

Element

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing: 10/09/2023 - 10/22/2023 Test Site/Location: Element Washington DC LLC, Columbia, MD, USA Test Report Serial No.: 1M2308210092-28-R1.A3L Date of Issue: 11/1/2023

FCC ID:

A3LSMS928U

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard/ Guidance:	Volume Control Testing Certification CFR §20.19(b) ANSI C63.19-2019 ANSI/TIA-5050-2018 285076 D01 HAC Guidance v06 285076 D04 Volume Control v02 285076 D05 CG Interim Waiver DA 23-914 v01
DUT Type:	Portable Handset
Model:	SM-S928U
Additional Model(s):	SM-S928U1
Test Device Serial No.:	Sample [S/N: 0879M]

C63.19-2019 HAC Verdict: PASS

Note: This revised Test Report (S/N: 1M2308210092-28-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible, specified in ANSI/IEEE Std. C63.19-2019 and ANSI/TIA-5050-2018 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1 Orta

Executive Vice President

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 1 of 62
11V12306210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2019 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	FCC 2G & 3G MEASUREMENTS	. 18
6.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	. 19
7.	VONR TEST SYSTEM SETUP AND DUT CONFIGURATION	. 21
8.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	. 24
9.	INTERIM WAIVER DA 23-914	. 26
10.	VOLUME CONTROL TEST SUMMARY	. 27
11.	MEASUREMENT UNCERTAINTY	. 31
12.	EQUIPMENT LIST	. 32
13.	TEST DATA	. 33
14.	CALIBRATION CERTIFICATES	. 51
15.	CONCLUSION	. 58
16.	REFERENCES	. 59
17.	TEST SETUP PHOTOGRAPHS	. 61

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 2 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index
- T-coil mode, acoustic-signal conversational gain in the audio band
- T-coil mode, acoustic-signal frequency response through the audio band
- T-coil mode, acoustic-signal distortion through audio band
- Volume Control, receive volume control performance
- Volume Control, receive distortion and noise performance
- Volume Control, receive acoustic frequency response performance

The hearing aid may be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 3 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

2. DUT DESCRIPTION

FCC ID:	A3LSMS928U
Applicant:	Samsung Electronics Co., Ltd.
	129, Samsung-ro, Maetan dong,
	Yeongtong-gu, Suwon-si
	Gyeonggi-do 16677, Korea
Model:	SM-S928U
Additional Model(s):	SM-S928U1
Serial Number:	0879M
HW Version:	REV1.0
SW Version:	S928U.001
Antenna:	Internal Antenna
DUT Type:	Portable Handset

I. LTE Band Selection

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of one LTE band falls completely within another LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency range. However, overlapped LTE bands which are anchor bands for dual connectivity (EN-DC) scenarios between LTE and NR were evaluated as independent LTE bands.

II. NR Band Selection

This device supports NR capabilities with overlapping transmission frequency ranges. When the supported frequency range of an NR band falls completely within an NR band with a larger transmission frequency range, both NR bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both NR bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency transmission frequency.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 4 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Page 4 01 62

Table 2-1 HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
GSM	850 1900	vo	Yes ¹	Yes: WIFI or BT	CMRS Voice	EFR
UMTS	850 1700	VD	Yes ¹	Yes: WIFI or BT	CMRS Voice	NB AMR, WB AMR
LTE (FDD)	1900 680 (B71) 700 (B12) 780 (B13) 790 (B14) 850 (B5) 850 (B5) 1700 (B4) 1700 (B66)	VD	Yes ^{1,2}	Yes: NR, WIFI or BT	VOLTE	Volte: NB AMR, WB AMR, EVS
	1900 (B2) 1900 (B25) 2300 (B30) 2500 (B7) 2600 (B41)	- - -				
LTE (TDD)	2600 (B38) 3600 (B48)	VD	Yes ^{1, 2}	Yes: NR, WIFI or BT	VoLTE	VoLTE: NB AMR, WB AMR, EVS
NR (FDD)	680 (n71) 700 (n12) 850 (n5) 850 (n26) 1700 (n70) 1700 (n66) 1900 (n2) 1900 (n25) 2300 (n30) 2500 (n7)	VD	Yes ^{1, 2}	Yes: LTE, WIFI or BT	VoNR	VONR: NB AMR, WB AMR, EVS
NR (TDD)	2600 (n41) 2600 (n38) 3500 (n77, DoD) 3600 (n48) 3750 (n78) 3800 (n77) 24500 (n258) 28000 (n261) 39000 (n260)	- VD	Yes ^{1, 2} No ³	Yes: LTE, WIFI or BT	VoNR	VONR: NB AMR, WB AMR, EVS
WIFI	2450 5200 (U-NII 1) 5300 (U-NII 2A) 5500 (U-NII 2C) 5800 (U-NII 3) 5900 (U-NII 4) 6175 (U-NII 5) 6475 (U-NII 6) 6700 (U-NII 7) 7000 (U-NII 8)	VD	Yes ^{1, 2} Yes ^{1, 2, 4} No ⁵	Yes: GSM, UMTS, LTE, or NR	VoWIFI	VoWIFI: NB AMR, WB AMR, EVS
BT	2450	DT	No	Yes: GSM, UMTS, LTE, or NR	N/A	N/A
Type Transport VO = Voice Only DT = Digital Data - Not intended for Voice Services VD = CMRS and/or IP Voice over Data Transport		Notes: 1. According t 2. According t bitrate suppo 3. n258, n260, 4. WIFI U-NII t not evaluated 5. WIFI U-NII t FCC HAC regul	o FCC guidance and waiver DA 23-914, all CMRS of o FCC guidance and waiver DA 23-914, manufact tred on this device for Frequency Response and I and n261 are currently outside the scope of AN and 5 was evaluated for operations which are e due to equipment limitations and being outside ands 6 through 8 were not evaluated due to equi lations.	codecs supported by the model are te ur has chosen NB EVS 24.4KBPS and W Distortion evaluation. SI C63.19 and FCC HAC regulations the ntirely below 6 GHz. Operations partia e of the current scope of ANSI C63.19 <i>i</i> ujpment limitations and being outside	sted for Conversational Gain. IB EVS 128KBPS audio codecs and refore they were not evaluated. Illy or entirely above 6 GHz were and FCC HAC regulations. the scope of ANSI C63.19 and	

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 5 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Tage 5 01 02

3. ANSI C63.19-2019 PERFORMANCE CATEGORIES

I. Acoustic Coupling Requirements

According to ANSI C63.19-2019 §7, devices shall comply with ANSI/TIA-5050-2018 in order to comply with C63.19-2019. No additional requirements are imposed and no special allowances are made regarding testing to and compliance with ANSI/TIA-5050-2018.

II. ANSI/TIA-5050-2018 Volume Control

All Volume Control requirements (i.e., Volume Control, Distortion and Noise, and Frequency Response) shall be met for at least one volume control setting for narrowband as well as wideband (as applicable) per §5. All testing shall be performed with both a 2N mounting force and an 8N mounting force. The passing volume control setting may be different between narrowband and wideband tests as well as between 2N and 8N tests, but the setting may not change within a test in order to pass the separate performance criteria.

Note: The test data margins indicate a margin from the limit for compliance.

1. Receive Volume Control Performance

With a mounting force of 8N, the EUT shall have a Conversational Gain of \geq 18dB per §5.1.1, and with a mounting force of 2N, the EUT shall have a Conversational Gain of \geq 6dB per ANSI/TIA-5050-2018 §5.1.1.

2. Receive Distortion and Noise Performance

With a mounting force of 8N and 2N, the Pulsed Noise Signal-to-Distortion Ratio (PN-SDNR) of the stimulus signal to the 100Hz to 8kHz total distortion and noise shall be \geq 20dB when tested over the applicable 1/3 octave band center frequencies per ANSI/TIA-5050-2018 §5.2.1. For narrowband, the applicable 1/3 octave band center frequencies are those from 400Hz to 3.15kHz; for wideband, the applicable 1/3 octave band center frequencies are those from 250Hz to 5kHz.

3. Receive Acoustic Frequency Response Performance

With a mounting force of 8N and 2N, the receive frequency response, as measured at the DRP in 1/12 octave bands and after translation to the diffuse field or free field, shall fall between the applicable upper and lower limits per ANSI/TIA-5050-2018 §5.3.1. See below for narrowband limits (Table 3-1 and Figure 3-1) and wideband limits (Table 3-2 and Figure 3-2).

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 6 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

 Table 3-1

 Narrowband Receive Frequency Response Limits

Narrowband Receive Frequency Response Limits

 Table 3-2

 Wideband Receive Frequency Response Limits

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
200	-10	100	+6
300	-6	1000	+6
5000	-6	2000	+8
6000	-12	8000	+8

Wideband Receive Frequency Response Limits

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 7 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an RF-shielded chamber:

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 8 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

II. Head and Torso Simulator

Manufacturer:	Brüel & Kjær	
Model:	Type 4128-D	
Frequency Response:	Conforms to ITU-T Rec. P.58 up to 16 kHz	
Ear Simulator:	based calibrated ear simulator complying with ITU-T Rec. P.57	
Ear Simulator Output:	7-core, 3 m cable terminated with a Lemo® (1B) plug	
Pressure-field Response:	±1 dB from 5 Hz to 7 kHz ±3 dB from 3.15 Hz to 20 kHz	
Typical Noise Level	19 dBA at DRP	
Pinna Simulator:	Compliant with ITU-T Rec. P.58	25
Total Head and Torso Height:	695mm	
HATS Dimensions:	Main dimensions comply with the dimensional requirements of	-line -
	ITU-T Rec. P.58	Figure 4-3
Handset Positioner:	Brüel & Kjær Type 4606	(with Handset Positioner)
Positioner Angles:	Variable positions; $\angle A$ adjustable from +15' -10°, $\angle C$ adjustable from +20° to -20°; 0.5'	° to +35°, ∠B adjustable from +30° to $^\circ$ resolution
Applied Ear Force:	Mounting force can be adjusted from 0 to 1	8 N

III. IEEE Std 269 Uncompressed Real Male Speech

Manufacturer:	IEEE
Active Frequency Range:	100 Hz – 8 kHz
Stimulus Type:	Multi-talker speech signal, four male speakers
Single Sample Duration:	12 seconds
Activity Level:	84%

Figure 4-4 Temporal Characteristic of full IEEE 269

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 9 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

Volume Control Measurement Block Diagrams:

Figure 4-5 Acoustic Measurement Processing Steps

IV. Test Procedure

- 1. Ambient Noise Check per ANSI/TIA-5050-2018 §3.1 (See Figure 4-2)
 - a. Ambient noise was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/12 octave filtering.
 - b. "A-weighting" was applied to the measurements per the definition of a "quiet room" in ANSI/TIA-5050-2018. Below is the verification of the system processing A-weighting between system input to output within 0.5 dB of the theoretical result:

A-weighting Frequency Response Validation

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 10 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

f (Hz)	A-weight Measured (dB re 1kHz)	A-weight Theoretical (dB re 1kHz)	Deviation (dB)	ľ	f (Hz)	A-weight Measured (dB re 1kHz)	A-weight Theoretical (dB re 1kHz)	Deviation (dB)
97.2	-19.63	-19.54	-0.09		1030	0.10	0.09	0.01
103	-18.81	-18.74	-0.07		1090	0.20	0.25	-0.05
109	-18.01	-17.97	-0.04		1150	0.40	0.38	0.02
115	-17.31	-17.26	-0.05		1220	0.50	0.52	-0.02
122	-16.51	-16.50	-0.01		1300	0.70	0.66	0.04
130	-15.71	-15.70	-0.01		1370	0.80	0.76	0.04
137	-15.11	-15.06	-0.05		1450	0.89	0.85	0.04
145	-14.41	-14.38	-0.03		1540	0.89	0.94	-0.05
154	-13.71	-13.68	-0.03		1630	0.99	1.02	-0.03
163	-13.01	-13.04	0.03		1730	1.09	1.08	0.01
173	-12.40	-12.38	-0.02		1830	1.09	1.14	-0.05
183	-11.80	-11.77	-0.03		1940	1.19	1.18	0.01
194	-11.20	-11.16	-0.04		2050	1.18	1.22	-0.04
205	-10.60	-10.60	0.00		2180	1.19	1.24	-0.05
218	-10.00	-9.98	-0.02		2300	1.29	1.26	0.03
230	-9.50	-9.46	-0.04		2440	1.29	1.27	0.02
244	-8.90	-8.90	0.00		2590	1.29	1.27	0.02
259	-8.40	-8.35	-0.05		2740	1.29	1.26	0.03
274	-7.80	-7.84	0.04		2900	1.19	1.24	-0.05
290	-7.30	-7.35	0.05		3070	1.20	1.22	-0.02
307	-6.90	-6.86	-0.04		3250	1.20	1.18	0.02
325	-6.40	-6.39	-0.01		3450	1.10	1.13	-0.03
345	-5.90	-5.90	0.00		3650	1.10	1.08	0.02
365	-5.50	-5.46	-0.04		3870	1.00	1.01	-0.01
387	-5.00	-5.02	0.02		4100	0.90	0.93	-0.03
410	-4.60	-4.59	-0.01		4340	0.80	0.84	-0.04
434	-4.20	-4.19	-0.01		4600	0.70	0.73	-0.03
460	-3.80	-3.79	-0.01		4870	0.61	0.61	0.00
487	-3.40	-3.42	0.02		5160	0.51	0.48	0.03
516	-3.10	-3.05	-0.05		5460	0.31	0.33	-0.02
546	-2.70	-2.71	0.01		5790	0.21	0.16	0.05
579	-2.40	-2.37	-0.03		6130	0.01	-0.02	0.03
613	-2.10	-2.05	-0.05		6490	-0.19	-0.22	0.03
649	-1.80	-1.75	-0.05		6880	-0.49	-0.45	-0.04
688	-1.50	-1.47	-0.03		7290	-0.69	-0.70	0.01
729	-1.20	-1.20	0.00		7720	-0.99	-0.97	-0.02
772	-0.90	-0.94	0.04		8180	-1.30	-1.26	-0.04
818	-0.70	-0.71	0.01		8660	-1.59	-1.58	-0.01
866	-0.50	-0.49	-0.01		9170	-1.89	-1.92	0.03
917	-0.30	-0.28	-0.02		9720	-2.29	-2.30	0.01
972	-0.10	-0.09	-0.01	1	10300	-2.69	-2.70	0.01

Table 4-1 A-weighting Frequency Response Validation

c. The ambient room noise is a power sum of the A-weighted spectrum from 100-10,000 Hz. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level. Therefore, the setup in this step was used to verify the power sum post-processing for measurements. See below block diagram:

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 11 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Power Sum Validation Results

Table 4-2					
Powe	er Sum	Va	alidation	Resu	ts

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.05	-60.03	0.02
-50	-50.04	-50.03	0.01
-40	-40.04	-40.02	0.02
-30	-30.04	-30.02	0.02
-20	-20.05	-20.03	0.02
-10	-10.05	-10.03	0.02

- d. The maximum room noise inside the quiet room was recorded and verified to be less than or equal to 40dBA.
- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the HATS, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. HATS Sensitivity Verification A pure tone of 1kHz was applied into the HATS ear (microphone) using a calibrated sound calibrator. The sound calibrator generates an expected sound pressure level of 97.1dBSPL at the HATS ear which was used to verify the measured signal from the HATS. This measured value was verified to be within ±0.2dB of the 97.1dBSPL expected
- 3. Measurement Test Setup
 - a. Positioning DUT in HATS

value (see Page 29).

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 12 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	1 age 12 01 02

- i. According to ANSI/TIA-5050-2018 §4.2, a HATS which is ITU-T P.58 compliant and an ear simulator which is ITU-T P.57 type 3.3 compliant are used for Volume Control testing.
- ii. Per ANSI/TIA-5050-2018 §4.3, the DUT is positioned on the HATS in the standard test position according to IEEE Std 269 or, alternatively, a recommended test position specified by the manufacturer. Manufacturer recommended positions must comply with the recommended test position requirements in IEEE Std 269 and, if used, are noted in this report.
- iii. The DUT is mounted such that a certain force, in Newtons, is applied when the DUT is placed against the artificial pinna. ANSI/TIA-5050-2018 specifies a mounting force of either 2N or 8N, depending on the test. Mounting force is indicated for each test in this report.
- b. Speech Signal Setup and Analysis
 - i. For testing in this report, the test signal is the uncompressed real male speech as published with IEEE Std 269 unless otherwise specified.
 - ii. The test signal is used with an Active Speech Level (ASL) of -20dBm0, and analysis is performed with 1/12 octave bands averaged over one complete sequence of the test signal unless otherwise specified.
 - iii. The acoustic listener reference point for testing is the Free Field (FF) for Conversational Gain and PN-SDNR measurements. For Frequency Response (FR) measurements, the acoustic listener reference point is either the Free Field (FF) or the Diffuse Field (DF); the chosen acoustic listener reference point for FR measurements in this report is indicated for each test.
 - iv. Per the Spring 2021 TCB Workshop, all supported audio voice codecs are tested for the DUT. For each codec, narrowband and wideband modes are tested if supported. For narrowband modes, a source coding bit-rate of 12.2 kbps, or the closest available setting, is used. For wideband modes, a source coding bit-rate of 12.65 kbps, or the closest available setting, is used.
- c. DUT Radio Configuration
 - i. Each supported codec may be tested with any air interface which supports the codec being tested. Air interfaces used for testing in this report are noted with each test.
- 4. Measurement Data Analysis
 - a. Conversational Gain
 - i. With the DUT at its maximum volume control setting and tone control set such that the DUT meets the FR requirements, the test signal is applied to the DUT, and the resulting acoustic output is measured at the Drum Reference Point (DRP). A lower volume setting may be used if needed to meet the PN-SDNR requirements.
 - ii. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the Conversational Gain is determined.
 - iii. Conversational Gain is tested with both 8N and 2N mounting force.
 - b. PN-SDNR
 - i. The DUT is tested for distortion using PN-SDNR which is the ratio of the signal power to the full, A-weighted distortion and noise power of the DUR output (in dB).
 - ii. The pulsed noise stimulus signal is a combination of the real speech test signal followed by a series of pink noise pulses from a 1/3 octave band. A stimulus signal is generated for each 1/3 octave band centered within the applicable frequency range for either narrowband or wideband.
 - iii. Each stimulus signal is applied to the DUT, and the resulting acoustic output is measured at the DRP.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Dogo 12 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 15 01 02

- iv. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the PN-SDNR is determined by subtracting the full, A-weighted distortion and noise power, from the signal power, in This process is repeated to determine ethe PN-SDNR for all applicable 1/3 octave band center frequencies.
- v. PN-SDNR is tested with both 8N and 2N mounting force and may be repeated at volume levels below maximum if needed to get passing results. Note that Conversational Gain must still receive passing results while at the lower volume level if such a lower level is used for PN-SDNR compliance.
- c. Frequency Response
 - i. Frequency response is measured with respect to the appropriate curves from either Figure 3-1, for narrowband modes, or Figure 3-2, for wideband modes. The measurement is taken over one full sequence of the test signal, although a delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the FR is determined. All 1/12 octave band center frequencies were plotted and aligned with respect to the applicable mask in a floating, or best fit, fashion.
 - iii. FR is tested with both 8N and 2N mounting force and may be repeated with tone control settings other than default if needed to get passing results. Note that Conversational Gain must still receive passing results while using the non-default tone control settings if such non-default settings are used for FR compliance.
- d. Speech Signal Setup to Base Station Simulator
 - i. See Section 6 and 8 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE) and Voice Over WIFI (VoWIFI) testing.
 - ii. See Section 7 for more information regarding CMX500 audio level settings for Voice Over NR (VoNR).
- e. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the default test configuration (See Section 5 for more information regarding worst-case configurations for GSM and UMTS. LTE configuration information can be found in Section 6. NR configuration information can be found in Section 7. WIFI configuration information can be found in Section 8.)

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 14 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	1 age 14 01 02

V. Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from ANSI/TIA-5050-2018 Test Procedure

Deviation from ANSI/TIA-5050-2018 Test Procedure to indicate guidance in FCC HAC waiver was followed.

VII. Air Interface Technologies Tested

According to ANSI/TIA-5050-2018, any air interface which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications may be chosen for Volume Control testing. According to the Spring 2021 TCB Workshop, all voice codecs supported by the DUT must be tested for Volume Control. The air interfaces used during testing were chosen such that all voice codecs supported by the DUT were able to be tested. See Table 2-1 for more details regarding which modes were tested.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 15 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. The middle channel for each supported band was tested to confirm that results between bands are substantially similar. More information on default test configuration chosen for testing can be found in Section 5.

Center Channels and Frequence	uencies									
Test frequencies & associated channels										
Channel	Frequency (MHz)									
Cellular 850										
190 (GSM)	836.60									
4183 (UMTS)	836.60									
AWS 1750										
1412 (UMTS)	1730.40									
PCS 1900										
661 (GSM)	1880									
9400 (UMTS)	1880									

Table 4-3									
Center Channels and Frequencies									

2. 4G (LTE) Modes

The middle channel for every band was tested for conversational gain to confirm that the band configuration for VoLTE over IMS does not substantially affect the results. The default band was additionally tested for Frequency Response and Distortion. More information on default LTE test configuration chosen for testing can be found in Section 6. See Table 10-4 for full volume control evaluation.

3. 5G (NR) Modes

The middle channel for every band was tested for conversational gain to confirm that the band configuration for VoNR over IMS does not substantially affect the results. The default band was additionally tested for Frequency Response and Distortion. More information on default NR test configuration chosen for testing can be found in Section 7. See Table 10-5 for full volume control evaluation.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for conversational gain to confirm that the standard and data rate configuration for VoWIFI over IMS does not substantially affect the results. The 2.4GHz IEEE802.11b was additionally tested for Frequency Response and Distortion. More information on default WIFI test configuration chosen for testing can be found in Section 8. See Table 10-6 for full volume control evaluation.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director	
Filename: 1M2308210092-28-R1 A3I	Test Dates: 10/09/2023 - 10/23/2023	DUT Type: Portable Handset	Page 16 of 62	
1012000210002 20 1(1.//OE	10/00/2020	i oltable handbet		

IX. Test Flow

The flow diagram below was followed:

Figure 4-10 C63.19 Volume Control Test Process

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director	
Filename:	Test Dates:	DUT Type:	Page 17 of 62	
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset		

5. FCC 2G & 3G MEASUREMENTS

I. GSM Test Configurations

1. Band Configuration

An investigation was performed to ensure the GSM band used for testing does not substantially affect the measurement results. GSM EFR FR V1 codec was used for this evaluation. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. See below table for comparisons between different bands:

						<i>,</i>					
Mode	Channel	HAC Mode	Mounting Force (N)	Traffic Mode	Codec Volum Bandwidth Leve		Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict
GSM850	190	On	2	FR V1	NB	MAX -1	33.08	18.53	6.00	12.53	Pass
GSM1900	661	On	2	FR V1	NB	MAX -1	33.08	18.57	6.00	12.57	Pass

Table 5-1 GSM Results by Band

• Mute off; Backlight off; Max Volume-1; Max Contrast

Power Control Bits = GSM850: PCL=0, GSM1900: PCL=0;

II. UMTS Test Configurations

1. Radio Configuration

An investigation was performed to ensure that UMTS band used for testing does not substantially affect the measurement results. NB AMR 4.75KBPS, 13.6kbps SRB was used for this evaluation. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. See below table for comparisons between different bands:

Mode	Channel	HAC Mode	Mounting Force (N)	Codec Bandwidth	Codec Codec Bitrate Volume Amt Indwidth (kbps) Level Noise		Ambient Noise (dBA)	Conversational FCC CG Gain (CG) (dB) Limit (dB)		CG Margin (dB)	Verdict		
UMTS V	4183	On	Dn 2 NB		4.75	MAX -1	33.08	20.24	6.00	14.24	Pass		
UMTS IV	1412	On	2	NB 4.75		MAX -1	MAX -1 33.08 20.28		6.00	14.28	Pass		
UMTS II	9400	On	2	NB	4.75	MAX -1	33.08	19.45	6.00	13.45	Pass		

Table 5-2 UMTS Results by Radio Configuration

Mute off; Backlight off; Max Volume-1; Max Contrast

Power Control Bits = "All Up"

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director		
Filename:	Test Dates:	DUT Type:	Page 18 of 62		
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 10 01 02		

6. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS Volume Control measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoLTE over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoLTE over IMS connection.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director		
Filename:	Test Dates:	DUT Type:	Page 19 of 62		
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset			

II. DUT Configuration for VoLTE over IMS Volume Control Testing

1. Radio Configuration

An investigation was performed to ensure the modulation and RB configuration used for testing do not substantially affect the measurement results. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 0RB offset was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

Table 6-1									
VoLTE over IMS Results b	y Radio Configuration								

Mode	RF Bandwidth (MHz)	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict
		QPSK/1RB/0RB offset					WB	128	128 MAX -1	DF	31.23	38.31	2.82	16.87	18.31	6.00	10.87	Pass
		16QAM/1RB/0RB offset		~	2	EVS				DF	31.23	38.12	2.89	16.70	18.12	6.00	10.70	Pass
LTE Band	20	64QAM/1RB/0RB offset	122222							DF	31.23	38.16	2.90	16.76	18.16	6.00	10.76	Pass
66	20	256QAM/1RB/0RB offset	132322	OII						DF	31.23	38.25	2.83	16.77	18.25	6.00	10.77	Pass
		16QAM/50RB/0RB offset								DF	31.23	37.87	2.91	16.74	17.87	6.00	10.74	Pass
		16QAM/100RB/0RB offset								DF	31.23	38.18	2.89	16.72	18.18	6.00	10.72	Pass

2. Band Configuration

An investigation was performed to ensure the LTE band used for testing does not substantially affect the measurement results. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. LTE B66 was used as the default test band for VoLTE over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

Mode	Antenna Config	RF Bandwidth (MHz)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict
LTE Band 71	A	20	122207		2				31.23	16.77	6.00	10.77	Pass
	E	20	133237		2				31.23	16.73	6.00	10.73	Pass
I TE Band 12	A	10	23095		2				31.23	16.80	6.00	10.80	Pass
ETE Band T2	E	10	20000		2				31.23	16.71	6.00	10.71	Pass
I TE Band 13	A	10	23230	On	2	EVS	WB	128	31.23	16.87	6.00	10.87	Pass
	E		20200		2	2.10		120	31.23	16.70	6.00	10.70	Pass
I TF Band 14	A	10	23330		2				31.23	16.91	6.00	10.91	Pass
	E		20000		2				31.23	16.88	6.00	10.88	Pass
I TE Band 26	A	15	26865		2				31.23	16.83	6.00	10.83	Pass
ETE Dana 20	E	15	20000		2				31.23	16.83	6.00	10.83	Pass
0.00													
I TE Band 66	A	20	132322	On	2	EVS WB	WB	128	31.23	16.68	6.00	10.68	Pass
ETE Band 00	E	20	TOLOLL	0.1	2	210		120	31.23	16.74	6.00	10.74	Pass
				1	1						-	0.00	
I TE Band 25	A	20	26365	On	2	EVS	WB	128	31.23	16.92	6.00	10.92	Pass
	E				2				31.23	16.85	6.00	10.85	Pass
				1	1		1			1		0.00	
I TE Band 30	A	10	27710		2				31.23	16.77	6.00	10.77	Pass
	F		2.7.10		2				31.23	16.75	6.00	10.75	Pass
I TE Band 7	В	20	21100		2				31.23	16.80	6.00	10.80	Pass
	F	20	21100		2				31.23	16.72	6.00	10.72	Pass
LTE Band 41 (PC3)	В	20	40620	On	2	EVS	WB	128	31.23	16.87	6.00	10.87	Pass
212 2414 (100)	F				2				31.23	16.88	6.00	10.88	Pass
LTE Band 41 (PC2)	В	20	40620		2				31.23	16.83	6.00	10.83	Pass
Dano 41 (1 02)	F	20	40020		2				31.23	16.82	6.00	10.82	Pass
LTE Band 48	F	20	55990		2				31.23	16.90	6.00	10.90	Pass

Table 6-2 VoLTE over IMS Results by Band

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename: 1M2308210092-28-R1.A3L	Test Dates: 10/09/2023 - 10/23/2023	DUT Type: Portable Handset	Page 20 of 62
1W2000210032 201(1:/(0E	10/03/2020 10/20/2020	T oftable Handset	

7. VONR TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoNR over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoNR over IMS is shown below. The callboxes used when performing VoNR over IMS Volume Control measurements are a CMX500 and CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server. The CMX500 provided the baseband signal to perform NR signaling. An external USB audio interface is used to perform the A/D conversion and ensure proper speech input level to the DUT.

Figure 7-1 Test Setup for VoNR over IMS Volume Control Measurements

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoNR over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The acoustic test system was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoNR over IMS connection.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 21 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

II. DUT Configuration for VoNR over IMS Volume Control Testing

1. Radio Configuration

An investigation was performed to ensure the waveform, modulation, and RB configuration used for testing do not substantially affect the measurement results. The effects of waveform, modulation, and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. DFT-s-OFDM, 16QAM, 1RB, 1RB offset was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

					٦	「able	e 7-1						
VoNR	ove	er IM	S Re	sult	s by	/ Rac	dio C	Confi	gurat	tion –	CP-C	OFDM	
			Mounting	Codec	Codec	Codec	Volume	DRP	Ambient	Distortion	ER Margin	Conversational	Distortic

Mode	RF Bandwidth (MHz)	Waveform	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin (dB)	FCC CG Limit (dB)	FCC Margin from	Verdict
	(QPSK/1RB/1RB offset								DF	31.23	37.35	2.83	14.58	17.35	6.00	8.58	PASS
			16QAM/1RB/0RB 1ffset								DF	31.23	37.51	2.97	14.55	17.51	6.00	8.55	PASS
ND acc	NR n66 40 CP-OFDM	64QAM/1RB/1RB offset	240000			EVS	WB	128	8 MAX -1	DF	31.23	35.74	2.86	14.56	15.74	6.00	8.56	PASS	
NR 100		256QAM/1RB/1RB offset	349000	On	2					DF	31.23	40.08	2.91	14.53	20.08	6.00	8.53	PASS	
			16QAM/50RB/0RB offset								DF	31.23	35.46	2.88	14.53	15.46	6.00	8.53	PASS
			16QAM/100RB/0RB offset								DF	31.23	37.12	2.92	14.50	17.12	6.00	8.50	PASS

 Table 7-2

 VoNR over IMS Results by Radio Configuration – DFT-s-OFDM

Mada	RF Bandwidth	Manada	Dadia Canfauntian	Observal	LIAC Marks	Mounting	Codec	Codec	Codec	Volume	DRP	Ambient	Distortion	FR Margin	Conversational	Distortion	FCC CG	FCC Margin from	Ventint
Mode	(MHz)	waveloim	Radio Conliguration	Channel	HAC MODE	Force (N)	Type	Bandwidth	Bitrate	Level	Translation	Noise (dBA)	Value (dB)	(dB)	Gain (CG) (dB)	Margin (dB)	Limit (dB)	Limit (dB)	verdict
			PI/2 BPSK /1 RB/0 RB offset								DF	31.23	37.88	2.89	14.54	17.88	6.00	8.54	PASS
		1	QPSK/1RB/0RB offset	T							DF	31.23	37.71	2.91	14.38	17.71	6.00	8.38	PASS
		1	16QAM/1RB/0RB offset	T							DF	31.23	37.14	2.87	14.40	17.14	6.00	8.40	PASS
NR n66	40	DFT-s-OFDM	64QAM/1RB/0RB offset	349000	On	2	EVS	WB	WB 128	128 MAX -1	DF	31.23	37.81	2.84	14.48	17.81	6.00	8.48	PASS
		1	256QAM/1RB/0RB offset	T							DF	31.23	40.19	2.88	14.52	20.19	6.00	8.52	PASS
		E E	16QAM/50RB/0RB offset	T							DF	31.23	38.83	2.90	14.56	18.83	6.00	8.56	PASS
			16QAM/100RB/0RB offset	I							DF	31.23	37.99	2.80	14.47	17.99	6.00	8.47	PASS

2. Band Configuration

An investigation was performed to ensure the NR band used for testing does not substantially affect the measurement results. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. NR n66 was

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 22 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

used as the default test band for VoNR over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

Mode	Antenna Config	RF Bandwidth (MHz)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	FCC Margin from Limit (dB)	Verdict
ND x71	A	20	NI/A		2				31.23	14.44	6.00	8.44	PASS
NIK 117 1	E	20	IN/A		2				31.23	14.51	6.00	8.51	PASS
NP n12	A	15	N/A	On	2	EV/S	WB	128	31.23	14.45	6.00	8.45	PASS
NK IIIZ	E	15	19/75	011	2	2.00	110	120	31.23	14.41	6.00	8.41	PASS
NP n26	A	20	NI/A		2				31.23	14.50	6.00	8.50	PASS
NIC 1120	E	20	IN/A		2				31.23	14.49	6.00	8.49	PASS
NP n70	A	15	N/A		2				31.23	14.48	6.00	8.48	PASS
NK 1170	E	15	N/A	On	2	EVS	W/B	129	31.23	14.46	6.00	8.46	PASS
ND nCC	A	40	NI/A	OII	2	LVS	WD	120	31.23	14.47	6.00	8.47	PASS
NIK 1100	E	40	19/74		2				31.23	14.53	6.00	8.53	PASS
NP n25	A	40	NI/A	On	2	EVS	W/B	129	31.23	14.55	6.00	8.55	PASS
NIC 1125	E	40	N/A	OII	2	LVJ	WD	120	31.23	14.53	6.00	8.53	PASS
NP n20	А	10	N/A		2				31.23	14.46	6.00	8.46	PASS
NIC 1100	F	10			2				31.23	14.51	6.00	8.51	PASS
NR n7	В	40	N/A		2				31.23	14.41	6.00	8.41	PASS
NIX III	F	10			2				31.23	14.50	6.00	8.50	PASS
NR n41 (PC2)	В	100	N/A	On	2	EVS	WB	128	31.23	14.48	6.00	8.48	PASS
Mix 1141 (1 02)	F	100	1073		2				31.23	14.46	6.00	8.46	PASS
NR n77 DoD (PC2)	F	100	N/A		2				31.23	14.46	6.00	8.46	PASS
NR n77 C (PC2)	F	100	N/A		2				31.23	14.44	6.00	8.44	PASS
NR n48	F	40	55990		2				31.23	14.54	6.00	8.54	PASS

Table 7-3 VoNR over IMS Results by Band

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 23 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 23 01 02

8. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoLTE over IMS Volume Control measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

Test Setup for VoLTE over IMS Volume Control Measurements

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoWIFI over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoWIFI over IMS connection.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 24 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Faye 24 01 02

II. DUT Configuration for VoWIFI over IMS Volume Control Testing

1. IEEE Standard Configuration

An investigation was performed to ensure the IEEE standard used for testing does not substantially affect the measurement results. The effects of IEEE standard were found to be independent of WIFI data rate; therefore, only one data rate was used for each IEEE standard in this investigation. IEEE 802.11b was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

									···· .							
Mode	RF Bandwidth (MHz)	U-NII Band	Channel	HAC Mode	Mounting Force (N)	Codec Bandwidth	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Margin (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	Distortion Margin (dB)	CG Margin (dB)	Verdict
IEEE 802.11b	20	1	6	On	2	WB	MAX -1	DF	31.23	36.82	2.79	16.82	6.00	16.82	10.82	PASS
IEEE 802.11g	20	1	6	On	2	WB	MAX -1	DF	31.23	37.88	2.85	16.84	6.00	17.88	10.84	PASS
IEEE 802.11n	20	1	6	On	2	WB	MAX -1	DF	31.23	33.21	2.87	16.84	6.00	13.21	10.84	PASS
IEEE 802.11ac	20	1	6	On	2	WB	MAX -1	DF	31.23	37.66	2.81	16.84	6.00	17.66	10.84	PASS
IEEE 802.11ax (SU)	20	1	6	On	2	WB	MAX -1	DF	31.23	34.59	2.76	16.90	6.00	14.59	10.90	PASS
IEEE 802.11ax (RU)	20	1	6	On	2	WB	MAX -1	DF	31.23	34.68	2.74	16.84	6.00	14.68	10.84	PASS
IEEE 802.11a	20	1	40	On	2	WB	MAX -1	DF	31.23	38.05	2.87	16.83	6.00	18.05	10.83	PASS
IEEE 802.11n	20	1	40	On	2	WB	MAX -1	DF	31.23	38.13	2.87	16.83	6.00	18.13	10.83	PASS
IEEE 802.11n	40	1	38	On	2	WB	MAX -1	DF	31.23	37.86	2.91	16.75	6.00	17.86	10.75	PASS
IEEE 802.11ac	20	1	40	On	2	WB	MAX -1	DF	31.23	37.97	2.79	16.87	6.00	17.97	10.87	PASS
IEEE 802.11ac	40	1	38	On	2	WB	MAX -1	DF	31.23	37.97	2.88	16.81	6.00	17.97	10.81	PASS
IEEE 802.11ax (SU)	20	1	40	On	2	WB	MAX -1	DF	31.23	38.06	2.92	16.83	6.00	18.06	10.83	PASS
IEEE 802.11ax (SU)	40	1	38	On	2	WB	MAX -1	DF	31.23	37.95	2.95	16.86	6.00	17.95	10.86	PASS
IEEE 802.11ax (RU)	20	1	40	On	2	WB	MAX -1	DF	31.23	37.19	2.91	16.90	6.00	17.19	10.90	PASS
IEEE 802.11ax (RU)	40	1	38	On	2	WB	MAX -1	DF	31.23	37.91	2.90	16.87	6.00	17.91	10.87	PASS

Table 8-1 VoWIFI over IMS Results by IEEE Standard

2. Data Rate Configuration

An investigation was performed to ensure the WIFI data rate used for testing does not substantially affect the measurement results. The effects of data rate configuration were found to be independent of IEEE standard; therefore, only one IEEE standard was used for this investigation. 1Mbps was used as the default WIFI data rate for VoWIFI over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

	Table 8-2	
VoWIFI ove	r IMS Results	by Data Rate

					-							-				
Data Rate	Chappel	HAC Mode	Mounting	Codec	Codec	Codec	Volume	DRP	Ambient	Distortion	FR Margin	Conversational	Distortion	FCC CG	CC Margin (dP)	Vordict
(Mbps)	Channel	HAC WOUL	Force (N)	Type	Bandwidth	Bitrate	Level	Translation	Noise (dBA)	Value (dB)	(dB)	Gain (CG) (dB)	Margin (dB)	Limit (dB)	CO Wargin (ub)	veruici
1	6	On	2	EVS	WB	128	MAX -1	DF	31.23	37.79	2.89	17.04	17.79	6.00	11.04	PASS
11	0	On	2	EVS	WB	128	MAX -1	NA	31.23	38.07	2.92	17.03	18.07	6.00	11.03	PASS

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 25 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

9. INTERIM WAIVER DA 23-914

- I. Under the waiver, only CMRS narrowband and CMRS wideband voice codecs are required to comply with the volume control requirements of the TIA 5050-2018 Volume Control Standard as amended as follows:
 - a. For the 2N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which it operates using one codec bit rate of the applicant's choosing.
 - b. For the 8N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate but is not required to meet or exceed the full 18 dB of conversational gain specified in section 5.1.1 of the TIA 5050 Volume Control Standard using one codec bit rate of the applicant's choosing.
- II. For all other narrowband and wideband codecs not evaluated in I.a. above, TIA 5050-2018 Receive Distortion and Noise Performance and Receive Acoustic Frequency Response Performance evaluations are not required; however, these codecs shall be assessed for conversational gain and documented in the test report at the 2N and 8N levels with a gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate. The handset volume setting used to comply with I.a. shall be used for these other CMRS codec evaluations.
- III. Any other codec for voice services embedded in the handset, not identified in sections I and II above are not required to comply or demonstrate in the test reports for conversational gain.
- IV. Under the waiver, the manufacturer has chosen NB EVS 24.4kbps and WB EVS 128kbps audio codec bitrates for full evaluation.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director	
Filename:	Test Dates:	DUT Type:	Page 26 of 62	
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset		

10. VOLUME CONTROL TEST SUMMARY

	Table 10-1												
Consolidated Tabled Results													
	Conver Gain (C	sational CG) (dB)	FR Margin	Distortion	C63.19 Verdict								
	2N	8N	(ab)	value (db)									
GSM	18.57	21.86	-	-	Compliant								
UMTS	19.45	20.17	-	-	Compliant								
LTE	16.06	18.81	2.37	26.05	Compliant								
NR	14.08	17.09	2.56	26.63	Compliant								
WLAN	16.61	18.87	2.29	27.62	Compliant								

I. Raw Handset Data

Table 10-2 Raw Data Results for GSM

Mode	Channel	HAC Mode	Mounting Force (N)	Traffic Mode	Codec Bandwidth	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict	
	661	On	2	FR V1	NB	MAX -1	33.08	18.57	6.00	12.57	Pass	
	661	On	2	FR V2	NB	MAX -1	33.08	19.17	6.00	13.17	Pass	
CSM1000	661	On	2	HR V1	NB	MAX -1	33.08	19.14	6.00	13.14	Pass	
GSM1900	661	On	8	FR V1	NB	MAX -1	33.08	21.86	6.00	15.86	Pass	
	661	On	8	FR V2	NB	MAX -1	33.08	22.01	6.00	16.01	Pass	
	661	On	8	HR V1	NB	MAX -1	33.08	22.12	6.00	16.12	Pass	

Table 10-3 Raw Data Results for UMTS

Mode	Channel	HAC Mode	Mounting Force (N)	Codec Bandwidth	Codec Bitrate (kbps)	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict
	9400	On	2	NB	4.75	MAX -1	33.08	19.45	6.00	13.45	Pass
	9400	On	2	NB	12.20	MAX -1	33.08	20.68	6.00	14.68	Pass
	9400	On	2	WB	6.60	MAX -1	33.08	19.87	6.00	13.87	Pass
	9400	On	2	WB	12.65	MAX -1	33.08	20.17	6.00	14.17	Pass
	9400	On	2	WB	23.85	MAX -1	33.08	20.19	6.00	14.19	Pass
UMISI	9400	On	8	NB	4.75	MAX -1	33.08	22.79	6.00	16.79	Pass
	9400	On	8	NB	12.20	MAX -1	33.08	23.41	6.00	17.41	Pass
-	9400	On	8	WB	6.60	MAX -1	33.08	22.55	6.00	16.55	Pass
	9400	On	8	WB	12.65	MAX -1	33.08	22.88	6.00	16.88	Pass
	9400	On	8	WB	23.85	MAX -1	33.08	23.03	6.00	17.03	Pass

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 27 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

Table 10-4 Raw Data Results for VoLTE

Mode	RF Bandwidth (MHz)	Radio Configuratio n	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict						
				On	2	EVS	NB	5.9	MAX -1	NA	31.23	-		18.42	-	6.00	12.42	Pass						
				On	2	EVS	NB	13.2	MAX -1	NA	31.23	-		18.42	-	6.00	12.42	Pass						
				On	2	EVS	NB	24.4	MAX -1	DF	31.23	26.05	2.55	18.44	6.05	6.00	12.44	Pass						
				On	8	EVS	NB	5.9	MAX -1	NA	31.23	-		21.40	-	6.00	15.40	Pass						
				On	8	EVS	NB	13.2	MAX -1	NA	31.23	-		21.29	-	6.00	15.29	Pass						
			On	8	EVS	NB	24.4	MAX -1	DF	31.23	27.41	2.42	21.29	7.41	6.00	15.29	Pass							
				On	2	EVS	WB	5.9	MAX -1	NA	31.23	-		16.16	-	6.00	10.16	Pass						
				On	2	EVS	WB	13.2	MAX -1	NA	31.23	-	-	16.47	-	6.00	10.47	Pass						
				On	2	EVS	WB	128	MAX -1	DF	31.23	38.13	2.98	17.05	18.13	6.00	11.05	Pass						
			On	8	EVS	WB	5.9	MAX -1	NA	31.23	-	-	19.27	-	6.00	13.27	Pass							
LTE Band	20	16QAM/1RB	132322	RB 132322	132322	132322	132322	132322	132322	On	8	EVS	WB	13.2	MAX -1	NA	31.23	-	-	19.20	-	6.00	13.20	Pass
66	20	/0RB offset						On	8	EVS	WB	128	MAX -1	DF	31.23	38.10	2.37	19.87	18.10	6.00	13.87	Pass		
				On	2	AMR	NB	4.75	MAX -1	NA	31.23	-	-	18.25	-	6.00	12.25	Pass						
				On	2	AMR	NB	12.2	MAX -1	NA	31.23	-	-	18.80	-	6.00	12.80	Pass						
				On	8	AMR	NB	4.75	MAX -1	NA	31.23	-	-	20.97	-	6.00	14.97	Pass						
				On	8	AMR	NB	12.2	MAX -1	NA	31.23	-	-	21.51	-	6.00	15.51	Pass						
				On	2	AMR	WB	6.6	MAX -1	NA	31.23	-	-	16.06	-	6.00	10.06	Pass						
				On	2	AMR	WB	12.65	MAX -1	NA	31.23	-	-	16.44	-	6.00	10.44	Pass						
				On	2	AMR	WB	23.85	MAX -1	NA	31.23	-		16.53	-	6.00	10.53	Pass						
				On	8	AMR	WB	6.6	MAX-1	NA	31.23	-		18.81	-	6.00	12.81	Pass						
				On	8	AMR	WB	12.65	MAX -1	NA	31.23	-		19.15	-	6.00	13.15	Pass						
				On	8	AMR	WB	23.85	MAX -1	NA	31.23	-	-	19.20	-	6.00	13.20	Pass						

Table 10-5 Raw Data Results for VoNR

Mode	RF Bandwidth (MHz)	Waveform	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Values (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict		
					On	2	EVS	NB	5.9	MAX -1	NA	31.23	-	-	16.47	-	6.00	10.47	PASS		
					On	2	EVS	NB	13.2	MAX -1	NA	31.23	-		16.30	-	6.00	10.30	PASS		
					On	2	EVS	NB	24.4	MAX -1	FF	31.23	26.63	2.56	16.69	6.63	6.00	10.69	PASS		
					On	8	EVS	NB	5.9	MAX -1	NA	31.23	-	-	19.39	-	6.00	13.39	PASS		
				On	8	EVS	NB	13.2	MAX -1	NA	31.23	-	-	19.49	-	6.00	13.49	PASS			
					On	8	EVS	NB	24.4	MAX -1	FF	31.23	29.00	2.74	19.75	9.00	6.00	13.75	PASS		
					On	2	EVS	WB	5.9	MAX -1	NA	31.23	-	-	14.08	-	6.00	8.08	PASS		
					On	2	EVS	WB	13.2	MAX -1	NA	31.23	-	-	14.19	-	6.00	8.19	PASS		
					On	2	EVS	WB	128	MAX -1	DF	31.23	37.92	2.87	14.59	17.92	6.00	8.59	PASS		
					On	8	EVS	WB	5.9	MAX -1	NA	31.23	-	-	17.14	-	6.00	11.14	PASS		
NP n66	40	DET S OEDM	FDM 16QAM /1RB / 1RB offset	240000	On	8	EVS	WB	13.2	MAX -1	NA	31.23	-	-	17.29	-	6.00	11.29	PASS		
NIX HOU	40	DI 1-3-01 DIM		349000	On	8	EVS	WB	128	MAX -1	DF	31.23	38.00	2.97	17.76	18.00	6.00	11.76	PASS		
					On	2	AMR	NB	4.75	MAX -1	NA	31.23	-	-	16.40	-	6.00	10.40	PASS		
					On	2	AMR	NB	12.2	MAX -1	NA	31.23	-	-	16.77	-	6.00	10.77	PASS		
					On	8	AMR	NB	4.75	MAX -1	NA	31.23	-	-	19.18	-	6.00	13.18	PASS		
					On	8	AMR	NB	12.2	MAX -1	NA	31.23	-	-	19.83	-	6.00	13.83	PASS		
					On	2	AMR	WB	6.6	MAX -1	NA	31.23	-	-	14.24	•	6.00	8.24	PASS		
							On	2	AMR	WB	12.65	MAX -1	NA	31.23	-	-	14.35	-	6.00	8.35	PASS
					On	2	AMR	WB	23.85	MAX -1	NA	31.23	-	-	14.44	-	6.00	8.44	PASS		
					On	8	AMR	WB	6.6	MAX -1	NA	31.23	-	-	17.09	-	6.00	11.09	PASS		
					On	8	AMR	WB	12.65	MAX -1	NA	31.23	-	-	17.38	-	6.00	11.38	PASS		
					On	8	AMR	WB	23.85	MAX -1	NA	31.23	-	-	17.43	-	6.00	11.43	PASS		

Table 10-6 Raw Data Results for VoWIFI

Mode	Band	Bandwidth	Data Rate (Mbps)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict							
					On	2	EVS	NB	5.9	MAX -1	NA	31.23	-	-	18.45	-	6.00	12.45	PASS							
					On	2	EVS	NB	13.2	MAX -1	NA	31.23	-	-	19.58	-	6.00	13.58	PASS							
					On	2	EVS	NB	24.4	MAX -1	DF	31.23	27.14	2.41	18.51	7.14	6.00	12.51	PASS							
					On	8	EVS	NB	5.9	MAX -1	NA	31.23	-	-	21.25	-	6.00	15.25	PASS							
				On	8	EVS	NB	13.2	MAX -1	NA	31.23	-	-	21.47	-	6.00	15.47	PASS								
				On	8	EVS	NB	24.4	MAX -1	DF	31.23	27.62	2.29	21.67	7.62	6.00	15.67	PASS								
					On	2	EVS	WB	5.9	MAX -1	NA	31.23	-	-	16.88	-	6.00	10.28	PASS							
					On	2	EVS	WB	13.2	MAX -1	NA	31.23	-	-	17.20	-	6.00	11.20	PASS							
					On	2	EVS	WB	128	MAX -1	DF	31.23	38.15	2.96	16.82	18.15	6.00	11.18	PASS							
					On	8	EVS	WB	5.9	MAX -1	NA	31.23	-	-	19.82	-	6.00	13.05	PASS							
1555 000 445	2.4047	20	1	6	On	8	EVS	WB	13.2	MAX -1	NA	31.23	-	-	19.81	-	6.00	13.08	PASS							
IEEE 002.11D	2.40112	20	· ·		6	6	On	8	EVS	WB	128	MAX -1	DF	31.23	38.21	2.70	19.83	18.21	6.00	13.42	PASS					
					On	2	AMR	NB	4.75	MAX -1	NA	31.23	-	-	19.21	-	6.00	13.21	PASS							
					On	2	AMR	NB	12.2	MAX -1	NA	31.23	-	-	19.73	-	6.00	13.73	PASS							
										On	8	AMR	NB	4.75	MAX -1	NA	31.23	-	-	20.95	-	6.00	14.95	PASS		
								On	8	AMR	NB	12.2	MAX -1	NA	31.23	-	-	21.56	-	6.00	15.56	PASS				
					On	2	AMR	WB	6.6	MAX -1	NA	31.23	-	-	16.61	-	6.00	10.61	PASS							
												On	2	AMR	WB	12.65	MAX-1	NA	31.23	-	-	16.94	-	6.00	10.94	PASS
				On	2	AMR	WB	23.85	MAX-1	NA	31.23	-	-	17.02	-	6.00	11.02	PASS								
					On	8	AMR	WB	6.6	MAX -1	NA	31.23	-	-	18.87	-	6.00	12.87	PASS							
					On	8	AMR	WB	12.65	MAX -1	NA	31.23	-	-	19.32	-	6.00	13.32	PASS							
					On	8	AMR	WB	23.85	MAX -1	NA	31.23	-	-	19.42	-	6.00	13.42	PASS							

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 28 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

II. Test Notes

A. General

- 1. Phone Condition: Phone Condition: Mute off; Backlight off; Max Volume -1; Max Contrast
- 2. Test Signal: IEEE Std 269 uncompressed real male speech
- 3. Hearing Aid Mode was set according to the following menu path: (Phone→Call Settings→Other call Settings→Hearing aids) was set to ON for HAC compliance.
- 4. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 5. WD was evaluated with one volume notch down from MAX volume setting for HAC compliance.
- 6. The FCC Margin from Limit column indicates a margin from the FCC limit for compliance.

B. GSM

- 1. Power Configuration: GSM850: PCL=0;
- 2. Vocoder Configuration: EFR (GSM): FR V1, FR V2, HR V1

C. UMTS

- 1. Power Configuration: TPC = "All 1's"
- 2. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps,12.65kbps, 23.85kbps

D. Voice over LTE

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 0RB offset
- 3. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps,13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps, 13.2kbps, 128kbps
 - e. AMR-WB: 6.60kbps,12.65kbps, 23.85kbps

E. Voice over NR

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: DFT-s-OFDM, 16QAM, 1RB, 1RB offset
- 3. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps,13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps,13.2kbps, 128kbps
 - e. AMR-WB: 6.60kbps,12.65kbps, 23.85kbps
- F. Voice over WIFI
 - 1. Radio Configuration: IEEE 802.11b: DSSS, 1Mbps
 - 2. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps,13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps,13.2kbps, 128kbps
 - e. AMR-WB: 6.60kbps,12.65kbps, 23.85kbps

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 29 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

Ш. **Volume Control Verification Test Results**

	Verification Results Table												
Date of Testing	Test Location	Air Interface Equipment	Acoustical Calibrator	HATS Sens. [dB]	Ambient Noise (dBA)								
10/09/2023	Whisper1	CMW500	2343018	97.16	31.52								
10/16/2023	Whisper1	CMW500	2343018	97.22	31.23								
10/23/2023	Whisper1	CMW500	2343018	97.24	33.08								

Table 10-7

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Dogo 20 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 30 01 62

11. MEASUREMENT UNCERTAINTY

Receive Volume Control Requirement	Expanded uncertainty (k=2), 95% confidence level (dB)
Conversational Gain	0.33
Frequency Response (FF)	0.23
Frequency Response (DF)	0.19
Distortion	0.81

Table 11-1 Uncertainty Estimation Table

Notes:

1. Test equipment is calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

 All equipment has traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. The above uncertainties were estimated experimentally using the techniques contained in NIS 81 and NIS 3003.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 31 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

12. EQUIPMENT LIST

Table 12-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Listen	SoundConnect	Microphone Power Supply	9/15/2022	Biennial	9/15/2024	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/19/2022	Biennial	9/19/2024	23792992
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	8/9/2023	Annual	8/9/2024	162125
Rohde & Schwarz	CMW500	Radio Communication Tester	8/10/2023	Annual	8/10/2024	140144
Rohde & Schwarz	CMX500	Radio Communication Tester	N/A		N/A	100298
Seekonk	NC-100	Torque Wrench (8" lb)	11/28/2022	Biennial	11/28/2024	80790
YellowTec	YT4211	USB Audio Interface	N/A		N/A	20000365
Netgear	XS708E	Ethernet Switch	N/A		N/A	4FU3875C001A8
Bruel & Kjaer (HBK)	4128	Head and Torso Simulator	4/5/2022	Biennial	4/5/2024	1947220
Bruel & Kjaer (HBK)	4231	Acoustical Calibrator Type 4231 with UA1546	4/6/2022	Biennial	4/6/2024	2343018
Bruel & Kjaer (HBK)	DZ-9769	Artificial Ear	9/15/2022	Triennial	9/15/2025	SBM553623

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 32 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

13. TEST DATA

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 33 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

10/9/2023

Element Hearing-Aid Compatibility Facility

Whisper Room 1 / HATS Type: HATS 4128 Serial: 1947220

Measurement Standard: ANSI C63.19

Equipment:

- Head and Torso Simulator Type 4128: SN: 1947220; Calibrated: 4/5/2022
- Acoustical Calibrator Type 4231 W/ UA1546: SN 2343018; Calibrated: 4/6/2022

Ambient Noise Level Check (Analysis)	31.52	dB	•
Ambient Noise Level Check (RTA)	32.66	dB	•
Ambient Noise Level Check (Voltmeter)	31.61	dB	•
CMW500 0dBm0 Level Check	970m	v	•
HATS Sensitivity Check	97.16	dB	•

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 34 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

10/16/2023

Element Hearing-Aid Compatibility Facility

Whisper Room 1 / HATS Type: HATS 4128 Serial: 1947220

Measurement Standard: ANSI C63.19

Equipment:

- Head and Torso Simulator Type 4128: SN: 1947220 ; Calibrated: 4/5/2024
- Acoustical Calibrator Type 4231 W/ UA1546: SN 2343018; Calibrated: 4/6/2023

Ambient Noise Level Check (Analysis)	31.23	dB	~
Ambient Noise Level Check (RTA)	32.25	dB	•
Ambient Noise Level Check (Voltmeter)	31.1	dB	•
CMW500 0dBm0 Level Check	969m	۷	
HATS Sensitivity Check	97.22	dB	9

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 35 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	1 age 35 01 02

10/23/2023

Element Hearing-Aid Compatibility Facility

Whisper Room 1 / HATS Type: HATS 4128 Serial: 1947220

Measurement Standard: ANSI C63.19

Equipment:

- Head and Torso Simulator Type 4128: SN: 1947220; Calibrated: 4/5/2024
- Acoustical Calibrator Type 4231 W/ UA1546: SN 2343018; Calibrated: 4/6/2023

Ambient Noise Level Check (Analysis)	33.08	dB	~
Ambient Noise Level Check (RTA)	36.16	dB	•
Ambient Noise Level Check (Voltmeter)	32.64	dB	•
CMW500 0dBm0 Level Check	967m	v	•
HATS Sensitivity Check	97.18	dB	~

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 36 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 30 01 02

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename: 1M2308210092-28-R1 A3I	Test Dates: 10/09/2023 - 10/23/2023	DUT Type: Portable Handset	Page 37 of 62
	10/00/2020 10/20/2020	T ontable Handeot	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: LTE Band 66
 - Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 38 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Wideband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 39 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 40 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 41 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 42 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 43 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 44 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Wideband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 45 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

10/16/2023

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 46 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 47 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

10/16/2023

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 48 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Wideband
- Mounting Force: 2N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 49 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

DUT: A3LSMS928U

Type: Portable Handset Serial: 0879M

Measurement Standard: ANSI C63.19; ANSI/TIA-5050-2018

Equipment:

٠

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 50 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

14. CALIBRATION CERTIFICATES

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 51 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

The Hottinger Brüel & Kjær Inc. Calibration Laboratory 3079 Premiere Parkway Duluth, GA 30097 Telephone: 770-209-6907 Fax: 770-447-4033 Web site address: http://www.hbkworld.com Page 1 of 2

The Hottinger Brüel and Kjær Inc. Service Center is Certified to ISO 9001:2015

CERTIFICATE OF CALIBRATION No.: CAS-565027-G1J7F1-101

Calibration Of:

Model Number : 4128-C-001

Serial Number: 1947220

Customer:

PCTEST Engineering Laboratory Inc 7185 Oakland Mills Road Columbia, MD 21046

5/6/2022

CALIBRATION CONDITIONS:

Environment conditions

Air temperature :	23	°C
Air pressure:	97.3	kPa
Relative Humidity:	32	%RH

SPECIFICATIONS:

This document certifies that the instrument as listed under "Model Number" has been calibrated and unless otherwise indicated under "Final Data", meets acceptance criteria as prescribed by the referenced Procedure, Statements of compliance, where applicable, are based on calibration results falling within specified criteria with no reduction by the uncertainty of the measurements. The calibration of the listed instrumentation was accomplished using a test system which conforms with the requirements of ISO/IEC 17025, ANSI/NCSL Z540-1, and guidelines of ISO 10012-1. For "as received" and "final" data, see the attached page(s). This Certificate and attached data pages shall not be reproduced, except in full, without written approval of the Hottinger Bruel and Kjaer Inc. Calibration Laboratory-Duluth, GA. Results relate only to the items tested. The Instrumentation has been calibrated using Measurement Standards with values traceable to the National Institute of Standards and Technology, National Measurement Institutes or derived from natural physical constants.

PROCEDURE:

The calibration was performed according to procedure number: 4128 DP Rev. 7.21

RESULTS:

"As Received" Physical Condition: Acceptable for Calibration

"As Received" Data: "As Received" = "Final Data"

"Final Data": Within Acceptance Criteria

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k=2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from standards, calibration method, effect of environmental conditions and any short term contribution from the device under calibration.

Date of Calibration: 05-Apr-2022

John Avitabile

Calibration Technician

Certificate issued: 05-Apr-2022

Meshaun Hobbs Quality Representative

 FCC ID: A3LSMS928U
 element
 HAC (VOLUME CONTROL) TEST REPORT
 Approved by: Managing Director

 Filename:
 Test Dates:
 DUT Type:
 Page 52 of 62

 1M2308210092-28-R1.A3L
 10/09/2023 - 10/23/2023
 Portable Handset
 Page 52 of 62

CERTIFICATE OF CALIBRATION No.: CAS-565027-G1J7F1-101 Page 2 of 2

Hottinger Brüel & Kjær Inc. Calibration

Laboratory

RESULTS:

Rev 7.21

I. Bruel & Kjaer Torso Model 4128, Serial Number: 1947220.

As Received Data	Final Data	As Received = Final Data		Х
2.00 S				
· * · (Acceptance Criteria	Actual	
A. Speaker and Speaker As Mechanical Check.	A. Speaker and Speaker Assembly Mechanical Check.		Pass	
B. Protection Circuit		Acceptance Criteria	Actual	
1. 6.4 VRMS 750 Hertz Input		Signal remains for more than P 30 Seconds		
2. 7.5 VRMS 750 Hertz Input		Signal disappears in 12 Seconds Pass/Fail	Pass	
			a ser consert	
C. Ear Simulator				
1. See enclosed Calibration 4158, serial number: 188622	Results for 22.	Calibration Results Included Yes/No/NA	Yes	
2. See enclosed Calibration Results for 4159, serial number:		Calibration Results Included Yes/No/NA	N/A	

Reference Standards:							
	Model	Serial Number	Trace Number	Cal Due	Interval (mo)		
HP	3458A	2823A03931	472263	30Sep22	12		
HP	5315A	2536A15836	468431	30Jun22	12		

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 53 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	1 age 55 01 02

The Hottinger Briel & 3079 Premie Duh Telepho Fax: Web site address:	Kjær Inc. Calibration Laboratory ere Parkway Suite 120 uh, GA 30097 me: 770-209-6907 770-447-4033 http://www.hbkworld.com			ACCREDITED	Calibration Certificate # 1568.01
CERTIFICATE OF	CALIBRATION	No.: CAS	-565027-GI	J7F1-401	Page 1 of 2
CALIBRATION OF:					
Microphone:	Brüel & Kjær	Type 41	58/2669/UA13	45 Serial No.	1886222/2025786
CUSTOMER:					1-14
	7185 Oakland Mills Road	ratory Inc			1.1-072
	Columbia, MD 21046				5/6/2020
CALIBRATION CO	NDITIONS:				
Environment conditions:	Air temperature:	23.2	°C		
	Air pressure:	98,229	kPa		
	Relative Humidity;	30	%RH		
Applied polarization voltage: SPECIFICATIONS: This document certifies that th acceptance criteria as prescrib within specified criteria with n using a test system which con received" and "final" data, see	Relative Humidity: 200 Vdc he instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISO the attached page(s). Items mar	30 pe" has been c Statements of f the measurer VIEC 17025, / ked with one a	%RH alibrated and u compliance, wh nents. The calil NNSI/NCSL Z5 sterisk (*) are r	nless otherwise i here applicable, a roration of the list 40-1, and guidel not covered by th	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished intes of ISO 10012-1, For "as the scope of the current A2LA
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with n using a test system which con received ⁴ and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laborato Standards with values traceab physical constants.	Relative Humidity: 200 Vdc et instrument as listed under "Ty ed by the referenced Procedure. The reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items mari and attached page(s). Items mari and attached data pages shall no ory-Duluth, GA. Results relate o le to the National Institute of Sta	30 pe" has been c Statements of f the measurer VIEC 17025, / ked with one a t be reproduce nly to the item ndards and Te	%RH alibrated and u compliance, wh nents. The calif NNSI/NCSL Z5 sterisk (*) are r d, except in ful is tested. The tr chnology, Natio	nless otherwise i nere applicable, i oration of the list 40-1, and guidel not covered by th 1, without writter ansducer has bee onal Measureme	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as te scope of the current A2LA a approval of the Hottinger Brüel en calibrated using Measurement nt Institutes or derived from nature
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with a using a test system which con received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laboral Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items marl and attached data pages shall no ory-Duluth, GA. Results relate of le to the National Institute of Sta performed with the assistance of oftware WT9649 and WT9650 vo	30 pe" has been c Statements of f the measurer //EC 17025, / ked with one a t be reproduce nly to the item ndards and Te	%RH alibrated and u compliance, wh nents. The calil NNSI/NCSL 25 sterisk (*) are i sterisk (*) are i sterisk (*) are i stested. The tr chnology, National Bruel & Kjær using calibrati	nless otherwise i bere applicable, i bration of the list 40-1, and guidel not covered by th 1, without writter ansducer has bee bonal Measureme	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as as scope of the current A2LA n approval of the Hottinger Brüel en calibrated using Measurement int Institutes or derived from nature Calibration System 158-2669-UA1345-S251
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with o using a test system which con received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laboralo Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application se RESULTS:	Relative Humidity: 200 Vdc e instrument as listed under "Ty ed by the referenced Procedure. to reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items marl and attached data pages shall no ory-Duluth, GA. Results relate o te to the National Institute of Sta performed with the assistance of fitware WT9649 and WT9650 vol	30 pe" has been of Statements of f the measurer MEC 17025, A ked with one a t be reproduce t be	%RH alibrated and u compliance, wi nents. The calil NNSI/NCSL Z5 sterisk (*) are r d, except in ful d, except in ful st tested. The tr chnology, National Bruel & Kjær 1 u sing calibrati	nless otherwise i here applicable, i bration of the lisi 40-1, and guidel tot covered by th l, without writter ansducer has bee bonal Measureme onal Measureme inc. Microphone on procedure: 4	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1, For "as te scope of the current A2LA n approval of the Hottinger Brüel en calibrated using Measurement nt Institutes or derived from nature Calibration System 158-2669-UA1345-S251
Applied polarization voltage: SPECIFICATIONS: This document certifies that ti acceptance criteria as prescrib within specified criteria with u using a test system which con received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laboral Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so RESULTS: X "As Received" Dat	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items mark and attached data pages shall no ory-Duluth, GA. Results relate of le to the National Institute of Sta performed with the assistance of fitware WT9649 and WT9650 vi- a: Within Acceptance Criteria	30 pe" has been c Statements of f the measurer //IEC 17025, / ked with one a t be reproduce nly to the item ndards and Te c'the Hottinger ersion 5.3.0,10	%RH alibrated and u compliance, wh ments. The calil NNSI/NCSL 25 sterisk (*) are 1 sterisk (*) are 1 sterisk (*) are 1 s tested. The tr chnology, National Brütel & Kjær using calibrati As Received" D	nless otherwise i here applicable, i bration of the list 40-1, and guidel not covered by th 1, without writter ansducer has bee onal Measureme inc. Microphone on procedure: 4	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as ac scope of the current A2LA a approval of the Hottinger Brücl en calibrated using Measurement int Institutes or derived from nature Calibration System 158-2669-UA1345-S251
Applied polarization voltage: SPECIFICATIONS: This document certifies that th acceptance criteria as prescrib within specified criteria with o using a test system which con received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laborad Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so RESULTS: X "As Received" Data Final" Data	Relative Humidity: 200 Vdc be instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty o forms to the requirements of ISC the attached page(s). Items mari and attached data pages shall no ory-Duluth, GA. Results relate o le to the National Institute of Sta performed with the assistance of oftware WT9649 and WT9650 vol- a: Within Acceptance Criteria	30 pe" has been c Statements of f the measurer VIEC 17025, / ked with one a t be reproduce nly to the item ndards and Te C the Hottinger ersion 5.3.0.10 "/ "/ "/	%RH alibrated and u compliance, wi nents. The calil NNSI/NCSL Z5 storisk (*) are r d, except in ful is tested. The tr chnology, National Bruel & Kjær Bruel & Kjær D using calibrati	nless otherwise i ere applicable, i oration of the list 40-1, and guidel not covered by th I, without writtei ansducer has bee sonal Measureme inc. Microphone on procedure: 4	indicated under "Final Data", meet are based on calibration results fal ted transducer was accomplished lines of ISO 10012-1. For "as the scope of the current A2LA in approval of the Hottinger Brüel en calibrated using Measurement in Institutes or derived from nature Calibration System 158-2669-UA1345-S251
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with or- using a test system which con- received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laborald Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so RESULTS: X "As Received" Data X "Final" Data The reported expanded uncerth approximately 95%. The uncee calibration method, effect of e	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items marl and attached data pages shall no ory-Duluth, GA. Results relate o le to the National Institute of Sta performed with the assistance of fitware WT9649 and WT9650 va a: Within Acceptance Criteria : Within Acceptance Criteria anity is based on the standard un rtainty evaluation has been carrin nvironmental conditions and any	30 pe" has been c Statements of f the measurer //IEC 17025. / ked with one a to be reproduce nly to the item ndards and Te 'the Hottinger ersion 5.3.0,10 "'' "'' certainty multi ed out in accor ' short term co	%RH alibrated and u compliance, wh nents. The calil NNSI/NCSL 25 sterisk (*) are i sterisk (*) are i stested. The tr chnology, National Brutel & Kjær using calibrati as Received" D Final" Data iplied by a cover dance with EA ntribution from	nless otherwise i here applicable, i bration of the list 40-1, and guidel tot covered by th J, without writter ansducer has bee onal Measureme inc. Microphone on procedure: 4 nta: Outside Acco : Outside Acco trage factor k =2 4/02 from elem- the device unde	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished intes of ISO 10012-1. For "as ac scope of the current A2LA a approval of the Hottinger Brüclen calibrated using Measurement in Institutes or derived from nature calibration System 158-2669-UA1345-S251 explance Criteria providing a level of confidence of ents originating from standards, or calibration.
Applied polarization voltage: SPECIFICATIONS: This document certifies that ti acceptance criteria as prescrib within specified criteria with o using a test system which con received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laboral Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application sa RESULTS: X "Final" Data The reported expanded uncertication for the calibration method, effect of e	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items mark and attached data pages shall no ory-Duluth, GA. Results relate of le to the National Institute of Sta performed with the assistance of oftware WT9649 and WT9650 va- a: Within Acceptance Criteria : Within Acceptance Criteria inty is based on the standard un rtainty evaluation has been carrien nvironmental conditions and any ation: April 11, 2022	30 pe" has been c Statements of f the measurer //EC 17025, / ked with one a t be reproduce nly to the item ndards and Te 'the Hottinger ersion 5.3.0,10 "/ "F certainty multi ed out in accor / short term co	%RH alibrated and u compliance, wi nents. The calil NNSI/NCSL 25 storisk (*) are i d, except in ful s tested. The tr chnology, National Brüel & Kjær Dusing calibrati Dusing calibrati As Received" D Final" Data iplied by a cover dance with EA ntribution from	nless otherwise i here applicable, i bration of the list 40-1, and guidel not covered by th J, without writter ansducer has bee onal Measureme inc. Microphone on procedure: 4 ata: Outside Acc : Outside Acc trage factor $k=2$ -4/02 from eleme- the device under ssued: April 11,	indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as the scope of the current A2LA an approval of the Hottinger Brüel en calibrated using Measurement int Institutes or derived from nature Calibration System 158-2669-UA1345-S251 exptance Criteria providing a level of confidence of ents originating from standards, r calibration.
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with or- using a test system which con- received" and "final" data, see accreditation. This Certificate Kjær Inc. Calibration Laborald Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so RESULTS: X "As Received" Data X "Final" Data The reported expanded uncertication for the theorem of the theory of	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items mark and attached data pages shall no ory-Duluth, GA. Results relate o le to the National Institute of Sta performed with the assistance of fitware WT9649 and WT9650 w a: Within Acceptance Criteria ainty is based on the standard un rtainty evaluation has been carrif nvironmental conditions and any ation: April 11, 2022	30 pe" has been c Statements of f the measurer //IEC 17025. / ked with one a to be reproduce nly to the item ndards and Te 'the Hottinger ersion 5.3.0,10 "'/ "'F certainty multi ed out in accor / short term co	%RH alibrated and u compliance, wh nents. The calil NNSI/NCSL 25 sterisk (*) are 1 s tested. The tr chnology, National Brüel & Kjær) using calibrati using calibrati iplied by a cover dance with EA ntribution from Certificate i	nless otherwise i here applicable, i bration of the list 40-1, and guidel hot covered by the list covered by the list covered by the list covered by the ansatucer has bee onal Measureme inc. Microphone on procedure: 4 ata: Outside Acco : Outside Acco : Outside Acco : rage factor $k=2$ 4/02 from eleme- the device unde ssued: April 11,	Indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as a scope of the current A2LA a approval of the Hottinger Brüclen calibrated using Measurement in Institutes or derived from nature Calibration System 158-2669-UA1345-S251 Exeptance Criteria providing a level of confidence of ents originating from standards, er calibration.
Applied polarization voltage: SPECIFICATIONS: This document certifies that the acceptance criteria as prescrib within specified criteria with ru- using a test system which con- received and "Inal" data, see accreditation. This Certificate Kjær Inc. Calibration Laborad Standards with values traceab physical constants. PROCEDURE: The measurements have been B&K 9721 with application so RESULTS:	Relative Humidity: 200 Vdc the instrument as listed under "Ty ed by the referenced Procedure. no reduction by the uncertainty of forms to the requirements of ISC the attached page(s). Items mari- and attached data pages shall no ory-Duluth, GA. Results relate of le to the National Institute of Sta performed with the assistance of fitware WT9649 and WT9650 vol- a: Within Acceptance Criteria ainty is based on the standard un- ritainty evaluation has been carri- nvironmental conditions and any ation: April 11, 2022	30 pe" has been o Statements of f the measurer VIEC 17025, / ked with one a t be reproduce nly to the item ndards and Te "/ C'the Hottinger ertsion 5.3.0.10 "/ "F certainty multi ed out in accor short term co	%RH alibrated and u compliance, wh nents. The calil NNSI/NCSL 25 d, except in ful is tested. The tr chnology, Nation Bruel & Kjær 1 Dusing calibrati Dusing calibrati As Received" D Pinal" Data iplied by a cover dance with EA nttribution from Certificate i	nless otherwise i here applicable, a oration of the list 40-1, and guidel into: covered by th l, without written ansducer has bee onal Measureme on procedure: 4 nta: Outside Acco : Outside Acco : Outside Acco : Gutside Acco : Sutside Acco : Sutside Acco : Sutside Acco : Sutside Acco : Acc	Indicated under "Final Data", meet are based on calibration results fall ted transducer was accomplished lines of ISO 10012-1. For "as the scope of the current A2LA in approval of the Hottinger Brüel en calibrated using Measurement in Institutes or derived from nature Calibration System 158-2669-UA1345-S251 Exeptance Criteria providing a level of confidence of ents originating from standards, or calibration.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 54 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

CERTIFICATE OF CALIBRATION

No.: CAS-56502	27-G1J7F1-40	1	
Type: 4158/2669/U/ 1886222/2025786	41345	Serial No.:	Page 2 of 2
-38 dB re. 1V/Pa	a +/-	2 dB	
-38.26 dB re. 1V/Pa	a or	12.22 mV/Pa	
-38.28 dB re. 1V/Pa	a or	12.19 mV/Pa	
+/- 0.08 dB			
ns: 12.28 dB			
251.19 Hz			
Due date Cal	ibrated by	Trace number	
2022-06-30 DPI	A	M2.10-1392-2.1	
	No.: CAS-56502 Type: 4158/2669/UJ 1886222/2025786 -38 dB re. 1V/Pe -38.26 dB re. 1V/Pe -38.28 dB re. 1V/Pe +/- 0.08 dB ns: 12.28 dB 251.19 Hz Due date Cali 2022-06-30 DPI	No.: CAS-565027-G1J7F1-40 Type: 4158/2669/UA1345 1886222/2025786 -38 dB re. 1V/Pa +/- -38.26 dB re. 1V/Pa or -38.28 dB re. 1V/Pa or +/- 0.08 dB ns: 12.28 dB 251.19 Hz Due date Calibrated by 2022-06-30 DPLA	No.: CAS-565027-GIJ7F1-401 Type: 4158/2669/UA1345 Serial No.: 1886222/2025786 Serial No.: -38 dB re. 1V/Pa +/- 2 dB -38.26 dB re. 1V/Pa or 12.22 mV/Pa -38.28 dB re. 1V/Pa or 12.19 mV/Pa +/- 0.08 dB ns: 12.28 dB 251.19 Hz Due date Calibrated by Trace number 2022-06-30 DPLA M2.10-1392-2.1

Condition "As Received":

Good

Comments:

This Preamplifier predates the availability of TEDS

Acoustic Pressure Response Results *

The results in this table are not covered by the current A2LA Scope of Accreditation *

Frequency in Hertz	Sound Pressure Level in dB	IEC 711 Tolerance in dB	Actual Result in dB
100	-0.3	± 0.5	-0.59
125	-0.2	± 0.5	-0.36
160	-0.2	± 0.5	-0.47
200	-0.1	± 0.4	-0.41
250	-0.1	± 0.4	0.09
315	-0.1	± 0.4	-0.36
400	0	± 0.4	-0.34
500	Ref	Ref	0.00
630	0.1	± 0.4	-0.25
800	0.2	± 0.4	0.16
1,000	1.6	± 0.5	1.61
1,250	3.3	± 0.5	3.06
1,600	4.5	± 0.5	4.89
2,000	5.2	± 0.6	4.99
2,500	6	± 0.6	5.49
3,150	6.9	± 0.7	6.59
4,000	8	± 0.8	8.08
5,000	9.3	± 1.0	9.27
6,300	11.4	± 1.0	10.57
8,000	13.7	± 1.5	12.95
10,000	18	± 2.0	17.57

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 55 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

The Hottinger Brüel & Kj 3079 Premiere Duluth Telephone Fax: 77 Web site address: h	aer Inc. Calibration Laboratory Parkway Suite 120 , GA 30097 : 770-209-6907 70-447-4033 tp://www.hbkworld.com			ACCREOFED	Calibration Certificate # 1568.01	
CERTIFICATE OF	CALIBRATION	No,: CAS-	565027-	G1J7F1-501	Page 1 of 2	
CALIBRATION O	F:					
Calibrator: Identification:	Brüel & Kjær	Type 4231 IEC Class:	1	Serial No.:	2343018	
CUSTOMER:	PCTEST Engineering Lab 7185 Oakland Mills Road Columbia, MD 21046	oratory Inc			V TK 5/6/2022	
CALIBRATION C	ONDITIONS:					
Environment conditions:	Air temperature: Air pressure:	23 96.93	°C kPa			
SPECIFICATIONS This document certifies that neets acceptance criteria as falling within specified crite accomplished using a test sy for "as received" and "final eccedition. This certifica	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- tria with no reduction by the unco- ystem which conforms to the requ- " data, see the attached page(s). I to and strached data mass shall	40 inder "Type" has cedure. Stateme rtainty of the m inements of ISO tems marked wi	%RH a been calibr nts of comp easurements //IEC 17025 th one aster d arceat in	ated and unless of liance, where app . The calibration , ANSI/NCSL Z5 sk (*) are not cov	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren the approved of the Unitmer B	l Data", n results 012-1. t A2LA
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica Kjær Inc. Calibration Labor Standards with values traces physical constants. The acco PROCEDURE: The measurements have application	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- ria with no reduction by the unco- stem which conforms to the requi- " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S usitic calibrator has been calibrate been performed with the assis	40 inder "Type" has cedure. Stateme rtainty of the m sirements of ISO tems marked without be reproduce only to the item tandards and Te d in accordance	%RH a been calibr nts of comp easurements VIEC 17025 th one asteri d, except in a tested. That chnology, N with the req	ated and unless o liance, where app . The calibration (, ANSI/NCSL Z5 sk (*) are not cov full, without wrift e transducer has b ational Measurem uirements as spec & Kjær Inc. aco	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren len approval of the Hottinger B een calibrated using Measurem nent Institutes or derived from r iffied in IEC60942.	l Data", n results 012-1. t A2LA rúel & ent natural
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica Kjær Inc. Calibration Labor Standards with values trace physical constants. The acco PROCEDURE: The measurements have application Software version 2.3,4 Ty	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- eria with no reduction by the unco- stem which conforms to the requ " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S ustic calibrator has been calibrate been performed with the assiss ype 7794 using calibration pro-	40 inder "Type" hat cedure. Stateme ertainty of the m inements of ISC tems marked wi ot be reproduce only to the item tandards and Ted d in accordance tance of Hottir peedure 4231 C	%RH i been calibr nts of comp easurements //EC 17025 th one asteri th one asteri chnology, N with the req oger Brtiel of Complete	ated and unless or liance, where app . The calibration of ; ANSI/NCSL Z5 sk (*) are not cov full, without writt e transducer has b ational Measurem juirements as spec & Kjær Inc. aco	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren ten approval of the Hottinger B een calibrated using Measurem nent Institutes or derived from r iffied in IEC60942.	l Data", a results 012-1. t A2LA rüel & ent aatural
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica Kjær Inc. Calibration Labor Standards with values tracer physical constants. The acco PROCEDURE: The measurements have a application Software version 2.3.4 Ty RESULTS:	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- ria with no reduction by the unce- ystem which conforms to the requ " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S ustic calibrator has been calibrate been performed with the assis ype 7794 using calibration pro-	40 inder "Type" hat cedure. Stateme rtainty of the m birements of ISC tems marked wi to be reproduce only to the item tandards and Ted d in accordance tance of Hottir becedure 4231 C	%RH is been calibring is of complete easurements VIEC 17025 the one astering d, except in s tested. The chnology, N with the required orger Brüch Complete	ated and unless or liance, where app . The calibration of . ANSI/NCSL Z5 sk (*) are not cov full, without writt : transducer has be ational Measurem uirements as spec & Kjær Inc. aco	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren ten approval of the Hottinger B een calibrated using Measurem tent Institutes or derived from r cified in IEC60942.	l Data", n results 012-1. t A2LA rüel & ent natural
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica Kjær Inc. Calibration Laba Standards with values trace: physical constants. The acco PROCEDURE: The measurements have application Software version 2.3.4 Ty RESULTS: X "As Received" D X "Final" Data	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- ria with no reduction by the unce- ystem which conforms to the requi- " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S ustic calibrator has been calibrate been performed with the assis ype 7794 using calibration pro- pata: Within Acceptance Criteria : Within Acceptance Criteria	40 Inder "Type" has cedure. Stateme stainty of the m inements of ISO tems marked wi iot be reproduce only to the item tandards and Te- d in accordance tance of Hottir pcedure 4231 C *A *F	%RH a been calibr ints of comp easurements /IEC 17025 th one asteri d, except in s tested. The choology, N with the req ager Brtiel of complete	ated and unless o liance, where app . The calibration ; ANSI/NCSL Z5 sk (*) are not cov full, without writh : transducer has be ational Measurem uirements as spec & Kjær Inc. acco	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren ten approval of the Hottinger B een calibrated using Measurem ent Institutes or derived from r cified in IEC60942.	I Data", n results 012-1. t A2LA ritel & ent natural
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica kiger Inc. Calibration Labor Standards with values tracer physical constants. The acco PROCEDURE: The measurements have ta application Software version 2.3.4 Ty RESULTS: X "As Received" D X "Final" Data The reported expanded unce approximately 95%. The un- calibration method, effect o	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- tria with no reduction by the unco- stem which conforms to the requ- " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S ustic calibrator has been calibrate been performed with the assis ype 7794 using calibration pro- trata: Within Acceptance Criteria : Within Acceptance Criteria entainty is based on the standard to certainty evaluation has been can f environmental conditions and a	40 Inder "Type" has cedure. Stateme ertainty of the m inements of ISO tems marked wi not be reproduce only to the item tandards and Ted d in accordance tance of Hottir becedure 4231 O "A " "F incertainty multi ried out in accor ay short time co	%RH is been calibrins of compleasurements VIEC 17025 the one asteri- the one asteri- chnology, N with the requires the one of the chnology, N with the requires the one of the complete as Received' inal" Data plied by a c dance with 1 ntribution for	ated and unless or liance, where app . The calibration of ANSI/NCSL 25 sk (*) are not cost full, without writt transducer has be ational Measurem uirements as spec & Kjær Inc. aco * Data: Outside A ; Outside A overage factor k = EA-4/02from elen om the calibrator	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren ten approval of the Hottinger B een calibrated using Measurem nent Institutes or derived from r iffied in IEC60942. ustic calibrator calibration cceptance Criteria cceptance Criteria - 2, providing a level of confide nents originating from the stand under calibration.	I Data", n results 012-1. t A2LA rtiel & ent natural
SPECIFICATIONS This document certifies that meets acceptance criteria as falling within specified crite accomplished using a test sy For "as received" and "final accreditation. This Certifica Kiger Inc. Calibration Labor Standards with values tracer- physical constants. The acco PROCEDURE: The measurements have ta application Software version 2.3.4 Ty RESULTS: X "As Received" D X "Final" Data The reported expanded uncer approximately 95%. The un- calibration method, effect of Date of Cal	Relative Humidity: the acoustic calibrator as listed to prescribed by the referenced Pro- tria with no reduction by the unco- stem which conforms to the requi- " data, see the attached page(s). I te and attached data pages shall r atory-Duluth, GA. Results relate able to the National Institute of S- ustic calibrator has been calibrate been performed with the assis ype 7794 using calibration pro- pata: Within Acceptance Criteria : Within Acceptance Criteria entainty is based on the standard to certainty evaluation has been car f environmental conditions and an ibration: 06 April 2022	40 Inder "Type" has cedure. Stateme ertainty of the m inements of ISC tems marked wi to be reproduce only to the item tandards and Ted d in accordance tance of Hottir becedure 4231 C	%RH a been calibrins of complexity of complexity of complexity of complexity of complexity of complexity of the complexi	ated and unless or liance, where app . The calibration of ANSI/NCSL 25 sk (*) are not cov full, without writt e transducer has be ational Measurem uirements as spec & Kjær Inc. aco * Data: Outside A : Outside A overage factor k = EA-4/02from elen om the calibrator ate issued: 06 April	therwise indicated under "Final licable, are based on calibration of the listed transducer was 40-1, and guidelines of ISO 10 ered by the scope of the curren ten approval of the Hottinger B een calibrated using Measurem ment Institutes or derived from r iffied in IEC60942. ustic calibrator calibration cceptance Criteria cceptance Criteria = 2, providing a level of confide nents originating from the stand under calibration.	I Data", n results 012-1. t A2LA ritel & ent natural

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 56 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	1 ago 00 01 02

CERTIFICATE OF CALIBRATION

No.: CAS-565027-G1J7F1-501

Type: 4231 Serial No.: 2343018

Page 2 of 2

Sound Pressure Levels All stated values are valid at environmental reference conditions

Nominal Level [dB]	Accept Limit Lower [dB]	Accept Limit Upper [dB]	Measured Level [dB]	Measurement Uncertainty [dB]
94	93.80	94.20	93.99	0.12
114	113.80	114.20	114.03	0.12

Frequency

Nominal	Accept Limit	Accept Limit	Measured	Measurement
Frequency	Lower	Upper	Frequency	Uncertainty
[Hz]	[Hz]	[Hz]	[Hz]	[Hz]
1000	999.00	1001.00	999.98	0.10

Total Distortion*

X TD* THD* Distortion mode:

Calibration Level [dB]*	Accept Limit [%]*	Measured Distortion [%]*	Measurement Uncertainty [%]*
94	1.00	0.53	0.13
114	1.00	0.17	0.13

Environmental Reference Conditions:

Pressure: 101.3 kPa, Temperature: 23 °C, Relative Humidity: 50%

Instrument List

Туре 3560	Description PULSE Analyzer	Serial no 2723320	Cal. date 2021-10-18	Due date 2022-10-18	Calibrated by JCA	Trace number CAS-541708-
9545	Transfer Microphone	3	2021-10-28	2022-10-31	MH	J2Z8Q8-301 CAS-541708-
4228	Reference Sound Source	1618502	2021-04-30	2023-04-30	M. Hobbs	CAS-512601- T0X4B1-402

During the calibration the calibrator has been loaded by the load volume of the Transfer Microphone. The load volumes

For Bruel & Kjær Pistonphones types 4220 and 4228 the result of the SPL calibration has been corrected to be valid for a load volume of 1333 mm³. For all other types the result is valid with the actual load volume.

Transfer	Fulfils standard	Fulfils standard	Load Volume 1"	Load Volume 1/2"
Microphone Type	IEC 61094-1 LS	IEC 61094-4 WS	(1/2" mic including DP-0776)	
4180	yes	yes	1126 mm ³	43 mm ³
4192	-	yes	1273 mm ³	190 mm ³
9545	-	-	1333 mm ³	-

Condition "As Received": Good

Comments

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 57 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 57 01 02

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMS928U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 58 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	

16. **REFERENCES**

- 1. ANSI C63.19-2019, "American National Standard Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids," IEEE, New York, NY, August 2019
- ANSI/TIA-5050-2018, "Communications Products Receive Volume Control Requirements for Wireless (Mobile) Devices," Telecommunications Industry Association, Arlington, VA, January 2018
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v06r04," September 29, 2023
- FCC Office of Engineering and Technology KDB, "285076 D04 Volume Control v02," September 29, 2023
- 5. FCC Office of Engineering and Technology KDB, "285076 D05 CG Interim Waiver DA 23-914 v01," September 29, 2023
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 7. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 8. ANSI/IEEE Std 269-2010, "IEEE Standard Methods for Measuring Transmission Performance of Analog and Digital Telephone Sets, Handsets, and Headsets," IEEE, 2010
- 9. ANSI/IEEE Std 1652-2016, "IEEE Standard for Translating Head and Torso Simulator Measurements from Eardrum to Other Acoustic Reference Points," IEEE, 2016
- 10. ITU-T Recommendation P.56, "Objective measurement of active speech level," ITU, December 2011
- 11. ITU-T Recommendation P.57, "Artificial ears," ITU December 2011
- 12. ITU-T Recommendation P.58, "Head and torso simulator for telephonometry," ITU, May 2013
- 13. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 14. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 15. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- 16. Byme, D. and Dillon, H., "The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid," Ear and Hearing 7:257-265, 1986.
- 17. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Dogo E0 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 59 01 02

- 18. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, "Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity." Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 20. HAMPIS Report, "Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference," October 1999.
- 21. "Hearing Aids/GSM," Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 22. IEEE 100, "The Authoritative Dictionary of IEEE Standards Terms," Seventh Edition.
- Joyner, K. H, et. al., "Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard," National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 24. Joyner, K. H., et. al., "Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM)," NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- McCandless, G. A., and Lyregaard, P. E., "Prescription of Gain/Output (POGO) for Hearing Aids," Hearing Instruments 1:16-21, 1983
- 30. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones," IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 31. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 32. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 33. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMS928U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Dogo 60 of 62
1M2308210092-28-R1.A3L	10/09/2023 - 10/23/2023	Portable Handset	Fage 60 01 62