

TEST REPORT

FCC Sub6 n5 Test for SM-S931B/DS

Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2410-FC058

DATE OF ISSUE October 29, 2024

Tested by Jae Mun Do

Technical Manager Jong Seok Lee EMEZ.

HCT CO., LTD. Bongjai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. $+82\,31\,645\,6300$ Fax. $+82\,31\,645\,6401$

TEST REPORT

REPORT NO. HCT-RF-2410-FC058

DATE OF ISSUE October 29, 2024

Additional Model SM-S931B

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Product Name	Mobile Phone
Model Name	SM-S931B/DS
Date of Test	August 21, 2024 ~ October 28, 2024
FCC ID	A3LSMS931B
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea)
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Test Standard Used	FCC Rule Part: § 22
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 205

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	October 29, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 205

CONTENTS

1. G	ENERAL INFORMATION	6
	1.1. MAXIMUM OUTPUT POWER	7
2. II	NTRODUCTION	9
	2.1. DESCRIPTION OF EUT	9
	2.2. MEASURING INSTRUMENT CALIBRATION	9
	2.3. TEST FACILITY	9
3. D	ESCRIPTION OF TESTS	.10
	3.1 TEST PROCEDURE	. 10
	3.2 RADIATED POWER	.11
	3.3 RADIATED SPURIOUS EMISSIONS	.12
	3.4 PEAK- TO- AVERAGE RATIO	.13
	3.5 OCCUPIED BANDWIDTH.	. 15
	3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	.16
	3.7 BAND EDGE	. 17
	3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	. 19
	3.9 WORST CASE(RADIATED TEST)	.20
	3.10 WORST CASE(CONDUCTED TEST)	.21
4. L	IST OF TEST EQUIPMENT	.22
5. M	IEASUREMENT UNCERTAINTY	.23
6. S	UMMARY OF TEST RESULTS	.24
7. S	AMPLE CALCULATION	.25
8. T	EST DATA (Main1)	.27
	8.1 EFFECTIVE RADIATED POWER	.27
	8.2 RADIATED SPURIOUS EMISSIONS	.31
	8.3 PEAK-TO-AVERAGE RATIO	.32
	8.4 OCCUPIED BANDWIDTH	.33
	8.5 CONDUCTED SPURIOUS EMISSIONS	.34
	8.6 BAND EDGE	.34
	8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	.35
9. T	EST DATA (Sub1)	.39
	9.1 EFFECTIVE RADIATED POWER	.39
	9.2 RADIATED SPURIOUS EMISSIONS	.43
	9.3 PEAK-TO-AVERAGE RATIO	.44

9.5 CONDUCTED SPURIOUS EMISSIONS	46
9.6 BAND EDGE	46
9.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	47
10. TEST PLOTS (Main1)	51
11. TEST PLOTS (Sub1)	128
12. ANNEX A TEST SETUP PHOTO	205

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMS931B
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§ 22
EUT Type:	Mobile phone
Model(s):	SM-S931B/DS
Additional Model(s)	SM-S931B
SCS(kHz):	15
Bandwidth(MHz):	5, 10, 15, 20
Waveform:	CP-OFDM, DFT-S-OFDM
Modulation:	DFT-S-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
Tx Frequency:	826.5 MHz - 846.5 MHz (Sub6 n5(5 MHz)) 829.0 MHz - 844.0 MHz (Sub6 n5(10 MHz)) 831.5 MHz - 841.5 MHz (Sub6 n5(15 MHz)) 834.0 MHz - 839.0 MHz (Sub6 n5(20 MHz))
Date(s) of Tests:	August 21, 2024 ~ October 28, 2024
Serial number:	Radiated: R3CX80V3P0J Conducted: R3CX80PTCRA

F-TP22-03 (Rev. 06) Page 6 of 205

1.1. MAXIMUM OUTPUT POWER

Main1

Mode	Ty Fraguency	Emission		ERP		
(MHz)	Tx Frequency (MHz)	Designator Modulation		Max. Power (W)	Max. Power (dBm)	
		4M50G7D	PI/2 BPSK	0.052	17.19	
		4M50G7D	QPSK	0.051	17.11	
Sub6 n5 (5)	826.5 - 846.5	4M54W7D	16QAM	0.041	16.09	
		4M52W7D	64QAM	0.030	14.76	
		4M50W7D	256QAM	0.016	12.05	
		9M00G7D	PI/2 BPSK	0.051	17.08	
		8M99G7D	QPSK	0.048	16.77	
Sub6 n5 (10)	829.0 - 844.0	8M98W7D	16QAM	0.037	15.63	
		9M03W7D	64QAM	0.027	14.37	
		9M01W7D	256QAM	0.015	11.89	
		13M4G7D	PI/2 BPSK	0.052	17.13	
		13M5G7D	QPSK	0.049	16.87	
Sub6 n5 (15)	831.5 – 841.5	13M4W7D	16QAM	0.038	15.77	
		13M5W7D	64QAM	0.028	14.54	
		13M5W7D	256QAM	0.016	11.96	
		17M9G7D	PI/2 BPSK	0.051	17.07	
		18M0G7D	QPSK	0.050	16.95	
Sub6 n5 (20)	834.0 - 839.0	18M0W7D	16QAM	0.038	15.81	
		17M9W7D	64QAM	0.028	14.46	
		17M9W7D	256QAM	0.016	11.93	

F-TP22-03 (Rev. 06) Page 7 of 205

Sub1

Mada	Mode Tx Frequency Emission (MHz) (MHz) Designator	Emission		ERP		
			Modulation	Max. Power (W)	Max. Power (dBm)	
		4M52G7D	PI/2 BPSK	0.086	19.36	
	4M48G7D	QPSK	0.085	19.29		
Sub6 n5 (5)	826.5 - 846.5	4M49W7D	16QAM	0.067	18.26	
		4M51W7D	64QAM	0.050	16.96	
		4M52W7D	256QAM	0.027	14.35	
		9M00G7D	PI/2 BPSK	0.086	19.35	
		9M01G7D	QPSK	0.085	19.30	
Sub6 n5 (10)	829.0 – 844.0	8M97W7D	16QAM	0.066	18.17	
		8M97W7D	64QAM	0.048	16.85	
		9M00W7D	256QAM	0.026	14.18	
		13M5G7D	PI/2 BPSK	0.089	19.51	
		13M5G7D	QPSK	0.087	19.41	
Sub6 n5 (15)	831.5 - 841.5	13M5W7D	16QAM	0.068	18.35	
		13M5W7D	64QAM	0.050	17.03	
		13M4W7D	256QAM	0.027	14.39	
		17M9G7D	PI/2 BPSK	0.088	19.46	
		18M0G7D	QPSK	0.086	19.37	
Sub6 n5 (20)	834.0 - 839.0	17M9W7D	16QAM	0.067	18.28	
		17M9W7D	64QAM	0.049	16.87	
		18M0W7D	256QAM	0.027	14.30	

F-TP22-03 (Rev. 06) Page 8 of 205

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6. It also supports IEEE 802.11 a/b/g/n/ac/ax/be (20/40/80/160/320 MHz), Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **Republic of Korea**

F-TP22-03 (Rev. 06) Page 9 of 205

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 - Section 4.3 - ANSI C63.26-2015 - Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Conducted Output Power	- N/A (See SAR Report)
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 - Section 5.7 - ANSI C63.26-2015 - Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/	- KDB 971168 D01 v03r01 - Section 5.2 & 5.8
Effective Isotropic Radiated Power	- ANSI/TIA-603-E-2016 – Section 2.2.17
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 - Section 6.2 - ANSI/TIA-603-E-2016 - Section 2.2.12

F-TP22-03 (Rev. 06) Page 10 of 205

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

P_d (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dB)

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 11 of 205

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

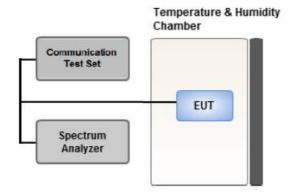
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 12 of 205

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2 (ANSI C63.26-2015) to measure the total peak power and record as P_{Pk} .

Use one of the applicable procedures presented 5.2 (ANSI C63.26-2015) to measure the total average power and record as P_{Avg} . Determine the P.A.R. from:

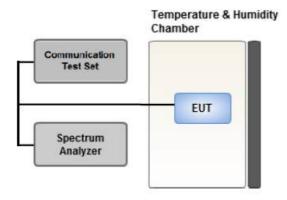
P.A.R $_{(dB)} = P_{Pk}$ $_{(dBm)} - P_{Avg(dBm)}$ ($P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 13 of 205

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span $\geq 2 \times OBW$.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set $\geq [10 \times (number of points in sweep) \times (transmission period)]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 14 of 205

3.5 OCCUPIED BANDWIDTH.

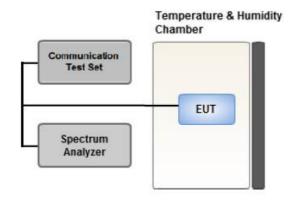
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- $3. VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99 % occupied bandwidth observed in Step 7

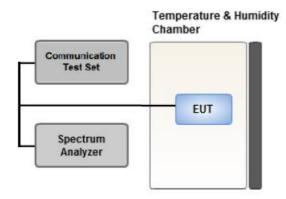
F-TP22-03 (Rev. 06) Page 15 of 205

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 16 of 205

3.7 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of

operation were investigated and the worst case configuration results are reported in this section.

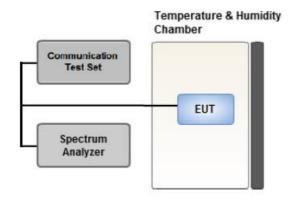
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- 4. $VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

F-TP22-03 (Rev. 06) Page 17 of 205

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \, \text{MHz/RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 18 of 205

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $\,^{\circ}$ C to +50 $\,^{\circ}$ C in 10 $\,^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter.
 - Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 19 of 205

3.9 WORST CASE(RADIATED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: NSA, SA Worst case: SA

Mode: Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)

Worst case: Stand alone

- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.

Therefore, only the worst case(stand-alone) results were reported.

- Radiated Spurious emissions are measured while operating in EN-DC mode with Sub 6 NR carrier as well as an LTE carrier (anchor).

All EN-DC mode of operation (=anchor) were investigated and the test results were measured No Peak Found.

The test results which are attenuated more than 20 dB below the permissible value, so it was not reported.

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

- In the case of radiated spurious emissions, all bandwidth of operation was investigated and the worst case bandwidth results are reported. (Worst case: 5 MHz (Main1), 15 MHz (Sub1))
- SM-S931B/DS & additional models were tested and the worst case results are reported. (Worst case : SM-S931B/DS)

[Main1 Worst case]

Test Description	Modulation	RB size	RB offset	Axis
	PI/2 BPSK,			
	QPSK,			
Effective Radiated Power	16QAM,	See Section 8.1		X
	64QAM,			
	256QAM			
Radiated Spurious and Harmonic Emissions	PI/2 BPSK	See Sec	tion 8.2	X

[Sub1 Worst case]

Test Description	Modulation	RB size	RB offset	Axis
Effective Radiated Power	PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	See Sec	tion 9.1	Х
Radiated Spurious and Harmonic Emissions	PI/2 BPSK	See Sec	tion 9.2	Х

F-TP22-03 (Rev. 06) Page 20 of 205

3.10 WORST CASE(CONDUCTED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- Modulation : All Modulation of operation were investigated and the worst case configuration results

are reported.

(Worst case: PI/2 BPSK)

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: NSA, SA Worst case: SA

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

- SM-S931B/DS & additional models were tested and the worst case results are reported.

(Worst case: SM-S931B/DS)

[Worst case]

Test Description	Modulation	Bandwidth	Frequency	RB size	RB offset	
	Modulation	(MHz)	rrequeries	ND 312C	IND OTISEE	
	PI/2 BPSK,					
Occupied Bandwidth	QPSK,					
Peak- to- Average Ratio	16QAM,	5, 10, 15, 20	Mid	Full RB	0	
J	64QAM,					
	256QAM					
		5	Low	1	0	
	PI/2 BPSK		High	1	24	
		10	Low	1	0	
			High	1	51	
Band Edge		15	Low	1	0	
Duna Lage	1 1/2 21 010	15	High	1	78	
		20	Low	1	0	
		20	High	1	105	
		5, 10, 15, 20	Low,	Full RB	0	
		5, 10, 15, 20	High	I UII ND	U	
Spurious and Harmonic Emissions at Antenna Terminal			Low,			
	PI/2 BPSK	5, 10, 15, 20	Mid,	1	1	
			High			

F-TP22-03 (Rev. 06) Page 21 of 205

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacture	Serial No.	Due to Calibration	Calibration Interval
Precision Dipole Antenna	UHAP	Schwarzbeck	01273	03/10/2026	Biennial
Precision Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	02289	02/14/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1299	04/27/2025	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Loop Antenna(9 kHz~30 MHz)	FMZB1513	Rohde & Schwarz	1513-175	01/16/2025	Biennial
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/09/2025	Biennial
Hybrid Antenna	VULB9160	Schwarzbeck	760	02/24/2025	Biennial
RF Switching System	FBSR-06B (1G HPF + LNA)	T&M SYSTEM	F3L1	05/14/2025	Annual
RF Switching System	FBSR-06B (3G HPF + LNA)	T&M SYSTEM	F3L2	05/14/2025	Annual
RF Switching System	FBSR-06B (6G HPF + LNA)	T&M SYSTEM	F3L3	05/14/2025	Annual
RF Switching System	FBSR-06B (LNA)	T&M SYSTEM	F3L4	05/14/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/17/2024	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
DC Power Supply	E3632A	Hewlett Packard	MY40004427	08/22/2025	Annual
Power Splitter(DC~26.5 GHz)	11667B	Hewlett Packard	11275	02/29/2025	Annual
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Signal Analyzer(10 Hz~26.5 GHz)	N9020A	Agilent	MY51110063	04/04/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz~40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/13/2025	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262287701	05/16/2025	Annual
Wideband Radio Communication Tester	MT8000A	Anritsu Corp.	6262302511	05/14/2025	Annual
Signal Analyzer(5 Hz~40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
4-Way Divider	ZC4PD-K1844+	Mini-Circuits	942907	09/10/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 22 of 205

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 23 of 205

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	
Occupied Bandwidth	§ 2.1049	N/A	PASS	
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 22.917(a)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS	
Conducted Output Power	§ 2.1046	N/A	See Note1	
Frequency stability / variation of ambient temperature	§ 2.1055, § 22.355	< 2.5 ppm	PASS	

Note:

- 1. See SAR Report
- 2. Conducted tests were tested using 5G Wireless Tester.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Effective Radiated Power	§ 22.913(a)(5)	< 7 Watts max. ERP	PASS
Radiated Spurious and	§ 2.1053,	<43 + 10log10 (P[Watts]) for	DACC
Harmonic Emissions	§ 22.917(a)	all out-of band emissions	PASS

Note:

1. Radiated tests were tested using 5G Wireless Tester.

F-TP22-03 (Rev. 06) Page 24 of 205

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EF	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Substitute Ant. Gain			EII	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 25 of 205

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz
F = Frequency Modulation
9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 26 of 205

8. TEST DATA (Main1)

8.1 EFFECTIVE RADIATED POWER

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-33.21	26.97	-9.90	1.44	Н		0.037	15.63		
		QPSK	-33.32	26.86	-9.90	1.44	Н		0.036	15.52		
826.5		16-QAM	-34.30	25.88	-9.90	1.44	Н		0.028	14.54	1	23
		64-QAM	-35.62	24.56	-9.90	1.44	Н		0.021	13.22	1	
		256-QAM	-38.20	21.98	-9.90	1.44	Н		0.012	10.64		
		PI/2 BPSK	-32.35	27.87	-9.90	1.45	Н		0.045	16.52		23
	Sub6 n5/	QPSK	-32.37	27.85	-9.90	1.45	Н		0.045	16.50 15.51		
836.5	5 MHz	16-QAM	-33.36	26.86	-9.90	1.45	Н	< 7.00	0.036			
	[15 kHz]	64-QAM	-34.77	25.45	-9.90	1.45	Н		0.026	14.10		
		256-QAM	-37.37	22.85	-9.90	1.45	Н		0.014	11.50		
		PI/2 BPSK	-31.93	28.54	-9.90	1.45	Н		0.052	17.19		
		QPSK	-32.01	28.46	-9.90	1.45	Н		0.051	17.11		
846.5	6.5	16-QAM	-33.03	27.44	-9.90	1.45	Н		0.041	16.09	1	1
		64-QAM	-34.36	26.11	-9.90	1.45	Н	Н 0.030	14.76			
		256-QAM	-37.07	23.40	-9.90	1.45	Н		0.016	12.05		

F-TP22-03 (Rev. 06) Page 27 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-32.71	27.43	-9.90	1.44	Н		0.041	16.09		
		QPSK	-32.74	27.40	-9.90	1.44	Н		0.040	16.06		
829.0		16-QAM	-33.94	26.20	-9.90	1.44	Н		0.031	14.86	1	50
		64-QAM	-35.17	24.97	-9.90	1.44	Н		0.023	13.63		
		256-QAM	-37.87	22.27	-9.90	1.44	Н		0.012	10.93		
		PI/2 BPSK	-32.08	28.14	-9.90	1.45	Н		0.048	16.79		
	Sub6 n5/	QPSK	-32.10	28.12	-9.90	1.45	Н		0.048	16.77	1	50
836.5	10 MHz	16-QAM	-33.24	26.98	-9.90	1.45	Н	< 7.00	0.037	15.63		
	[15 kHz]	64-QAM	-34.50	25.72	-9.90	1.45	Н		0.027	14.37		
		256-QAM	-37.24	22.98	-9.90	1.45	Н		0.015	11.63		
		PI/2 BPSK	-31.91	28.43	-9.90	1.45	Н		0.051	17.08		
		QPSK	-32.62	27.72	-9.90	1.45	Н		0.043	16.37		
844.0		16-QAM	-33.54	26.80	-9.90	1.45	Н		0.035	15.45	1	50
		64-QAM	-34.71	25.63	-9.90	1.45	Н		0.027	14.28		
		256-QAM	-37.10	23.24	-9.90	1.45	Н		0.015	11.89		

F-TP22-03 (Rev. 06) Page 28 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-32.25	27.95	-9.90	1.45	Н		0.046	16.60		
		QPSK	-32.28	27.92	-9.90	1.45	Н		0.045	16.57		
831.5		16-QAM	-33.42	26.78	-9.90	1.45	Н		0.035	15.43	1	77
		64-QAM	-34.86	25.34	-9.90	1.45	Н		0.025	13.99	_	
		256-QAM	-37.47	22.73	-9.90	1.45	Н		0.014	11.38		
		PI/2 BPSK	-31.93	28.29	-9.90	1.45	Н		0.049	16.94		
	Sub6 n5/	QPSK	-32.00	28.22	-9.90	1.45	Н		0.049 16.8	16.87	1	
836.5	15 MHz	16-QAM	-33.10	27.12	-9.90	1.45	Н	< 7.00	0.038	15.77		77
	[15 kHz]	64-QAM	-34.50	25.72	-9.90	1.45	Н		0.027	14.37		
		256-QAM	-37.06	23.16	-9.90	1.45	Н		0.015	11.81		
		PI/2 BPSK	-31.89	28.48	-9.90	1.45	Н		0.052	17.13		
		QPSK	-32.48	27.89	-9.90	1.45	Н	_	0.045	16.54		
841.5		16-QAM	-33.44	26.93	-9.90	1.45	Н		0.036	15.58	1	77
		64-QAM	-34.48	25.89	-9.90	1.45	Н	H	0.028	14.54		
		256-QAM	-37.06	23.31	-9.90	1.45	Н		0.016	11.96		

F-TP22-03 (Rev. 06) Page 29 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	El	RP	RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W dBm		Size	Offset
		PI/2 BPSK	-32.01	28.31	-9.90	1.45	Н		0.050	16.96		
		QPSK	-32.02	28.30	-9.90	1.45	Н		0.050	16.95		
834.0		16-QAM	-33.16	27.16	-9.90	1.45	Н		0.038	15.81	1	104
		64-QAM	-34.54	25.78	-9.90	1.45	Н		0.028	14.43		
		256-QAM	-37.17	23.15	-9.90	1.45	Н		0.015	11.80		
		PI/2 BPSK	-31.95	28.27	-9.90	1.45	Н		0.049	16.92	1	104
	Sub6 n5/	QPSK	-31.97	28.25	-9.90	1.45	Н		0.049	16.90		
836.5	20 MHz	16-QAM	-33.17	27.05	-9.90	1.45	Н	< 7.00	0.037	15.70		
	[15 kHz]	64-QAM	-34.45	25.77	-9.90	1.45	Н		0.028	14.42		
		256-QAM	-37.17	23.05	-9.90	1.45	Н		0.015	11.70		
		PI/2 BPSK	-31.95	28.42	-9.90	1.45	Н		0.051	17.07		
		QPSK	-32.55	27.82	-9.90	1.45	Н		0.044	16.47		
839.0		16-QAM	-33.47	26.90	-9.90	1.45	Н		0.036	15.55	1	104
		64-QAM	-34.56	25.81	-9.90	1.45	Н		0.028	14.46		
		256-QAM	-37.09	23.28	-9.90	1.45	Н		0.016	11.93		

F-TP22-03 (Rev. 06) Page 30 of 205

8.2 RADIATED SPURIOUS EMISSIONS

■ NR Band: <u>N5</u>

■ Bandwidth: <u>5 MHz</u>

■ Modulation: PI/2 BPSK

Distance: 3 meters

■ SCS: <u>15 kHz</u>

Ch	From (MILE)	Measured	Ant.	Substitute	6.1	Del	Result	Limit	RB	
Ch	Freq (MHz)	Level (dBm)	Gain (dBi)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Size	Offset
	1 653.00	-59.39	9.49	-68.30	2.02	Н	-60.83	-13.00		
165300 (826.5)	2 479.50	-59.37	10.74	-63.06	2.55	Н	-54.87	-13.00	1	23
(020.3)	3 306.00	-61.54	11.61	-63.71	2.97	Н	-55.07	-13.00		
	1 673.00	-57.77	9.69	-67.15	2.05	Н	-59.51	-13.00		
167300 (836.5)	2 509.50	-58.85	10.55	-63.58	2.51	Н	-55.54	-13.00	1	23
(830.3)	3 346.00	-59.79	11.53	-62.31	2.96	Н	-53.74	-13.00		
	1 693.00	-58.68	9.91	-67.47	2.07	Н	-59.63	-13.00		
169300 (846.5)	2 539.50	-59.65	10.62	-64.28	2.53	Н	-56.19	-13.00	1	1
(040.5)	3 386.00	-60.66	11.50	-62.69	2.99	Н	-54.18	-13.00		

F-TP22-03 (Rev. 06) Page 31 of 205

8.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
			BPSK			3.81
			QPSK			4.90
	5 MHz		16-QAM	25		5.66
			64-QAM			6.08
			256-QAM			6.09
			BPSK			4.02
			QPSK			4.90
	10 MHz		16-QAM	50		5.70
			64-QAM		0 -	6.06
Sub6			256-QAM			6.50
n5		836.5	BPSK			3.91
			QPSK			4.95
	15 MHz		16-QAM	75		5.70
			64-QAM			6.15
			256-QAM			6.40
			BPSK			4.26
	20 MHz		QPSK			4.86
			16-QAM	100		5.77
			64-QAM			6.02
		_	256-QAM			6.55

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 52 ~ 71.

F-TP22-03 (Rev. 06) Page 32 of 205

8.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
			BPSK			4.5006
			QPSK			4.5024
	5 MHz		16-QAM	25		4.5355
	10 MHz		64-QAM			4.5152
			256-QAM			4.5023
			BPSK			8.9989
			QPSK			8.9873
			16-QAM	50		8.9807
			64-QAM			9.0287
Sub6			256-QAM			9.0143
n5		836.5	BPSK		0	13.437
			QPSK			13.470
	15 MHz		16-QAM	75		13.406
			64-QAM			13.488
			256-QAM			13.482
			BPSK			17.939
	20 MHz		QPSK			17.985
			16-QAM	100		17.947
			64-QAM			17.900
		_	256-QAM			17.942

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 72 ~ 91.

F-TP22-03 (Rev. 06) Page 33 of 205

8.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Maximum Factor Harmonic (dB)		Result (dBm)	Limit (dBm)	
Sub6 n5	5	826.5	3.7857	30.200	-74.411	-44.211		
		836.5	8.8475	30.815	-74.486	-43.671		
		846.5	9.6869	30.815	-73.804	-42.989		
	10	829.0	9.9357	30.815	-74.657	-43.842		
		836.5	3.8131	30.200	-74.410	-44.210		
		844.0	9.7298	30.815	-74.631	-43.816	12.00	
	15	831.5	4.0923	30.200	-74.427	-44.227	-13.00	
		15 8	836.5	8.2737	30.815	-74.495	-43.680	
		841.5	3.8136	30.200	-74.833	-44.633		
	20	834.0	9.9955	30.815	-74.877	-44.062		
		836.5	3.7653	30.200	-75.165	-44.965		
		839.0	8.8554	30.815	-74.167	-43.352		

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 92 ~ 103.
- 2. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 3. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]		
0.03 - 1	27.494		
1 - 5	30.200		
5 - 10	30.815		
10 - 15	31.340		
15 - 20	31.713		
Above 20	32.355		

8.6 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 104 ~ 127.

F-TP22-03 (Rev. 06) Page 34 of 205

8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: <u>5 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency (Hz)	Frequency Error (Hz)	Deviation	ppm
(MHz)	(%)				(%)	
	100 %	+20(Ref)	836 499 999	0.0	0.000 000	0.000
	100 %	-30	836 499 998	-0.2	0.000 000	0.000
	100 %	-20	836 499 997	-1.2	0.000 000	-0.001
	100 %	-10	836 499 998	-0.7	0.000 000	-0.001
836.5	100 %	0	836 499 997	-1.6	0.000 000	-0.002
830.5	100 %	+10	836 499 998	-0.7	0.000 000	-0.001
	100 %	+30	836 499 999	0.0	0.000 000	0.000
	100 %	+40	836 499 999	0.6	0.000 000	0.001
	100 %	+50	836 499 998	-0.9	0.000 000	-0.001
	Batt. Endpoint	+20	836 499 998	-0.6	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 35 of 205

■ BandWidth: <u>10 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency (Hz)	Frequency Error (Hz)	Deviation	ppm
(MHz)	(%)	(°C)			(%)	
	100 %	+20(Ref)	836 500 003	0.0	0.000 000	0.000
	100 %	-30	836 500 007	4.2	0.000 000	0.005
	100 %	-20	836 500 007	3.7	0.000 000	0.004
	100 %	-10	836 500 007	3.7	0.000 000	0.004
026.5	100 %	0	836 500 007	3.9	0.000 000	0.005
836.5	100 %	+10	836 500 007	3.9	0.000 000	0.005
	100 %	+30	836 500 005	2.0	0.000 000	0.002
	100 %	+40	836 500 005	2.6	0.000 000	0.003
	100 %	+50	836 500 006	3.0	0.000 000	0.004
	Batt. Endpoint	+20	836 500 007	3.7	0.000 000	0.004

F-TP22-03 (Rev. 06) Page 36 of 205

■ BandWidth: <u>15 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
	100 %	+20(Ref)	836 500 000	0.0	0.000 000	0.000
	100 %	-30	836 499 999	-0.6	0.000 000	-0.001
	100 %	-20	836 499 999	-0.6	0.000 000	-0.001
	100 %	-10	836 500 001	0.7	0.000 000	0.001
836.5	100 %	0	836 500 000	-0.2	0.000 000	0.000
630.3	100 %	+10	836 499 998	-1.8	0.000 000	-0.002
	100 %	+30	836 500 001	0.6	0.000 000	0.001
	100 %	+40	836 500 000	0.3	0.000 000	0.000
	100 %	+50	836 500 000	0.1	0.000 000	0.000
	Batt. Endpoint	+20	836 500 000	0.2	0.000 000	0.000

F-TP22-03 (Rev. 06) Page 37 of 205

■ BandWidth: <u>20 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
	100 %	+20(Ref)	836 500 000	0.0	0.000 000	0.000
	100 %	-30	836 500 000	-0.3	0.000 000	0.000
	100 %	-20	836 499 999	-1.0	0.000 000	-0.001
	100 %	-10	836 499 999	-1.2	0.000 000	-0.001
026.5	100 %	0	836 499 998	-1.6	0.000 000	-0.002
836.5	100 %	+10	836 499 998	-1.6	0.000 000	-0.002
	100 %	+30	836 499 998	-2.0	0.000 000	-0.002
	100 %	+40	836 499 998	-1.8	0.000 000	-0.002
	100 %	+50	836 499 998	-2.0	0.000 000	-0.002
	Batt. Endpoint	+20	836 500 000	0.3	0.000 000	0.000

F-TP22-03 (Rev. 06) Page 38 of 205

9. TEST DATA (Sub1)

9.1 EFFECTIVE RADIATED POWER

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	El	RP	RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-29.82	30.36	-9.90	1.44	Н		0.080	19.02		
	826.5	QPSK	-29.86	30.32	-9.90	1.44	Н		0.079	18.98		
826.5		16-QAM	-30.90	29.28	-9.90	1.44	Н		0.062	17.94	1	23
		64-QAM	-32.25	27.93	-9.90	1.44	Н		0.046	16.59		
		256-QAM	-34.79	25.39	-9.90	1.44	Н		0.025	14.05		
		PI/2 BPSK	-29.51	30.71	-9.90	1.45	Н		0.086	19.36		
	Sub6 n5/	QPSK	-29.58	30.64	-9.90	1.45	Н		0.085	19.29		
836.5	5 MHz	16-QAM	-30.61	29.61	-9.90	1.45	Н	< 7.00	0.067	18.26	1	12
	[15 kHz]	64-QAM	-31.91	28.31	-9.90	1.45	Н		0.050	16.96		
		256-QAM	-34.52	25.70	-9.90	1.45	Н		0.027	14.35		
		PI/2 BPSK	-29.90	30.57	-9.90	1.45	Н		0.084	19.22		
		QPSK	-29.92	30.55	-9.90	1.45	Н		0.083	19.20		
846.5		16-QAM	-30.94	29.53	-9.90	1.45	Н		0.066	18.18	1	1
		64-QAM	-32.32	28.15	-9.90	1.45	Н		0.048	16.80		
		256-QAM	-34.85	25.62	-9.90	1.45	Н	Н 0.02	0.027	14.27		

F-TP22-03 (Rev. 06) Page 39 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-29.56	30.58	-9.90	1.44	Н		0.084	19.24		
		QPSK	-29.61	30.53	-9.90	1.44	Н		0.083	19.19		50
829.0		16-QAM	-30.74	29.40	-9.90	1.44	Н		0.064	18.06	1	
		64-QAM	-32.07	28.07	-9.90	1.44	Н		0.047	16.73		
		256-QAM	-34.72	25.42	-9.90	1.44	Н		0.026	14.08		
		PI/2 BPSK	-29.61	30.61	-9.90	1.45	Н		0.084	19.26		
	Sub6 n5/	QPSK	-29.62	30.60	-9.90	1.45	Н		0.084	19.25		
836.5	10 MHz	16-QAM	-30.70	29.52	-9.90	1.45	Н	< 7.00	0.066	18.17	1	26
	[15 kHz]	64-QAM	-32.09	28.13	-9.90	1.45	Н	0.048	0.048	16.78		
		256-QAM	-34.70	25.52	-9.90	1.45	Н		0.026	14.17		
		PI/2 BPSK	-29.64	30.70	-9.90	1.45	Н		0.086	19.35		
		QPSK	-29.69	30.65	-9.90	1.45	Н		0.085	19.30		
844.0		16-QAM	-30.83	29.51	-9.90	1.45	Н	H 0.066	18.16	1	1	
		64-QAM	-32.14	28.20	-9.90	1.45	Н 0.048	16.85				
		256-QAM	-34.81	25.53	-9.90	1.45	Н		0.026	14.18		

F-TP22-03 (Rev. 06) Page 40 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-29.63	30.57	-9.90	1.45	Н		0.084	19.22		39
		QPSK	-29.65	30.55	-9.90	1.45	Н		0.083	19.20		
831.5		16-QAM	-30.76	29.44	-9.90	1.45	Н		0.064	18.09	1	
		64-QAM	-32.26	27.94	-9.90	1.45	Н		0.046	16.59		
		256-QAM	-34.82	25.38	-9.90	1.45	Н		0.025	14.03		
		PI/2 BPSK	-29.67	30.55	-9.90	1.45	Н		0.083	19.20		
	Sub6 n5/	QPSK	-29.68	30.54	-9.90	1.45	Н		0.083	19.19		
836.5	15 MHz	16-QAM	-30.80	29.42	-9.90	1.45	Н	< 7.00	0.064	18.07	1	39
	[15 kHz]	64-QAM	-32.18	28.04	-9.90	1.45	Н		0.047	16.69		
		256-QAM	-34.69	25.53	-9.90	1.45	Н		0.026	14.18		
		PI/2 BPSK	-29.51	30.86	-9.90	1.45	Н		0.089	19.51		
		QPSK	-29.61	30.76	-9.90	1.45	Н		0.087	19.41		
841.5		16-QAM	-30.67	29.70	-9.90	1.45	Н		0.068	18.35	1	1
		64-QAM	-31.99	28.38	-9.90	1.45	Н			17.03		
		256-QAM	-34.63	25.74	-9.90	1.45	Н			14.39		

F-TP22-03 (Rev. 06) Page 41 of 205

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	ERP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBd)			W	W	dBm	Size	Offset
		PI/2 BPSK	-29.51	30.81	-9.90	1.45	Н		0.088	19.46		
		QPSK	-29.60	30.72	-9.90	1.45	Н		0.086	19.37		53
834.0		16-QAM	-30.69	29.63	-9.90	1.45	Н		0.067	18.28	1	
		64-QAM	-32.10	28.22	-9.90	1.45	Н		0.049	16.87		
		256-QAM	-34.68	25.64	-9.90	1.45	Н		0.027	14.29		
		PI/2 BPSK	-29.60	30.62	-9.90	1.45	Н		0.085	19.27		
	Sub6 n5/	QPSK	-29.61	30.61	-9.90	1.45	Н		0.084	19.26		
836.5	20 MHz	16-QAM	-30.72	29.50	-9.90	1.45	Н	< 7.00	0.065	18.15	1	53
	[15 kHz]	64-QAM	-32.12	28.10	-9.90	1.45	Н		0.047	16.75		
		256-QAM	-34.73	25.49	-9.90	1.45	Н		0.026	14.14		
		PI/2 BPSK	-29.63	30.74	-9.90	1.45	Н		0.087	19.39		
		QPSK	-29.70	30.67	-9.90	1.45	Н		0.086	19.32		
839.0		16-QAM	-30.78	29.59	-9.90	1.45	Н		0.067	18.24	1	53
		64-QAM	-32.17	28.20	-9.90	1.45	Н		0.048 16.85	16.85		
		256-QAM	-34.72	25.65	-9.90	1.45	Н		0.027	14.30		

F-TP22-03 (Rev. 06) Page 42 of 205

9.2 RADIATED SPURIOUS EMISSIONS

■ NR Band: <u>N5</u>

■ Bandwidth: <u>15 MHz</u>

■ Modulation: PI/2 BPSK

Distance: 3 meters

■ SCS: <u>15 kHz</u>

CI.	F (1411-)	Measured	Ant.	Substitute		D. I	Result	Limit	F	RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBi)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Size	Offset
	1 663.00	-58.78	9.58	-67.85	2.04	V	-60.31	-13.00		
166300 (831.5)	2 494.50	-60.02	10.65	-64.49	2.50	V	-56.34	-13.00	1	39
(631.3)	3 326.00	-61.30	11.57	-62.85	2.99	V	-54.27	-13.00		
	1 673.00	-58.64	9.69	-68.02	2.05	V	-60.38	-13.00		
167300 (836.5)	2 509.50	-60.79	10.55	-65.52	2.51	V	-57.48	-13.00	1	39
(030.3)	3 346.00	-60.74	11.53	-63.26	2.96	V	-54.69	-13.00		
	1 683.00	-59.31	9.80	-68.42	2.06	V	-60.68	-13.00		
168300 (841.5)	2 524.50	-61.25	10.52	-65.52	2.54	V	-57.54	-13.00	1	1
(041.5)	3 366.00	-60.88	11.49	-63.31	2.96	V	-54.78	-13.00		

F-TP22-03 (Rev. 06) Page 43 of 205

9.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
			BPSK			4.03
			QPSK	QPSK		5.09
	5 MHz		16-QAM	25		5.83
			64-QAM			6.02
			256-QAM			6.62
			BPSK			3.87
			QPSK			5.09
			16-QAM	50		5.81
			64-QAM			6.18
Sub6			256-QAM		0	6.66
n5		836.5	BPSK		0	4.02
			QPSK	•		5.02
	15 MHz		16-QAM	75		5.89
			64-QAM			6.02
			256-QAM			6.39
			BPSK			3.96
	20 MHz		QPSK			4.97
			16-QAM	100		5.82
			64-QAM			6.07
		_	256-QAM			6.51

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 129 $^{\sim}$ 148.

F-TP22-03 (Rev. 06) Page 44 of 205

9.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
			BPSK			4.5150
			QPSK			4.4768
	5 MHz		16-QAM	25		4.4884
			64-QAM			4.5110
			256-QAM			4.5201
			BPSK			8.9947
			QPSK			9.0140
			16-QAM	50		8.9700
			64-QAM			8.9693
Sub6			256-QAM			9.0006
n5		836.5	BPSK		0	13.491
			QPSK	75		13.467
	15 MHz		16-QAM			13.479
			64-QAM			13.517
			256-QAM			13.442
			BPSK			17.932
			QPSK			17.963
20 MHz		16-QAM	100		17.903	
			64-QAM			17.926
			256-QAM			17.956

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 149 \sim 168.

F-TP22-03 (Rev. 06) Page 45 of 205

9.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Maximum Factor		Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		826.5	8.2687	30.815	-73.997	-43.182	
	5	836.5	9.9651	30.815	-74.498	-43.683	
		846.5	9.1376	30.815	-74.765	-43.950	
		829.0	3.8012	30.200	-74.557	-44.357	
	10	836.5	8.2548	30.815	-74.282	-43.467	
Cb.CE		844.0	8.2273	30.815	-74.873	-44.058	12.00
Sub6 n5		831.5	3.8231	30.200	-74.306	-44.106	-13.00
	15	836.5	3.7987	30.200	-74.542	-44.342	
		841.5	8.8873	30.815	-73.922	-43.107	
		834.0	8.2971	30.815	-73.630	-42.815	
	20	836.5	8.8739	30.815	-74.420	-43.605	
		839.0	4.9113	30.200	-74.061	-43.861	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 169 \sim 180.
- 2. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 3. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 - 1	27.494
1 - 5	30.200
5 - 10	30.815
10 - 15	31.340
15 - 20	31.713
Above 20	32.355

9.6 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 181 ~ 204.

F-TP22-03 (Rev. 06) Page 46 of 205

9.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: 5 MHz

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.00025\%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
	100 %	+20(Ref)	836 499 999	0.0	0.000 000	0.000
	100 %	-30	836 499 999	-0.4	0.000 000	-0.001
	100 %	-20	836 499 998	-1.7	0.000 000	-0.002
	100 %	-10	836 499 999	-0.2	0.000 000	0.000
02C E	100 %	0	836 499 999	0.0	0.000 000	0.000
836.5	100 %	+10	836 500 000	0.2	0.000 000	0.000
	100 %	+30	836 499 998	-1.8	0.000 000	-0.002
-	100 %	+40	836 499 999	-0.3	0.000 000	0.000
	100 %	+50	836 499 998	-1.0	0.000 000	-0.001
	Batt. Endpoint	+20	836 499 999	-0.5	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 47 of 205

■ BandWidth: <u>10 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
836.5	100 %	+20(Ref)	836 500 005	0.0	0.000 000	0.000
	100 %	-30	836 500 008	3.6	0.000 000	0.004
	100 %	-20	836 500 007	2.1	0.000 000	0.002
	100 %	-10	836 500 007	2.7	0.000 000	0.003
	100 %	0	836 500 008	3.4	0.000 000	0.004
	100 %	+10	836 500 009	4.3	0.000 001	0.005
	100 %	+30	836 500 010	5.2	0.000 001	0.006
	100 %	+40	836 500 008	3.7	0.000 000	0.004
	100 %	+50	836 500 007	2.6	0.000 000	0.003
	Batt. Endpoint	+20	836 500 009	4.1	0.000 000	0.005

F-TP22-03 (Rev. 06) Page 48 of 205

■ BandWidth: <u>15 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
836.5	100 %	+20(Ref)	836 500 000	0.0	0.000 000	0.000
	100 %	-30	836 500 000	-0.1	0.000 000	0.000
	100 %	-20	836 500 001	1.5	0.000 000	0.002
	100 %	-10	836 500 000	0.2	0.000 000	0.000
	100 %	0	836 500 001	1.4	0.000 000	0.002
	100 %	+10	836 500 000	0.4	0.000 000	0.000
	100 %	+30	836 499 999	-0.3	0.000 000	0.000
	100 %	+40	836 499 999	-0.1	0.000 000	0.000
	100 %	+50	836 500 000	0.7	0.000 000	0.001
	Batt. Endpoint	+20	836 500 000	0.1	0.000 000	0.000

F-TP22-03 (Rev. 06) Page 49 of 205

■ BandWidth: <u>20 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
836.5	100 %	+20(Ref)	836 499 999	0.0	0.000 000	0.000
	100 %	-30	836 499 996	-2.3	0.000 000	-0.003
	100 %	-20	836 499 997	-2.0	0.000 000	-0.002
	100 %	-10	836 499 997	-1.3	0.000 000	-0.002
	100 %	0	836 499 996	-2.5	0.000 000	-0.003
	100 %	+10	836 499 999	0.6	0.000 000	0.001
	100 %	+30	836 499 998	-0.5	0.000 000	-0.001
	100 %	+40	836 499 999	0.1	0.000 000	0.000
	100 %	+50	836 499 997	-1.7	0.000 000	-0.002
	Batt. Endpoint	+20	836 499 996	-2.3	0.000 000	-0.003

F-TP22-03 (Rev. 06) Page 50 of 205

10. TEST PLOTS (Main1)

F-TP22-03 (Rev. 06) Page 51 of 205



pectrum Analyzer 1 ower Stat CCDF Ö Center Freq: 836 500000 MHz Counts: 2 00 M/2 00 Mpt Radio Std. None Input Z. 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Atten: 16 dB Preamp: Off Center Frequency 836.500000 MHz LNI CF Step 5.000000 MHz 2 Graph 1 Metrics Auto Man Average Power 22.89 dBm Freq Offset 0 Hz 50.28 % at 0 dB 10.0 % 1.85 dB 1.0 % 3.16 dB 3.81 dB 0.01 % 4.02 dB 4.10 dB 0.0001 % 4.14 dB 4.14 dB 27.03 dBm Local 0.00 dB Info BW 5.0000 MHz 20.00 dB 1 5 C 2 Sep 12, 2024 9:52:33 AM

NR5_5 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 52 of 205

NR5_5 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 53 of 205

NR5_5 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 54 of 205

NR5_5 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 55 of 205



NR5_5 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 56 of 205

NR5_10 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 57 of 205



NR5_10 M_PAR_Mid_QPSK_FullRB

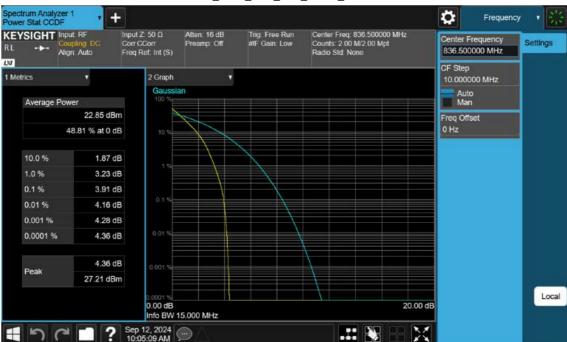
F-TP22-03 (Rev. 06) Page 58 of 205

NR5_10 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 59 of 205

NR5_10 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 60 of 205



NR5_10 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 61 of 205

NR5_15 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 62 of 205

NR5_15 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 63 of 205

NR5_15 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 64 of 205

NR5_15 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 65 of 205

NR5_15 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 66 of 205

NR5_20 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 67 of 205

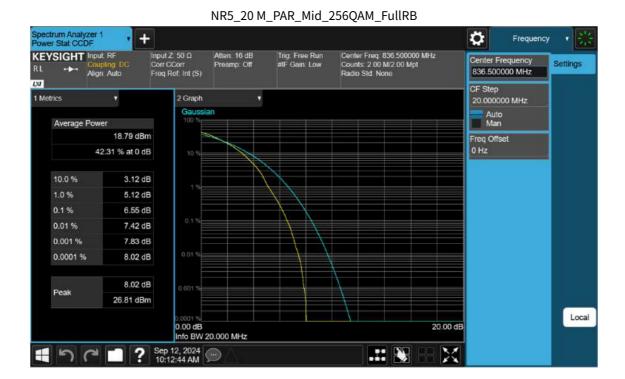


NR5_20 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 68 of 205

NR5_20 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 69 of 205



NR5_20 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 70 of 205

F-TP22-03 (Rev. 06) Page 71 of 205

NR5_5 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 72 of 205

NR5_5 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 73 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 10.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 1.000000 MHz Auto Man Freq Offset 0 Hz Center 836.500 MHz #Res BW 100.00 kHz Span 10 MHz Sweep 16.7 ms (1001 pts) #Video BW 390.00 kHz 2 Metrics Occupied Bandwidth 4.5355 MHz Total Power 29.5 dBm -23.637 kHz 5.269 MHz % of OBW Power x dB Transmit Freq Error x dB Bandwidth 99.00 % -26.00 dB Local ? Sep 12, 2024 9:53:26 AM

NR5_5 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 74 of 205

NR5_5 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 75 of 205

NR5_5 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 76 of 205

NR5_10 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 77 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 20.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 200.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) #Video BW 820.00 kHz 2 Metrics Occupied Bandwidth 8.9873 MHz Total Power 30.3 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -217.46 kHz 9.900 MHz 99.00 % -26.00 dB Local Sep 12, 2024 9:59:23 AM

NR5_10 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 78 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 20.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 200.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) #Video BW 820.00 kHz 2 Metrics Occupied Bandwidth 8.9807 MHz Total Power 29.1 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -199.78 kHz 9.981 MHz 99.00 % -26.00 dB Local Sep 12, 2024 9:59:45 AM

NR5_10 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 79 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 20.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 200.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) #Video BW 820.00 kHz 2 Metrics Occupied Bandwidth 9.0287 MHz Total Power 28.7 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -175.61 kHz 9.941 MHz 99.00 % -26.00 dB Local

NR5_10 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 80 of 205

NR5_10 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 81 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 30.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Freq Offset 0 Hz Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.437 MHz Total Power 31.1 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -368.44 kHz 14.44 MHz 99.00 % -26.00 dB Local

NR5 15 M OBW Mid BPSK FullRB

F-TP22-03 (Rev. 06) Page 82 of 205

NR5_15 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 83 of 205

NR5_15 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 84 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 30.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.488 MHz Total Power 29.1 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -387.16 kHz 14.47 MHz 99.00 % -26.00 dB Local ? Sep 12, 2024 0

NR5_15 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 85 of 205

NR5_15 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 86 of 205

NR5_20 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 87 of 205

NR5_20 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 88 of 205

NR5_20 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 89 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 40.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Freq Offset 0 Hz Center 836.50 MHz #Res BW 390.00 kHz Span 40 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.6000 MHz 2 Metrics Occupied Bandwidth 17.900 MHz Total Power 29.1 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -553.70 kHz 19.11 MHz 99.00 % -26.00 dB Local

NR5_20 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 90 of 205

NR5_20 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 91 of 205

NR5_5 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 92 of 205

NR5_5 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 93 of 205

NR5_5 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 94 of 205

NR5_10 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 95 of 205

NR5_10 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 96 of 205

NR5_10 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 97 of 205

NR5_15 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 98 of 205

NR5_15 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 99 of 205

NR5_15 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 100 of 205

NR5_20 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 101 of 205

NR5_20 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 102 of 205



NR5_20 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 103 of 205

NR5_5 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 104 of 205

NR5_5 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 105 of 205

NR5_5 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 106 of 205

NR5_5 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 107 of 205

NR5_5 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 108 of 205

NR5_5 M_Extended Band Edge_High_BPSK_FullRB

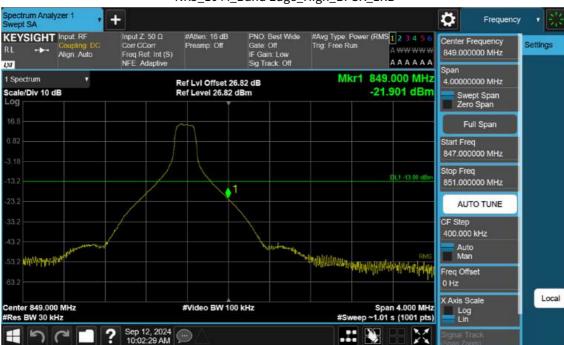
F-TP22-03 (Rev. 06) Page 109 of 205

NR5_10 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 110 of 205

NR5_10 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 111 of 205



NR5_10 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 112 of 205

NR5_10 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 113 of 205

NR5_10 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 114 of 205

NR5_10 M_Extended Band Edge_High_BPSK_FullRB

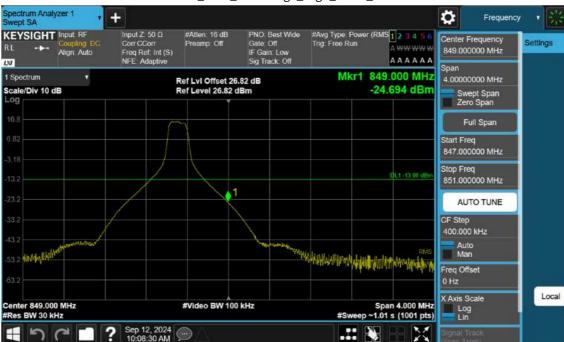
F-TP22-03 (Rev. 06) Page 115 of 205

NR5_15 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 116 of 205

NR5_15 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 117 of 205



NR5_15 M_Extended Band Edge_Low_BPSK_FullRB

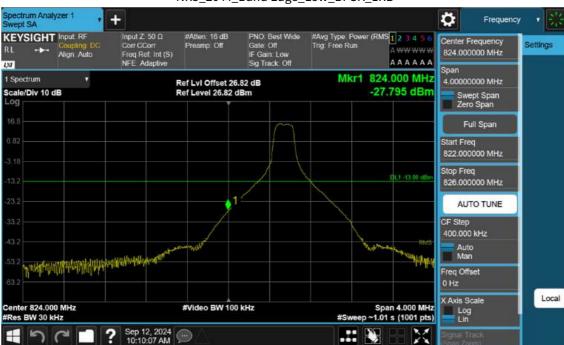
F-TP22-03 (Rev. 06) Page 118 of 205

NR5_15 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 119 of 205

NR5_15 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 120 of 205



NR5_15 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 121 of 205

NR5_20 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 122 of 205

NR5_20 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 123 of 205



NR5_20 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 124 of 205

NR5_20 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 125 of 205

NR5_20 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 126 of 205

NR5_20 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 127 of 205

11. TEST PLOTS (Sub1)

F-TP22-03 (Rev. 06) Page 128 of 205

pectrum Analyzer 1 ower Stat CCDF Ö Center Freq: 836 500000 MHz Counts: 2 00 M/2 00 Mpt Radio Std. None Input Z. 50 Ω Corr CCorr Freq Ref. Int (S) KEYSIGHT Input RF Atten: 16 dB Preamp: Off Center Frequency 836.500000 MHz LNI CF Step 5.000000 MHz 2 Graph 1 Metrics Auto Man Average Power 22.96 dBm Freq Offset 0 Hz 49.23 % at 0 dB 10.0 % 1.90 dB 1.0 % 3.24 dB 4.03 dB 0.01 % 4.30 dB 4.40 dB 0.0001 % 4.43 dB 4.46 dB 27.42 dBm Local 0.00 dB Info BW 5.0000 MHz 20.00 dB 1 9 6 2 Sep 11, 2024 9:04:54 AM

NR5_5 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 129 of 205

NR5_5 M_PAR_Mid_QPSK_FullRB

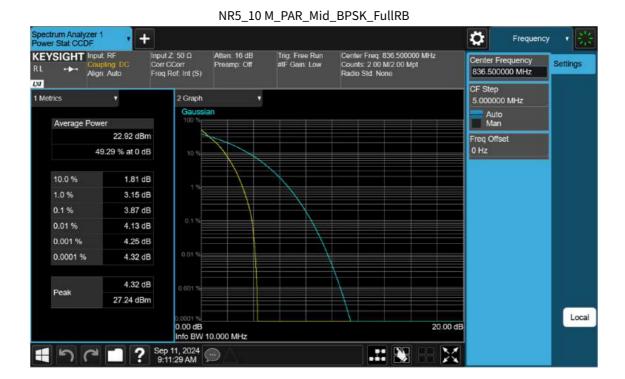
F-TP22-03 (Rev. 06) Page 130 of 205

NR5_5 M_PAR_Mid_16QAM_FullRB

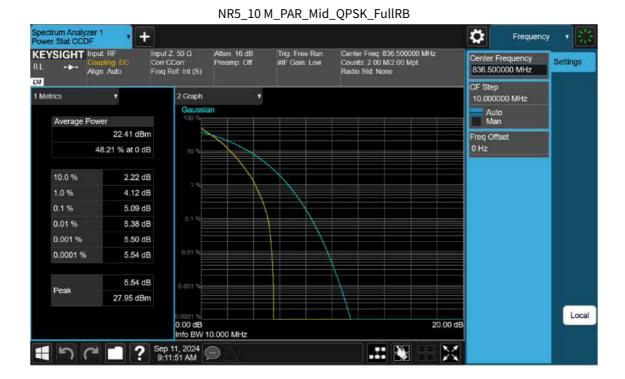
F-TP22-03 (Rev. 06) Page 131 of 205

NR5_5 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 132 of 205


NR5_5 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 133 of 205


Page 134 of 205

F-TP22-03 (Rev. 06)

F-TP22-03 (Rev. 06) Page 135 of 205

NR5_10 M_PAR_Mid_16QAM_FullRB

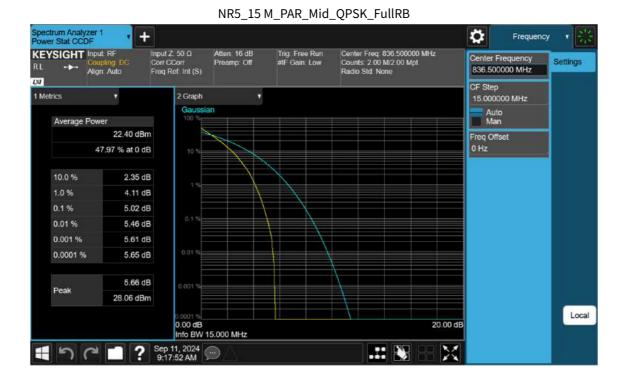
F-TP22-03 (Rev. 06) Page 136 of 205

NR5_10 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 137 of 205

NR5_10 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 138 of 205



NR5_15 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 139 of 205

F-TP22-03 (Rev. 06) Page 140 of 205

NR5_15 M_PAR_Mid_16QAM_FullRB

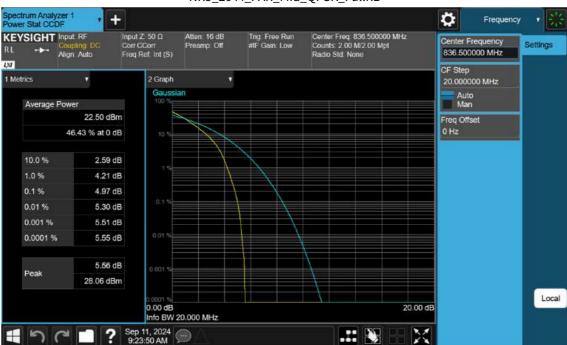
F-TP22-03 (Rev. 06) Page 141 of 205

NR5_15 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 142 of 205

NR5_15 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 143 of 205



NR5_20 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 144 of 205



NR5_20 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 145 of 205

NR5_20 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 146 of 205

NR5_20 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 147 of 205

NR5_20 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 148 of 205

NR5_5 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 149 of 205

NR5_5 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 150 of 205

NR5_5 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 151 of 205



NR5_5 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 152 of 205

NR5_5 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 153 of 205

NR5_10 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 154 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 20.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 200.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) #Video BW 820.00 kHz 2 Metrics Occupied Bandwidth 9.0140 MHz Total Power 30.3 dBm -201.77 kHz 10.00 MHz % of OBW Power x dB Transmit Freq Error x dB Bandwidth 99.00 % -26.00 dB Local ? Sep 11, 2024 9:11:44 AM

NR5_10 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 155 of 205

NR5_10 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 156 of 205

NR5_10 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 157 of 205

NR5_10 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 158 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 30.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Freq Offset 0 Hz Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.491 MHz Total Power 31.1 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -356.16 kHz 14.50 MHz 99.00 % -26.00 dB Local ? Sep 11, 2024 9:17:23 AM

NR5_15 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 159 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 30.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.467 MHz Total Power 30.6 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -390.99 kHz 14.45 MHz 99.00 % -26.00 dB Local

NR5_15 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 160 of 205

NR5_15 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 161 of 205

NR5_15 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 162 of 205

NR5 15 M OBW Mid 256QAM FullRB

F-TP22-03 (Rev. 06) Page 163 of 205

NR5_20 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 164 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 40.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 390.00 kHz Span 40 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.6000 MHz 2 Metrics Occupied Bandwidth 17.963 MHz Total Power 30.7 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -591.34 kHz 19.13 MHz 99.00 % -26.00 dB Local

NR5 20 M OBW Mid QPSK FullRB

F-TP22-03 (Rev. 06) Page 165 of 205

NR5_20 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 166 of 205

ectrum Analyzer 1 ccupied BW Ö Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Trig. Free Run Gate: Off #IF Gain. Low Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std. None KEYSIGHT Input RF Atten: 16 dB Preamp: Off Settings RL Align Auto 836.500000 MHz Span 40.000 MHz Ref LvI Offset 26.82 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Freq Offset 0 Hz Center 836.50 MHz #Res BW 390.00 kHz Span 40 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.6000 MHz 2 Metrics Occupied Bandwidth 17.926 MHz Total Power 29.3 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -558.14 kHz 19.14 MHz 99.00 % -26.00 dB Local

NR5_20 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 167 of 205

NR5_20 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 168 of 205