

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

MEASUREMENT REPORT FCC Part 15.407 802.11a/ax WIFI 6E

Applicant Name:

Samsung Electronic Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 9/03/2022 – 11/11/2022

Test Report Issue Date: 2/24/2023 Test Site/Location: Element lab, Columbia, MD, USA Test Report Serial No.: 1M2212080137-13-R1.A3L

FCC ID:

APPLICANT:

A3LSMS918JPN

Samsung Electronics Co., Ltd.

Application Type:
Model(s) :
EUT Type:
Frequency Range:
Modulation Type:
FCC Classification:
Test Procedure(s):

Certification SC-52D, SCG20 Portable Handset 5935 – 7115MHz OFDM 15E 6GHz Low Power Dual Client (6CD) ANSI C63.10-2013,KDB 648474 D03 v01r04, KDB 987594 D02 v01r03,

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

Note: This revised Test Report (S/N: 1M2212080137-13-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 1 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

TABLE OF CONTENTS

1.0	INTRO	DUCTI	ON	
	1.1	Sco	pe	
	1.2	Elen	nent Test Location	
	1.3	Test	t Facility / Accreditations	
2.0	PROD	UCT IN	FORMATION	5
	2.1	Equi	ipment Description	5
	2.2	Devi	ice Capabilities	5
	2.3	Ante	enna Description	7
	2.4	Test	t Configuration	
	2.5	Soft	ware and Firmware	
	2.6	EMI	Suppression Device(s)/Modifications	
3.0	DESC	RIPTIO	N OF TESTS	9
	3.1	Eval	luation Procedure	9
	3.2	AC I	Line Conducted Emissions	9
	3.3	Rad	liated Emissions	
	3.4	Envi	ironmental Conditions	
4.0	ANTE	NNA RE	EQUIREMENTS	11
5.0	MEAS	UREME	ENT UNCERTAINTY	
6.0	TEST	EQUIPN	MENT CALIBRATION DATA	
7.0	TEST	RESUL	TS	14
	7.1	Sum	nmary	
	7.2	26d	B Bandwidth Measurement – 802.11a/ax	
	7.3	UNII	I Output Power Measurement – 802.11a/ax	
	7.4	Max	ximum Power Spectral Density – 802.11a/ax	
	7.5	In-B	and Emissions – 802.11a/ax	
	7.6	Con	tention Based Protocol – 802.11a/ax	
	7.7	Rad	liated Spurious Emission Measurements – Above 1GHz	
		7.7.1	MIMO Radiated Spurious Emission Measurements	
		7.7.2	MIMO Radiated Band Edge Measurements (20MHz BW)	
		7.7.3	MIMO Radiated Band Edge Measurements (40MHz BW)	
		7.7.4	MIMO Radiated Band Edge Measurements (80MHz BW)	
		7.7.5	MIMO Radiated Band Edge Measurements (160MHz BW)	
	7.8	Rad	liated Spurious Emissions Measurements – Below 1GHz	
	7.9	Line	e-Conducted Test Data	
8.0	CONC	LUSION	۷	

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 2 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 2 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

MEASUREMENT REPORT

Channel			мі	мо
Channel Bandwidth [MHz]	UNII Band	Tx Frequency [MHz]	Max. Power [mW]	Max. Power [dBm]
	5	5935 - 6415	30.409	14.83
20	6	6435 - 6515	31.189	14.94
20	7	6535 - 6875	31.550	14.99
	8	6895 - 7115	31.117	14.93
	5	5965 - 6405	31.333	14.96
40	6	6445 - 6525	29.242	14.66
40	7	6565 - 6845	30.130	14.79
	8	6885 - 7085	29.309	14.67
	5	5985 - 6385	29.376	14.68
80	6	6465	28.774	14.59
80	7	6545 - 6865	29.242	14.66
	8	6945 - 7025	28.973	14.62
	5	6025 - 6345	30.690	14.87
160	6	6505	30.061	14.78
100	7	6665 - 6825	29.854	14.75
	8	6985	28.576	14.56

EUT Overview

FCC: A3LSMS918JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 220	
1M2212080137-13-R1.A3L	9/3/2022 – 11/8/2022 Portable Handset		Page 3 of 238	
© 2023 ELEMENT V 9.0 02/01/2019				

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element Laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC: A3LSMS918JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 238	
1M2212080137-13-R1.A3L	I2212080137-13-R1.A3L 9/3/2022 – 11/8/2022 Portable Handset		Fage 4 01 236	
© 2023 ELEMENT			V 9.0 02/01/2019	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC: A3LSMS918JPN. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter while operating in the 6GHz band.

Test Device Serial No.: 0137M, 0128M, 1553M, 1521M

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5,6GHz), Bluetooth (1x, EDR, LE), NFC, UWB, Wireless Power Transfer

						Band 8
ency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
5935	97	6435	117	6535	189	6895
:	:	:	:	:	:	:
6175	105	6475	149	6695	209	6995
:	:	:	:	:	:	:
6415	113	6515	185	6875	233	7115
(5935 : 6175 :	5935 97 : : 6175 105 : : 6415 113	5935 97 6435 : : : 6175 105 6475 : : : 6415 113 6515	5935 97 6435 117 : : : : 6175 105 6475 149 : : : : 6415 113 6515 185	5935 97 6435 117 6535 : : : : : : : : 6175 105 6475 149 6695 : : : : : : : : : : : : 6415 113 6515 185 6875 : : :	5935 97 6435 117 6535 189 :

Table 2-1. 802.11a / 802.11ax (20MHz) Frequency / Channel Operations

	Band 5		Band 6		Band 7		Band 8
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
3	5965	99	6445	123	6565	187	6885
:	:	:	:	:	:		:
43	6165	107	6485	155	6725	211	7005
:	:	:	:	:	:	:	:
91	6405	115	6525	179	6845	227	7085

Table 2-2. 802.11ax (40MHz BW) Frequency / Channel Operations

Band	5
------	---

	Band 5		Band 6		Band 7		
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Fr
7	5985	103	6465	119	6545	199	
:	:			:	:	:	
39	6145			151	6705	215	
:	:			:	:		
87	6385			183	6865	1	
	Tab	a 2 2 902	11 av (20MH- BW)	Troquon	av / Channel Oper	ations	

Band	8
------	---

Ch.	Frequency (MHz)
199	6945
:	
215	7025

Table 2-3. 802.11ax (80MHz BW) Frequency / Channel Operations

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga E of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 5 of 238		
© 2023 ELEMENT	•	· · · · · · · · · · · · · · · · · · ·	V 9.0 02/01/2019		

	Band 5		Band 6		Band 7		Band 8
Ch.	Frequency (MHz)						
15	6025	111	6505	143	6665	207	6985
47	6185			175	6825		
79	6345						

Table 2-4. 802.11ax (160MHz BW) Frequency / Channel Operations

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 6 of 238		
© 2023 ELEMENT	•	· · · · · · · · · · · · · · · · · · ·	V 9.0 02/01/2019		

Notes:

6GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz and 160MHz channel bandwidths. The
maximum achievable duty cycles for all modes were determined based on measurements performed on a
spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance
of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater
than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater
than 100. The duty cycles are as follows:

		ΜΙΜΟ		
802.11 N	Duty			
	Cycle [%]			
	а	93.85		
	ax (HT20)	99.71		
6GHz	ax (HT40)	99.69		
	ax (HT80)	99.71		
	ax (HT160)	99.71		
Table 2-5. Measured Duty Cycles				

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		CDD		SDM	
		ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11a	×	×	✓	✓	×	×
	11ax (20MHz)	×	×	✓	✓	✓	✓
6GHz	11ax (40MHz)	×	×	✓	✓	✓	✓
	11ax (80MHz)	×	×	✓	✓	✓	✓
	11ax (160MHz)	×	×	✓	✓	✓	✓

Table 2-6. Frequency / Channel Operations

 \checkmark = Support ; * = NOT Support SDM = Spatial Diversity Multiplexing – MIMO function CDD = Cyclic Delay Diversity – 2Tx Function

2.3 Antenna Description

The following antenna gains are used in this device per the "Unlicensed Band Antenna Gain" document provided by the client. This document is also included in the filing as a public exhibit.

	Ant1 Peak Gain [dBi]	Ant2 Peak Gain [dBi]	Directional Gain [dBi]
5925 – 6425 MHz	-7.27	-4.65	-2.85
6425 – 6525 MHz	-9.94	-5.97	-4.72
6525 – 6875 MHz	-7.45	-6.36	-3.88
6875 – 7125 MHz	-5.75	-5.78	-2.75

Table 2-7. Antenna Peak Gain

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 7 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

2.4 Test Configuration

The EUT was tested per the guidance of KDB 987594 D02 v01r01 and KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5 and 7.6 for antenna port conducted emissions test setups.

This device supports operation under control of either a low-power indoor access point or standard power access point. Target powers remain identical for both modes of operation for OFDM operation; indoor limits are applied. The worst-case emissions data is shown in this report.

This device operates in the 5.925-7.125 GHz band when under control of a low power indoor access point. Additionally, the device may operate in the 5.925-6.425 GHz and 6.525-6.875 GHz bands when under control of a standard power access point.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.5 Software and Firmware

The test was conducted with firmware version S918USQU0AVJH installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 238
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 8 01 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01, KDB 987594 D02 v01r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 9 of 238		
© 2023 ELEMENT	•		V 9.0 02/01/2019		

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 222		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 10 of 238		
© 2023 ELEMENT			V 9.0 02/01/2019		

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 238
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 11 01 238
© 2023 ELEMENT			V 9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Contention Based Protocol Conducted Measurements	0.86
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 12 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	ETS-001	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	ETS-001
-	ETS-002	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	ETS-002
-	AP2-001	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	AP2-001
-	AP2-002	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	AP2-002
-	WL25-1	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-1
-	WL25-2	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-2
-	WL25-3	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-3
-	WL25-4	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-4
-	WL40-1	Conducted Cable Set (40GHz)	7/29/2022	Annual	7/29/2023	WL40-1
Agilent	N9038A	MXE EMI Receiver	1/21/2022	Annual	1/21/2023	MY51210133
Agilent	N9020A	MXA Signal Analyzer	3/4/2022	Annual	3/4/2023	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	8/18/2022	Annual	8/18/2023	MY49430494
Anritsu	ML2495A	Power Meter	5/9/2022	Annual	5/9/2023	1328004
Anritsu	ML2495A	Power Meter	3/17/2022	Annual	3/17/2023	941001
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2024	121034
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/20/2021	Biennial	7/20/2023	9203-2178
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
Keysight Technologies	N9030A	PXA Signal Analyzer (3Hz-26.5GHz)	9/6/2022	Annual	9/6/2023	MY54490576
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2022	Annual	3/15/2023	MY54500644
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	12/19/2021	Annual	12/19/2022	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/29/2022	Annual	8/29/2023	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/25/2022	Annual	8/25/2023	100348
Sunol	DRH-118	Horn Antenna (1-18GHz)	2/14/2022	Biennial	2/14/2024	A050307
Sunol	DRH-118	Horn Antenna (1-18 GHz)	1/14/2022	Biennial	1/14/2024	A042511
Sunol	JB6	Bi-Log Antenna (30M - 6GHz)	11/13/2020	Biennial	11/13/2022	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 12 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 13 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:Samsung Electronics Co., Ltd.FCC ID:A3LSMS918JPNFCC Classification:15E 6GHz Low Power Dual Client (6CD)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1046, 15.407(a)(11)	Maximum Conducted Output Power	N/A		PASS	Section 7.3
2.1049, 15.407(a)(10)	Occupied Bandwidth/ 26dB Bandwidth	99% of the occupied bandwidth of any channel must be contained within each of its respective U-NII sub bands The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.	CONDUCTED	PASS	Section 7.2
15.407(a)(8)	Maximum Power Spectral Density	< -1dBm/MHz e.i.r.p.		PASS	Section 7.4
15.407(a)(8)	Maximum Radiated Output Power	< 24dBm over the frequency band of operation		PASS	Section 7.3
15.407(b)(7)	In-Band Emissions	EUT must meet the limits detailed in 15.407(b)(7)		PASS	Section 7.5
15.407(b)(6)	Undesirable Emissions	< -27dBm/MHz e.i.r.p. outside of the 5.925 – 7.125GHz band		PASS	Section 7.7
15.407(d)(6)	Contention Based Protocol	EUT must detect AWGN signal with 90% (or better) certainty		PASS	Section 7.6
15.205, 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Section 7.7, 7.8
15.407(b)(9)	AC Conducted Emissions (150kHz – 30MHz)	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 14 of 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) Per 15.407(a)(7), a device operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands must not have the maximum power spectral density exceed 17 dBm/MHz e.i.r.p., must limit the maximum e.i.r.p. over the frequency band of operation not exceed 30 dBm, and must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power. Compliance to this clause is addressed via submission of an attestation following Appendix B of KDB 987594 D01 v01r03.
- 5) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is "UNII Automation," Version 4.7.
- 6) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is "Chamber Automation," Version 1.3.1.

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 238
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 15 01 238
© 2023 ELEMENT			V 9.0 02/01/2019

7.2 26dB Bandwidth Measurement – 802.11a/ax

2.1049, 15.407(a)(10)

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C KDB 987594 D02 v01r01

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

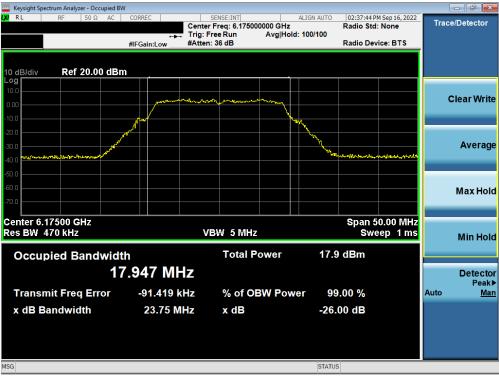
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

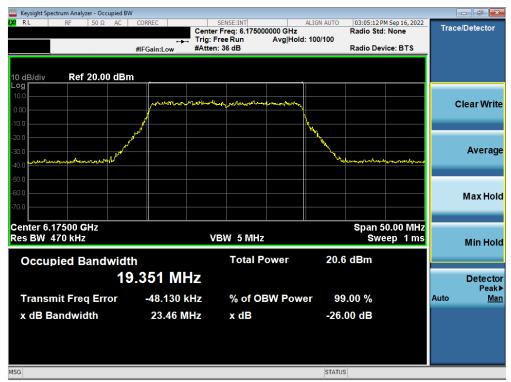

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 229
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 16 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

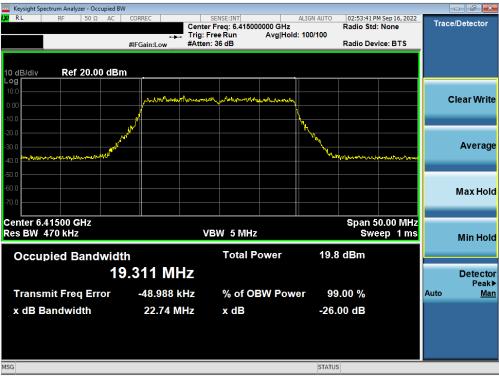
MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 5)

Plot 7-1. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 2)

Plot 7-2. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 17 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 17 of 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019


Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 93)

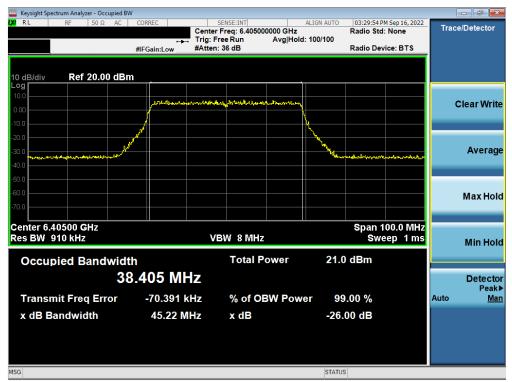

Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 5) - Ch. 2)

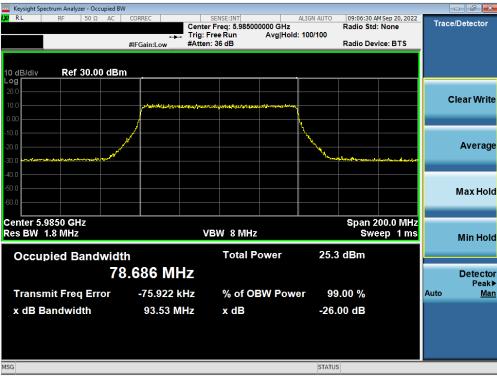
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 18 of 238
© 2023 ELEMENT			V 9.0 02/01/2019


Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 5) – Ch. 45)

Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 5) - Ch. 93)

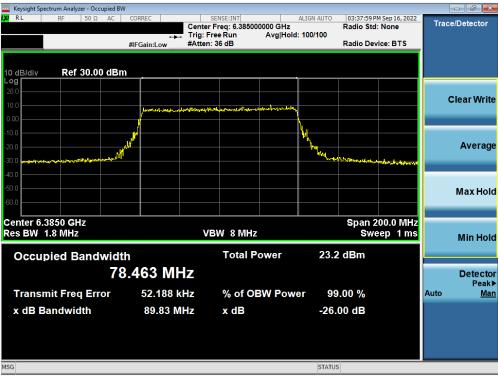
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 19 of 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019


Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 5) – Ch. 3)


Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 5) - Ch. 43)

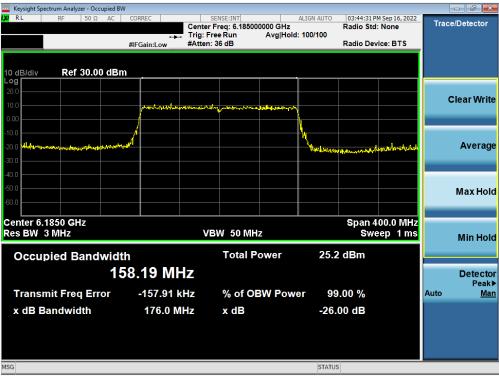
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 00 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 20 of 238
© 2023 ELEMENT			V 9.0 02/01/2019


Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 5) – Ch. 91)


Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 7)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 04 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 21 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 39)


Plot 7-12. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 87)

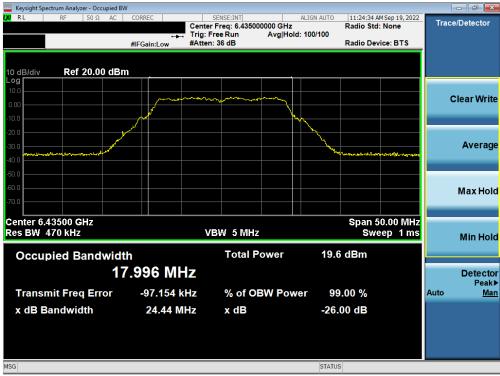
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	D
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 22 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occupied B	W							- 🗗 🗙
LX/RL RF 50Ω AC	CORREC	SENSE:INT		ALIGN AUTO	03:41:01 P	M Sep 16, 2022	Trac	e/Detector
		Frig: Free Run	Avg Hold:	100/100				
	#IFGain:Low #	Atten: 36 dB			Radio Dev	rice: BTS		
10 dB/div Ref 30.00 dB	m							
20.0								
							(Clear Write
10.0	leaderroughted	and and and a provident and and and and and and and a second	am have been					
0.00				1				
-10.0	- 100 - 100			ب				
-20.0 Methoday Marine Marine Marine Marine	Jun Ir			Harroward	-	and we have been a start		Average
-30.0								
-40.0								
-50.0								Max Hold
-60.0								Maxilolu
Center 6.0250 GHz						00.0 MHz		
Res BW 3 MHz		VBW 50 MH	Z		SWG	eep 1 ms		Min Hold
Occupied Bandwid	th	Total P	ower	25.0	dBm			
				20.0	abiii			
1	57.80 MHz	2						Detector
Transmit Freq Error	-48.075 kH	z % of O	3W Powe	er 99	.00 %		Auto	Peak▶ Man
x dB Bandwidth	177.1 MH	z xdB		-26.0	00 dB			
MSG				STATUS				

Plot 7-13. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 5) - Ch. 15)

Plot 7-14. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 5) - Ch. 47)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 23 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

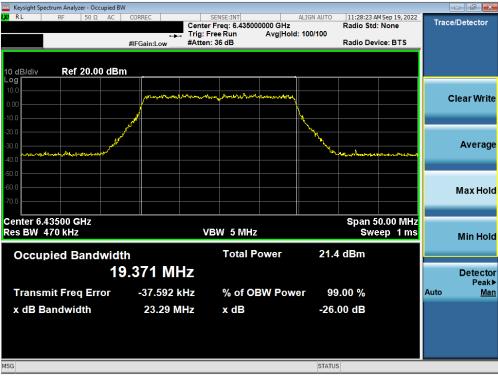

🔤 Keysight Spectrum Analyzer - Occupied I					
LXI RL RF 50Ω AC	CORREC	SENSE:INT Center Freg: 6.345000		03:51:01 PM Sep 16, 2022 Radio Std: None	Trace/Detector
		Trig: Free Run	Avg Hold: 100/100	Radio Sta. None	
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS	-
10 dB/div Ref 30.00 dB	m				
20.0					
					Clear Write
10.0	Water mound	yondadatarata pentatatangalar	- Called - Marine		
0.00			1		
-10.0			<u> </u>		
-20.0 contractor contractor about the	للمبلي		Strange of the second s	wanter and a state of the state	Average
-30.0					
-40.0					
-50.0					Max Hold
-60.0					Muxiloid
Center 6.3450 GHz				Span 400.0 MHz	
Res BW 3 MHz		VBW 50 MH:	2	Sweep 1 ms	Min Hold
Occupied Bandwid	lth	Total Po	ower 26	.2 dBm	
			20		
1	58.81 MH	Z			Detector Peak►
Transmit Freq Error	199.05 kl	Hz % of OF	W Power 9	9.00 %	Auto Man
· · · ·					
x dB Bandwidth	178.0 MH	Hz xdB	-26	5.00 dB	
MSG			STAT	US	

Plot 7-15. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 5) - Ch. 79)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 222
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 24 of 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019

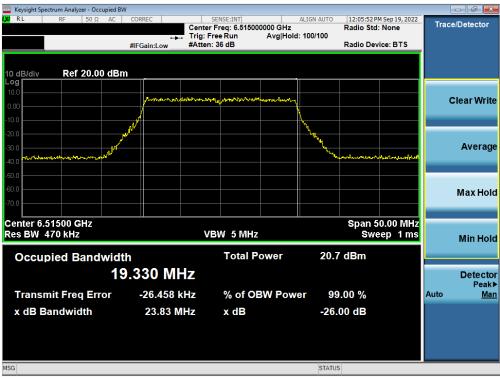
MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 6)

Plot 7-16. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 97)


Plot 7-17. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 105)

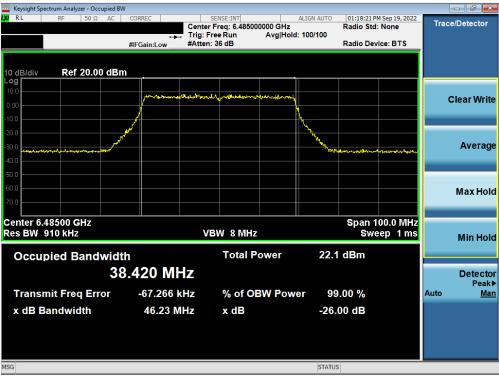
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 25 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-18. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 113)


Plot 7-19. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 6) – Ch. 97)

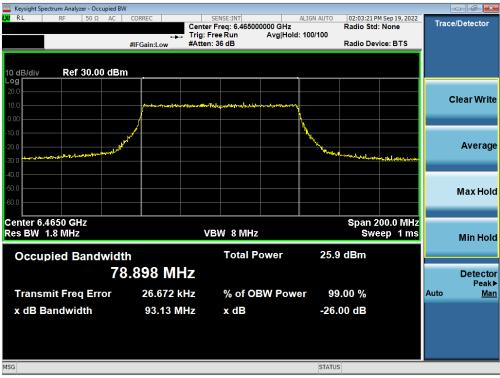
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 26 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

Plot 7-20. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 6) - Ch. 105)


Plot 7-21. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 6) - Ch. 113)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 27 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-22. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 6) - Ch. 99)


Plot 7-23. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 6) - Ch. 107)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 28 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-24. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 6) - Ch. 115)

Plot 7-25. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 6) - Ch. 103)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 000	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 29 of 238	
© 2023 ELEMENT V 9.0 02/01/2019				

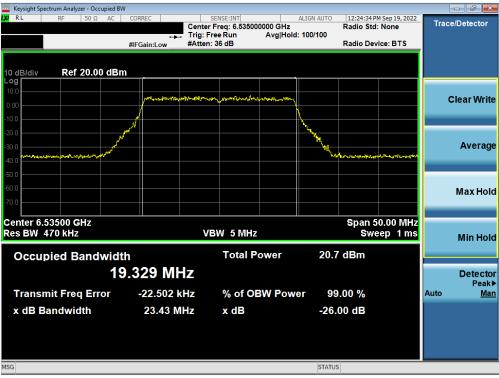

🔤 Keysight Spectrum Analyzer - Occupied					
LXIRL RF 50Ω AC		SENSE:INT Center Freg: 6.505000	ALIGN AUTO	02:24:54 PM Sep 19, 2022 Radio Std: None	Trace/Detector
	- -	Trig: Free Run	Avg Hold: 100/100		
	#IFGain:Low	#Atten: 36 dB		Radio Device: BTS	
10 dB/div Ref 30.00 dE	3m				
20.0					
10.0	Alternative				Clear Write
0.00		Y			
-10.0	_/		\		
-20.0 million market weeks on the			h William	and the man and the states	Average
-30.0					J
-40.0					
-50.0					
-60.0					Max Hold
Center 6.5050 GHz				Span 400.0 MHz	
Res BW 3 MHz		VBW 50 MH:	2	Sweep 1 ms	Min Hold
Occupied Bandwid	dth	Total Po	ower 26 f	i dBm	
1	58.47 MH	Z			Detector Peak▶
Transmit Freq Error	65.424 k⊦	z % of OE	W Power 99	.00 %	Auto <u>Man</u>
x dB Bandwidth	177.7 MF		26	00 dB	
			-20.	UU UB	
				-	
MSG			STATUS	5	

Plot 7-26. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 6) - Ch. 111)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 30 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

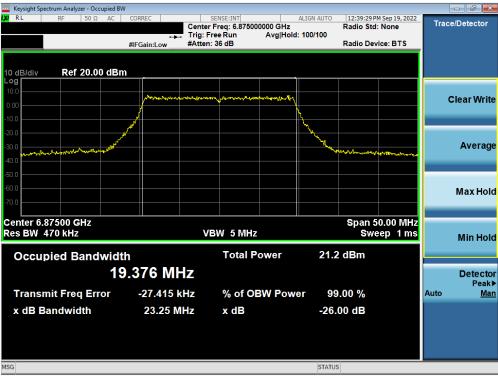
MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 7)


Plot 7-27. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 7) – Ch. 117)

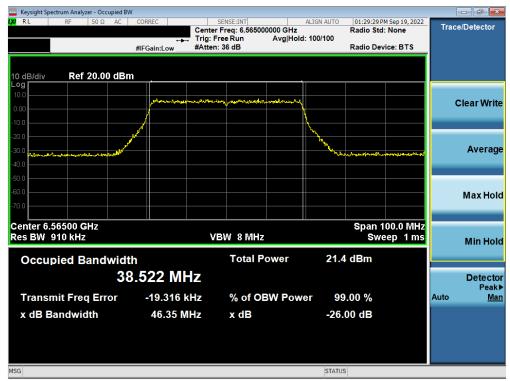

Plot 7-28. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 149)

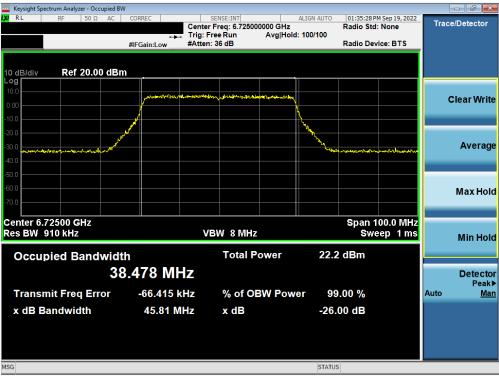
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 24 af 222
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 31 of 238
© 2023 ELEMENT	•	•	V 9.0 02/01/2019

Plot 7-29. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 185)


Plot 7-30. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 7) - Ch. 117)

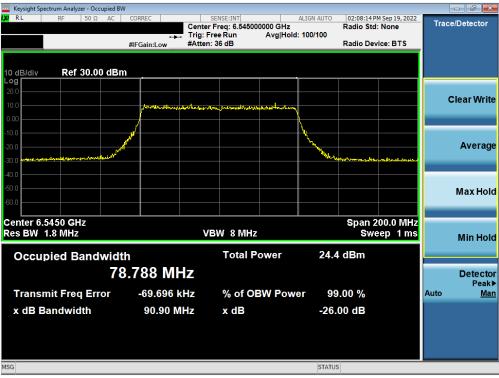
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 32 of 238
© 2023 ELEMENT			V 9.0 02/01/2019


Plot 7-31. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 7) - Ch. 149)


Plot 7-32. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 7) – Ch. 185)

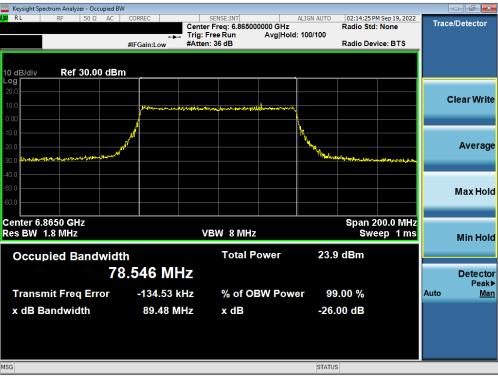
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 33 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019


Plot 7-33. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 7) - Ch. 123)


Plot 7-34. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 7) – Ch. 155)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 34 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-35. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 7) - Ch. 179)


Plot 7-36. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 7) - Ch. 119)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 35 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

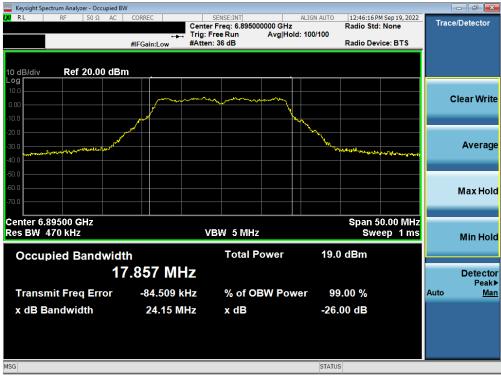
Plot 7-37. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 7) - Ch. 151)


Plot 7-38. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 7) – Ch. 183)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 36 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occu	pied BW									
<mark>LX/</mark> RL RF 50 Ω	AC COR	REC	Center F	NSE:INT req: 6.66500	0000 GHz	ALIGN AUTO	02:29:01 P Radio Std	M Sep 19, 2022 : None	Trac	e/Detector
	#IFC	Gain:Low	Trig: Fre #Atten: 3		Avg Hold	: 100/100	Radio Dev	vice: BTS		
10 dB/div Ref 30.00	dBm		1				1			
20.0										
10.0		meannlash	abran sharman	er-mession haven						Clear Write
0.00	/					h				
-10.0	, yr					X.		and the second state of the second		Average
-20.0 <mark>when the many way way was a start way was a start way was a start was a</mark>	alista hait					White	And the state of t	and here a second second		Average
-40.0										
-50.0										Max Hold
-60.0										Maxilola
Center 6.6650 GHz							Snan 4	00.0 MHz		
Res BW 3 MHz			VBI	N 50 MH	z			eep 1 ms		Min Hold
Occupied Bandy	width			Total P	ower	26.7	dBm			
		05 MI	1-7			2.011				Detector
										Peak
Transmit Freq Erro	or	-369	Hz	% of OE	BW Pow	er 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth		177.3 N	IHz	x dB		-26.	00 dB			
MSG						STATUS	;			

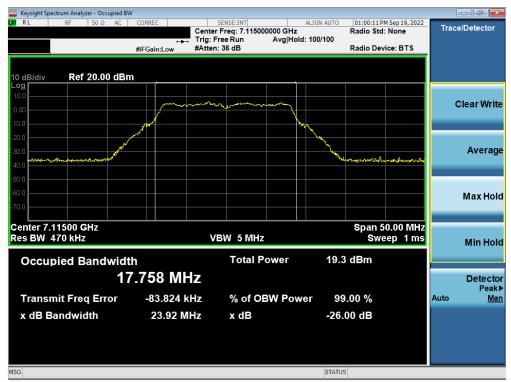
Plot 7-39. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 7) - Ch. 143)

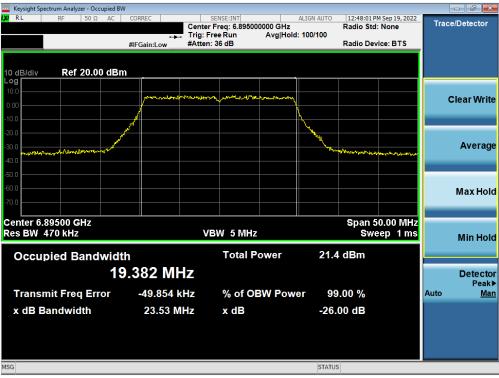


Plot 7-40. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 7) - Ch. 175)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 37 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

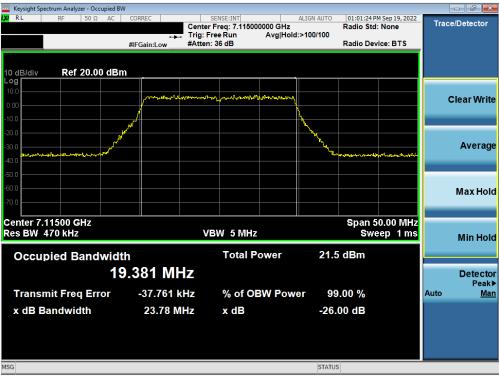
MIMO Antenna-1 26 dB Bandwidth Measurements - (UNII Band 8)


Plot 7-41. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 8) - Ch. 189)


Plot 7-42. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 8) - Ch. 209)

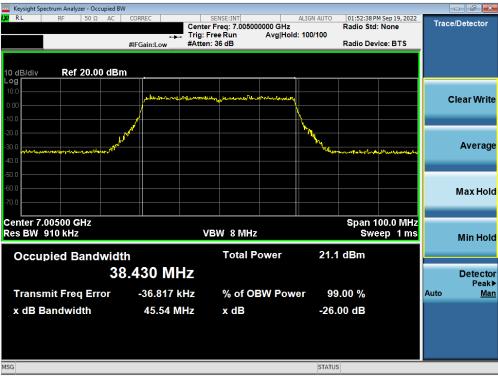
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 38 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-43. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11a (UNII Band 8) - Ch. 233)


Plot 7-44. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 8) - Ch. 189)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 39 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-45. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 8) - Ch. 209)

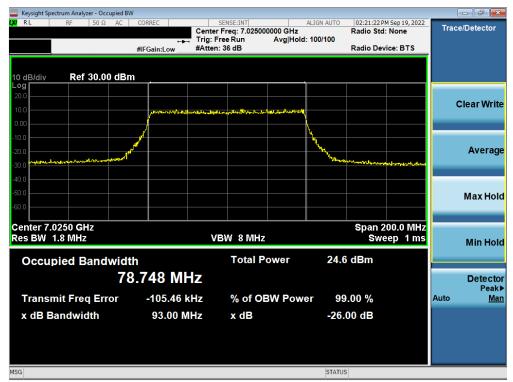

Plot 7-46. 26dB Bandwidth Plot MIMO ANT1 (20MHz 802.11ax (UNII Band 8) - Ch. 233)

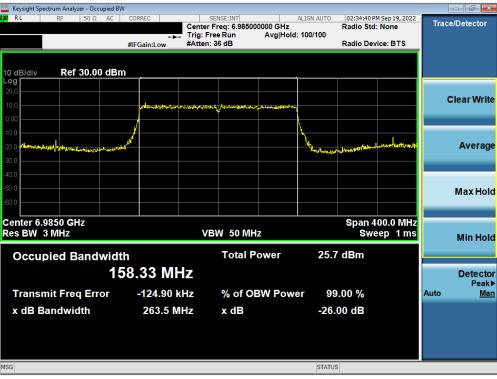
FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 40 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019


Plot 7-47. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 8) - Ch. 187)

Plot 7-48. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 8) - Ch. 211)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	D 11 (000	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 41 of 238	
© 2023 ELEMENT			V 9.0 02/01/2019	


Plot 7-49. 26dB Bandwidth Plot MIMO ANT1 (40MHz 802.11ax (UNII Band 8) - Ch. 227)


Plot 7-50. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 8) - Ch. 199)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 42 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

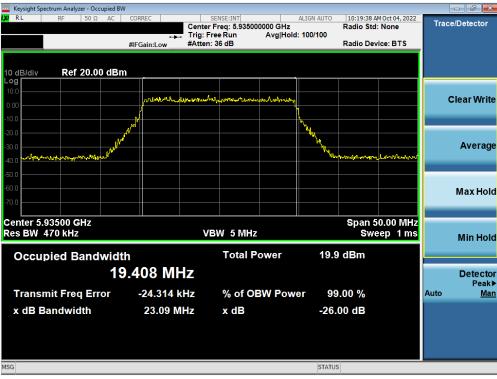
Plot 7-51. 26dB Bandwidth Plot MIMO ANT1 (80MHz 802.11ax (UNII Band 8) - Ch. 215)

Plot 7-52. 26dB Bandwidth Plot MIMO ANT1 (160MHz 802.11ax (UNII Band 8) - Ch. 207)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 43 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 5)

Plot 7-53. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 2)


Plot 7-54. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 45)

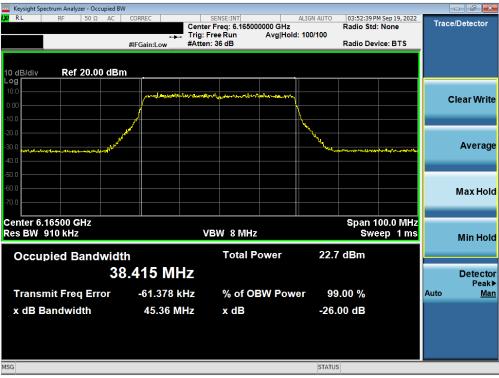
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 at 020	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 44 of 238	
© 2023 ELEMENT	•	·	V 9.0 02/01/2019	

Plot 7-55. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 5) – Ch. 93)

Plot 7-56. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 5) - Ch. 2)

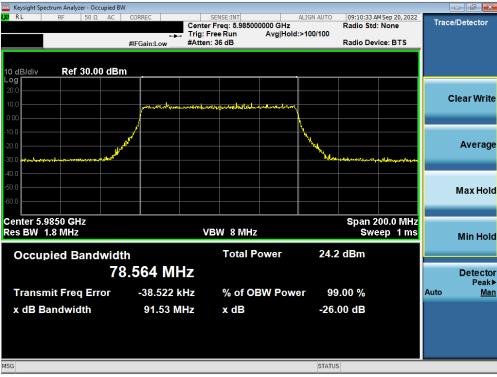
FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 45 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 45 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-57. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 5) - Ch. 45)


Plot 7-58. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 5) - Ch. 93)

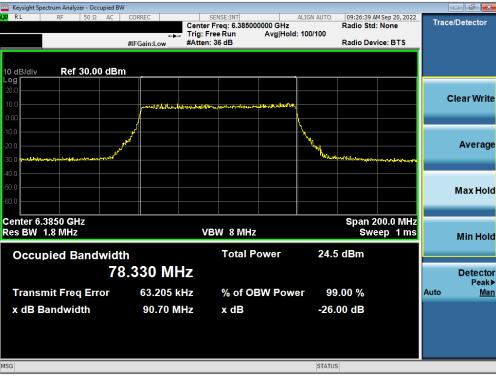
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	D 40 (000	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 46 of 238	
© 2023 ELEMENT			V 9.0 02/01/2019	

Plot 7-59. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 5) – Ch. 3)


Plot 7-60. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 5) - Ch. 43)

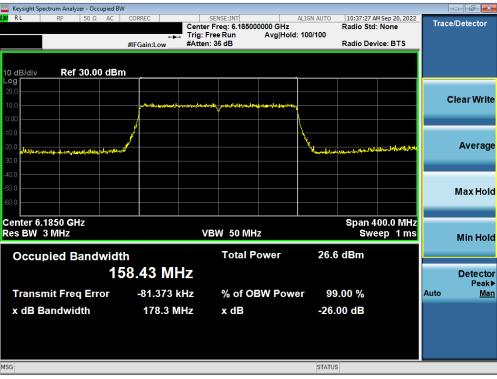
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 47 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 47 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-61. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 5) - Ch. 91)


Plot 7-62. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 5) - Ch. 7)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 000		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 48 of 238		
© 2023 ELEMENT			V 9.0 02/01/2019		

Plot 7-63. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 5) - Ch. 39)


Plot 7-64. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 5) - Ch. 87)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 000		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 49 of 238		
© 2023 ELEMENT		·	V 9.0 02/01/2019		

🔤 Keysight Spectrum Analyzer	- Occupied BW									- 6 ×
🗶 RL RF S	50 Ω AC COI	RREC	Center F	NSE:INT req: 6.02500		ALIGN AUTO	10:33:24 A Radio Std	M Sep 20, 2022 : None	Trac	e/Detector
	#IF	⊶ Gain:Low	#Atten: 3		Avg Hold	. 100/100	Radio Dev	rice: BTS		
10 dB/div Ref 3	0.00 dBm					,				
20.0										
10.0		, alanananananana	mounderstan	and the second	Marian					Clear Write
0.00						<u> </u>				_
-10.0	/					<i>کر</i>				
-20.0							المستوابطي ومعارية	a walter and		Average
-30.0										
-40.0										
-50.0										Max Hold
-60.0										Maxilola
Center 6.0250 GHz Res BW 3 MHz			VB	N 50 MH	z		Span 4 Swe	00.0 MHz ep 1 ms		Min Hold
Occupied Ba	ndwidth			Total P	ower	27.5	5 dBm			
		06 MI	7							Detector
	100.		12							Peak ►
Transmit Freq	Error	62.800 k	Hz	% of OE	BW Pow	er 99	.00 %		Auto	<u>Man</u>
x dB Bandwidt	h	177.7 N	IHz	x dB		-26.	00 dB			
MSG						STATUS	6			

Plot 7-65. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 5) - Ch. 15)

Plot 7-66. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 5) - Ch. 47)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 50 of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 50 of 238		
© 2023 ELEMENT	•	·	V 9.0 02/01/2019		

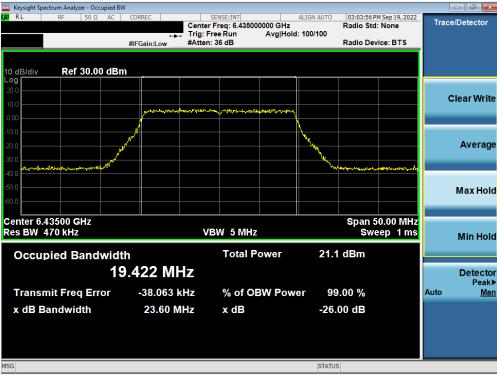

🔤 Keysight Spe			•									[- 0 ×
LXI RL	RF	50 Ω	AC	CORREC			ENSE:INT Freq: 6.3450	00000 GHz	ALIGN AUTO	04:01:08 P	M Sep 20, 2022	Trac	e/Detector
					-+-	Trig: Fr	ee Run		l: 100/100				
				#IFGain:	Low	#Atten:	36 dB			Radio Dev	/ice: BTS		
10 dB/div Log	Ref	30.00	dBm						·				
20.0													
10.0				a data	a lag and the state of the stat	مواسور	الموالي والمريمين الم	antoroplation	.			(Clear Write
0.00				_									
-10.0				_/					<u>h</u>				
-20.0	11 the states		. Mar	× _					Manhata	a da fast da suda fast da	Mar Martin		Average
-30.0	114	*******											Ŭ
-40.0													
-50.0													Maxilald
-60.0													Max Hold
Center 6.3		z									00.0 MHz		
Res BW 3	3 IVIHZ					VE	SW 50 MI	IZ		SW	eep 1 ms		Min Hold
Occup	hied B	and	width	•			Total F	ower	25.9) dBm			
				8.13		J							Detector
			15	o. I J		12							Detector Peak▶
Transn	nit Fred	j Err o	or	69.	816 k	Hz	% of O	BW Pow	er 99	.00 %		Auto	Man
x dB B	andwid	lth		17	6.7 M	Hz	x dB		-26.	00 dB			
MSG									STATU	3			
									0.1410.				

Plot 7-67. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 5) - Ch. 79)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 222		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 51 of 238		
© 2023 ELEMENT			V 9.0 02/01/2019		

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 6)

Plot 7-68. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 6) - Ch. 97)


Plot 7-69. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 6) - Ch. 105)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:	Dama 50 of 000			
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 52 of 238			
© 2023 ELEMENT	•		V 9.0 02/01/2019			

Plot 7-70. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 6) - Ch. 113)

Plot 7-71. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 6) - Ch. 97)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 50 of 000		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 53 of 238		
© 2023 ELEMENT		·	V 9.0 02/01/2019		

Plot 7-72. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 6) - Ch. 105)

Plot 7-73. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 6) - Ch. 113)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 54 of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 54 of 238		
© 2023 ELEMENT	•	·	V 9.0 02/01/2019		

Plot 7-74. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 6) - Ch. 99)


Plot 7-75. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 6) - Ch. 107)

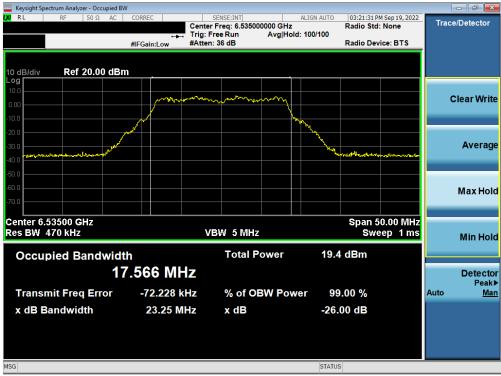
FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage FE of 220		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 55 of 238		
© 2023 ELEMENT	•		V 9.0 02/01/2019		

Plot 7-76. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 6) - Ch. 115)

Plot 7-77. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 6) - Ch. 103)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dawa 50 at 000		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 56 of 238		
© 2023 ELEMENT		·	V 9.0 02/01/2019		

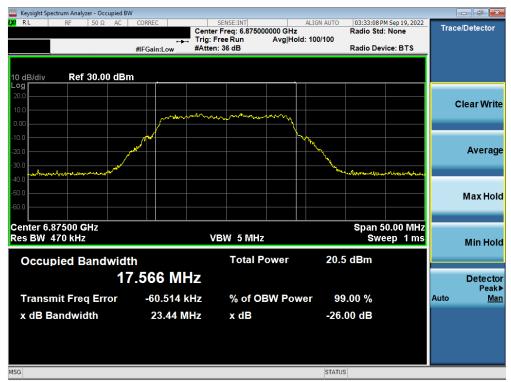
🔤 Keysight Spectrum Analyzer - Occup	pied BW									
LXI RL RF 50 Ω	AC CORR	EC		ISE:INT eq: 6.50500		ALIGN AUTO	10:57:00 A Radio Std	M Sep 20, 2022	Trac	e/Detector
			Trig: Free	Run	Avg Hold	: 100/100				
	#IFGa	ain:Low	#Atten: 36	6 dB			Radio Dev	/ice: BTS		
10 dB/div Ref 30.00	dBm									
20.0										
10.0	<u>بر</u>		سيستسمع	manusal	and a state				C	lear Write
0.00										
-10.0	/					\ <u></u>		- No. of the set		
-20.0	Jule mille					June and a	water farther silly and	New York (Second		Average
-30.0										Ŭ
-40.0										
-50.0										Maylald
-60.0										Max Hold
Center 6.5050 GHz								00.0 MHz		
Res BW 3 MHz			VBV	V 50 MH	Z		SWG	eep 1 ms		Min Hold
Occupied Bandw	vidth			Total P	ower	27.4	dBm			
Cooupred Barran			-							
	159.1	12 MH	Z							Detector Peak▶
Transmit Freq Erro	or 1	99.77 kl	Hz	% of OE	SW Powe	er 99	.00 %		Auto	Man
x dB Bandwidth		287.0 MI	47	x dB		-26	00 dB			
		201.0 Mi	12	A UD		-20.	oo ub			
MSG						STATUS				
mou						STATUS				


Plot 7-78. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 6) - Ch. 111)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege EZ of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 57 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 7)


Plot 7-79. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 117)

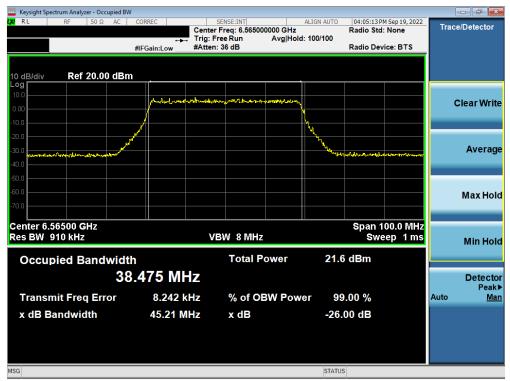
Plot 7-80. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 149)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 50 at 020
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 58 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-81. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 185)

Plot 7-82. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 7) - Ch. 117)

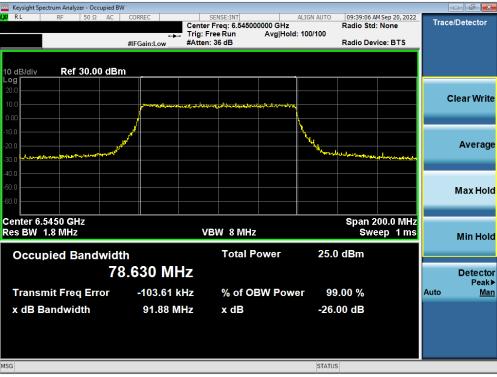
FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 59 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-83. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 7) - Ch. 149)

Plot 7-84. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 7) - Ch. 185)

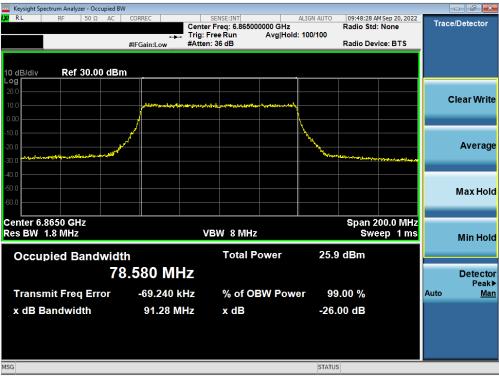
FCC: A3LSMS918JPN		Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 000			
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 60 of 238			
© 2023 ELEMENT V 9.0 02/01/2019						

Plot 7-85. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 7) - Ch. 123)


Plot 7-86. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 7) – Ch. 155)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dawa (4 at 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 61 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019

Plot 7-87. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 7) - Ch. 179)


Plot 7-88. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 7) – Ch. 119)

FCC: A3LSMS918JPN		Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 60 of 000			
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 62 of 238			
© 2023 ELEMENT V 9.0 02/01/2019						

	ysight Spectrun	n Analyzer - Oc	cupied BW									- 6 ×
l,XI R	L F	RF 50 Ω	AC COI	RREC	Center F	NSE:INT req: 6.70500		ALIGN AUTO	09:44:12 A Radio Std	M Sep 20, 2022 : None	Trac	e/Detector
			#IF	⊶ Gain:Low	Trig: Fre #Atten: 3		Avg Hold	1: 100/100	Radio Dev	vice: BTS		
10 d Log	B/div	Ref 30.0	0 dBm	1								
20.0												
10.0				,	Vounstantagelita		menter					Clear Write
0.00			ļ ,									
-10.0								NN				
-20.0	<u> </u>		. All and a second					- Man				Average
-30.0	mound	- Alman Marchen	(When t			_	
-40.0												
-50.0												Max Hold
-60.0												
Cer	ter 6.705	0 GHz							Span 2	00.0 MHz		
Res	BW 1.8	MHz			VB	W 8 MHz				eep 1 ms		Min Hold
6	Occupie	d Band	width			Total P	ower	25 8	3 dBm			
	Coupie	u Danu		52 MI		i o cui i		2.011				-
			10.0	53 MI	ΠZ							Detector Peak►
Т	ransmit	Freq Er	ror	-35.648	kHz	% of O	BW Pow	er 99	9.00 %		Auto	Man
x	dB Ban	dwidth		90.62 N	١Hz	x dB		-26.	00 dB			
MSG								STATU	s			

Plot 7-89. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 7) - Ch. 151)

Plot 7-90. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 7) - Ch. 183)

FCC: A3LSMS918JPN		Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 62 af 929			
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 63 of 238			
© 2023 ELEMENT V 9.0 02/01/2019						

🔤 Keysight Spectrum Analyzer - Occi	upied BW									- 6 ×
LXI RL RF 50Ω	AC COR	REC		NSE:INT reg: 6.66500		ALIGN AUTO	11:04:42 A Radio Std	M Sep 20, 2022	Trac	e/Detector
			. Trig: Fre	e Run	Avg Hold	I: 100/100				
	#IFC	Gain:Low	#Atten: 3	6 dB			Radio Dev	rice: BTS		
10 dB/div Ref 30.00) dBm					•				
20.0										
10.0		and an or the start of the	a na anna an	and	mounda					Clear Write
0.00										_
-10.0	کر					<u>\</u>				
						Ne alle	Junimalian	understandig		Average
-20.0 Televine statistic and selection of the selection o	Contraction of the local division of the loc									riverage
-40.0										
-50.0										Max Hold
-60.0									_	_
Center 6.6650 GHz			1	1			Span 4	00.0 MHz		
Res BW 3 MHz			VB	W 50 MH	z			eep 1 ms		Min Hold
				Tetel D		27.0	d D			
Occupied Band				Total P	ower	21.0	dBm			
	158.	33 MI	z							Detector
Transmit Freq Erre	or	281.09		% of OF	3W Pow	or 00	.00 %		Auto	Peak▶ Man
	UI								Auto	IVIAII
x dB Bandwidth		234.1 N	IHz	x dB		-26.	00 dB			
MSG						STATUS	3			

Plot 7-91. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 7) - Ch. 143)

Plot 7-92. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 7) - Ch. 175)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 228
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 64 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

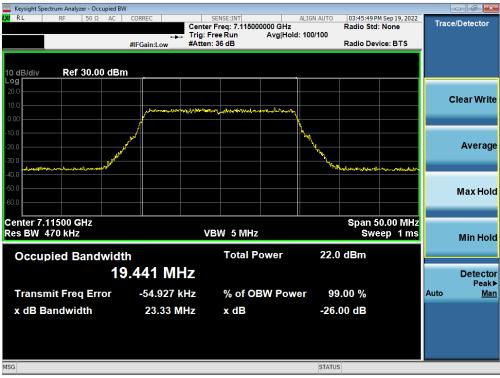
MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 8)

Plot 7-93. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 8) – Ch. 189)

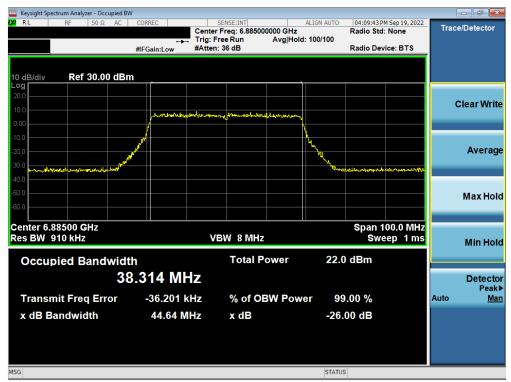
Plot 7-94. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 8) - Ch. 209)

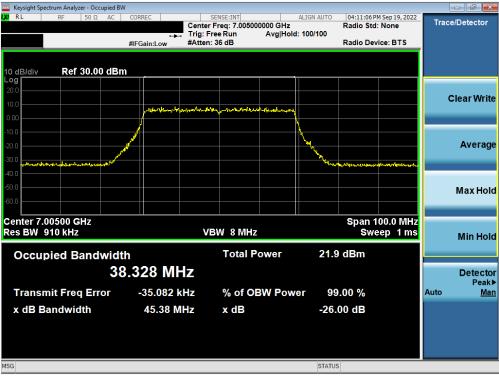
FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 at 020
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 65 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-95. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11a (UNII Band 8) - Ch. 233)


Plot 7-96. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 8) - Ch. 189)

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 66 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 66 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019


Plot 7-97. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 8) - Ch. 209)


Plot 7-98. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11ax (UNII Band 8) - Ch. 233)

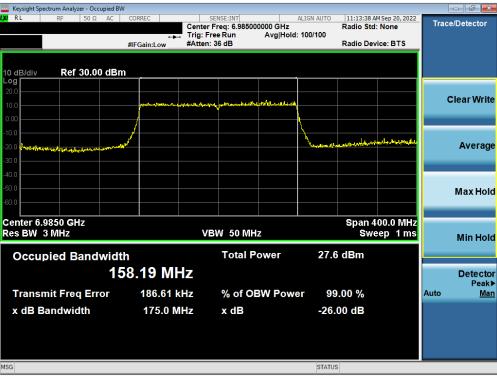
FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	D 07 (000		
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 67 of 238		
© 2023 ELEMENT		·	V 9.0 02/01/2019		


Plot 7-99. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 8) - Ch. 187)

Plot 7-100. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 8) - Ch. 211)

FCC: A3LSMS918JPN		Approved by: Technical Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 220				
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 68 of 238				
© 2023 ELEMENT V 9.0 02/01/2019							

Plot 7-101. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11ax (UNII Band 8) - Ch. 227)


Plot 7-102. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 8) - Ch. 199)

FCC: A3LSMS918JPN		Approved by: Technical Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dage CO of 220				
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 69 of 238				
© 2023 ELEMENT V 9.0 02/01/2019							

	eysight Spectrum	Analyzer - Oco	cupied BW									- 6 ×
l XI F	L R	F 50 Ω	AC COF	RREC	Center F	NSE:INT req: 7.02500	0000 GHz Avg Hold	ALIGN AUTO	10:25:15 A Radio Std	M Sep 20, 2022 : None	Trac	ce/Detector
			#IF	Gain:Low	#Atten: 3		Avginoid	. 100/100	Radio Dev	ice: BTS		
10 c Log		Ref 30.0	0 dBm									
20.0												
10.0				مهجروالصليهم	and and an and and an an an an	والمعالية والمراجع المعالي	and a set of the set of the set					Clear Write
0.00			ļ,					l				
-10.0			<u>/</u>					\ <u>+</u>				
-20.0								- What				Average
-30.0	and always and a superior	and the second	e Martin					~~~J	warden theme	hateronatistanol		
-40.0												
-50.0												Max Hold
-60.0												
Cer	nter 7.0250	GH7							Snan 2	00.0 MHz		
	BW 1.8				VB	W 8 MHz			Swe	ep 1 ms		Min Hold
C	Occupie	d Band	width			Total P	ower	25.	7 dBm			
				43 MI	47							Detector
												Peak
T	ransmit l	Freq Err	or	41.473	kHz	% of O	BW Pow	er 99	9.00 %		Auto	<u>Man</u>
x	dB Band	lwidth		91.77 N	١Hz	x dB		-26.	00 dB			
MSG								STATU	s			

Plot 7-103. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11ax (UNII Band 8) - Ch. 215)

Plot 7-104. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11ax (UNII Band 8) - Ch. 207)

FCC: A3LSMS918JPN			Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 70 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 70 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

7.3 UNII Output Power Measurement – 802.11a/ax § 2.1046, §15.407(a)(11), §15.407(a)(8)

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm. For client devices operating under the control of a standard power access point, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

1. Compliance for this device while operating under the control of either an indoor low power access point or a standard power access point is demonstrated by applying the tighter low power indoor access point limit of 24dBm e.i.r.p. for both cases.

FCC: A3LSMS918JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 71 of 220	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 71 of 238	
© 2023 ELEMENT	•	•	V 9.0 02/01/2019	

MIMO Maximum Conducted Output Power Measurements

		6GHz (20MHz) 802.11a Conducted Power [dBm]								
width)	Freq [MHz]	Channel	ANT1	ANT2	MIMO	Directional Ant. Gain [dBi]	Max e.i.r.p [dBm]	Max e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
Š	5935	2	11.86	11.62	14.75	-2.85	11.90	24.00	-12.10	
ð	6075	25	11.54	11.73	14.64	-2.85	11.79	24.00	-12.21	
	6175	45	11.72	11.44	14.59	-2.85	11.74	24.00	-12.26	
a	6275	65	11.69	11.49	14.60	-2.85	11.75	24.00	-12.25	
B	6415	93	11.52	11.63	14.59	-2.85	11.74	24.00	-12.26	
<u>N</u>	6435	97	11.89	11.52	14.72	-4.72	10.00	24.00	-14.00	
_ <u> </u>	6475	105	11.87	11.67	14.78	-4.72	10.06	24.00	-13.94	
(20M	6515	113	11.96	11.90	14.94	-4.72	10.22	24.00	-13.78	
Q	6535	117	11.96	11.99	14.99	-3.88	11.11	24.00	-12.89	
	6675	145	11.56	11.85	14.72	-3.88	10.84	24.00	-13.16	
N	6695	149	11.47	11.88	14.69	-3.88	10.81	24.00	-13.19	
. .	6875	185	11.69	11.93	14.82	-3.88	10.94	24.00	-13.06	
U	6895	189	11.52	11.85	14.70	-2.75	11.95	24.00	-12.05	
Õ	6995	209	11.34	11.52	14.44	-2.75	11.69	24.00	-12.31	
	7115	233	11.89	11.94	14.93	-2.75	12.18	24.00	-11.82	

Table 7-2. MIMO 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

	6GHz (20MHz) 802.11ax Conducted Power [dBm]								
idth)	Freq [MHz]	Channel	ANT1	ANT2	MIMO	Directional Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
3	5935	2	11.89	11.75	14.83	-2.85	11.98	24.00	-12.02
Ō	6075	25	11.76	11.69	14.74	-2.85	11.89	24.00	-12.11
E	6175	45	11.85	11.59	14.73	-2.85	11.88	24.00	-12.12
Ba	6275	65	11.86	11.67	14.78	-2.85	11.93	24.00	-12.07
	6415	93	11.78	11.32	14.57	-2.85	11.72	24.00	-12.28
N	6435	97	11.74	11.41	14.59	-4.72	9.87	24.00	-14.13
	6475	105	11.69	11.32	14.52	-4.72	9.80	24.00	-14.20
Σ	6515	113	11.78	11.99	14.90	-4.72	10.18	24.00	-13.82
(20	6535	117	11.69	11.89	14.80	-3.88	10.92	24.00	-13.08
	6675	145	11.38	11.72	14.56	-3.88	10.68	24.00	-13.32
N	6695	149	11.32	11.75	14.55	-3.88	10.67	24.00	-13.33
I. I.	6875	185	11.49	11.79	14.65	-3.88	10.77	24.00	-13.23
U	6895	189	11.32	11.71	14.53	-2.75	11.78	24.00	-12.22
9	6995	209	11.69	11.99	14.85	-2.75	12.10	24.00	-11.90
	7115	233	11.09	11.44	14.28	-2.75	11.53	24.00	-12.47

Table 7-3. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC: A3LSMS918JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 72 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

	6GHz (40MHz) 802.11ax Conducted Power [dBm]								
width)	Freq [MHz]	Channel	ANT1	ANT2	MIMO	Directional Ant. Gain [dBi]	Max e.i.r.p [dBm]	Max e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
Σ	5965	3	11.57	11.31	14.45	-2.85	11.60	24.00	-12.40
þ	6085	27	11.41	11.81	14.62	-2.85	11.77	24.00	-12.23
	6165	43	11.36	11.59	14.49	-2.85	11.64	24.00	-12.36
a	6285	67	11.67	11.22	14.46	-2.85	11.61	24.00	-12.39
Ш	6405	91	11.98	11.91	14.96	-2.85	12.11	24.00	-11.89
<u>N</u>	6445	99	11.71	11.18	14.46	-4.72	9.74	24.00	-14.26
	6485	107	11.81	11.23	14.54	-4.72	9.82	24.00	-14.18
Σ	6525	115	11.57	11.73	14.66	-4.72	9.94	24.00	-14.06
(40	6565	123	11.50	11.84	14.68	-3.88	10.80	24.00	-13.20
Z	6685	147	11.21	11.89	14.57	-3.88	10.69	24.00	-13.31
N	6725	155	11.56	11.93	14.76	-3.88	10.88	24.00	-13.12
I	6845	179	11.62	11.94	14.79	-3.88	10.91	24.00	-13.09
Ċ	6885	187	11.33	11.63	14.49	-2.75	11.74	24.00	-12.26
Ű	7005	211	11.41	11.89	14.67	-2.75	11.92	24.00	-12.08
	7085	227	11.36	11.86	14.63	-2.75	11.88	24.00	-12.12

Table 7-4. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

		6GHz (80MHz) 802.11ax Conducted Power [dBm]								
N	Freq [MHz]	Channel	ANT1	ANT2	MIMO	Directional Ant. Gain [dBi]	Max e.i.r.p [dBm]	Max e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
P C	5985	7	11.82	11.44	14.64	-2.85	11.79	24.00	-12.21	
dth	6065	23	11.48	11.65	14.58	-2.85	11.73	24.00	-12.27	
	6145	39	11.63	11.51	14.58	-2.85	11.73	24.00	-12.27	
(80 wid	6305	71	11.67	11.66	14.68	-2.85	11.83	24.00	-12.17	
$\overline{\mathbf{D}}$	6385	87	11.60	11.53	14.58	-2.85	11.73	24.00	-12.27	
P C	6465	103	11.75	11.40	14.59	-4.72	9.87	24.00	-14.13	
T a	6545	119	11.64	11.66	14.66	-3.88	10.78	24.00	-13.22	
В В В	6705	151	11.19	11.82	14.53	-3.88	10.65	24.00	-13.35	
U	6785	167	11.12	11.48	14.31	-3.88	10.43	24.00	-13.57	
	6865	183	11.15	11.49	14.33	-3.88	10.45	24.00	-13.55	
	6945	199	11.29	11.55	14.43	-2.75	11.68	24.00	-12.32	
	7025	215	11.39	11.81	14.62	-2.75	11.87	24.00	-12.13	

Table 7-5. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

			6GHz	z (160MHz) 80	2.11ax Condu	cted Power [dBm]		
<mark>OMHz</mark> dth)	Freq [MHz]	Channel	ANT1	ANT2	MIMO	Directional Ant. Gain [dBi]	Max e.i.r.p [dBm]	Max e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	6025	15	11.91	11.73	14.83	-2.85	11.98	24.00	-12.02
~ >	6185	47	11.91	11.81	14.87	-2.85	12.02	24.00	-11.98
) z	6345	79	11.61	11.82	14.73	-2.85	11.88	24.00	-12.12
a T	6505	111	11.64	11.89	14.78	-4.72	10.06	24.00	-13.94
<mark>с</mark> п	6665	143	11.44	11.86	14.67	-3.88	10.79	24.00	-13.21
Ö	6825	175	11.48	11.98	14.75	-3.88	10.87	24.00	-13.13
	6985	207	11.44	11.67	14.56	-2.75	11.81	24.00	-12.19
	Table 7			002 11av /	INIII) Movin	num Condu	atad Outpu	+ Dowor	

Table 7-6. MIMO 160MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 72 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 73 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

Sample MIMO Calculation:

At 5935MHz in 802.11a (20MHz BW) mode, the average conducted output power was measured to be 11.86 dBm for Antenna-1 and 11.62 dBm for Antenna-2.

(11.86 dBm + 11.62 dBm) = (15.35 mW + 14.52 mW) = 29.87 mW = 14.75 dBm

Sample Directional Gain Calculation:

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample e.i.r.p. Calculation:

At 5935MHz in 802.11a (20MHz BW) mode, the average MIMO conducted power was calculated to be dBm with directional gain of -2.85 dBi. e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

14.75 dBm + -2.85 dBi = 11.90 dBm

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 74 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

7.4 Maximum Power Spectral Density – 802.11a/ax §15.407(a)(8)

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density for 802.11a/ax.

In the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1megahertz band. For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm/MHz e.i.r.p.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

Figure 7-3. Test Instrument & Measurement Setup

 Compliance for this device while operating under the control of either an indoor low power access point or a standard power access point is demonstrated by applying the tighter low power indoor access point limit of -1dBm/MHz e.i.r.p. for both cases.

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 75 of 222
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 75 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

MIMO Power Spectral Density Measurements

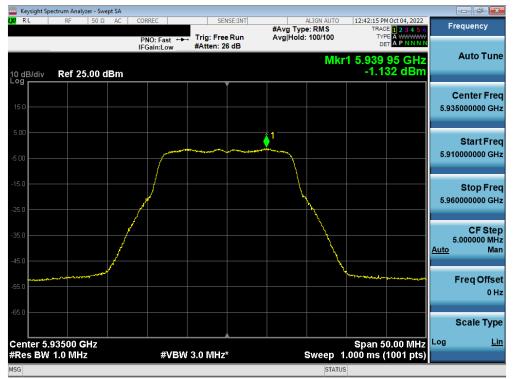
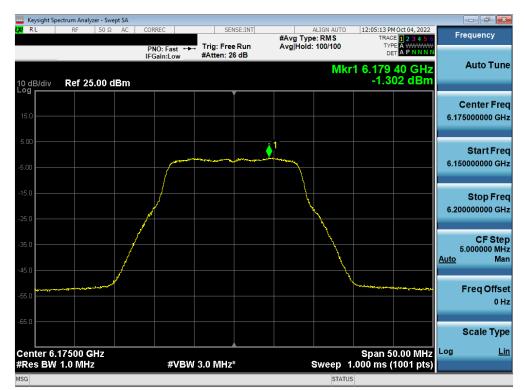
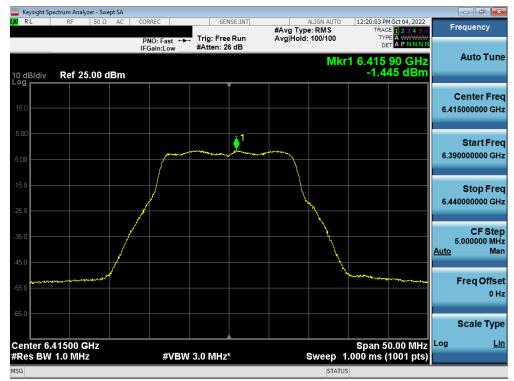

	F		002.11	Antenna-1	Antenna-2	Antonno 1 Colin	Antonio 2 Colo	Summed MIMO	Disastia sal Caia	a i a a Danaita	Max EIRP	. A da marina
	Frequency	Channel	802.11 MODE	Power Density	Power Density		Antenna-2 Gain	Power Density	Directional Gain	e.i.r.p Density	Density	Margin
	[MHz]		INIODE	[dBm]	[dBm]	[dBi]	[dBi]	[dBm/MHz]	[dBi]	[dBm/MHz]	[dBm/MHz]	[dB]
	5935	2	а	-1.13	-1.30	-7.27	-4.65	1.80	-2.85	-1.05	-1	-0.05
	6175	45	а	-1.30	-1.21	-7.27	-4.65	1.75	-2.85	-1.10	-1	-0.10
	6415	93	а	-1.45	-0.93	-7.27	-4.65	1.83	-2.85	-1.02	-1	-0.02
	5935	2	ax (20MHz)	-1.39	-1.85	-7.27	-4.65	1.40	-2.85	-1.46	-1	-0.46
	6175	45	ax (20MHz)	-1.61	-0.87	-7.27	-4.65	1.79	-2.85	-1.06	-1	-0.06
	6415	93	ax (20MHz)	-1.77	-1.27	-7.27	-4.65	1.49	-2.85	-1.36	-1	-0.36
Ŀ	5965	3	ax (40MHz)	-3.38	-3.53	-7.27	-4.65	-0.44	-2.85	-3.30	-1	-2.30
Band	6165	43	ax (40MHz)	-3.73	-2.51	-7.27	-4.65	-0.06	-2.85	-2.91	-1	-1.91
ä	6405	91	ax (40MHz)	-3.60	-2.61	-7.27	-4.65	-0.07	-2.85	-2.92	-1	-1.92
	5985	7	ax (80MHz)	-3.46	-3.53	-7.27	-4.65	-0.48	-2.85	-3.33	-1	-2.33
	6145	39	ax (80MHz)	-3.58	-2.33	-7.27	-4.65	0.10	-2.85	-2.75	-1	-1.75
	6385	87	ax (80MHz)	-7.40	-2.34	-7.27	-4.65	-1.16	-2.85	-4.02	-1	-3.02
	6025	15	ax (160MHz)	-5.25	-4.32	-7.27	-4.65	-1.75	-2.85	-4.60	-1	-3.60
	6185	47	ax (160MHz)	-4.80	-4.35	-7.27	-4.65	-1.56	-2.85	-4.41	-1	-3.41
	6345	79	ax (160MHz)	-5.06	-4.10	-7.27	-4.65	-1.54	-2.85	-4.39	-1	-3.39
	6435	97	а	-0.71	0.06	-9.94	-5.97	2.70	-4.72	-2.02	-1	-1.02
	6475	105	а	-0.87	0.03	-9.94	-5.97	2.61	-4.72	-2.11	-1	-1.11
	6515	113	а	-0.77	-0.05	-9.94	-5.97	2.62	-4.72	-2.10	-1	-1.10
	6435	97	ax (20MHz)	0.14	0.30	-9.94	-5.97	3.23	-4.72	-1.49	-1	-0.49
16	6475	105	ax (20MHz)	-0.11	0.06	-9.94	-5.97	2.99	-4.72	-1.73	-1	-0.73
Band	6515	113	ax (20MHz)	-0.09	0.04	-9.94	-5.97	2.98	-4.72	-1.74	-1	-0.74
μÓ.	6445	99	ax (40MHz)	-2.66	-2.78	-9.94	-5.97	0.29	-4.72	-4.43	-1	-3.43
	6485	107	ax (40MHz)	-2.83	-2.87	-9.94	-5.97	0.16	-4.72	-4.56	-1	-3.56
	6525	115	ax (40MHz)	-2.76	-2.84	-9.94	-5.97	0.21	-4.72	-4.51	-1	-3.51
	6465	103	ax (80MHz)	-2.23	-2.64	-9.94	-5.97	0.58	-4.72	-4.14	-1	-3.14
	6505	111	ax (160MHz)	-4.44	-3.96	-9.94	-5.97	-1.19	-4.72	-5.91	-1	-4.91
	6535	117	а	-0.98	0.08	-7.45	-6.36	2.59	-3.88	-1.29	-1	-0.29
	6695	149	а	-1.92	-0.63	-7.45	-6.36	1.78	-3.88	-2.10	-1	-1.10
	6875	185	а	-1.34	-0.06	-7.45	-6.36	2.36	-3.88	-1.52	-1	-0.52
	6535	117	ax (20MHz)	-0.44	0.05	-7.45	-6.36	2.82	-3.88	-1.06	-1	-0.06
	6695	149	ax (20MHz)	-1.21	-0.25	-7.45	-6.36	2.31	-3.88	-1.57	-1	-0.57
~	6875	185	ax (20MHz)	-1.25	-0.25	-7.45	-6.36	2.29	-3.88	-1.59	-1	-0.59
Band 7	6565	123	ax (40MHz)	-3.98	-3.15	-7.45	-6.36	-0.54	-3.88	-4.41	-1	-3.41
Ba	6725	155	ax (40MHz)	-2.88	-2.16	-7.45	-6.36	0.50	-3.88	-3.37	-1	-2.37
	6845	179	ax (40MHz)	-2.80	-2.02	-7.45	-6.36	0.62	-3.88	-3.26	-1	-2.26
	6545	119	ax (80MHz)	-3.50	-2.74	-7.45	-6.36	-0.09	-3.88	-3.97	-1	-2.97
	6705	151	ax (80MHz)	-3.30	-1.80	-7.45	-6.36	0.53	-3.88	-3.35	-1	-2.35
	6865	183	ax (80MHz)	-3.08	-2.10	-7.45	-6.36	0.45	-3.88	-3.43	-1	-2.43
	6665	143	ax (160MHz)	-4.60	-3.67	-7.45	-6.36	-1.10	-3.88	-4.98	-1	-3.98
	6825	175	ax (160MHz)	-4.64	-3.52	-7.45	-6.36	-1.03	-3.88	-4.91	-1	-3.91
	6895	189	а	-1.89	-0.87	-5.75	-5.78	1.67	-2.75	-1.09	-1	-0.09
	6995	209	а	-1.92	-0.82	-5.75	-5.78	1.67	-2.75	-1.08	-1	-0.08
	7115	233	а	-1.70	-1.04	-5.75	-5.78	1.65	-2.75	-1.10	-1	-0.10
	6895	189	ax (20MHz)	-2.49	-1.99	-5.75	-5.78	0.78	-2.75	-1.97	-1	-0.97
~	6995	209	ax (20MHz)	-2.51	-1.80	-5.75	-5.78	0.87	-2.75	-1.88	-1	-0.88
Band 8	7115	233	ax (20MHz)	-2.32	-1.48	-5.75	-5.78	1.13	-2.75	-1.62	-1	-0.62
Ba	6885	187	ax (40MHz)	-3.08	-2.28	-5.75	-5.78	0.35	-2.75	-2.41	-1	-1.41
	7005	211	ax (40MHz)	-3.15	-2.33	-5.75	-5.78	0.29	-2.75	-2.47	-1	-1.47
	7085	227	ax (40MHz)	-3.03	-2.12	-5.75	-5.78	0.46	-2.75	-2.30	-1	-1.30
	6945	199	ax (80MHz)	-3.26	-2.41	-5.75	-5.78	0.19	-2.75	-2.56	-1	-1.56
	7025	215	ax (80MHz)	-3.11	-2.23	-5.75	-5.78	0.36	-2.75	-2.39	-1	-1.39
	6985	207	ax (160MHz)	-4.79	-3.74	-5.75	-5.78	-1.22	-2.75	-3.98	-1	-2.98

Table 7-7. MIMO e.i.r.p. Conducted Power Spectral Density Measurements

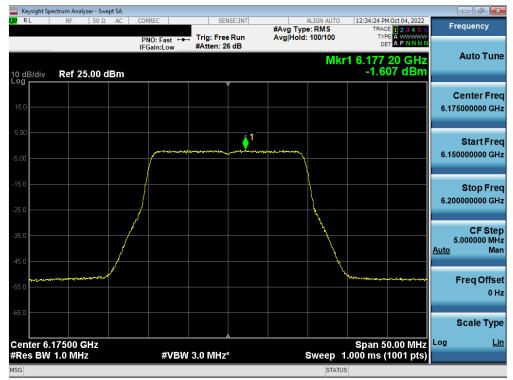

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 76 of 228
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 76 of 238
© 2023 ELEMENT	•	•	V 9.0 02/01/2019

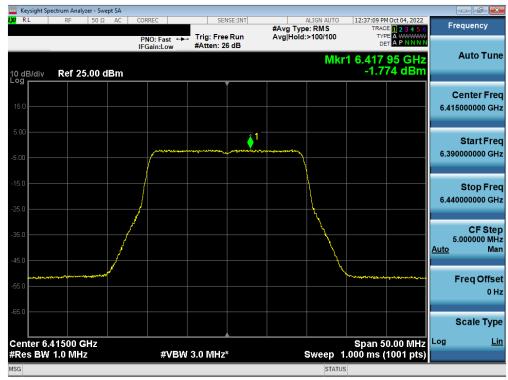
MIMO Antenna-1 Power Spectral Density Measurement - (UNII Band 5)


Plot 7-105. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 2)

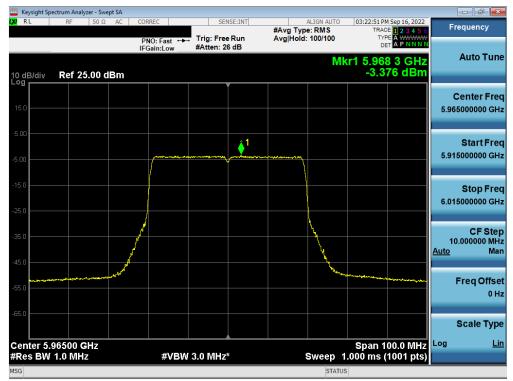
Plot 7-106. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45)

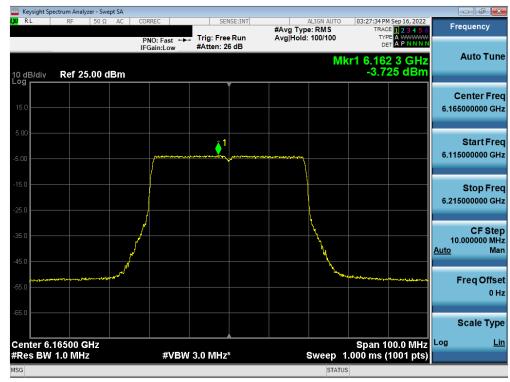
FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 222
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 77 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-107. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 93)

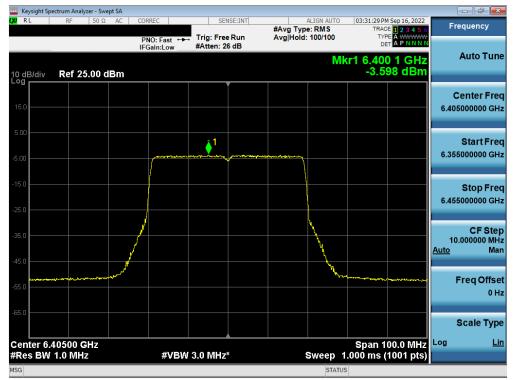

Plot 7-108. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 5) - Ch. 2)

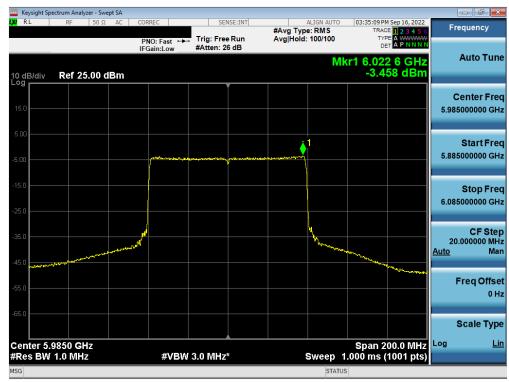
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 000
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 78 of 238
© 2023 ELEMENT		·	V 9.0 02/01/2019


Plot 7-109. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 5) - Ch. 45)


Plot 7-110. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 5) - Ch. 93)

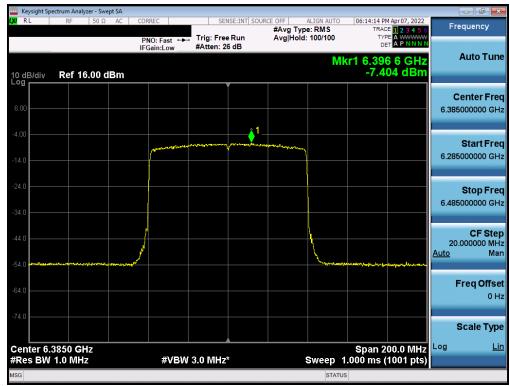
FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 79 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-111. Power Spectral Density Measurement MIMO ANT1 (40MHz 802.11ax (UNII Band 5) - Ch. 3)


Plot 7-112. Power Spectral Density Measurement MIMO ANT1 (40MHz 802.11ax (UNII Band 5) - Ch. 43)

FCC: A3LSMS918JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 80 of 238
© 2023 ELEMENT	•	·	V 9.0 02/01/2019

Plot 7-113. Power Spectral Density Measurement MIMO ANT1 (40MHz 802.11ax (UNII Band 5) - Ch. 91)


Plot 7-114. Power Spectral Density Measurement MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 7)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 81 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-115. Power Spectral Density Measurement MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 39)

Plot 7-116. Power Spectral Density Measurement MIMO ANT1 (80MHz 802.11ax (UNII Band 5) - Ch. 87)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dawa 00 at 000	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 82 of 238	
© 2023 ELEMENT	•		V 9.0 02/01/2019	

Plot 7-117. Power Spectral Density Measurement MIMO ANT1 (160MHz 802.11ax (UNII Band 5) – Ch. 15)

Plot 7-118. Power Spectral Density Measurement MIMO ANT1 (160MHz 802.11ax (UNII Band 5) - Ch. 47)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 83 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

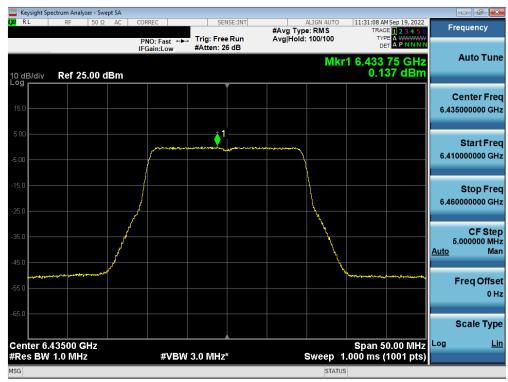
					- # ×
LX/ RL RF 50Ω	AC CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	03:55:17 PM Sep 16, 2022 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 25.00 d	PNO: Fast ← IFGain:Low _ BM	➡ Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	TYPE A WINNIN DET A P NNNN 471 6.420 2 GHz -5.064 dBm	Auto Tune
15.0					Center Freq 6.345000000 GHz
-5.00			<u>1</u>		Start Freq 6.145000000 GHz
-15.0					Stop Freq 6.545000000 GHz
-35.0	and the second				CF Step 40.000000 MHz <u>Auto</u> Man
-55.0					Freq Offset 0 Hz
-65.0					Scale Type
Center 6.3450 GHz #Res BW 1.0 MHz	#VB	W 3.0 MHz*	Sweep	Span 400.0 MHz I.000 ms (1001 pts)	
MSG			STATU		

Plot 7-119. Power Spectral Density Measurement MIMO ANT1 (160MHz 802.11ax (UNII Band 5) - Ch. 79)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 04 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 84 of 238
© 2023 ELEMENT			V 9.0 02/01/2019

MIMO Antenna-1 Power Spectral Density Measurement - (UNII Band 6)


Plot 7-120. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 97)

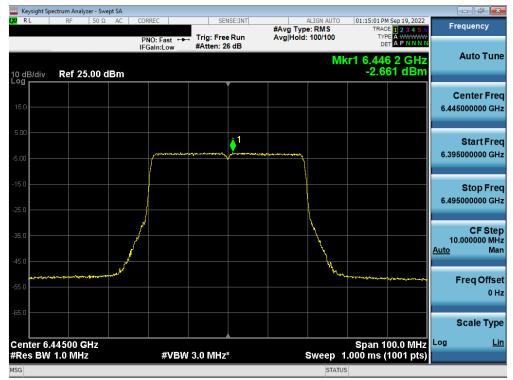

Plot 7-121. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 105)

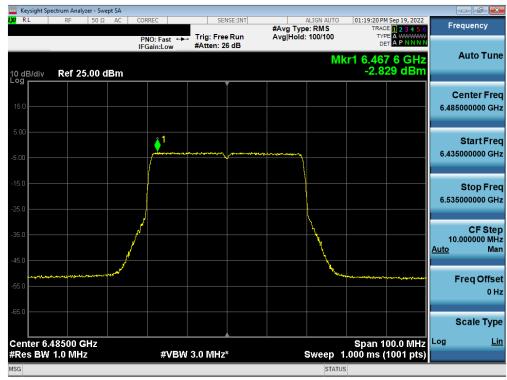
FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 05 at 020
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 85 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-122. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 113)

Plot 7-123. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 6) - Ch. 97)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 96 of 222
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 86 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-124. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 6) - Ch. 105)


Plot 7-125. Power Spectral Density Measurement MIMO ANT1 (20MHz 802.11ax (UNII Band 6) - Ch. 113)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 07 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 87 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019

Plot 7-126. Power Spectral Density Measurement MIMO ANT1 (40MHz 802.11ax (UNII Band 6) - Ch. 99)

Plot 7-127. Power Spectral Density Measurement MIMO ANT1 (40MHz 802.11ax (UNII Band 6) - Ch. 107)

FCC: A3LSMS918JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 220
1M2212080137-13-R1.A3L	9/3/2022 - 11/8/2022	Portable Handset	Page 88 of 238
© 2023 ELEMENT	•		V 9.0 02/01/2019