	18.6	18.59	18.63	18.68	18.61	18.62	18.59	18.68	18.65
WCDMA 1900	22.83	22.85	22.81	22.82	22.8	22.85	22.83	12.13	12.15	12.15	12.17	12.2	12.11	12.21	12.15	12.24	12.2

Based on the most conservative measured triggering distance of 15 mm, additional SAR measurements were required at 14 mm from the back side.

FCC ID: A3LSMT321	SECRETARIO LA DOCATRAT, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/02/13-12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 3 of 5

Top Edge

Moving device toward the phantom:

				KDB61	6217 6	5.2.6					
	_		Me		Power						
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
GSM850	32.92	32.92	32.94	32.91	32.94	27.52	27.43	27.43	27.48	27.49	27.45
GSM1900	28.14	28.17	28.22	28.32	28.15	23.66	23.69	23.77	23.73	23.74	23.73
GPRS850 1Tx	32.93	32.85	32.89	32.91	32.93	27.52	27.55	27.51	27.48	27.48	27.49
GPRS850 2Tx	29.98	29.99	30.01	29.99	29.98	24.47	24.41	24.39	24.42	24.37	24.48
GPRS850 3Tx	28.27	28.30	28.30	28.30	28.24	23.18	23.14	23.07	23.17	23.10	23.03
GPRS850 4Tx	26.90	26.87	26.87	26.83	26.85	21.74	21.83	21.76	21.85	21.75	21.79
GPRS1900 1Tx	28.01	28.06	28.36	28.23	28.07	23.73	23.77	23.66	23.78	23.68	23.67
GPRS1900 2Tx	25.86	25.83	25.87	25.84	25.85	20.63	20.69	20.59	20.62	20.60	20.74
GPRS1900 3Tx	23.61	23.68	23.52	23.59	23.49	18.75	18.78	18.77	18.71	18.72	18.70
GPRS1900 4Tx	22.85	22.77	22.80	22.79	22.84	17.45	17.53	17.53	17.45	17.48	17.49
EDGE850 1TX	27.10	27.12	27.11	27.10	27.12	22.32	22.33	22.29	22.32	22.30	22.26
EDGE850 2TX	25.41	25.49	25.42	25.46	25.50	20.64	20.61	20.71	20.69	20.66	20.63
EDGE850 3TX	23.65	23.67	23.65	23.64	23.60	18.63	18.57	18.63	18.65	18.58	18.59
EDGE850 4TX	22.67	22.60	22.64	22.63	22.61	17.58	17.58	17.58	17.57	17.55	17.65
EDGE1900 1TX	24.85	24.79	24.87	24.89	24.87	19.86	19.81	19.86	19.82	19.82	19.79
EDGE1900 2TX	22.40	22.35	22.31	22.30	22.34	18.70	18.75	18.72	18.69	18.72	18.81
EDGE1900 3TX	21.96	21.98	21.92	22.08	21.97	16.51	16.51	16.54	16.52	16.53	16.53
EDGE1900 4TX	20.83	20.65	20.86	20.82	20.77	15.72	15.72	15.79	15.74	15.80	15.85
WCDMA850	22.86	22.88	22.84	22.91	22.84	18.59	18.62	18.62	18.57	18.60	18.58
WCDMA1900	22.80	22.85	22.84	22.85	22.86	12.10	12.11	12.24	12.25	12.15	12.15

FCC ID: A3LSMT321	SECRETARIO LA DOCATRAT, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/02/13-12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 4 of 5

Moving device away from the phantom:

				ı	KDB 616	217 6.2.8	Measure	ed Power	[dBm]							
Distance[mm]	23	20	17	16	15	14	13	12	11	10	9	8	7	4	1	0
GSM850	32.85	32.91	32.86	32.9	32.94	32.91	32.94	27.52	27.43	27.43	27.48	27.46	27.45	27.43	27.51	27.45
GSM1900	28.16	28.38	28.33	28.26	28.22	28.32	28.15	23.66	23.69	23.77	23.73	23.71	23.73	23.68	23.72	23.69
GPRS 850 1Tx	32.88	32.86	32.94	32.9	32.89	32.91	32.93	27.52	27.55	27.51	27.48	27.52	27.49	27.54	27.5	27.53
GPRS 850 2Tx	29.96	30.05	30.04	30.01	30.01	29.99	29.98	24.47	24.41	24.39	24.42	24.43	24.48	24.49	24.4	24.38
GPRS 850 3Tx	28.25	28.31	28.31	28.29	28.3	28.3	28.24	23.18	23.14	23.07	23.17	23.11	23.03	23.15	23.04	23.1
GPRS 850 4Tx	26.81	26.88	26.83	26.85	26.87	26.83	26.85	21.74	21.83	21.76	21.85	21.78	21.79	21.76	21.76	21.77
GPRS 1900 1Tx	28.06	28.22	28.11	28.18	28.36	28.23	28.07	23.73	23.77	23.66	23.78	23.71	23.67	23.66	23.69	23.69
GPRS 1900 2Tx	25.84	25.89	25.89	25.86	25.87	25.84	25.85	20.63	20.69	20.59	20.62	20.66	20.74	20.63	20.7	20.68
GPRS 1900 3Tx	23.77	23.51	23.53	23.57	23.52	23.59	23.49	18.75	18.78	18.77	18.71	18.76	18.7	18.79	18.78	18.78
GPRS 1900 4Tx	22.83	22.77	22.83	22.81	22.8	22.79	22.84	17.45	17.53	17.53	17.45	17.49	17.49	17.45	17.49	17.49
EDGE850 1Tx	27.12	27.12	27.1	27.11	27.11	27.1	27.12	22.32	22.33	22.29	22.32	22.3	22.26	22.28	22.35	22.26
EDGE850 2Tx	25.5	25.41	25.44	25.46	25.42	25.46	25.5	20.64	20.61	20.71	20.69	20.65	20.63	20.62	20.64	20.68
EDGE850 3Tx	23.6	23.65	23.64	23.63	23.65	23.64	23.6	18.63	18.57	18.63	18.65	18.61	18.59	18.57	18.6	18.65
EDGE850 4Tx	22.6	22.67	22.63	22.63	22.64	22.63	22.61	17.58	17.58	17.58	17.57	17.59	17.65	17.58	17.55	17.64
EDGE1900 1Tx	24.91	24.79	24.88	24.87	24.87	24.89	24.87	19.86	19.81	19.86	19.82	19.82	19.79	19.78	19.8	19.85
EDGE1900 2Tx	22.36	22.39	22.37	22.35	22.31	22.3	22.34	18.7	18.75	18.72	18.69	18.74	18.81	18.74	18.77	18.75
EDGE1900 3Tx	22.08	22.05	22.02	22.02	21.92	22.08	21.97	16.51	16.51	16.54	16.52	16.53	16.53	16.54	16.55	16.5
EDGE1900 4Tx	20.86	20.69	20.84	20.81	20.86	20.82	20.77	15.72	15.72	15.79	15.74	15.77	15.85	15.79	15.74	15.81
WCDMA 850	22.85	22.88	22.87	22.87	22.84	22.91	22.84	18.59	18.62	18.62	18.57	18.6	18.58	18.61	18.57	18.66
WCDMA 1900	22.8	22.81	22.83	22.83	22.84	22.85	22.86	12.1	12.11	12.24	12.25	12.17	12.15	12.15	12.17	12.18

Based on the most conservative measured triggering distance of 12 mm, additional SAR measurements were required at 11 mm from the top edge.

FCC ID: A3LSMT321	SECRETARIA LA OKATONY, INC.	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
12/02/13-12/17/13; 01/30/14-02/05/14	Portable Tablet			Page 5 of 5