

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

PART 27 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

9/9/2022 - 11/25/2022 **Test Report Issue Date:** 11/25/2022 **Test Site/Location:** Element lab., Columbia, MD, USA **Test Report Serial No.:** 1M2209010096-04.A3L

FCC ID:

A3LSMS911U

Applicant Name:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification SM-S911U SM-S911U1 Portable Tablet PCS Licensed Transmitter Held to Ear (PCE) 27 ANSI C63.26-2015, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMS911U	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 1 01 401
© 2022 ELEMENT		·	V11.0 9/14/2022

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	7
	1.1	Scope	7
	1.2	Element Test Location	7
	1.3	Test Facility / Accreditations	7
2.0	PROD	DUCT INFORMATION	8
	2.1	Equipment Description	8
	2.2	Device Capabilities	8
	2.3	Test Configuration	8
	2.4	Software and Firmware	8
	2.5	EMI Suppression Device(s)/Modifications	8
3.0	DESC	CRIPTION OF TESTS	9
	3.1	Evaluation Procedure	9
	3.2	Radiated Power and Radiated Spurious Emissions	9
4.0	MEAS	SUREMENT UNCERTAINTY	10
5.0	TEST	EQUIPMENT CALIBRATION DATA	11
6.0	SAMF	PLE CALCULATIONS	12
7.0	TEST	RESULTS	13
	7.1	Summary	13
	7.2	Conducted Output Power Data	14
	7.3	Occupied Bandwidth	25
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	116
	7.5	Band Edge Emissions at Antenna Terminal	229
	7.6	Radiated Power (EIRP)	318
	7.7	Radiated Spurious Emissions Measurements	
	7.8	Frequency Stability / Temperature Variation	
8.0	CON	CLUSION	401

FCC ID: A3LSMS911U	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 2 01 401
© 2022 ELEMENT		·	V11.0 9/14/2022

PART 27 MEASUREMENT REPORT

		Bandwidth Modulation Tx Frequency Range [MHz]		EI	RP	
Mode	Bandwidth			Max. Power [W]	Max. Power [dBm]	Emission Designator
	10 MHz	QPSK	2310.0	0.188	22.75	9M04G7D
LTE Band 30		16QAM	2310.0	0.156	21.94	9M04W7D
Ant A		QPSK	2307.5 - 2312.5	0.189	22.77	4M55G7D
	5 MHz	16QAM	2307.5 - 2312.5	0.160	22.05	4M53W7D
	20 MHz	QPSK	2510.0 - 2560.0	0.187	22.71	18M0G7D
		16QAM	2510.0 - 2560.0	0.161	22.07	18M1W7D
		QPSK	2507.5 - 2562.5	0.194	22.88	13M6G7D
LTE Band 7	15 MHz	16QAM	2507.5 - 2562.5	0.162	22.10	13M6W7D
Ant B		QPSK	2505.0 - 2565.0	0.201	23.03	9M05G7D
	10 MHz	16QAM	2505.0 - 2565.0	0.165	22.17	9M04W7D
		QPSK	2502.5 - 2567.5	0.200	23.02	4M52G7D
	5 MHz	16QAM	2502.5 - 2567.5	0.166	22.19	4M54W7D
		QPSK	2506.0 - 2680.0	0.390	25.91	18M0G7D
	20 MHz	16QAM	2506.0 - 2680.0	0.319	25.03	18M0W7D
	15 MHz	QPSK	2503.5 - 2682.5	0.421	26.25	13M6G7D
LTE Band 41(PC2)		16QAM	2503.5 - 2682.5	0.339	25.30	13M6W7D
Ant B	10 MHz	QPSK	2501.0 - 2685.0	0.441	26.44	9M04G7D
		16QAM	2501.0 - 2685.0	0.379	25.78	9M08W7D
	5 MHz	QPSK	2498.5 - 2687.5	0.440	26.43	4M56G7D
		16QAM	2498.5 - 2687.5	0.392	25.93	4M53W7D
	20 MHz	QPSK	2506.0 - 2680.0	0.300	24.77	18M0G7D
		16QAM	2506.0 - 2680.0	0.247	23.93	18M0W7D
		QPSK	2503.5 - 2682.5	0.298	24.74	13M5G7D
LTE Band 41(PC3)/38	15 MHz	16QAM	2503.5 - 2682.5	0.248	23.95	13M5W7D
Ant B	10 MHz	QPSK	2501.0 - 2685.0	0.338	25.29	9M04G7D
		16QAM	2501.0 - 2685.0	0.290	24.62	9M05W7D
	5 MHz	QPSK	2498.5 - 2687.5	0.322	25.08	4M53G7D
		16QAM	2498.5 - 2687.5	0.261	24.17	4M54W7D

EUT Overview (LTE Band)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 5 01 401
© 2022 ELEMENT			V11.0 9/14/2022

				Ell	RP	
Mode	Bandwidth	dth Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Emission Designator
		QPSK	2310.0	0.140	21.47	9M04G7D
LTE Band 30	10 MHz	16QAM	2310.0	0.118	20.74	9M03W7D
Ant F	5 MHz	QPSK	2307.5 - 2312.5	0.142	21.51	4M53G7D
		16QAM	2307.5 - 2312.5	0.127	21.04	4M55W7D
	20 MHz	QPSK	2510.0 - 2560.0	0.168	22.24	18M0G7D
		16QAM	2510.0 - 2560.0	0.141	21.49	18M0W7D
	15 MHz	QPSK	2507.5 - 2562.5	0.167	22.22	13M6G7D
LTE Band 7		16QAM	2507.5 - 2562.5	0.141	21.49	13M5W7D
Ant F	10 MHz	QPSK	2505.0 - 2565.0	0.174	22.40	9M05G7D
		16QAM	2505.0 - 2565.0	0.151	21.78	9M04W7D
	5 MHz	QPSK	2502.5 - 2567.5	0.177	22.48	4M56G7D
		16QAM	2502.5 - 2567.5	0.148	21.70	4M55W7D
	20 MHz	QPSK	2506.0 - 2680.0	0.414	26.16	18M0G7D
		16QAM	2506.0 - 2680.0	0.292	24.65	18M1W7D
	15 MHz	QPSK	2503.5 - 2682.5	0.396	25.98	13M5G7D
LTE Band 41(PC2)		16QAM	2503.5 - 2682.5	0.288	24.60	13M5W7D
Ant F	10 MHz	QPSK	2501.0 - 2685.0	0.342	25.35	9M01G7D
		16QAM	2501.0 - 2685.0	0.256	24.08	9M02W7D
	5 MHz	QPSK	2498.5 - 2687.5	0.304	24.84	4M53G7D
	5 IVITIZ	16QAM	2498.5 - 2687.5	0.203	23.07	4M53W7D
	20 MHz	QPSK	2506.0 - 2680.0	0.294	24.68	18M0G7D
	20 MHZ	16QAM	2506.0 - 2680.0	0.209	23.20	18M0W7D
	15 MHz	QPSK	2503.5 - 2682.5	0.281	24.48	13M5G7D
LTE Band 41(PC3)/38		16QAM	2503.5 - 2682.5	0.217	23.36	13M5W7D
Ant F	10 MHz	QPSK	2501.0 - 2685.0	0.315	24.98	9M02G7D
		16QAM	2501.0 - 2685.0	0.212	23.27	9M04W7D
	5 MHz	QPSK	2498.5 - 2687.5	0.304	24.83	4M53G7D
		16QAM	2498.5 - 2687.5	0.207	23.16	4M52W7D

EUT Overview (LTE Band)

FCC ID: A3LSMS911U	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 4 01 401
© 2022 ELEMENT	•		V11.0 9/14/2022

				EIRP			
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Emission Designator	
		π/2 BPSK	2310.0	0.172	22.37	9M02G7D	
	10 MHz	QPSK	2310.0	0.165	22.17	9M35G7D	
NR Band n30		16QAM	2310.0	0.135	21.32		
Ant A		π/2 BPSK	2307.5 - 2312.5	0.181	22.58		
	5 MHz	QPSK 1604M	2307.5 - 2312.5	0.164	22.14 21.15		
		16QAM 2307.5 - 2312.5 0.130 π/2 BPSK 2520.0 - 2550.0 0.186	22.70				
	40MHz	QPSK	2520.0 - 2550.0	0.159	22.00		
	1010112	16QAM	2520.0 - 2550.0	0.109	20.39		
	30MHz	π/2 BPSK	2515.0 - 2555.0	0.183	22.63	28M8G7D	
		QPSK	2515.0 - 2555.0	0.161	22.07	28M6G7D	
		16QAM	2515.0 - 2555.0	0.115	20.61	28M7W7D	
		π/2 BPSK	2512.5 - 2557.5	0.188	22.74	23M0G7D	
	25MHz	QPSK	2512.5 - 2557.5	0.161	22.07	23M9G7D	
		16QAM	2512.5 - 2557.5	0.114	20.58	Ver Designator 9M02G7D 9M35G7D 9M35G7D 9M35G7D 9M35G7D 4M56G7D 4M54W7D 38M7G7D 38M307D 38M9G7D 38M9G7D 38M9G7D 28M6G7D 28M6G7D 28M6G7D 28M6G7D 28M6G7D 28M6G7D 28M6G7D 23M907D 23M907D 23M907D 19M0507D 19M057D 19M05G7D 19M05G7D 9M3407D 9M35G7D 9M35G7D 9M34W7D 4M52G7D 9M34W7D 4M52G7D 9M34W7D 9M3407D 98M3G7D 9M3407D 98M3G7D 9M3407D 67M7G7D 97M1G7D 77M6G7D 77M6G7D 77M8W7D 64M7G7D 67M7G7D 67M7G7D 38M1G7D 38M1G7D 38M1G7D 38M1G7D 28M0G7D 38M1G7D 38M1G7D 38M1G7D 28M0G7D 38M1G7D	
		π/2 BPSK	2510.0 - 2560.0	0.181	22.57	18M0G7D	
NR Band n7	20MHz	QPSK	2510.0 - 2560.0	0.155	21.91	19M0G7D	
Ant B		16QAM	2510.0 - 2560.0	0.116	20.64	19M1W7D	
		π/2 BPSK	2507.5 - 2562.5	0.178	22.50	13M5G7D	
	15 MHz	QPSK	2507.5 - 2562.5	0.159	22.02	14M2G7D	
		16QAM	2507.5 - 2562.5	0.117	20.66	14M2W7D	
		π/2 BPSK	2505.0 - 2565.0	0.178	22.50	9M05G7D	
	10MHz	QPSK	2505.0 - 2565.0	0.151	21.79	9M37G7D	
		16QAM	2505.0 - 2565.0	0.111	20.44	9M34W7D	
	5 MHz	π/2 BPSK	2502.5 - 2567.5	0.180	22.56	4M53G7D	
		QPSK	2502.5 - 2567.5	0.161	22.06	4M52G7D	
		16QAM	2502.5 - 2567.5	0.118	20.73	4M52W7D	
		π/2 BPSK	2546.0 - 2640.0	0.391	25.92	97M1G7D	
	100 MHz	QPSK	2546.0 - 2640.0	0.380	25.80		
		16QAM	2546.0 - 2640.0	0.330	25.18		
		π/2 BPSK	2541.0 - 2645.0	0.406	26.09		
	90 MHz	QPSK	2541.0 - 2645.0	0.403	26.05		
		16QAM	2541.0 - 2645.0	0.394	25.95		
		π/2 BPSK	2536.0 - 2650.0	0.398	26.00		
	80 MHz	QPSK	2536.0 - 2650.0	0.409	26.12		
		16QAM	2536.0 - 2650.0	0.385	25.85		
	70 MHz	π/2 BPSK	2531.0 - 2655.0	0.408	26.11		
		QPSK	2531.0 - 2655.0	0.404	26.06		
		16QAM	2531.0 - 2655.0	0.348	25.41		
	00.141	π/2 BPSK	2526.0 - 2660.0	0.422	26.25		
	60 MHz	QPSK 16QAM	2526.0 - 2660.0	0.412	26.15		
			2526.0 - 2660.0	0.383	25.84		
NR Band n41(PC2)	50 MH-	π/2 BPSK QPSK	2521.0 - 2665.0 2521.0 - 2665.0	0.405	26.07		
Ant F	50 MHz	16QAM	2521.0 - 2665.0 2521.0 - 2665.0	0.398	26.00		
			2521.0 - 2665.0 2516.0 - 2670.0		25.71		
	40 MHz	π/2 BPSK QPSK	2516.0 - 2670.0	0.439	26.42 26.57		
		16QAM	2516.0 - 2670.0	0.454	26.57 25.42		
		π/2 BPSK	2511.0 - 2675.0	0.348	25.42		
	30 MHz	QPSK	2511.0 - 2675.0	0.420	26.21		
		16QAM	2511.0 - 2675.0	0.391	25.92		
		π/2 BPSK	2506.0 - 2680.0	0.391	26.55		
	20 MHz	QPSK	2506.0 - 2680.0	0.432	26.50		
		16QAM	2506.0 - 2680.0	0.447	26.20		
		π/2 BPSK	2511.0 - 2675.0	0.417	26.84		
	15 MHz	QPSK	2511.0 - 2675.0	0.483	26.42		
		16QAM	2511.0 - 2675.0	0.439	26.03	13M7W7D	
	10 MHz			0.401	26.69	8M69G7D	
		II/Z BPON					
	10 MHz	π/2 BPSK QPSK	2506.0 - 2680.0 2506.0 - 2680.0	0.461	26.64	8M67G7D	

EUT Overview (NR Band)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 5 of 401
© 2022 ELEMENT			\/11.0.0/14/2022

				EI	RP	
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Emission Designator
		π/2 BPSK	2310.0	0.147	21.67	9M02G7D
	10 MHz	QPSK	2310.0	0.145	21.62	9M35G7D
NR Band n30		16QAM	2310.0	0.126	21.00	
Ant F		π/2 BPSK	2307.5 - 2312.5	0.152	21.82	
	5 MHz	QPSK 16QAM	2307.5 - 2312.5 2307.5 - 2312.5	0.149	21.73 21.40	
		π/2 BPSK	2520.0 - 2550.0	0.220	23.43	
	40MHz	QPSK	2520.0 - 2550.0	0.216	23.35	
		16QAM	2520.0 - 2550.0	0.180	22.54	38M8W7D
		π/2 BPSK	2515.0 - 2555.0	0.217	23.37	28M8G7D
	30MHz	QPSK	2515.0 - 2555.0	0.218	23.39	28M7G7D
		16QAM	2515.0 - 2555.0	0.176	22.46	28M7W7D
		π/2 BPSK	2512.5 - 2557.5	0.218	23.39	23M0G7D
	25MHz	QPSK	2512.5 - 2557.5	0.207	23.17	23M9G7D
		16QAM	2512.5 - 2557.5	0.179	22.52	Wer Designator 9M02G7D 9M35G7D 9M35G7D 9M36W7D 4M53G7D 4M53G7D 38M8G7D 38M8G7D 38M8G7D 38M8G7D 38M8G7D 38M8G7D 38M8G7D 28M7G7D 28M7G7D 28M707D 38M807D 19M107D 39M3507D 9M3507D 9M3507D <
NR Band n7		π/2 BPSK	2510.0 - 2560.0	0.217	23.37	18M0G7D
Ant F	20MHz	QPSK	2510.0 - 2560.0	0.210	23.22	19M1G7D
74161		16QAM	2510.0 - 2560.0	0.181	22.59	19M1W7D
		π/2 BPSK	2507.5 - 2562.5	0.212	23.26	13M5G7D
	15 MHz	QPSK	2507.5 - 2562.5	0.207	23.15	14M2G7D
		16QAM	2507.5 - 2562.5	0.183	22.63	14M2W7D
	10MHz	π/2 BPSK	2505.0 - 2565.0	0.215	23.33	
		QPSK	2505.0 - 2565.0	0.211	23.25	
		16QAM	2505.0 - 2565.0	0.173	22.38	
	5 MHz	π/2 BPSK	2502.5 - 2567.5	0.218	23.38	
		QPSK	2502.5 - 2567.5	0.210	23.23	
		16QAM	2502.5 - 2567.5	0.187	22.73	
		π/2 BPSK	2546.0 - 2640.0	0.320	25.05	
	100 MHz	QPSK	2546.0 - 2640.0	0.297	24.73	
		16QAM π/2 BPSK	2546.0 - 2640.0 2541.0 - 2645.0	0.248	23.94 25.19	
	90 MHz	QPSK	2541.0 - 2645.0	0.331	25.19	
	90 WIF12	16QAM	2541.0 - 2645.0	0.310	24.91	
		π/2 BPSK	2536.0 - 2650.0	0.203	24.01	
	80 MHz	QPSK	2536.0 - 2650.0	0.301	24.79	
		16QAM	2536.0 - 2650.0	0.229	23.60	
	70 MHz	π/2 BPSK	2531.0 - 2655.0	0.347	25.40	
		QPSK	2531.0 - 2655.0	0.328	25.16	
		16QAM	2531.0 - 2655.0	0.257	24.10	
		π/2 BPSK	2526.0 - 2660.0	0.305	24.84	
	60 MHz	QPSK	2526.0 - 2660.0	0.313	24.95	
		16QAM	2526.0 - 2660.0	0.264	24.22	58M2W7D
		π/2 BPSK	2521.0 - 2665.0	0.327	25.15	
NR Band n41(PC2)	50 MHz	QPSK	2521.0 - 2665.0	0.301	24.79	
Switching Ant B		16QAM	2521.0 - 2665.0	0.277	24.43	47M7W7D
		π/2 BPSK	2516.0 - 2670.0	0.379	25.79	36M2G7D
	40 MHz	QPSK	2516.0 - 2670.0	0.397	25.98	38M0G7D
		16QAM	2516.0 - 2670.0	0.273	24.36	38M0W7D
		π/2 BPSK	2511.0 - 2675.0	0.335	25.25	27M0G7D
	30 MHz	QPSK	2511.0 - 2675.0	0.337	25.28	27M9G7D
		16QAM	2511.0 - 2675.0	0.284	24.54	
		π/2 BPSK	2506.0 - 2680.0	0.348	25.42	
	20 MHz	QPSK	2506.0 - 2680.0	0.374	25.73	
		16QAM	2506.0 - 2680.0	0.314	24.97	
		π/2 BPSK	2550.0 - 2640.0	0.315	24.98	
	15 MHz	QPSK	2550.0 - 2640.0	0.280	24.47	12M9G7D
		16QAM	2550.0 - 2640.0	0.236	23.74	13M0W7D
		π/2 BPSK	2545.0 - 2645.0	0.302	24.80	8M65G7D
	10 MHz	QPSK	2545.0 - 2645.0	0.272	24.35	8M67G7D
		16QAM	2545.0 - 2645.0	0.219	23.41	8M66W7D

EUT Overview (NR Band)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 6 of 401
© 2022 ELEMENT			V/11 0 0/1 <i>1</i> /2022

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: A3LSMS911U	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 7 of 401
© 2022 ELEMENT			V11.0 9/14/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Tablet FCC ID: A3LSMS911U**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

Test Device Serial No.: 0227M, 0218M, 0172M, 0178M, 0235M, 0441M, 0371M, 0179M, 0236M, 0136M, 0286M, 0247M, 0228M, 0238M, 0241M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1 and FR2), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

The device has 2 Tx antenna for n41 data (Ant F & B) and 2 Rx antennas (Ant E, D). With SRS operations, all 4 antennas can transmit the SRS signal to check for the channel quality of n41. The antennas cannot simultaneously transmit. Only the single TX/RX antenna is used for Data transmission. The device is also capable of path switching for all antennas during n41 operation and data is provided to cover all possible paths.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version S911USQU0AVJM installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMS911U		Approved by: Technical Manager			
Test Report S/N:	Test Dates: EUT Type:		Page 8 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	9/9/2022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT	-	·	V11.0 9/14/2022		

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \text{ [dBm]}}$ – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	0/9/2022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT	•		V11.0 9/14/2022		

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	/9/2022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT	•		V11.0 9/14/2022		

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	AP2
-	AP1	EMC Cable and Switch System	8/15/2022	Annual	8/15/2023	AP1
-	ETS	EMC Cable and Switch System	8/11/2022	Annual	8/11/2023	ETS
-	LTx1	Licensed Transmitter Cable Set	7/29/2022	Annual	7/29/2023	LTx1
-	LTx2	Licensed Transmitter Cable Set	8/15/2022	Annual	8/15/2023	LTx2
-	LTx3	LIcensed Transmitter Cable Set	8/15/2022	Annual	8/15/2023	LTx3
-	LTx4	Licensed Transmitter Cable Set	7/29/2022	Annual	7/29/2023	LTx4
-	LTx5	LIcensed Transmitter Cable Set	7/29/2022	Annual	7/29/2023	LTx5
Agilent	E5515C	Wireless Communications Test Set		N/A		GB45360985
Agilent	E5515C	Wireless Communications Test Set		N/A		GB46310798
Anritsu	MT8820C	Radio Communication Analyzer		N/A		6201300731
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6201381794
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6200901190
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6201525694
Com-Power	AL-130R	Active Loop Antenna	1/19/2022	Biennial	1/19/2024	121085
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Espec	ESX-2CA	Environmental Chamber	5/25/2022	Biennial	5/25/2024	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/20/2021	Biennial	4/20/2023	00125518
ETS Lindgren	3164-10	Quad Ridge Horn 400MHz - 10000MHz	5/10/2021	Biennial	5/10/2023	00166283
ETS Lindgren	3816/2NM	LISN	8/11/2022	Biennial	8/11/2024	00114451
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2022	Annual	3/15/2023	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	8/18/2022	Annual	8/18/2023	MY49430494
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	2/14/2022	Annual	2/14/2023	MY52350166
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11403100002
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		107826
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		109892
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836536/0005
Rohde & Schwarz	CMW500	Radio Communication Tester			100976	
Rohde & Schwarz	CMW500	Radio Communication Tester	N/A		112347	
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/29/2022	Annual	8/29/2023	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/25/2022	Annual	8/25/2023	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/28/2022	Annual	3/28/2023	101716
Rohde & Schwarz	FSW26	2Hz-26.5GHz Signal and Spectrum Analyzer	4/14/2022	Annual	4/14/2023	103187
Sunol	JB6	LB6 Antenna	11/13/2020	Biennial	11/13/2022	A082816

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMS911U		Approved by: Technical Manager		
Test Report S/N:	Test Dates: EUT Type:		Page 11 of 401	
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 11 01 401	
© 2022 ELEMENT	•		V11.0 9/14/2022	

6.0 SAMPLE CALCULATIONS

QPSK Modulation

Emission Designator = 8M62G7D LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	Test Dates: EUT Type:				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	9/2022 - 11/25/2022 Portable Tablet				
© 2022 ELEMENT	•		V11.0 9/14/2022			

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS911U
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	LTE/NR/ULCA

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power*	2.1046(a), 2.1046(c)	N/A	PASS	Section 7.2
Ð	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.3
CONDUCTED	Conducted Band Edge / Spurious Emissions (LTE Band 30; NR Band n30)	2.1051, 27.53(a)(4)	Undesirable emissions must meet the limits detailed in 27.53(a)(4)	PASS	Sections 7.4, 7.5
ខ	Conducted Band Edge / Spurious Emissions (LTE Band 7, 38, 41; NR Band n7, n38, n41)	2.1051, 27.53(m)(4)	Undesirable emissions must meet the limits detailed in 27.53(m)(4)	PASS	Sections 7.4, 7.5
	Frequency Stability	2.1055, 27.54	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
	Equivalent Isotropic Radiated Power (LTE Band 30; NR Band n30)	27.50(a)(3)	≤ 250mW / 5MHz max. EIRP	PASS	Section 7.6
RADIATED	Equivalent Isotropic Radiated Power (LTE Band 7, 38, 41; NR Band n7, n38, n41)	27.50(h)(2)	≤ 2 Watts max. EIRP	PASS	Section 7.6
RADI	Radiated Spurious Emissions (LTE Band 30; NR Band n30)	2.1053, 27.53(a)(4)	Undesirable emissions must meet the limits detailed in 27.53(a)(4)	PASS	Section 7.7
	Radiated Spurious Emissions (LTE Band 7, 38, 41; NR Band n7, n38, n41)	2.1053, 27.53(m)	Undesirable emissions must meet the limits detailed in 27.53(m)	PASS	Section 7.7

* The only transmitter output conducted powers included in this report are those where the Pmax value, per the tune-up document, is higher than any of the DSI power levels. For the remaining conducted power measurements, see the **RF Exposure Report**.

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.1.

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	Test Dates: EUT Type:				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	/9/2022 - 11/25/2022 Portable Tablet				
© 2022 ELEMENT	•		V11.0 9/14/2022			

7.2 Conducted Output Power Data

Test Overview

All emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

A-MPR is implemented in this device when operating at Power Class 2 in LTE Band 41 per the A-MPR specification in 3GPP TS 36.101. The conducted powers are shown herein to cover the different A-MPR levels specified in the standard. Measurement equipment was set up with triggering/gating on the spectrum analyzer such that powers were measured only during the on-time of the signal.

Test Procedure Used

ANSI C63.26-2015 – Section 5.2

Test Settings

- 1. Span = $2 \times OBW$ to $3 \times OBW$
- 2. RBW = 1% to 5% of the OBW
- 3. Detector = RMS
- 4. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 5. Sweep time = auto couple
- 6. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Conducted power measurements were evaluated using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 2. All other conducted power measurements are contained in the RF exposure report for this filing.

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	/9/2022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT	•		V11.0 9/14/2022		

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
10 MHz	QPSK	27710	2310.0	1 / 25	21.38
	16-QAM	27710	2310.0	1 / 49	20.62
5 MHz		27685	2307.5	1 / 24	21.32
	QPSK	27710	2310.0	1 / 12	21.43
		27735	2312.5	1 / 24	21.32
	16-QAM	27685	2307.5	1/0	20.93

Table 7-2. Conducted Power Data (LTE Band 30 ANT F)

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
N		39750	2506.0	1 / 99	26.47
MHz	QPSK	40620	2593.0	1 / 99	26.49
20 1		41490	2680.0	1 / 99	26.02
Я	16-QAM	39750	2506.0	1 / 99	25.54
И		39725	2503.5	1 / 74	26.28
MHz	QPSK	40620	2593.0	1 / 74	26.35
15 N		41515	2682.5	1 / 74	25.90
~	16-QAM	39725	2503.5	1 / 74	25.48
R		39700	2501.0	1 / 25	25.65
H	QPSK	40620	2593.0	1 / 25	26.45
10 MHz		41540	2685.0	1 / 25	26.40
~	16-QAM	39700	2501.0	1 / 25	24.96
N		39675	2498.5	1 / 12	25.14
MHz	QPSK	40620	2593.0	1 / 12	25.70
5 M		41565	2687.5	1 / 24	25.66
	16-QAM	39675	2498.5	1 / 12	23.95

Table 7-3. Conducted Power Data (LTE Band 41 (PC2) ANT F)

FCC ID: A3LSMS911U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 15 01 401
© 2022 ELEMENT	•	·	V11.0 9/14/2022

NS	мсс	MNC	Channel BW [MHz]	Channel Number	Channel Frequency [MHz]	RB Size	RB Offset	A-MPR [dB]	Modulation	MPR [dB]	Measured Power [dBm]		
									QPSK	1	22.87		
			10	39700	2501	50	0	≤ 3	16-QAM	2	21.89		
			10	39700	2501	50	0	≥ 3	64-QAM	3	20.73		
									256-QAM	5	18.75		
									QPSK	1	20.81		
01	311	400	15	39725	2503.5	75		≤ 4	16-QAM	2	19.81		
01	311	490	15	39725	2503.5	75	0	≥ 4	64-QAM	3	18.72		
									256-QAM	5	16.80		
									QPSK	1	20.76		
				20	20750	39750 2506	06 100	0	≤ 4	16-QAM	2	19.74	
				20	39750	2506	100	0	≤ 4	64-QAM	3	18.75	
											256-QAM	5	15.72
										QPSK	1	24.77	
			20	20750	2500	50	0	0	16-QAM	2	23.81		
			20	39750	2506	50	0	0	64-QAM	3	22.76		
									256-QAM	5	20.69		
									QPSK	1	24.83		
01	001	01	r.	20075	2400 5	75	0	0	16-QAM	2	23.78		
01	001	01	5	39675	2498.5	75	0	0	64-QAM	3	22.80		
									256-QAM	5	20.65		
									QPSK	1	24.97		
			39750	20750 2500	100	0	0 0	16-QAM	2	23.98			
			20	39130	2506	100	0	U	64-QAM	3	22.90		
									256-QAM	5	20.84		

Table 7-4. Conducted Power Data (LTE Band 41 (PC2) A-MPR)

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
N		39790	2510.0	1 / 99	24.59
MHz	QPSK	40620	2593.0	1 / 99	24.49
20 1		41490	2680.0	1 / 99	24.49
N	16-QAM	39790	2510.0	1 / 99	23.35
<u>N</u>		39765	2507.5	1 / 74	24.39
MHz	QPSK	40620	2593.0	1 / 74	24.26
15 1		41515	2682.5	1 / 74	24.36
<u> </u>	16-QAM	39765	2507.5	1 / 74	23.51
N		39740	2505.0	1 / 25	24.89
H	QPSK	40620	2593.0	1 / 25	24.49
10 MHz		41540	2685.0	1 / 25	24.72
~	16-QAM	39740	2505.0	1 / 25	23.42
N		39715	2502.5	1 / 12	24.73
MHz	QPSK	40620	2593.0	1 / 12	24.35
2 M		41565	2687.5	1 / 12	24.50
	16-QAM	39715	2502.5	1 / 12	23.31

Table 7-5. Conducted Power Data (LTE Band 38/41 (PC3) ANT F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 10 01 401		
© 2022 ELEMENT			V11.0 9/14/2022		

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
N		20850	2510.0	1 / 0	23.50
MHz	QPSK	21100	2535.0	1/0	23.08
20 1		21350	2560.0	1/0	22.95
2	16-QAM	21100	2535.0	1/0	22.46
N		20825	2507.5	1/0	23.54
MHz	QPSK	21100	2535.0	1/0	23.06
15 1		21375	2562.5	1 / 74	23.00
~	16-QAM	21100	2535.0	1/0	22.46
N		20800	2505.0	1 / 25	23.56
MHz	QPSK	21100	2535.0	1/0	23.24
10 1		21400	2565.0	1 / 49	23.24
~	16-QAM	21100	2535.0	1 / 25	22.75
N		20775	2502.5	1 / 12	23.77
MHz	QPSK	21100	2535.0	1 / 12	23.32
5 N		21425	2567.5	1 / 12	23.35
	16-QAM	21100	2535.0	1 / 24	22.67

Table 7-6. Conducted Power Data (LTE Band 7 ANT F)

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
	π/2 BPSK	27710	2310.0	1 / 38	22.78
10 MHz	QPSK	27710	2310.0	1 / 26	22.61
	16-QAM	27710	2310.0	1 / 26	21.79
	π/2 BPSK	27685	2307.5	1 / 6	22.82
		27710	2310.0	1 / 12	22.94
우		27735	2312.5	1 / 18	22.28
MHz		27685	2307.5	1 / 18	22.64
5	QPSK	27710	2310.0	1/6	22.72
		27735	2312.5	1/6	22.16
	16-QAM	27735	2312.5	1 / 12	22.20

Table 7-7. Conducted Power Data (NR Band n30 ANT F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 17 of 404		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 17 of 401		
© 2022 ELEMENT	-	•	V11.0 9/14/2022		

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
		504000	2520.0	1 / 54	23.55
	π/2 BPSK	507000	2535.0	1 / 108	23.38
F		510000	2550.0	1 / 108	23.41
40 MHz		504000	2520.0	1 / 54	23.57
40	QPSK	507000	2535.0	1 / 108	23.29
		510000	2550.0	1 / 108	23.32
	16-QAM	504000	2520.0	1 / 54	22.49
		503000	2515.0	1 / 80	23.49
	π/2 BPSK	507000	2535.0	1 / 80	23.40
Hz		511000	2555.0	1 / 40	23.43
30 MHz		503000	2515.0	1 / 80	23.44
30	QPSK	507000	2535.0	1 / 80	23.37
		511000	2555.0	1 / 40	23.35
	16-QAM	503000	2515.0	1 / 80	22.40
		502500	2512.5	1 / 33	23.51
	π/2 BPSK	507000	2535.0	1 / 33	23.26
Ηz		511500	2557.5	1 / 33	23.27
25 MHz		502500	2512.5	1 / 33	23.35
25	QPSK	507000	2535.0	1 / 33	23.15
		511500	2557.5	1 / 33	23.15
	16-QAM	502500	2512.5	1 / 33	22.47
	π/2 BPSK	502000	2510.0	1 / 26	23.49
		507000	2535.0	1 / 26	23.38
Ηz		512000	2560.0	1 / 79	23.03
20 MHz	QPSK	502000	2510.0	1 / 26	23.43
20		507000	2535.0	1 / 26	23.08
		512000	2560.0	1 / 79	23.02
	16-QAM	507000	2535.0	1 / 26	22.40
		501500	2507.5	1 / 39	23.39
	π/2 BPSK	507000	2535.0	1 / 20	23.31
Ηz		512500	2562.5	1 / 58	23.08
15 MHz		501500	2507.5	1 / 39	23.35
15	QPSK	507000	2535.0	1 / 20	23.13
		512500	2562.5	1 / 58	23.16
	16-QAM	501500	2507.5	1 / 39	22.58
		501000	2505.0	1 / 13	23.45
	π/2 BPSK	507000	2535.0	1 / 38	23.28
10 MHz		513000	2565.0	1 / 38	23.22
M		501000	2505.0	1 / 13	23.39
10	QPSK	507000	2535.0	1 / 38	23.24
		513000	2565.0	1 / 38	23.01
	16-QAM	507000	2535.0	1 / 38	22.20
		500500	2502.5	1 / 18	23.50
	π/2 BPSK	507000	2535.0	1 / 6	23.22
Ŷ		513500	2567.5	1 / 18	22.97
5 MHz		500500	2502.5	1 / 18	23.45
ъ.	QPSK	507000	2535.0	1 / 6	23.11
		513500	2567.5	1 / 18	22.91
	16-QAM	500500	2502.5	1 / 18	22.68

Table 7-8. Conducted Power Data (NR Band n7 ANT F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 10 01 401
© 2022 ELEMENT	·		V/11 0 9/14/2022

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
		509202	2546.01	1 / 68	25.95
귂	π/2 BPSK	518598	2592.99	1 / 68	25.95
ΗW		528000	2640.00 2546.01	1/204	25.74
100 MHz	QPSK	509202 518598	2546.01	1 / 68 1 / 68	25.88 26.02
		528000	2640.00	1 / 204	25.69
	16-QAM	528000	2640.00	1 / 204	24.34
		508200	2541.00	1 / 61	25.95
N	π/2 BPSK	518598	2592.99 2644.98	1/61	25.84
ZHM 06		528996 508200	2541.00	1 / 61 1 / 61	25.90 26.15
06	QPSK	518598	2592.99	1 / 61	25.82
		528996	2644.98	1 / 61	25.94
	16-QAM	528996	2644.98	1 / 61	25.11
	π/2 BPSK	507204	2536.02	1 / 108	25.68
N	II/2 DPSK	518598 529998	2592.99 2649.99	1 / 162	25.90 25.81
80 MHz		507204	2536.02	1 / 102	26.20
80	QPSK	518598	2592.99	1 / 162	26.34
		529998	2649.99	1 / 108	26.00
	16-QAM	529998	2649.99	1 / 162	25.01
	π/2 BPSK	506202 518598	2531.01 2592.99	1 / 47 1 / 47	26.19 25.73
₽	II/2 DFOR	531000	2592.99	1/47	25.73
70 MHz		506202	2531.01	1 / 47	26.11
20	QPSK	518598	2592.99	1 / 47	25.90
		531000	2655.00	1 / 47	25.95
	16-QAM	531000	2655.00	1 / 47	24.57
	π/2 BPSK	505200 518598	2526.00 2592.99	1 / 40 1 / 40	26.33 25.94
₽	II/2 DI OK	531996	2659.98	1 / 40	26.00
60 MHz		505200	2526.00	1 / 40	26.35
09	QPSK	518598	2592.99	1 / 40	26.21
		531996	2659.98	1 / 40	26.03
	16-QAM	531996 504204	2659.98 2521.02	1/40	25.00
	π/2 BPSK	518598	2592.99	1 / 99 1 / 66	26.14 26.10
우		532998	2664.99	1/33	25.79
50 MHz	QPSK	504204	2521.02	1 / 99	26.20
50		518598	2592.99	1 / 66	25.84
	16-QAM	532998 532998	2664.99 2664.99	1 / 33 1 / 33	25.89 24.87
	TO-QAIVI	503202	2516.01	1 / 26	26.10
	π/2 BPSK	518598	2592.99	1 / 79	26.01
£		534000	2670.00	1 / 26	26.24
to MHz		503202	2516.01	1 / 26	26.27
4	QPSK	518598 534000	2592.99 2670.00	1/79	25.99
	16-QAM	534000	2670.00	1 / 26 1 / 26	26.46 24.58
		502200	2511.00	1 / 58	26.38
	π/2 BPSK	518598	2592.99	1 / 39	25.98
Ŧ		534996	2674.98	1 / 19	26.10
30 MH2	OPCK	502200	2511.00	1 / 58	26.37
~	QPSK	518598 534996	2592.99 2674.98	1 / 39 1 / 19	26.01 26.10
	16-QAM	534996	2674.98	1 / 19	25.08
		501204	2506.02	1 / 13	26.62
N	π/2 BPSK	518598	2592.99	1 / 37	26.21
20 MHz		535998 501204	2679.99 2506.02	1 / 13	26.37
0	QPSK	518598	2592.99	1 / 13 1 / 37	26.64 26.21
		535998	2679.99	1 / 13	26.39
	16-QAM	535998	2679.99	1 / 13	25.37
	10 5	502200	2511.00	1 / 28	26.78
N	π/2 BPSK	518598	2592.99	1/28	26.87
I5 MHz		534996 502200	2674.98 2511.00	1 / 28 1 / 28	26.21 26.79
15	QPSK	518598	2592.99	1 / 28	26.08
		534996	2674.98	1 / 28	26.22
	16-QAM	518598	2592.99	1/9	25.14
		501204	2506.02	1/6	26.77
N	π/2 BPSK	518598 535998	2592.99 2679.99	1/6 1/6	26.19 26.01
μ		501204	2506.02	1/6	26.81
10	QPSK	518598	2592.99	1 / 12	26.63
		535998	2679.99	1/6	26.53
	16-QAM	501204	2506.02	1/6	25.62

 16-QAM
 501204
 2506.02
 1 / 6
 25.62

 Table 7-9. Conducted Power Data (NR Band n41 PC2 ANT F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 19 01 401		
© 2022 ELEMENT			V/11 0 0/14/2022		

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
		509202	2546.01	1 / 204	19.42
-	π/2 BPSK QPSK	518598	2592.99	1 / 68	19.96
MHz		528000	2640.00	1 / 68	19.78
		509202	2546.01	1 / 204	19.56
100		518598	2592.99	1 / 68	19.82
		528000	2640.00	1 / 68	19.84
	16-QAM	518598	2592.99	1 / 136	19.28

Table 7-10. Conducted Power Data (NR Band n41 PC2 ANT B)

Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]	
	509202	2546.01	1 / 68	22.48	
π/2 BPSK QPSK	518598	2592.99	1 / 68	22.22	
	528000	2640.00	1 / 136	22.50	
	509202	2546.01	1 / 68	22.42	
	518598	2592.99	1 / 204	22.13	
	528000	2640.00	1 / 68	22.33	
16-QAM	528000	2640.00	1 / 68	21.88	
	T/2 BPSK QPSK 16-QAM	509202π/2 BPSK518598528000528000QPSK50920251859852800016-QAM528000	ModulationChannel[MHz]1000000000000000000000000000000000000	Modulation Channel [MHz] Size/Offset π/2 BPSK 509202 2546.01 1 / 68 518598 2592.99 1 / 68 528000 2640.00 1 / 136 QPSK 518598 2592.99 1 / 68 528000 2640.00 1 / 68 528000 2640.00 1 / 68 00000 1 / 204 1 / 68	

Table 7-11. Conducted Power Data (NR Band n41 PC2 ANT E)

Bandwidth	Modulation	Channel Frequency [MHz]		RB Size/Offset	Conducted Power [dBm]	
		509202	2546.01	1 / 68	16.79	
	π/2 BPSK QPSK	518598	2592.99	1 / 68	16.33	
MHz		528000	2640.00	1 / 136	16.35	
		509202	2546.01	1 / 68	16.87	
100		518598	2592.99	1 / 136	16.71	
		528000	2640.00	1 / 68	16.43	
	16-QAM	528000	2640.00	1 / 68	16.11	

Table 7-12. Conducted Power Data (NR Band n41 PC2 ANT D)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 404				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 20 of 401				
© 2022 ELEMENT	-	·	V11.0 9/14/2022				

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
	T/2 PDCK	509202 518598	2546.01 2592.99	1 / 68 1 / 136	26.25
부	π/2 BPSK	528000	2640.00	1 / 136	26.15 25.83
00 MHz		509202	2546.01	1 / 68	25.97
<u>8</u>	QPSK	518598	2592.99	1 / 136	26.10
		528000	2640.00	1 / 136	25.77
	16-QAM	509202	2546.01	1 / 68	24.82
		508200	2541.00	1 / 61	26.06
N	π/2 BPSK	518598	2592.99	1 / 122	26.11
90 MHz		528996 508200	2644.98 2541.00	1 / 122 1 / 61	26.36 26.15
0	QPSK	518598	2592.99	1/122	25.72
0,	Qi Oit	528996	2644.98	1/122	25.88
	16-QAM	528996	2644.98	1 / 122	25.74
		507204	2536.02	1 / 108	26.20
	π/2 BPSK	518598	2592.99	1 / 54	25.82
80 MHz		529998	2649.99	1 / 54	25.95
2	0001	507204	2536.02	1 / 108	25.75
õ	QPSK	518598	2592.99	1/54	26.04
	16-QAM	529998 507204	2649.99 2536.02	1 / 54 1 / 108	26.22 24.49
	10-024101	506202	2536.02	1/47	26.52
	π/2 BPSK	518598	2592.99	1 / 47	26.52
4		531000	2655.00	1 / 141	26.27
70 MHz		506202	2531.01	1 / 47	26.40
70	QPSK	518598	2592.99	1 / 47	25.92
		531000	2655.00	1 / 141	26.06
	16-QAM	531000	2655.00	1 / 141	25.23
		505200	2526.00	1 / 81	26.12
м	π/2 BPSK	518598	2592.99	1 / 40	25.94
60 MHz		531996 505200	2659.98	1 / 81	26.00
e Q	QPSK	505200	2526.00 2592.99	1 / 81 1 / 40	26.19 26.39
9	QFSK	531996	2659.98	1 / 40	26.39
	16-QAM	505200	2526.00	1 / 81	25.11
	10 00 111	504204	2521.02	1/99	26.00
	π/2 BPSK	518598	2592.99	1 / 99	25.96
분		532998	2664.99	1 / 66	26.32
50 MHz	QPSK	504204	2521.02	1 / 99	26.03
50		518598	2592.99	1 / 99	25.92
		532998	2664.99	1/66	25.18
	16-QAM	504204	2521.02	1/99	25.31
	π/2 BPSK	503202 518598	2516.01 2592.99	1 / 53 1 / 79	26.41 26.66
보	II/2 BI OIC	534000	2670.00	1 / 26	26.30
40 MHz		503202	2516.01	1 / 79	26.17
4	QPSK	518598	2592.99	1 / 79	26.84
		534000	2670.00	1 / 79	25.18
	16-QAM	503202	2516.01	1 / 79	25.25
		502200	2511.00	1 / 58	26.58
N	π/2 BPSK	518598	2592.99	1 / 58	26.35
H		534996	2674.98	1/39	26.40
30 MHz	QPSK	502200 518598	2511.00 2592.99	1 / 58 1 / 58	26.52
ň	ur on	518598	2592.99 2674.98	1/58	26.32 26.53
	16-QAM	502200	2511.00	1 / 58	25.42
		501204	2506.02	1 / 25	26.97
	π/2 BPSK	518598	2592.99	1 / 37	26.39
보		535998	2679.99	1 / 13	26.54
20 MHz		501204	2506.02	1 / 37	26.97
20	QPSK	518598	2592.99	1 / 37	26.37
	10.5	535998	2679.99	1/37	26.55
	16-QAM	535998	2679.99	1/37	25.55
		502200	2511.00	1/28	25.70
N	π/2 BPSK	518598	2592.99	1/9	26.08
15 MHz		534996 502200	2674.98 2511.00	1/9 1/28	25.99 25.63
15	QPSK	518598	2511.00	1/28	25.63
	GION	534996	2592.99 2674.98	1/9	25.90
	16-QAM	502200	2511.00	1/9	25.90
	10 30 101	502200	2506.02	1 / 28	25.33
	π/2 BPSK	518598	2592.99	1 / 17	25.90
4		535998	2679.99	1 / 17	25.82
10 MHz		501204	2506.02	1 / 17	25.30
10	QPSK	518598	2592.99	1 / 17	25.91
		535998	2679.99	1 / 17	25.78
	16-QAM	535998	2679.99	1 / 17	24.54

 16-QAM
 535998
 2679.99
 1 / 17
 24.54

 Table 7-13. Conducted Power Data (NR Band n41 PC2 -Switching ANT B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 401			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	9/9/2022 - 11/25/2022 Portable Tablet				
O 0000 EL ENENT			1444 0 0444/0000			

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
		509202	2546.01	1 / 204	18.45
	π/2 BPSK	518598	2592.99	1 / 68	18.33
MHz		528000	2640.00	1 / 204	18.48
		509202	2546.01	1 / 204	18.19
100	QPSK	518598	2592.99	1 / 68	18.29
		528000	2640.00	1 / 204	18.48
	16-QAM	528000	2640.00	1 / 204	18.08

Table 7-14. Conducted Power Data (NR Band n41 PC2 -Switching ANT F)

Bandwidth	Modulation	Channel Frequency [MHz]		RB Size/Offset	Conducted Power [dBm]	
		509202	2546.01	1 / 136	17.77	
	π/2 BPSK	518598	2592.99	1 / 68	17.68	
MHz		528000	2640.00	1 / 204	17.92	
	QPSK	509202	2546.01	1 / 136	17.58	
100		518598	2592.99	1 / 68	17.81	
		528000	2640.00	1 / 204	17.58	
	16-QAM	528000	2640.00	1 / 204	17.09	

Table 7-15. Conducted Power Data (NR Band n41 PC2 -Switching ANT D)

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]	
		509202	2546.01	1 / 68	20.98	
	π/2 BPSK	518598	2592.99	1 / 204	20.95	
MHz		528000	2640.00	1 / 204	20.63	
	QPSK	509202	2546.01	1 / 68	20.45	
100		518598	2592.99	1 / 204	20.93	
		528000	2640.00	1 / 204	20.41	
	16-QAM	528000	2640.00	1 / 204	19.96	

Table 7-16. Conducted Power Data (NR Band n41 PC2 -Switching ANT E)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 404				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 22 of 401				
© 2022 ELEMENT			V11.0 9/14/2022				

_	Dawar State Band	Bandwidth	PCC					scc					ULCA Tx.							
Power State Band	(PCC + SCC)	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]								
) 20MHz + 20MHz				39750	2506.0	1	99		39948	2525.8	1	0	25.73					
			QPSK	40620	2593.0	1	99	QPSK	40818	2612.8	1	0	25.55							
				41490	2680.0	1	0		41292	2660.2	1	99	25.68							
Max	LTE B41 (PC2)		20MHz + 20MHz	20MHz + 20MHz	20MHz + 20MHz	20MHz + 20MHz	20MHz + 20MHz	20MHz + 20MHz	20MHz + 20MHz	QPSK	39750	2506.0	100	0	QPSK	39948	2525.8	100	0	24.55
					16-QAM	39750	2506.0	100	0	16-QAM	39948	2525.8	100	0	23.68					
		64-QAM	39750	2506.0	100	0	64-QAM	39948	2525.8	100	0	22.84								
			256-QAM	39750	2506.0	100	0	256-QAM	39948	2525.8	100	0	20.88							

Table 7-17. Conducted Power Data (ULCA LTE B41(PC2) – Ant B)

Power State Band		Bandwidth (PCC + SCC)	PCC					scc					ULCA Tx.						
	Band		Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]						
		20MHz + 20MHz		39750	2506.0	1	99		39948	2525.8	1	0	24.55						
			QPSK	40620	2593.0	1	99	QPSK	40818	2612.8	1	0	24.71						
				41490	2680.0	1	0		41292	2660.2	1	99	24.59						
Max	LTE B41 (PC3)) 20MHz + 20MHz	QPSK	40620	2593.00	100	0	QPSK	40818	2612.8	100	0	23.49					
									16-QAM	40620	2593.00	100	0	16-QAM	40818	2612.8	100	0	22.38
			64-QAM	40620	2593.00	100	0	64-QAM	40818	2612.8	100	0	21.4						
			256-QAM	40620	2593.00	100	0	256-QAM	40818	2612.8	100	0	19.47						
			Table 7	10 Cond	united Day	war Data	//// СА 1.		C2) Ant	D)									

Table 7-18. Conducted Power Data (ULCA LTE B41(PC3) – Ant B)

		Bandwidth			PCC					SCC			ULCA Tx.
Power State	Band	(PCC + SCC)	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]
			39750	2506.0	1	99		39948	2525.8	1	0	25.82	
		QPSK	40620	2593.0	1	99	QPSK	40818	2612.8	1	0	25.67	
				41490	2680.0	1	0		41292	2660.2	1	99	25.54
Max	LTE B41 (PC2)	20MHz + 20MHz	QPSK	39750	2506.0	100	0	QPSK	39948	2525.8	100	0	23.67
		16-QAM	39750	2506.0	100	0	16-QAM	39948	2525.8	100	0	22.72	
			64-QAM	39750	2506.0	100	0	64-QAM	39948	2525.8	100	0	22.65
			256-QAM	39750	2506.0	100	0	256-QAM	39948	2525.8	100	0	20.68

Table 7-19. Conducted Power Data (ULCA LTE B41(PC2) – Ant F)

		Bandwidth			PCC					SCC			ULCA Tx.
Power State	Band	(PCC + SCC)	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]
				39750	2506.0	1	99		39948	2525.8	1	0	24.26
			QPSK	40620	2593.0	1	99	QPSK	40818	2612.8	1	0	24.08
				41490	2680.0	1	0		41292	2660.2	1	99	23.78
Max	LTE B41 (PC3)	20MHz + 20MHz	QPSK	39750	2506.0	100	0	QPSK	39948	2525.8	100	0	22.12
			16-QAM 64-QAM	39750	2506.0	100	0	16-QAM	39948	2525.8	100	0	21.10
				39750	2506.0	100	0	64-QAM	39948	2525.8	100	0	20.98
		256-QAM	39750	2506.0	100	0	256-QAM	39948	2525.8	100	0	19.08	

Table 7-20. Conducted Power Data (ULCA LTE B41(PC3) – Ant F)

	NR (SCS 15kHz)						LTE						LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	50/0					QPSK	50/0	17.20	22.78	23.84
20				QPSK	50/0	543				QPSK	1/25	17.23	22.87	23.92
n30	10	Mid	2310	QPSK	1/26	B12	10	Mid	707.5	QPSK	50/0	17.54	22.80	23.93
ANT A				QPSK	1/26	ANT A				QPSK	1/25	17.47	22.82	23.93
				16Q	1/26	1				16Q	1/25	17.42	23.14	24.17
-	Table 7.04 Conducted Device Date (EN DC Comba #20 ANT A D40)													

Table 7-21. Conducted Power Data (EN-DC Combo n30 ANT A – B12)

	NR (SCS 15kHz)							-	LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	50/0					QPSK	50/0	16.79	22.97	23.91
-20				QPSK	50/0	D12				QPSK	1/25	16.77	23.01	23.94
n30 ANT F	10	Mid	2310	QPSK	1/26	B12 ANT A	10	Mid	707.5	QPSK	50/0	16.74	22.94	23.87
ANTE				QPSK	1/26	ANTA				QPSK	1/25	16.77	22.98	23.91
				16Q	1/26					16Q	1/25	16.69	23.27	24.13

Table 7-22. Conducted Power Data (EN-DC Combo n30 ANT F – B12)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	9/9/2022 - 11/25/2022 Portable Tablet					
© 2022 ELEMENT			V11.0 9/14/2022				

	NR (SCS 15kHz)								LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Power	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	50/0					QPSK	100/0	18.22	21.45	23.14
- 20				QPSK	50/0	B2				QPSK	1/50	16.91	21.93	23.12
n30 ANT F	10	Mid	2310	QPSK	1/26	BZ ANT A	20	Mid	1880	QPSK	100/0	18.40	21.48	23.22
ANTE				QPSK	1/26	ANTA				QPSK	1/50	16.89	21.86	23.06
				16Q	1/26					16Q	100/0	19.08	20.35	22.77

Table 7-23. Conducted Power Data (EN-DC Combo n30 ANT F - B2)

	NR (SCS 30kHz)								LTE	-		NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power [dBm]	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	270/0					QPSK	100/0	18.38	22.21	23.71
- 44				QPSK	270/0	B2				QPSK	1/50	14.10	23.21	23.71
n41 ANT F	100	Mid	2593	QPSK	1/136	ANT A	20	Mid	1880	QPSK	100/0	18.38	22.21	23.71
ANTE				QPSK	1/136	ANT A				QPSK	1/50	14.25	23.31	23.82
				16Q	1/136					16Q	1/50	18.44	22.43	23.89

Table 7-24. Conducted Power Data (EN-DC Combo n41 ANT F – B25/2)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 401			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 24 01 40 1			
© 2022 ELEMENT						

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 25 of 401		
© 2022 ELEMENT	·	· · · · · · · · · · · · · · · · · · ·	V11.0 9/14/2022		

LTE Band 30 – Ant A

Keysight Spectrum Analyzer - Occupied BW - P 06:28:51 AM Oct 05, 2022 SENSE:INT ALIGN AUTO Center Freq: 2.31000000 GHz Trig: Free Run Avg|Hol Trace/Detector Radio Std: None Avg|Hold:>100/100 Radio Device: BTS #IFGain:Low #Atten: 36 dB Ref 40.00 dBm 10 dB/div _00 **Clear Write** Average NP-10 n Alama l diam'r diad MM Muhre Max Hold Center 2.31 GHz Res BW 240 kHz Span 25 MHz #VBW 750 kHz Sweep 1 ms Min Hold **Occupied Bandwidth Total Power** 30.3 dBm 9.0418 MHz Detector Peak ▶ Man **Transmit Freq Error** 6.732 kHz % of OBW Power 99.00 % Auto 10.08 MHz -26.00 dB x dB Bandwidth x dB STATUS MSG

Plot 7-1. Occupied Bandwidth Plot (LTE Band 30 - 10MHz QPSK - Full RB – Ant A)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 30 - 10MHz 16-QAM - Full RB - Ant A)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dega 26 of 404			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 26 of 401			
© 2022 ELEMENT	•	·	V11.0 9/14/2022			

🔤 Keysight Spectrum Analyzer - Occu	upied BW						- # ×
LXI RL RF 50 Ω	AC CORREC	SENSE:INT SOUR		06:31:21 AM 00 Radio Std: No		Trace	/Detector
		Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 36 dB		Radio Device	: BTS		
10 dB/div Ref 40.00	dBm						
Log 30.0							
20.0						C	lear Write
10.0	mm	mennen	mm				
0.00							
-10.0			Y				Average
							Average
-20.0			بكالجهل كمبور	mmm	- A		
-36.6					www.www.		
-40.0							Max Hold
-50.0							
Center 2.31 GHz				Span 12	5 MHz		
Res BW 120 kHz		VBW 1.2 MH	z		5 1 ms		Min Hold
							Minifiona
Occupied Bandy	width	Total P	ower 30.1	dBm			
	4.5453 MH	Z					Detector
						·	Peak►
Transmit Freq Erro	or 7.990 kH	Iz % of OE	SW Power 99	.00 %		Auto	Man
x dB Bandwidth	5.168 MH	lz x dB	-26.	00 dB			
MSG			STATUS	6			

Plot 7-3. Occupied Bandwidth Plot (LTE Band 30 - 5MHz QPSK - Full RB - Ant A)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 30 - 5MHz 16-QAM - Full RB - Ant A)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 401			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 27 01 401			
© 2022 ELEMENT		·	V11.0 9/14/2022			

LTE Band 30 – Ant F

Keysight Spectrum Analyzer - Occupied BW RI ALIGN AUTO 07:49:04 AM Oct 05, 2022 ENSEITN Trace/Detector Center Freq: 2.310000000 GHz Radio Std: None Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB Radio Device: BTS #IFGain:Low Ref 40.00 dBm 10 dB/div .og **Clear Write** Average www. Muhuh Max Hold Center 2.31 GHz Res BW 240 kHz Span 25 MHz Sweep 1 ms #VBW 750 kHz Min Hold Occupied Bandwidth **Total Power** 28.3 dBm 9.0365 MHz Detector Peak **Transmit Freq Error** 23.561 kHz % of OBW Power 99.00 % Auto Man x dB Bandwidth 10.13 MHz x dB -26.00 dB STATUS ISG

Plot 7-5. Occupied Bandwidth Plot (LTE Band 30 - 10MHz QPSK - Full RB - Ant F)

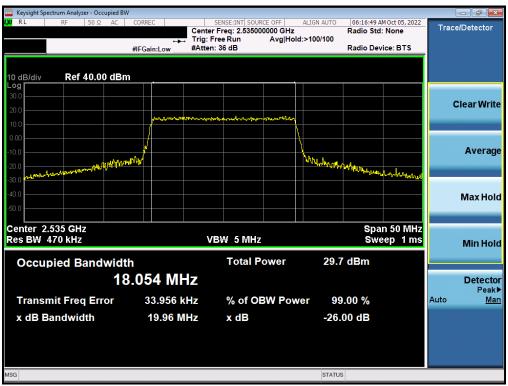

Plot 7-6. Occupied Bandwidth Plot (LTE Band 30 - 10MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 28 of 401	
© 2022 ELEMENT		·	V11.0 9/14/2022	

Keysight Spectrum Analyzer - Occupied					
LXI RL RF 50 Ω AC		SENSE:INT SOURCE OFF	ALIGN AUTO 08:01:48 Radio Sto	AM Oct 05, 2022	Trace/Detector
	+++ Trig:	Free Run Avg Hold	d:>100/100		
	#IFGain:Low #Atte	en: 36 dB	Radio De	evice: BTS	
10 dB/div Ref 40.00 dB	Bm				
30.0	<u>مد مد الم م</u>				
20.0	<u>س سالم ا</u>				Clear Write
10.0	m	month			
0.00					
-10.0					Average
			A A A A A A A A A A A A A A A A A A A		
-20.0 -30.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			grow ward	m m	
-40.0					
					Max Hold
-50.0					
Center 2.31 GHz				12.5 MHz	
Res BW 120 kHz		VBW 1.2 MHz		veep 1ms	Min Hold
Occurried Denduci		Total Power	28.0 dBm		
Occupied Bandwig		Total Power	20.0 UBIN		
	4.5328 MHz				Detector
Transmit Freq Error	14.970 kHz	% of OBW Pow	ver 99.00 %		Peak▶ Auto Man
x dB Bandwidth	5.156 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-7. Occupied Bandwidth Plot (LTE Band 30 - 5MHz QPSK - Full RB - Ant F)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 30 - 5MHz 16-QAM - Full RB - Ant F)


FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	11/25/2022 Portable Tablet	
© 2022 ELEMENT	•	•	V11.0 9/14/2022

LTE Band 7 – Ant B

Keysight Spectrum Analyzer - Occupied B	W						
LXI RL RF 50 Ω AC	CORREC	SENSE:INT SOURCE OFF er Freg: 2.535000000 GHz	ALIGN AUTO	06:16:44 AM Radio Std:	10ct 05, 2022	Tracel	Detector
	Trig:	Free Run Avg Ho	ld: 100/100				
	#IFGain:Low #Atte	en: 36 dB		Radio Devi	ce: BTS		
10 dB/div Ref 40.00 dBr	n			1 1			
30.0							
20.0						C	lear Write
10.0	frage on the land at the	entherstanders af an af and a state of the second state of the sec					
0.00	/		<u> </u>				
-10.0			\				Average
-20.0	VNN ^M		Wardwarden	hered literate			
-20.0				montument	urmonulation		
-40.0							Max Hold
-50.0							Μαλτισια
Center 2.535 GHz Res BW 470 kHz	,	VBW 5 MHz			n 50 MHz ep 1 ms		
KC5 DVV 470 KHZ				Swe	ep mis		Min Hold
Occupied Bandwidt	th	Total Power	30.8	3 dBm			
19	8.031 MHz						Detector
	5.051 WIT12						Peak►
Transmit Freq Error	58.949 kHz	% of OBW Pov	ver 99	0.00 %		Auto	Man
x dB Bandwidth	20.03 MHz	x dB	-26.	00 dB			
MSG			STATUS	5			

Plot 7-9. Occupied Bandwidth Plot (LTE Band 7 - 20MHz QPSK - Full RB - Ant B)

Plot 7-10. Occupied Bandwidth Plot (LTE Band 7 - 20MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 30 01 40 1		
© 2022 ELEMENT	•	·	V11.0 9/14/2022		

Keysight Spectrum Analyzer - Occ				_				
LXI RL RF 50 Ω	AC CORREC		INT SOURCE OFF 2.535000000 GHz	ALIGN AUTO	06:17:04 AM	MOct 05, 2022	Trac	e/Detector
		+++ Trig: Free Ru	in Avg Hol	d: 100/100	Radio Devi			
	#IFGain:Low	#Atten: 36 ab	3		Radio Devi	ice: BTS		
Dof 40.0								
10 dB/div Ref 40.00	J aBm							
30.0								Clear Write
20.0		- terment	manuely males John					slear write
10.0		و عصر ا						
0.00								
-10.0								Average
-20.0 -30.0	-An-way-warded			Thomasyang	Landerson	and the second second		
-30.0								
-40.0								Max Hold
-50.0								
Center 2.535 GHz					Span	37.5 MHz		
Res BW 360 kHz		VBW 4	4 MHz			ep 1 ms		Min Hold
				20.7	1.Dec			
Occupied Band			otal Power	30.7	dBm			
	13.555 N	ИHz						Detector
Transmit Freq Err	ror 46.16	7 kHz %	of OBW Pow	ver 99	.00 %		Auto	Peak▶ Man
x dB Bandwidth			dB		00 dB			
X dB Bandwidth	15.00	MHZ X	aB	-20.0	лав			
MSG				STATUS				

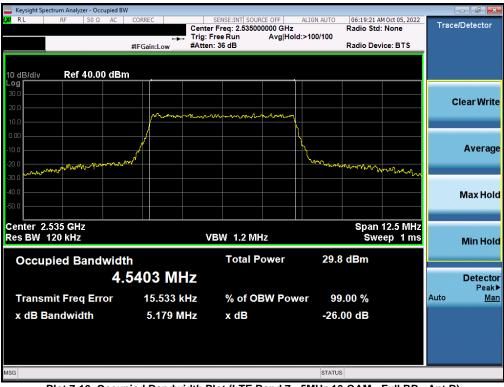
Plot 7-11. Occupied Bandwidth Plot (LTE Band 7 - 15MHz QPSK - Full RB - Ant B)

Plot 7-12. Occupied Bandwidth Plot (LTE Band 7 - 15MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage ST 01 401
© 2022 ELEMENT			V11.0 9/14/2022

Keysight Spectrum Analyzer - Occupied B	3W					
<mark>LX/</mark> RL RF 50Ω AC	CORREC	SENSE:INT SOURCE OFF		7:58 AM Oct 05, 2022 5 Std: None	Trace	/Detector
	+++ Trig:	Free Run Avg Ho	old:>100/100			
	#IFGain:Low #Atte	en: 36 dB	Radio	Device: BTS		
10 dB/div Ref 40.00 dB	m					
Log 30.0						
20.0					C	lear Write
10.0	monter	when an and when the way to				
0.00						
-10.0						Average
	~1hal)31					Average
11 mighen Mangham Marine and	30.00		artiture and water	way way and		
-30.0						
-40.0						Max Hold
-50.0						_
Center 2.535 GHz				Span 25 MHz		
Res BW 240 kHz		VBW 2.4 MHz		Sweep 1 ms		Min Hold
				· · ·		MITTHOIG
Occupied Bandwid	th	Total Power	30.5 dBn	n		
9	.0473 MHz					Detector
						Peak►
Transmit Freq Error	28.738 kHz	% of OBW Pov	wer 99.00 %	6	Auto	Man
x dB Bandwidth	10.16 MHz	x dB	-26.00 di	3		
MSG			STATUS			

Plot 7-13. Occupied Bandwidth Plot (LTE Band 7 - 10MHz QPSK - Full RB - Ant B)


Plot 7-14. Occupied Bandwidth Plot (LTE Band 7 - 10MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 32 01 40 1
© 2022 ELEMENT			V11.0 9/14/2022

Plot 7-15. Occupied Bandwidth Plot (LTE Band 7 - 5MHz QPSK - Full RB - Ant B)

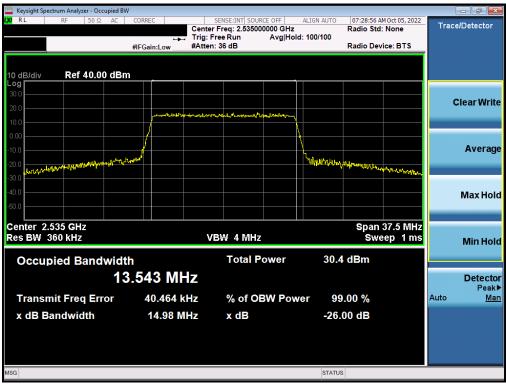
Plot 7-16. Occupied Bandwidth Plot (LTE Band 7 - 5MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 33 01 40 1		
© 2022 ELEMENT			V11.0 9/14/2022		

LTE Band 7 – Ant F

Keysight Spectrum Analyzer - Occupied BW æ 07:22:36 AM Oct 05, 2022 SENSE:IN ALIGN AUTO Trace/Detector Center Freq: 2.535000000 GHz Trig: Free Run Avg|Hol Radio Std: None Avg|Hold:>100/100 Radio Device: BTS #IFGain:Low #Atten: 36 dB Ref 40.00 dBm 10 dB/div _00 **Clear Write** Average hereberelat who. man I.A.M Max Hold Center 2.535 GHz Res BW 470 kHz Span 50 MHz VBW 5 MHz Sweep 1 ms Min Hold **Occupied Bandwidth** Total Power 30.4 dBm 18.038 MHz Detector Peak 29.820 kHz Man **Transmit Freq Error** % of OBW Power 99.00 % Auto -26.00 dB x dB Bandwidth 19.81 MHz x dB STATUS MSG

Plot 7-17. Occupied Bandwidth Plot (LTE Band 7 - 20MHz QPSK - Full RB - Ant F)


Plot 7-18. Occupied Bandwidth Plot (LTE Band 7 - 20MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	9/9/2022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT		-	V11 0 9/14/2022		

Keysight Spectrum Analyzer - Occupied BW	
ΙΔ RF 50 Ω AC CORREC SENSE:INT SOURCE OFF ALIGN AUTO 07:28:47 AM oct 05, 2022 Center Freq: 2.535000000 GHz Radio Std: None	Trace/Detector
Trig: Free Run Avg Hold: 100/100	
#IFGain:Low #Atten: 36 dB Radio Device: BTS	
10 dB/div Ref 40.00 dBm	
20.0	
20.0	Clear Write
10.0 monolegandratic sametic sametic same	
	Average
	Average
and a high when the way were and a start a	
-40.0	Max Hold
-50.0	
Center 2.535 GHz Span 37.5 MHz	
Res BW 360 kHz VBW 4 MHz Sweep 1 ms	Min Hold
	WIIII PIOIU
Occupied Bandwidth Total Power 30.7 dBm	
13.578 MHz	Detector
	Peak►
Transmit Freq Error 44.382 kHz % of OBW Power 99.00 %	Auto <u>Man</u>
x dB Bandwidth 15.04 MHz x dB -26.00 dB	
MSG STATUS	

Plot 7-19. Occupied Bandwidth Plot (LTE Band 7 - 15MHz QPSK - Full RB - Ant F)

Plot 7-20. Occupied Bandwidth Plot (LTE Band 7 - 15MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 401	
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet		
© 2022 ELEMENT		·	V11.0 9/14/2022	

🔤 Keysight Spectrum Analyzer - Occu	pied BW						- # ×
(X) RL RF 50 Ω	🛶 Trig		old: 100/100	Radio Std:		Trace	/Detector
	#IFGain:Low #At	ten: 36 dB	F	Radio Devi	ce: BTS		
10 dB/div Ref 40.00	dBm						
30.0							
20.0	And when many of the second	᠁᠁ᢣᡪ᠊᠋ᡙᡶᡅᢂ᠆᠂ᡔᢦ᠆ᢪ᠇ᢈ᠆ᡀᡟᢛ᠇᠕ᡃᡏᡗᡅᡭᡕ	<u>م</u>			С	lear Write
10.0							
0.00			<u>\</u>				A
-10.0			h_h_				Average
-20.0	Jrd Ling the Contract of the C		Mr. Maleuperen	apression and	margh		
-40.0							Max Hold
-50.0							Maxilola
Center 2.535 GHz				Snar	1 25 MHz		
Res BW 240 kHz		VBW 2.4 MHz		Swe	ep 1 ms		Min Hold
Occupied Bandy	vidth	Total Power	30.5 d	dBm			
9.0532 MHz							Detector
Transmit Freq Erro		% of OBW Po	wer 99.(00 %		Auto	Peak▶ <u>Man</u>
x dB Bandwidth	10.06 MHz	x dB	-26.00				
			20100				
MSG			STATUS				

Plot 7-21. Occupied Bandwidth Plot (LTE Band 7 - 10MHz QPSK - Full RB - Ant F)

Plot 7-22. Occupied Bandwidth Plot (LTE Band 7 - 10MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 36 of 401		
© 2022 ELEMENT	-		V11.0 9/14/2022		

Plot 7-23. Occupied Bandwidth Plot (LTE Band 7 - 5MHz QPSK - Full RB - Ant F)

Plot 7-24. Occupied Bandwidth Plot (LTE Band 7 - 5MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 37 of 401		
© 2022 ELEMENT			V11.0 9/14/2022		

LTE Band 41(PC2) – Ant B

l a 06:24:29 AM Oct 10, 2022 SENSE:IN ALIGN AUTO Trace/Detector Center Freq: 2.593000000 GHz Trig: Free Run Avg|Hol Radio Std: None Avg|Hold:>100/100 Radio Device: BTS #IFGain:Low #Atten: 36 dB Ref 40.00 dBm 10 dB/div _00 **Clear Write** Average Max Hold Center 2.593 GHz Res BW 470 kHz Span 50 MHz #VBW 1.5 MHz Sweep 1 ms Min Hold **Occupied Bandwidth Total Power** 33.5 dBm 18.021 MHz Detector Peak ▶ -3.644 kHz Man **Transmit Freq Error** % of OBW Power 99.00 % Auto -26.00 dB x dB Bandwidth 20.07 MHz x dB STATUS MSG

Plot 7-25. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz QPSK - Full RB - Ant B)


Plot 7-26. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	022 - 11/25/2022 Portable Tablet			
© 2022 ELEMENT	•		V11.0 9/14/2022		

Keysight Spectrum Analyzer - Occupied BV	N				
LXI RL RF 50Ω AC	CORREC	SENSE:INT SOURCE OFF A	LIGN AUTO 07:16:48 A	AM Oct 10, 2022	Trace/Detector
	Trig: I	Free Run Avg Hold:>	>100/100		
	#IFGain:Low #Atter	n: 36 dB	Radio De	vice: BTS	
10 dB/div Ref 40.00 dBn	n				
Log 30.0					
20.0					Clear Write
10.0	- and a start and a start and a start a	Marmole Manager Internet and a second s			
0.00	/				
					Avorago
-20.0 -20.0	win		Hy to Martin mark and		Average
			and the second strength of the second	Marsh Mary Lift on	
-30.0					
-40.0					Max Hold
-50.0					
			0	07.5 8411-	
Center 2.593 GHz Res BW 360 kHz	#	VBW 1.1 MHz		37.5 MHz eep 1 ms	
Res BW 300 KHZ			344	eep mis	Min Hold
Occupied Bandwidt	h	Total Power	33.6 dBm		
	3.580 MHz				Detector
					Peak►
Transmit Freq Error	-9.760 kHz	% of OBW Powe	r 99.00 %		Auto <u>Man</u>
x dB Bandwidth	15.09 MHz	x dB	-26.00 dB		
	15.05 1112		-20.00 00		
MSG			STATUS		

Plot 7-27. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz QPSK - Full RB - Ant B)

Plot 7-28. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 39 01 40 1
© 2022 ELEMENT	•	·	V11.0 9/14/2022

Plot 7-29. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz QPSK - Full RB - Ant B)

Plot 7-30. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 40 01 40 1		
© 2022 ELEMENT	•		V11.0 9/14/2022		

Keysight Spectrum Analyzer - Occupied	BW				
XIRL RF 50Ω AC		SENSE:INT SOURCE OFF A	LIGN AUTO 07:57:18 A Radio Std	M Oct 10, 2022	Trace/Detector
	+++ Trig:	Free Run Avg Hold:>	100/100		
	#IFGain:Low #Atte	n: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 40.00 dE	3m				
Log 30.0					
20.0					Clear Wri
10.0	harrow	men the way were			
0.00		<u></u>			
-10.0	1		\		Avera
-20.0	mal		What was a for the second	~	, it of u
-20.0 -30.0				Mod for the state	
-30.0					
					Max Ho
-50.0					
Center 2.593 GHz				12.5 MHz	
Res BW 120 kHz	#	#VBW 390 kHz	Swe	eep 1 ms	Min Ho
Occurried Denducia	141.	Total Power	33.0 dBm		
Occupied Bandwig		I Otal FOwer	55.0 UBIII	i i i i i i i i i i i i i i i i i i i	
4	.5627 MHz				Detect
Transmit Freq Error	-9.561 kHz	% of OBW Powe	r 99.00 %		Peal Auto M
x dB Bandwidth	5.229 MHz	x dB	-26.00 dB		
			, ,		
ASG			STATUS		

Plot 7-31. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz QPSK - Full RB - Ant B)

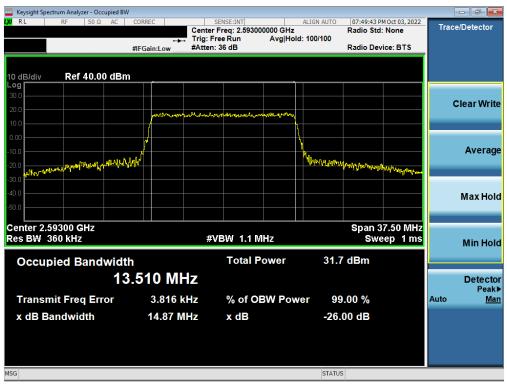
Plot 7-32. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 41 01 40 1
© 2022 ELEMENT			V11.0 9/14/2022

LTE Band 41(PC2) – Ant F

Keysight Spectrum Analyzer		W									
LXIRL RF	50 Ω AC	CORREC	C		NSE:INT rea: 2.59300	0000 GHz	ALIGN AUTO	07:48:55 Radio Ste	PM Oct 03, 2022	Trace	e/Detector
			+	. Trig: Fre	e Run	Avg Hold	I: 100/100				
		#IFGai	n:Low	#Atten: 3	36 dB			Radio De	vice: BTS		
10 dB/div Ref 4	0.00 dB	m						1	1		
30.0											
20.0			-thomas for any f	Lat Manager But	And And And And	alle Addation				C	Clear Write
10.0		/		harry dreet that at							
0.00						<u> </u>					
-10.0		(`									Average
-20.0	atta and low	hlinn					How blow	ally for the state of the state	-		
-30.0									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-40.0											Max Hold
-50.0											Max Holu
Center 2.59300 GH Res BW 470 kHz	z			#\/	3W/ 1.5 N	11-7			50.00 MHz eep 1 ms		
Res BW 470 KHZ				#V	5WV 1.5 IV	INZ		SW	eep mis		Min Hold
Occupied Ba	ndwid	th			Total F	ower	32.	9 dBm			
	1	8 02	5 MI	7							Detector
		0.02		12							Peak
Transmit Freq	Error	16	6.007 k	Hz	% of O	BW Pow	er 9	9.00 %		Auto	<u>Man</u>
x dB Bandwidt	h	1	9.82 M	IHz	x dB		-26	.00 dB			
MSG							STATU	IS			

Plot 7-33. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz QPSK - Full RB - Ant F)


Plot 7-34. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 42 01 40 1
© 2022 ELEMENT	•	·	V11.0 9/14/2022

Keysight Spectrum Analyzer -	Occupied BW	1						
🗶 RL RF 51	Ω AC	CORREC	SENSE:INT Center Freg: 2.593			4 PM Oct 03, 2022	Trace	/Detector
		↔ #IFGain:Low		Avg Hold: 100/	/100	evice: BTS		
		In Gam.cow						
10 dB/div Ref 40	.00 dBn	ı						
Log 30.0								
20.0							с	lear Write
10.0		Mill Marine	^{๛๛๚} ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛					
0.00				<u> </u>				
-10.0				<u> </u>				Average
-20.0 Walson hard to all the	al Manufation	مسمالها		Նպ	white and the second			Ŭ
-30.0						w Verymen, Milyesel		
-40.0								Max Hold
-50.0								maxmore
Center 2.59300 GHz	-				Snor	37.50 MHz		
Res BW 360 kHz	4		#VBW 1.1	MHz		weep 1 ms		Min Hold
Occupied Bar	ndwidt	h	Total	Power	32.8 dBm			
		.510 M	Hz					Detector
Transmit Freq E	Frror	16.324	kHz % of C	DBW Power	99.00 %		Auto	Peak≯ <u>M</u> ar
x dB Bandwidth		14.91 N			-26.00 dB			
					E0100-01D			
ISG					STATUS			

Plot 7-35. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz QPSK - Full RB - Ant F)


Plot 7-36. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 401		
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 43 01 40 1		
© 2022 ELEMENT		·	V11.0 9/14/2022		

Keysight Spectrum Analyzer - Occupie		SENSE:INT		07-50-06 DM	2-+ 02 2022	
κι κ- 50Ω A	IL CURREC	Center Freq: 2.59300		07:50:06 PM 0 Radio Std: N		Trace/Detector
	₩FGain:Low	 Trig: Free Run #Atten: 36 dB 	Avg Hold: 100/100	Radio Devic	e: BTS	
10 dB/div Ref 40.00 d	IBm					
Log 30.0						
20.0						Clear Write
10.0	Jaran	Marthan adams and a second and the Mart	- John water			
0.00	{		<u> </u>			
-10.0			<u> </u>			Average
-20.0	sam		n n n n n n n n n n n n n n n n n n n	m low of the opport	Mrmlla	
-30.0					The second second	
-40.0						Max Hold
-50.0						
Center 2.59300 GHz				Span 25	.00 MHz	
Res BW 240 kHz		#VBW 7501	(Hz	Swee	p 1 ms	Min Hold
Occupied Bandwi	idth	Total P	ower 32.	6 dBm		
	9.0058 MI	72				Detector Peak►
Transmit Freq Error	2.870	Hz % of O	BW Power 99	9.00 %	/	Auto <u>Man</u>
x dB Bandwidth	10.17 N	IHz x dB	-26	00 dB		
MSG			STATU	S		

Plot 7-37. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz QPSK - Full RB - Ant F)

Plot 7-38. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 401					
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 44 01 40 1					
© 2022 ELEMENT			V11.0 9/14/2022					

000050	osuos turi				d X
Cente	er Freq: 2.593000000 GHz	Radio St		Trace/Det	ector
			evice: BTS		
	10 10000 000			Clea	r Write
hast marked and a second					
	\				
<i>f</i> ^r		h		A۱	verage
		L'IL IN DRIVENING AND	w/v walks		
				Ма	x Hold
	FVBW 390 KHZ	SV	veep 1 ms	Mi	n Hold
	Total Power	32.6 dBm			
266 MHz				De	etector
		or 00.00 %		Auto	Peak▶ Man
				Auto	Ivian
5.219 MHz	X dB	-26.00 dB			
		STATUS			
	#FGain:Low #Atte	Center Freq: 2.59300000 GHz Trig: Free Run Avg Hold #FGein:Low #Atten: 36 dB #VBW 390 kHz Total Power 5266 MHz 4.511 kHz % of OBW Power	Center Freq: 2.59300000 GHz Trig: Free Run Avg Hold: 100/100 #Atten: 36 dB Radio D Radio D Radio D Radio D Radio D Radio D Radio D Span #VBW 390 kHz Span Span Solution Sol	Center Freq: 2.59300000 GHz Trig: Free Run Avg Hold: 100/100 #Atten: 36 dB Radio Device: BTS Radio Device: BTS Radio Device: BTS Radio Device: BTS Radio Device: BTS Span 12.50 MHz Span 12.50 MHz Sweep 1 ms Total Power 32.6 dBm S266 MHz 4.511 kHz % of OBW Power 99.00 % 5.219 MHz x dB -26.00 dB	CORREC SENSE:INT ALIGN AUTO 07:50:45 PM oct 03, 2022 Trace/Det Trig: Free Run Avg Hold: 100/100 Radio Std: None Radio Device: BTS Trace/Det ##FGain:Low #Atten: 36 dB Avg Hold: 100/100 Radio Device: BTS Clean ##FGain:Low #Atten: 36 dB Generation Generation Generation Generation ##FGain:Low #Atten: 36 dB Generation Generation Generation Generation Generation ##FGain:Low #Atten: 36 dB Generation Generation

Plot 7-39. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz QPSK - Full RB - Ant F)

Plot 7-40. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 45 of 401				
© 2022 ELEMENT	•	·	V11.0 9/14/2022				

LTE Band 41(PC3)/38 – ANT B

🔤 Keysight Spectrum Analyz													
LXI RL RF	<u>50 Ω</u>	AC	CORRE	C		SENSE:INT SOU			ALIGN AUTO	08:25:31 A Radio Std	M Oct 10, 2022	Trac	e/Detector
			Center Freq: 2.593000000 GHz Radio Std: None Trig: Free Run Avg Hold:>100/100										
			#IFGai	n:Low	#Atten	: 36 dB				Radio Dev	ice: BTS		
	40.00	dBm											
Log 30.0													
20.0													Clear Write
				mumut	****Nation	****	and the second						
10.0			1					$\left(\right)$					
0.00			1					٦					
-10.0		langer	hal					Ť	Mary .				Average
-20.0	March and								1999 AND	the way	mannon		
-30.0								Ħ					
-40.0								\dashv					Max Hold
-50.0								\dashv					
Center 2.593 GH	7									Sna	n 50 MHz		
Res BW 470 kHz					#\	/BW 1.5 N	lHz				ep 1 ms		Min Hold
													Minitiona
Occupied B	and	width	ו			Total P	ower		32.3	dBm			
		18	.01	1 Mł	z								Detector
Troponit Fro						0/ of O			- 00	00.0/		Auto	Peak▶ Man
Transmit Free		J		0.182 k		% of O	BW POV	ve		.00 %		Auto	ivian
x dB Bandwid	lth		2	0.00 M	IHz	x dB			-26.	00 dB			
MSG									STATUS	5			
						TER						_	

Plot 7-41. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 20MHz QPSK - Full RB - Ant B)


Plot 7-42. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 20MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 40 01 40 1
© 2022 ELEMENT	•	·	V11.0 9/14/2022

Keysight Spectrum Analyzer - Occupie					
LXI R L RF 50 Ω A0		SENSE:INT SOURCE OFF	ALIGN AUTO 08:57:53 A Radio Std	M Oct 10, 2022	Trace/Detector
	T	rig: Free Run Avg Hold	d: 100/100		
	#IFGain:Low#	Atten: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 40.00 d	Bm				
30.0					
20.0					Clear Write
10.0	Jelong and the house	annaly well marked the marked			
0.00					
-10.0					Average
	Jun mar		Worklyhuman.		
-20.0 -20.0 -30.0			Confidence participation	- Mary Willing	
-40.0					Max Hold
-50.0					
Center 2.593 GHz			Span	37.5 MHz	
Res BW 360 kHz		#VBW 1.1 MHz		eep 1 ms	Min Hold
		Tetel Desser	00.0 JD		
Occupied Bandwi	idth	Total Power	32.0 dBm		
	13.517 MHz				Detector
Turner it Free v Free v	20.046.644				Peak▶ Auto Man
Transmit Freq Error					Auto <u>Man</u>
x dB Bandwidth	14.97 MHz	x dB	-26.00 dB		
MSG			STATUS		

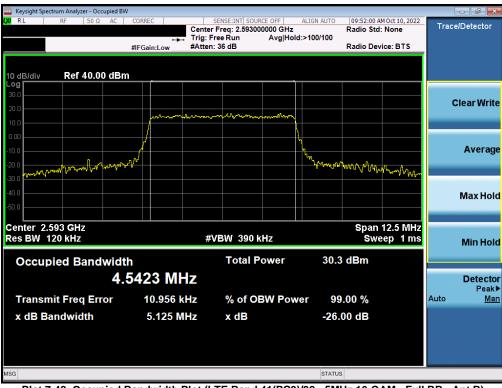
Plot 7-43. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 15MHz QPSK - Full RB - Ant B)


Plot 7-44. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 15MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 401					
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 47 of 401					
© 2022 ELEMENT			V11.0 9/14/2022					

1				
CORREC Cente				Trace/Detector
			io Device: BTS	
#IFGalli:Low #Atter	1. 00 dB	Rad	Device: DTS	
				Clear Writ
and a start and a start as the	manufragentario			
	1			
<i>N</i>		WAN - IN -		Averaç
		and the second second second second	who work himson	
				Max Ho
			Span 25 MHz	
#	VBW 750 kHz		Sweep 1 ms	Min Ho
h	Total Power	32.1 dB	m	
		0211 42		
0400 MHZ				Detecte
11.700 kHz	% of OBW Powe	r 99.00	%	Auto <u>Ma</u>
10.03 MHz	x dB	-26.00 d	В	
	#FGain:Low Cente Trig: #Atter	CORREC SENSE:INT SOURCE OFF A Center Freq: 2.59300000 GHz Trig: Free Run Avg Hold: #FGain:Low #Atten: 36 dB	CORREC SENSE:INT SOURCE OFF ALIGN AUTO 09 #FGain:Low Center Freq: 2.59300000 GHz Rad #FGain:Low #Atten: 36 dB Avg Hold:>100/100 Rad #FGain:Low #Atten: 36 dB Avg Hold:>100/100 Rad #FGain:Low #Atten: 36 dB Avg Hold:>100/100 Rad #VBW 750 kHz Model of the second	CORREC SENSE:INT SOURCE OFF ALIGN AUTO 09:22:21 AM Oct 10, 2022 Radio Std: None Trig: Free Run Avg Hold:>100/100 Radio Device: BTS #FGain:Low #Atten: 36 dB Avg Hold:>100/100 Radio Device: BTS #FGain:Low #Atten: 36 dB Span 25 MHz Span 25 MHz Symeep 1 ms Total Power 32.1 dBm 04000 MHz 11.700 kHz % of OBW Power 99.00 %

Plot 7-45. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 10MHz QPSK - Full RB - Ant B)


Plot 7-46. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 10MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 48 of 401	
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 48 of 401	
© 2022 ELEMENT	•	·	V11.0 9/14/2022	

🔤 Keysight Spectrum Analyzer - Occ							- d X
LXI RL RF 50 Ω	AC CORREC	SENSE:INT SOUR		09:51:56 AM 0 Radio Std: N		Trace	/Detector
		Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 36 dB		Radio Device	e: BTS		
10 dB/div Ref 40.00	0 dBm						
Log 30.0							
20.0						С	lear Write
10.0	wowner	when we want have	mm				
0.00							
			Υ.				Avorage
-10.0	6 not						Average
-20.0 -30.0 Marcin washington	www V			town were and	Anna		
	وهي ويهما						
-40.0	المتكل الكتيك						Max Hold
-50.0	والمراجع المراجع						
Center 2.593 GHz				Span 12	2.5 MHz		
Res BW 120 kHz		#VBW 390 k	Hz		p 1 ms		Min Hold
							Wintfiold
Occupied Band	lwidth	Total Po	ower 30.9	dBm			
	4.5298 MF	z					Detector
							Peak►
Transmit Freq Err	ror 10.853 k	Hz % of OE	3W Power 99	0.00 %		Auto	Man
x dB Bandwidth	5.156 M	lHz x dB	-26.	00 dB			
MSG			STATUS	5			

Plot 7-47. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 5MHz QPSK - Full RB - Ant B)

Plot 7-48. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 5MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 401	
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 49 of 401	
© 2022 ELEMENT			V11.0 9/14/2022	

LTE Band 41(PC3)/38 - Ant F

	ectrum Analyz	er - Occi	upied BW												
L <mark>XI</mark> RL	RF	50 Ω	AC	CORRE	EC			ISE:INT			ALIGN AUTO		M Oct 03, 2022	Trac	e/Detector
					Center Freq: 2.593000000 GHz Radio Std: Trig: Free Run Avg Hold: 100/100						: None				
				#IFGa	FGain:Low #Atten: 36 dB Radio Device: E						vice: BTS				
					_										
10 dB/div Log	Ref	40.00) dBm		·					—					
30.0															
															Clear Write
20.0					Manunda	have	and a start	hannessen we	anna thai						
10.0					($\left \right $					
0.00				-f						Ļ					
-10.0				4						ł					Average
-20.0			J. Marting M.	HL.							we Uleman				-
20.0 Marsh	mulunar	and the second										al al and when a	- and handparent		
-30.0															
-40.0										\dashv					Max Hold
-50.0															
Center 2.													50.00 MHz		
Res BW -	470 kHz						#VE	SW 1.5 N	IHz			Sw	eep 1 ms		Min Hold
								T - 4 - 1 D			24				
Occu	pied B	and	width					Total P	ower		31.4	dBm			
			18	01	9 M	H7									Detector
															Peak►
Transi	mit Frec	i Err	or		8.611	kHz		% of O	BW Pov	ve	r 99	.00 %		Auto	<u>Man</u>
	Bandwid	lth			20.09 I			x dB			26	00 dB			
	balluwiu	IUII		í í	20.091	VINZ		хuв			-20.	00 UB			
MSG											STATUS	8			
	7 40 0	_		_											A

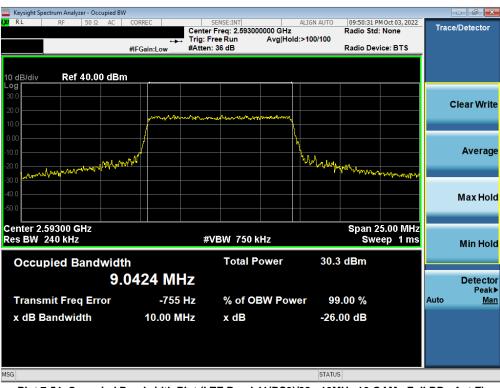
Plot 7-49. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 20MHz QPSK - Full RB - Ant F)

Plot 7-50. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 20MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 50 of 401				
© 2022 ELEMENT	•	·	V11.0 9/14/2022				

Keysight Spectrum Analyzer - Occ											
<mark>LX/</mark> RL RF 50Ω	AC CORRE	EC		NSE:INT eq: 2.59300	0000 GH-	ALI	IGN AUTO	09:48:19 F	M Oct 03, 2022	Trac	e/Detector
			Taken Days		Avg Hold	d: 1(00/100	Radio Stu	. None		
	#IFGa	in:Low	#Atten: 3	6 dB				Radio Dev	vice: BTS		
10 dB/div Ref 40.00) dBm										
Log						Τ					
30.0											Clear Write
20.0		tota ha	Mar March	بليوا مريرم أنه							Clear write
10.0			- C Merceland	1							
0.00	/					կ					
-10.0	/					٩.					Average
	Martinetter					ĥ	Wryman				
all the on the man when	Andraha						a l'atendique	why www.	plan marpho		
00.0											
-40.0											Max Hold
-50.0											
								0			
Center 2.59300 GHz Res BW 360 kHz			#\/E	W 1.1 M	U 7				87.50 MHz eep 1 ms		
Kes BW JOU KHZ			#VE	9VV I.IIVI	ΠZ			500	eep rins		Min Hold
Occupied Band	width			Total P	ower		31.5	dBm			
	13.52	.1 MF	1Z								Detector
Transmit Freq Err	or	-3.488 k	Hz	% of OE		er	90	.00 %		Auto	Peak▶ Man
										/ late	marr
x dB Bandwidth		14.94 M	Hz	x dB			-26.0	00 dB			
MSG							STATUS			_	

Plot 7-51. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 15MHz QPSK - Full RB - Ant F)


Plot 7-52. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 15MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 51 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 51 of 401				
© 2022 ELEMENT			V11.0 9/14/2022				

🔤 Keysight Sp	ectrum Analyz	er - Occu	pied BW											
LXIRL	RF	50 Ω	AC	CORRE			SENSE:INT		ALI	GN AUTO		M Oct 03, 2022	Troc	e/Detector
							Freq: 2.5930				Radio Std	: None	IIau	e/Delector
					. +	Trig: F #Atten	ree Run	Avg Hol	d: 10	00/100	Dealle Deal			
			1	#IFGai	n:Low	#Atten	: 36 00				Radio Dev	ICE: DIS		
10 dB/div	Dof	40.00	dBm											
Log	Rei	40.00	uыш						_					
30.0														
														Clear Write
20.0					w.www.	Maryalian	~~~	Som Man						
10.0														
0.00									۲					
) r					4					
-10.0				1					٩.					Average
-20.0	mayberlyble	Change All	wardly Mr.	Ń					ਅ	LLL	Manager			
-30.0 Mahlu	and the second second										and the states	Marin Maril		
-40.0														Max Hold
-50.0														
Center 2.	59300 G	Hz									Span 2	5.00 MHz		
Res BW	240 kHz					#\	#VBW 750 kHz					ep 1 ms		Min Hold
Occu	pied B	andv	vidth				Total F	ower		31.3	dBm			
0000		anav				_								
			9.0	21	4 MI	-IZ								Detector
														Peak▶
Trans	mit Frec	q Erro	or	-	5.318	kHz	% of O	BW Pow	/er	99	.00 %		Auto	<u>Man</u>
					0.40.0					200				
хаве	Bandwid	iτn		1	0.12 N	IHZ	x dB			-20.	00 dB			
MSG										STATUS				

Plot 7-53. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 10MHz QPSK - Full RB - Ant F)

Plot 7-54. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 10MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 52 of 401				
© 2022 ELEMENT			V11.0 9/14/2022				

Keysight Spectrum Analyzer - Occupied E				00.55.47.54.0.405.0005	
LXI RL RF 50Ω AC	CORREC	SENSE:INT Center Freq: 2.59300		09:52:17 PM Oct 03, 2022 Radio Std: None	Trace/Detector
	₩IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold: 100/100	Radio Device: BTS	
,					Ī
10 dB/div Ref 40.00 dB	m				
Log					
30.0					Clear Write
20.0	m		mm		
0.00	{		l l		
-10.0	M		\ h_		Average
-20.0	with		- North Contraction		, it of ugo
-30.0 www.hardwork.				how wohnt	
-40.0					Max Hold
-50.0					
Center 2.593000 GHz Res BW 120 kHz		#VBW 3901	(H7	Span 12.50 MHz Sweep 1 ms	
					Min Hold
Occupied Bandwid	th	Total P	ower 31.	2 dBm	
4	.5313 MH	lz			Detector
Transmit From Freeze	-1.798 k	الم ۱۱ه ۱۱ه ما	BW Power 99	9.00 %	Peak▶ Auto Man
Transmit Freq Error					Auto <u>Ivian</u>
x dB Bandwidth	5.236 M	Hz x dB	-26.	.00 dB	
			07470		
MSG			STATU	5	

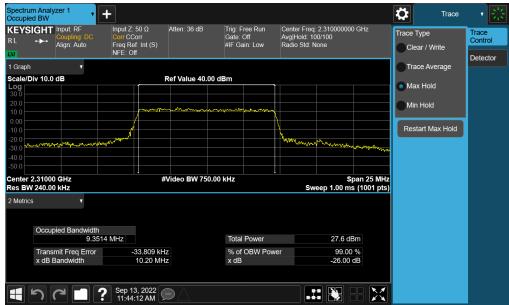
Plot 7-55. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 5MHz QPSK - Full RB - Ant F)

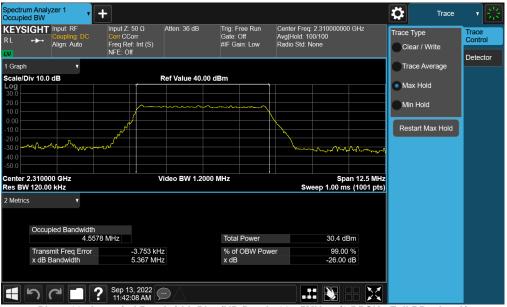
Plot 7-56. Occupied Bandwidth Plot (LTE Band 41(PC3)/38 - 5MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 53 of 401				
© 2022 ELEMENT			V11.0 9/14/2022				

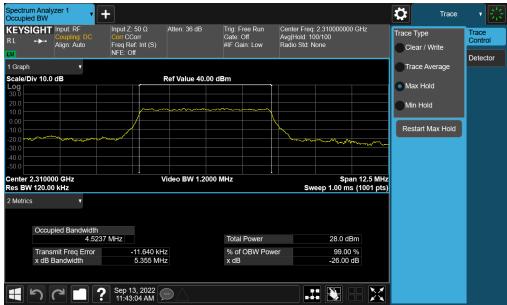
NR Band n30 – ANT A

Spectrum An Occupied BV	v V	+					Trace	· * 😤
RL +	Coupling: DC	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 36 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fred Avg Hold:> Radio Std: I		Trace Type Clear / Write	Trace Control
1 Graph	•	NFE: Off					Trace Average	Detector
Scale/Div 10 Log 30.0 20.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0			Ref Value 40.00) dBm	-		Max Hold Min Hold Restart Max Hold	
Center 2.310 Res BW 240		#	Video BW 750.	00 kHz	Sv	Span 25 MH veep 1.00 ms (1001 pt		
Tra	▼ cupied Bandwidth 9.022 nsmit Freq Error B Bandwidth	28 MHz -196.22 kH 9.953 MH		Total Power % of OBW Pow x dB	er	30.5 dBm 99.00 % -26.00 dB		
۲		Sep 13, 2022 11:45:20 AM						


Plot 7-57. Occupied Bandwidth Plot (NR Band n30 - 10MHz π/2 BPSK - Full RB - Ant A)


Plot 7-58. Occupied Bandwidth Plot (NR Band n30 - 10MHz QPSK - Full RB - Ant A)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dogo 54 of 401			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 54 of 401			
© 2022 ELEMENT			V11.0 9/14/2022			


Plot 7-59. Occupied Bandwidth Plot (NR Band n30 - 10MHz 16-QAM - Full RB - Ant A)

Plot 7-60. Occupied Bandwidth Plot (NR Band n30 - 5MHz π/2 BPSK - Full RB - Ant A)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 55 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 55 of 401				
© 2022 ELEMENT	•	·	V11.0 9/14/2022				

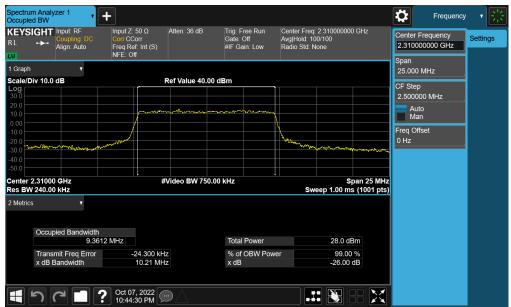
Plot 7-61. Occupied Bandwidth Plot (NR Band n30 - 5MHz QPSK - Full RB - Ant A)

Plot 7-62. Occupied Bandwidth Plot (NR Band n30 - 5MHz 16-QAM - Full RB - Ant A)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dega EC of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 56 of 401				
© 2022 ELEMENT	•		V11.0 9/14/2022				

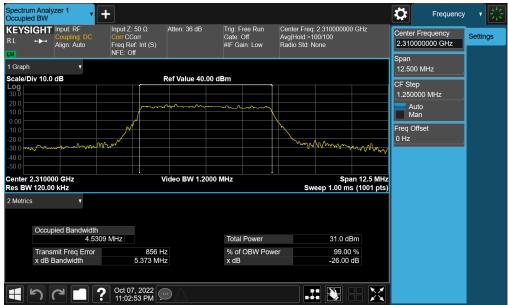
NR Band n30 – Ant F

Occupie		· · · L	+								₽	Frequency	- * 詳
RL		t: RF bling: DC i: Auto	Input Z: 50 Corr CCorr Freq Ref: Ir NFE: Off		Gat	: Free Run e: Off Gain: Low		Center Freq Avg Hold:>1 Radio Std: N) GHz	<u> </u>	requency 0000 GHz	Settings
1 Graph		T	I								Span 25.000 N	ЛНz	
Scale/D Log 30.0 20.0 10.0	iv 10.0 dB			Ref Value 40	0.00 dBm	~~~~~					CF Step 2.50000 Auto Man		
0.00 -10.0 -20.0 -30.0	w.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~					Margaran		-	Freq Offs 0 Hz		
-40.0													
	2.31000 GH 240.00 kHz			#Video BW 7	'50.00 kHz			Sw		pan 25 MHz s (1001 pts)			
2 Metrics		v											
	Occupied I		52 MHz		То	al Power			30.3 dE	Зm			
	Transmit F x dB Band			2.81 kHz 977 MHz	% x c	of OBW P IB	owe	er 🛛	99.00 -26.00				
	5 3		Oct 07, 20 10:43:52	022 PM									


Plot 7-63. Occupied Bandwidth Plot (NR Band n30 - 10MHz π/2 BPSK - Full RB - Ant F)

Plot 7-64. Occupied Bandwidth Plot (NR Band n30 - 10MHz QPSK - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 57 01 401				
© 2022 ELEMENT			V11.0 9/14/2022				

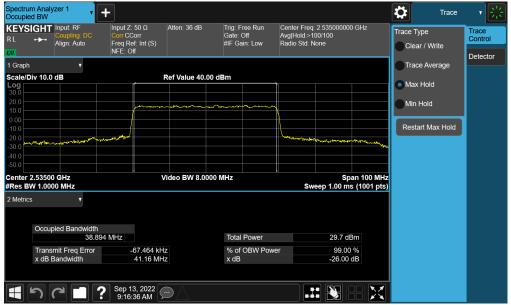

Plot 7-65. Occupied Bandwidth Plot (NR Band n30 - 10MHz 16-QAM - Full RB - Ant F)

Plot 7-66. Occupied Bandwidth Plot (NR Band n30 - 5MHz π/2 BPSK - Full RB - Ant F)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:					
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 58 of 401				
© 2022 ELEMENT	•	•	V11.0 9/14/2022				

Plot 7-67. Occupied Bandwidth Plot (NR Band n30 - 5MHz QPSK - Full RB - Ant F)

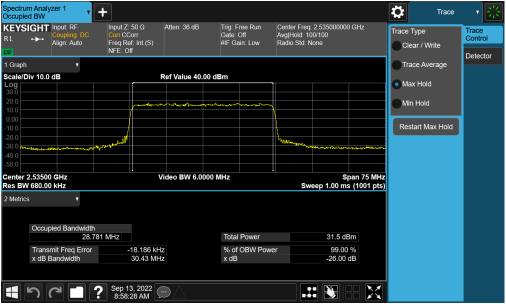
Plot 7-68. Occupied Bandwidth Plot (NR Band n30 - 5MHz 16-QAM - Full RB - Ant F)


FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 59 of 401				
© 2022 ELEMENT	•		V11.0 9/14/2022				

NR Band n7 – ANT B

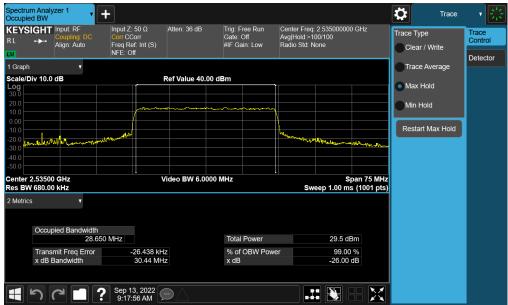
Spectrur Occupie	d BW		• +									\$	Trace	· · 影
RL		Input: RF Coupling: Align: Auto		Input Z: Corr CC Freq Re	orr f: Int (S)	Atten: 36 dB	Gate	Free Run : Off Sain: Low	Center Frec Avg Hold: 1 Radio Std: I		0 GHz	Trace Type Clear /		Trace Control
1 Graph	_	•		NFE: Of	T							Trace /	Average	Detector
Scale/D Log 30.0	iv 10.0	dB			R	ef Value 40.	00 dBm		1			Max H		
30.0 20.0 10.0					am	mm						Min Ho	ld	
0.00												Restart	Max Hold	
-30.0			~~~	week and a second										
Center 2 #Res BV					↓ Vi	ideo BW 8.0	000 MHz		! Sv	Sp veep 1.00 m	an 100 MHz s (1001 pts)			
2 Metrics	;	T												
	Occup	ied Band	width 38.747	MHz			Tot	al Power		31.8 dl	Bm			
		nit Freq E Bandwidth	Error		46.576 kHz 41.08 MHz			of OBW Pow	er	99.00 -26.00)%			
	ר נ	2]?	Sep 13 8:54:4	3, 2022 41 AM									

Plot 7-69. Occupied Bandwidth Plot (NR Band n7 - 40MHz π/2 BPSK - Full RB - Ant B)


Plot 7-70. Occupied Bandwidth Plot (NR Band n7 - 40MHz QPSK - Full RB - Ant B)

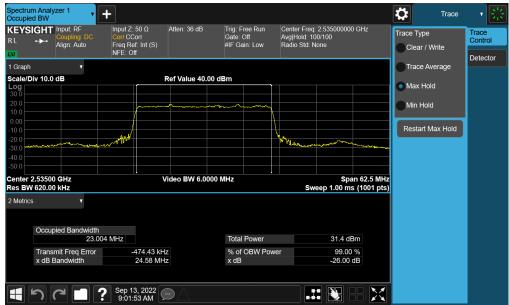
FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 401			
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet				
© 2022 ELEMENT			V11.0 9/14/2022			

Spectrur Occupie	n Analyzer d BW	1	+								\$	Trace	۲	22
KEYSI RL		out: RF oupling: DC gn: Auto	Input Z: <mark>Corr</mark> CC Freq Re	orr f: Int (S)	Atten: 36 dB	Gate	Free Run : Off Sain: Low	Center Free Avg Hold: 1 Radio Std:		0 GHz		e Type lear / Write	Trac Cont	
1 Graph		•	NFE: Of	t							П	ace Average	Dete	ctor
Scale/D	iv 10.0 dB	;		F	Ref Value 40.	.00 dBm		1				ax Hold		
Log 30.0 20.0 10.0				and the second	meringer	and the growth of the second	an an an an an an					in Hold		
0.00 -10.0 -20.0	Manan	-allers-proventione						mana	Mattanton	1 Martine La	Re	start Max Hold		
-30.0 -40.0 -50.0														
	2.53500 GI N 1.0000 N			v	ideo BW 8.0	000 MHz		Si	Sp veep 1.00 m	oan 100 MHz s (1001 pts)				
2 Metrics	;	•												
	Occupied	l Bandwidth 38.8	i 336 MHz			Tota	al Power		29.3 d	Bm				
	Transmit x dB Ban	Freq Error dwidth		66.017 kHz 41.14 MHz		% 0 x dE	f OBW Powe 3	er	99.00 -26.00					
	5			3, 2022 01 AM										

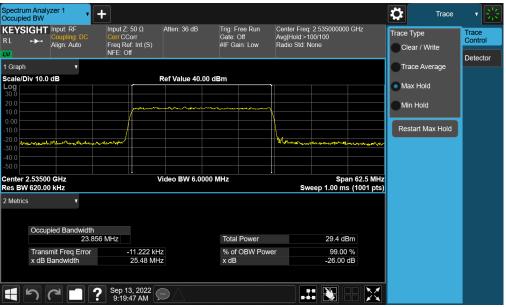

Plot 7-71. Occupied Bandwidth Plot (NR Band n7 - 40MHz 16-QAM - Full RB - Ant B)

Plot 7-72. Occupied Bandwidth Plot (NR Band n7 - 30MHz π/2 BPSK - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet					
© 2022 ELEMENT		·	V11.0 9/14/2022				

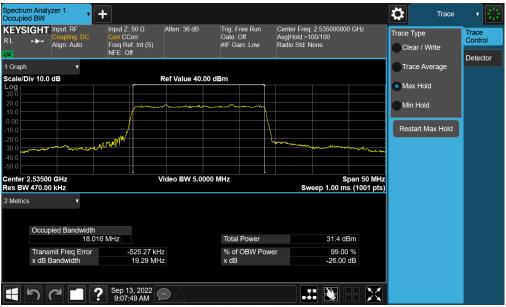

Plot 7-73. Occupied Bandwidth Plot (NR Band n7 - 30MHz QPSK - Full RB - Ant B)

Spectrum Analyzer 1 Occupied BW KEYSIGHT Input: RF RL Aign: Auto	HINDUT Z: 50 Ω Corr CCorr Freq Ref. Int (S)	Atten: 36 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2.535000000 GHz Avg Hold:>100/100 Radio Std: None	Trace Trace Type Clear / Write	Trace Control
Lug Y Scale/Div 10.0 dB		Ref Value 40.00) dBm	Margalans - Burrow - Ballader	Max Hold Min Hold Restart Max Hold	Detector
-30.0 -40.0 -40.0 -50.0 -50.0		/ideo BW 6.000	0 MHz	Span 75 N Sweep 1.00 ms (1001 p	Hz	
Occupied Bandwidth 28.71 Transmit Freq Error x dB Bandwidth	8 MHz -32.178 kH 30.40 MH		Total Power % of OBW Pow x dB	29.2 dBm er 99.00 % -26.00 dB		
	Sep 13, 2022 9:18:17 AM					


Plot 7-74. Occupied Bandwidth Plot (NR Band n7 - 30MHz 16-QAM - Full RB - Ant B)

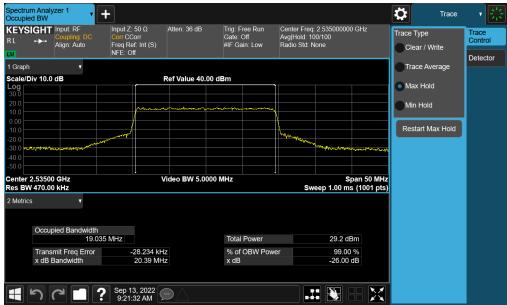
FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:					
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 62 of 401				
© 2022 ELEMENT	•	·	V11.0 9/14/2022				

Plot 7-75. Occupied Bandwidth Plot (NR Band n7 - 25MHz π/2 BPSK - Full RB - Ant B)


Plot 7-76. Occupied Bandwidth Plot (NR Band n7 - 25MHz QPSK - Full RB - Ant B)

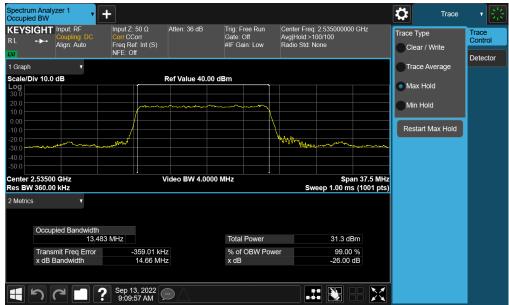
FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:					
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 63 of 401				
© 2022 ELEMENT		·	V11.0 9/14/2022				

Spectrur Occupie		zer 1 🔻	+									Trace	· 米
KEYSI RL		Input: RF Coupling: DC Align: Auto	Input Z: \$ <mark>Corr</mark> CCc Freq Ref	orr : Int (S)	Atten: 36 dB	Gate:	Free Run Off ain: Low	Center Freq Avg Hold: 1 Radio Std: 1) GHz	Trace T Clea	ype ar / Write	Trace Control
1 Graph	_	•	NFE: Off								Trac	e Average	Detector
Scale/D Log 30.0	iv 10.0	dB			Ref Value 40.	00 dBm		1			 Max 	Hold	
30.0 20.0 10.0				,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-				Min	Hold	
0.00											Rest	art Max Hold	
-20.0 -30.0 -40.0	nt Connert	୶ ୄ୶୳୵୴ୡ୶୶୶୶୴୷୶	www.						สมสรานาราชาตรุกรี	helle bander of the			
-50.0	2 53500	GH7			/ideo BW 6.0	000 MHz			Sn	an 62.5 MHz			
Res BW	620.00	kHz				000 11112		Sw		s (1001 pts)			
2 Metrics		•											
	Occup	ied Bandwidth 23.8	n 384 MHz			Tota	l Power		29.0 df	3m			
		mit Freq Error Bandwidth		0.356 kH 25.51 MH		% o x dE	f OBW Powe	er	99.00 -26.00				
	5)		Sep 13 9:20:2	, 2022 8 AM	$\Box \triangle$								

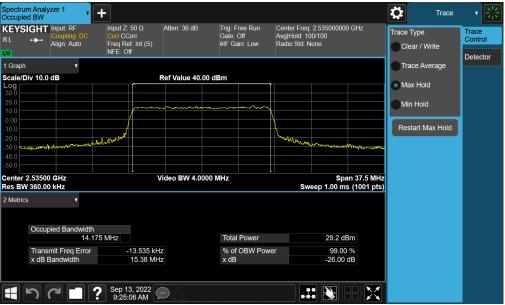

Plot 7-77. Occupied Bandwidth Plot (NR Band n7 - 25MHz 16-QAM - Full RB - Ant B)

Plot 7-78. Occupied Bandwidth Plot (NR Band n7 - 20MHz π/2 BPSK - Full RB - Ant B)

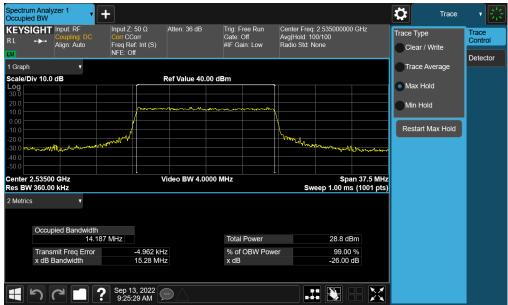
FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 401				
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet					
© 2022 ELEMENT			V11.0 9/14/2022				

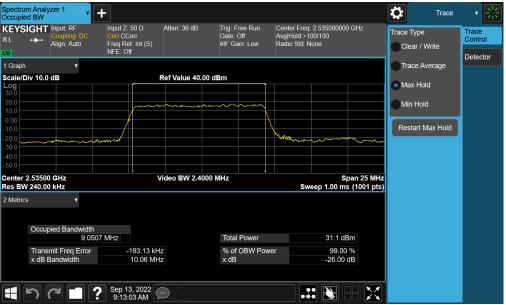

Plot 7-79. Occupied Bandwidth Plot (NR Band n7 - 20MHz QPSK - Full RB - Ant B)

Spectrum Analyzer 1 Occupied BW KEYSIGHT Input: RF RL + Coupling: DC Align: Auto	hput Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Off	Atten: 36 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fred Avg Hold: 1 Radio Std: I		GHz	Trace Type Clear / Write	Trace Control
1 Graph 🔹							Trace Average	Delector
Scale/Div 10.0 dB	F	Ref Value 40.0	0 dBm					
Log 30.0							Max Hold	
20.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and a second and a s	~			Min Hold	
-10.0							Restart Max Hold	
-30.0 Annahalan and and and and and and and and and a	- www.			Stranger and		ኈፙ ^{ኇፙ} ፝ጞጞፙፙጜፙኯዸኯ		
-40.0								
Center 2.53500 GHz Res BW 470.00 kHz	; V	ideo BW 5.00	00 MHz		Sp veep 1.00 ms	an 50 MHz (1001 pts)		
2 Metrics v								
Occupied Bandwidth								
. 19.070	MHz		Total Power		28.9 dBi	m		
Transmit Freq Error	-14.611 kH		% of OBW Po	wer	99.00			
x dB Bandwidth	20.34 MH;	2	x dB		-26.00 d	В		
4 7 7 1 ?	Sep 13, 2022 9:21:17 AM							

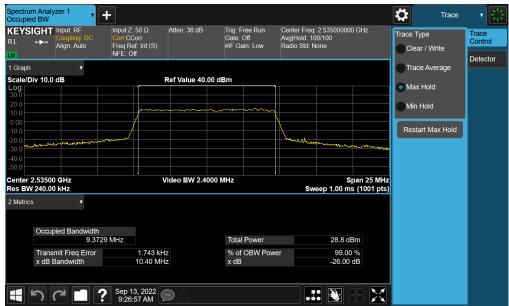

Plot 7-80. Occupied Bandwidth Plot (NR Band n7 - 20MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 05 01 40 1
© 2022 ELEMENT	•	·	V11.0 9/14/2022


Plot 7-81. Occupied Bandwidth Plot (NR Band n7 - 15MHz π/2 BPSK - Full RB - Ant B)

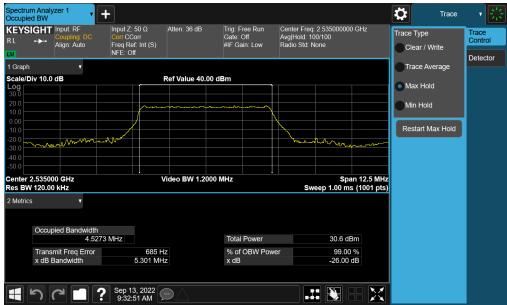

Plot 7-82. Occupied Bandwidth Plot (NR Band n7 - 15MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 66 01 40 1
© 2022 ELEMENT			V11.0 9/14/2022

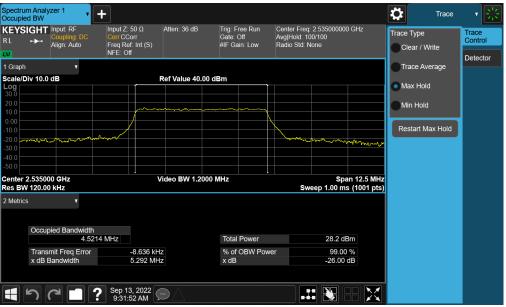

Plot 7-83. Occupied Bandwidth Plot (NR Band n7 - 15MHz 16-QAM - Full RB - Ant B)

Plot 7-84. Occupied Bandwidth Plot (NR Band n7 - 10MHz π/2 BPSK - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 07 01 401
© 2022 ELEMENT			V11.0 9/14/2022


Plot 7-85. Occupied Bandwidth Plot (NR Band n7 - 10MHz QPSK - Full RB - Ant B)

1 Graph Trace Average Scale/Div 10.0 dB Ref Value 40.00 dBm Log Max Hold Nam Hold Min Hold 000 Max Hold	Spectrum Analyzer 1 Occupied BW KEYSIGHT RL + Align: Auto	Linput Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Off	Atten: 36 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std) GHz	Trace Type Clear / Write	race V Control
100 000 000 000 000 000 000 000 000 000 Restart Max Hold 200 000 000 000 000 000 000 000 Restart Max Hold 200 000 000 000 000 000 000 000 Restart Max Hold 200 000	Scale/Div 10.0 dB		Ref Value 40.00	dBm					
-50.0 Center 2.53500 GHz Video BW 2.4000 MHz Span 25 MHz Res BW 240.00 kHz Sweep 1.00 ms (1001 pts) 2 Metrics V	10.0 0.00 -10.0 -20.0 -30.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- A - A - A - A - A - A - A - A - A - A	- Martin and a start of the	والمسالية والمسالية		loid
Occupied Bandwidth 9.3444 MHz Total Power 28.5 dBm Transmit Freq Error -14.441 kHz % of OBW Power 99.00 %	-50.0 Center 2.53500 GHz Res BW 240.00 kHz		/ideo BW 2.400	0 MHz	s				
	Occupied Bandwidth 9.3444		7		wer				
		10.18 MH	Iz			-26.00			


Plot 7-86. Occupied Bandwidth Plot (NR Band n7 - 10MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 00 01 40 1
© 2022 ELEMENT	•	·	V11.0 9/14/2022

Plot 7-87. Occupied Bandwidth Plot (NR Band n7 - 5MHz π/2 BPSK - Full RB - Ant B)

Plot 7-88. Occupied Bandwidth Plot (NR Band n7 - 5MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 404
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Page 69 of 401
© 2022 ELEMENT	•		V11.0 9/14/2022

Spectrur Occupie		zer 1	• +									₽	Trace	- 1 😹
KEYS RL		Input: RF Coupling: I	DC Corr C		Atten: 36 dB	Gate			Avg Hold: 10) GHz	Trace	: Туре	Trace Control
LXI		Align: Auto	NFE: (ef: Int (S) Off		#IF (ain: Low		Radio Std: N	None		C	lear / Write	Detector
1 Graph		¥										ОΠ	ace Average	Detector
Scale/D	0iv 10.0	dB			Ref Value 40.0	0 dBm								
Log 30.0													ax Hold	
20.0						~~~~	••••••					M	in Hold	
0.00				1				N					start Max Hold	
-10.0	. A Maria	mmmm	Mahan	^					maria a	human		Re		
-30.0	w w							$\left \right $	1.00.0	10.00	M. S.			
-40.0								\square						
Center 2				<u> </u>	/ideo BW 1.20	00 MHz					an 12.5 MHz			
Res BW		kHz							Sw	veep 1.00 m	s (1001 pts)			
2 Metrics	s	T												
	Occup	ied Bandv	vidth 4.5196 MHz			Tot	al Power			28.0 df	R			
	Tropor	nit Freq E		-2.765 kH	-		of OBW Pov	vor		99.00				
		Bandwidth		5.243 MH		x di		wei		-26.00				
	5	2	Sep 9:32	13, 2022 2:14 AM	$\Box \triangle$									

Plot 7-89. Occupied Bandwidth Plot (NR Band n7 - 5MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMS911U		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 401
1M2209010096-04.A3L	9/9/2022 - 11/25/2022	Portable Tablet	Fage 70 01 401
© 2022 ELEMENT			V11.0 9/14/2022