

APPENDIX I: EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	5/10/2022	Annual	5/10/2023	MY42082659
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Anritsu	MS2038C	Vector Network Analyzer	5/4/2022	Annual	5/4/2023	1204153
Anritsu	MA24106A	USB Power Sensor	3/28/2022	Annual	3/18/2023	1520501
Control Company	4352	Long Stem Thermometer	10/9/2021	Biennial	10/9/2023	210774678
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Keysight Technologies	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Portable Dielectric Assessment Kit	8/15/2022	Annual	8/15/2023	1041
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/10/2022	Biennial	1/10/2024	1057
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/13/2022	Annual	4/13/2023	1407
SPEAG	EX3DV4	SAR Probe	4/20/2022	Annual	4/20/2023	7659
SPEAG	5G Verification Source 10GHz	10GHz System Verification Antenna	8/17/2022	Annual	8/17/2023	1004
SPEAG	DAE4ip	Intergrated Power Supply	10/13/2022	Annual	10/13/2023	1638
SPEAG	EUmmWV4	E-field Probes	10/17/2022	Annual	10/17/2023	9407
SPEAG	MAGPy-H3D / MAGPy-DAS	Magnetic Amplitude and Gradient Probe and Data Acquisition System	3/5/2022	Annual	3/5/2023	2051
SPEAG	V-Coil50/400	400 kHz MAGPy System Validation Source	3/9/2022	Annual	3/9/2023	1012
Rigol	DS1052E	Oscilloscope	3/22/2022	Biennial	3/22/2024	DS1ED124011876

Notes:

- CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler, or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- Each equipment item is used solely within its respective calibration period

FCC ID: A3LSMS918JPN	FCC URS (UNINTENTIONAL RADIATOR RF SOURCES) RF EXPOSURE EVALUATION	Approved by: Technical Manager
DUT Type:		APPENDIX I
Portable Handset		Page 1 of 1
© 2022 Floment		DEV/10

© 2023 Element **REV 1.0**