

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
 Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or nazardous components:					
CAS: 107-21-1	Ethanediol	>1.0-4.9%			
EINECS: 203-473-3	STOT RE 2, H373;				
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302				
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%			
EINECS: 271-781-5	Eye Irrit. 2, H319				
Reg.nr.: 01-2119527859-22-0000					
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%			
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319				
Reg.nr.: 01-2119539582-35-0000					
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%			
NLP: 500-236-9	Aquatic Chronic 2, H411;				
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319				

Additional information:

withheld as a trade secret.

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

Figure D-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID A3LSMS928U	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX D: Page 1 of 3

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C
Test Date 17-Mar-23
Operator WM

Additional Information

TSL Density

TSL Heat-capacity

Results

	Measured		Target		Diff.to Target [%]		
f [MHz]	e'	е"	sigma	eps	sigma	Δ-eps	Δ-sigma
600	44.9	24.8	0.83	42.7	0.88	5.1	-5.9
750	44.2	21.0	0.88	41.9	0.89	5.4	-1.5
800	44.0	20.1	0.90	41.7	0.90	5.6	0.3
825	44.0	19.8	0.91	41.6	0.91	5.8	0.4
835	44.0	19.6	0.92	41.5	0.91	5.9	0.9
850	43.9	19.4	0.92	41.5	0.92	5.8	0.4
900	43.7	18.7	0.94	41.5	0.97	5.3	-3.1
1400	42.6	14.7	1.15	40.6	1.18	4.9	-2.5
1450	42.5	14.5	1.17	40.5	1.20	4.9	-2.5
1600	42.3	14.0	1.25	40.3	1.28	4.9	-2.7
1625	42.3	13.9	1.26	40.3	1.30	5.0	-3.0
1640	42.3	13.9	1.27	40.3	1.31	5.1	-2.8
1650	42.2	13.9	1.27	40.2	1.31	4.9	-3.3
1700	42.1	13.8	1.30	40.2	1.34	4.8	-3.1
1750	42.1	13.7	1.33	40.1	1.37	5.0	-3.0
1800	42.0	13.6	1.36	40.0	1.40	5.0	-2.9
1810	42.0	13.6	1.37	40.0	1.40	5.0	-2.1
1825	42.0	13.5	1.38	40.0	1.40	5.0	-1.4
1850	42.0	13.5	1.39	40.0	1.40	5.0	-0.7
1900	41.9	13.4	1.42	40.0	1.40	4.7	1.4
1950	41.8	13.4	1.45	40.0	1.40	4.5	3.6
2000	41.8	13.3	1.48	40.0	1.40	4.5	5.7
2050	41.7	13.3	1.51	39.9	1.44	4.5	4.5
2100	41.7	13.2	1.55	39.8	1.49	4.7	4.1
2150	41.6	13.2	1.58	39.7	1.53	4.7	3.0
2200	41.5	13.2	1.62	39.6	1.58	4.7	2.7
2250	41.4	13.2	1.65	39.6	1.62	4.7	1.7
2300	41.3	13.2	1.69	39.5	1.67	4.6	1.4
2350	41.3	13.3	1.73	39.4	1.71	4.9	1.1
2400	41.2	13.3	1.77	39.3	1.76	4.9	0.8
2450	41.1	13.3	1.81	39.2	1.80	4.8	0.6
2500	41.1	13.3	1.85	39.1	1.85	5.0	-0.2
2550	41.0	13.3	1.89	39.1	1.91	4.9	-1.0
2600	40.9	13.4	1.93	39.0	1.96	4.8	-1.7

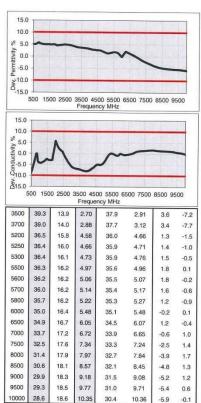


Figure D-2 600 – 10000 MHz Head Tissue Equivalent Matter

FCC ID A3LSMS928U	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX D: Page 2 of 3

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL4-250V3)
Product No.	SL AAH 005 AD (Batch: 230324-2)
Manufacturer	SPEAG

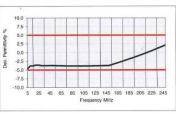
Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Validation results were within $\pm\,2.5\%$ towards the target values of Methanol.

Target Parameters
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environmer
TSL Temperature 22°C
Test Date 27-Mar-23 Environment temperatur (22 ± 3)°C and humidity < 70%. WM

Additional Information

TSL Density 1.042 g/cm3

TSL Heat-capacity 3.574 kJ/(kg*K)

TSL Heat-capacity 3.574 kJ/(kg*K)							
(2.5)	Measured			Targe	t	Diff.to Target [%]	
f [MHz]	0'	e"	sigma	eps	sigma	∆-eps	Δ-sigma
5	52.9	2636.98	0.73	55.5	0.75	-4.6	-2.7
10	53,3	1318.71	0.73	55.5	0.75	-3.9	-2.7
15	53.2	879.92	0.73	55.3	0.75	-3.9	-2.7
20	53.1	660.54	0.73	55.1	0.75	-3.6	-2.7
25	53.0	528.94	0.74	55.0	0.75	-3.6	-1.3
30	52.9	441.24	0.74	55.0	0.75	-3.8	-1.3
35	52.8	378.63	0.74	54.9	0.75	-3.8	-1.3
40	52.7	331.71	0.74	54.8	0.75	-3.8	-1.3
45	52.6	295.25	0.74	54.7	0.75	-3.8	-1.4
50	52.5	266.12	0.74	54.6	0.75	-3.8	-1.4
55	52.4	242.31	0.74	54.4	0.75	-3.7	-1.5
60	52.3	222.50	0.74	54.3	0.75	-3.7	-1.5
65	52.2	205.74	0.74	54.2	0.75	-3.7	-1.6
70	52.0	191.40	0.75	54.1	0.75	-3.9	-0.3
75	51.9	178.98	0.75	54.0	0.75	-3.9	-0.4
80	51.8	168.13	0.75	53.9	0.75	-3.9	-0.4
85	51.7	158.56	0.75	53.8	0.75	-3.8	-0.5
90	51.6	150.06	0.75	53.7	0.75	-3,8	-0.5
95	51.5	142.46	0.75	53.5	0.75	-3.8	-0.6
100	51.4	135.63	0.75	53.4	0.75	-3.8	-0.6
105	51.3	129.46	0.76	53.3	0.76	-3.8	0.6
110	51.1	123.86	0.76	53.2	0.76	-3.9	0.6
115	51.0	118.75	0.76	53.1	0.76	-3.9	0.5
120	50.9	114.07	0.76	53.0	0.76	-3.9	0.5
125	50.8	109.77	0.76	52.9	0.76	-3.9	0.4
130	50.7	105.80	0.77	52.8	0.76	-3.9	1.7
135	50.6	102.13	0.77	52.6	0.76	-3.9	1.6
140	50.5	98.73	0.77	52.5	0.76	-3.9	1.6
145	50.4	95.56	0.77	52.4	0.76	-3.8	1.5
150	50.3	92.61	0.77	52.3	0.76	-3.8	1.5
155	50.3	89.86	0.77	52.1	0.76	-3.4	1.0
160	50.2	87.27	0.78	51.8	0.77	-3.1	1.8
165	50.1	84.85	0.78	51.6	0.77	-2.9	1.3
170	50.0	82,57	0.78	51.4	0.77	-2.7	8.0
175	49.9	80.42	0.78	51.1	0.78	-2.4	0.4
180	49.8	78.39 76.48	0.78	50.9	0.78	-2.2	-0.1
44.45	1000000	15/31/2/40	100000	19000		-250D	0.2
190	49.6	74.67 72.95	0.79	50.4	0.79	-1.6 -1.4	-0.2
200	49.5	71.32	0.79	50.2	0.80	-1.4	-0.2
200	49.4	69.77	0.79	49.7	0.80	-0.9	0.1
210	49.3	68.30	0.80	49.7	0.80	-0.9	-0.4
215	49.3	66.90	0.80	49.5	0.80	-0.1	-0.4
220	49.1	65,56	0.80	49,0		0.1	-1.3
225	49.1	64.29	0.80	48.8	0.81	0.1	-1.7
230	48.9	63.07	0.80	48.6	0.82	0.7	-0.9
235	48.9	61.90	0.81	48.3	0.82	1.2	-1.4
240	48.8	60.78	0.81	48.1	0.82	1.5	-1.8
245	48.7	59.71	0.81	47.9	0.83	1.7	-2.2
250	48.6	58.69	0.82	47.6	0.83	2.0	-1.5
250	70.0	1 55.09	0.02	47.0	0.00	2.0	11.0

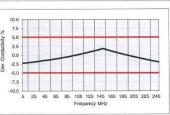


Figure D-3 5- 250 MHz Head Tissue Equivalent Matter

FCC ID A3LSMS928U	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX D: Page 3 of 3