APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Additional information:

withheld as a trade secret.

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EliNECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID A3LSMS908JPN	PCTEST SAR EVALUATION REPORT	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX C:
12/21/21 – 01/17/22	Portable Handset	Page 1 of 3

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)	
Product No.	SL AAM U16 BC (Batch: 200803-1)	
Manufacturer	SPEAG	

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the KDB 865664 compliance standard.

Test Condition

Ambient Condition 22°C; 30% humidity
TSL Temperature 22°C

6-Aug-20 Operator

Additional Information
TSL Density

TSL Heat-capacity

Measured			Targe	t	Diff.to Targ	get [%]	15.0	_							
f [MHz]	e'	0"	sigma	eps	sigma	∆-eps	Δ-sigma	10.0	1227	30 10				99.71	
600	56.3	26.8	0.89	56.1	0.95	0.3	-6.3	%							
750	55.8	22.6	0.94	55.5	0.96	0.5	-2.1	2		_					
800	55.7	21.6	0.96	55.3	0.97	0.7	-1.0	0.0				MENE			
825	55.7	21.1	0.97	55.2	0.98	0.8	-1.0		1						13
835	55.7	20.9	0.98	55.1	0.99	1.0	-0.5	-10.0	RG S		50-10	October de	and the	GA 52	
850	55.6	20.7	0.98	55.2	0.99	0.8	-1.0	-15.0	500	1500	2500	3500	4500	550	0
900	55.5	19.9	1.00	55.0	1.05	0.9	-4.8		300	1500	Freque	ency MHz	4500	550	· ·
1400	54.7	15.9	1.24	54.1	1.28	1.1	-3.1	15.0	1						
1450	54.6	15.8	1.27	54.0	1.30	1.1	-2.3	10.0	100				NO IN	200	
1600	54.4	15.3	1.36	53.8	1.39	1.1	-2.2	» > 5.0			N				-
1625	54.4	15.3	1.38	53.8	1.41	1.2	-2.1	Conductivity 0.0 0.0	1	1	1			/	
1640	54.4	15.2	1.39	53.7	1.42	1.3	-2.1	onpr	Λ	1	1	1	/		
1650	54.3	15.2	1.39	53.7	1.43	1.1	-2.8		1-			_			
1700	54.2	15.1	1.43	53.6	1.46	1.2	-2.1	à-10.0	3800		100	1864		111-61	
1750	54.2	15.0	1.46	53.4	1.49	1.4	-2.0	-15.0	500	1500	2500	3500	4500	550	00
1800	54.1	14.9	1.50	53.3	1.52	1.5	-1.3		,,,,	1000	Freque	ncy MHz	1000		
1810	54.1	14.9	1.51	53.3	1.52	1.5	-0.7	3500	51.4	16.0	3.11	51.3	3.31	0.2	-6.
1825	54.1	14.9	1.52	53.3	1.52	1.5	0.0	3700	51.1	16.2	3.34	51.1	3.55	0.1	-5.
1850	54.0	14.9	1.53	53.3	1.52	1.3	0.7	5200	48.3	18.7	5.42	49.0	5.30	-1.5	2.3
1900	54.0	14.8	1.57	53.3	1.52	1.3	3.3	5250	48.2	18.8	5.50	49.0	5.36	-1.6	2.5
1950	53.9	14.8	1.60	53.3	1.52	1.1	5.3	5300	48.1	18.9	5.57	48.9	5.42	-1.7	2.8
2000	53.8	14.8	1.64	53.3	1.52	0.9	7.9	5500	47.7	19.2	5.86	48.6	5.65	-2.0	3.8
2050	53.8	14.7	1.68	53.2	1.57	1.1	7.0	5600	47.5	19.3	6.01	48.5	5.77	-2.1	4.2
2100	53.7	14.7	1.72	53.2	1.62	1.0	6.2	5700	47.3	19.4	6.16	48.3	5.88	-2.3	4.8
2150	53.7	14.7	1.76	53.1	1.66	1.1	6.0	5800	47.0	19.6	6.32	48.2	6.00	-2.4	5.3
2200	53.6	14.7	1.80	53.0	1.71	1.1	5.3	6000	46.6	19.8	6.62	47.9	6.23	-2.7	6.3
2250	53.5	14.8	1.85	53.0	1.76	1.0	5.1	6500							
2300	53.5	14.8	1.89	52.9	1.81	1.1	4.4	7000							
2350	53.4	14.8	1.94	52.8	1.85	1.1	4.9	7500							
2400	53.3	14.8	1.98	52.8	1.90	1.0	4.2	8000			100				
2450	53.3	14.9	2.03	52.7	1.95	1.1	4.1	8500							
2500	53.2	14.9	2.07	52.6	2.02	1.1	2.5	9000							
		15.0	2.12	52.6	2.09	1.0	1.4	9500			KU A				
2550	53.1	10.0													

Figure C-2 600 - 5800 MHz Body Tissue Equivalent Matter

FCC ID A3LSMS908JPN	PCTEST* Proud to be part of classical	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX C:
12/21/21 - 01/17/22	Portable Handset			Page 2 of 3

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL600-10000V6)

Product No. SL AAH U16 BC (Batch: 200805-4)

Manufacturer SPEAG

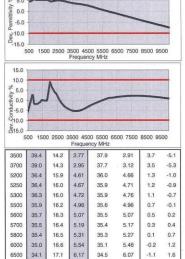
Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C 6-Aug-20 Test Date Operator CL

Additional Information
TSL Density

TSL Heat-capacity

	Measu	red		Targe	t	Diff.to Targ	get [%]	15.0			
[MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0			
600	44.7	25.7	0.86	42.7	0.88	4.6	-2.5	% 5.0			
750	44.1	21.7	0.90	41.9	0.89	5.1	0.7				
800	44.0	20.7	0.92	41.7	0.90	5.6	2.5	Permittivity 0.0			
825	43.9	20.3	0.93	41.6	0.91	5.6	2.6	E -5.0			
835	43.9	20.1	0.94	41.5	0.91	5.7	3.1	3-10.0 -15.0	9000	A	
850	43.8	19.9	0.94	41.5	0.92	5.5	2.6		00.450	0 2500	
900	43.7	19.1	0.96	41.5	0.97	5.3	-1.0	5	150	0 2500	
1400	42.7	15.1	1.18	40.6	1.18	5.2	0.0	15.0			
1450	42.6	14.9	1.20	40.5	1.20	5.2	0.0	10.0			
1600	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	8		٨	
1625	42.4	14.4	1.30	40.3	1.30	5.3	0.1	A 0.0	A		
1640	42.4	14.3	1.31	40.3	1.31	5.3	0.3	0.0 unductivity	10	/	
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	Q _{10.0}			
1700	42.2	14.2	1.34	40.2	1.34	5.1	-0.2	Q15.0	BEST		
1750	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 3	
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0				
1810	42.1	14.0	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.3	
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	15.9	
1900	41.9	13.8	1.46	40.0	1.40	4.7	4.3	5250	36.4	16.0	
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.3	16.0	
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	
2050	41.7	13.7	1.56	39.9	1.44	4.5	8.0	5600	35.7	16.3	
2100	41.7	13.7	1.60	39.8	1.49	4.7	7.5	5700	35.5	16.4	
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.4	16.5	
2200	41.5	13.6	1.67	39.6	1.58	4.7	5.8	6000	35.0	16.6	
2250	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.1	17.1	
2300	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.2	17.4	
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	
2400	41.2	13.6	1.82	39.3	1.76	4.9	3.7	8000	31.5	18.0	
2450	41.2	13.6	1.85	39.2	1.80	5.1	2.8	8500	30.6	18.2	
2500	41.1	13.6	1.89	39.1	1.85	5.0	1.9	9000	29.8	18.4	
2550	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	29.0	18.6	
2600	40.9	13.7	1.98	39.0	1.96	4.8	0.8	10000	28.1	18.8	

33.9 6.65 -2.0 2.0

32.1 8.45 -4.7 2.1

7.84 -3.8 2.2

2.2

6.78 33.3 7.24 -2.9

7.40

9.24 31.5 9.08 -5.6 1.8

9.84 31.0 9.71 -6.5 1.3

Figure C-3 600 - 5800 MHz Head Tissue Equivalent Matter

FCC ID A3LSMS908JPN	PCTEST* Proud to be part of **element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX C:
12/21/21 - 01/17/22	Portable Handset			Page 3 of 3