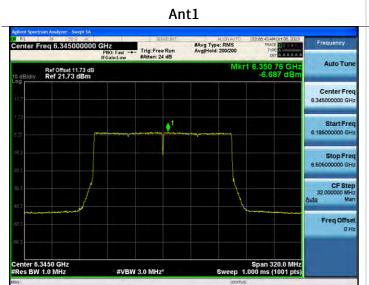
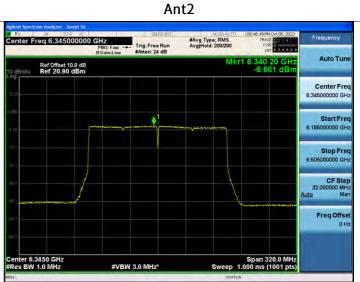


802.11ax HE160 80_U Ch.79(6345 MHz) 26 Tones RU 0

SUM PSD	Duty Cycle Factor	Total PSD	EIRP PSD
(dBm/MHz)	(dB)	(dBm/MHz)	(dBm/MHz)
8.705	0.018	8.723	4.273

Note:


 $SUM PSD(dBm/MHz) = 10log(((10^(Ant 1 PSD/10)+10^(Ant 2 PSD/10))) (dBm/MHz)$

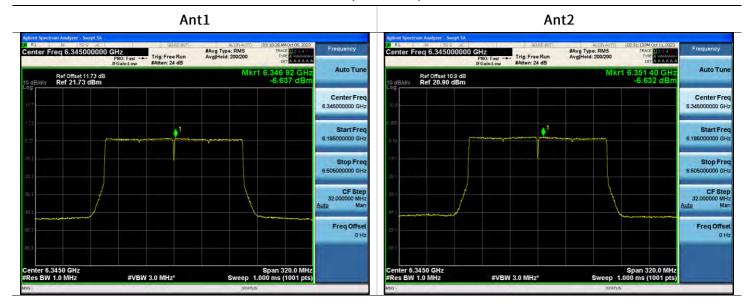

Total PSD (dBm/MHz) = SUM PSD(dBm/MHz) + Duty Cycle Factor (dB)

EIRP PSD(dBm/MHz) = Total PSD (dBm/MHz) + Directional Gain(dBi)

802.11ax HE160 Ch.79(6345 MHz) SU

SUM PSD	Duty Cycle Factor	Total PSD	EIRP PSD
(dBm/MHz)	(dB)	(dBm/MHz)	(dBm/MHz)
-3.664	0.015	-3.649	-8.099

Note:


 $SUM PSD(dBm/MHz) = 10log(((10^(Ant 1 PSD/10) + 10^(Ant 2 PSD/10))) (dBm/MHz)$

Total PSD (dBm/MHz) = SUM PSD(dBm/MHz) + Duty Cycle Factor (dB)

EIRP PSD(dBm/MHz) = Total PSD (dBm/MHz) + Directional Gain(dBi)

802.11ax HE160 Ch.79(6345 MHz) 2x996 Tones RU 68

SUM PSD	Duty Cycle Factor	Total PSD	EIRP PSD	
(dBm/MHz)	(dB)	(dBm/MHz)	(dBm/MHz)	
-3.624	0.015	-3.610	-8.060	

Note:

 $SUM PSD(dBm/MHz) = 10log(((10^(Ant 1 PSD/10)+10^(Ant 2 PSD/10)))) (dBm/MHz)$

Total PSD (dBm/MHz) = SUM PSD(dBm/MHz) + Duty Cycle Factor (dB)

EIRP PSD(dBm/MHz) = Total PSD (dBm/MHz) + Directional Gain(dBi)

5. Contention Based Protocol

Note:

- 1. In order to simplify the report, Only worst case for each band have been inserted.
- 2. The worst case antenna gain (Minimum Gain) is selected from the table.
- 3. The lowest gain according to the incumbent frequency is applied.

Band	Ant 1 Gain	Ant 2 Gain
	(dBi)	(dBi)
	6 135 MHz, 6 110 MHz,	
UNII-5	6 185 MHz: -9.32	-
	6 250 MHz: -8.91	
	6 455 MHz, 6 430 MHz,	
UNII-6	6 505 MHz: -7.88	-
	6 580 MHz: -9.36	
UNII-7	6 615 MHz, 6 590 MHz: -9.36	
ONII-1	6 665 MHz, 6 740 MHz: -9.84	-
	6 895 MHz, 6 910 MHz,	
UNII-8	6 985 MHz: -10.76	-
	7 060 MHz: -11.63	

Incumbent Detection Result

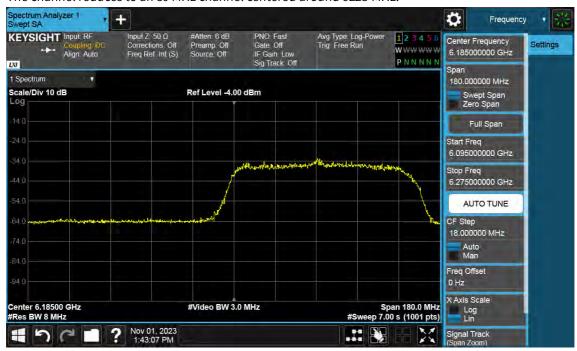
UNII 5

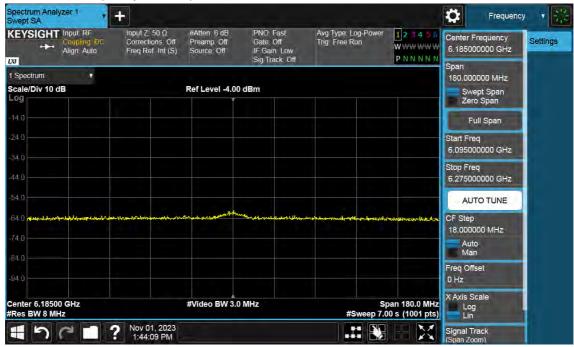
802.11ax HE160 Ch.47(6185 MHz) Incumbent signal (Ceased)

Note:

Marker 2: AWGN Signal On

Marker $1\triangle 2$: AWGN signal Off (limit > 10s)


802.11ax HE160 Ch.47(6185 MHz) Detection Level


: A 10 MHz AWGN signal (centered at 6110 MHz) is injected.

The channel reduces to an 80 MHz channel centered around 6225 MHz.

Bandwidth reduction plot (AWGN injected at center)

: A 10 MHz AWGN signal (centered at 6185 MHz) is injected.

: A 10 MHz AWGN signal (centered at 6250 MHz) is injected.

The channel reduces to a 80 MHz channel centered around 6145 MHz.

UNII 6

802.11ax HE160 Ch.111(6505 MHz) Incumbent signal (Ceased)



Note:

Marker 2: AWGN Signal On

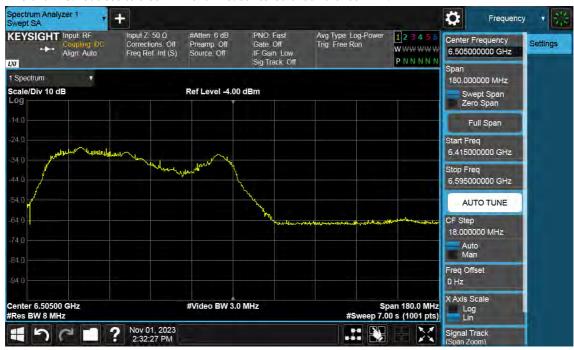
Marker $1\triangle 2$: AWGN signal Off (limit > 10s)

802.11ax HE160 Ch.111(6505 MHz) Detection Level

: A 10 MHz AWGN signal (centered at 6430 MHz) is injected.

The channel reduces to an 80 MHz channel centered around 6545 MHz.

Bandwidth reduction plot (AWGN injected at center)


: A 10 MHz AWGN signal (centered at 6505 MHz) is injected.

: A 10 MHz AWGN signal (centered at 6580 MHz) is injected.

The channel reduces to a 80 MHz channel centered around 6465 MHz.

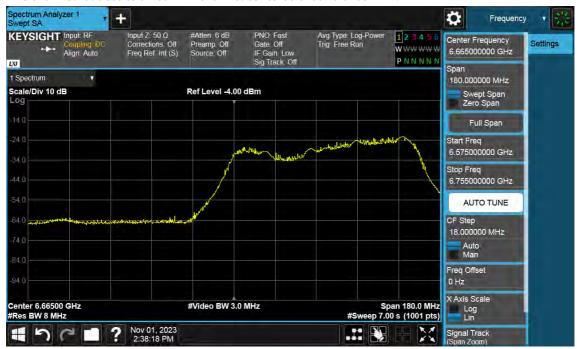
UNII 7

802.11ax HE160 Ch.143(6665 MHz) Incumbent signal (Ceased)

Note:

Marker 2: AWGN Signal On

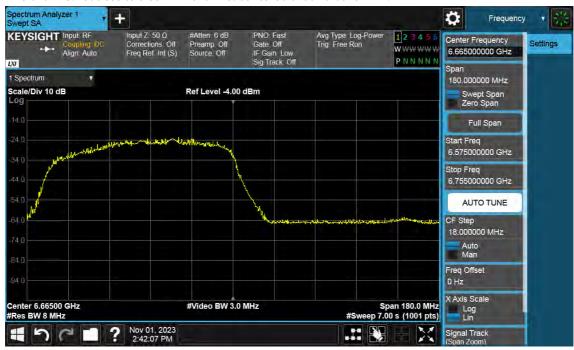
Marker $1\triangle 2$: AWGN signal Off (limit > 10s)


802.11ax HE160 Ch.143(6665 MHz) Detection Level

: A 10 MHz AWGN signal (centered at 6590 MHz) is injected.

The channel reduces to an 80 MHz channel centered around 6705 MHz.

Bandwidth reduction plot (AWGN injected at center)


: A 10 MHz AWGN signal (centered at 6665 MHz) is injected.

: A 10 MHz AWGN signal (centered at 6740 MHz) is injected.

The channel reduces to a 80 MHz channel centered around 6625 MHz.

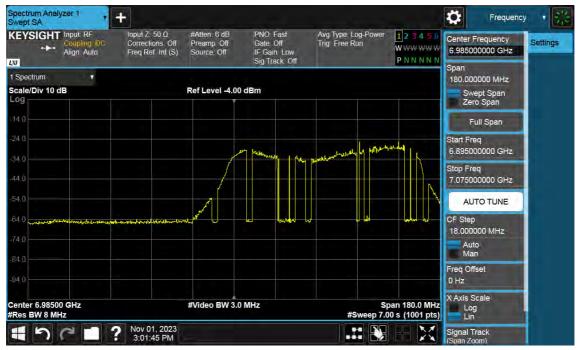
UNII 8

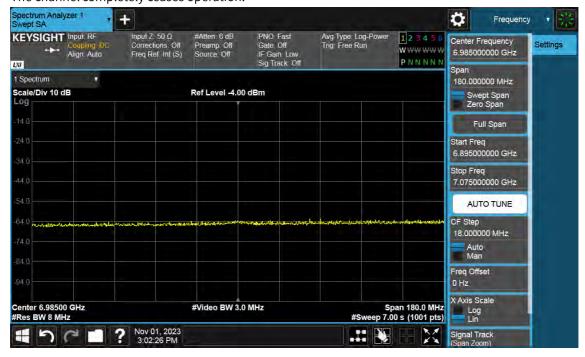
802.11ax HE160 Ch.207(6985 MHz) Incumbent signal (Ceased)

Note:

Marker 2: AWGN Signal On

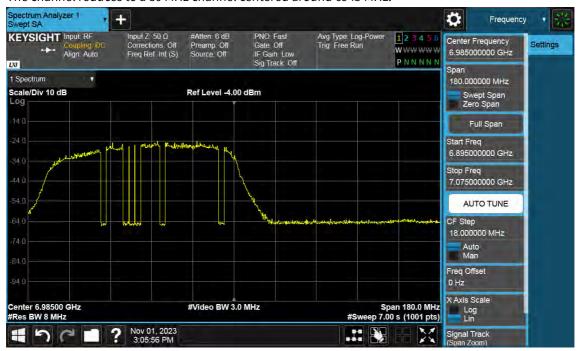
Marker $1\triangle 2$: AWGN signal Off (limit > 10s)


802.11ax HE160 Ch.207(6985 MHz) Detection Level


: A 10 MHz AWGN signal (centered at 6910 MHz) is injected.

The channel reduces to an 80 MHz channel centered around 7025 MHz.

Bandwidth reduction plot (AWGN injected at center)


: A 10 MHz AWGN signal (centered at 6985 MHz) is injected.

: A 10 MHz AWGN signal (centered at 7060 MHz) is injected.

The channel reduces to a 80 MHz channel centered around 6945 MHz.

