

SUM PSD	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
9.119	0.025	9.145

SUM PSD	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
-5.351	0.012	-5.339

UNII-4 Band(EIRP)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
9.519	-0.910	8.609

- 1. Duty Cycle Factor (dB): 0.030
- 2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)
- 3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
9.384	-0.910	8.474

- 1. Duty Cycle Factor (dB): 0.030
- 2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)
- 3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
9.628	-0.910	8.718

1. Duty Cycle Factor (dB): 0.030

2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)

3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
8.646	-0.910	7.736

- 1. Duty Cycle Factor (dB): 0.025
- 2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)
- 3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
8.971	-0.910	8.061

- 1. Duty Cycle Factor (dB): 0.025
- 2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)
- 3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

Total PSD	ANT Gain	EIRP SUM PSD
(dBm)	(dB)	(dBm)
-5.310	-0.910	-6.220

- 1. Duty Cycle Factor (dB): 0.012
- 2. Total PSD (dBm) = Measured Value (dBm) + Duty Cycle Factor (dB)
- 3. EIRP SUM PSD (dBm) = Tatal PSD (dBm) + Directional Gain (dBi)

5. Straddle Channel

5.1 26dB Bandwidth

Note:

1. In order to simplify the report, attached plots were only the most wide channel. (UNI1~3)

5.1.1 Ant1

(26dB) Bandwidth	20M	Ch.144(5720	MHz)) SU
-------	-------------	-----	---------	------	------	------

Agilent Spectrum Analyzer - Swept SA				
M RL RF 50Ω AC Center Freq 5.720000000	GHz SENSE:IN	IT ALIGNAUTO #Avg Type: RMS	06:19:40 PM Sep 16, 2022 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 11.38 dB	PNO: Wide ↔ Trg. Free Kur IFGain:Low #Atten: 24 dB	Mkr	3 5.731 24 GHz -21,103 dBm	Auto Tune
7.38 -2.62 -12.6		manna harran		Center Freq 5.720000000 GHz
-22.6		\\\\	-20.78 dBm	Start Freq 5.70000000 GHz
-52.6				Stop Freq 5.740000000 GHz
Center 5.72000 GHz #Res BW 200 kHz	#VBW 620 kHz	Sweep 1	Span 40.00 MHz .000 ms (1001 pts)	CF Step 4.000000 MHz <u>Auto</u> Man
N 1 N 1 f 5.7 2 N 1 f 5.7 3 N 1 f 5.7 4 - - - - 6 - - - - 7 - - - - -	25 20 GHz 5.218 dBm 08 60 GHz -21.729 dBm 31 24 GHz -21.103 dBm			Freq Offset 0 Hz
8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		STATUS	×	

UNII 2C	Straddle Frequency [MHz]	Measured Frequency [MHz]	26dB Bandwidth [MHz]	
	5725	5708.6	16.40	

Note:

1. [UNII 2C] 26 dB Bandwidth = 5725 MHz - Measured Frequency[MHz]

Agilent Spectrum Analyzer - Swept SA	· · · · ·	,					
Agreent Spectrum Analyzer - Single Sk XM RL RF 50 Q AC Center Freq 5.7200000000	GHz	SENSE:IN	л #Avg h Avalh	ALIGNAUTO Type: RMS Iold: 1/1	04:40:01 PM Sep 10 TRACE 1 2 TYPE MW	5,2022 3 4 5 6	Frequency
Ref Offset 11.38 dB 10 dB/div Ref 17.38 dBm	IFGain:Low	#Atten: 24 dB		Mkr	DET P P 3 5.731 28 (-21.752 d	GHz IBm	Auto Tune
-2.62 -12.6	A A A A A A A A A A A A A A A A A A A	ᡗ᠋᠋ᡎᠰᡳ᠕ᢩ᠕ᡁᠰᡟ	ᡔ᠁᠆ᠬ᠕ᠬ᠕ᠰ		3	62 dBm	Center Freq 5.720000000 GHz
-22.6	ry 				Mulling Marken	^{ሳሎ} ጊብዬ	Start Freq 5.700000000 GHz
-62.6 -62.6 -72.6							Stop Freq 5.740000000 GHz
Center 5.72000 GHz #Res BW 200 kHz MKR MODE TRC SCL X	#VBW	620 kHz	FUNCTION	Sweep 1	Span 40.00 .000 ms (1001 FUNCTION VALL	MHz pts)	CF Step 4.000000 MHz <u>Auto</u> Man
2 N 1 f 5.71 3 N 1 f 5.73 4 5 6 6 7	10 44 GHz 31 28 GHz	-21.321 dBm -21.752 dBm					Freq Offset 0 Hz
8 9 10 11 11		ш				~	
MSG				STATUS			

(26 dB) Bandwidth 20M Ch.144(5720 MHz) 106 Tones RU 54

UNII 3	Measured Frequency	Straddle Frequency	26dB Bandwidth
	[MHz]	[MHz]	[MHz]
	5731.28	5725	6.28

Note:

1. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

Agilent Spectrum Analyzer - Swept SA	A Contraction of the second se						
		SENSE:	INT #Ava	ALIGN AUTO	05:24:07 PM TRAC	1 Sep 16, 2022	Frequency
Center Freq 5.7 1000000	PNO: Fast ↔ IFGain:Low	, Trig: Free Ru #Atten: 24 dB	un Avg H B	old: 1/1	t yf De		
Ref Offset 11.38 c 10 dB/div Ref 17.38 dBm	iB า			Mkr	3 5.732 -21.98	72 GHz 31 dBm	Auto Tune
-2.62	Man Marine Ma	l marger and from		meerin			Center Freq 5.710000000 GHz
-12.6 -22.6 -32.6 -42.6 -42.6					3 ^W VVVVVVV ^P MVP ^P MVVVVVVVVVVVVVVVVVVVVVV	-20.67 dBm	Start Freq 5.670000000 GHz
-52.6 -62.6 -72.6							Stop Freq 5.750000000 GHz
Center 5.71000 GHz #Res BW 430 kHz	#VBW	/ 1.3 MHz		Sweep 1	Span 8 .000 ms (0.00 MHz 1001 pts)	CF Step 8.000000 MHz Auto Man
MKR MODE TRC SCL	× 5.719.20 GHz	Y 5.326 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	
2 N 1 F 3 N 1 F 4 5 6	5.687 28 GHz 5.732 72 GHz	-23.901 dBm -21.981 dBm					Freq Offset 0 Hz
7 8 9 9 10 11							
				0717	,i	>	
MSG				STATUS	·		

(26dB) Bandwidth 40M Ch.142(5710 MHz) 484 Tones RU 65

UNII 2C	Straddle Frequency [MHz]	Measured Frequency [MHz]	26dB Bandwidth [MHz]	
	5725	5687.28	37.72	
	Measured Frequency [MHz]	Straddle Frequency	26dB Bandwidth [MH 7]	
UNII 3	5732.72	5725	7.72	

- 1. [UNII 2C] 26 dB Bandwidth = 5725 MHz Measured Frequency[MHz]
- 2. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

Agilent Spectrum Analyzer - Swept SA							
M RL RF 50 Ω AC Center Freq 5.690000000	GHz	SENSE:INT	#Avg Type	ALIGNAUTO	06:16:40 PM : TRACE	Sep 16, 2022	Frequency
	PNO: Fast ++ IFGain:Low	#Atten: 24 dB	Avg Hold:	Mkr	3 5 734 (PPPPPP	Auto Tune
Ref Offset 11.38 dB 10 dB/div Ref 17.38 dBm		1			-20.79	4 dBm	
7.38	munderMapure	marchematera	anne an	war			Center Freq
-12.6				3		40.29 dBm	5.69000000 GHZ
-22.6					and the forest of the	~~~~	Start Freq
-42.6						- <u></u>	
-62.6							Stop Freq
-72.6							5.770000000 GHz
Center 5.69000 GHz #Res BW 820 kHz	#VBW	2.7 MHz		Sweep 1	Span 16 .000 ms (1	0.0 MHz 001 pts)	CF Step 16.000000 MHz
MKR MODE TRC SCL X	15 60 CH-	Y 6 619 dBm	FUNCTION FUN	ICTION WIDTH	FUNCTION	I VALUE	<u>Auto</u> Man
2 N 1 f 5.6 3 N 1 f 5.73 4	45 20 GHz 34 00 GHz	-20.028 dBm -20.794 dBm					Freq Offset 0 Hz
9 10							
11 <						>	
MSG				STATUS	5		

(26dB) Bandwidth 80M Ch.138(5690 MHz) 996 Tones RU 67

UNII 2C	Straddle Frequency [MHz]	Measured Frequency [MHz]	26dB Bandwidth [MHz]	
	5725	5645.2	79.80	

Note:

1. [UNII 2C] 26dB Bandwidth = 5725 MHz - Measured Frequency[MHz]

	``	, ,			
Agilent Spectrum Analyzer - Swept SA	071				
$(\mathcal{A} \ RL \ \ RF \ \ 50 \ \Omega \ AC \ $	SEN	ISE:INT	ALIGNAUTO 06:13:39F	M Sep 16, 2022	Frequency
Center Freq 5.690000000 GH	Z Trig Free	Run AvalHold	• 1/1 T		
PN	iu:Fast +++ #Atten:24	ldB			
ire	am.low wheen. 24	- WD			
Ref Officet 11 39 dB			Mkr3 5.734	48 GHz	Auto Tune
10 dB/div Ref 17 38 dBm			-16.0	64 dBm	
Log			·		
7.38		الم المدرور ومدر الم المرابع المراجع المراجع المراجع	Jung Maring		Center Fred
June 1	Mar unmalan	}			Centerrieq
-2.62			2		5.690000000 GHz
-12.6			<u>↓<u>`</u>`,</u>	-15 93 dBm	
			The second se		
-22.6					Start Fred
				ANN IN THE REAL PROPERTY IN	5 61000000 CH-
			***¥ Y	AN UND I I	5.01000000 GHZ
-42.6				1	
-52.6					
					Stop Freq
-62.6					5 77000000 GHz
-72.6					0.770000000 0112
Center 5.69000 GHz			Span 1	60.0 MHz	CE Stan
#Res BW 820 kHz	#VBW 2.7 MHz		Sween 1 000 ms	(1001 nts)	
			owcep novemb	(Toor prov	Auto Man
MKR MODE TRC SCL X	Y	FUNCTION FUI	NCTION WIDTH FUNCT	ION VALUE 🛛 🔼	<u>Auto</u> Mari
1 N 1 f 5.71928	3 GHz 10.074 dE	3m			
2 N 1 f 5.649 30	<u>GHz</u> -20.509 dE	3m			Ener Offerst
3 N 1 f 5.734 48	3 GHz -16.064 dE	3m			Frequise
5					0 Hz
6					
7					
8					
9					
10					
				<u> </u>	
MSG			STATUS		

(26dB) Bandwidth 80M Ch.138(5690 MHz) 484 Tones RU 66

UNII 3	Measured Frequency	Straddle Frequency	26dB Bandwidth
	[MHz]	[MHz]	[MHz]
	5734.48	5725	9.48

Note:

1. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

5.1.2 Ant2

Agilent Spectrum Analyzer - Swept SA				
X RL RF 50 Ω AC Center Freg 5.720000000	GH7	ALIGN AUTO #Avg Type: RMS	04:37:33 PM Sep 15, 2022 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 10.8 dB	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 24 dB	Avg Hold: 1/1 Mkr	3 5.731 44 GHz	Auto Tune
10 dB/div Ref 16.80 dBm 6.80 -3.20 -13.2	manna	1 marine	-21.207 dBm	Center Freq 5.720000000 GHz
-23.2 -33.2 -43.2				Start Freq 5.700000000 GHz
-53.2 -63.2 -73.2				Stop Freq 5.740000000 GHz
Center 5.72000 GHz #Res BW 200 kHz	#VBW 620 kHz	Sweep 1.	Span 40.00 MHz .000 ms (1001 pts)	CF Step 4.000000 MHz <u>Auto</u> Man
1 N 1 f 5.7 2 N 1 f 5.7 3 N 1 f 5.7 4 5 6 7 7 8 9 9 9 9 10 1 11	25 56 GHz 5.254 dBm 08 40 GHz -20.837 dBm 31 44 GHz -21.267 dBm			Freq Offset 0 Hz
MSG		STATUS		

(26dB) Bandwidth 20M Ch.144(5720 MHz) 242 Tones RU 61

UNII 2C	Straddle Frequency	Measured Frequency	26dB Bandwidth	
	[MHz]	[MHz]	[MHz]	
	5725	5708.4	16.60	
UNII 3	Measured Frequency	Straddle Frequency	26dB Bandwidth	
	[MHz]	[MHz]	[MHz]	
	5731.44	5725	6.44	

- 1. [UNII 2C] 26 dB Bandwidth = 5725 MHz Measured Frequency[MHz]
- 2. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

Frequency
,
Auto Tune
Center Freq
.710000000 GHz
Start From
Start Frey
.67000000 GHZ
Stop Freq
750000000 GHz
CF Step
to Man
Freq Offset
0 Hz
5.: 5.:

(26dB) Bandwidth 40M Ch.142(5710 MHz) 484 Tones RU 65

UNII 2C	Straddle Frequency	Measured Frequency	26dB Bandwidth
	[MHz]	[MHz]	[MHz]
	5725	5687.52	37.48

Note:

1. [UNII 2C] 26dB Bandwidth = 5725 MHz - Measured Frequency[MHz]

(26dB) Bandwidth 40M Ch.142(5710 MHz) 106 Tones RU 56

UNII 3	Measured Frequency	Straddle Frequency	26dB Bandwidth
	[MHz]	[MHz]	[MHz]
	5732.72	5725	7.72

Note:

1. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

Agilent Spectrum Analyzer - Swept SA							
IX RF 50 Ω AC Center Freq 5.690000000	GHz	SENSE:INT	#Avg Typ	ALIGNAUTO	06:10:57 PM TRAC	Sep 15, 2022	Frequency
Ref Offset 10.8 dB	PNO: Fast 🔸 IFGain:Low	Atten: 24 dB	Avginoid	Mkr	3 5.734	64 GHz	Auto Tune
10 dB/div Ref 16.80 dBm 6.80 -3.20	per an	waana and see your of	y Marylan IV a come Apple of	1 Merria	-19.98		Center Freq 5.69000000 GHz
-13.2 -23.2 -33.2 -43.2					Www.latin	-19.19 dBm เ.N.N.M.M.M	Start Freq 5.610000000 GHz
-53.2 -63.2 -73.2							Stop Freq 5.770000000 GHz
Center 5.69000 GHz #Res BW 820 kHz	#VBM	2.7 MHz	FUNCTION FU	Sweep 1	Span 10 .000 ms (1 FUNCTIO	60.0 MHz 1001 pts) N VALUE	CF Step 16.000000 MHz <u>Auto</u> Man
1 N 1 f 5.7 2 N 1 f 5.6 3 N 1 f 5.7 4 5 5 5 6 6 6 7 8 9 9 9 10 11 1	25 84 GHz 46 32 GHz 34 64 GHz	6.812 dBm -20.514 dBm -19.990 dBm					Freq Offset 0 Hz
MSG				STATUS	5		

(26dB) Bandwidth 80M Ch.138(5690 MHz) 996 Tones RU 67

UNII 2C	Straddle Frequency	Measured Frequency	26dB Bandwidth	
	[MHz]	[MHz]	[MHz]	
	5725	5646.32	78.68	
UNII 3	Measured Frequency	Straddle Frequency	26dB Bandwidth	
	[MHz]	[MHz]	[MHz]	
	5734.64	5725	9.64	

Note:

1. [UNII 2C] 26 dB Bandwidth = 5725 MHz - Measured Frequency[MHz] 2. [UNII 3] 26 dB Bandwidth = Measured Frequency[MHz] -5725 MHz

5.2 6dB Bandwidth

Note:

1. In order to simplify the report, attached plots were only the most narrow channel. (UNI1~4)

5.2.1 Ant1

(6dB) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 7

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.48	5725	2.48		

Note:

(6dB) Bandwidth 40M Ch.142(5710 MHz) 26 Tones RU 16

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.04	5725	2.04		

Note:

(6dB) Bandwidth 80M Ch.138(5690 MHz) 26 Tones RU 35

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.12	5725	2.12		

Note:

5.2.2 Ant2

Agile	nt Spe	ctrun	n Ana	ılyzer - Sw	rept SA			· · ·						
LXI R	L		RF	50 G	AC			SE	VSE:INT	#Aua	ALIGN AUTO	04:15:26 P	M Sep 15, 2022	Frequency
Cer	iter	Fre	qt	0.7200	00000	PNO	: Wide ↔	💷 Trig: Fre	e Run	Avgi	Hold: 1/1	TY		
						IFGa	in:Low	#Atten: 2	4 dB			0	3	
			Ref	Offset 10	0.8 dB						Mkr	2 5.727	52 GHz	Autorune
10 d	B/div	/	Ref	10.80	dBm							-3.6	68 dBm	
0 800											<u>√1</u> _2			Contor From
-9.20						. /	h A colo	n A. A	And	1 Almert			-2.24 0.011	5 72000000 GHz
10.20						Arrive	Maham	hen Aldr	NA MAN	տղուտ	WYM			3.720000000 8112
-19.2						.d					Uh, and a second			
-29.2					A N						- me	~		Start Freq
-39.2				1 Million	M.Y.							North Carl		5.700000000 GHz
-49.2	-	(Paral)	, LAN	and the second s									malline	
-59.2														Stop Fred
-69.2														5 74000000 GHz
-79.2														
Car	tor i	5.75	200									Snan /	0 00 MHz	05.01
#Re	s Bl	W 1	00	kHz			#VBV	/ 300 kHz			Sweep 3	.867 ms (1001 pts)	4.000000 MHz
MED	MODE	TPC	501		~			~		FUNCTION	FUNCTION WIDTH	FUNCTI		<u>Auto</u> Man
1	N	1	f		5.7	26 44	GHz	3.756 d	Зm	FONCTION	FONCTION WIDTH	FONCT		
2	N	1	f		5.7	27 52	GHz	-3.668 dl	3m					Freq Offset
4														0 Hz
5													=	
7														
9														
10														
<								nii						
MSG											STATU	s		
successive statements where														

(6dB) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 7

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.52	5725	2.52		

Note:

Frequency

(6dB) Bandwidth 40M Ch.142(5710 MHz) 26 Tones RU 16 Agilent Spectrum Analyzer - Swept SA W RL RF 50 Ω AC SENSE:INT ALIGN.AUTO 04:45:53PM Sep 15, 2022 Center Freq 5.710000000 GHz PNO: Fast → Trig: Free Run IFGain:Low #Atten: 24 dB Ref Offset 10.8 dB 10 dB/div Ref 10.80 dBm Mkr2 5.727 04 GHz -2.272 dBm

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.04	5725	2.04		

Note:

(6dB) Bandwidth 80M Ch.138(5690 MHz) 26 Tones RU 35

Measured Frequency	Straddle Frequency	6dB Bandwidth		
[MHz]	[MHz]	[MHz]		
5727.12	5725	2.12		

Note:

5.3 Output Power

Note: 1. In order to simplify the report, attached plots were only channel of highest Power.

5.3.1 Ant1

(UNII 2C) Bandwidth 20M Ch.144(5720 MHz) 242 Tones RU 61

Agilent Sp	ectrum Analy	zer - Cha	innel Pov	wer									
LX/ RL	RF	50 Ω	AC			S	ENSE:INT	40000 GH-	ALIGN AU	JTO	04:44:41 Pl	M Sep 16, 2022	Frequency
Center Freq 5./16840000 GHz					Trig: Fre	Tria: Free Run AvalHold: 500/500				Radio Sta	None		
				#IFG	ain:Low_	#Atten: 3	24 dB	. .			Radio Dev	vice: BTS	
10 dB/d	iv Re	f 11.3	8 dBm	n									
Log													
1.38				,			- Ar ar talker an ange						Center Free
-8.62 —				-								\land	5.716840000 GH
-18.6				\downarrow								[] []	
-28.6			and the second	1								have -	
-38.6		and the second	al and the second									hur want	
-48.6	ality kulatana a												
-40.0													
-30.6													
-68.6													
-78.6													
Center	5 717 G	H7									Snan 3	2 64 MHz	
#Res E	3W 1 MH	Z				#V	вки з мн	z			Swe	ep 1 ms	CF Step
													3.264000 MH: Auto Mar
Cha	nnal D	ower					Power Spectral Density					Addo Mai	
		0					FOWE	opecu		51151	Ly		
									Freq Offse				
	13.9	U ae	3m	/ 16	5.32 M	Hz -58.22 dBm /Hz						0 H:	
MSG									s	TATUS			

Measured Value	Duty Cycle Factor	Total Power		
(dBm)	(dB)	(dBm)		
13.90	0.030	13.93		

Note:

(UNII 3) Bandwidth 20M Ch.144(5720 MHz) 52 Tones RU 40

Measured Value	Duty Cycle Factor	Total Power		
(dBm)	(dB)	(dBm)		
10.70	0.030	10.73		

Note:

(UNII 2C) Bandwidth 40M Ch.142(5710 MHz) SU

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
13.61	0.030	13.64

Note:

(UNII 3) Bandwidth 40M Ch.142(5710 MHz) 52 Tones RU 44

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
10.62	0.030	10.65

Note:

(UNII 2C) Bandwidth 80M Ch.138(5690 MHz) 242 Tones RU 63

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
14.54	0.030	14.57

Note:

(UNII 3) Bandwidth 80M Ch.138(5690 MHz) 52 Tones RU 52

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
11.06	0.030	11.09

Note:

5.3.2 Ant2

		0120 Wil 12) 00			
Agilent Spectrum Analyzer - Channel	Power				
LXIRL RF 50 Q AC		SENSE:INT	ALIGN AUTO	06:15:35 PM Sep 15, 2022	
Center Freg 5,71684000	0 GHz	Center Freq: 5.71684	10000 GHz	Radio Std: None	Frequency
		. Trig: Free Run	Avg Hold: 500/500		
	#IFGain:Low	#Atten: 24 dB		Radio Device: BTS	
10 dB/div Ref 10.80 dE	3m				
Log					
J.800					Center Freq
-9.20	+ /			<u> </u>	5.716840000 GHz
10.2					
-15.2					
-29.2	- /				
-39.2					
100 Martin Martin Martin					
-49.2					
-59.2					
-69.2					
-03.2					
-79.2					
Center 5.717 GHz				Span 32.64 MHz	CE Sten
#Res BW 1 MHz		#VBW 3 MH	Z	Sweep 1 ms	3 264000 MHz
					Auto Man
				. 14	Auto
Channel Power		Power	Spectral Dens	sity	
					Fred Offset
12 04 dBm	146 20 MI	I	50 10 dBm	/11-	ricquisci
13.34 UDII	I / 16.32 IVIF	IZ -	. Jo. 10 UDIII	IHZ	0 Hz
MSG			STATU	IS	

1	(UNII 2C)	Bandwidth	20M Ch	144(5720	MH ₇) §	SU
		Danuwiuui	20101 011.	144(0120	IVII IZ / V	50

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
13.94	0.030	13.97

Note:

(UNII 3) Bandwidth 20M Ch.144(5720 MHz) 52 Tones RU 40

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
10.95	0.030	10.98

Note:

(UNII 2C) Bandwidth 40M Ch.142(5710 MHz) 242 Tones RU 62

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
14.16	0.030	14.19

Note:

(UNII 3) Bandwidth 40M Ch.142(5710 MHz) 52 Tones RU 44

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
10.94	0.030	10.97

Note:

(UNII 2C) Bandwidth	601VI CII. 136(2090 MHZ) 24	2 Tones RU 03		
Agilent Spectrum Analyzer - Channe	el Power				
	.c	SENSE:INT Center Freq: 5.6875	ALIGN AUTO	06:01:15 PM Sep 15, 2022 Radio Std: None	Frequency
Conter Treq 5.0075000		Trig: Free Run	Avg Hold: 500/500	De die Deudeer DTC	
	#IFGain:Low	#Atten: 24 dB		Radio Device: B15	
10 dB/div Ref 10.80 c	Bm				
D.800			<u>+</u> ,		Center Freq
-9.20					5.687500000 GHz
-19.2		ins of the state	a athread and		
-29.2	- Hundrey Chille	and the second	"Lawring with the		
-39.2	<u>↓ </u>		\		
-49.2	w l			"Munuluture	
-59.2					
-69.2					
-79.2					
Center 5.688 GHz		#\/D\A/ 2 ML	17	Span 150 MHz	CF Step
			2	Sweep Tins	15.000000 MHz
Channel Dever		Devue	Creativel Dan	- it <i>i</i>	<u>Auto</u> Man
Channel Power		Power	Spectral Den	sity	
					Freq Offset
	n 75 MHz		-63.94 авт	l /Hz	0 Hz
MSG			STAT	US	

(UNII 2C) Bandwidth 80M Ch.138(5690 MHz) 242 Tones RU 63

Measured Value	Duty Cycle Factor	Total Power
(dBm)	(dB)	(dBm)
15.21	0.030	15.24

Note:

(UNII 3) Bandwidth 80M Ch.138(5690 MHz) 52 Tones RU 52

Measured Value	Duty Cycle Factor	Total Power	
(dBm)	(dB)	(dBm)	
11.05	0.030	11.08	

Note:

5.4 Power Spectral Density

Note:

1. In order to simplify the report, attached plots were only channel of highest PSD.

5.4.1 Ant1

(UNII 2C) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 0

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
5.483	0.030	5.513

Note:

(UNII 3) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 8

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
2.781	0.030	2.811

Note:

(UNII 2C) Bandwidth 40M Ch.142(5710 MHz) 52 Tones RU 43

Measured Value	Duty Cycle Factor	Total PSD	
(dBm)	(dB)	(dBm)	
5.545	0.030	5.575	

Note:

(UNII 3) Bandwidth 40M Ch.142(5710 MHz) 26 Tones RU 17

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
2.872	0.030	2.902

Note:

(UNII 2C) Bandwidth 80M Ch.138(5690 MHz) 52 Tones RU 51

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
5.867	0.030	5.897

Note:

(UNII 3) Bandwidth 80M Ch.138(5690 MHz) 26 Tones RU 36

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
3.211	0.030	3.241

Note:

5.4.2 Ant2

Agilen	nt Spectrum	Analyzer - Swe	pt SA								
LXI RI	ter Fred	RF 50Ω		7	SEN	ISE:INT	#Ava Tvp	ALIGN AUTO e: RMS	04:10:23PM TRAC	I Sep 15, 2022	Frequency
		1 0.1 2000	PN	IO: Wide ↔	Trig: Free	Run	Avg Hold:	200/200	TYF	E A WWWWW T A A A A A A	
			IFG	Salu:Low	WALLETT. 24			Mk	r1 5 711	57 GH7	Auto Tune
10 dE	R B/div R	tef Offset 10.8 tef 10.80 d	B dB Bm						5.5	35 dBm	
3			and the second second	1							Center Freq
0.800											5.720000000 GHz
-9.20											Start Fred
-19.2				Net							5.700000000 GHz
			. ا	1	And A HIMMAN	N I Aliat	M	. 6			
-29.2			h ₄	'	n .	Ny.					Stop Freq 5.740000000 GHz
-39.2		. Market						⁷¹ /444	h white we at		07.04
-49.2		M ^{RY.}							7 nu taha	halfman	4.000000 MHz Auto Man
-59.2											
-69.2											Freq Offset
											0 Hz
-79.2											
Con	ter 5 720								Snap 4	0 00 MHz	
#Re	s BW 1.0) MHz		#VBW	3.0 MHz*	t	;	Sweep	1.066 ms (1000 pts)	
MSG 🤇	Points c	hanged; all ti	races cleare	ed				STAT	US		

(UNII 2C) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 0

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
5.535	0.030	5.565

Note:

(UNII 3) Bandwidth 20M Ch.144(5720 MHz) 26 Tones RU 8

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
2.937	0.030	2.967

Note:

(UNII 2C) Bandwidth 40M Ch.142(5710 MHz) 52 Tones RU 43

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
5.900	0.030	5.930

Note:

(UNII 3) Bandwidth 40M Ch.142(5710 MHz) 26 Tones RU 17

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
3.143	0.030	3.173

Note:

(UNII 2C) Bandwidth 80M Ch.138(5690 MHz) 52 Tones RU 51

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
5.938	0.030	5.968

Note:

Measured Value	Duty Cycle Factor	Total PSD
(dBm)	(dB)	(dBm)
3.177	0.030	3.207