

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

up.//www.element.com

MEASUREMENT REPORT FCC PART 15.407 802.11a/n/ac/ax/be (OFDM)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 9/6/2023 - 11/06/2023 Test Report Issue Date: 11/06/2023 Test Site/Location: Element lab., Columbia, MD, USA Test Report Serial No.: 1M2312110124-08.A3L

FCC ID:

A3LSMS928JPN

Certification

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: Modulation Type: FCC Equipment Class: FCC Rule Part(s): Test Procedure(s):

SC-52E SCG26 Portable Handset 5180 – 5885MHz OFDM Unlicensed National Information Infrastructure TX (NII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 648474 D03 v01r04, KDB 484596 D01 v02r02

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 1 of 163
© 2024 ELEMENT	•		V11.1 08/28/2023

TABLE OF CONTENTS

1.0	INTRO	DUCTIC	DN	4
	1.1	Scope	ə	
	1.2	Eleme	ent Test Location	4
	1.3	Test F	Facility / Accreditations	4
2.0	PROD	OUCT INF	ORMATION	5
	2.1	Equip	ment Description	5
	2.2	Devic	e Capabilities	5
	2.3	Anten	na Description	7
	2.4	Test (Configuration	
	2.5	Softw	are and Firmware	
	2.6	EMI S	Suppression Device(s) / Modifications	
3.0	DESC	RIPTION	I OF TESTS	9
	3.1	Evalu	ation Procedure	9
	3.2	AC Li	ne Conducted Emissions	9
	3.3	Radia	ted Emissions	
	3.4	Enviro	onmental Conditions	
4.0	ANTE	NNA REO	QUIREMENTS	11
5.0	MEAS	UREME	NT UNCERTAINTY	12
6.0	TEST	EQUIPM	IENT CALIBRATION DATA	13
7.0	TEST	RESULT	⁻ S	14
	7.1	Sumn	nary	14
	7.2	26dB	Bandwidth Measurement	
		7.2.1	MIMO Antenna-1 26dB Bandwidth Measurements	
		7.2.2	MIMO Antenna-2 26dB Bandwidth Measurements	31
	7.3	6dB E	Bandwidth Measurement	
		7.3.1	MIMO Antenna-1 6dB Bandwidth Measurements	46
		7.3.2	MIMO Antenna-2 6dB Bandwidth Measurements	54
	7.4	UNII	Output Power Measurement	
	7.5	Maxin	num Power Spectral Density	
		7.5.1	MIMO Antenna-1 Power Spectral Density Measurements	72
		7.5.2	MIMO Antenna-2 Power Spectral Density Measurements	
		7.5.3	MIMO Antenna-1 Power Spectral Density Measurements - Punctured	
		7.5.4	MIMO Antenna-2 Power Spectral Density Measurements - Punctured	
	7.6	Radia	ted Emission Measurements	
		7.6.1	MIMO Radiated Spurious Emission Measurements	
		7.6.2	MIMO Radiated Band Edge Measurements (20MHz BW)	
		7.6.3	MIMO Radiated Band Edge Measurements (40MHz BW)	
		7.6.4	MIMO Radiated Band Edge Measurements (80MHz BW)	
		7.6.5	MIMO Radiated Band Edge Measurements (160MHz BW)	
	7.7	Line-0	Conducted Test Data	
8.0	CONC	CLUSION		

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 2 of 163
© 2024 ELEMENT			V11.1 08/28/2023

Channel		Tx Frequency	Ar	Ant1		Ant2		МІМО	
Bandwidth [MHz]	UNII Band	[MHz]	Max. Power [mW]	Max. Power [dBm]	Max. Power [mW]	Max. Power [dBm]	Max. Power [mW]	Max. Power [dBm]	
	1	5180 - 5240	62.52	17.96	62.81	17.98	120.78	20.82	
	2A	5260 - 5320	62.81	17.98	62.52	17.96	122.74	20.89	
20	2C	5500 - 5720	62.95	17.99	62.95	17.99	125.64	20.99	
	3	5745 - 5825	61.52	17.89	60.12	17.79	124.43	20.95	
	4	5845 - 5885	28.58	14.56	44.26	16.46	143.47	21.57	
	1	5190 - 5230	61.80	17.91	61.52	17.89	119.67	20.78	
	2A	5270 - 5310	62.81	17.98	62.37	17.95	116.68	20.67	
40	2C	5510 - 5710	61.09	17.86	62.95	17.99	125.31	20.98	
	3	5755 - 5795	59.57	17.75	61.80	17.91	124.74	20.96	
	4	5835 - 5875	30.27	14.81	46.34	16.66	151.56	21.81	
	1	5210	56.75	17.54	57.68	17.61	111.17	20.46	
	2A	5290	59.43	17.74	57.41	17.59	115.61	20.63	
80	2C	5530 - 5690	61.09	17.86	62.09	17.93	124.99	20.97	
	3	5775	61.24	17.87	59.57	17.75	125.04	20.97	
	4	5855	30.41	14.83	42.27	16.26	150.67	21.78	
160	1/2A	5250	62.95	17.99	62.81	17.98	109.14	20.38	
	2C	5570	62.95	17.99	62.52	17.96	121.62	20.85	
	3/4	5815	27.80	14.44	43.05	16.34	148.26	21.71	
FUT Overview									

MEASUREMENT REPORT

EUT Overview

Note: The UNII Band 4 max power values shown in the above table are e.i.r.p values.

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 3 of 163	
© 2024 ELEMENT V11.1 08/28/2023				

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 4 of 163	
© 2024 ELEMENT	•		V11.1 08/28/2023	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMS928JPN. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 0876M, 0042M, 0085M, 0900M, 0854M

F

2.2 Device Capabilities

This device contains the following capabilities:

Ch.

52

:

56

:

64

Ch.

54

62

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1 and FR2), 802.11b/g/n/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

	Band 1	
Ch.	Frequency (MHz)	
36	5180	
:	:	
40	5200	
:	:	
48	5240	

Band 2A				
requency (MHz)		Ch.		
5260		100		
:		•••		
5280		120		
:		:		
5320		144		
802 11a/n/ac	/a	(he ()		

	Band 2C		
Ch.	Frequency (MHz)		
100	5500		
:	:		
120	5600		
:	:		
144	5720		
bo (20MH=) Erequency			

	Band 3		
Ch.	Frequency (MHz)		
149	5745		
:	:		
157	5785		
:	:		
165	5825		
hannel Operations			

Band 3/4 Frequency Ch. (MHz) 169 5845 • : 173 5865 1 177 5885

Table 2-1. 8 02.11a/n/ac/ax/be (20MHz) Frequency / Channel Operations

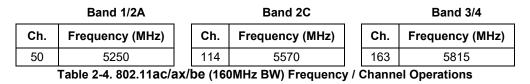
	Band 1	
Ch.	Frequency (MHz)	
38	5190	
:	:	
46	5230	

Band 2A		
Frequency (MHz)	Ch.	F
5270	102	
:	:	
5310	118	
	:	
	142	

Band 2C	
Frequency (MHz)	
5510	
:	
5590	
:	
5710	

Ch.	Frequency (MHz)	Ch.	
151	5755	167	
:	:	:	
159	5795	175	

	Band 3/4
Ch.	Frequency (MHz)
167	5835
:	:
175	5875


Table 2-2. 802.11n/ac/ax/be (40MHz BW) Frequency / Channel Operations

	Band 1 Band 2A			Band 2C			Band 3		Band 3/4				
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)		Ch.	Frequency (MHz)		Ch.	Frequency (MHz)		
42	5210	58	5290	106	5530		155	5775		167	5835		
				:	:				_				
				122	5610								
				:	:								
				138	5690								
		Table 2	2 002 4400/0	x/bo (00		~	anav /	Channal One	rationa				

Table 2-3. 802.11ac/ax/be (80MHz BW) Frequency / Channel Operations

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage E of 162				
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 5 of 163				
© 2024 ELEMENT		•	V11.1 08/28/2023				

Notes:

5GHz NII operation is possible in 20MHz, 40MHz, 80MHz, and 160MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

		AN	IT1	AN	IT2	MIMO (1+2)			
802.1 1	I Mode/Band	Duty Cycle [%]	Radiated DCCF [dB]	Duty Cycle [%]	Radiated DCCF [dB]	Duty Cycle [%]	Radiated DCCF [dB]		
	а	96.55	0.15	96.62	0.15	96.55	0.15		
	n (HT20)	98.07	N/A	98.07	N/A	98.07	N/A		
	ac (VHT20)	98.05	N/A	98.07	N/A	96.21	0.17		
	ax (HE20)	99.67	N/A	99.67	N/A	99.65	N/A		
	be (EHT20)	99.67	N/A	99.67	N/A	99.63	N/A		
	n (HT40)	98.03 N/A		98.03	N/A	98.01	N/A		
	ac (VHT40)	98.03	N/A	98.03	N/A	96.10	0.17		
5GHz	ax (HE40)	99.65	N/A	99.69	N/A	99.65	N/A		
	be (EHT40)	99.67	N/A	99.67	N/A	99.65	N/A		
	ac (VHT80)	95.82	0.19	95.86	0.18	92.21	0.35		
	ax (HE80)	99.67	N/A	99.67	N/A	99.63	N/A		
	be (EHT80)	99.69	N/A	99.67	N/A	99.65	N/A		
	ac (HT160)	92.19	0.35	92.19	0.35	92.23	0.35		
	ax (HE160)	99.67	N/A	99.69	N/A	99.65	N/A		
	be (EHT160)	99.67	N/A	99.69	N/A	99.65	N/A		

Table 2-5. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

	oficurationa	SIS	SO	SE	DM	CDD		
	WiFi Configurations			ANT1	ANT2	ANT1	ANT2	
	11a	✓	✓	×	×	\checkmark	✓	
	11n	✓	✓	√	✓	\checkmark	✓	
5GHz	11ac	✓	✓	√	✓	\checkmark	✓	
	11ax	✓	✓	√	✓	\checkmark	✓	
	11be	✓	✓	✓	✓	✓	✓	

Table 2-6. Antenna / Technology Configuration

✓ = Support ; × = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity – 2Tx Function

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 6 of 163	
© 2024 ELEMENT	•	•	V11.1 08/28/2023	

3. The device supports the following data rates (shown in Mbps):

						r																			
802.11a		MCS	ndex		Spatial	0	FDM (802.1	1n/802.11a	ic)		OFDM (8	02.11ac)		OFDM (802.11ax/be)											
20MHz					Stream	201	ИHz	40N	ИHz	801	ИHz	160	MHz		20MHz			40MHz			80MHz			160MHz	
2011112	HT	VHT	HE	EHT		0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	0.4µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
6	0	0	0	0	1	6.5	7.2	13.5	15	29.3	32.5	58.5	65	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3
9	1	1	1	1	1	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
12	2	2	2	2	1	19.5	21.7	40.5	45	87.8	97.5	175.5	195	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
18	3	3	3	3	1	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
24	4	4	4	4	1	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
36	5	5	5	5	1	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
48	6	6	6	6	1	58.5	65	121.5	135	263.3	292.5	526.5	585	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
54	7	7	7	7	1	65	72.2	135	150	292.5	325	585	650	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
		8	8	8	1	78	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
	,	9	9	9	1	N/A	N/A	180	200	390	433.3	780	866.7	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7	408.3	960.8	907.4	816.7
			10	10	1									129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8
			11	11	1									143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201	1134.3	1020.8
				12	1									154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5
				13	1									172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225
6	8	0	0	0	2	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
9	9	1	1	1	2	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
12	10	2	2	2	2	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
18	11	3	3	3	2	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
24	12	4	4	4	2	78	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
36	13	5	5	5	2	104	115.6	216	240	468	520	936	1040	137.6	130	117	275.3	260	234	576.5	544.4	490	1152.9	1088.9	980
48	14	6	6	6	2	117	130	243	270	526.5	585	1053	1170	154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5
54	15	7	7	7	2	130	144.4	270	300	585	650	1170	1300	172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225
		8	8	8	2	156	173.3	324	360	702	780	1404	1560	206.5	195	175.5	412.9	390	351	864.7	816.7	735	1729.4	1633.3	1470
		9	9	9	2	N/A	N/A	360	400	780	866.7	1560	1733.3	229.4	216.7	195	458.8	433.3	390	960.8	907.4	816.7	1921.6	1814.8	1633.3
			10	10	2									258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
			11	11	2									286.8	270.8	243.8	573.5	541.7	487.5	1201	1134.3	1020.8	2402	2268.5	2041.7
				12	2									309.7	292.5	263.3	619.4	585	526.5	1297.1	1225	1102.5	2594.1	2450	2205
				13	2									344.1	325	292.5	688.2	650	585	1441.2	1361.1	1225	2882.4	2722.2	2450

2.3 Antenna Description

Table 2-7. Supported Data Rates

The following antenna gains were used for the testing.

Frequency [MHz]	Antenna 1 Gain (dBi)	Antenna 2 Gain (dBi)	Directional Gain (dBi)
5150	-4.96	-5.11	-2.02
5200	-3.90	-4.33	-1.10
5220	-3.62	-4.19	-0.89
5250	-3.74	-3.27	-0.49
5280	-4.02	-5.71	-0.33
5300	-3.35	-3.03	-0.18
5350	-4.05	-2.68	-0.33
5400	-3.44	-2.37	0.12
5500	-4.58	-2.72	-0.59
5600	-2.89	-3.14	0.00
5700	-2.69	-1.51	0.93
5785	-3.12	-1.39	0.80
5800	-3.29	-2.06	0.36
5805	-3.08	-1.31	0.86
5850	-4.03	-1.55	0.31
5885	-3.76	-1.76	0.31
5895	-4.39	-2.55	-0.41

Table 2-8. Antenna Peak Gain per Frequency

Frequency [MHz]	Antenna 1 Gain (dBi)	Antenna 2 Gain (dBi)	Directional Gain (dBi)
5200	-3.74	-3.27	-0.49
5300	-3.35	-3.03	-0.18
5500	-2.69	-1.51	0.93
5800	-3.08	-1.31	0.86
5850	-3.08	-1.31	0.86

Table 2-9. Antenna Peak Gain

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	D 7 -f 402					
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 7 of 163					
© 2024 ELEMENT	•		V11.1 08/28/2023					

2.4 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 7.6 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.5 Software and Firmware

The test was conducted with software/firmware version S928USQU0AW19 installed on the EUT.

2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 8 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.7. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 9 of 163
© 2024 ELEMENT	•		V11.1 08/28/2023

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 10 of 163
© 2024 ELEMENT			V11.1 08/28/2023

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	eport S/N: Test Dates: EUT Type:		Dage 11 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 11 of 163
© 2024 ELEMENT			V11.1 08/28/2023

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dego 10 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 12 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	MD 1M 18-40	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	MD 1M 18-40
-	WL40-1	Conducted Cable Set (40GHz)	1/12/2023	Annual	1/12/2024	WL40-1
-	WL25-1	Conducted Cable Set (25GHz)	1/12/2023	Annual	1/12/2024	WL25-1
Anritsu	MA24406A	Microwave Peak Power Sensor	9/7/2023	Annual	9/7/2024	11240
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/5/2022	Biennial	7/5/2024	9203-2178
Pastermack	MNLC-2	Line Conducted Emission Cable (NM)	1/11/2023	Annual	1/11/2024	NMLC-2
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
ETS Lindgren	3116C	1-18 GHz DRG Horn Antenna	2/27/2023	Biennial	2/27/2024	00218893
ETS Lindgren	3115	Double Ridged Guide Horn	4/12/2022	Biennial	4/12/2024	82333
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2025	121034
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Keysight Technologies	N9030A	PXA Signal Analyzer	1/31/2023	Annual	1/31/2024	MY55410501
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	9/7/2023	Annual	9/7/2024	MY57141001
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/1/2023	Annual	3/1/2024	101716
Rohde & Schwarz	FSW26	2Hz-26.5GHz Signal and Spectrum Analyzer	11/6/2022	Annual	11/6/2023	103187
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	1/13/2023	Annual	1/13/2024	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	2/21/2023	Biennial	2/21/2025	A051107
Sunol	JB6	LB6 Antenna	3/2/2023	Biennial	3/2/2025	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 162	
1M2312110124-08.A3L	312110124-08.A3L 9/6/2023 - 11/06/2023 Portable Handset		Page 13 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS928JPN
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz and 5850 – 5895MHz)		PASS	Section 7.3
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Power Spectral DensityMaximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5	
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	namic Frequency See DES Test Report		PASS	See DFS Test Report
15.407(b)(1), (b)(2), (b)(3), (b)(4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b)(1), (b)(4), (b)(5), (b)(6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.5.0.
- 6) Data was leveraged from test report 1M2308210092-15, FCC ID: A3LSMS928U. See Table 7-2 and **Table 7-3** for results.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 163	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 14 01 163	
© 2024 ELEMENT	•		V11.1 08/28/2023	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

FCC Rules	Test Item	Test Case	Units	Limit	Reference FCC ID: A3LSMS928U	Variant FCC ID: A3LSMS928JPN	Deviation	Max Deviation	Pass/Fail
15.407(e)	6dB Bandwidth	Ch.157, 802.11a, MIMO, Ant2	MHz	>.5	16.40	16.41	0.01	N/A	PASS
2.1049	26dB Bandwidth/Occupied Bandwidth	Ch.48, 802.11be, MIMO, Ant1	MHz	N/A	21.80	22.37	0.57	N/A	PASS
15.407(a)(1)(iv), 15.407(a)(2), 15.407(a)(3)	Power Spectral Density	Ch.144, 802.11a, MIMO	dBm	11	10.18	9.23	0.95	3	PASS
15.209, 15.407(b)(1), 15.407(b)(2), 15.407(b)(3), 15.407(b)(4)	Radiated Spurious Emissions	Ch.2, 802.11a, MIMO, Average	dBm	53.98	42.51	41.99	0.52	3	PASS
15.209	Radiated Band Edge Emissions	Ch.62, 802.11a, MIMO	dBm	53.98	51.93	51.22	0.71	3	PASS

Table 7-2. Summary of Spot-checks

					5GHz WIF	I (20MHz 802.11	a MIMO)				
				Referenced Dat	a		Variant Data		1		
Freq [MHz]	Channel	Detector	Co	nducted Power [dBm]	Co	nducted Power [d	iBm]	Delta	Delta Limit	Re-use Verdict
			ANT1	ANT2	MIMO	ANT1	ANT2	MIMO			
UNII-1	5220	44	17.47	17.89	20.70	17.21	17.34	20.29	0.41	1.00	PASS
UNII-2A	5280	56	17.49	17.94	20.73	17.23	17.56	20.41	0.32	1.00	PASS
UNII-2C	5620	124	17.73	17.76	20.76	17.63	17.58	20.62	0.14	1.00	PASS
UNII-3	5785	157	17.79	17.98	20.89	17.68	17.83	20.77	0.13	1.00	PASS
UNII-4	5865	173	17.19	17.63	20.43	17.22	17.11	20.18	0.25	1.00	PASS
					5GHz WIF	I (20MHz 802.11					
				Referenced Dat	a		Variant Data				
Freq [MHz]	Channel	Channel Detector Conducted Power [dBm] Conducted Power [dBm]		IBm]	Delta	Delta Limit	Re-use Verdict				
		-	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	1		
UNII-1	5220	44	17.62	17.99	20.82	17.52	17.67	20.61	0.21	1.00	PASS
UNII-2A	5280	56	17.61	17.98	20.81	17.52	17.82	20.68	0.13	1.00	PASS
UNII-2C	5620	124	17.86	17.85	20.86	17.77	17.63	20.71	0.15	1.00	PASS
UNII-3	5785	157	17.83	17.97	20.91	17.52	17.82	20.68	0.23	1.00	PASS
UNII-4	5865	173	17.17	17.44	20.32	17.21	17.33	20.28	0.04	1.00	PASS
0	0000			.,		(20MHz 802.11a		20.20	0.01	1.00	17100
				Referenced Dat			Variant Data				Re-use Verdict
Freq [MHz]	Channel	Detector	Co	nducted Power [Conducted Power [dBm]		Delta	Delta Limit		
		-	ANT1	ANT2	MIMO	ANT1	ANT2	МІМО	4		
UNII-1	5220	44	17.55	17.98	20.78	17.46	17.78	20.63	0.15	1.00	PASS
UNII-2A	5280	56	17.11	17.69	20.42	17.01	17.25	20.14	0.28	1.00	PASS
UNII-2C	5620	124	17.82	17.85	20.85	17.67	17.72	20.71	0.14	1.00	PASS
UNII-3	5785	157	17.35	17.62	20.50	17.26	17.52	20.40	0.10	1.00	PASS
UNII-4	5865	173	17.26	17.73	20.51	17.40	17.69	20.56	0.05	1.00	PASS
						(20MHz 802.11					
				Referenced Dat			Variant Data				
Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power [dBm]		Delta	Delta Limit	Re-use Verdict		
1100 [111112]	onumer	Deteotor		-	-			-	Denta	Denta Emini	
	5000		ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	0.10	1.00	5100
UNII-1	5220	44	17.60	17.98	20.80	17.52	17.86	20.70	0.10	1.00	PASS
UNII-2A	5280	56	17.19	17.72	20.47	17.11	17.52	20.33	0.14	1.00	PASS
UNII-2C	5620	124	17.97	17.99	20.99	17.67	17.82	20.76	0.23	1.00	PASS
UNII-3	5785	157	17.33	17.69	20.52	17.11	17.52	20.33	0.19	1.00	PASS
UNII-4	5865	173	17.38	17.82	20.62	17.28	17.42	20.36	0.26	1.00	PASS
						(20MHz 802.11				-	
				Referenced Dat	a		Variant Data		ļ		
Freq [MHz]	Channel	Detector	Co	nducted Power [dBm]	Conducted Power [dBm]		Delta	Delta Limit	Re-use Verdict	
			ANT1	ANT2	MIMO	ANT1	ANT2	MIMO			
UNII-1	5220	44	17.13	17.60	20.38	17.06	17.52	20.31	0.07	1.00	PASS
UNII-2A	5280	56	17.10	17.66	20.40	17.01	17.42	20.23	0.17	1.00	PASS
UNII-2C	5620	124	17.77	17.77	20.78	17.66	17.52	20.60	0.18	1.00	PASS
		4.57	17.40	17.72	20.58	17.34	17.69	20.53	0.05	1.00	PASS
UNII-3	5785	157	17.42	17.72	20.58	17.34	17.09	20.55	0.05	1.00	PA35

Table 7-3. Conducted Power Spot-checks

FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Degs 15 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 15 of 163
© 2024 ELEMENT			V11.1 08/28/2023

7.2 26dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 - Section 12.4

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 16 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 16 of 163	
© 2024 ELEMENT		·	V11.1 08/28/2023	

MIMO 26dB Bandwidth Measurements

				Antenna-1	Antenna-2
	Frequency	Channel	802.11	26dB Bandwidth	26dB Bandwidth
	[MHz]		MODE	[MHz]	[MHz]
	5400	26		20.77	21.12
	5180	36	а	20.77	21.12
	5200	40	а	21.40	21.45
	5240	48	а	21.29	20.72
	5180	36	n	21.58	21.68
	5200	40	n	21.80	21.52 21.27
	5240	48	n aw/ha_CLL	21.41	
Band 1	5180	36 40	ax/be SU	21.60	22.43
Bar	5200	40	ax/be SU ax/be SU	21.80 21.68	21.77 21.45
	5240 5190	38		42.27	42.01
	5230	46	n n	41.88	42.56
	5190	38	ax/be SU	41.88	41.43
	5230	46	ax/be SU	41.41	41.45
	5230	40	ax/be so	92.41	91.08
	5210	42	ac ax/be SU	88.92	89.50
Pq	5250	42 50	ax/be so	176.09	247.96
Band 1/2A	5250	50	ac ax/be SU	179.44	233.38
	5260	52	ax/be 50	21.28	20.42
	5280	52	a	20.79	20.42
	5320	64	a	21.50	21.06
	5260	52	n	21.86	21.00
	5280	56	n	21.80	21.58
	5320	64	n	21.62	21.58
٩	5260	52	ax/be SU	21.93	21.69
d 2	5280	56	ax/be SU	21.93	21.09
Band 2A	5320	64	ax/bc SU	21.64	21.70
	5270	54	n	41.90	42.09
	5310	62	n	41.82	42.38
	5270	54	ax/be SU	41.16	41.34
	5310	62	ax/be SU	40.88	41.60
	5290	58	ac	92.60	91.27
	5290	58	ax/be SU	91.82	89.48
	5500	100	а	21.19	21.20
	5600	120	а	21.63	21.42
	5720	144	a	21.16	20.86
	5500	100	n	21.65	21.72
	5600	120	n	21.44	21.47
	5720	144	n	21.91	21.75
	5500	100	ax/be SU	21.68	21.56
	5600	120	ax/be SU	21.71	21.18
	5720	144	ax/be SU	21.74	21.96
	5510	102	n	41.59	41.96
2C	5590	118	n	41.60	41.45
Band	5710	142	n	41.93	41.75
Ba	5510	102	ax/be SU	41.30	41.51
	5590	118	ax/be SU	41.68	41.14
	5710	142	ax/be SU	41.29	41.41
	5530	106	ac	93.85	92.88
	5610	122	ac	93.63	93.17
	5690	138	ac	91.97	91.41
	5530	106	ax/be SU	90.84	90.91
	5610	122	ax/be SU	90.67	88.78
	5690	138	ax/be SU	90.99	89.32
	5570	114	ac	177.19	175.87
	5570	114	ax/be SU	177.70	246.10

Table 7-4. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO

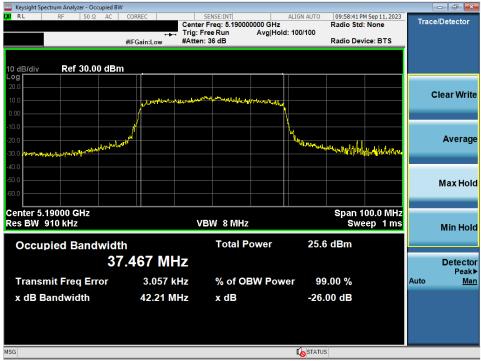
FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 17 of 163
© 2024 ELEMENT		•	V11.1 08/28/2023

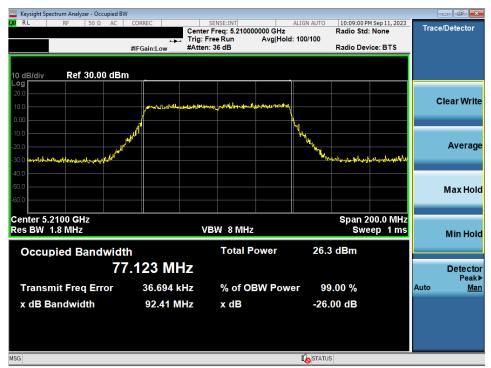
7.2.1 MIMO Antenna-1 26dB Bandwidth Measurements

Plot 7-1. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 1) - Ch. 40)

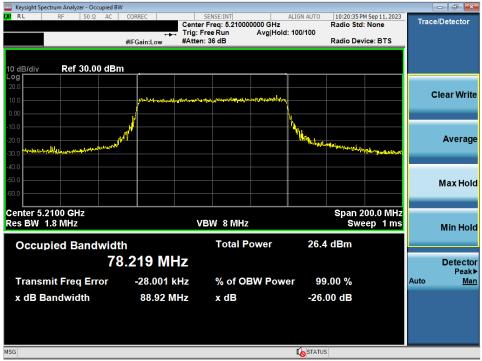
Plot 7-2. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

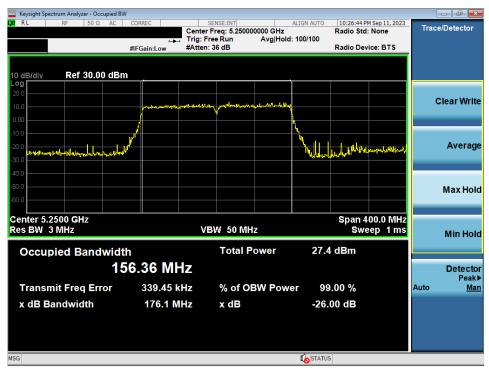
FCC ID: A3LSMS928JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 400	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 18 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	


Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)


Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 19 of 163	
© 2024 ELEMENT		·	V11.1 08/28/2023	


Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 1) - Ch. 38)


Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 20 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)

Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 1/2A) – Ch. 50)

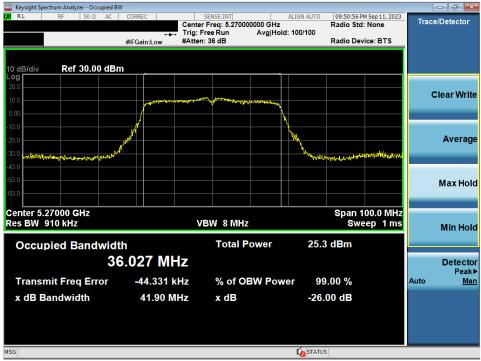
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 160	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 21 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

Keysight Spectrum Analyzer - Occupied BV					
XIRL RF 50Ω AC	CORREC	SENSE:INT Center Freq: 5.25000	ALIGN AUTO	10:34:08 PM Sep 11, 2023 Radio Std: None	Trace/Detector
	+	Trig: Free Run	Avg Hold: 100/100		
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS	
10 dB/div Ref 30.00 dBr	n				
20.0					
10.0	a di nda ni dia di anali 14	with the second second	abushant		Clear Write
0.00					
-10.0			<u> </u>		
			η,		Average
-20.0 -30.0 John Millingh Mark Million	an -		Herodowa	durtness hallower walkles	, it of a go
-40.0					
-50.0					
					Max Hold
-60.0					
Center 5.2500 GHz				Span 400.0 MHz	
Res BW/3 MHz		VBW 50 MH	z	Sweep 1 ms	Min Hold
Occurried Developid	41a	Total P	owor 26 /	dBm	
Occupied Bandwidt			ower 20.	авт	
1.	57.78 MH	Z			Detector
Transmit Freq Error	247.02	Wat % of O	BW Power 99	.00 %	Peak▶ Auto Man
x dB Bandwidth	179.4 M	lHz xdB	-26.	00 dB	
MSG			TATU:	5	

Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)

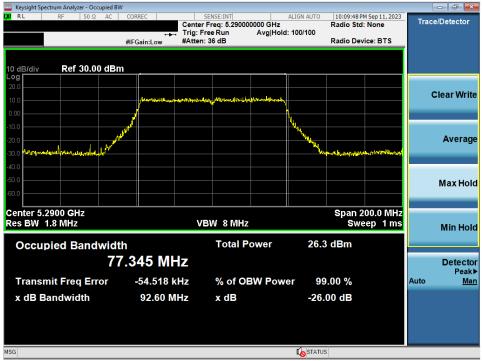
Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 100	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 22 of 163	
© 2024 ELEMENT		·	V11.1 08/28/2023	


Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

Plot 7-12. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2A) – Ch. 56)

FCC ID: A3LSMS928JPN		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 23 of 163		
© 2024 ELEMENT	V11.1 08/28/2023				


Plot 7-13. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

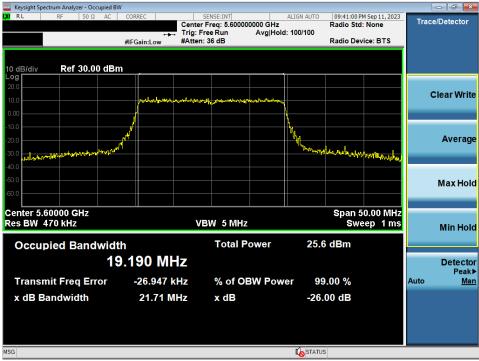
Plot 7-14. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 2A) - Ch. 54)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 04 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 24 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

Plot 7-15. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)


Plot 7-16. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 25 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-17. 26dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 2C) - Ch. 120)

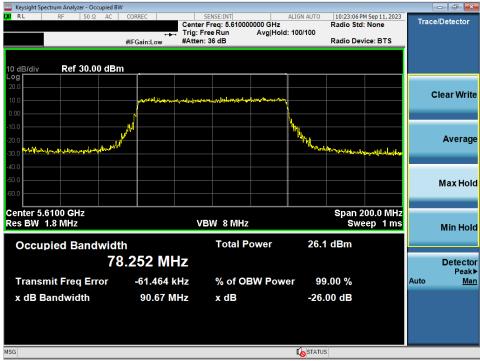
Plot 7-18. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2C) – Ch. 120)

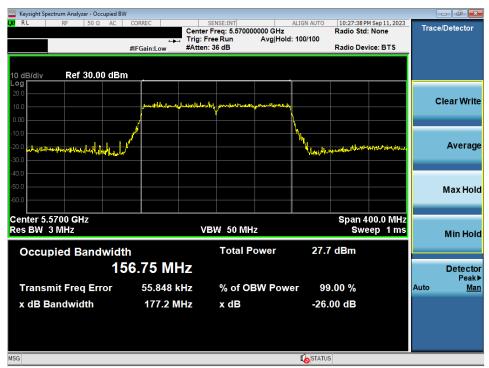
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 26 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-19. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2C) - Ch. 120)

Plot 7-20. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 27 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-21. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 2C) - Ch. 118)


Plot 7-22. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 28 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

Plot 7-23. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 2C) - Ch. 122)

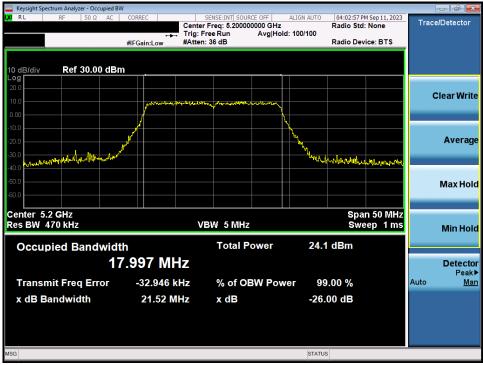
Plot 7-24. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 2C) - Ch. 114)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 29 of 163
© 2024 ELEMENT			V11.1 08/28/2023

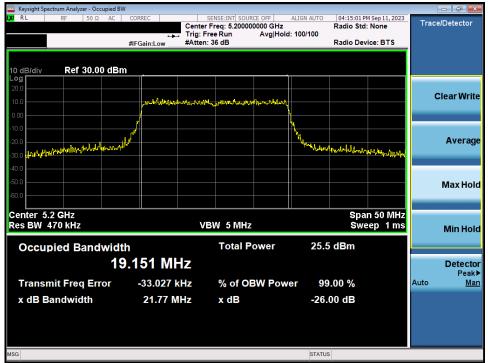
Keysight Spectrum Analyzer - Occupied BW						
LX/ RL RF 50Ω AC	CORREC	SENSE:INT Center Freq: 5.57000	ALIGN AUTO	10:35:17 PM Sep 11, 2023 Radio Std: None	Trace/D	etector
	↔	, Trig: Free Run	Avg Hold: 100/100			
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS	-	
10 dB/div Ref 40.00 dBm Log	<u> </u>					
30.0						
20.0					Cle	ar Write
10.0	AL-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Lan	and the start			
0.00						
-10.0	1		h.,			Average
	1		N			Average
-20.0	<i>(</i>		Hundre	Webourd Will manumental		
-40.0					N	lax Hold
-50.0						
Center 5.5700 GHz				Span 400.0 MHz		
Res BW 3 MHz		VBW 50 MH	z	Sweep 1 ms		/in Hold
Occupied Bandwidt		Total P	ower 26.	4 dBm		
15	7.74 M	Hz				Detector
	CO 105			0.00.0/		Peak▶
Transmit Freq Error	69.495	KHZ % OT U	BW Power 9	9.00 %	Auto	<u>Man</u>
x dB Bandwidth	177.7 N	/Hz x dB	-26	.00 dB		
MSG			TATU	JS		
MSG			Ko statu	JS		

Plot 7-25. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax/be (UNII Band 2C) – Ch. 114)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 163
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 30 01 103
© 2024 ELEMENT			V11.1 08/28/2023

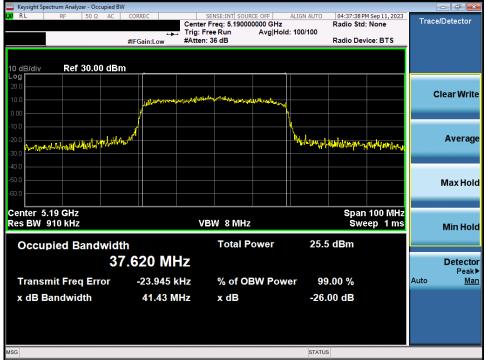

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

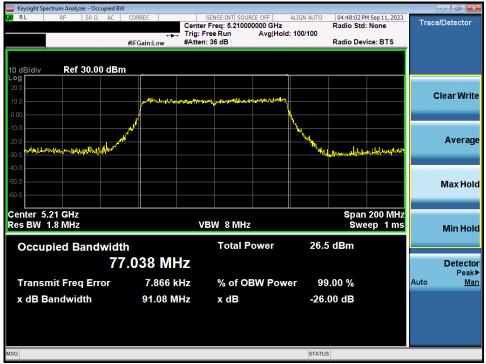
7.2.2 MIMO Antenna-2 26dB Bandwidth Measurements


Plot 7-26. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 1) - Ch. 40)

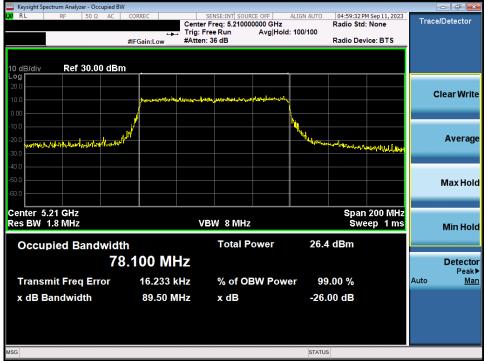
Plot 7-27. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 21 of 102
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 31 of 163
© 2024 ELEMENT	V11.1 08/28/2023		


Plot 7-28. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)

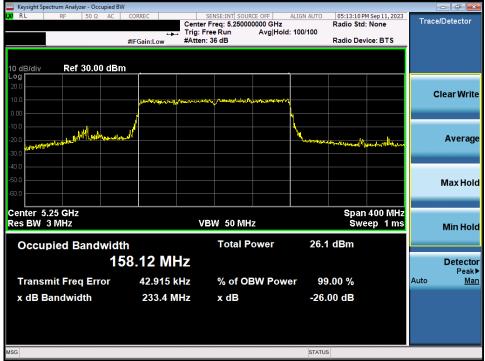

Plot 7-29. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 32 of 163
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-30. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 1) - Ch. 38)

Plot 7-31. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

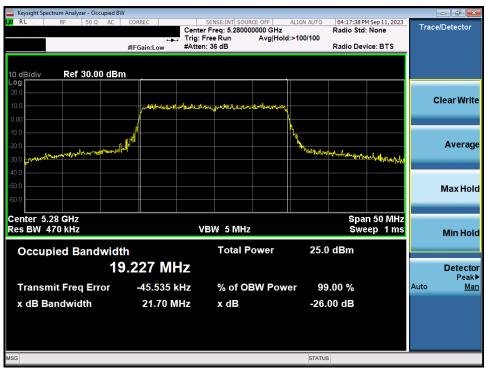
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 33 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-32. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)

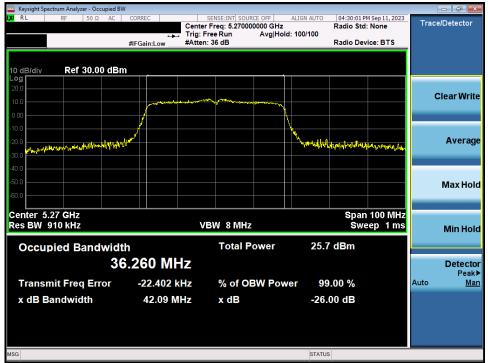
Plot 7-33. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 34 of 163
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-34. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)


Plot 7-35. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 2A) - Ch. 56)

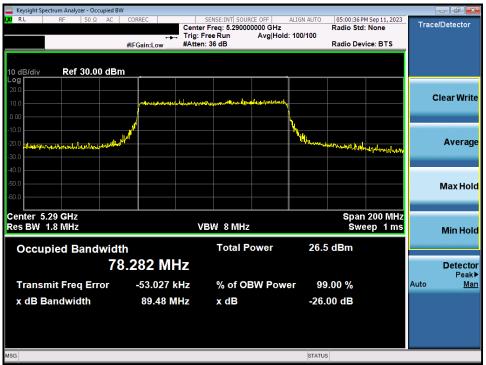
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 163
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-36. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

Plot 7-37. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 2A) - Ch. 56)

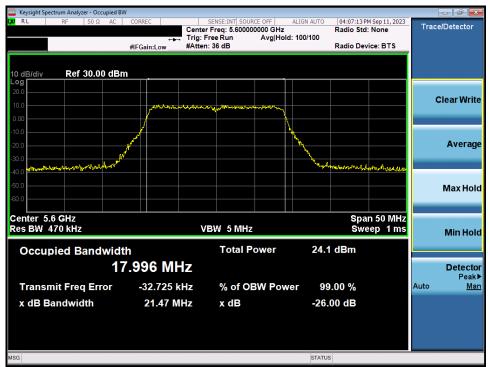
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 36 of 163
© 2024 ELEMENT	V11.1 08/28/2023		

Plot 7-38. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


Plot 7-39. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 2A) - Ch. 54)

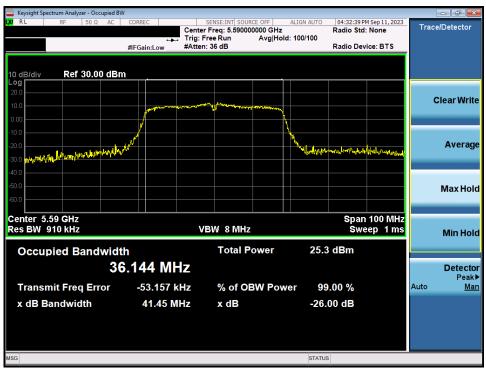
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 37 of 163
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-40. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)


Plot 7-41. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 38 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

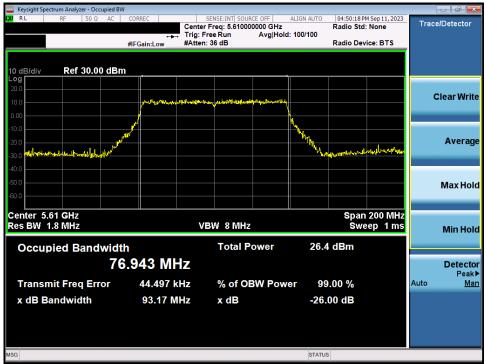
Plot 7-42. 26dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 2C) - Ch. 120)


Plot 7-43. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 39 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

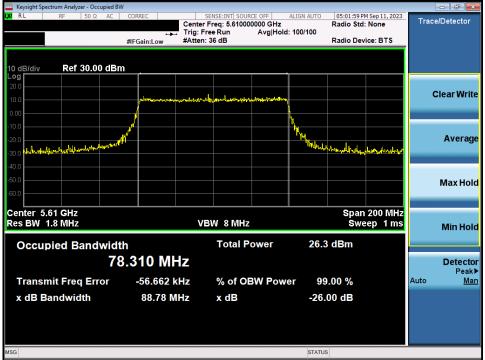
Keysight Spectrum Analyzer - Occupied	BW				- 6 -
LX/ RL RF 50Ω AC		SENSE:INT SOURCE OFF		:53 PM Sep 11, 2023 Std: None	Trace/Detector
	Trig:	: Free Run Avg Ho	old: 100/100		
	#IFGain:Low #Atte	en: 36 dB	Radio	Device: BTS	
10 dB/div Ref 30.00 dE	sm				
20.0					
10.0	and afferd and block				Clear Write
0.00	proford and a second and a second and a second a	MICHAN AND AND AND AND AND AND AND AND AND A			
-10.0			1.0		Average
-20.0	AND I I I I I I I I I I I I I I I I I I I				Average
Hat a last last la last a state is a second			line-languly and	monumulate	
-40.0					
-50.0					Max Hold
-60.0					
Center 5.6 GHz Res BW 470 kHz		VBW 5 MHz		Span 50 MHz Sweep 1 ms	
Kes Dw 470 KHz		VIDW JIMIZ		weep me	Min Hold
Occupied Bandwid	lth	Total Power	25.2 dBm		
	9.174 MHz				Detector
	3.174 WITZ				Peak►
Transmit Freq Error	-30.571 kHz	% of OBW Po	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	21.18 MHz	x dB	-26.00 dB		
A ub bandwidth	21.10 Miliz		-20100-015		
MSG			STATUS		

Plot 7-44. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 2C) - Ch. 120)


Plot 7-45. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 2C) – Ch. 118)

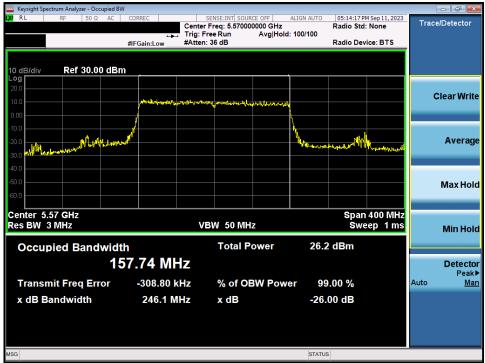
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 af 400	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 40 of 163	
© 2024 ELEMENT V11.1 08/28/2023				

Keysight Spectrum Analyzer - Occupied BW					
XX RL RF 50Ω AC		SENSE:INT SOURCE OFF		11 PM Sep 11, 2023 Std: None	Trace/Detector
		Freq: 5.590000000 GHz ree Run Avg Hol	d: 100/100	Sta: None	
	#IFGain:Low #Atten			Device: BTS	
10 dB/div Ref 30.00 dBm					
Log					
20.0					
10.0	- I make water have	At ruge produced to a state of the			Clear Write
0.00	for the second s	and the second			
	/		N		
-10.0	7				
-20.0	M		"Monto internet the Marking	the Work Washington the	Average
-30.0					
-40.0					
-50.0					
					Max Hold
-60.0					
Center 5.59 GHz			Cn	an 100 MHz	
Res BW 910 kHz	V	BW/8 MHz		weep 1 ms	
NCS BW STO KIIZ	V		2	меер ттэ	Min Hold
Occupied Bandwidth		Total Power	25.8 dBm		
37.	.600 MHz				Detecto
Tropowit From From	24 075 kU		00.00.00		Peak IAuto Mar
Transmit Freq Error	-34.875 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Iviar</u>
x dB Bandwidth	41.14 MHz	x dB	-26.00 dB		
MSG			STATUS		


Plot 7-46. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 2C) - Ch. 118)

Plot 7-47. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 41 of 163
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-48. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 2C) - Ch. 122)

Plot 7-49. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 2C) - Ch. 114)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 42 of 163
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-50. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax/be (UNII Band 2C) - Ch. 114)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 43 of 163
© 2024 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.3 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band and 5.850 – 5.895GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 44 of 163
© 2024 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

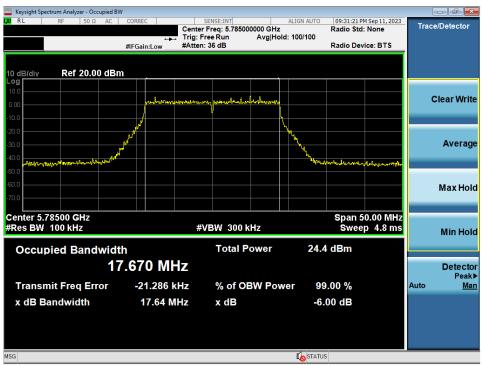
MIMO 6dB Bandwidth Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
	5745	149	а	16.41	16.41
	5785	157	а	16.39	16.40
	5825	165	а	16.40	16.41
	5745	149	n	17.65	17.61
	5785	157	n	17.64	17.66
	5825	165	n	17.75	17.65
m	5745	149	ax/be SU	19.01	19.06
Band	5785	157	ax/be SU	19.20	18.92
Ξ.	5825	165	ax/be SU	18.99	19.11
	5755	151	n	31.87	34.89
	5795	159	n	35.45	34.48
	5755	151	ax/be SU	36.63	36.01
	5795	159	ax/be SU	34.76	36.00
	5775	155	ac	76.53	76.53
	5775	155	ax/be SU	78.23	78.18

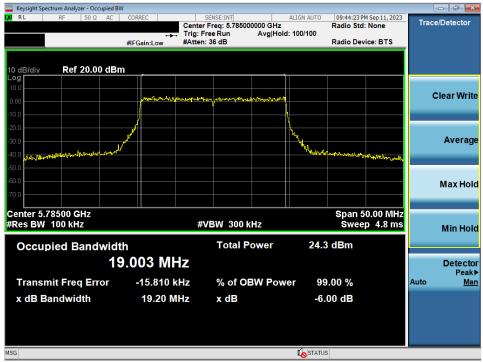
Table 7-5. Band 3 Conducted 6dB Bandwidth Measurements MIMO

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
Band 3/4	5845	169	а	16.39	16.41
Band 4	5865	173	а	16.51	16.41
Danu 4	5885	177	а	16.41	16.38
Band 3/4	5845	169	n	17.63	17.64
Band 4	5865	173	n	17.64	17.63
Ballu 4	5885	177	n	17.63	17.64
Band 3/4	5845	169	ax/be SU	19.04	18.97
Band 4	5865	173	ax/be SU	19.13	19.09
Ballu 4	5885	177	ax/be SU	19.10	19.03
Band 3/4	5835	167	n	35.12	35.11
Band 4	5875	175	n	34.48	33.90
Band 3/4	5835	167	ax/be SU	33.48	34.41
Band 4	5875	175	ax/be SU	36.29	35.95
	5855	171	ас	76.47	76.50
Band 3/4	5855	171	ax/be SU	78.19	78.37
Balld 5/4	5815	163	ас	156.33	156.26
	5815	163	ax/be SU	158.29	158.56

Table 7-6. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO


FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 45 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

7.3.1 MIMO Antenna-1 6dB Bandwidth Measurements


Plot 7-51. 6dB Bandwidth Plot MIMO ANT1 (802.11a (UNII Band 3) - Ch. 157)

Plot 7-52. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

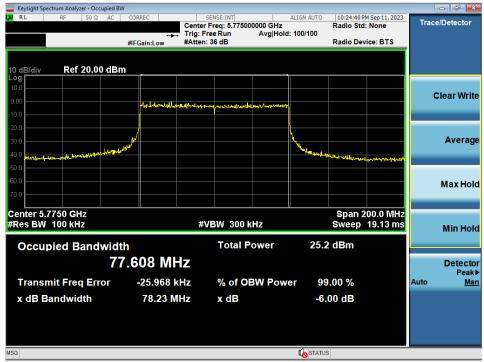
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 46 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

Plot 7-53. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 3) - Ch. 157)

Plot 7-54. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 47 of 402
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 47 of 163
© 2024 ELEMENT	•		V11.1 08/28/2023

Keysight Spectrum Analyzer - Occupied B ¹	N				- 6 -
XIRL RF 50Ω AC	CORREC	SENSE:INT r Freq: 5.755000000 GHz	ALIGN AUTO 10:04:34 Radio St	PM Sep 11, 2023	Trace/Detector
	Trig: F	Free Run Avg Hold		u. None	
	#IFGain:Low #Atter	1: 36 dB	Radio De	vice: BTS	
10 dB/div Ref 20.00 dBr	n				
Log					
10.0					Clear Write
0.00	Marger of the second of the se	and and the state of the state			
-10.0					
-20.0	<mark>/</mark>				
-30.0	Malel		Halle Broketween Verselwalter		Average
-40.0 Mahananana			and the second in second live of the	nor march	
-50.0					
-60.0					Max Hold
-70.0					
Center 5.75500 GHz				100.0 MHz	
#Res BW 100 kHz	#	VBW 300 kHz	Swe	ep 9.6 ms	Min Hold
	u.	Total Power	25.3 dBm		
Occupied Bandwid		Total Fower	25.5 UBIII		
37	7.431 MHz				Detector
Tana and the factor former	75 404 1.11-				Peak►
Transmit Freq Error	-75.401 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	36.63 MHz	x dB	-6.00 dB		
MSG			STATUS		
			No miles		


Plot 7-55. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 3) - Ch. 151)

Plot 7-56. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 400
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 48 of 163
0 2024 ELEMENT V11.1 08/28/2023			

Plot 7-57. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 3) - Ch. 155)

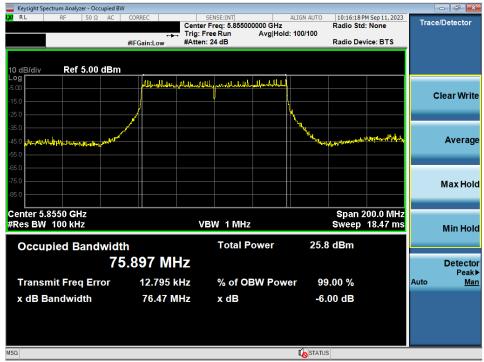
Plot 7-58. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11a (UNII Band 4) - Ch. 173)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 af 400	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 49 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-59. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)

Plot 7-60. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 4) - Ch. 173)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 50 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023


Plot 7-61. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)

Plot 7-62. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 167)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 51 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 51 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

Plot 7-63. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)

Plot 7-64. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 171)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 52 of 163
© 2024 ELEMENT			V11.1 08/28/2023

🔤 Keysight Spectrum Analyzer - Occupied B	W				- 6 -
K RL RF 50Ω AC	CORREC	SENSE:INT Center Freq: 5.81500	ALIGN AUTO	10:28:59 PM Sep 11, 2023 Radio Std: None	Trace/Detector
	֥		Avg Hold: 100/100		
	#IFGain:Low	#Atten: 20 dB		Radio Device: BTS	
10 dB/div Ref 20.00 dB	m				
10.0					
0.00	itat the star in t		handel of the		Clear Write
-10.0					
-20.0	<mark>/</mark>	V			
-30.0			<u> </u>	mentological for the method with the second	Average
-40.0 warmon water mail 4 Martin Balline and por			"Westyching	And all all the and and and all and all all all all all all all all all al	
-50.0					
-60.0					Max Hold
-70.0					
Center 5.8150 GHz				Span 400.0 MHz	
#Res BW 100 kHz		VBW 1 MHz		Sweep 36.93 ms	
					Min Hold
Occupied Bandwid	th	Total P	ower 27.	1 dBm	
1	55.40 MI	Hz			Detector
			NM D		Peak►
Transmit Freq Error	-19.914			9.00 %	Auto <u>Man</u>
x dB Bandwidth	156.3 N	lHz xdB	-6	.00 dB	
MSG			I o statu	S	

Plot 7-65. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)

Plot 7-66. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 163)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 53 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

7.3.2 MIMO Antenna-2 6dB Bandwidth Measurements

Keysight Spectrum Analyzer - Occupied BW - # X L SENSE:INT SOURCE OFF ALIGN AUTO Center Freq: 5.785000000 GHz Trig: Free Run Avg|Hold: 100/100 03:57:44 PM Sep 11, 2023 Radio Std: None DI Trace/Detector #IFGain:Low #Atten: 36 dB Radio Device: BTS 10 dB/div Ref 20.00 dBm og **Clear Write** Average Max Hold Span 50 MHz Sweep 4.8 ms Center 5.785 GHz #Res BW 100 kHz #VBW 300 kHz **Min Hold Total Power** 24.2 dBm **Occupied Bandwidth** 16.475 MHz Detector Peak **Transmit Freq Error** -24.794 kHz % of OBW Power 99.00 % <u>Man</u> Auto x dB Bandwidth 16.40 MHz x dB -6.00 dB STATUS MSG


Plot 7-67. 6dB Bandwidth Plot MIMO ANT2 (802.11a (UNII Band 3) - Ch. 157)

Plot 7-68. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

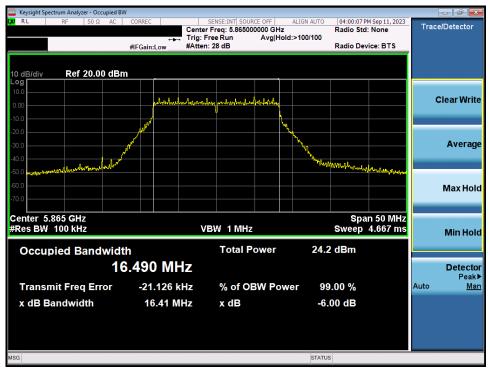
FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	D 54 (400	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 54 of 163	
© 2024 ELEMENT	•		V11.1 08/28/2023	


Plot 7-69. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 3) - Ch. 157)

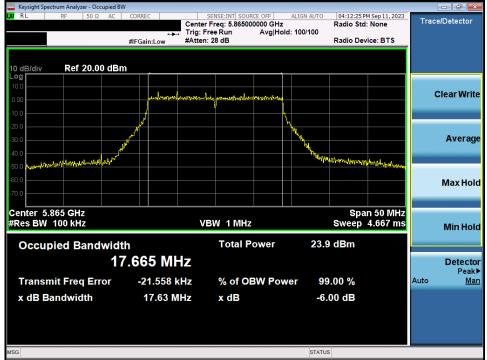
Plot 7-70. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage FE of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 55 of 163	
© 2024 ELEMENT		·	V11.1 08/28/2023	

Plot 7-71. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 3) - Ch. 151)

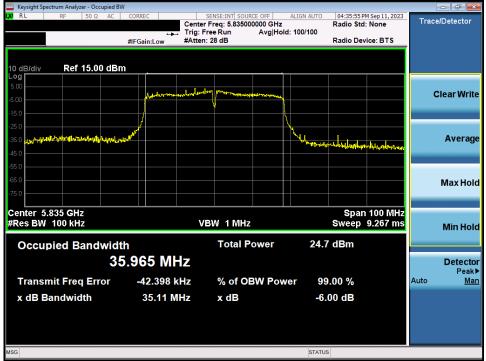

Plot 7-72. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage FC of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 56 of 163	
© 2024 ELEMENT		·	V11.1 08/28/2023	


Plot 7-73. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 3) - Ch. 155)

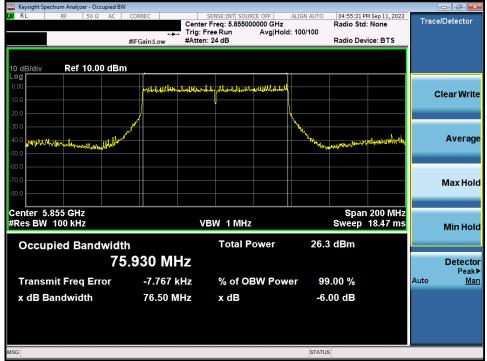
Plot 7-74. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11a (UNII Band 4) - Ch. 173)

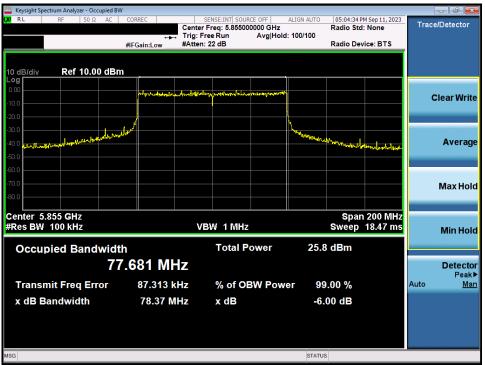
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 57 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	


Plot 7-75. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11n (UNII Band 4) - Ch. 173)

Plot 7-76. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax/be (UNII Band 4) - Ch. 173)

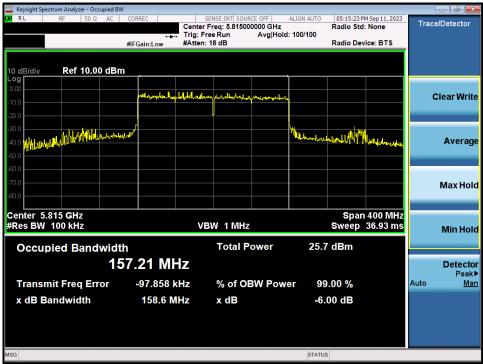
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 58 of 163		
© 2024 ELEMENT			V11.1 08/28/2023		


Plot 7-77. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11n (UNII Band 3/4) - Ch. 167)


Plot 7-78. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 167)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 162	
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 59 of 163	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-79. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ac (UNII Band 3/4) - Ch. 171)


Plot 7-80. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 171)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 60 of 163
© 2024 ELEMENT		·	V11.1 08/28/2023

🔤 Keysight Spectrum Analyzer - Occupied BW	1				- ē 🔀
[X] RL RF 50Ω AC	Trig:	SENSE:INT SOURCE OFF er Freq: 5.815000000 GHz Free Run Avg Ho en: 20 dB	Radio Sto Id: 100/100	M Sep 11, 2023 d: None vice: BTS	Trace/Detector
10 dB/div Ref 20.00 dBm	۱ 		- 1		
0.00		hine by production of a state of the state o	N4		Clear Write
-10.0					Average
-30.0 -40.0 -50.0	Menter		ny wield have been with the	All All Andrew over	
-60.0					Max Hold
Center 5.815 GHz #Res BW 100 kHz		VBW 1 MHz		n 400 MHz 36.93 ms	Min Hold
Occupied Bandwidt	^h 5.28 MHz	Total Power	27.7 dBm		Detector
Transmit Freq Error	-59.262 kHz	% of OBW Pov			Peak▶ Auto <u>Man</u>
x dB Bandwidth	156.3 MHz	x dB	-6.00 dB		
MSG			STATUS		

Plot 7-81. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ac (UNII Band 3/4) - Ch. 163)

Plot 7-82. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax/be (UNII Band 3/4) - Ch. 163)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 61 of 163		
© 2024 ELEMENT	•		V11.1 08/28/2023		

7.4 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

The output power limits are as specified in the tables below.

UNII Fragueney Benge	Maximum Conducted Pov	wer Limit	Maximum e.i.r.p			
Band	Frequency Range	FCC ISED		FCC	ISED	
UNII 1	5.15 – 5.25GHz	23.98dBm (250mW)	N/A	N/A	The lesser of 23.01dBm (200mW) or 10dBm + 10log ₁₀ B	
UNII 2A	5.25 – 5.35GHz		50			
UNII 2C	5.47 – 5.725GHz	The lesser of 23.98dBm (2 11dBm + 10log₁₀	,	N/A	The lesser of 30dBm (1W) or 17dBm + 10log ₁₀ B	
UNII 3	5.725 – 5.850GHz	30dBm (1W)		N/A	N/A	
UNII 4	5.850 – 5.895GHz	N/A		30dBm (1W)	N/A	

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 62 of 163		
© 2024 ELEMENT	•	·	V11.1 08/28/2023		

MIMO Maximum Conducted Output Power Measurements

5GHz WIFI (20MHz 802.11a MIMO)				Conducted	Conducted	Directional Ant.					
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO						
	5180	36	17.38	17.80	20.61	23.98	-3.37	-0.49	20.12	30.00	-9.88
UNII-1	5200	40	17.42	17.94	20.70	23.98	-3.28	-0.49	20.21	30.00	-9.79
	5220	44	17.47	17.89	20.70	23.98	-3.28	-0.49	20.21	30.00	-9.79
	5240	48	17.40	17.99	20.72	23.98	-3.26	-0.49	20.23	30.00	-9.77
	5260	52	17.35	17.94	20.66	23.98	-3.32	-0.18	20.48	30.00	-9.52
UNII-2A	5280	56	17.49	17.94	20.73	23.98	-3.25	-0.18	20.55	30.00	-9.45
UNII-ZA	5300	60	17.56	17.82	20.70	23.98	-3.28	-0.18	20.52	30.00	-9.48
	5320	64	17.39	17.93	20.68	23.98	-3.30	-0.18	20.50	30.00	-9.50
	5500	100	17.63	17.61	20.63	23.98	-3.35	0.93	21.56	30.00	-8.44
UNII-2C	5600	120	17.53	17.40	20.48	23.98	-3.50	0.93	21.41	30.00	-8.59
UNII-2C	5620	124	17.73	17.76	20.76	23.98	-3.22	0.93	21.69	30.00	-8.31
	5720	144	17.80	17.94	20.88	23.98	-3.10	0.93	21.81	30.00	-8.19
	5745	149	17.83	17.96	20.90	30.00	-9.10	0.86	21.76	36.00	-14.24
UNII-3	5785	157	17.79	17.98	20.89	30.00	-9.11	0.86	21.75	36.00	-14.25
	5825	165	17.27	17.62	20.46	30.00	-9.54	0.86	21.32	36.00	-14.68
	5845	169	17.21	17.61	20.43	-	-	0.86	21.29	30.00	-8.71
UNII-4	5865	173	17.19	17.63	20.43	-	-	0.86	21.29	30.00	-8.71
	5885	177	17.16	17.63	20.41	-	-	0.86	21.27	30.00	-8.73

Table 7-7. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

5GHz WIFI (20MHz 802.11n MIMO)						Conducted Conducte	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
	5180	36	17.44	17.82	20.64	23.98	-3.34	-0.49	20.15	30.00	-9.85
UNII-1	5200	40	17.62	17.99	20.82	23.98	-3.16	-0.49	20.33	30.00	-9.67
UNII-I	5220	44	17.51	17.98	20.76	23.98	-3.22	-0.49	20.27	30.00	-9.73
	5240	48	17.49	17.98	20.75	23.98	-3.23	-0.49	20.26	30.00	-9.74
	5260	52	17.41	17.96	20.70	23.98	-3.28	-0.18	20.52	30.00	-9.48
UNII-2A	5280	56	17.61	17.98	20.81	23.98	-3.17	-0.18	20.63	30.00	-9.37
UNII-ZA	5300	60	17.73	17.97	20.86	23.98	-3.12	-0.18	20.68	30.00	-9.32
	5320	64	16.95	17.61	20.30	23.98	-3.68	-0.18	20.12	30.00	-9.88
	5500	100	17.67	17.76	20.73	23.98	-3.25	0.93	21.66	30.00	-8.34
UNII-2C	5620	124	17.86	17.85	20.86	23.98	-3.12	0.93	21.80	30.00	-8.20
	5720	144	17.89	17.98	20.95	23.98	-3.03	0.93	21.88	30.00	-8.12
	5745	149	17.87	17.99	20.94	30.00	-9.06	0.86	21.80	36.00	-14.20
UNII-3	5785	157	17.83	17.97	20.91	30.00	-9.09	0.86	21.77	36.00	-14.23
	5825	165	17.32	17.67	20.51	30.00	-9.49	0.86	21.37	36.00	-14.63
	5845	169	17.27	17.68	20.49	-	-	0.86	21.35	30.00	-8.65
UNII-4	5865	173	17.17	17.44	20.32	-	-	0.86	21.18	30.00	-8.82
	5885	177	17.28	17.77	20.54	-	-	0.86	21.40	30.00	-8.60

Table 7-8. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

		5GHz WIFI	(20MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	Lapini	[ub]	[ubi]			
	5180	36	17.47	17.86	20.68	23.98	-3.30	-0.49	20.19	30.00	-9.81
UNII-1	5200	40	17.57	17.98	20.79	23.98	-3.19	-0.49	20.30	30.00	-9.70
UNII-1	5220	44	17.55	17.98	20.78	23.98	-3.20	-0.49	20.29	30.00	-9.71
	5240	48	17.53	17.99	20.77	23.98	-3.21	-0.49	20.28	30.00	-9.72
	5260	52	17.01	17.69	20.37	23.98	-3.61	-0.18	20.19	30.00	-9.81
UNII-2A	5280	56	17.11	17.69	20.42	23.98	-3.56	-0.18	20.24	30.00	-9.76
UNII-ZA	5300	60	17.72	17.99	20.87	23.98	-3.11	-0.18	20.69	30.00	-9.31
	5320	64	17.01	17.65	20.35	23.98	-3.63	-0.18	20.17	30.00	-9.83
	5500	100	17.79	17.83	20.82	23.98	-3.16	0.93	21.75	30.00	-8.25
UNII-2C	5600	120	17.92	17.92	20.93	23.98	-3.05	0.93	21.86	30.00	-8.14
UNII-2C	5620	124	17.82	17.85	20.85	23.98	-3.13	0.93	21.78	30.00	-8.22
	5720	144	17.94	17.98	20.97	23.98	-3.01	0.93	21.90	30.00	-8.10
	5745	149	17.91	17.97	20.95	30.00	-9.05	0.86	21.81	36.00	-14.19
UNII-3	5785	157	17.35	17.62	20.50	30.00	-9.50	0.86	21.36	36.00	-14.64
	5825	165	17.31	17.79	20.57	30.00	-9.43	0.86	21.43	36.00	-14.57
	5845	169	17.27	17.72	20.51	-	-	0.86	21.37	30.00	-8.63
UNII-4	5865	173	17.26	17.73	20.51	-	-	0.86	21.37	30.00	-8.63
	5885	177	17.32	17.70	20.52	-	-	0.86	21.38	30.00	-8.62

Table 7-9. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 63 of 163
© 2024 ELEMENT			V11.1 08/28/2023

	5GHz WIFI (20MHz 802.11ax MIMO)				Conducted	Conducted	Directional Ant.				
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	lapui	[ub]	lapil			
	5180	36	17.50	17.90	20.71	23.98	-3.27	-0.49	20.22	30.00	-9.78
UNII-1	5200	40	17.56	17.90	20.74	23.98	-3.24	-0.49	20.25	30.00	-9.75
UNII-1	5220	44	17.60	17.98	20.80	23.98	-3.18	-0.49	20.31	30.00	-9.69
	5240	48	17.48	17.89	20.70	23.98	-3.28	-0.49	20.21	30.00	-9.79
	5260	52	17.12	17.59	20.37	23.98	-3.61	-0.18	20.19	30.00	-9.81
UNII-2A	5280	56	17.19	17.72	20.47	23.98	-3.51	-0.18	20.29	30.00	-9.71
UNII-ZA	5300	60	17.78	17.98	20.89	23.98	-3.09	-0.18	20.71	30.00	-9.29
	5320	64	17.04	17.72	20.41	23.98	-3.57	-0.18	20.23	30.00	-9.77
	5500	100	17.81	17.89	20.86	23.98	-3.12	0.93	21.79	30.00	-8.21
UNII-2C	5600	120	17.92	17.99	20.97	23.98	-3.01	0.93	21.90	30.00	-8.10
UNII-20	5620	124	17.97	17.99	20.99	23.98	-2.99	0.93	21.92	30.00	-8.08
	5720	144	17.45	17.63	20.55	23.98	-3.43	0.93	21.48	30.00	-8.52
	5745	149	17.43	17.66	20.55	30.00	-9.45	0.86	21.41	36.00	-14.59
UNII-3	5785	157	17.33	17.69	20.52	30.00	-9.48	0.86	21.38	36.00	-14.62
	5825	165	17.38	17.87	20.64	30.00	-9.36	0.86	21.50	36.00	-14.50
	5845	169	17.41	17.82	20.63	-	-	0.86	21.49	30.00	-8.51
UNII-4	5865	173	17.38	17.82	20.62	-	-	0.86	21.48	30.00	-8.52
	5885	177	17.30	17.86	20.60	-	-	0.86	21.46	30.00	-8.54

Table 7-10. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(20MHz 802.11b	e MIMO)	-	Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
	5180	36	17.55	17.92	20.75	23.98	-3.23	-0.49	20.26	30.00	-9.74
UNII-1	5200	40	17.72	17.90	20.82	23.98	-3.16	-0.49	20.33	30.00	-9.67
UNII-I	5220	44	17.13	17.60	20.38	23.98	-3.60	-0.49	19.89	30.00	-10.11
	5240	48	17.49	17.66	20.59	23.98	-3.39	-0.49	20.10	30.00	-9.90
	5260	52	17.12	17.77	20.47	23.98	-3.51	-0.18	20.29	30.00	-9.71
	5280	56	17.10	17.66	20.40	23.98	-3.58	-0.18	20.22	30.00	-9.78
UNII-2A	5300	60	17.09	17.65	20.39	23.98	-3.59	-0.18	20.21	30.00	-9.79
	5320	64	17.11	17.68	20.41	23.98	-3.57	-0.18	20.23	30.00	-9.77
	5500	100	17.81	17.83	20.83	23.98	-3.15	0.93	21.76	30.00	-8.24
UNII-2C	5600	120	17.97	17.99	20.99	23.98	-2.99	0.93	21.92	30.00	-8.08
UNII-20	5620	124	17.77	17.77	20.78	23.98	-3.20	0.93	21.71	30.00	-8.29
	5720	144	17.37	17.83	20.62	23.98	-3.36	0.93	21.55	30.00	-8.45
	5745	149	17.56	17.62	20.60	30.00	-9.40	0.86	21.46	36.00	-14.54
UNII-3	5785	157	17.42	17.72	20.58	30.00	-9.42	0.86	21.44	36.00	-14.56
	5825	165	17.41	17.80	20.62	30.00	-9.38	0.86	21.48	36.00	-14.52
	5845	169	17.56	17.83	20.71	-	-	0.86	21.57	30.00	-8.43
UNII-4	5865	173	17.44	17.84	20.65	-	-	0.86	21.52	30.00	-8.48
	5885	177	17.31	17.77	20.56	-	-	0.86	21.42	30.00	-8.58

Table 7-11. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11r	MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	17.08	16.81	19.96	23.98	-4.02	-0.49	19.47	30.00	-10.53
UNII-I	5230	46	17.49	17.88	20.70	23.98	-3.28	-0.49	20.21	30.00	-9.79
UNII-2A	5270	54	17.28	17.99	20.66	23.98	-3.32	-0.18	20.48	30.00	-9.52
UNII-ZA	5310	62	17.31	17.05	20.19	23.98	-3.79	-0.18	20.01	30.00	-9.99
	5510	102	17.71	17.80	20.77	23.98	-3.21	0.93	21.70	30.00	-8.30
UNII-2C	5590	118	17.70	17.96	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
UNII-2C	5630	126	17.36	17.98	20.69	23.98	-3.29	0.93	21.62	30.00	-8.38
	5710	142	17.73	17.98	20.87	23.98	-3.11	0.93	21.80	30.00	-8.20
UNII-3	5755	151	17.85	17.99	20.93	30.00	-9.07	0.86	21.79	36.00	-14.21
UNII-3	5795	159	17.67	17.90	20.79	30.00	-9.21	0.86	21.65	36.00	-14.35
UNII-4	5835	167	17.74	17.99	20.88	-	-	0.86	21.74	30.00	-8.26
UNII-4	5875	175	17.68	17.90	20.80	-	-	0.86	21.66	30.00	-8.34

Table 7-12. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 of 402
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 64 of 163
© 2024 ELEMENT	•		V11.1 08/28/2023

		5GHz WIFI	(40MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	16.96	16.70	19.84	23.98	-4.14	-0.49	19.35	30.00	-10.65
UNII-1	5230	46	17.51	17.89	20.71	23.98	-3.27	-0.49	20.22	30.00	-9.78
UNII-2A	5270	54	17.31	17.87	20.61	23.98	-3.37	-0.18	20.43	30.00	-9.57
UNII-ZA	5310	62	17.26	17.02	20.15	23.98	-3.83	-0.18	19.97	30.00	-10.03
	5510	102	17.77	17.89	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
UNII-2C	5590	118	17.73	17.99	20.87	23.98	-3.11	0.93	21.80	30.00	-8.20
UNII-2C	5630	126	17.41	17.97	20.71	23.98	-3.27	0.93	21.64	30.00	-8.36
	5710	142	17.80	17.96	20.89	23.98	-3.09	0.93	21.82	30.00	-8.18
UNII-3	5755	151	17.81	17.89	20.86	30.00	-9.14	0.86	21.72	36.00	-14.28
UNII-3	5795	159	17.70	17.93	20.83	30.00	-9.17	0.86	21.69	36.00	-14.31
UNII-4	5835	167	17.68	17.98	20.84	-	-	0.86	21.70	30.00	-8.30
0111-4	5875	175	17.88	17.99	20.95	-	-	0.86	21.81	30.00	-8.19

Table 7-13. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11a)	k MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	16.84	16.71	19.78	23.98	-4.20	-0.49	19.29	30.00	-10.71
UNII-1	5230	46	17.53	17.99	20.78	23.98	-3.20	-0.49	20.29	30.00	-9.71
UNII-2A	5270	54	17.35	17.92	20.66	23.98	-3.32	-0.18	20.48	30.00	-9.52
UNII-ZA	5310	62	17.05	16.87	19.97	23.98	-4.01	-0.18	19.79	30.00	-10.21
	5510	102	17.95	17.99	20.98	23.98	-3.00	0.93	21.91	30.00	-8.09
UNII-2C	5590	118	17.73	17.99	20.87	23.98	-3.11	0.93	21.80	30.00	-8.20
UNII-2C	5630	126	17.47	17.89	20.70	23.98	-3.28	0.93	21.63	30.00	-8.37
	5710	142	17.80	17.99	20.91	23.98	-3.07	0.93	21.84	30.00	-8.16
UNII-3	5755	151	17.80	17.88	20.85	30.00	-9.15	0.86	21.71	36.00	-14.29
UNII-3	5795	159	17.76	17.90	20.84	30.00	-9.16	0.86	21.70	36.00	-14.30
UNII-4	5835	167	17.72	17.99	20.87	-	-	0.86	21.73	30.00	-8.27
UNII-4	5875	175	17.90	17.97	20.95	-	-	0.86	21.81	30.00	-8.19

Table 7-14. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(40MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.			a i a a Manaia
Band	Freq [MHz]	Channel	Avg. Co	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	16.80	16.69	19.76	23.98	-4.22	-0.49	19.27	30.00	-10.73
UNII-I	5230	46	17.59	17.90	20.76	23.98	-3.22	-0.49	20.27	30.00	-9.73
UNII-2A	5270	54	17.41	17.89	20.67	23.98	-3.31	-0.18	20.49	30.00	-9.51
UNII-ZA	5310	62	17.08	16.86	19.98	23.98	-4.00	-0.18	19.80	30.00	-10.20
	5510	102	17.89	17.87	20.89	23.98	-3.09	0.93	21.82	30.00	-8.18
UNII-2C	5590	118	17.82	17.94	20.89	23.98	-3.09	0.93	21.82	30.00	-8.18
UNII-2C	5630	126	17.52	17.96	20.76	23.98	-3.22	0.93	21.69	30.00	-8.31
	5710	142	17.90	17.98	20.95	23.98	-3.03	0.93	21.88	30.00	-8.12
UNII-3	5755	151	17.90	17.99	20.96	30.00	-9.04	0.86	21.82	36.00	-14.18
UNII-3	5795	159	17.82	17.98	20.91	30.00	-9.09	0.86	21.77	36.00	-14.23
UNII-4	5835	167	17.69	17.96	20.84	-	-	0.86	21.70	30.00	-8.30
UNII-4	5875	175	17.80	17.94	20.88	-	-	0.86	21.74	30.00	-8.26

Table 7-15. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI	(80MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	Avg. Conducted Powers [dBm]			Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5210	42	17.31	17.59	20.46	23.98	-3.52	-0.49	19.97	30.00	-10.03
UNII-2A	5290	58	17.53	17.70	20.63	23.98	-3.35	-0.18	20.45	30.00	-9.55
	5530	106	17.76	17.90	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
UNII-2C	5610	122	17.67	17.53	20.61	23.98	-3.37	0.93	21.54	30.00	-8.46
	5690	138	17.67	17.60	20.65	23.98	-3.33	0.93	21.58	30.00	-8.42
UNII-3	5775	155	17.61	17.62	20.63	30.00	-9.37	0.86	21.49	36.00	-14.51
UNII-4	5885	171	17.53	17.81	20.68	-	-	0.86	21.54	30.00	-8.46

Table 7-16. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 65 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 65 of 163
© 2024 ELEMENT			V11.1 08/28/2023

		5GHz WIFI	(80MHz 802.11a	x MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	-		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5210	42	16.98	16.91	19.96	23.98	-4.02	-0.49	19.47	30.00	-10.53
UNII-2A	5290	58	16.07	15.86	18.98	23.98	-5.00	-0.18	18.80	30.00	-11.20
	5530	106	17.67	17.99	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
UNII-2C	5610	122	17.81	17.86	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
	5690	138	17.87	17.90	20.90	23.98	-3.08	0.93	21.83	30.00	-8.17
UNII-3	5775	155	17.10	17.53	20.33	30.00	-9.67	0.86	21.19	36.00	-14.81
UNII-4	5885	171	17.83	17.99	20.92	-	-	0.86	21.78	30.00	-8.22

Table 7-17. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI	(80MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq [MHz]	Channel	Avg. C	onducted Powers	s [dBm]	Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	-		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5210	42	16.97	16.93	19.96	23.98	-4.02	-0.49	19.47	30.00	-10.53
UNII-2A	5290	58	16.12	15.89	19.02	23.98	-4.96	-0.18	18.84	30.00	-11.16
	5530	106	17.67	17.99	20.84	23.98	-3.14	0.93	21.77	30.00	-8.23
UNII-2C	5610	122	17.79	17.82	20.82	23.98	-3.16	0.93	21.75	30.00	-8.25
	5690	138	17.90	17.82	20.87	23.98	-3.11	0.93	21.80	30.00	-8.20
UNII-3	5775	155	17.12	17.53	20.34	30.00	-9.66	0.86	21.20	36.00	-14.80
UNII-4	5885	171	17.82	17.99	20.92	-	-	0.86	21.78	30.00	-8.22

Table 7-18. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power

		5GHz WIFI ((160MHz 802.11a	c MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq (MHz)	Channel	Avg. C	Avg. Conducted Powers [dBm]		Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1 ANT2 MIMO		MIMO	lapui	[dB]	[dBi]			
UNII-1/2A	5250	50	17.20			23.98	-3.60	-0.18	20.20	30.00	-9.80
UNII-2C	5570	114	17.20			23.98	-3.67	0.93	21.24	30.00	-8.76
UNII-3/4	5815	163	17.19	17.69	20.46	30.00	-9.54	0.86	21.32	30.00	-8.68

Table 7-19. MIMO 160MHz BW 802.11ac (UNII) Maximum Conducted Output Power

		5GHz WIFI ((160MHz 802.11a	ax MIMO)		Conducted	Conducted	Directional Ant.			
Band	Freq (MHz)	z] Channel Avg. Conducted Powers [dBm]		Power Limit [dBm]	Power Margin [dB]	Gain [dBi]	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]		
			ANT1	ANT2	MIMO	lanu	[aB]	[aBi]			
UNII-1/2A	5250	50	15.97	15.99	18.99	23.98	-4.99	-0.18	18.81	30.00	-11.19
UNII-2C	5570	114	17.75	17.93	20.85	23.98	-3.13	0.93	21.78	30.00	-8.22
UNII-3/4	5815	163	17.69	17.99	20.85	30.00	-9.15	0.86	21.71	30.00	-8.29

Table 7-20. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		5GHz WIFI (160MHz 802.11b	e MIMO)		Conducted	Conducted	Directional Ant.				
Band	Freq [MHz]	Channel	Avg. C	Avg. Conducted Powers [dBm]		Power Limit	Power Margin	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT1 ANT2 MIN		[dBm]	[dB]	[dBi]				
UNII-1/2A	5250	50	15.60	15.52	18.57	23.98	-5.41	-0.18	18.39	30.00	-11.61	
UNII-2C	5570	114	17.73			23.98	-3.15	0.93	21.76	30.00	-8.24	
UNII-3/4	5815	163	17.68	17.98	20.84	30.00	-9.16	0.86	21.70	30.00	-8.30	

Table 7-21. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power

							A	Average Co	onducted P	ower (dBm))			Conducted	Conducted	Dir. Ant.	Max		
	Band	Freq	Channel	Tones				Ρι	Incture Ca	se					Power Margin	Gain	e.i.r.p		e.i.r.p Margin
_	Danu	[MHz]	Channer	Tones		93			92			90		[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
S S					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	[ubiii]	[UD]	[UDI]	[ubiii]		
N	1	5210	42	484+242T	16.56	16.66	19.62	16.56	16.64	19.61	16.66	16.65	19.67	23.98	-4.31	0.93	20.60	30.0	-9.40
Î	2A	5290	58	484+242T	16.15	16.01	19.09	16.15	16.13	19.15	16.12	16.02	19.08	23.98	-4.83	0.86	20.01	30.0	-9.99
Σ		5530	106	484+242T	16.92	17.38	20.17	17.60	17.98	20.80	17.68	17.99	20.85	23.98	-3.13	0.86	21.71	30.0	-8.29
80	2C	5610	122	484+242T	17.79	17.95	20.88	17.76	17.94	20.86	17.73	17.97	20.86	23.98	-3.10	0.86	21.74	30.0	-8.26
-		5690	138	484+242T	17.87	17.96	20.93	17.84	17.96	20.91	17.93	17.99	20.97	23.98	-3.01	0.86	21.83	30.0	-8.17
	3	5775	155	484+242T	17.85	17.99	20.93	17.78	17.96	20.88	17.93	17.99	20.97	30	-9.03	3.01	23.98	36.0	-12.02
	4	5855	171	484+242T	17.85	17.99	20.93	17.75	17.98	20.88	17.93	17.97	20.96	-		-2.08	18.88	30.0	-11.12

Table 7-22. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

>							4	Average Co	onducted P	ower (dBm)			Conducted	Conducted	Dir. Ant.	Max		
B	Band	Freq	Channel	Tones				Pi	Incture Ca	se					Power Margin	Gain	e.i.r.p		e.i.r.p Margin
N	Danu	[MHz]	Channel	Tones		1095			1094			94		[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
듣					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	[aBm]	[dB]	[abi]	laswi		
2	1/2A	5250	50	996+484T	15.69	15.51	18.61	15.64	15.44	18.55	15.57	15.68	18.64	23.98	-5.34	0.93	19.57	30.0	-10.43
99	2C	5570	114	996+484T	17.68	17.99	20.85	17.33	17.70	20.53	17.62	17.89	20.77	23.98	-3.13	0.86	21.71	30.0	-8.29
-	3/4	5815	163	996+484T	17.73	17.99	20.87	17.40	17.74	20.59	17.73	17.99	20.87	-	-	-2.08	18.80	30.0	-11.20

Table 7-23. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 66 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 66 of 163
© 2024 ELEMENT	•		V11.1 08/28/2023

ΒW		Freq		-			A		nducted Pe Incture Ca	ower (dBm se)			Conducted	Conducted	Dir. Ant.	Max	e.i.r.p Limit	e.i.r.p Margin
N	Band	[MHz]	Channel	Tones		1099			1096			96		[dBm]	Power Margin	Gain [dBi]	e.i.r.p [dBm]	[dBm]	[dB]
듣					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	lapini	[dB]	Гаріј	[ubiii]		
2	1/2A	5250	50	996+484+242T	15.61	15.54	18.59	15.61	15.55	18.59	15.55	15.51	18.54	23.98	-5.39	0.93	19.52	30.0	-10.48
99	2C	5570	114	996+484+242T	17.48	17.82	20.67	17.40	17.81	20.62	17.46	17.82	20.65	23.98	-3.31	0.86	21.53	30.0	-8.47
-	3/4	5815	163	996+484+242T	17.63	17.90	20.77	17.46	17.85	20.67	17.64	17.86	20.76	-	-	-2.08	18.70	30.0	-11.30

Table 7-24. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dege 67 of 162			
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 67 of 163			
© 2024 ELEMENT						

Note:

Per ANSI C63.10-2013, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

Directional gain = $10 \log[(10^{G_1/20} + 10^{G_2/20} + ... + 10^{G_N/20})^2 / N_{ANT}] dBi$

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 17.44 dBm for Antenna 1 and 17.82 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(17.44 dBm + 17.82N/A dBm) = (55.399 mW + 60.562 mW) = 115.961 mW = 20.64 dBm

Sample e.i.r.p Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO conducted power was calculated to be 20.64 dBm with directional gain of -0.46 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

20.64 dBm + -0.46 dBi = 20.18 dBm

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 69 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 68 of 163
© 2024 ELEMENT			V11.1 08/28/2023

7.5 Maximum Power Spectral Density

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density.

The output power density limits are as specified in the tables below.

UNII	Fragueney Denge	Maximum Power	Spectral Density		
Band	Frequency Range	FCC	ISED		
UNII 1	5.15 – 5.25GHz	11dBm/MHz	10dBm/MHz e.i.r.p		
UNII 2A	5.25 – 5.35GHz				
UNII 2C	5.47 – 5.725GHz	11dBn	n/MHz		
UNII 3	5.725 – 5.850GHz	30dBm/	500kHz		
UNII 4	5.850 – 5.895GHz	GHz 14dBm/MHz e.i.r.p N/A			

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.3 (Method SA-2) ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 69 of 163
© 2024 ELEMENT			V11.1 08/28/2023

Summed MIMO Power Spectral Density Measurements

	Frequenc y [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5180	36	а	6.39	5.93	0.15	9.33	11.00	-1.67
	5200	40	a	6.73	6.28	0.15	9.67	11.00	-1.33
	5200	48	a	6.62	6.51	0.15	9.73	11.00	-1.27
	5180	36	n	6.14	5.92	0.00	9.04	11.00	-1.96
	5200	40	n	6.53	6.32	0.00	9.44	11.00	-1.56
	5240	48	n	6.53	6.34	0.00	9.45	11.00	-1.55
-	5180	36	be SU	6.11	5.76	0.00	8.95	11.00	-2.05
Band 1	5200	40	be SU	6.43	5.94	0.00	9.20	11.00	-1.80
ä	5240	48	be SU	5.79	5.61	0.00	8.71	11.00	-2.29
	5190	38	n	4.95	4.82	0.00	7.89	11.00	-3.11
	5230	46	n	5.41	4.88	0.00	8.16	11.00	-2.84
	5190	38	be SU	5.01	4.81	0.00	7.92	11.00	-3.08
	5230	46	be SU	5.23	4.91	0.00	8.08	11.00	-2.92
	5210	42	ac	0.67	0.76	0.35	4.08	11.00	-6.92
	5210	42	be SU	0.59	0.38	0.00	3.50	11.00	-7.50
Band 1/2A	5250	50	ac	-2.02	-1.92	0.35	1.39	11.00	-9.61
н Б	5250	50	be SU	-3.00	-3.20	0.00	-0.09	11.00	-11.09
	5260	52	а	6.63	6.53	0.15	9.74	11.00	-1.26
	5280	56	а	6.59	6.39	0.15	9.65	11.00	-1.35
	5320	64	а	6.48	6.60	0.15	9.70	11.00	-1.30
	5260	52	n	6.45	6.35	0.00	9.41	11.00	-1.59
	5280	56	n	6.49	6.42	0.00	9.46	11.00	-1.54
-	5320	64	n	6.43	6.61	0.00	9.53	11.00	-1.47
120	5260	52	be SU	5.60	5.84	0.00	8.73	11.00	-2.27
Band 2A	5280	56	be SU	5.59	5.85	0.00	8.74	11.00	-2.26
۵	5320	64	be SU	5.47	5.76	0.00	8.62	11.00	-2.38
	5270	54	n	5.07	5.29	0.00	8.19	11.00	-2.81
	5310	62	n ha CU	5.40	5.20	0.00	8.31	11.00	-2.69
	5270	54	be SU	4.94 5.10	5.04	0.00	8.00	11.00	-3.00
	5310 5290	62 58	be SU	5.10 0.32	4.87	0.00	8.00 3.58	11.00	-3.00 -7.42
	5290	58	ac be SU	0.32	0.80	0.00	3.38	11.00 11.00	-7.62
	5500	100	a	6.82	6.23	0.15	9.69	11.00	-1.31
	5600	100	a	6.85	6.03	0.15	9.62	11.00	-1.38
	5720	144	a	7.20	6.83	0.15	10.18	11.00	-0.82
	5500	100	n	6.49	6.22	0.00	9.37	11.00	-1.63
	5600	120	n	6.50	5.93	0.00	9.24	11.00	-1.76
	5720	144	n	7.04	6.57	0.00	9.82	11.00	-1.18
	5500	100	be SU	6.55	6.28	0.00	9.42	11.00	-1.58
	5600	120	be SU	6.33	5.77	0.00	9.07	11.00	-1.93
	5720	144	be SU	6.29	5.67	0.00	9.00	11.00	-2.00
	5510	102	n	5.47	5.12	0.00	8.31	11.00	-2.69
20	5590	118	n	5.34	5.13	0.00	8.25	11.00	-2.75
Band 2C	5710	142	n	5.56	5.64	0.00	8.61	11.00	-2.39
Ba	5510	102	be SU	5.39	4.67	0.00	8.06	11.00	-2.94
	5590	118	be SU	5.25	4.95	0.00	8.11	11.00	-2.89
	5710	142	be SU	5.30	5.23	0.00	8.28	11.00	-2.72
	5530	106	ac	0.19	0.64	0.35	3.78	11.00	-7.22
	5610	122	ac	0.40	0.25	0.35	3.69	11.00	-7.31
	5690	138	ac	0.62	1.18	0.35	4.27	11.00	-6.73
	5530	106	be SU	0.11	0.53	0.00	3.33	11.00	-7.67
	5610	122	be SU	0.11	0.10	0.00	3.11	11.00	-7.89
	5690	138	be SU	0.55	0.80	0.00	3.68	11.00	-7.32
	5570 5570	114	ac	-1.79	-1.63	0.35	1.65	11.00	-9.35
		114	be SU	-2.99	-3.01	0.00	0.01	11.00	-10.99

Table 7-25. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 70 of 400		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 70 of 163		
© 2024 ELEMENT			V11 1 08/28/2023		

	Frequenc y [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5745	149	а	4.35	4.05	0.15	7.36	11.00	-3.64
	5785	157	а	4.10	3.84	0.15	7.13	11.00	-3.87
	5825	165	а	3.18	3.57	0.15	6.54	11.00	-4.46
	5745	149	n	3.95	3.76	0.00	6.87	11.00	-4.13
	5785	157	n	3.76	3.73	0.00	6.75	11.00	-4.25
	5825	165	n	2.99	3.27	0.00	6.14	11.00	-4.86
m	5745	149	be SU	3.21	3.08	0.00	6.15	11.00	-4.85
Band 3	5785	157	be SU	3.00	3.02	0.00	6.02	11.00	-4.98
ä	5825	165	be SU	2.69	3.12	0.00	5.92	11.00	-5.08
	5755	151	n	2.66	3.04	0.00	5.86	11.00	-5.14
	5795	159	n	2.90	2.67	0.00	5.80	11.00	-5.20
	5755	151	be SU	2.60	2.62	0.00	5.62	11.00	-5.38
	5795	159	be SU	2.22	2.38	0.00	5.31	11.00	-5.69
	5775	155	ac	-2.29	-2.15	0.35	1.14	11.00	-9.86
	5775	155	be SU	-2.95	-2.52	0.00	0.28	11.00	-10.72

 Table 7-26. Band 3 MIMO Conducted Power Spectral Density Measurements

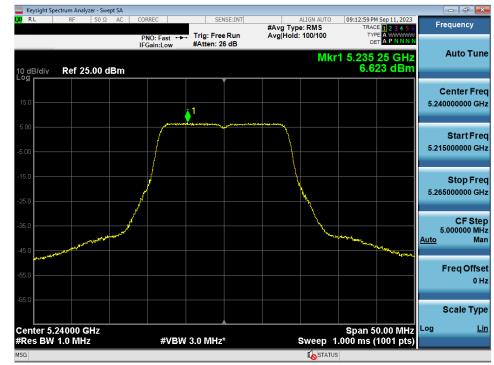
	Frequenc y [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
Band 3/4	5845	169	а	6.19	6.23	9.22	0.86	10.23	14.00	-3.77
Band 4	5865	173	а	6.00	6.05	9.04	0.86	10.05	14.00	-3.95
Ballu 4	5885	177	а	6.15	6.28	9.23	0.86	10.24	14.00	-3.76
Band 3/4	5845	169	n	6.07	6.17	9.13	0.86	9.99	14.00	-4.01
Band 4	5865	173	n	5.87	6.18	9.04	0.86	9.90	14.00	-4.10
Ballu 4	5885	177	n	5.80	6.01	8.92	0.86	9.78	14.00	-4.22
Band 3/4	5845	169	be SU	5.94	5.93	8.94	0.86	9.81	14.00	-4.19
Band 4	5865	173	be SU	5.49	5.81	8.66	0.86	9.52	14.00	-4.48
Ballu 4	5885	177	be SU	5.47	5.61	8.55	0.86	9.41	14.00	-4.59
Band 3/4	5835	167	n	5.42	5.46	8.45	0.86	9.31	14.00	-4.69
Band 4	5875	175	n	5.29	5.62	8.47	0.86	9.33	14.00	-4.67
Band 3/4	5835	167	be SU	5.28	5.62	8.46	0.86	9.32	14.00	-4.68
Band 4	5875	175	be SU	5.13	5.39	8.27	0.86	9.13	14.00	-4.87
	5855	171	ас	0.13	1.02	3.61	0.86	4.82	14.00	-9.18
Band 3/4	5855	171	be SU	0.08	0.61	3.36	0.86	4.22	14.00	-9.78
Dalid 3/4	5815	163	ас	-1.56	-1.51	1.47	0.86	2.68	14.00	-11.32
	5815	163	be SU	-2.43	-2.93	0.34	0.86	1.20	14.00	-12.80

Table 7-27. Bands 3/4 MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
Band 1	5210	42	be SU	484+242T	2.00	1.78	0.00	4.90	11.00	-6.10
Band 1/2A	5250	50	be SU	996+484T	-1.61	-1.54	0.00	1.44	11.00	-9.56
Ballu 1/2A	5250	50	be SU	996+484+242T	-2.17	-1.89	0.00	0.98	11.00	-10.02
Band 2A	5290	58	be SU	484+242T	2.36	1.46	0.00	4.95	11.00	-6.05
	5530	106	be SU	484+242T	1.67	2.35	0.00	5.03	11.00	-5.97
Band 2C	5570	114	be SU	996+484T	-1.41	-1.30	0.00	1.65	11.00	-9.35
	5570	114	be SU	996+484+242T	-1.70	-1.75	0.00	1.29	11.00	-9.71

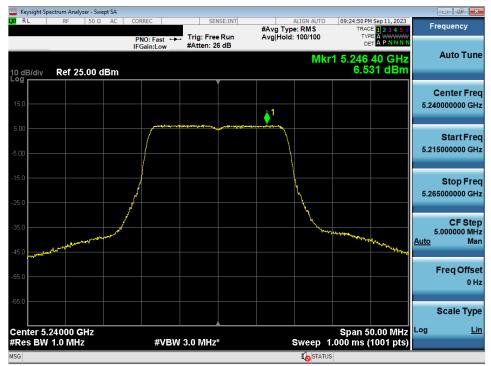
Table 7-28. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements - Punctured

	Frequency [MHz]	Channel	802.11 MODE	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
Band 3	5775	155	be SU	484+242T	-1.59	-1.06	0.00	1.70	11.00	-9.30

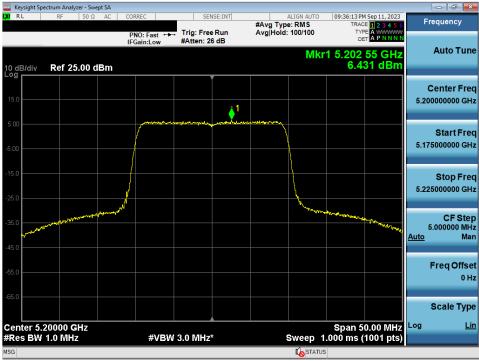

Table 7-29. Band 3 MIMO Conducted Power Spectral Density Measurements - Punctured

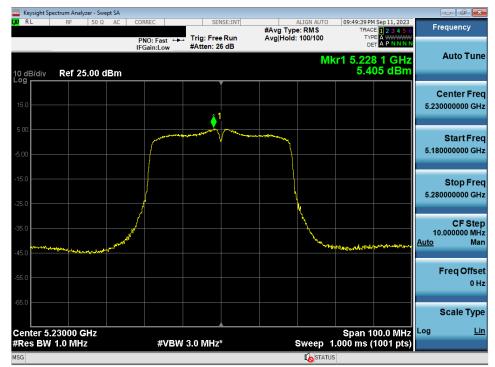
	Frequency [MHz]	Channel	802.11 MODE	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	DCCF [dB]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
	5855	171	be SU	484+242T	1.65	1.10	4.40	0.57	0.00	4.96	14.00	-9.04
Band 3/4	5815	163	be SU	996+484T	-1.34	-0.91	1.89	0.57	0.00	2.46	14.00	-11.54
	5815	163	be SU	996+484+242T	-2.17	-1.53	1.17	0.57	0.00	1.73	14.00	-12.27

Table 7-30. Bands 3/4 MIMO Conducted Power Spectral Density Measurements - Punctured

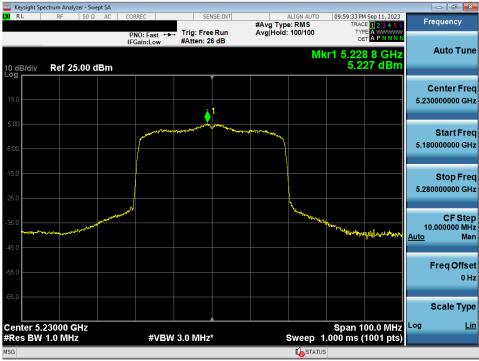

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 71 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 71 of 163		
© 2024 ELEMENT			V11.1 08/28/2023		

7.5.1 MIMO Antenna-1 Power Spectral Density Measurements




Plot 7-84. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

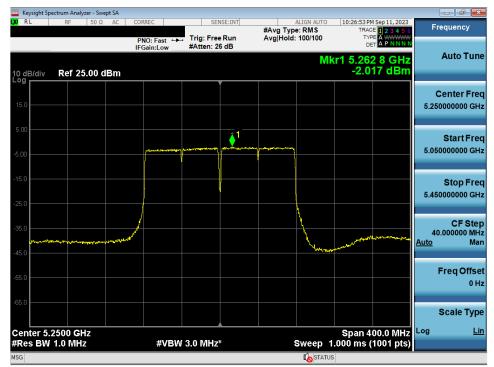
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 72 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 72 of 163		
© 2024 ELEMENT		·	V11.1 08/28/2023		


Plot 7-85. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802. 11ax/be (UNII Band 1) - Ch. 40)

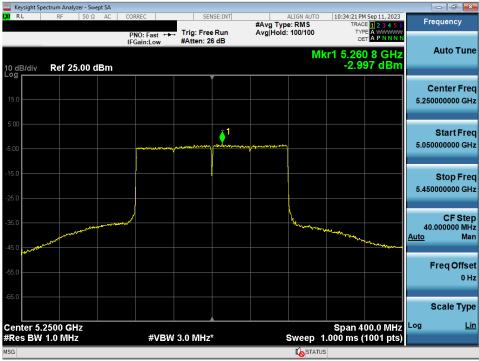
Plot 7-86. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

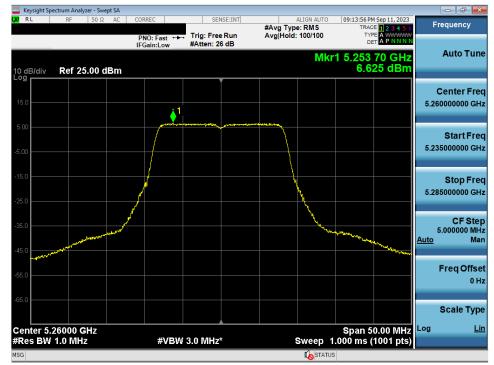
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 162		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 73 of 163		
© 2024 ELEMENT		·	V11.1 08/28/2023		


Plot 7-87. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802. 11ax/be (UNII Band 1) - Ch. 46)

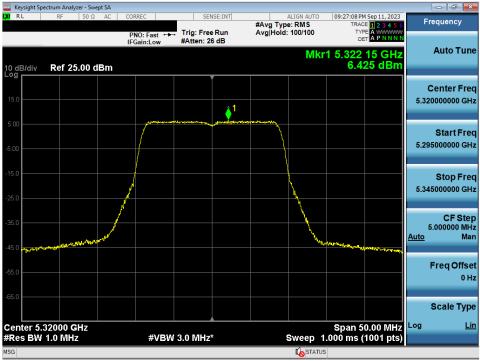

Plot 7-88. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ac (UNII Band 1) – Ch. 42)

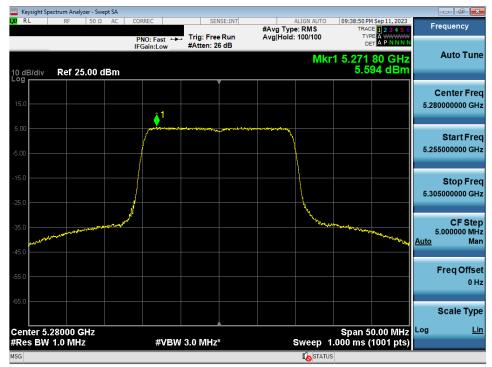
FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 74 of 400		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 74 of 163		
© 2024 ELEMENT	•		V11.1 08/28/2023		


Plot 7-89. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802. 11ax/be (UNII Band 1) - Ch. 42)


Plot 7-90. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ac (UNII Band 1/2A) - Ch. 50)

FCC ID: A3LSMS928JPN		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 75 of 402		
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 75 of 163		
© 2024 ELEMENT	•		V11.1 08/28/2023		


Plot 7-91. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802. 11ax/be (UNII Band 1/2A) - Ch. 50)


Plot 7-92. Power Spectral Density Plot MIMO ANT1 (802.11a (UNII Band 2A) – Ch. 52)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 163
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	
© 2024 ELEMENT	•		V11.1 08/28/2023

Plot 7-93. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-94. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax/be (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMS928JPN	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 162
1M2312110124-08.A3L	9/6/2023 - 11/06/2023	Portable Handset	Page 77 of 163
© 2024 ELEMENT			V11.1 08/28/2023