

FCC UWB REPORT

Certification

pplicant Name: SAMSUNG Electronics Co., Ltd. Date of Issue: October 17, 2023

Test Site/Location:

Address: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggido, 16677, Rep. of Korea

Report No.: HCT-RF-2310-FC052

Gyeonggi-do, 17383 KOREA

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si,

FCC ID:	A3LSMS926B
APPLICANT:	SAMSUNG Electronics Co., Ltd.
Model:	SM-S926B/DS
Additional Model:	SM-S926B
EUT Type:	Mobile phone
Max. Peak Power (EIRP):	-2.94 (dBm/50MHz) (0.508 mW)
Frequency Range:	6 489.6 MHz ~ 7 987.2 MHz
FCC Classification:	Ultra Wideband (UWB)
FCC Rule Part(s):	FCC Part Subpart F (15.519, 15.521)

Engineering Statement:

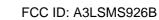
The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

REVIEWED BY

Report prepared by : Kyung Jun Woo Engineer of Telecommunication Testing Center Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

Test Report Statement:


The above Test Report is not related to the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.

The report shall not be reproduced except in full(only partly) without approval of the laboratory.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2310-FC052	October 17, 2023	- First Approval Report

Table of Contents

REVIEWED BY 2	2
1. EUT DESCRIPTION	5
ANTENNA DESCRIPTION	5
2. TEST METHODOLOGY	5
EUT CONFIGURATION	5
EUT EXERCISE	5
GENERAL TEST PROCEDURES6	5
DESCRIPTION OF TEST MODES6	5
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	3
6. MEASUREMENT UNCERTAINTY)
7. DESCRIPTION OF TESTS)
8. SUMMARY TEST OF RESULTS 21	l
9. TEST RESULT 22	2
9.1 10dBc BandWidth22	2
9.2 Maximum Peak Power25	5
9.3 Maximum Average Power 27	7
9.4 Radiated Emissions Below 960MHz 29)
9.5 Radiated Emissions Above 960 MHz 30)
9.6 Radiated Emissions in the 1164 MHz - 1240 MHz and 1559 MHz - 1610 MHz GPS Bands 35	5
9.7 Cease Transmission Time	3
9.8 Powerline Conducted Emissions	•
10. List of Test Equipment 41	i
11. Annex A_Test Setup Photo 42	2

1. EUT DESCRIPTION

Model	SM-S926B/DS			
Additional Model	SM-S926B			
EUT Type	Mobile phone			
Power Supply	DC 3.88 V			
Frequency Range	6 489.6 MHz ~ 7 987.2 MHz			
RF Output Power	Peak (dBm/50 MHz)	-2.94		
(EIRP):	Average (dBm/MHz)	-42.81		
Channel:	5ch, 9ch			
Packet Configuration:	SP0, SP1, SP3			
PRF Mode:	BPRF(9, 10, 11, 12), HPRF(27)			
Payload:	Up to 127 Bytes			
UWB Classification	Hand-held Communication Device			
Modulation type	BPSK pulsed modulation signal			
Date(s) of Tests	August 30, 2023 ~ October 17, 2023	August 30, 2023 ~ October 17, 2023		
Serial number	R3CW90GEJBD			

ANTENNA DESCRIPTION

Channel	Antenna				
Channel	Ant 1 (Tx & Rx)	Ant 2 (Only Rx)			
5ch	0	0			
9ch	0	0			

2. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 393764 D01) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.519, 15.521 under the FCC Rules Part 15 Subpart F.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 31, 2022 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test

Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.90 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.14 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.82 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.76 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)

7. DESCRIPTION OF TESTS

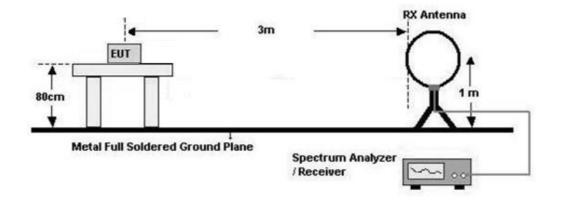
7.1. Radiated Emissions

<u>Limit</u>

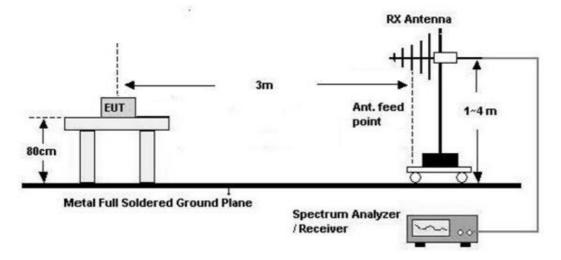
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz

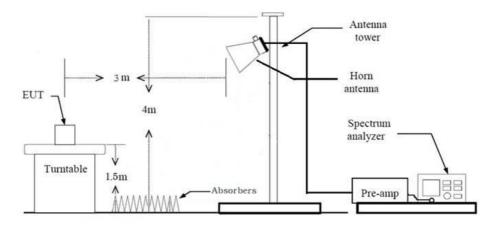
Frequency (MHz)	EIRP in dBm
960 – 1610	-75.3
** 1164 – 1240	-85.3
** 1559 – 1610	-85.3
1610 – 1990	-63.3
1990 – 3100	-61.3
3100 – 10600	-41.3
Above 10600	-61.3


** GPS Bands

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP.



Test Configuration


Below 30 MHz

30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- Distance Correction Factor(0.009 MHz 0.490 MHz) =40log(3 m/300 m)= 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) =40log(3 m/30 m)= 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW
 - 9 kHz 150 kHz : 300 Hz
 - 150 kHz 30 MHz : 10 kHz
 - VBW \ge 3 x RBW
- 9.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions(Below 960 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - * In general, (1) is used mainly
- 7.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions(Above 960 MHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - RBW = 1 MHz (10kHz for emissions in the GPS bands)
 - VBW = 3 MHz (30kHz for emissions in the GPS bands)
 - Detector = Average(RMS)
 - Trace = Maxhold
 - Trace was allowed to stabilize
 - Sweep time = No more than 1ms integration period over measurement bin
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. GPS bands and above 10600 MHz pre-scan plots were tested at 0.55 meter respectively.

The plots are only for the purpose of spurious emission identification.

If no spurious emissions are measured, the test is completed in the pre-scan state.

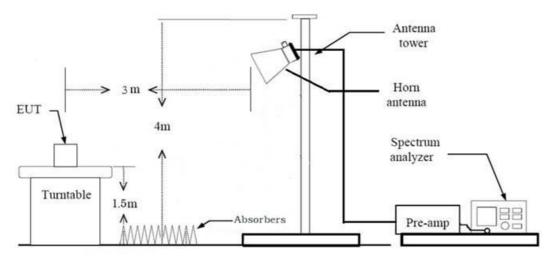
- 11. Below 10600 MHz
 - E (dBuv/m) = Measured Value(dBuV)
 - We apply to the offset in all range
 - The offset = Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - EIRP (dBm) = E (dBuv/m) 95.3
- 12. GPS bands & Above 10600 MHz
 - E (dBuv/m) = Measured Value(dBuV)
 - We apply to the offset in all range
 - The offset = Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - EIRP (dBm) = E (dBuv/m) Distance Factor(D.F) 95.3

Maximum Peak Power

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. The unit was tested with its standard battery.
- 7. Spectrum Setting
 - RBW = 50 MHz
 - VBW = 80 MHz
 - Detector = Peak
 - Trace = Maxhold
 - Trace was allowed to stabilize
 - Sweep time = auto coupled
- 8. E (dBuv/m) = Measured Value(dBuV)
 - We apply to the offset in all range
 - The offset = Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - EIRP (dBm) = E (dBuv/m) 95.3

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.


7.2. 10 dBc Bandwidth

<u>Limit</u>

According to §15.503(d), fractional bandwidth is equal to or greater than 0.20, or UWB bandwidth is equal to or greater than 500 MHz .

According to §15.519(b), The UWB bandwidth of hand held UWB system must be contained between 3 100 MHz and 10 600 MHz

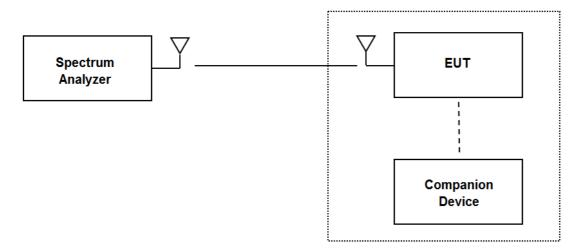
Test Configuration

Test Procedure

We tested according to the Procedure 10.1 in ANSI 63.10-2013.

The Analyzer is set to

- 1. Set the analyzer's center frequency to a supported channel.
- 2. Trace = Max hold
- 3. Detector = Peak
- 4. RBW = 1 MHz
- 5. VBW = 3 MHz
- 6. Sweep time = 2s
- 7. Allow the trace to stabilize
- 8. The frequency at which the maximum power level is measured with the peak detector is designated fM and the outermost 1 MHz segments above and below fM, where the peak power falls by 10 dB relative to the level at fM, are designated as fH and fL, respectively.
- 9. 10 dB bandwidth is defined as (f_H f_L). The center frequency (fc) is mathematically determined from (f_H f_L) / 2. The fractional bandwidth is defined as $2(f_H f_L) / (f_H + f_L)$.



7.3. Cessation Time

<u>Limit</u>

A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgement of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting

Test Configuration

Test Procedure

The Analyzer is set to

- 1. SPAN = Zero Span(0 Hz)
- 2. RBW = 1 MHz
- 3. VBW = 3 MHz
- 4. Sweep time shall be sufficient to demonstrate EUTs compliance with the rule part.
- 5. Sets the marker to the points where 10 seconds after the EUT recognizes the interruption of reception.

7.4. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Frequency Pange (MHz)	Limits (dBµV)			
Frequency Range (MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)		
0.50 to 5	56	46		
5 to 30	60	50		

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

7.5. Worst case

7.5.1. 10dBc Bandwidth, Peak Power, Average Power

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone etc)
 - Worstcase : Stand alone
- 2. The EUT was tested in three axis were investigated and the worst case axis results are reported.
 - Axis : X, Y, Z
 - Worstcase : Y
- 3. All Preamble ID of operation were investigated and the worst case results are reported.
 - Preamble ID : BPRF(9, 10, 11, 12), HPRF (27)
 - Worstcase : BPRF(9), HPRF (27)
- 4. All Payload of operation were investigated and the worst case results are reported.
 - Payload: Up to 127 bytes
 - Worstcase : 4 byte, 127 byte
- 5. SM-S926B/DS, SM-S926B were tested and the worst case results are reported.

(Worst case : SM-S926B/DS)

7.5.2. Radiated Emission

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone etc)
 - Worstcase : Stand alone
- 2. The EUT was tested in three axis were investigated and the worst case axis results are reported.
 - Axis : X, Y, Z
 - Worstcase : Y
- 3. All Preamble ID of operation were investigated and the worst case results are reported.
 - Preamble ID : BPRF(9, 10, 11, 12), HPRF (27)
 - Worstcase : BPRF(9), HPRF (27)
- 4. All Packet of operation were investigated and the worst case results are reported.
 - Payload: SP0, SP1, SP3
 - Worstcase : SP3
- 5. All Payload of operation were investigated and the worst case results are reported.
 - Payload: Up to 127 bytes
 - Worstcase : 127 byte
- 6. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane
- 7. SM-S926B/DS, SM-S926B were tested and the worst case results are reported.

(Worst case : SM-S926B/DS)

7.5.3. AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone+ External accessories(Earphone)+Travel Adapter
 - Stand alone + Travel Adapter
 - Worstcase : Stand alone + Travel Adapter
- 2. SM-S926B/DS, SM-S926B were tested and the worst case results are reported.

(Worst case : SM-S926B/DS)

8. SUMMARY TEST OF RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Result
§15.503, §15.519 (b)	10 dBc Bandwidth	≥ 500 MHz	PASS
§15.519(a)(1)	Cessation Time	Transmission shall cease in less than 10s	PASS
§15.519(e)	Maximum Peak Power	< 0 dBm/50MHz EIRP	PASS
§15.519(c)	Maximum Average Power	< -41.3 dBm/MHz EIRP	PASS
§15.519(c)	Radiated Emissions Above 960MHz	cf. Section 7.1	PASS
§15.519(c), §15.519(a)	Radiate Emissions Below 960MHz	cf. Section 7.1	PASS
§15.519(d)	Radiated Emissions in the 1 164 – 1 240Mhz and 1 559 – 1 610MHz GPS Bands	< -85.3 dBm EIRP	PASS
§15.207	AC Conducted Emissions 150kHz – 30MHz	cf. Section 7.4	PASS

Note:

1. All tests except the AC conducted emissions were performed radiated condition.

FCC ID: A3LSMS926B

9. TEST RESULT

9.1 10dBc BandWidth

Channel	Preamble ID	Config	Payload	f _M	fL	f _H	f _C	Result
onanner	T reamble ID	comig	Tayload	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
			4	6418.635	6220.74	6757.47	6489.10	536.73
		SP0	20	6486.601	6221.23	6756.47	6488.85	535.24
			127	6483.603	6219.73	6758.96	6489.35	539.23
	9		4	6552.069	6219.74	6758.97	6489.35	539.23
		SP1	20	6555.067	6220.24	6758.47	6489.35	538.23
			127	6555.067	6219.24	6759.97	6489.60	540.73
F		SP3	-	6552.069	6220.24	6758.47	6489.35	538.23
5			4	6479.105	6220.74	6756.97	6488.85	536.23
		SP0	20	6477.606	6221.74	6756.47	6489.10	534.73
			127	6477.106	6219.74	6758.97	6489.35	539.23
	27		4	6552.069	6221.24	6756.47	6488.85	535.23
		SP1	20	6552.069	6221.24	6757.47	6489.35	536.23
			127	6552.069	6220.24	6758.97	6489.60	538.73
		SP3	-	6552.069	6221.24	6756.97	6489.10	535.73
	9	SP0	4	7752.317	7717.34	8255.07	7986.20	537.73
			20	7751.818	7714.84	8255.07	7984.95	540.23
			127	7752.317	7717.34	8254.57	7985.95	537.23
		SP1	4	7752.317	7716.87	8255.07	7985.97	538.20
			20	7752.317	7717.34	8255.07	7986.20	537.73
			127	7751.818	7717.34	8255.07	7986.20	537.73
9		SP3	-	7752.317	7717.34	8255.07	7986.20	537.73
9			4	7975.206	7717.34	8254.57	7985.95	537.23
		SP0	20	7751.818	7717.34	8255.07	7986.20	537.73
			127	7751.818	7716.84	8255.07	7985.95	538.23
	27		4	7751.818	7717.34	8254.57	7985.95	537.23
		SP1	20	7752.317	7717.34	8255.57	7986.45	538.23
			127	7751.818	7717.34	8255.07	7986.20	537.73
		SP3	-	7751.818	7716.34	8255.07	7985.70	538.73

Note:

1. Limit : ≥ 500MHz

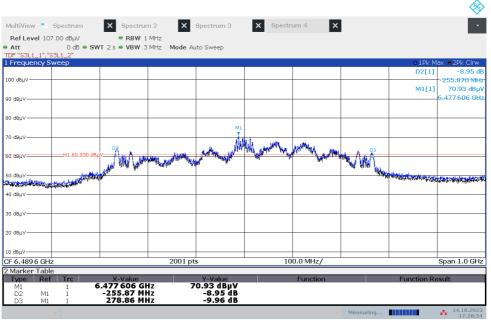
2. $f_{\rm M}$: The frequency at which the maximum power level is measured with the peak detector.

3. f_{L} : For the lowest frequency bound f_{L}

4. $f_{\rm H}$: For the highest frequency bound $f_{\rm H}$

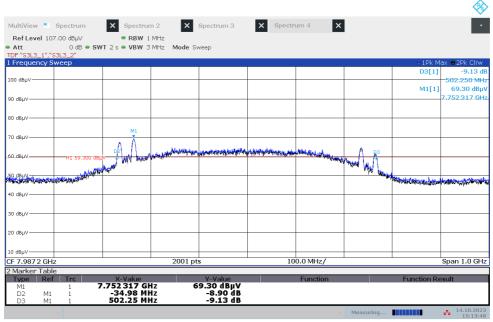
5. f_C: (f_H - f_L) / 2

6. Result : $f_{H} - f_{L}$



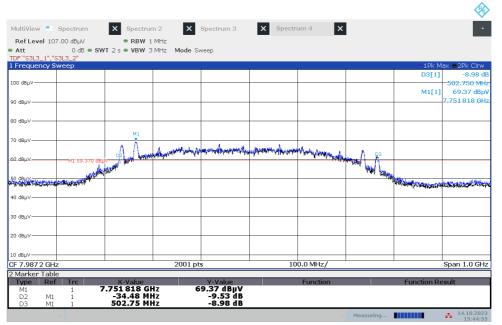
Test Plots

Note :


To simplify the report, the attached plots represent the worst case 10 dBc BW.

[Ch 5, Preamble ID 27, SP0]

17:28:54 14.10.2023


[Ch 9, Preamble ID 9, SP0]

15:13:48 14.10.2023

[Ch 9, Preamble ID 27, SP1]

15:44:56 14.10.2023

9.2 Maximum Peak Power

(Ch. 5)

Preamble ID	Config	Payload	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm/50MHz)	Limit (dBm/50MHz)	Margin (dB)
		4	92.29	Н	92.29	-2.94	0	2.94
	SP0	20	91.83	Н	91.83	-3.40	0	3.40
		127	89.00	Н	89.00	-6.23	0	6.23
9		4	90.53	Н	90.53	-4.70	0	4.70
	SP1	20	90.01	Н	90.01	-5.22	0	5.22
		127	87.75	Н	87.75	-7.48	0	7.48
	SP3	-	83.97	Н	83.97	-11.26	0	11.26
	SP0	4	87.42	Н	87.42	-7.81	0	7.81
		20	86.72	Н	86.72	-8.51	0	8.51
		127	81.78	Н	81.78	-13.45	0	13.45
27		4	82.95	Н	82.95	-12.28	0	12.28
	SP1	20	82.41	Н	82.41	-12.82	0	12.82
		127	81.45	Н	81.45	-13.78	0	13.78
	SP3	-	82.06	Н	82.06	-13.17	0	13.17

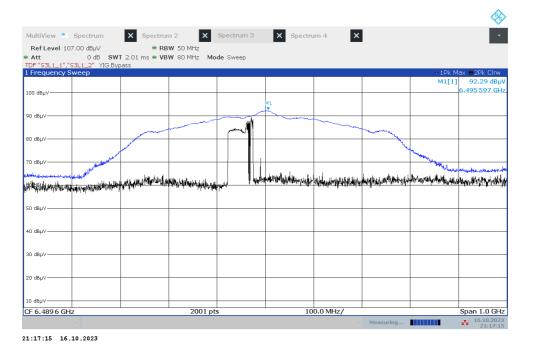
(Ch. 9)

Preamble ID	Config	Payload	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm/50MHz)	Limit (dBm/50MHz)	Margin (dB)
		4	91.44	н	91.44	-3.79	0	3.79
	SP0	20	91.18	Н	91.18	-4.05	0	4.05
		127	89.27	Н	89.27	-5.96	0	5.96
9		4	88.15	Н	88.15	-7.08	0	7.08
	SP1	20	89.14	н	89.14	-6.09	0	6.09
		127	88.11	н	88.11	-7.12	0	7.12
	SP3	-	88.14	н	88.14	-7.09	0	7.09
		4	87.99	Н	87.99	-7.24	0	7.24
	SP0	20	88.06	н	88.06	-7.17	0	7.17
		127	88.04	н	88.04	-7.19	0	7.19
27		4	88.01	Н	88.01	-7.22	0	7.22
	SP1	20	87.99	Н	87.99	-7.24	0	7.24
		127	87.96	Н	87.96	-7.27	0	7.27
	SP3	-	88.04	Н	88.04	-7.19	0	7.19

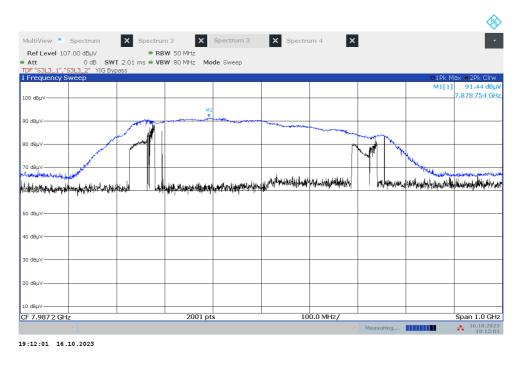
Note:

1. E (dBuv/m) = Measured Value(dBuV)

EIRP (dBm/50MHz) = E (dBuv/m) - 95.3



Test Plots


Note :

To simplify the report, the attached plots represent the worst-case EIRP.

[Ch 5, Preamble ID 9, SP0]

[Ch 9, Preamble ID 9, SP0]

9.3 Maximum Average Power

(Ch. 5)								
Preamble ID	Config	Payload	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
		4	51.66	Н	51.66	-43.57	-41.3	2.27
	SP0	20	51.64	Н	51.64	-43.59	-41.3	2.29
		127	50.85	Н	50.85	-44.38	-41.3	3.08
9	SP1	4	51.30	Н	51.30	-43.93	-41.3	2.63
		20	51.34	Н	51.34	-43.89	-41.3	2.59
		127	50.52	Н	50.52	-44.71	-41.3	3.41
	SP3	-	51.37	Н	51.37	-43.86	-41.3	2.56
		4	52.42	Н	52.42	-42.81	-41.3	1.51
	SP0	20	52.01	Н	52.01	-43.22	-41.3	1.92
		127	49.54	Н	49.54	-45.69	-41.3	4.39
27		4	51.25	Н	51.25	-43.98	-41.3	2.68
	SP1	20	50.72	Н	50.72	-44.51	-41.3	3.21
		127	49.85	Н	49.85	-45.38	-41.3	4.08
	SP3	-	51.20	Н	51.20	-44.03	-41.3	2.73

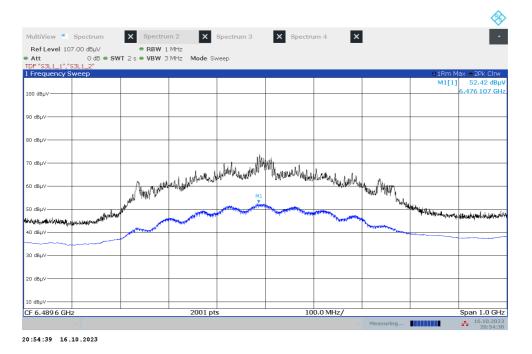
(Ch. 9)

Preamble ID	Config	Payload	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
		4	51.89	Н	51.89	-43.34	-41.3	2.04
	SP0	20	51.76	Н	51.76	-43.47	-41.3	2.17
		127	50.35	Н	50.35	-44.88	-41.3	3.58
9		4	50.22	Н	50.22	-45.01	-41.3	3.71
	SP1	20	50.36	Н	50.36	-44.87	-41.3	3.57
		127	50.27	Н	50.27	-44.96	-41.3	3.66
	SP3	-	50.33	Н	50.33	-44.90	-41.3	3.60
		4	51.01	Н	51.01	-44.22	-41.3	2.92
	SP0	20	50.25	Н	50.25	-44.98	-41.3	3.68
		127	48.46	Н	48.46	-46.77	-41.3	5.47
27		4	50.24	Н	50.24	-44.99	-41.3	3.69
	SP1	20	50.35	Н	50.35	-44.88	-41.3	3.58
		127	49.07	Н	49.07	-46.16	-41.3	4.86
	SP3	-	50.63	Н	50.63	-44.60	-41.3	3.30

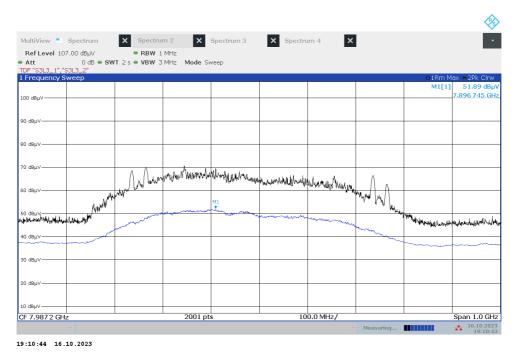
Note:

1. E (dBuv/m) = Measured Value(dBuV)

EIRP (dBm) = E (dBuv/m) - 95.3



Test Plots


Note :

To simplify the report, the attached plots represent the worst-case EIRP.

[Ch 5, Preamble ID 27, SP0]

[Ch 9, Preamble ID 9, SP0]

9.4 Radiated Emissions Below 960MHz

Frequency Range : 9 kHz – 30MHz

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]
	No Critical peaks found					

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dB μ V) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin	
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
	No Critical peaks found						

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

9.5 Radiated Emissions Above 960 MHz

Channel :	5		
Operating Frequency :	6 489.6 MHz		
Operation Mode:	BPRF		
Preamble ID:	9		
Configuration:	SP 3		
Payload:	127 Bytes		

Below 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
14732.280	41.38	Н	41.38	-68.58	-61.30	7.28

Above 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
15100.733	42.27	Н	42.27	-67.69	-61.30	6.39

Note:

Channel :	5		
Operating Frequency :	6 489.6 MHz		
Operation Mode:	HPRF		
Preamble ID:	27		
Configuration:	SP 3		
Payload:	127 Bytes		

Below 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
14730.281	41.37	Н	41.37	-68.59	-61.30	7.29

Above 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
15101.233	42.29	Н	42.29	-67.67	-61.30	6.37

Note:

Report No.: HCT-RF-2310-FC052

Channel :	9		
Operating Frequency :	7 987.2 MHz		
Operation Mode:	BPRF		
Preamble ID:	9		
Configuration:	SP 3		
Payload:	127 Bytes		

Below 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
14731.780	41.3	Н	41.30	-68.66	-61.30	7.36

Above 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
15100.733	42.53	Н	42.53	-67.43	-61.30	6.13

Note:

Report No.: HCT-RF-2310-FC052

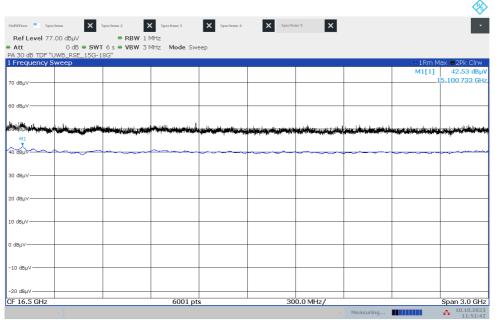
Channel :	9
Operating Frequency :	7 987.2 MHz
Operation Mode:	HPRF
Preamble ID:	27
Configuration:	SP 3
Payload:	127 Bytes

Below 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
14734.780	41.29	Н	41.29	-68.67	-61.30	7.37

Above 10 600 MHz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
15098.734	42.34	Н	42.34	-67.62	-61.30	6.32


Note:

Test Plots

Note :

To simplify the report, the attached plots represent the worst-case mode.

15.0 GHz – 18.0 GHz(Ch.9)

11:51:42 10.10.2023

9.6 Radiated Emissions in the 1164 MHz - 1240 MHz and 1559 MHz - 1610 MHz GPS Bands

Channel :	5
Operating Frequency :	6 489.6 MHz
Operation Mode:	BPRF
Preamble ID:	9
Configuration:	SP 3
Payload:	127 Bytes

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1186.25	15.22	Н	15.22	-94.74	-85.30	9.44
1576.14	15.78	Н	15.78	-94.18	-85.30	8.88

Note:

1. No spurious emissions were measured GPS Bands

Ηz

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1235.05	15.28	Н	15.28	-94.68	-85.30	9.38
1566.20	16.11	Н	16.11	-93.85	-85.30	8.55

Note:

1. No spurious emissions were measured GPS Bands

Channel :	9
Operating Frequency :	7 987.2 MHz
Operation Mode:	BPRF
Preamble ID:	9
Configuration:	SP 3
Payload:	127 Bytes

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1223.99	15.33	Н	15.33	-94.63	-85.30	9.33
1589.67	16.14	Н	16.14	-93.82	-85.30	8.52

Note:

1. No spurious emissions were measured GPS Bands

Channel :	9
Operating Frequency :	7 987.2 MHz
Operation Mode:	HPRF
Preamble ID:	27
Configuration:	SP 3
Payload:	127 Bytes

Meas. Freq (MHz)	Meas. Value (dBuv/m)	Pol.	E (dBuv/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1202.72	15.07	Н	15.07	-94.89	-85.30	9.59
1559.35	15.52	Н	15.52	-94.44	-85.30	9.14

Note:

1. No spurious emissions were measured GPS Bands

 \sim

Test Plots

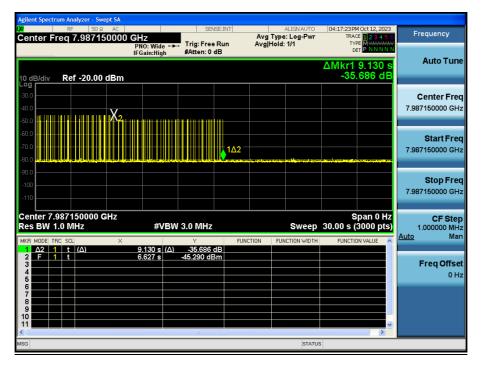
Note :

To simplify the report, the attached plots represent the worst-case mode.

[BPRF, SP3, Payload 127 Bytes (Ch. 9)]

1164 MHz - 1240 MHz

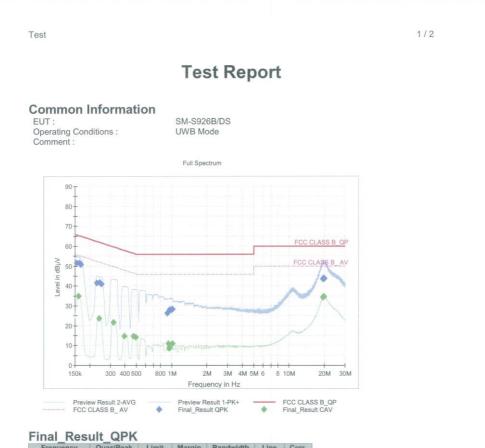
1ultiView	Spectrum	ı 🕂 🗙 Sp	pectrum 2	× Spect	rum 3	×			
Ref Level 57			10 kHz						
Att	0 dB • SW 'UWB_GPS_Band'	T 15.2 s 👄 VBW	30 kHz Mode	Auto Sweep					
Frequency S								o1Rm №	4ax ⊜2Pk Clrv
								M1[1]	15.33 dB
dBµ∨								1.	223 993 55 G
dBµV									
dBuV									
Landard		1			Law I Louis	المراجع المراجع		the second state of the second	ALC: UNK AN
Reserved the party		والمسابية فيشابعه المعاولة	נויין שאות וא איזן וואזיקריי וו		أرقادية فديدالالملقيهم وررار	all, i filladi ana ang ang ang ang ang ang ang ang ang	ינים איז איזייזיי איז איזיי	lalia de la construcción de la cons La construcción de la construcción d	م المعطول المحاط المحاط المحاط
na med livlers, of death dive	is keen line opperfunction dealers	initianal general tal second	karan di ilahat da Mahang pila	in the production of the second s	approximate to the party of the party of the	niki kilentiki and Anti okina.	adalasing ang katawa kang ka	n wa wana kata kata kata	
двро		and the second se							
¦Вµ∨									
0 dвµV									
0 dBµV									
0 dBµV									
10 dBuV									
1.202 GHz			15201 p			.6 MHz/			Span 76.0 M
				-c.a	/	10 10112/			opan 70.0 M


11:03:25 10.10.2023

[HPRF, SP3, Payload 127 Bytes (Ch. 9)] 1559 MHz - 1610 MHz

att 0 dB 🖷	SWT 10.2 s - VB	W 10 kHz W 30 kHz Mode	Auto Swoon					
30 dB TDF "UWB_GPS_I		N JO KINZ MODE	Auto Sweep					
requency Sweep		-		1	1		●1Rm M M1[1]	lax ●2Pk Cl 16.14 d
18uV								589 669 49
лени.								
iBµV								
			La har a	N				l .
lehitenettekine <mark>n</mark> ette iheriten ekitetenettekinettekinette 19 jaintenettekinettekinettekinet	a biological production of a biological statement of the second statement of the second statement of the second	i di katikan katikan katika	ada a ta	s della half this, duba	in the second	har h h h h h h h h h h h h h h h h h h	the state of the second se	i tapat ka pipa
nia Kama a pini ki pada di Japanian anta	kangi kita di kangan ki manadari	e dela technique de la dela della	wanter under sieht werden der sieht im	n ka	<u>Nakamat kalun in dutu</u>	na i kakala jang kakan jalang bakan jalang kakan jalang kakan jalang kakan jalang kakan jalang kakan jalang ka	dila da Milanda di	2 ALT PRODUCES IN
Bill Omde Lidenski produkti da u pisatu	alaran analar ang	pini htp://doctorfinglikika.pa	Ni adua di kalisata kata da k	desidika phanalaperidapatan	fangingan tenskantatana	ver i tapitos sleats heata	na jilan latik databa yang tatab	daamay, rayislaat sidaa
3µV								
dBµV								
dBuV-								
0001								
10.11								
dBµV								
dBµV								
	1							

9.7 Cease Transmission Time


Note:

- 1. Result: 9.130 s
- 2. Limit: 10.00 s
- 3. X2 represents the EUT for UWB stop receiving, and $1\Delta 2$ shows the EUT for UWB cease transmitting.

9.8 Powerline Conducted Emissions

Conducted Emissions

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1545	51.54	65.75	14.21	9.000	N	9.6
0.1635	51.56	65.28	13.73	9.000	N	9.6
0.1680	50.85	65.06	14.21	9.000	N	9.6
0.2310	41.50	62.41	20.91	9.000	L1	9.6
0.2445	41.77	61.94	20.18	9.000	L1	9.6
0.2513	41.07	61.72	20.64	9.000	L1	9.6
0.9185	26.34	56.00	29.66	9.000	L1	9.6
0.9568	27.96	56.00	28.04	9.000	L1	9.6
0.9883	27.98	56.00	28.02	9.000	L1	9.6
0.9950	27.97	56.00	28.03	9.000	L1	9.6
0.9995	28.26	56.00	27.74	9.000	L1	9.6
1.0175	28.19	56.00	27.81	9.000	L1	9.7
19.4090	43.59	60.00	16.41	9.000	L1	10.3
19.5868	43.79	60.00	16.21	9.000	L1	10.3
19.7308	43.57	60.00	16.43	9.000	L1	10.3
19.7578	43.74	60.00	16.26	9.000	L1	10.3
19.7668	43.62	60.00	16.38	9.000	L1	10.3
19.8253	43.92	60.00	16.08	9.000	L1	10.3

2023-10-11

오전 8:52:03

Report No.: HCT-RF-2310-FC052

Test

2/2

Final_Result_CAV

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1613	34.81	55.40	20.58	9.000	L1	9.6
0.2400	23.79	52.10	28.31	9.000	L1	9.6
0.3188	21.55	49.74	28.19	9.000	L1	9.6
0.3953	14.85	47.95	33.10	9.000	L1	9.6
0.4718	14.82	46.48	31.66	9.000	L1	9.6
0.4965	14.22	46.06	31.84	9.000	L1	9.6
0.9343	11.09	46.00	34.91	9.000	L1	9.6
0.9500	8.77	46.00	37.23	9.000	L1	9.6
0.9568	8.79	46.00	37.21	9.000	L1	9.6
0.9613	8.63	46.00	37.37	9.000	L1	9.6
1.0198	11.01	46.00	34.99	9.000	L1	9.7
19.3078	34.20	50.00	15.80	9.000	L1	10.3
19.4698	34.46	50.00	15.54	9.000	L1	10.3
19.4788	34.45	50.00	15.55	9.000	L1	10.3
19.5620	34.45	50.00	15.55	9.000	L1	10.3
19.6250	34.52	50.00	15.48	9.000	L1	10.3
19.7083	34.72	50.00	15.28	9.000	L1	10.3
19.7488	34.76	50.00	15.24	9.000	N	10.5

2023-10-11

오전 8:52:03

10. List of Test Equipment

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	S3AM	08/03/2025	Biennial
Controller	EM2090	Emco	060520	N/A	N/A
Turn Table	N/A	Ets	N/A	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/17/2024	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/16/2024	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-1191	11/18/2023	Biennial
Horn Antenna(15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Amp & Filter Bank Switch Controller	FBSM-01A	TNM system	0	N/A	N/A
RF Switching System	FBSR-03A (3G HPF+LNA)	T&M SYSTEM	S3L1	12/05/2023	Annual
RF Switching System	FBSR-03A (10dB ATT+LNA)	T&M SYSTEM	S3L2	12/05/2023	Annual
RF Switching System	FBSR-03A (7G HPF+LNA)	T&M SYSTEM	S3L3	12/05/2023	Annual
RF Switching System	FBSR-03A (3dB ATT+LNA)	T&M SYSTEM	S3L4	12/05/2023	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/01/2023	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/02/2024	Annual
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	03/28/2024	Annual
High Pass Filter	WHKX10-7150- 8000-18000-50SS	Wainwright Instruments	1	03/02/2024	Annual
Spectrum Analyzer	FSW	Rohde & Schwarz	101736	05/18/2024	Annual
Spectrum Analyzer	FSV40-N(9 kHz ~ 30 GHz)	Rohde & Schwarz	101068-SZ	08/30/2024	Annual
LISN	ENV216	Rohde & Schwarz	102245	08/02/2024	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	05/26/2024	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. Annex A_Test Setup Photo

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2310-FC052-P