

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 802.11ax/be (OFDMA)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 9/6/2023 - 11/03/2023 Test Report Issue Date: 11/06/2023 Test Site/Location: Element lab., Columbia, MD, USA Test Report Serial No.: 1M2308210092-14.A3L

FCC ID:

A3LSMS928U

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type:	Certification
Model:	SM-S928U
Additional Model(s):	SM-S928U1
EUT Type:	Portable Handset
Frequency Range:	2412 – 2462MHz
Modulation Type:	OFDMA
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15 Subpart C (15.247)
Test Procedure(s):	ANSI C63.10-2013, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 1 of 67		
© 2023 ELEMENT V11.0 07/06/2023					

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	Antenna Description	6
	2.5	Software and Firmware	7
	2.6	EMI Suppression Device(s)/Modifications	7
3.0	DESC	RIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	Radiated Emissions	8
	3.3	Environmental Conditions	8
4.0	ANTE	NNA REQUIREMENTS	9
5.0	MEAS	SUREMENT UNCERTAINTY	.10
6.0	TEST	EQUIPMENT CALIBRATION DATA	.11
7.0	TEST	RESULTS	.12
	7.1	Summary	. 12
	7.2	6dB Bandwidth Measurement	. 13
		7.2.1 MIMO 6 dB Bandwidth Measurements	. 15
	7.3	Output Power Measurement	.21
	7.4	Power Spectral Density	. 26
		7.4.1 MIMO Power Spectral Density Measurements	. 28
	7.5	Conducted Band Edge Emissions	. 35
		7.5.1 MIMO Conducted Band Edge Emissions	. 36
	7.6	Conducted Spurious Emissions	. 40
		7.6.1 MIMO Conducted Spurious Emissions	. 42
	7.7	Radiated Emission Measurements	. 54
		7.7.2 MIMO Radiated Spurious Emission Measurements	
		7.7.3 MIMO Radiated Restricted Band Edge Measurements	
8.0	CONC		.67

FCC ID: A3LSMS928U		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 2 01 07		
© 2023 ELEMENT V11.0 07/06/2023					

MEASUREMENT REPORT

Obarrad			Anter	Antenna-1		Antenna-2				МІМО					
Channel Bandwidth	IEEE Mode	Tones	Tx Frequency	Avg. Co	nducted	Peak Co	onducted	Avg. Co	nducted	Peak Co	nducted	Avg. Co	nducted	Peak Co	nducted
[MHz]			[MHz]	Max. Power Max. Power [mW] [dBm]		Max. Power [mW]	Max. Power [dBm]								
	802.11ax/be OFDMA	26T	2412 - 2462	24.72	13.93	165.58	22.19	24.98	13.98	158.12	21.99	49.16	16.92	332.30	25.22
	802.11ax/be OFDMA	52T	2412 - 2462	31.33	14.96	196.79	22.94	31.55	14.99	204.46	23.11	61.52	17.89	393.09	25.94
20	802.11be OFDMA	52+26T	2412 - 2462	30.48	14.84	194.54	22.89	30.41	14.83	198.61	22.98	60.49	17.82	377.96	25.77
20	802.11ax/be OFDMA	106T	2412 - 2462	49.20	16.92	368.98	25.67	50.00	16.99	336.51	25.27	98.87	19.95	688.02	28.38
	802.11be OFDMA	106+26T	2412 - 2462	49.89	16.98	350.75	25.45	50.00	16.99	313.47	24.96	90.61	19.57	639.73	28.06
	802.11ax/be OFDMA	242T	2412 - 2462	60.39	17.81	451.86	26.55	60.53	17.82	432.51	26.36	111.43	20.47	849.05	29.29

EUT Overview

FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 2 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 3 of 67
© 2023 ELEMENT			V11.0 07/06/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dege 4 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 4 of 67		
© 2023 ELEMENT V11.0 07/06/2023					

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMS928U**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0042M, 0085M, 0900M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1 and FR2), 802.11b/g/n/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Notes:

 The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Mode	Antenna	Bandwidth [MHz]	Channel	Tone	Duty Cycle
				26T	99.44
				52T	99.46
802.11be	1/2	20	6	52T+26T	99.26
DTS RU	DTS RU	20	0	106T	98.97
				106T+26T	98.73
				242T	98.78
	мімо	20		26T	98.94
				52T	98.99
802.11be			6	52T+26T	98.64
DTS RU	IVIIIVIU	20		106T	98.19
				106T+26T	97.81
				242T	97.80

Table 2-2. Measured Duty Cycles

FCC ID: A3LSMS928U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Daga 5 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 5 of 67	
© 2023 ELEMENT			V11.0.07/06/2023	

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		CDD	
WIFI COIII	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
2.4GHz	11ax	✓	✓	✓	✓	✓	✓
2.4GHz	11be	✓	✓	✓	v	✓	✓

Table 2-	3. Antenn	a Configuration
----------	-----------	-----------------

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity - 2Tx Function

3. The device supports the following data rates (shown in Mbps):

MCS Index	Spatial	OFDMA (802.11ax)											
mucx	Stream		26T			52T			106T			242T	
HE		0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
0	1	0.9	0.8	0.8	1.8	1.7	1.5	3.8	3.5	3.2	8.6	8.1	7.3
1	1	1.8	1.7	1.5	3.5	3.3	3	7.5	7.1	6.4	17.2	16.3	14.6
2	1	2.6	2.5	2.3	5.3	5	4.5	11.3	10.6	9.6	25.8	24.4	21.9
3	1	3.5	3.3	3	7.1	6.7	6	15	14.2	12.8	34.4	32.5	29.3
4	1	5.3	5	4.5	10.6	10	9	22.5	21.3	19.1	51.6	48.8	43.9
5	1	7.1	6.7	6	14.1	13.3	12	30	28.3	25.5	68.8	65	58.5
6	1	7.9	7.5	6.8	15.9	15	13.5	33.8	31.9	28.7	77.4	73.1	65.8
7	1	8.8	8.3	7.5	17.6	16.7	15	37.5	35.4	31.9	86	81.3	73.1
8	1	10.6	10	9	21.2	20	18	45	42.5	38.3	103.2	97.5	87.8
9	1	11.8	11.1	10	23.5	22.2	20	50	47.2	42.5	114.7	108.3	97.5
10	1	13.2	12.5	11.3	26.5	25	22.5	56.3	53.1	47.8	129	121.9	109.7
11	1	14.7	13.9	12.5	29.4	27.8	25	62.5	59	53.1	143.4	135.4	121.9
0	2	1.8	1.7	1.5	3.5	3.3	3	7.5	7.1	6.4	17.2	16.3	14.6
1	2	3.5	3.3	3	7.1	6.7	6	15	14.2	12.8	34.4	32.5	29.3
2	2	5.3	5	4.5	10.6	10	9	22.5	21.3	19.1	51.6	48.8	43.9
3	2	7.1	6.7	6	14.1	13.3	12	30	28.3	25.5	68.8	65	58.5
4	2	10.6	10	9	21.2	20	18	45	42.5	38.3	103.2	97.5	87.8
5	2	14.1	13.3	12	28.2	26.7	24	60	56.7	51	137.6	130	117
6	2	15.9	15	13.5	31.8	30	27	67.5	63.8	57.4	154.9	146.3	131.6
7	2	17.6	16.7	15	35.3	33.3	30	75	70.8	63.8	172.1	162.5	146.3
8	2	21.2	20	18	42.4	40	36	90	85	76.5	206.5	195	175.5
9	2	23.5	22.2	20	47.1	44.4	40	100	94.4	85	229.4	216.7	195
10	2	26.5	25	22.5	52.9	50	45	112.5	106.3	95.6	258.1	243.8	219.4
11	2	29.4	27.8	25	58.8	55.6	50	125	118.1	106.3	286.8	270.8	243.8

Table 2-4. Supported Data Rates

2.3 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Sections 0 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) EP-P2400 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Antenna Description

The following antenna gains were used for the testing.

Frequency [GHz	2] Antenna-1 G	Gain [dBi] Antenna-2 Ga	ain [dBi] Directional Gain [dBi]			
2.4	-1.0	5 -3.52	0.81			
Table 2-5. Antenna Peak Gain						

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 6 of 67	
© 2023 ELEMENT			1/11 0 07/06/2023	

2.5 Software and Firmware

The test was conducted with software/firmware version S928USQU0AW19 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 7 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 7 of 67
© 2023 ELEMENT	•		V11.0 07/06/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	s: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 8 of 67
© 2023 ELEMENT	<u>.</u>		V11.0 07/06/2023

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 9 of 67
© 2023 ELEMENT		•	V11.0 07/06/2023

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 10 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 10 of 67
© 2023 ELEMENT	·	·	V11.0 07/06/2023

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	MD 1M 18-40	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	MD 1M 18-40
-	WL40-1	Conducted Cable Set (40GHz)	1/12/2023	Annual	1/12/2024	WL40-1
-	WL25-1	Conducted Cable Set (25GHz)	1/12/2023	Annual	1/12/2024	WL25-1
Anritsu	MA24406A	Microwave Peak Power Sensor	9/7/2023	Annual	9/7/2024	11240
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/5/2022	Biennial	7/5/2024	9203-2178
Pastermack	MNLC-2	Line Conducted Emission Cable (NM)	1/11/2023	Annual	1/11/2024	NMLC-2
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
ETS Lindgren	3116C	1-18 GHz DRG Horn Antenna	2/27/2023	Biennial	2/27/2024	00218893
ETS Lindgren	3115	Double Ridged Guide Horn	4/12/2022	Biennial	4/12/2024	82333
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2025	121034
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Keysight Technologies	N9030A	PXA Signal Analyzer	1/31/2023	Annual	1/31/2024	MY55410501
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	9/7/2023	Annual	9/7/2024	MY57141001
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/1/2023	Annual	3/1/2024	101716
Rohde & Schwarz	FSW26	2Hz-26.5GHz Signal and Spectrum Analyzer	11/6/2022	Annual	11/6/2023	103187
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	1/13/2023	Annual	1/13/2024	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	2/21/2023	Biennial	2/21/2025	A051107
Sunol	JB6	LB6 Antenna	3/2/2023	Biennial	3/2/2025	A082816

 Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 11 of 67
© 2023 ELEMENT			V11.0 07/06/2023

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS928U
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2(a)]	6dB Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(b)]	Transmitter Output Power	shall not exceed 1 W		PASS	Section 7.3
N/A	RSS-247 [5.4(b)]	e.i.r.p	Shall not exceed 4 W	CONDUCTED	PASS	Section 7.3
15.247(e)	RSS-247 [5.2(b)]	Transmitter Power Spectral Density	shall not be greater than 8 dBm in any 3 kHz band		PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.1.
- 802.11ax OFDMA testing was performed for all signal tone configurations as specified by the 802.11ax standard. Worst case results are determined and reported per the guidance provided at the October 2018 TCB Workshop.

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Dage 10 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 12 of 67	
© 2023 ELEMENT			V11.0 07/06/2023	

7.2 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst-case configuration results are reported in this section.

The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 11.8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Based on preliminary measurements, it was determined that, of all the tone configurations, the 26T configuration produced the worst case 6dB Bandwidth measurement. Only the worst-case data is included in this section.
- 2. The 6dB bandwidth for each channel was measured with the RU index showing the highest conducted power.

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type: 9/6/2023 - 11/03/2023 Portable Handset	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023		
© 2023 ELEMENT		•	V11.0 07/06/2023

6dB Bandwidth Measurements

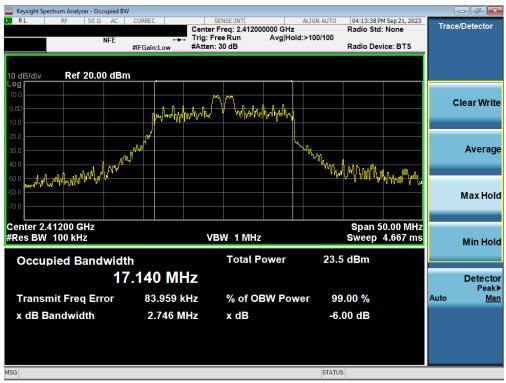
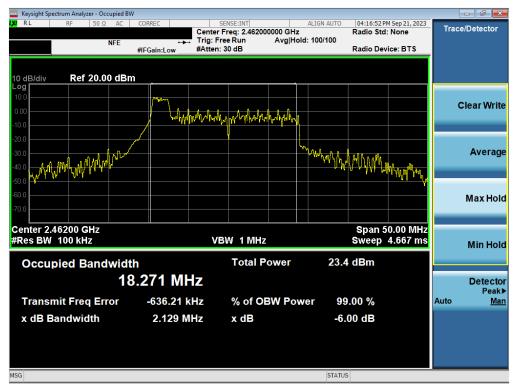
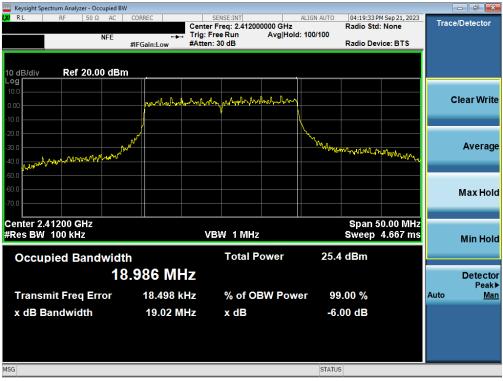

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	ANT 1 Measured Bandwidth [MHz]	ANT 2 Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	ax	26T	MCS0	2.746	2.735	0.500
2437	6	ax	26T	MCS0	2.078	2.093	0.500
2462	11	ax	26T	MCS0	2.129	2.084	0.500
2412	1	ax	242T	MCS0	19.02	18.99	0.500
2437	6	ax	242T	MCS0	19.01	19.02	0.500
2462	11	ax	242T	MCS0	19.04	18.97	0.500

Table 7-2. Conducted 6dB Bandwidth Measurements MIMO

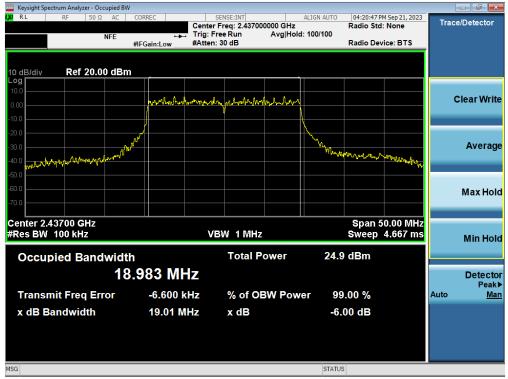
FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	6/2023 - 11/03/2023 Portable Handset	
© 2023 ELEMENT		•	V11.0 07/06/2023

7.2.1 MIMO 6 dB Bandwidth Measurements



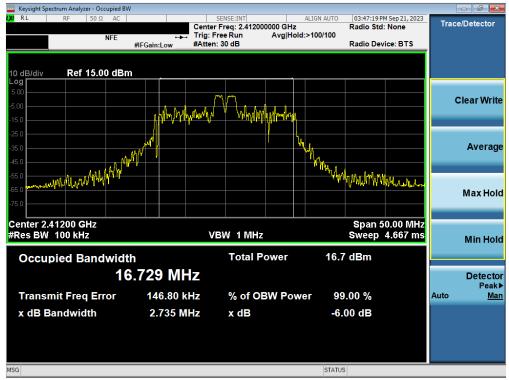

Plot 7-2. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

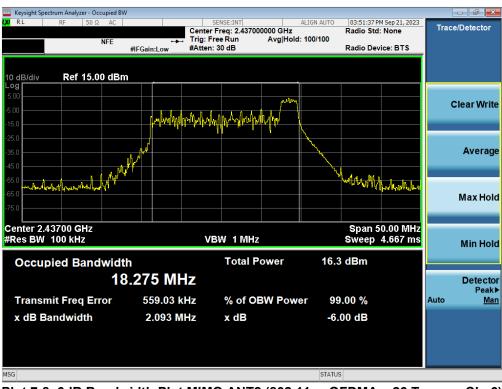
FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 15 01 07
© 2023 ELEMENT			V11.0 07/06/2023


Plot 7-3. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 11)

Plot 7-4. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

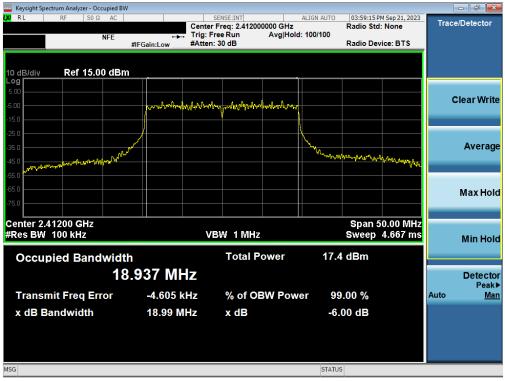
FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 16 of 67
© 2023 ELEMENT			V11.0 07/06/2023


Plot 7-5. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)


Plot 7-6. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 17 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 17 of 67
© 2023 ELEMENT			V11.0 07/06/2023

Plot 7-7. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)


Plot 7-8. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	23 - 11/03/2023 Portable Handset	
© 2023 ELEMENT			V11.0 07/06/2023

Plot 7-9. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 11)

Plot 7-10. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 19 of 67
© 2023 ELEMENT	<u>.</u>		V11.0 07/06/2023

🔤 Keysight Spectrum Analyzer - Occupied BW					
LXIRL RF 50Ω AC	CORREC	SENSE:INT ter Freg: 2.437000000 GHz		PM Sep 21, 2023	Trace/Detector
NFE	Trig	:Free Run Avg Ho	old: 100/100		
	#IFGain:Low #Att	en: 30 dB	Radio D	evice: BTS	
10 dB/div Ref 15.00 dBm Log	<u> </u>				
5.00	h nor h mlandet der h	when when the the when the second			
-5.00	Cr. m.n It offollows	A Real Double And A range of the			Clear Write
-15.0					
-25.0			h.		
-35.0	·		Marynowwww.	MANAGE AND -	Average
-45.0 Houton and son a son the son have been son				1 1 V W	
-55.0					
-65.0					Maxilald
-75.0					Max Hold
Center 2.43700 GHz				50.00 MHz	
#Res BW 100 kHz		VBW 1 MHz	Sweep) 4.667 ms	Min Hold
Occupied Bandwidt	h	Total Power	24.9 dBm		
10	.982 MHz				Detector Peak▶
Transmit Freq Error	-5.914 kHz	% of OBW Pov	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	19.02 MHz	x dB	-6.00 dB		
x db bandwiddii	10.02 11112	A GB	0.00 aB		
MSG			STATUS		
MBG			STATUS		

Plot 7-11. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-12. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 20 of 67
© 2023 ELEMENT		·	V11.0 07/06/2023

7.3 Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt per 15.247 and RSS-247. The e.i.r.p. shall not exceed 4 W per RSS-247.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None.

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	6/2023 - 11/03/2023 Portable Handset	
© 2023 ELEMENT	•		V11.0 07/06/2023

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			0	13.61	21.91	30.00	-16.39	-8.09	-1.05	20.86	36.02	-15.16
2412	1	26T	4	13.77	22.16	30.00	-16.23	-7.84	-1.05	21.11	36.02	-14.91
			8	13.91	21.66	30.00	-16.09	-8.34	-1.05	20.61	36.02	-15.41
			0	13.87	21.63	30.00	-16.13	-8.37	-1.05	20.58	36.02	-15.44
2437	6	26T	4	13.54	21.90	30.00	-16.46	-8.10	-1.05	20.85	36.02	-15.17
			8	13.83	21.86	30.00	-16.17	-8.14	-1.05	20.81	36.02	-15.21
			0	13.93	21.56	30.00	-16.07	-8.44	-1.05	20.51	36.02	-15.51
2462	11	26T	4	13.80	22.19	30.00	-16.20	-7.81	-1.05	21.14	36.02	-14.88
			8	13.79	21.72	30.00	-16.21	-8.28	-1.05	20.67	36.02	-15.35

Table 7-3. Conducted Output Power Measurements SISO ANT1 (26 Tones)

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			37	14.53	22.88	30.00	-15.47	-7.12	-1.05	21.83	36.02	-14.19
2412	1	52T	38	14.58	22.87	30.00	-15.42	-7.13	-1.05	21.82	36.02	-14.20
			40	14.79	22.54	30.00	-15.21	-7.46	-1.05	21.49	36.02	-14.53
			37	14.90	21.77	30.00	-15.10	-8.23	-1.05	20.72	36.02	-15.30
2437	6	52T	38	14.88	21.72	30.00	-15.12	-8.28	-1.05	20.67	36.02	-15.35
			40	14.96	21.71	30.00	-15.04	-8.29	-1.05	20.66	36.02	-15.36
			37	14.77	22.75	30.00	-15.23	-7.25	-1.05	21.70	36.02	-14.32
2462	11	52T	38	14.92	22.94	30.00	-15.08	-7.06	-1.05	21.89	36.02	-14.13
			40	14.69	22.62	30.00	-15.31	-7.38	-1.05	21.57	36.02	-14.45

Table 7-4. Conducted Output Power Measurements SISO ANT1 (52 Tones)

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)	Conducted Powers (dBm)		Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412 1	1	106T	53	16.81	25.67	30.00	-4.33	-4.33	-1.05	24.62	36.02	-11.40
2412	2412 1	1001	54	16.54	24.44	30.00	-5.56	-5.56	-1.05	23.39	36.02	-12.63
2437	6	106T	53	16.82	25.25	30.00	-4.75	-4.75	-1.05	24.20	36.02	-11.82
2437	0	1001	54	16.92	25.19	30.00	-4.81	-4.81	-1.05	24.14	36.02	-11.88
0460	11	106T	53	16.72	24.59	30.00	-5.41	-5.41	-1.05	23.54	36.02	-12.48
2462 11	1001	54	16.65	24.49	30.00	-5.51	-5.51	-1.05	23.44	36.02	-12.58	

Table 7-5. Conducted Output Power Measurements SISO ANT1 (106 Tones)

Freq [MHz]	Channel	Tones		Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412	1	242T	61	15.58	25.22	30.00	-4.78	-4.78	-1.05	24.17	36.02	-11.85
2417	2	242T	61	17.75	26.45	30.00	-3.55	-3.55	-1.05	25.40	36.02	-10.62
2437	6	242T	61	17.81	26.55	30.00	-3.45	-3.45	-1.05	25.50	36.02	-10.52
2457	10	242T	61	17.52	26.32	30.00	-3.68	-3.68	-1.05	25.27	36.02	-10.75
2462	11	242T	61	15.62	25.18	30.00	-4.82	-4.82	-1.05	24.13	36.02	-11.89

Table 7-6. Conducted Output Power Measurements SISO ANT1 (242 Tones)

Freq [MHz]	Channel	Tones		Avg Conducted Powers [dBm]	Conducted	Conducted Power Limit [dBm]	Avg Conducted	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2437	6	52+26T	71	14.73	22.87	30.00	-15.27	-7.13	-1.05	21.82	36.02	-14.20

Table 7-7. Conducted Output Power Measurements SISO ANT1 (52+26 Tones)

Freq [MHz]	Channel	Tones		Avg Conducted Powers (dBm)	Conducted	Conducted Power Limit [dBm]		Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412	2412 1	106+26T	82	16.85	25.29	30.00	-4.71	-4.71	-1.05	24.24	36.02	-11.78
2412		100+201	83	16.89	25.19	30.00	-4.81	-4.81	-1.05	24.14	36.02	-11.88
2462	11	106+26T	82	16.66	24.73	30.00	-5.27	-5.27	-1.05	23.68	36.02	-12.34
2402		1007201	83	16.61	24.69	30.00	-5.31	-5.31	-1.05	23.64	36.02	-12.38

Table 7-8. Conducted Output Power Measurements SISO ANT1 (106+26 Tones)

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			0	13.80	21.34	30.00	-16.21	-8.66	-3.52	10.28	36.02	-25.75
2412	1	26T	4	13.22	21.62	30.00	-16.78	-8.38	-3.52	9.70	36.02	-26.32
			8	13.97	21.94	30.00	-16.03	-8.06	-3.52	10.45	36.02	-25.57
			0	13.82	21.39	30.00	-16.18	-8.61	-3.52	10.30	36.02	-25.72
2437	6	26T	4	13.38	21.99	30.00	-16.62	-8.01	-3.52	9.86	36.02	-26.16
			8	13.94	21.93	30.00	-16.06	-8.07	-3.52	10.42	36.02	-25.60
			0	13.98	21.13	30.00	-16.02	-8.87	-3.52	10.46	36.02	-25.56
2462	11	26T	4	13.69	21.92	30.00	-16.32	-8.08	-3.52	10.17	36.02	-25.86
			8	13.58	21.98	30.00	-16.42	-8.02	-3.52	10.06	36.02	-25.96

Table 7-9. Conducted Output Power Measurements SISO ANT2 (26 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager				
Test Report S/N:	Report S/N: Test Dates: EUT Type:		Dage 22 of 67				
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 22 of 67				
© 2023 ELEMENT							

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]	Avg Conducted	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			37	14.69	22.84	30.00	-15.32	-7.16	-3.52	11.17	36.02	-24.86
2412	1	52T	38	14.77	22.55	30.00	-15.23	-7.45	-3.52	11.25	36.02	-24.77
			40	14.83	22.47	30.00	-15.17	-7.53	-3.52	11.31	36.02	-24.71
			37	14.74	22.75	30.00	-15.26	-7.25	-3.52	11.22	36.02	-24.80
2437	6	52T	38	14.99	23.11	30.00	-15.01	-6.89	-3.52	11.47	36.02	-24.55
			40	14.88	22.90	30.00	-15.13	-7.10	-3.52	11.36	36.02	-24.67
			37	14.99	22.91	30.00	-15.01	-7.09	-3.52	11.47	36.02	-24.55
2462	11	52T	38	14.98	22.55	30.00	-15.02	-7.45	-3.52	11.46	36.02	-24.56
1			40	14.70	23.01	30.00	-15.30	-6.99	-3.52	11.18	36.02	-24.84

Table 7-10. Conducted Output Power Measurements SISO ANT2 (52 Tones)

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)	Conducted	Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412	1	106T	53	16.10	24.08	30.00	-13.90	-5.92	-3.52	12.58	36.02	-23.44
2412	'	1001	54	16.35	24.11	30.00	-13.66	-5.89	-3.52	12.83	36.02	-23.20
2437	107 (106T	53	16.99	24.88	30.00	-13.01	-5.12	-3.52	13.47	36.02	-22.55
2437	0	1001	54	16.98	24.99	30.00	-13.02	-5.01	-3.52	13.46	36.02	-22.56
2462	11	106T	53	16.90	24.65	30.00	-13.10	-5.35	-3.52	13.38	36.02	-22.64
2462		1001	54	16.44	25.27	30.00	-13.57	-4.73	-3.52	12.92	36.02	-23.11

Table 7-11. Conducted Output Power Measurements SISO ANT2 (106 Tones)

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers [dBm]	Conducted Powers [dBm]	[dBm]	•••	Peak Conducted Power Margin [dB]		Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412	1	242T	61	15.43	22.04	30.00	-14.57	-7.96	-3.52	11.91	36.02	-24.11
2417	2	242T	61	17.55	26.32	30.00	-12.45	-3.68	-3.52	14.03	36.02	-21.99
2437	6	242T	61	17.61	26.36	30.00	-12.39	-3.64	-3.52	14.09	36.02	-21.93
2457	10	242T	61	17.82	26.33	30.00	-12.18	-3.67	-3.52	14.30	36.02	-21.72
2462	11	242T	61	15.99	22.19	30.00	-14.01	-7.81	-3.52	12.47	36.02	-23.55
2402		2721	01	10.55	22.17	50.00	14.01	7.01	0.02	12.47	00.02	20.00

Table 7-12. Conducted Output Power Measurements SISO ANT2 (242 Tones)

Freq [MHz]	Channel	Tones		Avg Conducted Powers [dBm]		Conducted Power Limit [dBm]		Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2437	6	52+26T	71	14.44	22.64	30.00	-15.56	-7.36	-3.52	10.92	36.02	-25.10

Table 7-13. Conducted Output Power Measurements SISO ANT2 (52+26 Tones)

Freq [MHz]	Channel	Tones		Avg Conducted Powers (dBm)		Conducted Power Limit [dBm]	Avg Conducted Power Margin [dB]	Peak Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
2412	1	106+26T	82	16.49	24.52	30.00	-13.51	-5.48	-3.52	12.97	36.02	-23.05
2412	I	100+201	83	16.62	24.46	30.00	-13.38	-5.54	-3.52	13.10	36.02	-22.92
2462	11	106+26T	82	16.99	24.96	30.00	-13.01	-5.04	-3.52	13.47	36.02	-22.55
2402		100+201	83	16.99	24.96	30.00	-13.01	-5.04	-3.52	13.47	36.02	-22.55

Table 7-14. Conducted Output Power Measurements SISO ANT2 (106+26 Tones)

Free Dates	Observal	T	RU Index			Conducted F	Power [dBm]			Conducted Power	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Freq [MHz]	Channel	Tones	RUINdex	Anter	nna-1	Anter	nna-2	MI	MO	Limit	Power Margin [dB]	Power Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]						
			0	13.75	22.31	13.54	21.89	16.66	25.12	30.00	-13.34	-4.88	0.81	17.47	36.02	-18.55
2412	1	26T	4	13.82	22.22	13.99	22.19	16.92	25.22	30.00	-13.08	-4.78	0.81	17.73	36.02	-18.29
			8	13.71	21.26	12.42	20.29	16.12	23.81	30.00	-13.88	-6.19	0.81	16.94	36.02	-19.08
			0	13.79	21.66	13.51	21.25	16.66	24.47	30.00	-13.34	-5.53	0.81	17.48	36.02	-18.54
2437	6	26T	4	13.75	21.49	13.35	21.03	16.56	24.28	30.00	-13.44	-5.72	0.81	17.38	36.02	-18.64
			8	13.73	21.57	13.81	21.32	16.78	24.46	30.00	-13.22	-5.54	0.81	17.59	36.02	-18.43
			0	13.80	21.38	13.37	20.91	16.60	24.16	30.00	-13.40	-5.84	0.81	17.41	36.02	-18.61
2462	11	26T	4	13.67	21.97	13.47	21.55	16.58	24.78	30.00	-13.42	-5.22	0.81	17.39	36.02	-18.63
			8	13.71	21.52	12.22	20.91	16.04	24.24	30.00	-13.96	-5.76	0.81	16.85	36.02	-19.17

Table 7-15. Conducted Output Power Measurements MIMO (26 Tones)

Freq [MHz]	Channel	Tones	RU Index			Conducted I	Power (dBm)			Conducted Power Limit	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Freq[MHZ]	Channel	Iones	RU Index	Ante	nna-1	Ante	nna-2	MI	MO		Power Margin [dB]	Power Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]						
			37	14.16	21.89	14.99	22.25	17.61	25.08	30.00	-12.39	-4.92	0.81	18.42	36.02	-17.60
2412	1	52T	38	13.89	21.39	14.95	22.09	17.46	24.76	30.00	-12.54	-5.24	0.81	18.28	36.02	-17.74
			40	14.70	22.47	14.42	22.11	17.57	25.30	30.00	-12.43	-4.70	0.81	18.39	36.02	-17.63
			37	14.80	22.80	14.51	22.62	17.67	25.72	30.00	-12.33	-4.28	0.81	18.48	36.02	-17.54
2437	6	52T	38	14.71	22.80	14.18	22.61	17.46	25.72	30.00	-12.54	-4.28	0.81	18.28	36.02	-17.74
			40	14.69	22.72	14.81	22.55	17.76	25.65	30.00	-12.24	-4.35	0.81	18.57	36.02	-17.45
			37	14.72	22.65	14.37	22.14	17.56	25.41	30.00	-12.44	-4.59	0.81	18.37	36.02	-17.65
2462	11	52T	38	14.91	23.19	14.85	22.65	17.89	25.94	30.00	-12.11	-4.06	0.81	18.70	36.02	-17.32
			40	14.99	23.13	13.83	22.73	17.46	25.94	30.00	-12.54	-4.06	0.81	18.27	36.02	-17.75

Table 7-16. Conducted Output Power Measurements MIMO (52 Tones)

Freq [MHz]	Channel	Tones	RU Index			Conducted I	Power [dBm]			Conducted Power	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
rieq[winz]	Channel	Tones	Romuex	Anter	nna-1	Ante	nna-2	M	MO		Power Margin [dB]	Power Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]						
2412		106T	53	16.99	25.66	16.89	25.05	19.95	28.38	30.00	-10.05	-1.62	0.81	20.76	36.02	-15.26
2412	1	1001	54	16.79	24.81	15.91	24.05	19.38	27.46	30.00	-10.62	-2.54	0.81	20.20	36.02	-15.82
2437	6	106T	53	16.93	25.28	16.44	24.48	19.70	27.91	30.00	-10.30	-2.09	0.81	20.52	36.02	-15.50
2437	0	1001	54	16.82	25.02	16.65	24.72	19.75	27.88	30.00	-10.25	-2.12	0.81	20.56	36.02	-15.46
2462	11	106T	53	16.64	24.79	16.48	24.37	19.57	27.60	30.00	-10.43	-2.40	0.81	20.38	36.02	-15.64
2402		1001	54	16.57	24.49	15.60	24.12	19.12	27.32	30.00	-10.88	-2.68	0.81	19.94	36.02	-16.08

Table 7-17. Conducted Output Power Measurements MIMO (106 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 23 of 67
© 2023 ELEMENT			V11.0 07/06/2023

Freq [MHz]	Channel	Tones	RU Index			Conducted I	Power [dBm]			Conducted Power	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
rieq[winz]	Channel	Tones	Romuex	Ante	nna-1	Ante	nna-2	MI	MO		Power Margin [dB]	Power Margin [dB]	(dBi)	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]						
	1	242T	61	15.81	25.33	15.22	26.08	18.54	28.73	30.00	-11.46	-1.27	0.81	19.35	36.02	-16.67
	2	242T	61	17.66	26.55	17.25	25.99	20.47	29.29	30.00	-9.53	-0.71	0.81	21.28	36.02	-14.74
	6	242T	61	17.59	26.49	17.24	25.98	20.43	29.25	30.00	-9.57	-0.75	0.81	21.24	36.02	-14.78
	10	242T	61	17.52	26.52	17.33	25.78	20.44	29.18	30.00	-9.56	-0.82	0.81	21.25	36.02	-14.77
	11	242T	61	15.55	23.55	15.03	22.66	18.31	26.14	30.00	-11.69	-3.86	0.81	19.12	36.02	-16.90
										-						

Table 7-18. Conducted Output Power Measurements MIMO (242 Tones)

Freq [MHz]	Channel	Tones	MRU Index			Conducted I	Power [dBm]			Conducted Power	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
rieq [winz]	Channel	Tones	MRO IIIdex	Anter	nna-1	Ante	nna-2	MI		[dBm]	Power Margin [dB]	Power Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	lapui						
2437	6	52+26T	71	14.56	22.62	14.01	22.16	17.30	25.41	30.00	-12.70	-4.59	0.81	18.12	36.02	-17.90
			Tab	0 7-10	Con	ductor	1 Outro	ut Do	vor M	acuron	nonte N		2+26 T	noc)		

Table 7-13. Solidacted Salphi i Swel medsurements mimo (52-26 rolles)	

Freq [MHz]	Channel	Tones	MRU Index			Conducted I	Power [dBm]			Conducted Power Limit	Avg Conducted	Peak Conducted	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
rieq[winz]	Channel	Tones	WRO IIIdex	Ante	inna-1	Ante		MI	MO		Power Margin [dB]	Power Margin [dB]	(dBi)	(dBm)	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]						
2412	1	106+26T	82	16.74	25.33	16.31	24.75	19.54	28.06	30.00	-10.46	-1.94	0.81	20.35	36.02	-15.67
2412		100+201	83	16.80	25.16	15.65	23.87	19.27	27.57	30.00	-10.73	-2.43	0.81	20.09	36.02	-15.93
2462	11	106+26T	82	16.97	25.31	15.75	24.04	19.41	27.73	30.00	-10.59	-2.27	0.81	20.23	36.02	-15.79
2402		100+201	83	16.98	25.35	15.96	24.22	19.51	27.83	30.00	-10.49	-2.17	0.81	20.32	36.02	-15.70

Table 7-20. Conducted Output Power Measurements MIMO (106+26 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 04 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 24 of 67
© 2023 ELEMENT	•		V11.0 07/06/2023

Note:

Per ANSI C63.10-2013 Section 14.2, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 13.75 dBm for Antenna 1 and 13.54 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(13.75 dBm + 13.54 dBm) = (23.71 mW + 22.59 mW) = 46.30 mW = 16.66 dBm

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 25 of 67
© 2023 ELEMENT			V11.0 07/06/2023

7.4 Power Spectral Density

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tones configurations, and RU indices were investigated and the worst-case configuration results are reported in this section.

The maximum permissible power spectral density shall not be greater than 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD ANSI C63.10-2013 – Section 14.3.1 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1. Based on preliminary measurements, it was determined that, of all of the tone configurations, the 26T configuration produced the worst case power spectral density measurement for partial loaded case. Therefore, only the 26 Tone configuration and 242 Tone data is included in this section.
- 2. The power spectral density for each channel was measured with the RU index showing the highest conducted power.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 26 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 26 of 67
© 2023 ELEMENT	•	·	V11.0 07/06/2023

Power Spectral Density Measurements

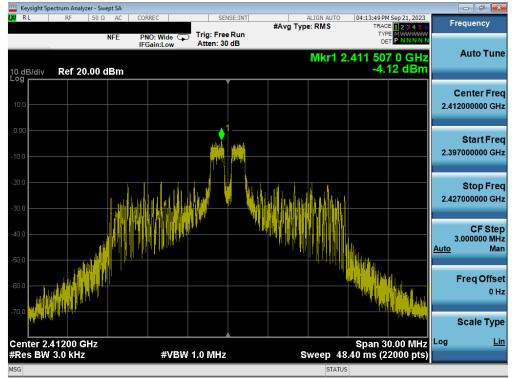
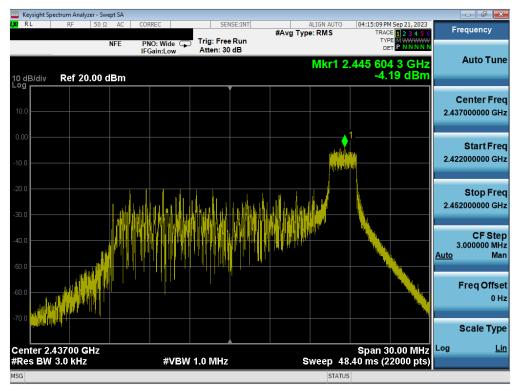
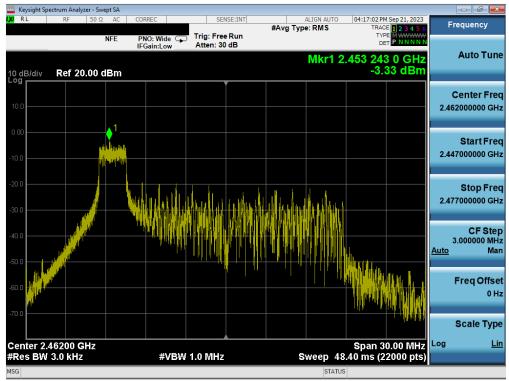
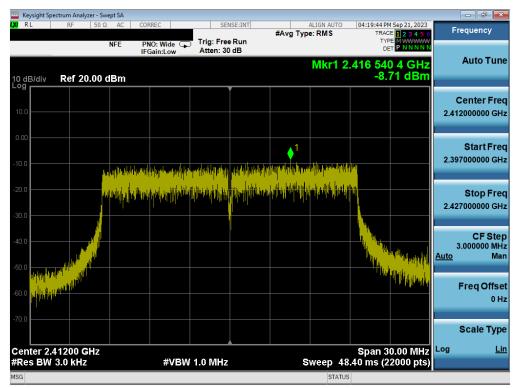

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]		Pass / Fail
2412	1	ax	26T	MCS0	-4.12	-3.64	-0.86	8.00	-8.86	Pass
2437	6	ax	26T	MCS0	-4.19	-10.61	-3.30	8.00	-11.30	Pass
2462	11	ax	26T	MCS0	-3.33	-3.47	-0.39	8.00	-8.39	Pass
2412	1	ax	242T	MCS0	-8.71	-10.16	-6.36	8.00	-14.36	Pass
2437	6	ax	242T	MCS0	-9.53	-9.42	-6.46	8.00	-14.46	Pass
2462	11	ax	242T	MCS0	-8.95	-8.88	-5.91	8.00	-13.91	Pass

Table 7-21. Conducted Power Spectral Density Measurements MIMO

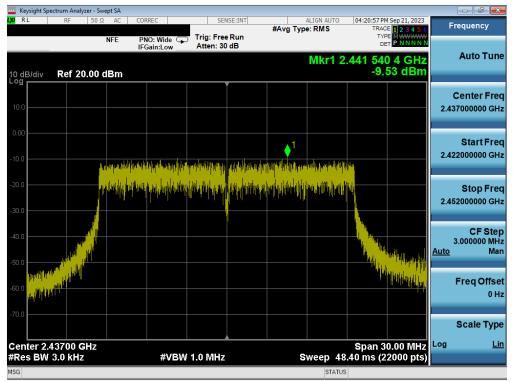

FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 27 of 67
© 2023 ELEMENT		•	V11.0 07/06/2023

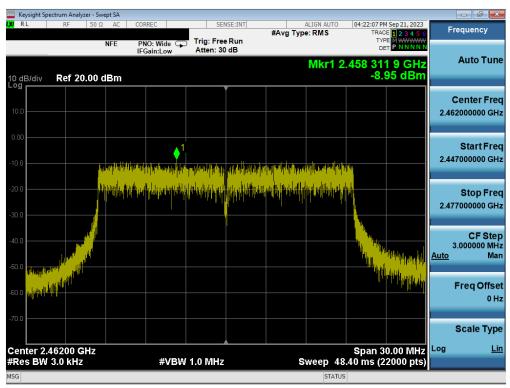
7.4.1 MIMO Power Spectral Density Measurements


Plot 7-13. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)

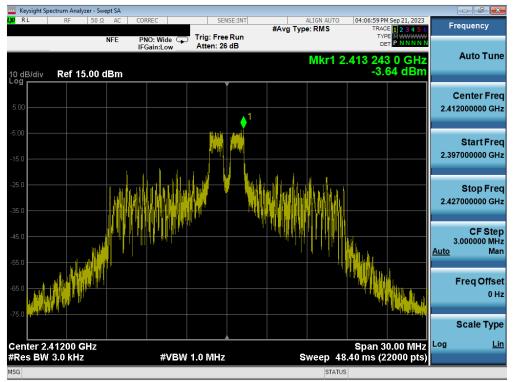

Plot 7-14. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

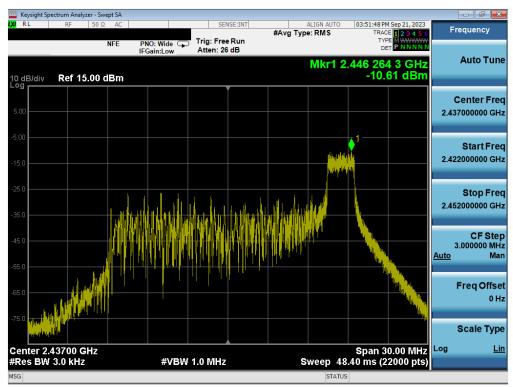
FCC ID: A3LSMS928U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 af 07	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 28 of 67	
© 2023 ELEMENT			V11.0 07/06/2023	


Plot 7-15. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)

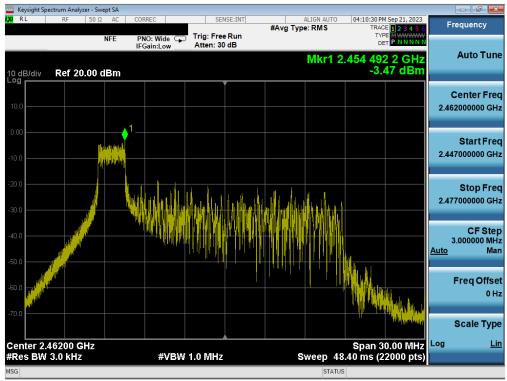

Plot 7-16. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 1)

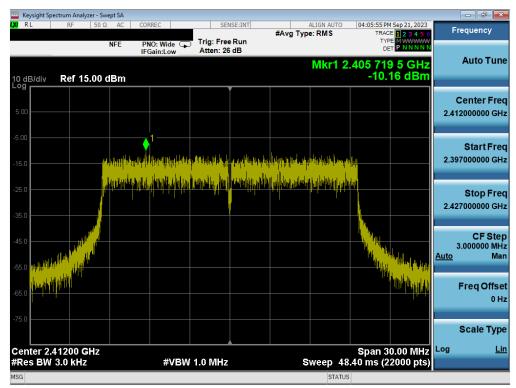
FCC ID: A3LSMS928U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	9/6/2023 - 11/03/2023 Portable Handset		
© 2023 ELEMENT	· · · · ·		V11.0 07/06/2023	


Plot 7-17. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

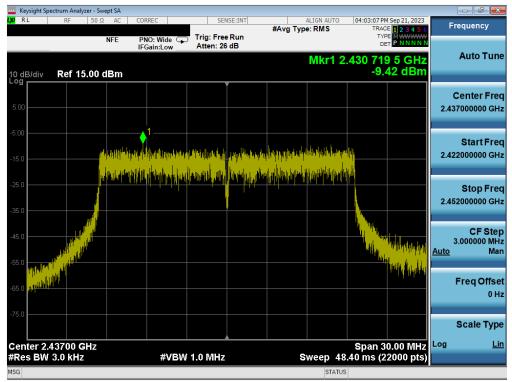

Plot 7-18. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

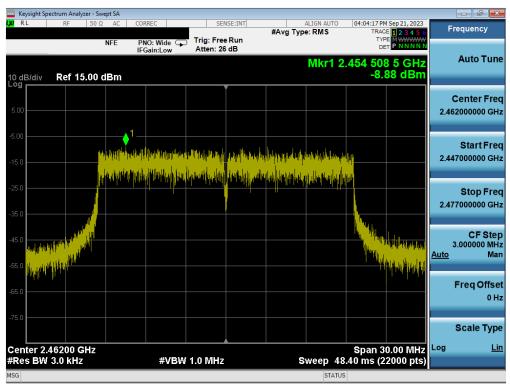
FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 30 of 67
© 2023 ELEMENT	•	·	V11.0 07/06/2023


Plot 7-19. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)


Plot 7-20. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMS928U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dego 21 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 31 of 67	
© 2023 ELEMENT	•		V11.0 07/06/2023	


Plot 7-21. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-22. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMS928U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 32 of 67	
© 2023 ELEMENT			V11.0 07/06/2023	

Plot 7-23. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-24. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 33 of 67
© 2023 ELEMENT	•	·	V11.0 07/06/2023

Note:

Per ANSI C63.10-2013 Section 14.3.1, the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted power spectral density was measured to be -4.12 dBm for Antenna 1 and -3.64 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(-4.12 dBm + -3.64 dBm) = (0.39 mW + 0.43 mW) = 0.82 mW = -0.86 dBm

FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 34 of 67
© 2023 ELEMENT			V11.0 07/06/2023

7.5 Conducted Band Edge Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst-case configuration. For the following out of band conducted emissions plots at the band edge, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 - Section 11.11.3

Test Settings

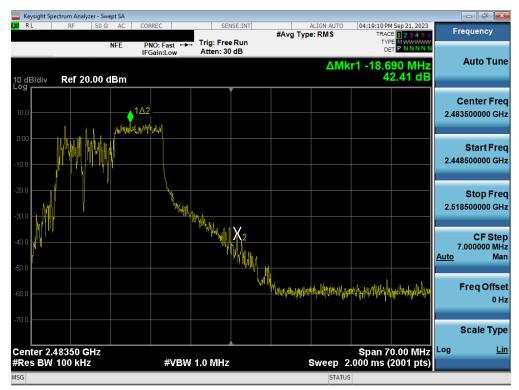
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

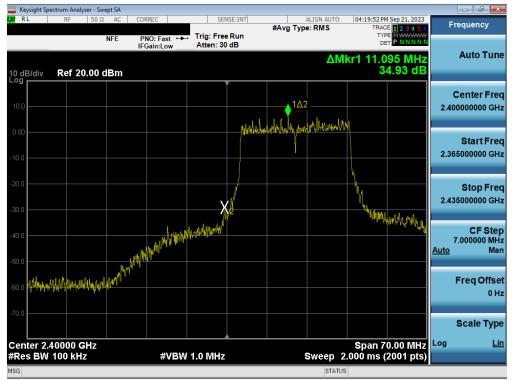
Figure 7-4. Test Instrument & Measurement Setup

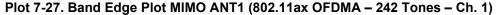
Test Notes

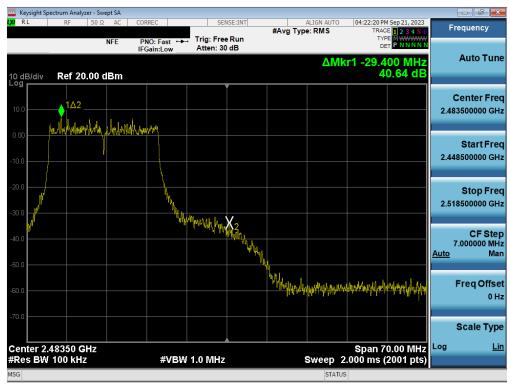

None.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege 25 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 35 of 67
© 2023 ELEMENT			V11.0 07/06/2023

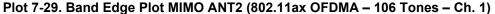
7.5.1 MIMO Conducted Band Edge Emissions

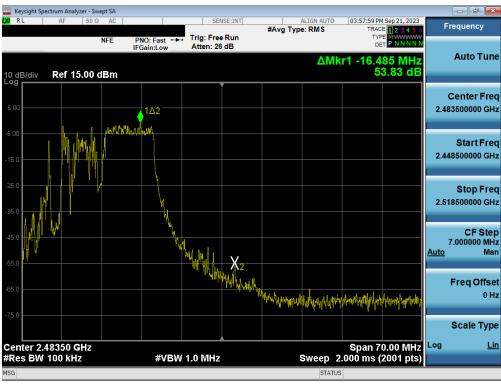



Plot 7-25. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 1)

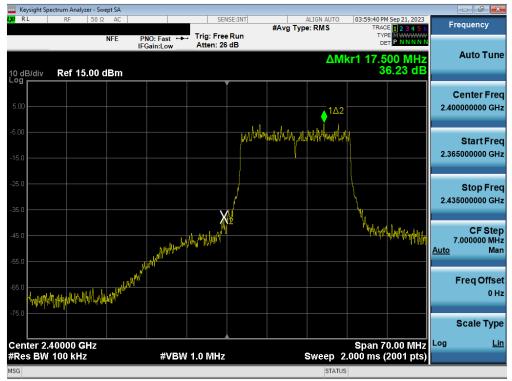

Plot 7-26. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 11)

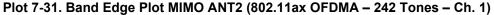
FCC ID: A3LSMS928U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	11/03/2023 Portable Handset	
© 2023 ELEMENT	-		V11.0 07/06/2023

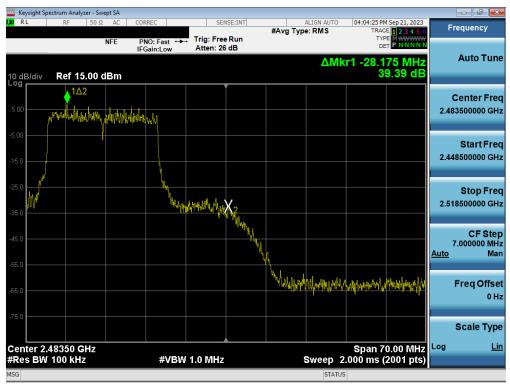



Plot 7-28. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 67				
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	9/6/2023 - 11/03/2023 Portable Handset					
© 2023 ELEMENT	© 2023 ELEMENT						






Plot 7-30. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 67			
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	0/6/2023 - 11/03/2023 Portable Handset				
© 2023 ELEMENT						

Plot 7-32. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	/6/2023 - 11/03/2023 Portable Handset			
© 2023 ELEMENT	V11.0 07/06/2023				

7.6 Conducted Spurious Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst-case configuration. For the following out of band conducted emissions plots, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.11.3 of ANSI C63.10-2013.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 ANSI C63.10-2013 – Section 14.3.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 67			
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	9/6/2023 - 11/03/2023 Portable Handset				
© 2023 ELEMENT V11.						

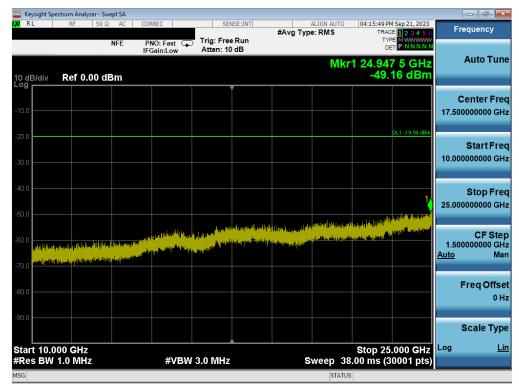
Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 Section 14.3.3, it was unnecessary to show compliance through the summation of test results of the individual outputs.

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:				
1M2308210092-14.A3L	9/6/2023 - 11/03/2023				
© 2023 ELEMENT			V11.0 07/06/2023		

7.6.1 MIMO Conducted Spurious Emissions

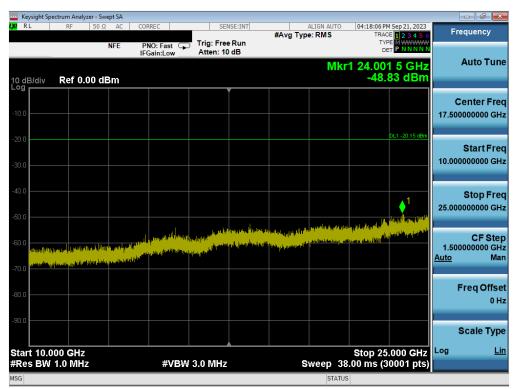
Plot 7-33. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-34. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)

	FCC ID: A3LSMS928U		MEASUREMENT REPORT				
	Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 67			
	1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Page 42 of 67				
(© 2023 ELEMENT	223 ELEMENT					

	ectrum Analyzer - S										d X
LXI RL	RF 50	Ω AC	CORREC		NSE:INT	#Avg Typ	ALIGN AUT	TRA	M Sep 21, 2023 CE 1 2 3 4 5 6	Freque	ency
		NFE	PNO: Fast (IFGain:Low	Trig: Free Atten: 30							
							Ν	/kr1 6.91	4 9 GHz	Aut	to Tune
10 dB/div Log	Ref 20.00	dBm						-40	.43 dBm		
LUg										Cent	ter Frea
10.0										5.015000	
0.00										Sta	artFreq
-10.0										30.000	000 MHz
-20.0									DL1 -19.94 dBm	Ste	op Freq
-30.0										10.000000	000 GHz
-30.0							1				
-40.0) 				CF Step
	and the second second	h shifter P	Alleleter algebracher der Alleleter	an an a standard and the state		and have been dependented	and all here .	defenderen poten of the literal	a <mark>lter tribel</mark> ter D	Auto	Man
-50.0 www.	and a graden with the	al faith is	ر بندرید از مطلقه رو رو ا مراجع از مطلقه می رو ا	ألفاقه والارجاع	رية طالباني (بالمليي). الأطالباني (بالمليي)	الأليم بالحرية بالأحرار الله	a standard a Tableta a standard a sta	متلكر والمتحدين اللغ			
-60.0										Free	qOffset
											0 Hz
-70.0											
										Sca	Іе Туре
Start 30 M								Stop 1	0.000 GHz	Log	Lin
#Res BW	1.0 MHz ts changed; al	Linesee		W 3.0 MHz		\$	SWeep	18.00 ms (30001 pts)		
Poin	is changed; al	ruaces	cleared				STA	103			

Plot 7-35. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)


Plot 7-36. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	9/6/2023 - 11/03/2023 Portable Handset			
© 2023 ELEMENT	V11.0 07/06/2023				

	ectrum Analyzer - Swe									- P	×
L <mark>XI</mark> RL	RF 50 Ω	AC	CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	Sep 21, 2023	Frequency	
		NFE	PNO: Fast IFGain:Low	Trig: Free Atten: 30		- //		TYP DE		Auto Tu	une
10 dB/div Log	Ref 20.00 d	Bm						/kr1 3.595 -41.1	5 3 GHZ 19 dBm		une
										Center F	
10.0										5.015000000	GHz
0.00										Start F	req
-10.0										30.000000	MHz
-20.0									DL1 -20.15 dBm	Stop F	rea
-30.0										10.000000000	
			1							CF S	ten
-40.0		and wh	and the state of the state	And the state of t	Allinea keesaan	and the second	-territing (Pro-	aling a straight all through the price	n li topland parta	997.000000	
-50.0 <mark>wephile</mark>	and a start of the	ار المراجعة المراجع	ينية بالمدير يتأثل الأعط التركيني. المأد الم	ى ئۇرىلىلىرىنىڭ ئۇرىلىلىرىنىڭ	يون <mark>يامان ۽ يامان ماريمان ماريمان م</mark> ريمان	طاعا داد. او _{ور} طاعات رو	ىلى مەلتىلىدى. <u>يە ق</u> اخلەر	and a static	امرينو وروي المرينية. الرينية المرينية (مرينية الم		
-60.0	and the second									Freq Off	
70.0											0 Hz
-70.0										Scale Ty	уре
Start 30 M		<u> </u>							000 0112	Log	<u>Lin</u>
#Res BW	1.0 IVIHZ		#VBW	3.0 MHz		s		18.00 ms (3	0001 pts)		
MSG							STA	TUS			

Plot 7-37. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-38. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	0/6/2023 - 11/03/2023 Portable Handset			
© 2023 ELEMENT	V11.0 07/06/2023				

	pectrum Analy		SA									×
LXI RL	RF	50 Ω /	AC COI	RREC		ISE:INT	#Avg Typ	ALIGN AUT e: RMS	TRA	M Sep 21, 2023 CE 1 2 3 4 5 6	Frequenc	у
	_	NF		NO: Fast 🕞 Gain:Low	Trig: Free Atten: 30							
10 dB/div	Bof 20).00 dB	m						Mkr1 5.98 -41	2 4 GHz .05 dBm	Auto 1	Гune
	Rei Zu	ub			,,							
10.0											Center	
10.0											5.01500000) GHZ
0.00												_
											Start 30.00000	
-10.0											30.00000	/ 1411 12
-20.0			_							DL1 -22.71 dBm	Stop	Fred
			1							ocrozzan dem	10.000000000	
-30.0												
-40.0			1				∮ ¹					Step
	and part of the sec	ունեւ գեն հեն	ala di karangan di ka	and a starting the start	ANT PART AND AND A	in i			and have from	d have dealers	997.000000 <u>Auto</u>	0 MHz Man
-50.0	ant second a second	a ha a ha a first a ha h	an <mark>a handha a</mark> r		ALL AND DESCRIPTION OF	ان <mark>اعتریفرا</mark> الا	أكتلم يمون والطنارات أتل	انتانيو. ريار الله الان ا	مثني بنظري _{ال} منظري مركان	A DESCRIPTION OF A DESC		
-60.0	i di si d	'									Freq O	ffset
-00.0												0 Hz
-70.0												
											Scale	Туре
Start 30									Stop 1	0.000 GHz	Log	Lin
#Res BW					/ 3.0 MHz		s		18.00 ms (TUS	30001 pts)		
POI	nts change	su, all trac	ces clear	eu				514	103			

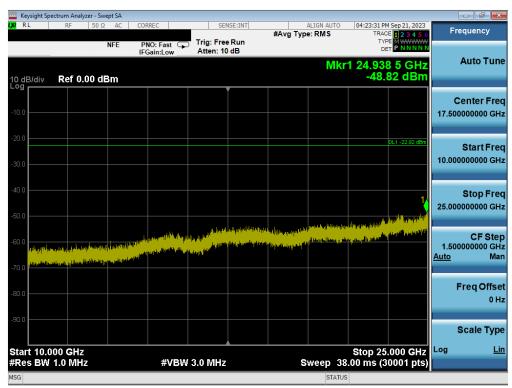
Plot 7-39. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

Plot 7-40. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 67			
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	/6/2023 - 11/03/2023 Portable Handset				
© 2023 ELEMENT V11.0 07/0						

🚾 Keysight Spectrum Analyzer - Swe									
X RL RF 50 Ω	AC CO	RREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRACE	123456	Frequency
10 dB/div Ref 20.00 d	IF	NO: Fast 😱 Gain:Low	Trig: Free Atten: 30			M	DET	2 GHz 0 dBm	Auto Tune
10.0									Center Freq 5.015000000 GHz
-10.0									Start Freq 30.000000 MHz
-20.0							C)L1 -23.78 dBm	Stop Freq 10.000000000 GHz
-40.0	Appeder - H ^{ann} the	1 Presignations Applications					nen alle (fragestagget) Registerer and the f	n ^{an} thu an	CF Step 997.000000 MHz <u>Auto</u> Man
-50.0 Temperature and a second			kayadhalyankhalilili						Freq Offset 0 Hz
-70.0 Start 30 MHz							Stop 10.	000 0112	Scale Type Log <u>Lin</u>
#Res BW 1.0 MHz			3.0 MHz		S	weep 1	8.00 ms (30		
мsg 🗼 Points changed; all ti	races clear	ed				STAT	US		

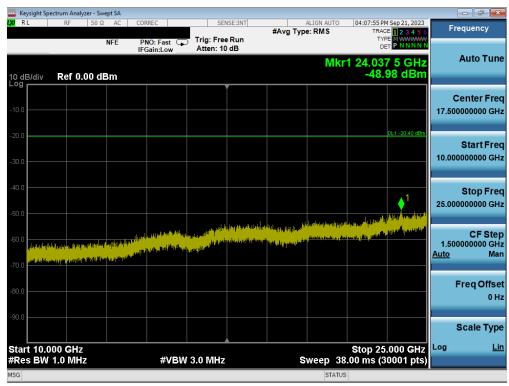
Plot 7-41. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)


Plot 7-42. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 46 of 67		
© 2023 ELEMENT	•		V11.0 07/06/2023		

🔤 Keysight Spectrum An	alyzer - Swept SA							
LXU RL RF	50 Ω AC	CORREC	SENS	E:INT #Av	ALIGN AU g Type: RMS		Sep 21, 2023	Frequency
	NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free F Atten: 30 c					
		II Gam.cow	,			Mkr1 4.970	1 GHz	Auto Tune
10 dB/div Ref 2	20.00 dBm					-40.9	95 dBm	
Log			Ĭ					Center Freq
10.0								5.015000000 GHz
0.00								Start Freq
-10.0								30.000000 MHz
-10.0								
-20.0							DL1 -22.92 dBm	Stop Freq
								10.000000000 GHz
-30.0								
-40.0								CF Step
	ا بادری.	a papa	a	الإيفعية فالأبوط يتقورن	addadd ywdd any ar	eries day and the second second	and the states of the	997.000000 MHz Auto Man
-50.0 <mark>allet and a tailed by the second seco</mark>	ALE PROPERTY AND A CONTRACT OF	يىن. <u>ئالغانيا مىتلغاتا مى تارىخى</u>	in and a fer painting of the	مليكة الاستيقادين	وبلور ومليا فتشاته فعتلان	والمراجعة والمراجع والمتعاد والتقارين	فاركلمنى يحدر بروان	Auto Mari
harah si ilah kanalah kara palah s								Freq Offset
-60.0								0 Hz
-70.0								
-70.0								Scale Type
						04 40		Log <u>Lin</u>
Start 30 MHz #Res BW 1.0 MI	Hz	#VBW	3.0 MHz		Sweep	Stop 10. 18.00 ms (30	OUD GITZ	
MSG						ATUS		

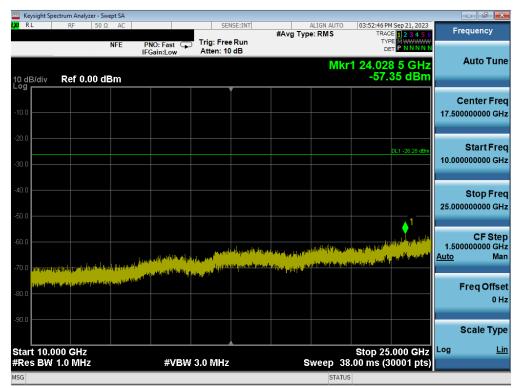
Plot 7-43. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)


Plot 7-44. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dego 47 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 47 of 67		
© 2023 ELEMENT			V11.0 07/06/2023		

🤤 Keysight Spectrum Analyzer - Swept SA					
LXI RL RF 50 Ω AG	IC CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:14:07 PM Sep 21, 2023 TRACE 1 2 3 4 5 6	Frequency
NFE	PNO: Fast 🖵	Trig: Free Run Atten: 30 dB		DET PNNNN	
10 dB/div Ref 20.00 dBn	m		M	kr1 7.254 6 GHz -40.47 dBm	Auto Tune
		Ĭ			Center Freq
10.0					5.015000000 GHz
0.00					
					Start Freq 30.000000 MHz
-10.0					00.000000 11112
-20.0				DL1 -20.33 dBm	Stop Freq
-30.0					10.000000000 GHz
50.0			▲1		
-40.0	The state of the s	للمالية ومعقوبات المراجع وال	a staficilities a statistical discussion	a na katan tahun matanga	CF Step 997.000000 MHz
-50.0 - the second seco	A STATE OF THE OWNER	Description of the second s	kan padan kanta suliki mana jaarata mpi suja	an alay in the same and the production defended	<u>Auto</u> Man
of the second					Freq Offset
-60.0					0 Hz
-70.0					
					Scale Type
Start 30 MHz #Res BW 1.0 MHz	#\/B\\/	3.0 MHz	Sween 1	Stop 10.000 GHz 3.00 ms (30001 pts)	Log <u>Lin</u>
MSG Dev 1.0 min2		570 WITZ	STATU		

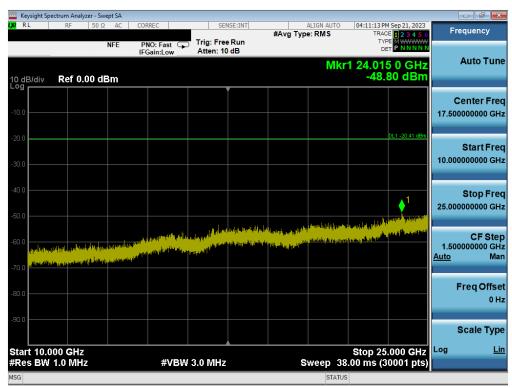
Plot 7-45. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)


Plot 7-46. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset			
© 2023 ELEMENT			V11.0 07/06/2023		

	ht Spectrum An										_	
LXI RL	RF	50 Ω /	AC		SEN	ISE:INT	#Ava Ti	ALIGN AUT		M Sep 21, 2023	Fre	quency
		NF		NO: Fast 🖵 Gain:Low	Trig: Free Atten: 26				TY D			Auto Tune
10 dB/d Log	liv Ref	15.00 dB	m						Mkr1 3.06 -51.	8 2 GHz 91 dBm	,	
					Ì Ì	Í					C	enter Freq
5.00											5.015	000000 GHz
-5.00												Start Freq
-15.0											30.0	000000 MHz
-25.0										DL1 26.28 dBm		Stop Freq
											10.000	000000 GHz
-35.0 —												
-45.0											007.0	CF Step
			4	♦ ¹							997.0 Auto	000000 MHz Man
-55.0 —	Helen Harrison and Helen Helen Helen Helen Heren Helen Heren Heren Heren Heren Heren Heren Heren Heren Heren He	National Station of the Party o	and seather	The second	and the second secon	ير المركب ال مركب المركب ا	neal)anaine	Para Dagarena Alexandera	a far ya a sa	والمروية وبالترا يعترنان		
994	^{e norden segen beter} t	and the second states of the	ni) (na area	and the second second	and the state of the state		ana ni la natrikan	and the second	and the set is made of the particular.	In the distance of the second s	F	req Offset
-65.0												0 Hz
-75.0												
											S	cale Type
Start 3	30 MHz								Stop 1(0.000 GHz	Log	Lin
	3W 1.0 M	Hz		#VBW	3.0 MHz			Sweep	18.00 ms (30001 pts)		
MSG 🔱 F	Points chan	ged; all tra	ces clear	ed				STA	ATUS			

Plot 7-47. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)


Plot 7-48. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 49 of 67		
© 2023 ELEMENT	•	·	V11.0 07/06/2023		

🔤 Keysight Spectrum Analyzer - Sv									
KL RF 50 S	2 AC C	CORREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRACI	Sep 21, 2023	Frequency
10 dB/div Ref 20.00		PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 30			M	DE kr1 3.022	^M ^M P N N N N N 2 3 GHz 70 dBm	Auto Tune
			· · · · · ·						Center Free 5.015000000 GH:
-10.0									Start Free 30.000000 MH;
-20.0								DL1 -20.41 dBm	Stop Fred 10.000000000 GH:
-40.0	and the state of the	1 June of the staff the start of the			l gyr ffyysia (gyr og ef by Leit feifigt te sei a slive		ette ^{gab} enendenensken		CF Step 997.000000 MH: <u>Auto</u> Mar
-50.0 http://www.internationality.org/light-sector								<mark>- 1</mark> - 1 16 - 10 - 10 - 10 - 10 - 10 - 10 -	Freq Offse 0 Hi
-70.0 Start 30 MHz							Stop 10.	000 GHz	Scale Type
#Res BW 1.0 MHz		#VBW	3.0 MHz		S	weep 1	8.00 ms (3		
MSG						STAT	US		

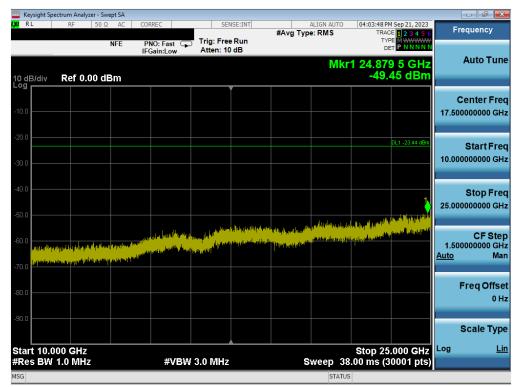
Plot 7-49. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)

Plot 7-50. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 50 of 67		
© 2023 ELEMENT	•		V11.0 07/06/2023		

Keysight Spectru		pt SA												
XI RL	RF 50 Ω	AC	CORR		Ξ.	SEN		#Avg	ALIGN AU Type: RMS		TRA	M Sep 21, 2023 CE 1 2 3 4 5 6 PE M WWWWW	F	requency
10 dB/div R	ef 15.00 d	NFE Bm		D: Fast ain:Low		Atten: 26				Mkr	□ 1 7.14	7 9 GHz 03 dBm		Auto Tune
5.00														Center Free 5000000 GH
-5.00													3(Start Free
-25.0												DL1 -24.85 dBm	10.00	Stop Free 0000000 GH
-45.0	n na lland an lanachta An an lanachta			n Maragang An Malandala	Netzer (Lager) Metalen	og portale	yn fallyf yr pan fel Lan fall fall feldiau	and and all the second	1 And the production of the And the production of the section of the section of the section of the section of the	(Urband)) Andriana	epyten egyten	n promonal line (al fossion , tributor contractor de la contractor	997 <u>Auto</u>	CF Ste 7.000000 MH Ma
-55.0 <mark>1000 -65.0</mark>	a huki ^{nu ka} a kuki ja ^{kad k}													Freq Offse 0 H
-75.0 Start 30 MH;											Stop 10	0.000 GHz	Log	Scale Type <u>Li</u>
#Res BW 1.0			alaara		3W 3.0) MHz				18.0	0 ms (3	30001 pts)		

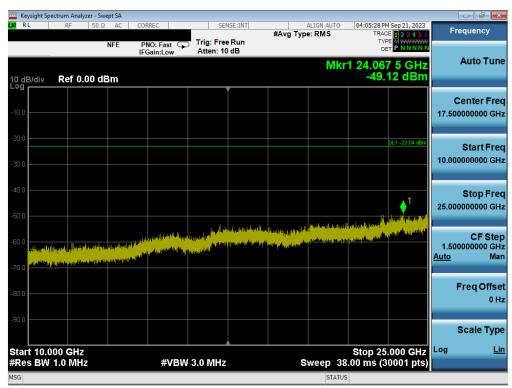
Plot 7-51. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)


Plot 7-52. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 51 of 67		
© 2023 ELEMENT	· · · · ·		V11.0 07/06/2023		

	ectrum Analyzer - Sw		1								
L <mark>XI</mark> RL	RF 50 Ω	AC	CORREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TR	PM Sep 21, 2023 ACE 1 2 3 4 5 6	Freque	ncy
		NFE	PNO: Fast IFGain:Low	Trig: Free Atten: 26				Т			
10 dB/div Log	Ref 15.00 c	dBm					N		71 6 GHz .72 dBm	Aut	o Tune
3										Cent	er Freq
5.00										5.015000	000 GHz
-5.00											
15.0											rt Freq
-15.0											
-25.0									DL1 -23.44 dBm	Sto	p Freq
-35.0										10.000000	000 GHz
			▲1								FStep
-45.0	pauling and front front for the	patie D	na allace mode	and the second second second	10 C	n gang ang ang ang ang ang ang ang ang a			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	997.0000 <u>Auto</u>	
-55.0	فتعريفها المحالفاتين والطازان		ر ماندان <u>الخطاط المحمد المحمد م</u>	لتلتنا للمتحجين وحتريسا	definite terms and a	and the second second	l other offi	تلقى كنائل ينفقا وتلالك	e per de person de la constanti de la constanti La constanti de la constanti de		
-65.0										Freq	Offset 0 Hz
75.0											0 H2
-75.0										Scal	е Туре
Start 30 N								Stop 1	0.000 GHz	Log	Lin
#Res BW				3.0 MHz		s			(30001 pts)		
Poin	ts changed; all t	traces c	leared				STA	105			

Plot 7-53. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)


Plot 7-54. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 52 of 67
© 2023 ELEMENT			V11.0 07/06/2023

weysight Spectrum Analyzer - Swept SA					
LX RL RF 50Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:05:07 PM Sep 21, 2023 TRACE 1 2 3 4 5 6	Frequency
NFE	PNO: Fast IFGain:Low	Trig: Free Run Atten: 26 dB			Auto Tune
10 dB/div Ref 15.00 dBm	ı		N	lkr1 5.647 8 GHz -44.50 dBm	
		Ĭ			Center Freq
5.00					5.015000000 GHz
-5.00					Start Freq
-15.0					30.000000 MHz
-25.0				DL1 -23.04 dBm	Oton From
					Stop Freq 10.000000000 GHz
-35.0		1			
-45.0	Where the standard sector	and property and a subsection of	le o classes de gradae de competitores de la competitores de la competitores de la competitores de la competito La competitores de la competitores d	htms phalos and a participance provide the off	CF Step 997.000000 MHz <u>Auto</u> Man
-55.0 all philosophilos		ي المراجعة في من المربع من المربع من المربع من المربع المربع المربع المربع المربع المربع المربع المربع المربع ا المربع المربع	astheilingtonnen ein mehrhender	المكافأة فاطفاطها وليتكثر بسياديه يعاقفون تطاطيا والمأل	
-65.0					Freq Offset 0 Hz
-75.0					UHZ
					Scale Type
Start 30 MHz #Res BW 1.0 MHz	#VBW 3		Sween	Stop 10.000 GHz 18.00 ms (30001 pts)	Log <u>Lin</u>
MSG	77 U U U U		SWEEP		

Plot 7-55. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

Plot 7-56. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege 52 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 53 of 67
© 2023 ELEMENT			V11.0 07/06/2023

7.7 Radiated Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in FCC §15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown FCC §15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-22. Radiated Limits

Test Procedures Used

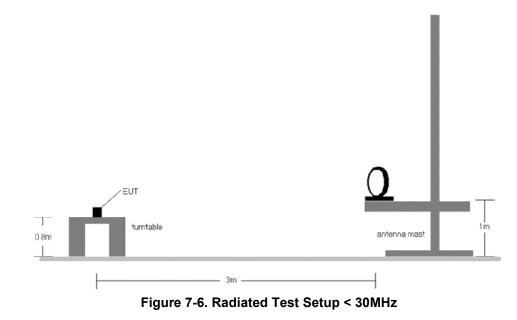
ANSI C63.10-2013 – Section 6.6.4.3

Test Settings

Average Field Strength Measurements

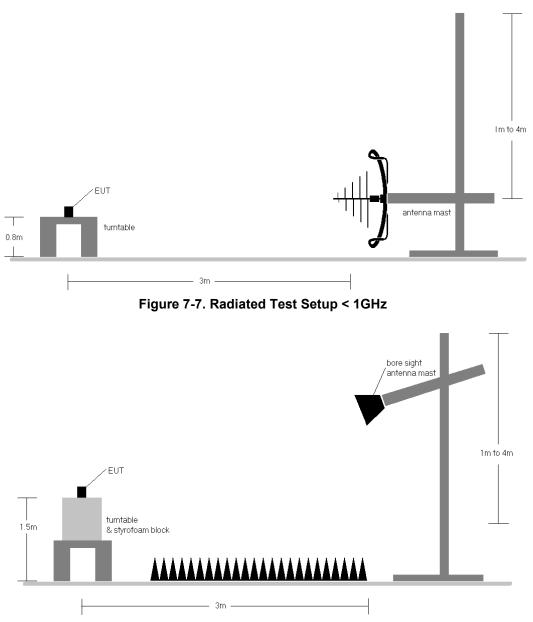
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

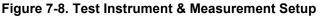
FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege E4 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 54 of 67
© 2023 ELEMENT	·		V11.0 07/06/2023



Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


Test Setup


The EUT and measurement equipment were set up as shown in the diagram below.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 55 of 67
© 2023 ELEMENT		·	V11.0 07/06/2023

Test Notes

- 1. The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of ANSI C63.10-2013 Section 11.3 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limits shown in §15.209.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege EC of C7
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 56 of 67
© 2023 ELEMENT	·	·	V11.0 07/06/2023

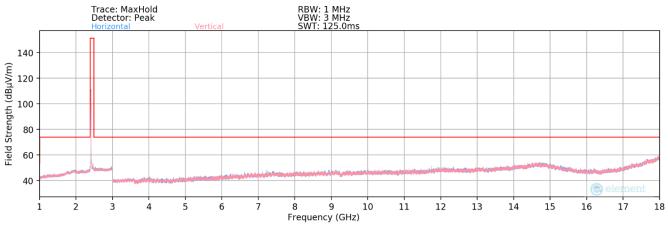
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9. Some band edge measurements were performed using a channel integration method to determine compliance with the out of band average radiated spurious emissions limit in the 2483.5 2500MHz band. Per KDB 558074 D01 v05r02 Section 13.3, a measurement was performed using a RBW of 100kHz at the frequency with highest emission outside of band edge. For integration that does not start at 2483.5MHz, consideration was taken to ensure the worst-case emission is in the 1MHz spectrum. The results were integrated up to the 1MHz reference bandwidth to show compliance with the 15.209 radiated limit for emissions greater than 1GHz.
- 10. For radiated measurements, emissions were investigated for the fully-loaded RU configuration and for all the partially-loaded RU configurations. Among all of the available partially-loaded RU configurations, only the configuration with the worst case emissions is reported.

Sample Calculations

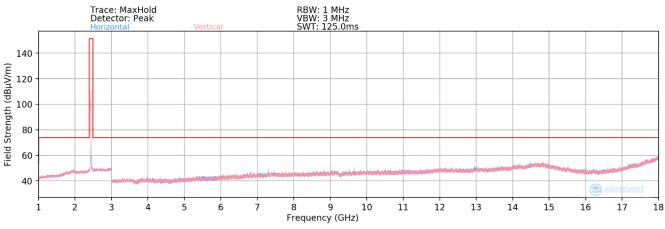
Determining Spurious Emissions Levels

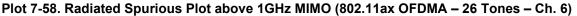
- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

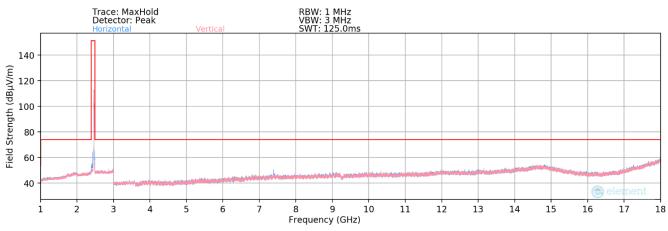
Radiated Band Edge Measurement Offset


• The amplitude offset shown in the radiated restricted band edge plots in Section 0 was calculated using the formula:

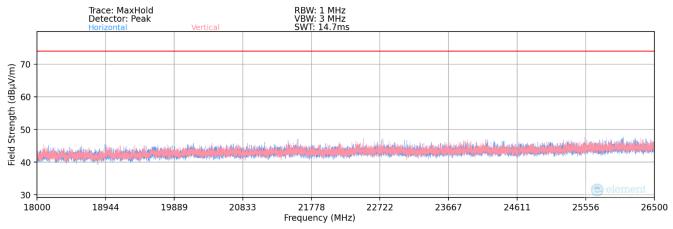
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

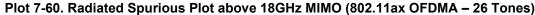

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege E7 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 57 of 67
© 2023 ELEMENT	·		V11.0 07/06/2023

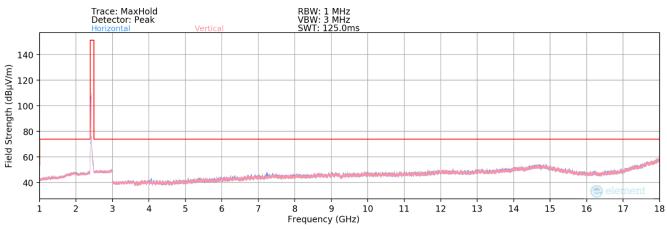



7.7.2 MIMO Radiated Spurious Emission Measurements

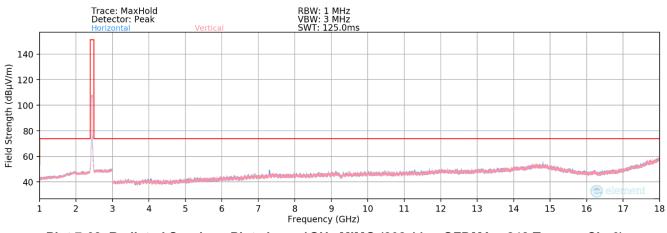
Plot 7-57. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 1)

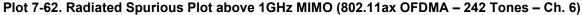


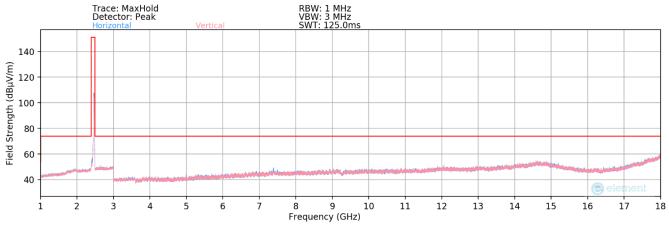


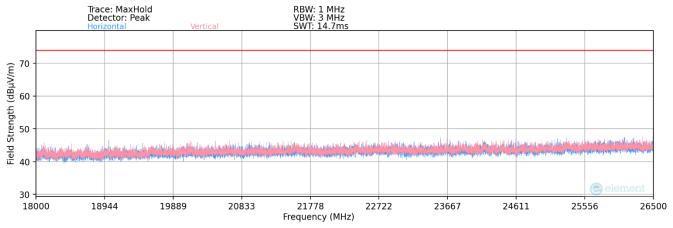

Plot 7-59. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 50 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 58 of 67
© 2023 ELEMENT			V11.0 07/06/2023









FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 59 of 67
© 2023 ELEMENT			V11.0 07/06/2023

Plot 7-64. Radiated Spurious Plot above 18GHz MIMO (802.11ax OFDMA – 242 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 60 of 67
© 2023 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.0 07/06/2023

MIMO Radiated Spurious Emission Measurements

802.11ax OFDMA
MCS0
4
3 Meters
2412MHz
1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	400	76	-74.69	-1.53	30.78	53.98	-23.20
4824.00	Peak	Н	400	76	-62.23	-1.53	43.24	73.98	-30.74
12060.00	Avg	Н	-	-	-78.41	9.65	38.24	53.98	-15.74
12060.00	Peak	Н	-	-	-66.43	9.65	50.22	73.98	-23.76

Table 7-23. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	6

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	-	-	-74.74	-1.38	30.88	53.98	-23.10
4874.00	Peak	Н	-	-	-62.89	-1.38	42.73	73.98	-31.25
7311.00	Avg	Н	-	-	-76.05	4.59	35.54	53.98	-18.44
7311.00	Peak	Н	-	-	-63.87	4.59	47.72	73.98	-26.26
12185.00	Avg	Н	-	-	-78.25	9.66	38.41	53.98	-15.57
12185.00	Peak	Н	-	-	-66.62	9.66	50.04	73.98	-23.94

Table 7-24. Radiated Measurements MIMO (26 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 61 of 67		
© 2023 ELEMENT			V11.0 07/06/2023		

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	-	-	-75.05	-1.16	30.79	53.98	-23.19
4924.00	Peak	н	-	-	-62.75	-1.16	43.09	73.98	-30.89
7386.00	Avg	н	-	-	-75.99	4.81	35.82	53.98	-18.16
7386.00	Peak	н	-	-	-64.11	4.81	47.70	73.98	-26.28
12310.00	Avg	Н	-	-	-78.25	9.69	38.44	53.98	-15.54
12310.00	Peak	н	-	-	-66.70	9.69	49.99	73.98	-23.99

Table 7-25. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	-	-	-74.73	-1.53	30.74	53.98	-23.24
4824.00	Peak	Н	-	-	-60.30	-1.53	45.17	73.98	-28.81
12060.00	Avg	Н	-	-	-78.40	9.65	38.25	53.98	-15.73
12060.00	Peak	Н	-	-	-64.04	9.65	52.61	73.98	-21.37

Table 7-26. Radiated Measurements MIMO (242 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dege 62 of 67		
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 62 of 67		
© 2023 ELEMENT	<u>.</u>		V11.0 07/06/2023		

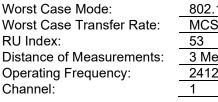
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	6

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	н	-	-	-74.66	-1.38	30.96	53.98	-23.02
4874.00	Peak	н	-	-	-59.86	-1.38	45.76	73.98	-28.22
7311.00	Avg	н	-	-	-76.01	4.59	35.58	53.98	-18.40
7311.00	Peak	н	-	-	-60.99	4.59	50.60	73.98	-23.38
12185.00	Avg	н	-	-	-78.35	9.66	38.31	53.98	-15.67
12185.00	Peak	н	-	-	-63.61	9.66	53.05	73.98	-20.93

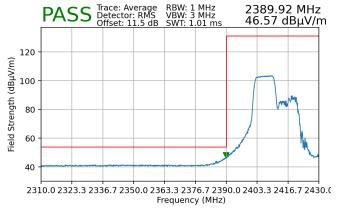
Table 7-27. Radiated Measurements MIMO (242 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

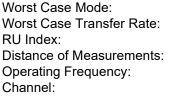
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	-	-	-74.97	-1.16	30.87	53.98	-23.11
4924.00	Peak	н	-	-	-62.87	-1.16	42.97	73.98	-31.01
7386.00	Avg	н	-	-	-75.97	4.81	35.84	53.98	-18.14
7386.00	Peak	н	-	-	-64.24	4.81	47.57	73.98	-26.41
12310.00	Avg	Н	-	-	-78.23	9.69	38.46	53.98	-15.52
12310.00	Peak	н	-	-	-66.36	9.69	50.33	73.98	-23.65

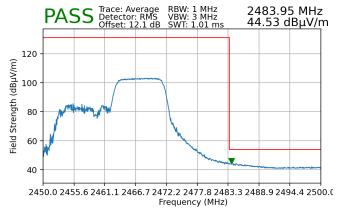

Table 7-28. Radiated Measurements MIMO (242 Tones)

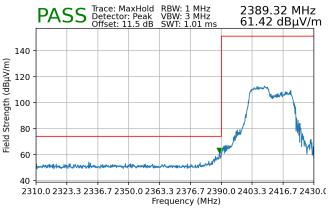
FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 63 of 67	
© 2023 ELEMENT			V11.0 07/06/2023	

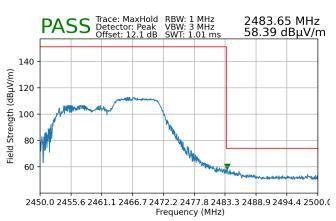


7.7.3 MIMO Radiated Restricted Band Edge Measurements

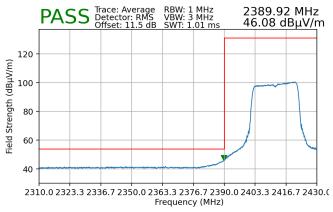

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


802.11ax OFDMA
MCS0
53
3 Meters
2412MHz
1


Plot 7-65. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 106 Tones)

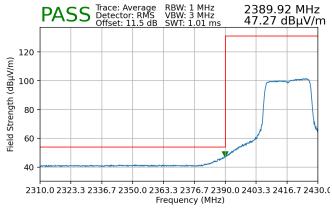

802.11ax OFDMA
MCS0
53
3 Meters
2462MHz
11

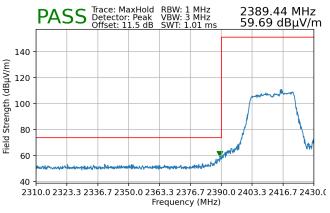
Plot 7-66. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 106 Tones)



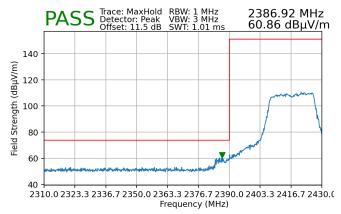
Plot 7-68. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

FCC ID: A3LSMS928U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 64 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 64 of 67
© 2023 ELEMENT			1/11 0 07/06/2023


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1


Plot 7-69. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 242 Tones)

Worst Case Mode:	
Worst Case Transfer Rate:	
RU Index:	
Distance of Measurements:	
Operating Frequency:	
Channel:	

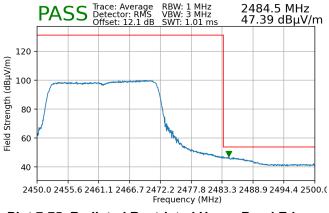

802.11ax OFDMA
MCS0
61
3 Meters
2417MHz
2

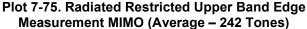
Plot 7-70. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 242 Tones)

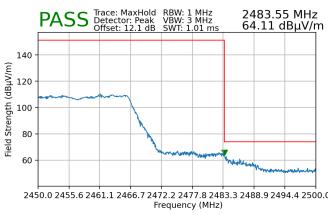


Plot 7-72. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 242 Tones)

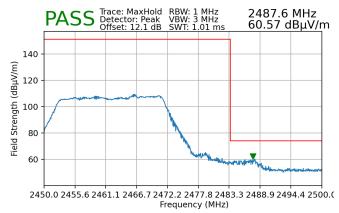
FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 65 of 67	
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 65 of 67	
© 2023 ELEMENT			V11.0 07/06/2023	




Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2457MHz
Channel:	10



Plot 7-73. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Plot 7-74. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)

Plot 7-76. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 66 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 66 of 67
© 2023 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.0 07/06/2023

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMS928U** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMS928U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 67
1M2308210092-14.A3L	9/6/2023 - 11/03/2023	Portable Handset	Page 67 01 67
© 2023 ELEMENT		·	V11.0 07/06/2023