

| www.www.com analyzer - Occupied BW    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           | (     | - 6 <b>-</b> ×    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|-------------------------|---------------------------|-------|-------------------|
| LXURL RF 50Ω AC CO                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NSE:INT<br>req: 5.875000000 GHz                | ALIGN AUTO | 05:47:12 F<br>Radio Std | M Oct 28, 2021<br>I: None | Trace | Detector          |
| #1                                    | FGain:Low #Atten: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |            | Radio De                | vice: BTS                 |       |                   |
| ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| 10 dB/div Ref 10.00 dBm               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| Log<br>0.00                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| -10.0                                 | Angle Ball of the Sound Content of Market and and and a start of the s | population to a shall be a shall be a shall be |            |                         |                           | c     | lear Write        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| -20.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| -30.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | t          |                         |                           |       |                   |
| -40.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       | Average           |
| -50.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Ymydruni   | hat the second          | abrication Automatic      |       |                   |
| -60.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| -70.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       | Max Hold          |
| -80.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| Center 5.87500 GHz<br>#Res BW 100 kHz | VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W 1 MHz                                        |            | Span 1                  | 100.0 MHz<br>9.267 ms     |       |                   |
| The s by too kill                     | \$D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |            | Gweep                   | 5.207 1115                |       | Min Hold          |
| Occupied Bandwidth                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Power                                    | 22.8       | dBm                     |                           |       |                   |
|                                       | 546 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |            |                         |                           |       | Detector          |
| 37.3                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       | Detector<br>Peak▶ |
| Transmit Freq Error                   | -1.658 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % of OBW Pow                                   | er 99      | .00 %                   |                           | Auto  | Man               |
| x dB Bandwidth                        | 37.77 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x dB                                           | -6.        | 00 dB                   |                           |       |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            |                         |                           |       |                   |
| MSG                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | STATUS     |                         |                           |       |                   |

Plot 7-125. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax - 484 Tones (UNII Band 4) - Ch. 175)



Plot 7-126. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 3/4) – Ch. 171)

| FCC ID: A3LSMS908JPN                   | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|----------------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N: Test Dates: EUT Type: |                               | EUT Type:                             | Dama 00 at 040                    |  |  |
| 1M2112100159-08.A3L                    | 9/14/2021 - 11/12/2021        | Page 88 of 242                        |                                   |  |  |
| V 9.0 02/01/2019                       |                               |                                       |                                   |  |  |





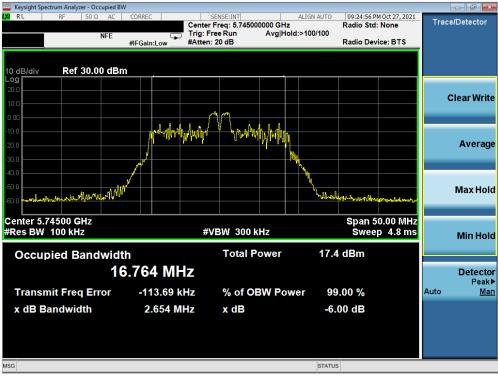
Plot 7-127. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW L 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)



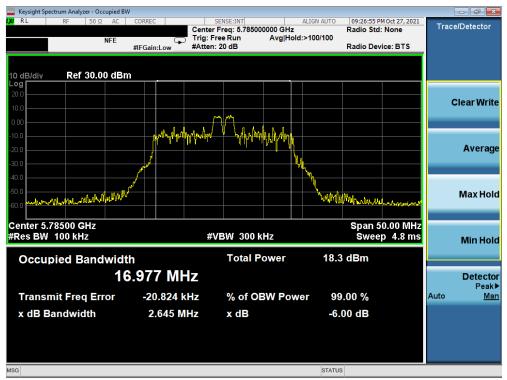
Plot 7-128. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW U 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)

| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Daga 90 of 242                    |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 89 of 242                    |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |




## MIMO Antenna-2 6dB Bandwidth Measurements (26 Tones)

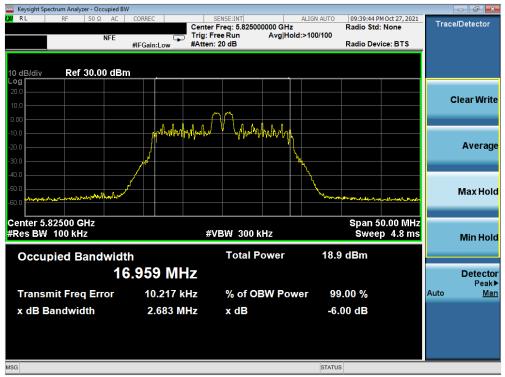
|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 26T   | MCS0                | 2.65                               |
| e    | 5785               | 157            | ax (20MHz)  | 26T   | MCS0                | 2.65                               |
|      | 5825               | 165            | ax (20MHz)  | 26T   | MCS0                | 2.68                               |
| Band | 5755               | 151            | ax (40MHz)  | 26T   | MCS0                | 2.12                               |
|      | 5795               | 159            | ax (40MHz)  | 26T   | MCS0                | 2.13                               |
|      | 5775               | 155            | ax (80MHz)  | 26T   | MCS0                | 2.80                               |


Table 7-10. Conducted Bandwidth Measurements MIMO ANT2 (26 Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Daga 00 of 242                    |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 90 of 242                    |
| © 2022 PCTEST        | •                             |                                       |         | V 9.0 02/01/2019                  |






Plot 7-129. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 149)



Plot 7-130. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 157)

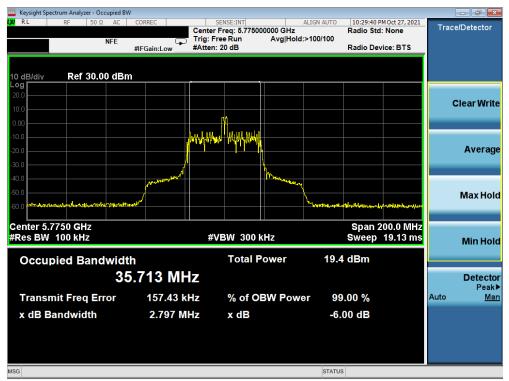
| FCC ID: A3LSMS908JPN         | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|------------------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:             | Test Dates:                   | EUT Type:                             |         | Dara 04 at 040                    |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021        | Portable Handset Page                 |         | Page 91 of 242                    |
| 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |         |                                   |





Plot 7-131. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 165)




Plot 7-132. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 151)

| FCC ID: A3LSMS908JPN                   | PCTEST*<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|----------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N: Test Dates: EUT Type: |                                          | Dage 02 of 242                        |                                   |  |  |
| 1M2112100159-08.A3L                    | 9/14/2021 - 11/12/2021                   | Portable Handset                      | Page 92 of 242                    |  |  |
| 2022 PCTEST V 9.0 02/01/2019           |                                          |                                       |                                   |  |  |



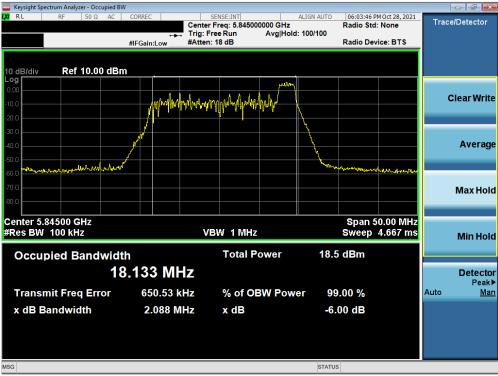


Plot 7-133. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 159)

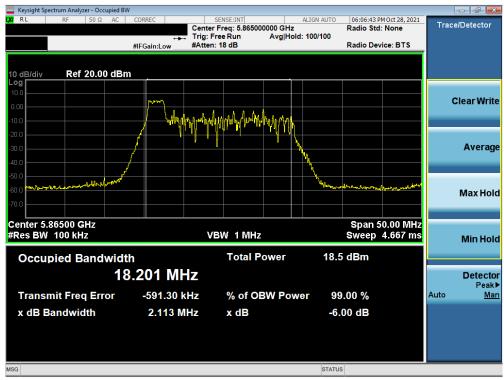


Plot 7-134. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 155)

| FCC ID: A3LSMS908JPN          | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG        | Approved by:<br>Technical Manager |
|-------------------------------|-------------------------------|---------------------------------------|----------------|-----------------------------------|
| Test Report S/N: Test Dates:  |                               | EUT Type:                             |                | Dama 00 at 040                    |
| 1M2112100159-08.A3L           | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 93 of 242 |                                   |
| 22022 PCTEST V 9.0 02/01/2019 |                               |                                       |                |                                   |



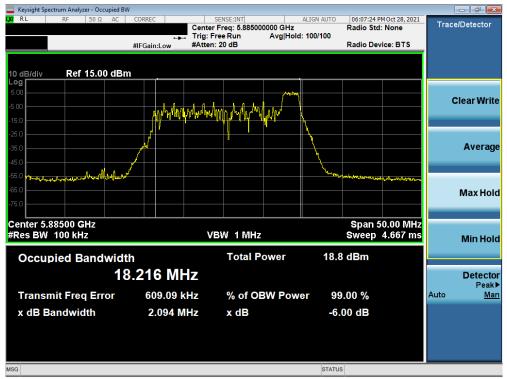

|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|----------|--------------------|----------------|---------------|-------|------------------|------------------------------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)    | 26T   | MCS0             | 2.09                               |
| Band 4   | 5865               | 173            | ax (20MHz)    | 26T   | MCS0             | 2.11                               |
| Dallu 4  | 5885               | 177            | ax (20MHz)    | 26T   | MCS0             | 2.09                               |
| Band 3/4 | 5835               | 167            | ax (40MHz)    | 26T   | MCS0             | 2.10                               |
| Band 4   | 5875               | 175            | ax (40MHz)    | 26T   | MCS0             | 2.07                               |
|          | 5855               | 171            | ax (80MHz)    | 26T   | MCS0             | 2.73                               |
| Band 3/4 | 5815               | 163            | ax (160MHz L) | 26T   | MCS0             | 3.05                               |
|          | 5815               | 163            | ax (160MHz U) | 26T   | MCS0             | 2.99                               |


Table 7-11. Conducted Bandwidth Measurements MIMO ANT2 (26 Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Dage 04 of 242                    |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 94 of 242                    |
| © 2022 PCTEST        |                               |                                       |         | V 9.0 02/01/2019                  |






Plot 7-135. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 169)



Plot 7-136. 6dB Bandwidth Plot MIMO ANT2(20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 173)

| FCC ID: A3LSMS908JPN         | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG | Approved by:<br>Technical Manager |
|------------------------------|-------------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:             | Test Dates:                   | EUT Type:                             |       | Dara 05 at 040                    |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021        | Portable Handset                      |       | Page 95 of 242                    |
| 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |       |                                   |





Plot 7-137. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 177)

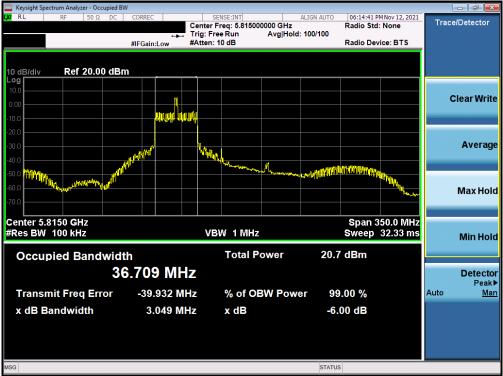



Plot 7-138. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 167)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dama 00 at 040                    |  |  |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 96 of 242                    |  |  |
| V 9.0 02/01/2019     |                               |                                       |                                   |  |  |



| 🔤 Keysight Spectrum Analyzer - Occupied B |                    |                                      |                      |                               |                   |
|-------------------------------------------|--------------------|--------------------------------------|----------------------|-------------------------------|-------------------|
| LXI RL RF 50Ω AC                          | CORREC             | SENSE:INT<br>r Freg: 5.875000000 GHz |                      | 8 PM Oct 28, 2021<br>td: None | Trace/Detector    |
|                                           | Trig: F            | Free Run Avg Hold                    | I: 100/100           |                               |                   |
|                                           | #IFGain:Low #Atter | n: 20 dB                             | Radio D              | evice: BTS                    |                   |
|                                           |                    |                                      |                      |                               |                   |
| 10 dB/div Ref 20.00 dBr                   | n                  |                                      |                      |                               |                   |
| 10.0                                      |                    |                                      |                      |                               |                   |
| 0.00                                      |                    |                                      |                      |                               | Clear Write       |
| -10.0                                     |                    |                                      |                      |                               |                   |
| -20.0                                     |                    |                                      |                      |                               |                   |
| -30.0                                     |                    |                                      |                      |                               | Average           |
| -40.0                                     | mh shih ware and   |                                      | <u>\</u>             |                               |                   |
| -50.0                                     |                    |                                      | <u>∖</u>             |                               |                   |
| -60.0 martinenalation                     | and                |                                      | Mar mart any bearing | Walnethannon                  | Mawlind           |
| -70.0                                     |                    |                                      |                      |                               | Max Hold          |
| 10.0                                      |                    |                                      |                      |                               |                   |
| Center 5.87500 GHz                        |                    |                                      |                      | 100.0 MHz                     |                   |
| #Res BW 100 kHz                           | V                  | BW 1 MHz                             | Swee                 | o 9.267 ms                    | Min Hold          |
| Occupied Bandwid                          | th                 | Total Power                          | 18.9 dBm             |                               |                   |
|                                           |                    |                                      |                      |                               |                   |
| 1                                         | 7.832 MHz          |                                      |                      |                               | Detector<br>Peak▶ |
| Transmit Freq Error                       | 10.196 MHz         | % of OBW Pow                         | er 99.00 %           |                               | Auto <u>Man</u>   |
| x dB Bandwidth                            | 2.073 MHz          | x dB                                 | -6.00 dB             |                               |                   |
|                                           | 2.075 1112         | X UB                                 | -0.00 ub             |                               |                   |
|                                           |                    |                                      |                      |                               |                   |
|                                           |                    |                                      |                      |                               |                   |
|                                           |                    |                                      | OTATIO               |                               |                   |
| MSG                                       |                    |                                      | STATUS               |                               |                   |


Plot 7-139. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 175)



Plot 7-140. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 171)

| FCC ID: A3LSMS908JPN           | PCTEST*<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | NG | Approved by:<br>Technical Manager |  |  |  |
|--------------------------------|------------------------------------------|---------------------------------------|----|-----------------------------------|--|--|--|
| Test Report S/N:               | Test Dates:                              | EUT Type:                             |    | Dage 07 of 242                    |  |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021                   | Portable Handset                      |    | Page 97 of 242                    |  |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                                          |                                       |    |                                   |  |  |  |



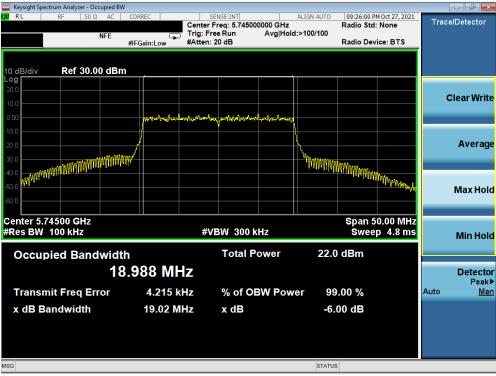


Plot 7-141. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW L 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 163)



Plot 7-142. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW U 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 163)

| FCC ID: A3LSMS908JPN | PCTEST°<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|------------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                              | EUT Type:                             | Dage 09 of 242                    |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                   | Portable Handset                      | Page 98 of 242                    |
| © 2022 PCTEST        |                                          |                                       | V 9.0 02/01/2019                  |




|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 242T  | MCS0                | 19.02                              |
|      | 5785               | 157            | ax (20MHz)  | 242T  | MCS0                | 19.08                              |
| 1d 3 | 5825               | 165            | ax (20MHz)  | 242T  | MCS0                | 19.01                              |
| Band | 5755               | 151            | ax (40MHz)  | 484T  | MCS0                | 37.36                              |
|      | 5795               | 159            | ax (40MHz)  | 484T  | MCS0                | 37.48                              |
|      | 5775               | 155            | ax (80MHz)  | 996T  | MCS0                | 77.10                              |

Table 7-12. Conducted Bandwidth Measurements MIMO ANT2 (Full Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Dage 00 of 242                    |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 99 of 242                    |
| © 2022 PCTEST        | •                             |                                       |         | V 9.0 02/01/2019                  |





Plot 7-143. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3) - Ch. 149)

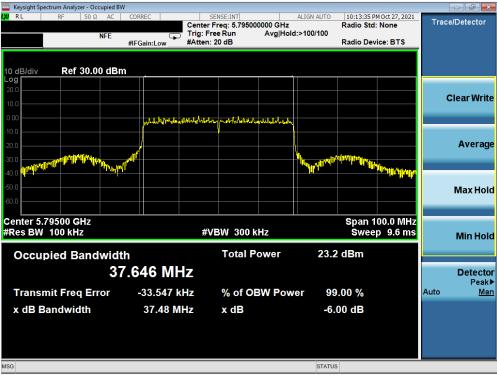


Plot 7-144. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3) - Ch. 157)

| FCC ID: A3LSMS908JPN           | Proud to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |  |  |
|--------------------------------|-----------------------------|---------------------------------------|---------|-----------------------------------|--|--|
| Test Report S/N:               | Test Dates:                 | EUT Type:                             |         | Page 100 of 242                   |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021      | Portable Handset                      |         |                                   |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                             |                                       |         |                                   |  |  |



| www.www.com.com.com.com.com.com.com.com.com.com | cupied BW |            |            |              |           |            |                                          |              |      |             |
|-------------------------------------------------|-----------|------------|------------|--------------|-----------|------------|------------------------------------------|--------------|------|-------------|
| <b>LXU</b> RL RF 50 Ω                           | NFE       | Ģ          | Center Fr  |              |           | ALIGN AUTO | 09:40:28 Pl<br>Radio Std:<br>Radio Dev   |              | Trac | e/Detector  |
|                                                 | #IFG      | ain:Low    | #Atten. 20 | JUD          |           |            | Raulo Dev                                | ice. DT3     |      |             |
| 10 dB/div Ref 30.00                             | 0 dBm     |            |            |              |           |            |                                          |              |      |             |
| 20.0                                            |           |            |            |              |           |            |                                          |              |      |             |
| 10.0                                            |           |            |            |              |           |            |                                          |              |      | Clear Write |
| 0.00                                            |           | portionful | artheretun | methownawhow | hatenlyng |            |                                          |              |      |             |
| -10.0                                           | ,<br>,    |            |            |              |           |            |                                          |              |      |             |
| -20.0                                           | أمر       |            |            |              |           | h_         |                                          |              |      | Average     |
| -30.0                                           |           |            |            |              |           | ₩<br>₩     |                                          |              |      |             |
| -40.0                                           | Ambia     |            |            |              |           | - Wataki   | WHO'LE HAT THE                           | st.fl. a     |      |             |
| -50.0 m / / / / / / · · ·                       |           |            |            |              |           |            | ·- • • • • • • • • • • • • • • • • • • • | www.whitehay |      | Max Hold    |
| -60.0                                           |           |            |            |              |           |            |                                          |              |      |             |
| Center 5.82500 GHz                              |           |            |            |              |           |            | Snan 5                                   | 0.00 MHz     |      |             |
| #Res BW 100 kHz                                 |           |            | #VB        | W 300 k      | Hz        |            |                                          | p 4.8 ms     |      | Min Hold    |
| Occupied Band                                   | width     |            |            | Total P      | ower      | 22.2       | dBm                                      |              |      |             |
|                                                 |           | 73 MF      | 7          |              |           |            |                                          |              |      | Detector    |
|                                                 |           |            |            |              |           |            |                                          |              |      | Peak▶       |
| Transmit Freq Err                               | or        | 12.615 k   | Hz         | % of O       | 3W Pow    | er 99      | .00 %                                    |              | Auto | <u>Man</u>  |
| x dB Bandwidth                                  |           | 19.01 M    | Hz         | x dB         |           | -6.0       | 00 dB                                    |              |      |             |
|                                                 |           |            |            |              |           |            |                                          |              |      |             |
|                                                 |           |            |            |              |           |            |                                          |              |      |             |
|                                                 |           |            |            |              |           |            |                                          |              |      |             |
| MSG                                             |           |            |            |              |           | STATUS     |                                          |              |      |             |


Plot 7-145. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3) - Ch. 165)



Plot 7-146. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax – 484 Tones (UNII Band 3) – Ch. 151)

| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |  |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|--|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Dage 101 of 242                   |  |  |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 101 of 242                   |  |  |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |  |  |  |





Plot 7-147. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 3) - Ch. 159)



Plot 7-148. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 996 Tones (UNII Band 3) - Ch. 155)

| FCC ID: A3LSMS908JPN         | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|------------------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N: Test Dates: |                               | EUT Type:                             |         | Dama 400 at 040                   |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 102 of 242                   |
| © 2022 PCTEST                |                               |                                       |         | V 9.0 02/01/2019                  |



|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|----------|--------------------|----------------|---------------|-------|------------------|------------------------------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)    | 242T  | MCS0             | 18.95                              |
| Band 4   | 5865               | 173            | ax (20MHz)    | 242T  | MCS0             | 18.92                              |
| Danu 4   | 5885 177           | 177            | ax (20MHz)    | 242T  | MCS0             | 18.92                              |
| Band 3/4 | 5835               | 167            | ax (40MHz)    | 484T  | MCS0             | 37.62                              |
| Band 4   | 5875               | 175            | ax (40MHz)    | 484T  | MCS0             | 37.32                              |
|          | 5855               | 171            | ax (80MHz)    | 996T  | MCS0             | 77.36                              |
| Band 3/4 | 5815               | 163            | ax (160MHz L) | 996T  | MCS0             | 77.78                              |
|          | 5815               | 163            | ax (160MHz U) | 996T  | MCS0             | 77.09                              |

Table 7-13. Conducted Bandwidth Measurements MIMO ANT2 (Full Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | UNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |     | Dage 102 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |     | Page 103 of 242                   |
| © 2022 PCTEST        |                               |                                       |     | V 9.0 02/01/2019                  |



| 🔤 Keysight Spectrum Analyzer - Occup | pied BW        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
|--------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|-------|-----------------|
| <mark>LX/</mark> RL RF 50Ω           | AC CORREC      | SENSE:INT<br>Center Freg: 5.84500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALIGN AUTO        | 06:04:13 PM Oct<br>Radio Std: Nor |       | Trace/Detector  |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Avg Hold: 100/100 | Radio Std: Nor                    | ne    |                 |
|                                      | #IFGain:Low    | #Atten: 26 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | Radio Device:                     | втѕ   |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| 10 dB/div Ref 20.00                  | dBm            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| Log                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| 10.0                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       | Clear Write     |
| 0.00                                 | mound          | and and the state of the state | hallow            |                                   |       |                 |
| -10.0                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| -20.0                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>├}∖</u>        |                                   |       |                 |
| -30.0                                | , <b>f</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | └───              |                                   |       | Average         |
| -40.0                                | المعيد المعالي |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marcall           | 100.0                             |       |                 |
| -50.0 M/h/w/h/w/lang yr 100          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Williammethyla                    | mulu  |                 |
| -60.0                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       | Max Hold        |
| -70.0                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| Center 5.84500 GHz                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Span 50.00                        | 0 MHz |                 |
| #Res BW 100 kHz                      |                | VBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | Sweep 4.6                         |       | Min Hold        |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       | Millinea        |
| Occupied Bandw                       | vidth          | Total P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ower 22.3         | 3 dBm                             |       |                 |
|                                      | 18.960 MH      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                   |       | Detector        |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       | Peak►           |
| Transmit Freq Erro                   | or 4.929 k     | Hz % of O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3W Power 99       | 0.00 %                            | 4     | Auto <u>Man</u> |
| x dB Bandwidth                       | 18.95 M        | Hz xdB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.               | 00 dB                             |       |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
|                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                   |       |                 |
| MSG                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATUS            | 5                                 |       |                 |

Plot 7-149. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 3/4) - Ch. 169)



Plot 7-150. 6dB Bandwidth Plot MIMO ANT2(20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 173)

| FCC ID: A3LSMS908JPN | PCTEST °<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                               | EUT Type:                             | Daga 104 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                    | Portable Handset                      | Page 104 of 242                   |
| © 2022 PCTEST        |                                           |                                       | V 9.0 02/01/2019                  |



| www.www.com analyzer - Occupied BW                  |                                |                                   |            |            |                |       | - 6 ×             |
|-----------------------------------------------------|--------------------------------|-----------------------------------|------------|------------|----------------|-------|-------------------|
| <b>LXU</b> R L RF 50 Ω AC CO                        |                                | ENSE:INT<br>Freq: 5.885000000 GHz | ALIGN AUTO | 06:07:56 P | M Oct 28, 2021 | Trace | /Detector         |
|                                                     | 🛶 Trig: Fr                     | eeRun Avg Holo                    | d: 100/100 |            |                |       |                   |
|                                                     | FGain:Low #Atten:              | 26 dB                             |            | Radio Dev  | ice: BTS       |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
| 10 dB/div Ref 20.00 dBm                             | _                              |                                   |            |            |                |       |                   |
| Log<br>10.0                                         |                                |                                   |            |            |                |       |                   |
| 0.00                                                | and the flored attest & after  | N Bulley Back of all all all here |            |            |                | 0     | lear Write:       |
|                                                     | Inthose A miles and the factor |                                   | l          |            |                |       |                   |
| -10.0                                               |                                |                                   |            |            |                |       |                   |
| -20.0                                               | 1                              |                                   | A.         |            |                |       | _                 |
| -30.0                                               |                                |                                   | <b>A</b>   |            |                |       | Average           |
| -40.0 Anthe And |                                |                                   | - MAY WW   | whow hat   | NAL WALL .     |       |                   |
| -50.0                                               |                                |                                   |            |            | ፣ ግድም ያየምታለ    |       |                   |
| -60.0                                               |                                |                                   |            |            |                |       | Max Hold          |
| -70.0                                               |                                |                                   |            |            |                |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
| Center 5.88500 GHz                                  | VE                             |                                   |            |            | 0.00 MHz       |       |                   |
| #Res BW 100 kHz                                     | VE                             | 3W 1 MHz                          |            | Sweep      | 4.667 ms       |       | Min Hold          |
| Occupied Bandwidth                                  |                                | Total Power                       | 22.7       | dBm        |                |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
| 18.3                                                | 951 MHz                        |                                   |            |            |                |       | Detector<br>Peak▶ |
| Transmit Freq Error                                 | -536 Hz                        | % of OBW Pow                      | ver 99     | .00 %      |                | Auto  | Man               |
| x dB Bandwidth                                      | 18.92 MHz                      | x dB                              | -6 (       | 00 dB      |                |       |                   |
|                                                     | 10.52 MITZ                     | A UB                              | -0.0       |            |                |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
|                                                     |                                |                                   |            |            |                |       |                   |
| MSG                                                 |                                |                                   | STATUS     |            |                |       |                   |

Plot 7-151. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 177)



Plot 7-152. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 3/4) - Ch. 167)

| FCC ID: A3LSMS908JPN           | PCTEST °<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |  |  |  |  |  |  |
|--------------------------------|-------------------------------------------|---------------------------------------|---------|-----------------------------------|--|--|--|--|--|--|
| Test Report S/N:               | Test Dates:                               | EUT Type:                             |         | Dage 105 of 242                   |  |  |  |  |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021                    | Portable Handset                      |         | Page 105 of 242                   |  |  |  |  |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                                           |                                       |         |                                   |  |  |  |  |  |  |



| www.www.com.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.co |                                     |                                         |                   |                         |                          |      | - 6 <b>-</b> ×-   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|-------------------|-------------------------|--------------------------|------|-------------------|
| IXIRL RF 50Ω AC CORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Center Fr                           |                                         | ALIGN AUTO        | 06:21:23 P<br>Radio Std | M Oct 28, 2021<br>: None | Trac | e/Detector        |
| #IFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gain:Low #Atten: 2                  | 6 dB                                    |                   | Radio Dev               | /ice: BTS                |      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                   |                         |                          |      |                   |
| 10 dB/div Ref 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                         |                   |                         |                          |      |                   |
| Log<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he have the state has the           | 1                                       |                   |                         |                          |      |                   |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A TOTAL ARE AND A TOTAL AND A TOTAL | Ŋ₽₽₽₽₩₩₩₩₩₽₽₩₽₩₽₩₽₽₽₽₩₩₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽ |                   |                         |                          | (    | Clear Write       |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                   |                         |                          |      |                   |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         | \                 |                         |                          |      |                   |
| -40.0<br>-40.0<br>-0.0 mm <sup>2</sup> /alwin 11 <sup>11</sup> +14 <sub>9</sub> tarent role and det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                         | hard Martan (111) | Martin Martin           | <b>A</b> n               |      | Average           |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                   | and the second          | "Lawyork Wardy           |      |                   |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                   |                         |                          |      |                   |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                   |                         |                          |      | Max Hold          |
| -80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                         |                   |                         |                          |      |                   |
| Center 5.87500 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                         |                   | Span 1                  | 00.0 MHz                 |      |                   |
| #Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VBI                                 | N 1 MHz                                 |                   |                         | 9.267 ms                 |      | Min Hold          |
| Occupied Bondwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | Total Power                             | 23 /              | dBm                     |                          |      |                   |
| Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | I otal I owel                           | 23.4              | ubiii                   |                          |      |                   |
| 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32 MHz                              |                                         |                   |                         |                          |      | Detector<br>Peak▶ |
| Transmit Freq Error -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.896 kHz                          | % of OBW Pow                            | er 99             | .00 %                   |                          | Auto | Man               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.32 MHz                           | x dB                                    | -6.               | 00 dB                   |                          |      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                   |                         |                          |      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                   |                         |                          |      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                         |                   |                         |                          |      |                   |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                         | STATUS            |                         |                          |      |                   |

Plot 7-153. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 4) - Ch. 175)



Plot 7-154. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 171)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Base 400 of 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 106 of 242                   |
| © 2022 PCTEST        |                               | ·                                     | V 9.0 02/01/2019                  |





Plot 7-155. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW L 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)



Plot 7-156. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW U 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 107 of 212                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 107 of 242                   |
| © 2022 PCTEST        |                               | · · · · · · · · · · · · · · · · · · · | V 9.0 02/01/2019                  |



# 7.4 UNII Output Power Measurement – 802.11ax OFDMA §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

#### **Test Overview and Limits**

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(18.49) = 23.67dBm$ . The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(18.49) = 23.67dBm$ . The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

In the 5.850 – 5.895 GHz band, the maximum permissible e.i.r.p is 30dBm.

#### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

#### **Test Settings**

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |  |  |  |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|--|--|--|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Dama 400 at 040                   |  |  |  |  |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 108 of 242                   |  |  |  |  |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |  |  |  |  |  |



## MIMO Maximum Conducted Output Power Measurements (26 Tones)

|                                                 |            |         |          |       |      |      |       |      | RU Index |       |      |      |       | Conducted   | Conducted   |
|-------------------------------------------------|------------|---------|----------|-------|------|------|-------|------|----------|-------|------|------|-------|-------------|-------------|
|                                                 | Freq [MHz] | Channel | Detector | Tones |      | 0    |       |      | 4        |       |      | 8    |       | Power Limit | Power       |
|                                                 |            |         |          |       | ANT1 | ANT2 | MIMO  | ANT1 | ANT2     | MIMO  | ANT1 | ANT2 | MIMO  | [dBm]       | Margin [dB] |
| N                                               | 5180       | 36      | AVG      | 26T   | 8.37 | 9.20 | 11.81 | 8.93 | 9.45     | 12.21 | 8.82 | 9.36 | 12.11 | 23.98       | -11.77      |
| ΞΞ                                              | 5200       | 40      | AVG      | 26T   | 8.76 | 8.93 | 11.85 | 9.26 | 9.42     | 12.35 | 9.03 | 9.09 | 12.07 | 23.98       | -11.63      |
| ד צ                                             | 5240       | 48      | AVG      | 26T   | 9.07 | 8.92 | 12.00 | 9.49 | 9.37     | 12.44 | 9.22 | 9.03 | 12.14 | 23.98       | -11.54      |
| <b>U</b> .=                                     | 5260       | 52      | AVG      | 26T   | 8.92 | 8.80 | 11.87 | 9.47 | 9.38     | 12.44 | 9.16 | 9.08 | 12.13 | 23.47       | -11.03      |
| <u><br/><br/><br/><br/><br/><br/><br/><br/></u> | 5280       | 56      | AVG      | 26T   | 9.02 | 8.63 | 11.84 | 9.38 | 9.17     | 12.29 | 9.42 | 8.93 | 12.19 | 23.47       | -11.18      |
| N 2                                             | 5320       | 64      | AVG      | 26T   | 9.46 | 8.87 | 12.18 | 9.44 | 9.45     | 12.46 | 9.38 | 9.05 | 12.23 | 23.47       | -11.01      |
| ы Т                                             | 5500       | 100     | AVG      | 26T   | 8.85 | 8.21 | 11.55 | 9.16 | 8.53     | 11.87 | 8.97 | 8.01 | 11.53 | 22.80       | -10.93      |
| C m                                             | 5600       | 120     | AVG      | 26T   | 8.87 | 8.55 | 11.72 | 9.24 | 9.46     | 12.36 | 8.65 | 8.94 | 11.81 | 22.80       | -10.44      |
| 5                                               | 5720       | 144     | AVG      | 26T   | 9.07 | 9.03 | 12.06 | 9.60 | 9.35     | 12.49 | 9.49 | 9.36 | 12.44 | 22.80       | -10.31      |
|                                                 | 5745       | 149     | AVG      | 26T   | 8.91 | 8.87 | 11.90 | 9.21 | 9.31     | 12.27 | 8.91 | 8.77 | 11.85 | 30.00       | -17.73      |
|                                                 | 5785       | 157     | AVG      | 26T   | 8.77 | 8.82 | 11.81 | 9.41 | 9.15     | 12.29 | 8.78 | 9.05 | 11.93 | 30.00       | -17.71      |
|                                                 | 5825       | 165     | AVG      | 26T   | 9.01 | 9.40 | 12.22 | 9.39 | 9.55     | 12.48 | 9.05 | 9.15 | 12.11 | 30.00       | -17.52      |

Table 7-14. MIMO 20MHz BW (UNII) Maximum Conducted Output Power (26 Tones)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |         |          |       |      |      |       |      | RU Index |       |      |      |       | Conducted   | Conducted   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|----------|-------|------|------|-------|------|----------|-------|------|------|-------|-------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq [MHz]                                                                 | Channel | Detector | Tones |      | 0    |       |      | 8        |       | 17   |      |       | Power Limit | Power       |
| Η̈́ ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |         |          |       | ANT1 | ANT2 | MIMO  | ANT1 | ANT2     | MIMO  | ANT1 | ANT2 | MIMO  | [dBm]       | Margin [dB] |
| ÷ ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5190                                                                       | 38      | AVG      | 26T   | 8.38 | 8.65 | 11.53 | 9.09 | 9.56     | 12.34 | 8.93 | 9.07 | 12.01 | 23.98       | -11.64      |
| e b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5230                                                                       | 46      | AVG      | 26T   | 8.52 | 8.72 | 11.63 | 9.33 | 9.40     | 12.38 | 8.81 | 8.93 | 11.88 | 23.98       | -11.60      |
| 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5270                                                                       | 54      | AVG      | 26T   | 8.98 | 8.80 | 11.90 | 9.41 | 9.46     | 12.45 | 9.01 | 8.95 | 11.99 | 23.47       | -11.02      |
| ν́б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5310                                                                       | 62      | AVG      | 26T   | 8.74 | 8.29 | 11.53 | 9.26 | 9.00     | 12.14 | 8.81 | 8.90 | 11.87 | 23.47       | -11.33      |
| ₽ Č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5510                                                                       | 102     | AVG      | 26T   | 8.87 | 8.54 | 11.72 | 9.11 | 8.83     | 11.98 | 8.90 | 8.83 | 11.88 | 22.80       | -10.82      |
| in the second se | 5590                                                                       | 118     | AVG      | 26T   | 8.73 | 8.29 | 11.53 | 9.48 | 8.75     | 12.14 | 8.84 | 8.19 | 11.54 | 22.80       | -10.66      |
| ю ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5710                                                                       | 142     | AVG      | 26T   | 9.22 | 9.16 | 12.20 | 9.38 | 9.04     | 12.22 | 9.54 | 9.41 | 12.49 | 22.80       | -10.31      |
| ~,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5755                                                                       | 151     | AVG      | 26T   | 8.88 | 8.63 | 11.77 | 9.55 | 9.39     | 12.48 | 8.96 | 9.20 | 12.09 | 30.00       | -17.52      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5795                                                                       | 159     | AVG      | 26T   | 9.21 | 8.75 | 12.00 | 9.26 | 9.24     | 12.26 | 8.64 | 8.77 | 11.72 | 30.00       | -17.74      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 7.15 MIMO 40MHz DW (UNII) Maximum Conducted Output Dower (26 Tables) |         |          |       |      |      |       |      |          |       |      |      |       |             |             |

Table 7-15. MIMO 40MHz BW (UNII) Maximum Conducted Output Power (26 Tones)

|                      | RU Index   |         |          |       |      |      |       |      |      |       |      | Conducted | Conducted   |       |             |
|----------------------|------------|---------|----------|-------|------|------|-------|------|------|-------|------|-----------|-------------|-------|-------------|
| N                    | Freq [MHz] | Channel | Detector | Tones |      | 0    |       |      | 18   |       |      | 36        | Power Limit | Power |             |
| । ਵ ਦਿ               |            |         |          |       | ANT1 | ANT2 | MIMO  | ANT1 | ANT2 | MIMO  | ANT1 | ANT2      | MIMO        | [dBm] | Margin [dB] |
| S Đ                  | 5210       | 42      | AVG      | 26T   | 8.76 | 9.26 | 12.03 | 9.18 | 9.16 | 12.18 | 9.10 | 8.57      | 11.85       | 23.98 | -11.80      |
| <u>®</u> <u>&gt;</u> | 5290       | 58      | AVG      | 26T   | 9.12 | 9.36 | 12.25 | 9.52 | 9.37 | 12.46 | 9.16 | 9.00      | 12.09       | 23.47 | -11.01      |
| ₽ũ                   | 5530       | 106     | AVG      | 26T   | 9.27 | 8.59 | 11.95 | 9.28 | 8.92 | 12.11 | 8.71 | 8.54      | 11.64       | 22.80 | -10.69      |
| 5GF<br>Ba            | 5610       | 122     | AVG      | 26T   | 9.35 | 8.50 | 11.96 | 9.22 | 8.21 | 11.75 | 9.37 | 8.53      | 11.98       | 22.80 | -10.82      |
| 5                    | 5690       | 138     | AVG      | 26T   | 9.22 | 8.65 | 11.95 | 9.13 | 9.19 | 12.17 | 8.70 | 8.94      | 11.83       | 22.80 | -10.63      |
|                      | 5775       | 155     | AVG      | 26T   | 9.24 | 8.75 | 12.01 | 9.28 | 9.22 | 12.26 | 9.12 | 9.19      | 12.17       | 30.00 | -17.74      |

Table 7-16. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (26 Tones)

| ₹   |      | Frea     |         |       |             |       |       | Average C    | onducted Po | wer (dBm) |              |      |       |  |  |  |
|-----|------|----------|---------|-------|-------------|-------|-------|--------------|-------------|-----------|--------------|------|-------|--|--|--|
| Ξ,  | Band | [MHz]    | Channel | Tones | RU Index: 0 |       |       | RU Index: 18 |             |           | RU Index: 36 |      |       |  |  |  |
| B A |      | נייוייבן |         |       | ANT1        | ANT2  | MIMO  | ANT1         | ANT2        | MIMO      | ANT1         | ANT2 | MIMO  |  |  |  |
| 16( | 1    | 5250     | 50      | 26T   | 9.57        | 10.09 | 12.85 | 10.07        | 9.70        | 12.90     | 9.04         | 9.24 | 12.15 |  |  |  |
|     | 2A   | 5570     | 114     | 26T   | 9.91        | 9.85  | 12.89 | 9.97         | 9.78        | 12.89     | 9.49         | 9.26 | 12.39 |  |  |  |
|     |      |          |         |       |             |       |       |              |             |           |              |      |       |  |  |  |

Table 7-17. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (26 Tones)

| N          |         | Freq  |         |       |      |             |       | Average C | onducted Po  | wer (dBm) |      |              |       |
|------------|---------|-------|---------|-------|------|-------------|-------|-----------|--------------|-----------|------|--------------|-------|
| ۲ IHz      | Band    | [MHz] | Channel | Tones |      | RU Index: 0 |       | I         | RU Index: 18 | 1         | l    | RU Index: 36 | •     |
| B M<br>B M | נויורבן |       |         |       | ANT1 | ANT2        | MIMO  | ANT1      | ANT2         | MIMO      | ANT1 | ANT2         | MIMO  |
| 16(<br>F   | 1       | 5250  | 50      | 26T   | 9.88 | 10.01       | 12.96 | 9.78      | 9.42         | 12.61     | 9.25 | 9.33         | 12.30 |
|            | 2C      | 5570  | 114     | 26T   | 9.65 | 9.38        | 12.53 | 9.76      | 9.24         | 12.52     | 9.68 | 9.10         | 12.41 |

Table 7-18. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (26 Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 100 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 109 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (52 Tones)

|               |            |         |          |       |       |       |       |       | RU Index |       |       |       |       | Conducted   | Conducted   |
|---------------|------------|---------|----------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|
|               | Freq [MHz] | Channel | Detector | Tones |       | 37    |       |       | 39       |       |       | 40    |       | Power Limit | Power       |
|               |            |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| N             | 5180       | 36      | AVG      | 52T   | 12.34 | 12.85 | 15.61 | 12.58 | 13.21    | 15.92 | 12.56 | 12.98 | 15.79 | 23.98       | -8.06       |
| ΞΞ            | 5200       | 40      | AVG      | 52T   | 12.39 | 12.81 | 15.62 | 12.77 | 13.15    | 15.97 | 12.51 | 12.98 | 15.76 | 23.98       | -8.00       |
| ד צ           | 5240       | 48      | AVG      | 52T   | 12.65 | 12.94 | 15.81 | 12.86 | 13.09    | 15.99 | 12.75 | 13.11 | 15.94 | 23.98       | -7.99       |
| <b>U</b>      | 5260       | 52      | AVG      | 52T   | 12.64 | 12.64 | 15.65 | 12.34 | 12.16    | 15.26 | 12.83 | 12.91 | 15.88 | 23.47       | -7.59       |
| <u>&lt;</u> 2 | 5280       | 56      | AVG      | 52T   | 12.75 | 12.76 | 15.76 | 13.01 | 12.94    | 15.99 | 12.84 | 12.78 | 15.82 | 23.47       | -7.48       |
| N             | 5320       | 64      | AVG      | 52T   | 13.05 | 12.69 | 15.88 | 12.38 | 12.22    | 15.31 | 13.11 | 12.81 | 15.97 | 23.47       | -7.50       |
| a T           | 5500       | 100     | AVG      | 52T   | 12.69 | 12.46 | 15.59 | 12.96 | 12.81    | 15.90 | 12.33 | 12.41 | 15.38 | 22.80       | -6.90       |
| С<br>Ш        | 5600       | 120     | AVG      | 52T   | 12.95 | 12.76 | 15.87 | 12.94 | 12.93    | 15.95 | 12.86 | 12.79 | 15.84 | 22.80       | -6.85       |
| ŝ             | 5720       | 144     | AVG      | 52T   | 12.16 | 12.39 | 15.29 | 12.53 | 12.66    | 15.61 | 12.05 | 12.15 | 15.11 | 22.80       | -7.19       |
|               | 5745       | 149     | AVG      | 52T   | 12.45 | 12.53 | 15.50 | 12.73 | 12.93    | 15.84 | 12.46 | 12.61 | 15.55 | 30.00       | -14.16      |
|               | 5785       | 157     | AVG      | 52T   | 12.46 | 12.67 | 15.58 | 12.88 | 12.92    | 15.91 | 12.53 | 12.85 | 15.70 | 30.00       | -14.09      |
|               | 5825       | 165     | AVG      | 52T   | 12.51 | 12.86 | 15.70 | 12.80 | 12.99    | 15.91 | 12.55 | 12.82 | 15.69 | 30.00       | -14.09      |

Table 7-19. MIMO 20MHz BW (UNII) Maximum Conducted Output Power (52 Tones)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |          |        |       |       |       |       | RU Index |       |       |       |        | Conducted   | Conducted   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------|--------|-------|-------|-------|-------|----------|-------|-------|-------|--------|-------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq [MHz] | Channel | Detector | Tones  |       | 37    |       |       | 40       |       |       | 44    |        | Power Limit | Power       |
| ŤΞ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |          |        | ANT1  | ANT2  | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO   | [dBm]       | Margin [dB] |
| ÷ ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5190       | 38      | AVG      | 52T    | 11.82 | 12.55 | 15.21 | 12.36 | 12.73    | 15.56 | 12.23 | 12.76 | 15.51  | 23.98       | -8.42       |
| e b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5230       | 46      | AVG      | 52T    | 12.04 | 12.46 | 15.27 | 12.24 | 12.54    | 15.40 | 12.27 | 12.68 | 15.49  | 23.98       | -8.49       |
| 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5270       | 54      | AVG      | 52T    | 12.15 | 12.29 | 15.23 | 12.46 | 12.52    | 15.50 | 12.64 | 12.63 | 15.65  | 23.47       | -7.82       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5310       | 62      | AVG      | 52T    | 12.47 | 12.08 | 15.29 | 12.71 | 12.49    | 15.61 | 12.82 | 12.60 | 15.72  | 23.47       | -7.75       |
| ΡČ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5510       | 102     | AVG      | 52T    | 12.42 | 12.28 | 15.36 | 13.07 | 12.87    | 15.98 | 12.38 | 12.42 | 15.41  | 22.80       | -6.82       |
| in the second se | 5590       | 118     | AVG      | 52T    | 12.62 | 12.17 | 15.41 | 13.06 | 12.89    | 15.99 | 12.67 | 12.42 | 15.56  | 22.80       | -6.81       |
| ы<br>В<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5710       | 142     | AVG      | 52T    | 12.94 | 12.87 | 15.92 | 12.41 | 12.55    | 15.49 | 12.97 | 12.98 | 15.99  | 22.80       | -6.81       |
| ~/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5755       | 151     | AVG      | 52T    | 12.18 | 12.29 | 15.25 | 12.89 | 12.73    | 15.82 | 12.21 | 12.18 | 15.21  | 30.00       | -14.18      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5795       | 159     | AVG      | 52T    | 12.41 | 12.48 | 15.46 | 13.01 | 12.92    | 15.98 | 12.59 | 12.65 | 15.63  | 30.00       | -14.02      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Tabla   | 7 20     | BAIRA/ |       |       |       |       | Condu    |       |       |       | 0 Tomo | -           |             |

Table 7-20. MIMO 40MHz BW (UNII) Maximum Conducted Output Power (52 Tones)

|            |            |         |          |       |       |       |       |       | RU Index |       |       |       |       | Conducted   | Conducted   |
|------------|------------|---------|----------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|
| N _        | Freq [MHz] | Channel | Detector | Tones |       | 37    |       |       | 44       |       |       | 52    |       | Power Limit | Power       |
| । ਵ ਦਿ     |            |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| S Đ        | 5210       | 42      | AVG      | 52T   | 12.42 | 12.77 | 15.61 | 12.48 | 12.45    | 15.48 | 12.40 | 12.16 | 15.29 | 23.98       | -8.37       |
| <u>∞ ≥</u> | 5290       | 58      | AVG      | 52T   | 12.65 | 12.64 | 15.66 | 12.43 | 12.32    | 15.39 | 12.35 | 12.09 | 15.23 | 23.47       | -7.81       |
| 우입         | 5530       | 106     | AVG      | 52T   | 12.82 | 12.99 | 15.92 | 12.85 | 13.10    | 15.99 | 12.66 | 12.89 | 15.79 | 22.80       | -6.81       |
| ы<br>В     | 5610       | 122     | AVG      | 52T   | 12.00 | 12.75 | 15.40 | 13.01 | 12.81    | 15.92 | 12.86 | 12.79 | 15.84 | 22.80       | -6.88       |
| 5          | 5690       | 138     | AVG      | 52T   | 12.85 | 12.98 | 15.93 | 12.26 | 12.62    | 15.46 | 12.32 | 12.67 | 15.51 | 22.80       | -6.87       |
|            | 5775       | 155     | AVG      | 52T   | 12.58 | 12.82 | 15.71 | 12.10 | 12.46    | 15.29 | 12.01 | 12.33 | 15.18 | 30.00       | -14.29      |

Table 7-21. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (52 Tones)

| ₹   |      | Frea     |         |        |       |              |       | Average C | onducted Po  | wer (dBm) |       |              |       |
|-----|------|----------|---------|--------|-------|--------------|-------|-----------|--------------|-----------|-------|--------------|-------|
| Ξ,  | Band | [MHz]    | Channel | Tones  |       | RU Index: 37 | ,     | l         | RU Index: 44 |           |       | RU Index: 52 |       |
| B A |      | נייוייבן |         |        | ANT1  | ANT2         | MIMO  | ANT1      | ANT2         | MIMO      | ANT1  | ANT2         | MIMO  |
| 16( | 1    | 5250     | 50      | 52T    | 12.75 | 13.15        | 15.96 | 12.58     | 12.81        | 15.71     | 12.93 | 12.94        | 15.95 |
|     | 2C   | 5570     | 114     | 52T    | 12.81 | 12.97        | 15.90 | 12.19     | 12.51        | 15.36     | 12.20 | 12.37        | 15.30 |
|     | _    |          |         | 10 100 |       | 1 /1 18 111  |       | <u> </u>  |              |           | (50.7 |              |       |

Table 7-22. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (52 Tones)

| N        |      | Frea  |         |       |       |              |       | Average C | onducted Po  | wer (dBm) |       |              |       |
|----------|------|-------|---------|-------|-------|--------------|-------|-----------|--------------|-----------|-------|--------------|-------|
| Hz /     | Band | [MHz] | Channel | Tones |       | RU Index: 37 | ,     |           | RU Index: 44 |           | l     | RU Index: 52 | 1     |
| BVB      |      |       |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2         | MIMO      | ANT1  | ANT2         | MIMO  |
| 16(      | 1    | 5250  | 50      | 52T   | 12.76 | 12.63        | 15.71 | 12.75     | 12.60        | 15.68     | 13.13 | 12.78        | 15.97 |
| <b>~</b> | 2C   | 5570  | 114     | 52T   | 12.25 | 12.41        | 15.34 | 12.89     | 12.99        | 15.95     | 12.38 | 12.57        | 15.49 |

Table 7-23. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (52 Tones)

| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Dogo 110 of 212                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         | Page 110 of 242                   |
| © 2022 PCTEST        | ·                                       |                                       |         | V 9.0 02/01/2019                  |



### MIMO Conducted Output Power Measurements (106 Tones)

|                                                                                                                                              |            |         |          |       |       |       | RU I  | ndex  |       |       | Conducted   | Conducted   |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------------|-------------|
|                                                                                                                                              | Freq [MHz] | Channel | Detector | Tones |       | 53    |       |       | 54    |       | Power Limit | Power       |
|                                                                                                                                              |            |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| N                                                                                                                                            | 5180       | 36      | AVG      | 106T  | 14.42 | 14.98 | 17.72 | 14.68 | 15.22 | 17.97 | 23.98       | -6.01       |
| ΞĒ                                                                                                                                           | 5200       | 40      | AVG      | 106T  | 14.24 | 14.86 | 17.57 | 14.52 | 14.96 | 17.75 | 23.98       | -6.23       |
| ₹ 5                                                                                                                                          | 5240       | 48      | AVG      | 106T  | 14.46 | 14.86 | 17.67 | 14.65 | 14.94 | 17.81 | 23.98       | -6.17       |
|                                                                                                                                              | 5260       | 52      | AVG      | 106T  | 14.57 | 14.64 | 17.62 | 14.96 | 14.98 | 17.98 | 23.47       | -5.49       |
| <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 5280       | 56      | AVG      | 106T  | 14.83 | 14.82 | 17.84 | 14.89 | 14.96 | 17.94 | 23.47       | -5.53       |
| N 2                                                                                                                                          | 5320       | 64      | AVG      | 106T  | 15.07 | 14.85 | 17.97 | 15.05 | 14.88 | 17.98 | 23.47       | -5.49       |
| a I                                                                                                                                          | 5500       | 100     | AVG      | 106T  | 14.47 | 14.34 | 17.42 | 14.46 | 14.42 | 17.45 | 22.80       | -5.35       |
| C m                                                                                                                                          | 5600       | 120     | AVG      | 106T  | 14.98 | 14.87 | 17.94 | 14.71 | 14.84 | 17.79 | 22.80       | -4.86       |
| <b>S</b>                                                                                                                                     | 5720       | 144     | AVG      | 106T  | 14.28 | 14.43 | 17.37 | 14.26 | 14.35 | 17.31 | 22.80       | -5.43       |
|                                                                                                                                              | 5745       | 149     | AVG      | 106T  | 14.51 | 14.48 | 17.50 | 14.44 | 14.52 | 17.49 | 30.00       | -12.50      |
|                                                                                                                                              | 5785       | 157     | AVG      | 106T  | 14.66 | 14.76 | 17.72 | 14.43 | 14.78 | 17.62 | 30.00       | -12.28      |
|                                                                                                                                              | 5825       | 165     | AVG      | 106T  | 14.59 | 14.93 | 17.78 | 14.68 | 14.82 | 17.76 | 30.00       | -12.22      |

Table 7-24. MIMO 20MHz BW (UNII) Maximum Conducted Output Power (106 Tones)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |          |       |       |       |       |       | RU Index |       |       |       |       | Conducted   | Conducted   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freq [MHz] | Channel | Detector | Tones |       | 53    |       |       | 54       |       |       | 56    |       | Power Limit | Power       |
| Ť 🕤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| 는 눈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5190       | 38      | AVG      | 106T  | 13.99 | 14.65 | 17.34 | 14.68 | 15.26    | 17.99 | 14.53 | 14.93 | 17.74 | 23.98       | -5.99       |
| 5 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5230       | 46      | AVG      | 106T  | 14.41 | 14.65 | 17.54 | 14.72 | 15.16    | 17.96 | 14.51 | 14.97 | 17.76 | 23.98       | -6.02       |
| 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5270       | 54      | AVG      | 106T  | 14.75 | 14.64 | 17.71 | 14.46 | 14.33    | 17.40 | 14.84 | 14.88 | 17.87 | 23.47       | -5.60       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5310       | 62      | AVG      | 106T  | 14.85 | 14.68 | 17.78 | 14.65 | 14.27    | 17.47 | 14.94 | 14.78 | 17.87 | 23.47       | -5.60       |
| ΡĊ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5510       | 102     | AVG      | 106T  | 14.64 | 14.30 | 17.48 | 14.96 | 14.74    | 17.86 | 14.61 | 14.35 | 17.49 | 22.80       | -4.94       |
| in the second se | 5590       | 118     | AVG      | 106T  | 14.71 | 14.42 | 17.58 | 15.08 | 14.86    | 17.98 | 14.72 | 14.62 | 17.68 | 22.80       | -4.82       |
| ЮШ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5710       | 142     | AVG      | 106T  | 14.93 | 15.01 | 17.98 | 14.61 | 14.65    | 17.64 | 14.36 | 14.40 | 17.39 | 22.80       | -4.82       |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5755       | 151     | AVG      | 106T  | 14.28 | 14.26 | 17.28 | 14.69 | 14.60    | 17.66 | 14.23 | 14.45 | 17.35 | 30.00       | -12.34      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5795       | 159     | AVG      | 106T  | 14.48 | 14.46 | 17.48 | 14.88 | 14.83    | 17.86 | 14.59 | 14.71 | 17.66 | 30.00       | -12.14      |

Table 7-25. MIMO 40MHz BW (UNII) Maximum Conducted Output Power (106 Tones)

|          |            |         |          |       |       |       |       |       | RU Index |       |       |       |       | Conducted   | Conducted   |
|----------|------------|---------|----------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|
|          | Freq [MHz] | Channel | Detector | Tones |       | 53    |       |       | 56       |       |       | 60    |       | Power Limit | Power       |
| Ê.       |            |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| 5 0      | 5210       | 42      | AVG      | 106T  | 14.37 | 14.70 | 17.55 | 14.36 | 14.35    | 17.37 | 14.38 | 14.12 | 17.26 | 23.98       | -6.43       |
| <u> </u> | 5290       | 58      | AVG      | 106T  | 14.91 | 14.59 | 17.76 | 14.38 | 14.26    | 17.33 | 14.26 | 14.15 | 17.22 | 23.47       | -5.71       |
| 1 č      | 5530       | 106     | AVG      | 106T  | 14.04 | 14.26 | 17.16 | 14.15 | 14.37    | 17.27 | 14.83 | 15.11 | 17.98 | 22.80       | -4.82       |
| S &      | 5610       | 122     | AVG      | 106T  | 14.74 | 14.91 | 17.84 | 14.34 | 14.02    | 17.19 | 14.26 | 14.18 | 17.23 | 22.80       | -4.96       |
| n —      | 5690       | 138     | AVG      | 106T  | 14.86 | 15.06 | 17.97 | 14.34 | 14.43    | 17.40 | 14.36 | 14.68 | 17.53 | 22.80       | -4.83       |
|          | 5775       | 155     | AVG      | 106T  | 14.48 | 14.57 | 17.54 | 14.89 | 15.05    | 17.98 | 14.72 | 15.18 | 17.97 | 30.00       | -12.02      |

Table 7-26. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (106 Tones)

| N        |      | Frea    |         |       |       |              |       | Average C | onducted Po  | wer (dBm) |       |              |       |
|----------|------|---------|---------|-------|-------|--------------|-------|-----------|--------------|-----------|-------|--------------|-------|
| ۲Hz      | Band | [MHz]   | Channel | Tones |       | RU Index: 53 | 1     | l         | RU Index: 56 | i         |       | RU Index: 60 | 1     |
| N N N    |      | נאורוצן |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2         | MIMO      | ANT1  | ANT2         | MIMO  |
| 16(<br>F | 1    | 5250    | 50      | 106T  | 14.40 | 14.89        | 17.66 | 14.26     | 14.40        | 17.34     | 14.74 | 14.66        | 17.71 |
| <b>~</b> | 2C   | 5570    | 114     | 106T  | 14.88 | 15.07        | 17.99 | 14.19     | 14.39        | 17.30     | 14.04 | 14.41        | 17.24 |

Table 7-27. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (106 Tones)

| N        |      | Free          |         |       |       |              |       | Average C | onducted Po  | wer (dBm) |              |       |       |
|----------|------|---------------|---------|-------|-------|--------------|-------|-----------|--------------|-----------|--------------|-------|-------|
| Hz /     | Band | Freq<br>[MHz] | Channel | Tones |       | RU Index: 53 |       | -         | RU Index: 56 |           | RU Index: 60 |       |       |
| N N N    |      | נייייבן       |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2         | MIMO      | ANT1         | ANT2  | MIMO  |
| 16(<br>F | 1    | 5250          | 50      | 106T  | 14.78 | 14.59        | 17.70 | 14.84     | 14.59        | 17.73     | 14.83        | 14.49 | 17.67 |
|          | 2C   | 5570          | 114     | 106T  | 14.25 | 14.41        | 17.34 | 14.16     | 14.32        | 17.25     | 14.01        | 14.34 | 17.19 |

Table 7-28. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (106 Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 111 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 111 of 242                   |
| © 2022 PCTEST        |                               | •                                     | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (242 Tones)

|                   |            |         |          |       |       | RU Index |       | Conducted   | Conducted   |
|-------------------|------------|---------|----------|-------|-------|----------|-------|-------------|-------------|
|                   | Freq [MHz] | Channel | Detector | Tones |       | 61       |       | Power Limit | Power       |
|                   |            |         |          |       | ANT1  | ANT2     | MIMO  | [dBm]       | Margin [dB] |
| N                 | 5180       | 36      | AVG      | 242T  | 14.55 | 15.12    | 17.85 | 23.98       | -6.12       |
| E E               | 5200       | 40      | AVG      | 242T  | 14.49 | 14.94    | 17.73 | 23.98       | -6.25       |
| N N               | 5240       | 48      | AVG      | 242T  | 14.58 | 14.89    | 17.75 | 23.98       | -6.23       |
|                   | 5260       | 52      | AVG      | 242T  | 14.56 | 14.72    | 17.65 | 23.47       | -5.82       |
| <u>S</u> <u>S</u> | 5280       | 56      | AVG      | 242T  | 14.74 | 14.72    | 17.74 | 23.47       | -5.73       |
| N C               | 5320       | 64      | AVG      | 242T  | 15.03 | 14.85    | 17.95 | 23.47       | -5.52       |
| a T               | 5500       | 100     | AVG      | 242T  | 14.58 | 14.49    | 17.55 | 22.80       | -5.25       |
| C<br>M            | 5600       | 120     | AVG      | 242T  | 14.83 | 14.93    | 17.89 | 22.80       | -4.91       |
| S                 | 5720       | 144     | AVG      | 242T  | 15.17 | 15.38    | 18.29 | 22.80       | -4.51       |
|                   | 5745       | 149     | AVG      | 242T  | 15.25 | 15.69    | 18.49 | 30.00       | -11.51      |
|                   | 5785       | 157     | AVG      | 242T  | 14.59 | 14.73    | 17.67 | 30.00       | -12.33      |
|                   | 5825       | 165     | AVG      | 242T  | 14.56 | 14.78    | 17.68 | 30.00       | -12.32      |

Table 7-29. MIMO 20MHz BW (UNII) Maximum Conducted Output Power (242 Tones)

|                            |             |         |          |       |       |       | RU I  | ndex  |       |       | Conducted   | Conducted   |
|----------------------------|-------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------------|-------------|
| N                          | Freq [MHz]  | Channel | Detector | Tones |       | 61    |       |       | 62    |       | Power Limit | Power       |
| ΪC                         | <b>&gt;</b> |         |          |       | ANT1  | ANT2  | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| 14 ÷                       | 5190        | 38      | AVG      | 242T  | 14.48 | 15.12 | 17.82 | 14.72 | 15.08 | 17.91 | 23.98       | -6.07       |
|                            | 5230        | 46      | AVG      | 242T  | 14.46 | 14.84 | 17.66 | 14.65 | 15.17 | 17.93 | 23.98       | -6.05       |
| 4 >                        | 5270        | 54      | AVG      | 242T  | 14.96 | 14.98 | 17.98 | 15.15 | 15.13 | 18.15 | 23.47       | -5.32       |
| $\sim$                     | 5310        | 62      | AVG      | 242T  | 15.12 | 14.93 | 18.04 | 15.18 | 15.01 | 18.11 | 23.47       | -5.36       |
| 2 4                        | 5510        | 102     | AVG      | 242T  | 14.58 | 14.43 | 17.52 | 14.72 | 14.76 | 17.75 | 22.80       | -5.05       |
| ц<br>В<br>В<br>В<br>В<br>В | 5590        | 118     | AVG      | 242T  | 14.72 | 14.46 | 17.60 | 14.88 | 14.75 | 17.83 | 22.80       | -4.97       |
| D<br>D<br>D<br>D           | 5710        | 142     | AVG      | 242T  | 15.01 | 15.04 | 18.04 | 15.41 | 15.51 | 18.47 | 22.80       | -4.33       |
| ~/                         | 5755        | 151     | AVG      | 242T  | 15.35 | 15.54 | 18.46 | 14.65 | 14.79 | 17.73 | 30.00       | -11.54      |
|                            | 5795        | 159     | AVG      | 242T  | 15.37 | 15.58 | 18.49 | 14.62 | 14.91 | 17.78 | 30.00       | -11.51      |

Table 7-30. MIMO 40MHz BW (UNII) Maximum Conducted Output Power (242 Tones)

|         |            |         |          |       |       |                 |       |       | RU Index |       |       |       |       | Conducted   | Conducted   |
|---------|------------|---------|----------|-------|-------|-----------------|-------|-------|----------|-------|-------|-------|-------|-------------|-------------|
| N       | Freq [MHz] | Channel | Detector | Tones |       | 61              |       |       | 62       |       |       | 64    |       | Power Limit | Power       |
| ∃ ਦੇ ਦੇ |            |         |          |       | ANT1  | ANT2            | MIMO  | ANT1  | ANT2     | MIMO  | ANT1  | ANT2  | MIMO  | [dBm]       | Margin [dB] |
| e te    | 5210       | 42      | AVG      | 242T  | 14.74 | 14.91           | 17.84 | 15.26 | 15.23    | 18.26 | 15.50 | 15.23 | 18.38 | 23.98       | -5.60       |
| ∞≥      | 5290       | 58      | AVG      | 242T  | 14.26 | 15.19           | 17.76 | 14.84 | 14.53    | 17.70 | 15.41 | 15.28 | 18.36 | 23.47       | -5.11       |
| 우입      | 5530       | 106     | AVG      | 242T  | 15.09 | 15.39           | 18.25 | 15.12 | 15.40    | 18.27 | 15.19 | 15.41 | 18.31 | 22.80       | -4.49       |
| 10 m    | 5610       | 122     | AVG      | 242T  | 14.91 | 15.02           | 17.98 | 14.94 | 15.12    | 18.04 | 15.26 | 15.14 | 18.21 | 22.80       | -4.59       |
| 5       | 5690       | 138     | AVG      | 242T  | 15.05 | 15.26           | 18.17 | 15.33 | 15.57    | 18.46 | 14.63 | 14.93 | 17.79 | 22.80       | -4.34       |
|         | 5775       | 155     | AVG      | 242T  | 14.84 | 14.99           | 17.93 | 15.01 | 15.14    | 18.09 | 14.91 | 15.49 | 18.22 | 30.00       | -11.78      |
|         |            |         |          |       |       | <b>B</b> 144 /1 |       |       | <u> </u> |       |       | 1.    |       |             |             |

Table 7-31. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (242 Tones)

| N        |      | Frea                   |     |       |              |       |       | Average C    | onducted Po | wer (dBm) |              |       |       |
|----------|------|------------------------|-----|-------|--------------|-------|-------|--------------|-------------|-----------|--------------|-------|-------|
| Hz ,     | Band | and [MHz] Channel Tone |     | Tones | RU Index: 61 |       |       | RU Index: 62 |             |           | RU Index: 64 |       |       |
| N N N    |      | נייויזבן               |     |       | ANT1         | ANT2  | MIMO  | ANT1         | ANT2        | MIMO      | ANT1         | ANT2  | MIMO  |
| 16(<br>F | 1    | 5250                   | 50  | 242T  | 14.93        | 15.36 | 18.16 | 14.81        | 15.04       | 17.94     | 15.40        | 15.55 | 18.49 |
| <b>~</b> | 2C   | 5570                   | 114 | 242T  | 14.76        | 15.09 | 17.94 | 15.14        | 15.71       | 18.44     | 15.15        | 15.29 | 18.23 |

Table 7-32. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (242 Tones)

| N        |      | Frea     |         |           |       |              |       | Average C    | onducted Po | wer (dBm) |              |       |       |
|----------|------|----------|---------|-----------|-------|--------------|-------|--------------|-------------|-----------|--------------|-------|-------|
| Hz /     | Band | [MHz]    | Channel | Tones     |       | RU Index: 61 |       | RU Index: 62 |             |           | RU Index: 64 |       |       |
| B A O    |      | נייוייבן |         |           | ANT1  | ANT2         | MIMO  | ANT1         | ANT2        | MIMO      | ANT1         | ANT2  | MIMO  |
| 16(<br>F | 1    | 5250     | 50      | 242T      | 14.96 | 14.80        | 17.89 | 15.34        | 15.23       | 18.30     | 15.19        | 14.81 | 18.01 |
|          | 2C   | 5570     | 114     | 242T      | 15.24 | 15.51        | 18.39 | 15.22        | 15.42       | 18.33     | 15.31        | 15.64 | 18.49 |
|          | -    |          |         | 0 4 0 0 1 |       | /            |       | <u> </u>     | 4 1 0       |           | 10.10        | - \   |       |

Table 7-33. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (242 Tones)

| FCC ID: A3LSMS908JPN | Proved to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                  | EUT Type:                             |         | Dega 112 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021       | Portable Handset                      |         | Page 112 of 242                   |
| © 2022 PCTEST        | •                            |                                       |         | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (484 Tones)

|            |                                      |                                                                                                                            |                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              | RU I                                                                                                                                                                                                                                                                                                                                                                                                                            | ndex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conducted                                                                                                                                                                                                            | Conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq [MHz] | Channel                              | Detector                                                                                                                   | Tones                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power Limit                                                                                                                                                                                                          | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                      |                                                                                                                            |                                                                                                                                                                                        | ANT1                                                                                                                                                                                                                                                    | ANT2                                                                                                                                                                                                                                                                                                                                         | MIMO                                                                                                                                                                                                                                                                                                                                                                                                                            | ANT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [dBm]                                                                                                                                                                                                                | Margin [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5210       | 42                                   | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 14.31                                                                                                                                                                                                                                                   | 14.26                                                                                                                                                                                                                                                                                                                                        | 17.30                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.98                                                                                                                                                                                                                | -6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5290       | 58                                   | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 15.13                                                                                                                                                                                                                                                   | 14.90                                                                                                                                                                                                                                                                                                                                        | 18.03                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.47                                                                                                                                                                                                                | -5.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5530       | 106                                  | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 14.83                                                                                                                                                                                                                                                   | 15.16                                                                                                                                                                                                                                                                                                                                        | 18.01                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.80                                                                                                                                                                                                                | -4.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5610       | 122                                  | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 14.72                                                                                                                                                                                                                                                   | 14.64                                                                                                                                                                                                                                                                                                                                        | 17.69                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.80                                                                                                                                                                                                                | -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5690       | 138                                  | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 14.68                                                                                                                                                                                                                                                   | 14.96                                                                                                                                                                                                                                                                                                                                        | 17.83                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.80                                                                                                                                                                                                                | -4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5775       | 155                                  | AVG                                                                                                                        | 484T                                                                                                                                                                                   | 14.58                                                                                                                                                                                                                                                   | 14.81                                                                                                                                                                                                                                                                                                                                        | 17.71                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.00                                                                                                                                                                                                                | -12.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 5210<br>5290<br>5530<br>5610<br>5690 | 5210         42           5290         58           5530         106           5610         122           5690         138 | 5210         42         AVG           5290         58         AVG           5530         106         AVG           5610         122         AVG           5690         138         AVG | 5210         42         AVG         484T           5290         58         AVG         484T           5530         106         AVG         484T           5610         122         AVG         484T           5690         138         AVG         484T | ANT1           5210         42         AVG         484T         14.31           5290         58         AVG         484T         15.13           5530         106         AVG         484T         14.83           5610         122         AVG         484T         14.72           5690         138         AVG         484T         14.68 | ANT1         ANT2           5210         42         AVG         484T         14.31         14.26           5290         58         AVG         484T         15.13         14.90           5530         106         AVG         484T         14.83         15.16           5610         122         AVG         484T         14.72         14.64           5690         138         AVG         484T         14.68         14.96 | Freq [MHz]         Channel         Detector         Tones         65           5210         42         AVG         484T         14.31         14.26         17.30           5290         58         AVG         484T         15.13         14.90         18.03           5530         106         AVG         484T         14.83         15.16         18.01           5610         122         AVG         484T         14.72         14.64         17.69           5690         138         AVG         484T         14.68         14.96         17.83 | ANT1         ANT2         MIMO         ANT1           5210         42         AVG         484T         14.31         14.26         17.30         13.83           5290         58         AVG         484T         15.13         14.90         18.03         15.32           5530         106         AVG         484T         14.83         15.16         18.01         14.75           5610         122         AVG         484T         14.72         14.64         17.69         14.75           5690         138         AVG         484T         14.68         14.96         17.83         15.25 | Freq [MHz]         Channel         Detector         Tones         65         MIMO         ANT1         ANT2           5210         42         AVG         484T         14.31         14.26         17.30         13.83         13.79           5290         58         AVG         484T         15.13         14.90         18.03         15.32         15.15           5530         106         AVG         484T         14.83         15.16         18.01         14.75         15.09           5610         122         AVG         484T         14.72         14.64         17.69         14.75         14.83           5690         138         AVG         484T         14.68         14.96         17.83         15.25         15.49 | $\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{tabular}{ c c c c c c } \hline Free [MHz] $$ Property $$ Power Limit $$ Power$ |

Table 7-34. MIMO 40MHz BW (UNII) Maximum Conducted Output Power (484 Tones)

|            |                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RU Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq [MHz] | Channel                                                              | Detector                                                                                                                                                                                                                             | Tones                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  | ANT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [dBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5190       | 38                                                                   | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 13.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5230       | 46                                                                   | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5270       | 54                                                                   | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5310       | 62                                                                   | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5510       | 102                                                                  | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5590       | 118                                                                  | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5710       | 142                                                                  | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5755       | 151                                                                  | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 14.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5795       | 159                                                                  | AVG                                                                                                                                                                                                                                  | 484T                                                                                                                                                                                                                                                                                                                                             | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 5190<br>5230<br>5270<br>5310<br>5510<br>5590<br>5710<br>5755<br>5795 | 5190         38           5230         46           5270         54           5310         62           5510         102           5590         118           5710         142           5755         151           5795         159 | 5190         38         AVG           5230         46         AVG           5270         54         AVG           5310         62         AVG           5510         102         AVG           5590         118         AVG           5710         142         AVG           5755         151         AVG           5795         159         AVG | 5190         38         AVG         484T           5230         46         AVG         484T           5270         54         AVG         484T           5310         62         AVG         484T           5510         102         AVG         484T           5590         118         AVG         484T           5710         142         AVG         484T           5755         151         AVG         484T           5795         159         AVG         484T | ANT1           5190         38         AVG         484T         13.47           5230         46         AVG         484T         15.14           5270         54         AVG         484T         15.52           5310         62         AVG         484T         15.55           5510         102         AVG         484T         15.21           5590         118         AVG         484T         15.27           5710         142         AVG         484T         15.38           5755         151         AVG         484T         15.38           5795         159         AVG         484T         15.07 | Freq [MHz]         Channel         Detector         Tones         65           5190         38         AVG         484T         13.47         13.97           5230         46         AVG         484T         15.14         15.32           5270         54         AVG         484T         15.52         15.29           5310         62         AVG         484T         15.55         15.40           5510         102         AVG         484T         15.21         14.82           5590         118         AVG         484T         15.27         14.95           5710         142         AVG         484T         15.27         14.95           5755         151         AVG         484T         15.38         15.57           5795         159         AVG         484T         14.84         14.82 | Freq [MHz]         Channel         Detector         Tones         65           ANT1         ANT2         MIMO           5190         38         AVG         484T         13.47         13.97         16.74           5230         46         AVG         484T         15.14         15.32         18.24           5270         54         AVG         484T         15.52         15.29         18.42           5210         62         AVG         484T         15.55         15.40         18.49           5510         102         AVG         484T         15.27         14.82         18.03           5590         118         AVG         484T         15.27         14.95         18.12           5710         142         AVG         484T         15.38         15.57         18.49           5755         151         AVG         484T         14.84         14.82         17.84           5795         159         AVG         484T         15.07         15.14         18.12 | Freq [MHz]         Channel         Detector         Tones         65         Power Limit           5190         38         AVG         484T         13.47         13.97         16.74         23.98           5230         46         AVG         484T         15.14         15.32         18.24         23.98           5270         54         AVG         484T         15.52         15.29         18.42         23.47           5310         62         AVG         484T         15.55         15.40         18.49         23.47           5510         102         AVG         484T         15.27         14.82         18.03         22.80           5590         118         AVG         484T         15.27         14.95         18.12         22.80           5710         142         AVG         484T         15.27         14.95         18.12         22.80           5750         118         AVG         484T         15.38         15.57         18.49         22.80           5755         151         AVG         484T         14.84         14.82         17.84         30.00           5795         159         AVG         484T <t< th=""></t<> |

Table 7-35. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (484 Tones)

| N          |              | From |                       |      |       | Aver         | age Conduc | ted Power (c | lBm)         |       |
|------------|--------------|------|-----------------------|------|-------|--------------|------------|--------------|--------------|-------|
| Ηz         | H > Band [MH |      | Freq<br>[MHz] Channel |      |       | RU Index: 65 | 65         |              | RU Index: 66 |       |
| M M<br>M M |              |      |                       |      | ANT1  | ANT2         | MIMO       | ANT1         | ANT2         | MIMO  |
| 16(<br>I   | 1            | 5250 | 50                    | 484T | 14.27 | 14.49        | 17.39      | 13.65        | 13.69        | 16.68 |
|            | 2C           | 5570 | 114                   | 484T | 14.75 | 15.09        | 17.93      | 15.14        | 15.56        | 18.37 |

Table 7-36. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (484 Tones)

| N   |      | Free          |         |       |       | Aver         | age Conduc | ted Power (c | lBm)         |       |
|-----|------|---------------|---------|-------|-------|--------------|------------|--------------|--------------|-------|
| ٩Hz | Band | Freq<br>[MHz] | Channel | Tones |       | RU Index: 65 |            |              | RU Index: 66 |       |
| 2 > |      | נאורזצן       |         |       | ANT1  | ANT2         | MIMO       | ANT1         | ANT2         | MIMO  |
| 99  | 1    | 5250          | 50      | 484T  | 14.20 | 13.93        | 17.08      | 14.13        | 13.86        | 17.01 |
| ~   | 2C   | 5570          | 114     | 484T  | 15.27 | 15.46        | 18.38      | 15.21        | 15.41        | 18.32 |

Table 7-37. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (484 Tones)

| FCC ID: A3LSMS908JPN | PCTEST°<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|------------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                              | EUT Type:                             | Daga 112 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                   | Portable Handset                      | Page 113 of 242                   |
| © 2022 PCTEST        | •                                        |                                       | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (996 Tones)

|                |            |         |          |       |       | RU Index |       | Conducted   | Conducted   |
|----------------|------------|---------|----------|-------|-------|----------|-------|-------------|-------------|
| Hz (c          | Freq [MHz] | Channel | Detector | Tones |       | 67       |       | Power Limit | Power       |
| ₹£             |            |         |          |       | ANT1  | ANT2     | MIMO  | [dBm]       | Margin [dB] |
| (80MI<br>width | 5210       | 42      | AVG      | 996T  | 14.76 | 14.93    | 17.86 | 23.98       | -6.12       |
|                | 5290       | 58      | AVG      | 996T  | 15.15 | 14.81    | 17.99 | 23.47       | -5.48       |
| Hz<br>and      | 5530       | 106     | AVG      | 996T  | 15.27 | 15.67    | 18.48 | 22.80       | -4.32       |
| 5Gł<br>Ba      | 5610       | 122     | AVG      | 996T  | 15.41 | 15.39    | 18.41 | 22.80       | -4.39       |
| 5              | 5690       | 138     | AVG      | 996T  | 14.68 | 14.86    | 17.78 | 22.80       | -5.02       |
|                | 5775       | 155     | AVG      | 996T  | 15.27 | 15.50    | 18.40 | 30.00       | -11.60      |

Table 7-38. MIMO 80MHz BW (UNII) Maximum Conducted Output Power (996 Tones)

| N          | Band [MHz] |      |         | Average Conducted Power (dBm) |              |       |       |  |  |
|------------|------------|------|---------|-------------------------------|--------------|-------|-------|--|--|
| 0MH;<br>BW |            | •    | Channel | Tones                         | RU Index: 67 |       |       |  |  |
|            |            |      |         |                               | ANT1         | ANT2  | MIMO  |  |  |
| 16(<br>H   | 1          | 5250 | 50      | 996T                          | 12.39        | 12.43 | 15.42 |  |  |
|            | 2C         | 5570 | 114     | 996T                          | 14.74        | 15.04 | 17.90 |  |  |

Table 7-39. MIMO 160MHz BW L (UNII) Maximum Conducted Output Power (996 Tones)

| N          | Band [MHz] |      |         | Average Conducted Power (dBm) |              |       |       |  |  |
|------------|------------|------|---------|-------------------------------|--------------|-------|-------|--|--|
| 0MHz<br>BW |            | •    | Channel | Tones                         | RU Index: 67 |       |       |  |  |
|            |            |      |         |                               | ANT1         | ANT2  | MIMO  |  |  |
| 160<br>B   | 1          | 5250 | 50      | 996T                          | 12.31        | 12.06 | 15.20 |  |  |
|            | 2C         | 5570 | 114     | 996T                          | 15.17        | 15.33 | 18.26 |  |  |

Table 7-40. MIMO 160MHz BW U (UNII) Maximum Conducted Output Power (996 Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Daga 114 of 242                   |  |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 114 of 242                   |  |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |  |



|              |                |            |                |              |          |                    | Ant1           | Ant2           | MIMO           | Directional    | Max            | Max e.i.r.p    | e.i.r.p          |
|--------------|----------------|------------|----------------|--------------|----------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|
| Frequency    | Bandwidth      | Channel    | Mode           | Tone         | RU index | Detector           | Power          | Power          | Power          | Gain           | e.i.r.p        | Limit          | Margin           |
|              |                |            |                |              |          |                    | [dBm]          | [dBm]          | [dBm]          | [dBi]          | [dBm]          | [dBm]          | [dB]             |
| 5845<br>5845 | 20MHz<br>20MHz | 169<br>169 | ax RU<br>ax RU | 26T<br>26T   | 0 4      | Average<br>Average | 9.08<br>8.68   | 9.28<br>9.04   | 12.19<br>11.87 | -3.27          | 8.92<br>8.60   | 30.00<br>30.00 | -21.08<br>-21.40 |
| 5845         | 20MHz          | 169        | ax RU          | 20T          | 8        | Average            | 9.13           | 9.04           | 12.21          | -3.27          | 8.94           | 30.00          | -21.40           |
| 5845         | 20MHz          | 169        | ax RU          | 52T          | 37       | Average            | 12.65          | 13.24          | 15.97          | -3.27          | 12.70          | 30.00          | -17.30           |
| 5845         | 20MHz          | 169        | ax RU          | 52T          | 39       | Average            | 11.93          | 12.49          | 15.23          | -3.27          | 11.96          | 30.00          | -18.04           |
| 5845         | 20MHz          | 169        | ax RU          | 52T          | 40       | Average            | 12.68          | 13.22          | 15.97          | -3.27          | 12.70          | 30.00          | -17.30           |
| 5845         | 20MHz          | 169        | ax RU          | 106T         | 53       | Average            | 14.54          | 15.19          | 17.89          | -3.27          | 14.62          | 30.00          | -15.38           |
| 5845         | 20MHz          | 169        | ax RU          | 106T         | 54       | Average            | 14.68          | 15.13          | 17.92          | -3.27          | 14.65          | 30.00          | -15.35           |
| 5845         | 20MHz          | 169        | ax RU          | 242T         | 61       | Average            | 14.58          | 15.20          | 17.91          | -3.27          | 14.64          | 30.00          | -15.36           |
| 5865         | 20MHz          | 173        | ax RU          | 26T          | 0        | Average            | 9.35           | 9.38           | 12.38          | -3.27          | 9.11           | 30.00          | -20.89           |
| 5865         | 20MHz          | 173        | ax RU          | 26T          | 4 8      | Average            | 8.72           | 9.04           | 11.89<br>12.18 | -3.27          | 8.62           | 30.00          | -21.38           |
| 5865<br>5865 | 20MHz<br>20MHz | 173<br>173 | ax RU<br>ax RU | 26T<br>52T   | 37       | Average<br>Average | 9.21<br>12.64  | 9.13<br>13.28  | 15.98          | -3.27<br>-3.27 | 8.91<br>12.71  | 30.00<br>30.00 | -21.09<br>-17.29 |
| 5865         | 20MHz          | 173        | ax RU          | 52T          | 39       | Average            | 11.86          | 12.34          | 15.12          | -3.27          | 11.85          | 30.00          | -17.25           |
| 5865         | 20MHz          | 173        | ax RU          | 52T          | 40       | Average            | 12.43          | 13.02          | 15.75          | -3.27          | 12.48          | 30.00          | -17.52           |
| 5865         | 20MHz          | 173        | ax RU          | 106T         | 53       | Average            | 14.68          | 15.15          | 17.93          | -3.27          | 14.66          | 30.00          | -15.34           |
| 5865         | 20MHz          | 173        | ax RU          | 106T         | 54       | Average            | 14.66          | 15.25          | 17.98          | -3.27          | 14.71          | 30.00          | -15.29           |
| 5865         | 20MHz          | 173        | ax RU          | 242T         | 61       | Average            | 14.47          | 15.28          | 17.90          | -3.27          | 14.63          | 30.00          | -15.37           |
| 5885         | 20MHz          | 177        | ax RU          | 26T          | 0        | Average            | 8.77           | 9.03           | 11.91          | -3.27          | 8.64           | 30.00          | -21.36           |
| 5885         | 20MHz          | 177        | ax RU          | 26T          | 4        | Average            | 8.98           | 9.44           | 12.23          | -3.27          | 8.96           | 30.00          | -21.04           |
| 5885         | 20MHz          | 177        | ax RU          | 26T          | 8        | Average            | 9.27           | 9.63           | 12.47          | -3.27          | 9.20           | 30.00          | -20.80           |
| 5885         | 20MHz          | 177        | ax RU          | 52T          | 37       | Average            | 12.63          | 13.27          | 15.97          | -3.27          | 12.70          | 30.00          | -17.30           |
| 5885         | 20MHz          | 177        | ax RU          | 52T          | 39       | Average            | 11.83          | 12.51          | 15.19          | -3.27          | 11.92          | 30.00          | -18.08           |
| 5885         | 20MHz          | 177        | ax RU          | 52T          | 40       | Average            | 12.69          | 13.25          | 15.99          | -3.27          | 12.72          | 30.00          | -17.28           |
| 5885         | 20MHz          | 177        | ax RU          | 106T         | 53<br>54 | Average            | 14.61          | 15.31          | 17.98          | -3.27          | 14.71          | 30.00          | -15.29           |
| 5885<br>5885 | 20MHz<br>20MHz | 177<br>177 | ax RU<br>ax RU | 106T<br>242T | 61       | Average<br>Average | 14.63<br>14.54 | 15.25<br>15.20 | 17.96<br>17.89 | -3.27<br>-3.27 | 14.69<br>14.62 | 30.00<br>30.00 | -15.31<br>-15.38 |
| 5835         | 40MHz          | 167        | ax RU          | 2421<br>26T  | 0        | Average            | 9.11           | 9.16           | 17.05          | -3.27          | 8.87           | 30.00          | -21.13           |
| 5835         | 40MHz          | 167        | ax RU          | 26T          | 8        | Average            | 8.92           | 8.78           | 11.86          | -3.27          | 8.59           | 30.00          | -21.41           |
| 5835         | 40MHz          | 167        | ax RU          | 26T          | 17       | Average            | 9.24           | 9.27           | 12.27          | -3.27          | 9.00           | 30.00          | -21.00           |
| 5835         | 40MHz          | 167        | ax RU          | 52T          | 37       | Average            | 12.47          | 12.65          | 15.57          | -3.27          | 12.30          | 30.00          | -17.70           |
| 5835         | 40MHz          | 167        | ax RU          | 52T          | 40       | Average            | 12.25          | 12.41          | 15.34          | -3.27          | 12.07          | 30.00          | -17.93           |
| 5835         | 40MHz          | 167        | ax RU          | 52T          | 44       | Average            | 12.46          | 12.92          | 15.71          | -3.27          | 12.44          | 30.00          | -17.56           |
| 5835         | 40MHz          | 167        | ax RU          | 106T         | 53       | Average            | 14.57          | 14.85          | 17.72          | -3.27          | 14.45          | 30.00          | -15.55           |
| 5835         | 40MHz          | 167        | ax RU          | 106T         | 54       | Average            | 14.72          | 15.11          | 17.93          | -3.27          | 14.66          | 30.00          | -15.34           |
| 5835         | 40MHz          | 167        | ax RU          | 106T         | 56       | Average            | 14.45          | 15.00          | 17.74          | -3.27          | 14.47          | 30.00          | -15.53           |
| 5835         | 40MHz          | 167        | ax RU          | 242T         | 61       | Average            | 14.53          | 15.00          | 17.78          | -3.27          | 14.51          | 30.00          | -15.49           |
| 5835<br>5835 | 40MHz<br>40MHz | 167<br>167 | ax RU<br>ax RU | 242T<br>484T | 62<br>65 | Average            | 14.61<br>15.05 | 15.22<br>15.43 | 17.94<br>18.25 | -3.27<br>-3.27 | 14.67<br>14.98 | 30.00<br>30.00 | -15.33<br>-15.02 |
| 5875         | 40MHz          | 107        | ax RU<br>ax RU | 26T          | 0        | Average<br>Average | 9.07           | 9.32           | 18.25          | -3.27          | 8.94           | 30.00          | -13.02           |
| 5875         | 40MHz          | 175        | ax RU          | 26T          | 8        | Average            | 9.28           | 9.30           | 12.21          | -3.27          | 9.03           | 30.00          | -20.97           |
| 5875         | 40MHz          | 175        | ax RU          | 26T          | 17       | Average            | 9.27           | 9.35           | 12.32          | -3.27          | 9.05           | 30.00          | -20.95           |
| 5875         | 40MHz          | 175        | ax RU          | 52T          | 37       | Average            | 12.11          | 12.81          | 15.48          | -3.27          | 12.21          | 30.00          | -17.79           |
| 5875         | 40MHz          | 175        | ax RU          | 52T          | 40       | Average            | 12.14          | 12.55          | 15.36          | -3.27          | 12.09          | 30.00          | -17.91           |
| 5875         | 40MHz          | 175        | ax RU          | 52T          | 44       | Average            | 12.46          | 12.97          | 15.73          | -3.27          | 12.46          | 30.00          | -17.54           |
| 5875         | 40MHz          | 175        | ax RU          | 106T         | 53       | Average            | 14.28          | 14.94          | 17.63          | -3.27          | 14.36          | 30.00          | -15.64           |
| 5875         | 40MHz          | 175        | ax RU          | 106T         | 54       | Average            | 14.12          | 14.53          | 17.34          | -3.27          | 14.07          | 30.00          | -15.93           |
| 5875         | 40MHz          | 175        | ax RU          | 106T         | 56       | Average            | 14.50          | 15.11          | 17.83          | -3.27          | 14.56          | 30.00          | -15.44           |
| 5875<br>5875 | 40MHz          | 175        | ax RU          | 242T<br>242T | 61<br>62 | Average            | 14.40          | 15.05<br>15.37 | 17.75          | -3.27<br>-3.27 | 14.48          | 30.00<br>30.00 | -15.52           |
| 5875         | 40MHz<br>40MHz | 175<br>175 | ax RU<br>ax RU | 2421<br>484T | 62       | Average<br>Average | 14.73<br>14.77 | 15.37          | 18.07<br>18.12 | -3.27          | 14.80<br>14.85 | 30.00          | -15.20<br>-15.15 |
| 5855         | 80MHz          | 175        | ax RU<br>ax RU | 26T          | 0        | Average            | 8.65           | 8.96           | 18.12          | -3.27          | 8.55           | 30.00          | -13.15           |
| 5855         | 80MHz          | 171        | ax RU          | 26T          | 18       | Average            | 9.20           | 9.71           | 12.47          | -3.27          | 9.20           | 30.00          | -20.80           |
| 5855         | 80MHz          | 171        | ax RU          | 26T          | 36       | Average            | 8.87           | 9.21           | 12.05          | -3.27          | 8.78           | 30.00          | -21.22           |
| 5855         | 80MHz          | 171        | ax RU          | 52T          | 37       | Average            | 12.61          | 13.05          | 15.85          | -3.27          | 12.58          | 30.00          | -17.42           |
| 5855         | 80MHz          | 171        | ax RU          | 52T          | 44       | Average            | 11.93          | 12.49          | 15.23          | -3.27          | 11.96          | 30.00          | -18.04           |
| 5855         | 80MHz          | 171        | ax RU          | 52T          | 52       | Average            | 11.83          | 12.47          | 15.17          | -3.27          | 11.90          | 30.00          | -18.10           |
| 5855         | 80MHz          | 171        | ax RU          | 106T         | 53       | Average            | 14.74          | 15.10          | 17.93          | -3.27          | 14.66          | 30.00          | -15.34           |
| 5855         | 80MHz          | 171        | ax RU          | 106T         | 56       | Average            | 13.95          | 14.36          | 17.17          | -3.27          | 13.90          | 30.00          | -16.10           |
| 5855         | 80MHz          | 171        | ax RU          | 106T         | 60       | Average            | 13.80          | 14.42          | 17.13          | -3.27          | 13.86          | 30.00          | -16.14           |
| 5855         | 80MHz          | 171        | ax RU          | 242T         | 61       | Average            | 14.88          | 15.15          | 18.03          | -3.27          | 14.76          | 30.00          | -15.24           |
| 5855         | 80MHz          | 171        | ax RU          | 242T         | 62       | Average            | 14.97          | 15.42          | 18.21          | -3.27          | 14.94          | 30.00          | -15.06           |
| 5855         | 80MHz          | 171        | ax RU          | 242T         | 64       | Average<br>Average | 15.08          | 15.62          | 18.37          | -3.27          | 15.10          | 30.00          | -14.90           |
| 5855         | 80MHz          | 171        | ax RU          | 484T         | 65       | Ű                  | 14.46          | 14.87          | 17.68          | -3.27          | 14.41          | 30.00          | -15.59           |
| 5855<br>5855 | 80MHz<br>80MHz | 171<br>171 | ax RU<br>ax RU | 484T<br>996T | 66<br>67 | Average            | 14.62<br>15.18 | 15.16<br>15.64 | 17.91<br>18.43 | -3.27<br>-3.27 | 14.64<br>15.16 | 30.00<br>30.00 | -15.36<br>-14.84 |
| 2022         |                | 1 1/1      | ax KU          | 5301         | 67       | Average            | 13.10          | 13.04          | 10.45          | -3.27          | 13.10          | 30.00          | -14.04           |

### Table 7-41. UNII-4 Maximum 20/40/80MHz Conducted Output Power (all Tones)

| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG         | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |                 | Dage 115 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 115 of 242 |                                   |
| © 2022 PCTEST        | •                                       |                                       |                 | V 9.0 02/01/2019                  |



|           |           |          |          |       |          |          | Ant1  | Ant2  | MIMO  | Directional | Max     | Max e.i.r.p | e.i.r.p |
|-----------|-----------|----------|----------|-------|----------|----------|-------|-------|-------|-------------|---------|-------------|---------|
| _         |           |          |          | _     |          |          | Power | Power | Power | Gain        | e.i.r.p | Limit       | Margin  |
| Frequency | Bandwidth | Channel  | Mode     | Tone  | RU index | Detector | [dBm] | [dBm] | [dBm] | [dBi]       | [dBm]   | [dBm]       | [dB]    |
| 5775      | L160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 9.77  | 9.07  | 12.44 | -3.27       | 9.17    | 36.00       | -26.83  |
| 5775      | L160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 10.07 | 9.87  | 12.98 | -3.27       | 9.71    | 36.00       | -26.29  |
| 5775      | L160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 9.47  | 9.23  | 12.36 | -3.27       | 9.09    | 36.00       | -26.91  |
| 5775      | L160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 12.93 | 12.68 | 15.82 | -3.27       | 12.55   | 36.00       | -23.45  |
| 5775      | L160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 13.01 | 12.92 | 15.98 | -3.27       | 12.71   | 36.00       | -23.29  |
| 5775      | L160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 12.03 | 12.25 | 15.15 | -3.27       | 11.88   | 36.00       | -24.12  |
| 5775      | L160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 14.47 | 14.26 | 17.38 | -3.27       | 14.11   | 36.00       | -21.89  |
| 5775      | L160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 14.86 | 14.74 | 17.81 | -3.27       | 14.54   | 36.00       | -21.46  |
| 5775      | L160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 14.86 | 14.92 | 17.90 | -3.27       | 14.63   | 36.00       | -21.37  |
| 5775      | L160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 14.94 | 14.68 | 17.82 | -3.27       | 14.55   | 36.00       | -21.45  |
| 5775      | L160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 15.35 | 15.05 | 18.21 | -3.27       | 14.94   | 36.00       | -21.06  |
| 5775      | L160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 15.08 | 15.15 | 18.13 | -3.27       | 14.86   | 36.00       | -21.14  |
| 5775      | L160MHz   | ax RU    | 484T     | ax RU | 484T     | Average  | 14.76 | 14.66 | 17.72 | -3.27       | 14.45   | 36.00       | -21.55  |
| 5775      | L160MHz   | ax RU    | 484T     | ax RU | 484T     | Average  | 15.06 | 15.09 | 18.09 | -3.27       | 14.82   | 36.00       | -21.18  |
| 5775      | L160MHz   | ax RU    | 996T     | ax RU | 996T     | Average  | 15.44 | 15.31 | 18.39 | -3.27       | 15.12   | 36.00       | -20.88  |
| 5855      | H160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 9.38  | 9.50  | 12.45 | -3.27       | 9.18    | 36.00       | -26.82  |
| 5855      | H160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 9.81  | 10.01 | 12.92 | -3.27       | 9.65    | 36.00       | -26.35  |
| 5855      | H160MHz   | ax RU    | 26T      | ax RU | 26T      | Average  | 9.33  | 9.98  | 12.68 | -3.27       | 9.41    | 36.00       | -26.59  |
| 5855      | H160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 12.19 | 12.40 | 15.31 | -3.27       | 12.04   | 36.00       | -23.96  |
| 5855      | H160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 12.05 | 12.30 | 15.19 | -3.27       | 11.92   | 36.00       | -24.08  |
| 5855      | H160MHz   | ax RU    | 52T      | ax RU | 52T      | Average  | 12.08 | 12.46 | 15.28 | -3.27       | 12.01   | 36.00       | -23.99  |
| 5855      | H160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 14.03 | 14.27 | 17.16 | -3.27       | 13.89   | 36.00       | -22.11  |
| 5855      | H160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 14.02 | 14.25 | 17.15 | -3.27       | 13.88   | 36.00       | -22.12  |
| 5855      | H160MHz   | ax RU    | 106T     | ax RU | 106T     | Average  | 13.89 | 14.38 | 17.15 | -3.27       | 13.88   | 36.00       | -22.12  |
| 5855      | H160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 15.06 | 15.25 | 18.16 | -3.27       | 14.89   | 36.00       | -21.11  |
| 5855      | H160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 15.40 | 15.55 | 18.49 | -3.27       | 15.22   | 36.00       | -20.78  |
| 5855      | H160MHz   | ax RU    | 242T     | ax RU | 242T     | Average  | 15.23 | 15.55 | 18.40 | -3.27       | 15.13   | 36.00       | -20.87  |
| 5855      | H160MHz   | ax RU    | 484T     | ax RU | 484T     | Average  | 15.16 | 15.36 | 18.27 | -3.27       | 15.00   | 36.00       | -21.00  |
| 5855      | H160MHz   | ax RU    | 484T     | ax RU | 484T     | Average  | 15.26 | 15.40 | 18.34 | -3.27       | 15.07   | 36.00       | -20.93  |
| 5855      | H160MHz   | ax RU    | 996T     | ax RU | 996T     | Average  | 15.21 | 15.38 | 18.31 | -3.27       | 15.04   | 36.00       | -20.96  |
|           | -         | able 7 4 | <u> </u> |       | 4.04     |          |       |       |       | ar (all T   |         |             |         |

Table 7-42. UNII-4 Maximum 160MHz Conducted Output Power (all Tones)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Page 116 of 242                   |  |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |                                   |  |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |  |



#### Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna-1 and Antenna-2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where  $G_N$  is the gain of the nth antenna and  $N_{ANT}$ , the total number of antennas used.

Directional gain =  $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$ 

#### Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 14.35 dBm for Antenna-1 and 15.09 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(14.35 dBm + 15.09 dBm) = (27.20 mW + 32.31 mW) = 59.51 mW = 17.75 dBm

#### Sample e.i.r.p. Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO conducted power was calculated to be 17.75 dBm with directional gain of -3.27dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

17.75 dBm + (-3.27) dBi = 14.48 dBm

| FCC ID: A3LSMS908JPN | Proud to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                 | EUT Type:                             |         | Dage 117 of 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021      | Portable Handset                      |         | Page 117 of 242                   |
| © 2022 PCTEST        |                             | ·                                     |         | V 9.0 02/01/2019                  |



# 7.5 Maximum Power Spectral Density – 802.11ax OFDMA §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

#### **Test Overview and Limit**

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

## In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

In the 5.850 – 5.855, the maximum power spectral density must not exceed 14dBm/MHz e.i.r.p.

#### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

#### Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points  $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

#### Test Notes

The power spectral density for each channel was measured with the RU index showing the highest conducted power.

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 119 of 242                   |  |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 118 of 242                   |  |
| © 2022 PCTEST        |                               | •                                     | V 9.0 02/01/2019                  |  |



## Summed MIMO Power Spectral Density Measurements (26 Tones)

|              | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB] |
|--------------|--------------------|----------------|---------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|----------------|
|              | 5180               | 36             | ax (20MHz)    | 26T   | MCS0                | 5.07                                | 6.18                                | 8.67                                  | 11.00                             | -2.33          |
| _            | 5200               | 40             | ax (20MHz)    | 26T   | MCS0                | 5.49                                | 6.41                                | 8.99                                  | 11.00                             | -2.01          |
| p p          | 5240               | 48             | ax (20MHz)    | 26T   | MCS0                | 5.52                                | 6.30                                | 8.94                                  | 11.00                             | -2.06          |
| Band 1       | 5190               | 38             | ax (40MHz)    | 26T   | MCS0                | 6.36                                | 7.63                                | 10.05                                 | 11.00                             | -0.95          |
|              | 5230               | 46             | ax (40MHz)    | 26T   | MCS0                | 6.66                                | 7.81                                | 10.28                                 | 11.00                             | -0.72          |
|              | 5210               | 42             | ax (80MHz)    | 26T   | MCS0                | 5.14                                | 6.18                                | 8.70                                  | 11.00                             | -2.30          |
| Band<br>1/2A | 5250               | 50             | ax (160MHz L) | 26T   | MCS0                | 4.22                                | 5.16                                | 7.73                                  | 11.00                             | -3.27          |
| Ba<br>1/1    | 5250               | 50             | ax (160MHz U) | 26T   | MCS0                | 6.43                                | 7.21                                | 9.85                                  | 11.00                             | -1.15          |
|              | 5260               | 52             | ax (20MHz)    | 26T   | MCS0                | 5.73                                | 6.15                                | 8.95                                  | 11.00                             | -2.05          |
| ∢            | 5280               | 56             | ax (20MHz)    | 26T   | MCS0                | 5.74                                | 6.43                                | 9.11                                  | 11.00                             | -1.89          |
| Band 2A      | 5320               | 64             | ax (20MHz)    | 26T   | MCS0                | 5.15                                | 6.02                                | 8.62                                  | 11.00                             | -2.38          |
| gan          | 5270               | 54             | ax (40MHz)    | 26T   | MCS0                | 7.00                                | 7.84                                | 10.45                                 | 11.00                             | -0.55          |
|              | 5310               | 62             | ax (40MHz)    | 26T   | MCS0                | 6.74                                | 7.54                                | 10.17                                 | 11.00                             | -0.83          |
|              | 5290               | 58             | ax (80MHz)    | 26T   | MCS0                | 6.02                                | 5.74                                | 8.89                                  | 11.00                             | -2.11          |
|              | 5500               | 100            | ax (20MHz)    | 26T   | MCS0                | 4.66                                | 4.65                                | 7.67                                  | 11.00                             | -3.33          |
|              | 5600               | 120            | ax (20MHz)    | 26T   | MCS0                | 5.31                                | 5.24                                | 8.29                                  | 11.00                             | -2.71          |
|              | 5720               | 144            | ax (20MHz)    | 26T   | MCS0                | 6.25                                | 5.82                                | 9.05                                  | 11.00                             | -1.95          |
|              | 5510               | 102            | ax (40MHz)    | 26T   | MCS0                | 5.79                                | 5.74                                | 8.77                                  | 11.00                             | -2.23          |
| SC           | 5590               | 118            | ax (40MHz)    | 26T   | MCS0                | 6.45                                | 5.64                                | 9.07                                  | 11.00                             | -1.93          |
| Band 2C      | 5710               | 142            | ax (40MHz)    | 26T   | MCS0                | 6.31                                | 6.10                                | 9.22                                  | 11.00                             | -1.78          |
| Ba           | 5530               | 106            | ax (80MHz)    | 26T   | MCS0                | 3.69                                | 4.65                                | 7.21                                  | 11.00                             | -3.79          |
|              | 5610               | 122            | ax (80MHz)    | 26T   | MCS0                | 5.91                                | 5.14                                | 8.55                                  | 11.00                             | -2.45          |
|              | 5690               | 138            | ax (80MHz)    | 26T   | MCS0                | 5.13                                | 5.61                                | 8.39                                  | 11.00                             | -2.61          |
|              | 5570               | 114            | ax (160MHz L) | 26T   | MCS0                | 5.59                                | 5.40                                | 8.51                                  | 11.00                             | -2.49          |
|              | 5570               | 114            | ax (160MHz U) | 26T   | MCS0                | 6.57                                | 6.13                                | 9.37                                  | 11.00                             | -1.63          |

 Table 7-43. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max<br>Permissible<br>Power<br>Density | Margin<br>[dB] |
|------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------|
|      | 5745               | 149            | ax (20MHz)  | 26T   | MCS0                | 3.71                                | 3.16                                | 6.45                                  | 30.00                                  | -23.55         |
| e    | 5785               | 157            | ax (20MHz)  | 26T   | MCS0                | 3.24                                | 3.68                                | 6.48                                  | 30.00                                  | -23.52         |
|      | 5825               | 165            | ax (20MHz)  | 26T   | MCS0                | 3.41                                | 3.72                                | 6.58                                  | 30.00                                  | -23.42         |
| Band | 5755               | 151            | ax (40MHz)  | 26T   | MCS0                | 4.17                                | 3.87                                | 7.03                                  | 30.00                                  | -22.97         |
|      | 5795               | 159            | ax (40MHz)  | 26T   | MCS0                | 3.96                                | 4.16                                | 7.07                                  | 30.00                                  | -22.93         |
|      | 5775               | 155            | ax (80MHz)  | 26T   | MCS0                | 3.10                                | 3.77                                | 6.46                                  | 30.00                                  | -23.54         |

Table 7-44. Band 3 MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm/MHz] | Antenna-2<br>Power Density<br>[dBm/MHz] | MIMO Summed<br>Power Density<br>[dBm/MHz] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] | Directional<br>Antenna Gain<br>[dBi] | EIRP Power<br>Density<br>[dBm/MHz] | Max EIRP<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|----------|--------------------|----------------|---------------|-------|---------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------|----------------|--------------------------------------|------------------------------------|----------------------------------------|----------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)    | 26T   | MCS0                | 6.38                                    | 6.82                                    | 9.62                                      | 30.00                                            | -20.38         | -3.27                                | 6.35                               | 14.00                                  | -7.65          |
| Band 4   | 5865               | 173            | ax (20MHz)    | 26T   | MCS0                | 6.45                                    | 7.10                                    | 9.79                                      |                                                  |                | -3.27                                | 6.52                               | 14.00                                  | -7.48          |
| Dallu 4  | 5885               | 177            | ax (20MHz)    | 26T   | MCS0                | 6.73                                    | 7.26                                    | 10.01                                     |                                                  |                | -3.27                                | 6.74                               | 14.00                                  | -7.26          |
| Band 3/4 | 5835               | 167            | ax (40MHz)    | 26T   | MCS0                | 6.44                                    | 6.77                                    | 9.62                                      | 30.00                                            | -20.38         | -3.27                                | 6.35                               | 14.00                                  | -7.65          |
| Band 4   | 5875               | 175            | ax (40MHz)    | 26T   | MCS0                | 7.04                                    | 7.57                                    | 10.32                                     |                                                  |                | -3.27                                | 7.05                               | 14.00                                  | -6.95          |
|          | 5855               | 171            | ax (80MHz)    | 26T   | MCS0                | 5.88                                    | 6.19                                    | 9.04                                      | 30.00                                            | -20.96         | -3.27                                | 5.77                               | 14.00                                  | -8.23          |
| Band 3/4 | 5815               | 163            | ax (160MHz L) | 26T   | MCS0                | 6.67                                    | 6.41                                    | 9.55                                      | 30.00                                            | -20.45         | -3.27                                | 6.28                               | 14.00                                  | -7.72          |
|          | 5815               | 163            | ax (160MHz U) | 26T   | MCS0                | 5.49                                    | 6.40                                    | 8.98                                      | 30.00                                            | -21.02         | -3.27                                | 5.71                               | 14.00                                  | -8.29          |

Table 7-45. Band 4 MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

| FCC ID: A3LSMS908JPN         | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N: Test Dates: |                               | EUT Type:                             | Dage 110 of 242                   |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 119 of 242                   |
| © 2022 PCTEST                |                               |                                       | V 9.0 02/01/2019                  |



|              | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB]                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|--------------------|----------------|---------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 5180               | 36             | ax (20MHz)    | 242T  | MCS0                | 2.44                                | 3.98                                | 6.29                                  | 11.00                             | -4.71                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5200               | 40             | ax (20MHz)    | 242T  | MCS0                | 2.76                                | 3.58                                | 6.20                                  | 11.00                             | -4.80                                                                                                                                                                                                                                                                                                                                                                              |
| Band 1       | 5240               | 48             | ax (20MHz)    | 242T  | MCS0                | 3.06                                | 4.03                                | 6.58                                  | 11.00                             | -4.42                                                                                                                                                                                                                                                                                                                                                                              |
| Bar          | 5190               | 38             | ax (40MHz)    | 484T  | MCS0                | 0.29                                | 1.27                                | 3.82                                  | 11.00                             | -7.18                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5230               | 46             | ax (40MHz)    | 484T  | MCS0                | 0.67                                | 1.33                                | 4.02                                  | 11.00                             | -6.98                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5210               | 42             | ax (80MHz)    | 996T  | MCS0                | -2.25                               | -1.78                               | 1.00                                  | 11.00                             | Margin<br>[dB]<br>-4.71<br>-4.80<br>-4.42<br>-7.18                                                                                                                                                                                                                                                                                                                                 |
| Band<br>1/2A | 5250               | 50             | ax (160MHz L) | 996T  | MCS0                | -2.70                               | -1.35                               | 1.04                                  | 11.00                             | Margin<br>[dB]           -4.71           -4.80           -4.42           -7.18           -6.98           -10.00           -9.96           -10.47           -4.86           -4.73           -6.76           -6.79           -9.89           -5.70           -5.41           -4.98           -7.87           -7.70           -7.01           -10.34           -9.53           -11.01 |
| Ba<br>1/:    | 5250               | 50             | ax (160MHz U) | 996T  | MCS0                | -2.90                               | -2.09                               | 0.53                                  | 11.00                             | -10.47                                                                                                                                                                                                                                                                                                                                                                             |
|              | 5260               | 52             | ax (20MHz)    | 242T  | MCS0                | 3.02                                | 3.15                                | 6.10                                  | 11.00                             | -4.90                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5280               | 56             | ax (20MHz)    | 242T  | MCS0                | 3.08                                | 3.17                                | 6.14                                  | 11.00                             | -4.86                                                                                                                                                                                                                                                                                                                                                                              |
| Band 2A      | 5320               | 64             | ax (20MHz)    | 242T  | MCS0                | 3.20                                | 3.32                                | 6.27                                  | 11.00                             | -4.73                                                                                                                                                                                                                                                                                                                                                                              |
| Ban          | 5270               | 54             | ax (40MHz)    | 484T  | MCS0                | 1.13                                | 1.32                                | 4.24                                  | 11.00                             | -6.76                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5310               | 62             | ax (40MHz)    | 484T  | MCS0                | 1.01                                | 1.39                                | 4.21                                  | 11.00                             | -6.79                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5290               | 58             | ax (80MHz)    | 996T  | MCS0                | -1.85                               | -1.95                               | 1.11                                  | 11.00                             | -9.89                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5500               | 100            | ax (20MHz)    | 242T  | MCS0                | 2.15                                | 2.42                                | 5.30                                  | 11.00                             | -5.70                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5600               | 120            | ax (20MHz)    | 242T  | MCS0                | 2.37                                | 2.77                                | 5.59                                  | 11.00                             | -5.41                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5720               | 144            | ax (20MHz)    | 242T  | MCS0                | 2.67                                | 3.33                                | 6.02                                  | 11.00                             | -4.98                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5510               | 102            | ax (40MHz)    | 484T  | MCS0                | 0.02                                | 0.22                                | 3.13                                  | 11.00                             | -7.87                                                                                                                                                                                                                                                                                                                                                                              |
| Ŋ            | 5590               | 118            | ax (40MHz)    | 484T  | MCS0                | 0.26                                | 0.32                                | 3.30                                  | 11.00                             | -7.70                                                                                                                                                                                                                                                                                                                                                                              |
| Band 2C      | 5710               | 142            | ax (40MHz)    | 484T  | MCS0                | 0.52                                | 1.40                                | 3.99                                  | 11.00                             | -7.01                                                                                                                                                                                                                                                                                                                                                                              |
| â            | 5530               | 106            | ax (80MHz)    | 996T  | MCS0                | -2.88                               | -3.11                               | 0.02                                  | 11.00                             | -10.98                                                                                                                                                                                                                                                                                                                                                                             |
|              | 5610               | 122            | ax (80MHz)    | 996T  | MCS0                | -2.32                               | -2.38                               | 0.66                                  | 11.00                             | -10.34                                                                                                                                                                                                                                                                                                                                                                             |
|              | 5690               | 138            | ax (80MHz)    | 996T  | MCS0                | -1.67                               | -1.42                               | 1.47                                  | 11.00                             | -9.53                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5570               | 114            | ax (160MHz L) | 996T  | MCS0                | -3.58                               | -2.52                               | -0.01                                 | 11.00                             | -11.01                                                                                                                                                                                                                                                                                                                                                                             |
|              | 5570               | 114            | ax (160MHz U) | 996T  | MCS0                | -2.24                               | -1.69                               | 1.05                                  | 11.00                             | -9.95                                                                                                                                                                                                                                                                                                                                                                              |

Table 7-46. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones)

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max<br>Permissible<br>Power<br>Density | Margin<br>[dB] |
|------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------|
|      | 5745               | 149            | ax (20MHz)  | 242T  | MCS0                | -0.53                               | -0.13                               | 2.68                                  | 30.00                                  | -27.32         |
|      | 5785               | 157            | ax (20MHz)  | 242T  | MCS0                | -0.55                               | 0.24                                | 2.87                                  | 30.00                                  | -27.13         |
| od 3 | 5825               | 165            | ax (20MHz)  | 242T  | MCS0                | 0.64                                | 0.14                                | 3.40                                  | 30.00                                  | -26.60         |
| Band | 5755               | 151            | ax (40MHz)  | 484T  | MCS0                | -2.76                               | -2.17                               | 0.56                                  | 30.00                                  | -29.44         |
|      | 5795               | 159            | ax (40MHz)  | 484T  | MCS0                | -2.91                               | -2.16                               | 0.49                                  | 30.00                                  | -29.51         |
|      | 5775               | 155            | ax (80MHz)  | 996T  | MCS0                | -4.45                               | -4.54                               | -1.48                                 | 30.00                                  | -31.48         |

Table 7-47. Band 3 MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones)

|                                                                                         | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode   | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm/MHz] | Antenna-2<br>Power Density<br>[dBm/MHz] | MIMO Summed<br>Power Density<br>[dBm/MHz] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] | Directional<br>Antenna Gain<br>[dBi] | EIRP Power<br>Density<br>[dBm/MHz] | Max EIRP<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|-----------------------------------------------------------------------------------------|--------------------|----------------|---------------|-------|---------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------|----------------|--------------------------------------|------------------------------------|----------------------------------------|----------------|
| Band 3/4                                                                                | 5845               | 169            | ax (20MHz)    | 242T  | MCS0                | 2.48                                    | 3.18                                    | 5.86                                      | 30.00                                            | -24.14         | -3.27                                | 2.59                               | 14.00                                  | -11.41         |
| Band 4                                                                                  | 5865               | 173            | ax (20MHz)    | 242T  | MCS0                | 2.49                                    | 3.22                                    | 5.88                                      |                                                  |                | -3.27                                | 2.61                               | 14.00                                  | -11.39         |
| Dallu 4                                                                                 | 5885               | 177            | ax (20MHz)    | 242T  | MCS0                | 2.92                                    | 3.32                                    | 6.13                                      |                                                  |                | -3.27                                | 2.86                               | 14.00                                  | -11.14         |
| Band 3/4                                                                                | 5835               | 167            | ax (40MHz)    | 484T  | MCS0                | 0.38                                    | 1.05                                    | 3.74                                      | 30.00                                            | -26.26         | -3.27                                | 0.46                               | 14.00                                  | -13.54         |
| Band 4                                                                                  | 5875               | 175            | ax (40MHz)    | 484T  | MCS0                | 0.47                                    | 1.25                                    | 3.88                                      |                                                  |                | -3.27                                | 0.61                               | 14.00                                  | -13.39         |
|                                                                                         | 5855               | 171            | ax (80MHz)    | 996T  | MCS0                | -2.01                                   | -1.37                                   | 1.33                                      | 30.00                                            | -28.67         | -3.27                                | -1.94                              | 14.00                                  | -15.94         |
| Band 3/4                                                                                | 5815               | 163            | ax (160MHz L) | 996T  | MCS0                | -1.89                                   | -2.10                                   | 1.02                                      | 30.00                                            | -28.98         | -3.27                                | -2.25                              | 14.00                                  | -16.25         |
|                                                                                         | 5815               | 163            | ax (160MHz U) | 996T  | MCS0                | -2.28                                   | -1.47                                   | 1.15                                      | 30.00                                            | -28.85         | -3.27                                | -2.12                              | 14.00                                  | -16.12         |
| Table 7-48. Band 4 MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones) |                    |                |               |       |                     |                                         |                                         |                                           |                                                  |                |                                      |                                    |                                        |                |
| FCC ID: A3LSMS908JPN                                                                    |                    |                |               |       |                     |                                         |                                         |                                           |                                                  |                |                                      |                                    |                                        |                |

| FCC ID: A3LSMS908JPN         | Proud to be part of element | (CERTIFICATION)  | Technical Manager |
|------------------------------|-----------------------------|------------------|-------------------|
| Test Report S/N: Test Dates: |                             | EUT Type:        | Page 120 of 242   |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021      | Portable Handset | Fage 120 01 242   |
| © 2022 PCTEST                |                             |                  | V 9.0 02/01/2019  |

V 9.0 02/01/2019



#### Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 v02r01 Section E)2), the power spectral density at Antenna-1 and Antenna-2 were first measured separately with reduced Antenna-1 and Antenna-2 powers per manufacture's tune-up document. The measured values were then summed in linear power units then converted back to dBm.

#### Sample Directional Gain Calculation:

Assuming the antenna gain is -6.53 dBi for Antenna-1 and -6.04 dBi for Antenna-2.

Directional gain = 
$$10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$$
  
=  $10 \log[(10^{-8.61/20} + 10^{-7.68/20} / 2] dBi$   
= (-3.27) dBi

#### Sample MIMO Calculation:

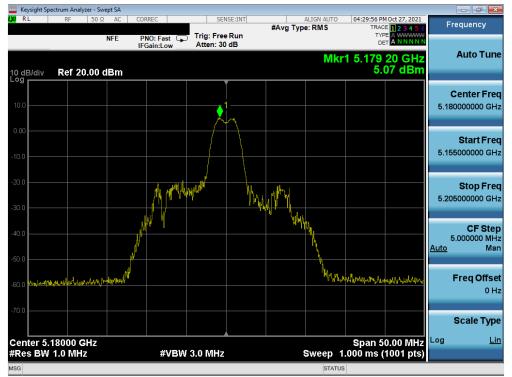
Assuming the average conducted power spectral density was measured to be 5.88 dBm for Antenna-1 and 6.27 dBm for Antenna-2.

Antenna-1 + Antenna-2 = MIMO

(5.88 dBm + 6.27 dBm) = (3.87 mW + 4.24 mW) = 8.11mW = 9.09 dBm

#### Sample e.i.r.p Power Spectral Density Calculation:

Assuming the average MIMO power density was calculated to be 9.09 dBm with directional gain of -3.27 dBi.


e.i.r.p. Power Spectral Density(dBm) = Power Spectral Density (dBm) + directional gain (dBi)

9.09 dBm + (-3.27) dBi = 5.82 dBm

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Daga 101 of 010                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 121 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |

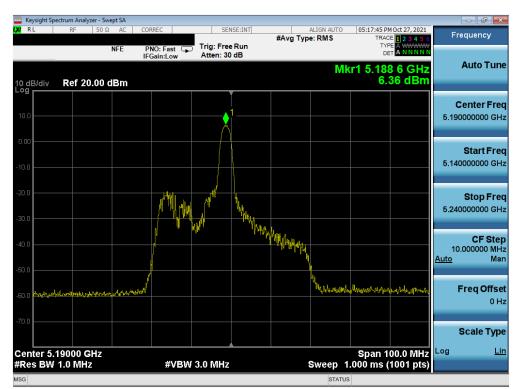


## MIMO Antenna-1 Power Spectral Density Measurements (26 Tones)



Plot 7-157. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 36)

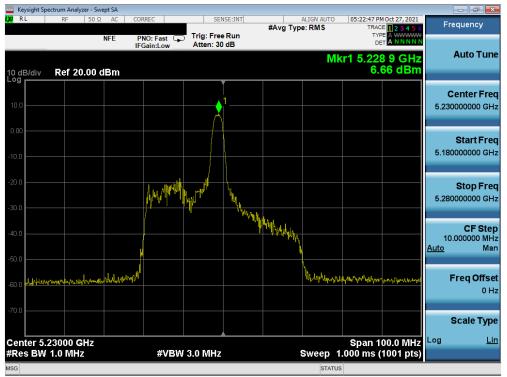



Plot 7-158. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 40)

| FCC ID: A3LSMS908JPN | PCTEST*<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG        | Approved by:<br>Technical Manager |
|----------------------|------------------------------------------|---------------------------------------|----------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                              | EUT Type:                             |                | Page 122 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                   | Portable Handset                      | rtable Handset |                                   |
| © 2022 PCTEST        |                                          | •                                     |                | V 9.0 02/01/2019                  |






Plot 7-159. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 48)



Plot 7-160. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 38)

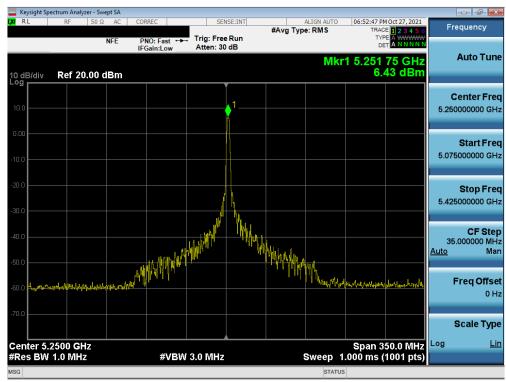
| FCC ID: A3LSMS908JPN         | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N: Test Dates: |                               | EUT Type:                             | Dage 102 of 242                   |  |
| 1M2112100159-08.A3L          | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 123 of 242                   |  |
| © 2022 PCTEST                | •                             |                                       | V 9.0 02/01/2019                  |  |





Plot 7-161. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 46)

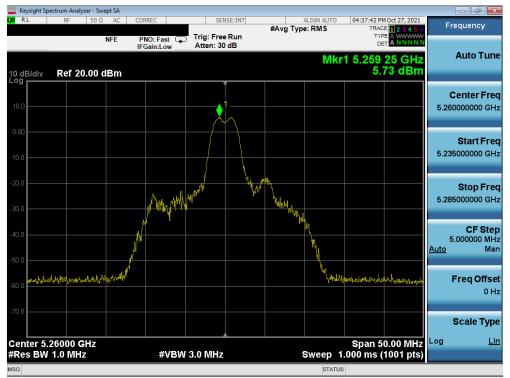



Plot 7-162. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 42)

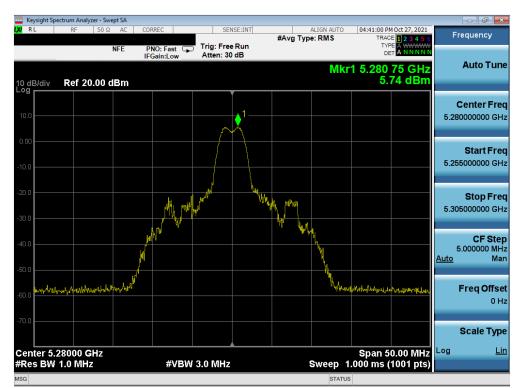
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Page 124 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 124 01 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |






Plot 7-163. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax - 26 Tones (UNII Band 1/2A) - Ch. 50)

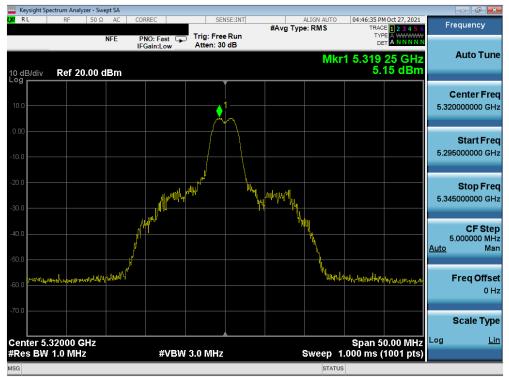



Plot 7-164. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax – 26 Tones (UNII Band 1/2A) – Ch. 50)

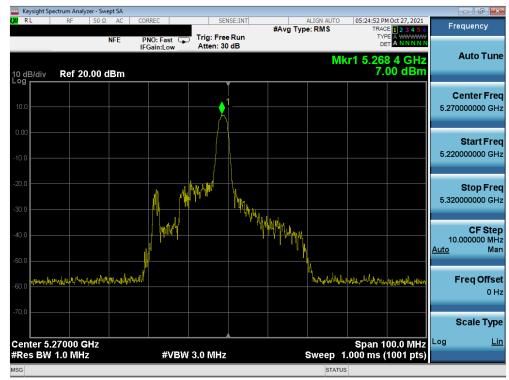
| FCC ID: A3LSMS908JPN | Proved to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                  | EUT Type:                             |         | Dana 405 at 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021       | Portable Handset                      |         | Page 125 of 242                   |
| © 2022 PCTEST        |                              |                                       |         | V 9.0 02/01/2019                  |






Plot 7-165. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 52)

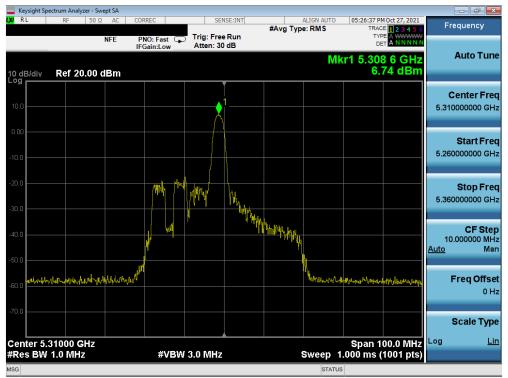



Plot 7-166. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 56)

| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Dage 126 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 126 of 242                   |
| © 2022 PCTEST        | •                                       |                                       | V 9.0 02/01/2019                  |






Plot 7-167. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 64)

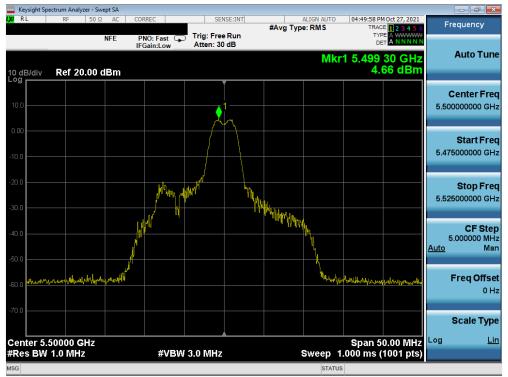


Plot 7-168. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 54)

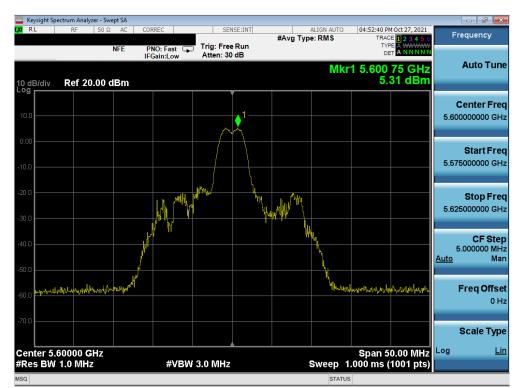
| FCC ID: A3LSMS908JPN | PCTEST°<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG | Approved by:<br>Technical Manager |
|----------------------|------------------------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:     | Test Dates:                              | EUT Type:                             |       | Dage 107 of 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                   | Portable Handset                      |       | Page 127 of 242                   |
| © 2022 PCTEST        | ·                                        |                                       |       | V 9.0 02/01/2019                  |






Plot 7-169. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 62)




Plot 7-170. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 58)

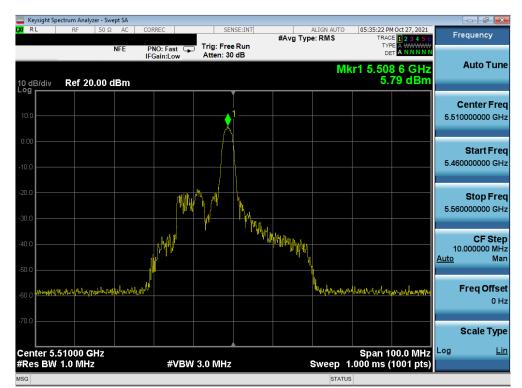
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Dega 100 of 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         | Page 128 of 242                   |
| © 2022 PCTEST        | •                                       |                                       |         | V 9.0 02/01/2019                  |





Plot 7-171. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 100)




Plot 7-172. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 120)

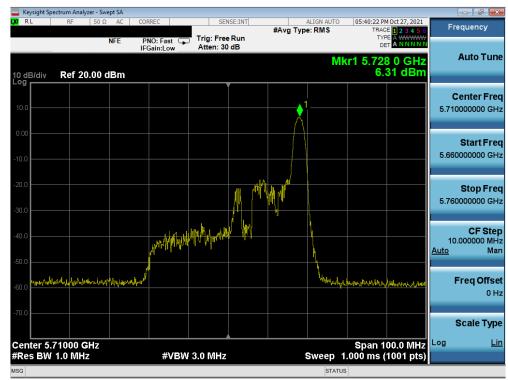
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Dogo 120 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         | Page 129 of 242                   |
| © 2022 PCTEST        | •                                       | ·                                     |         | V 9.0 02/01/2019                  |





Plot 7-173. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 144)

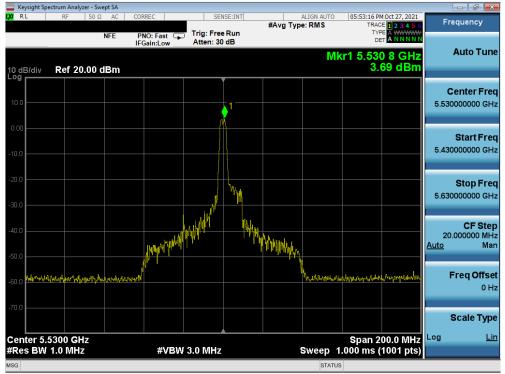



Plot 7-174. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 102)

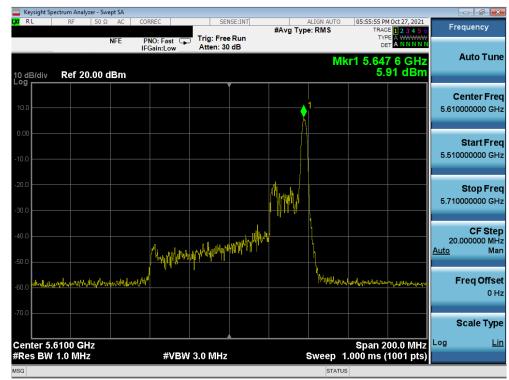
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 120 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 130 of 242                   |
| © 2022 PCTEST        | ·                             |                                       | V 9.0 02/01/2019                  |






Plot 7-175. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 118)

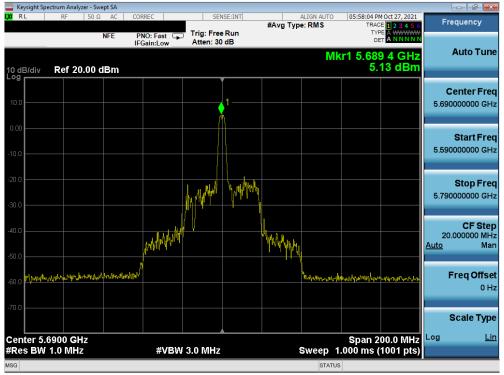



Plot 7-176. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 142)

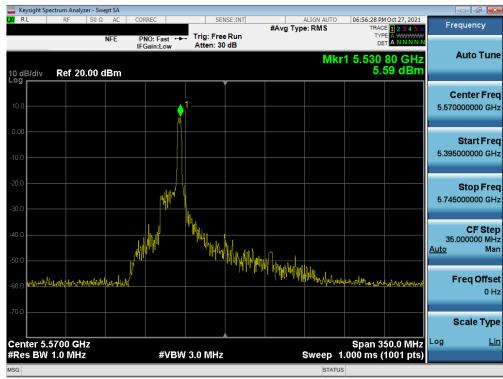
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Domo 121 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 131 of 242                   |
| © 2022 PCTEST        | -                                       |                                       | V 9.0 02/01/2019                  |






Plot 7-177. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 106)

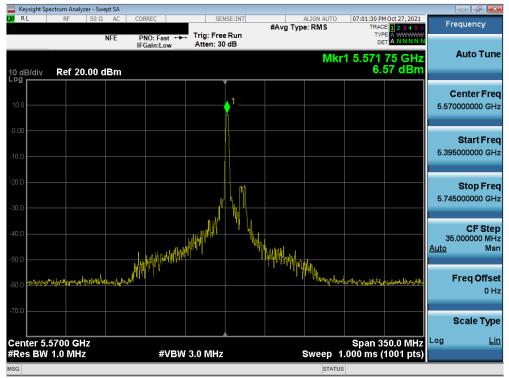



Plot 7-178. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 122)

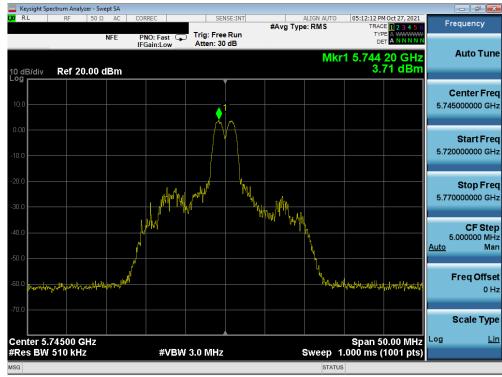
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Daga 122 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 132 of 242                   |
| © 2022 PCTEST        | •                                       |                                       | V 9.0 02/01/2019                  |






Plot 7-179. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 138)




Plot 7-180. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax - 26 Tones (UNII Band 2C) - Ch. 114)

| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Dega 122 of 242                   |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 133 of 242                   |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |





Plot 7-181. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax - 26 Tones (UNII Band 2C) - Ch. 114)



Plot 7-182. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 149)

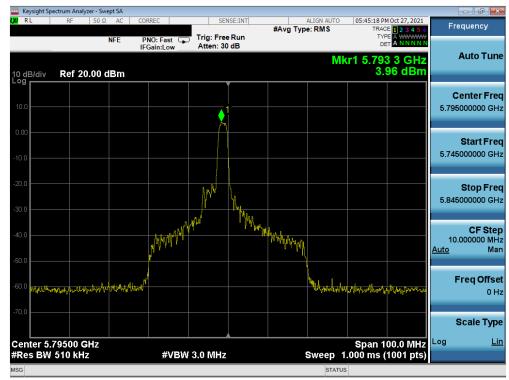
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | UNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |     | Dega 124 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |     | Page 134 of 242                   |
| © 2022 PCTEST        |                               |                                       |     | V 9.0 02/01/2019                  |





Plot 7-183. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 157)




Plot 7-184. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 165)

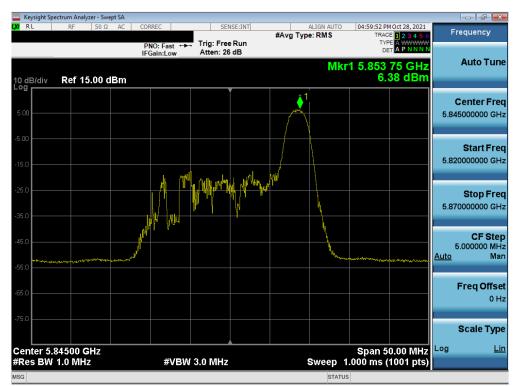
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Dage 125 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 135 of 242                   |
| © 2022 PCTEST        | •                                       |                                       | V 9.0 02/01/2019                  |





Plot 7-185. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 151)




Plot 7-186. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 159)

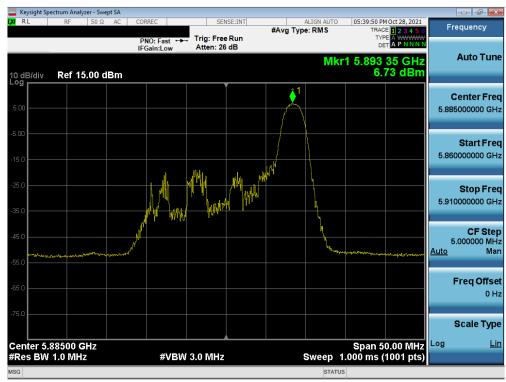
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | UNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |     | Dage 126 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |     | Page 136 of 242                   |
| © 2022 PCTEST        | -                                       |                                       |     | V 9.0 02/01/2019                  |





Plot 7-187. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 155)

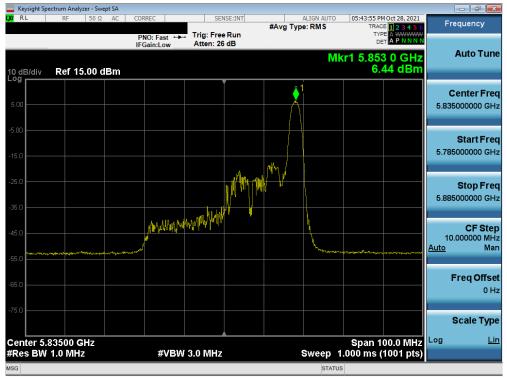



Plot 7-188. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 169)

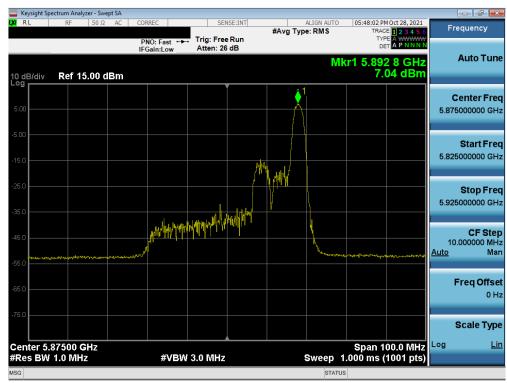
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dogo 127 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 137 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |






Plot 7-189. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 173)




Plot 7-190. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 177)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |  |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|--|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Dega 120 of 242                   |  |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 138 of 242                   |  |
| © 2022 PCTEST        |                               |                                       |         | V 9.0 02/01/2019                  |  |





Plot 7-191. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 167)



Plot 7-192. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 175)

| FCC ID: A3LSMS908JPN | Proud to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                 | EUT Type:                             |         | Dega 120 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021      | Portable Handset                      |         | Page 139 of 242                   |
| © 2022 PCTEST        | •                           |                                       |         | V 9.0 02/01/2019                  |



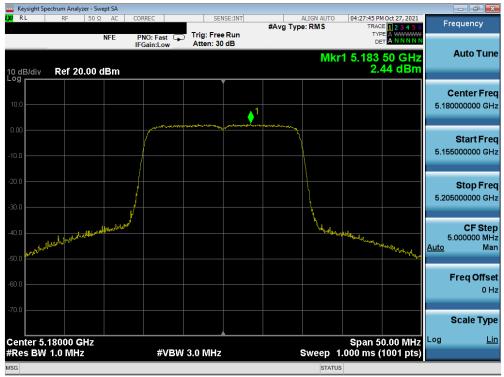


Plot 7-193. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 171)

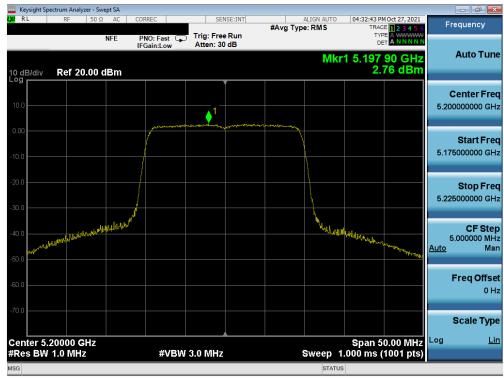


Plot 7-194. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 163)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Domo 140 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 140 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |



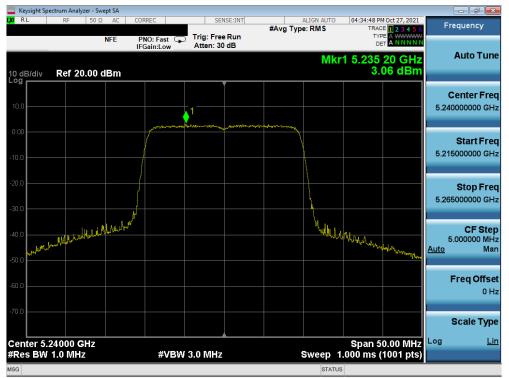




Plot 7-195. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 163)

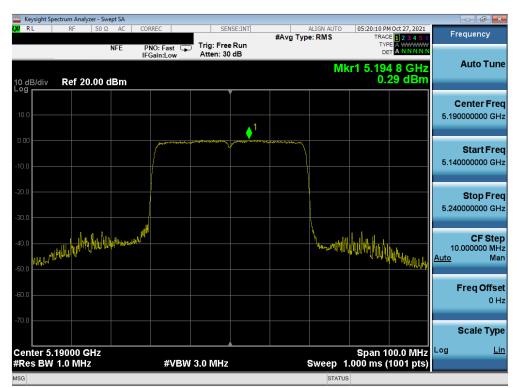
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 111 of 212                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 141 of 242                   |
| © 2022 PCTEST        | -                             | •                                     | V 9.0 02/01/2019                  |






Plot 7-196. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 36)




Plot 7-197. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 40)

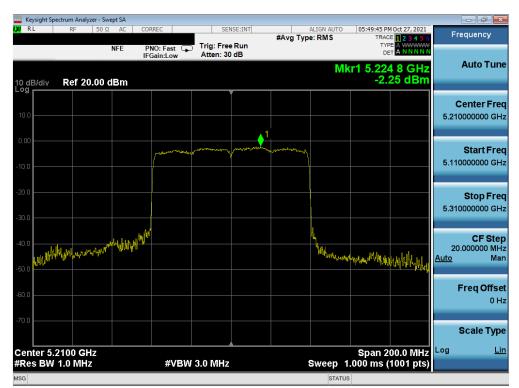
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Dage 142 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | Page 142 of 242                   |
| © 2022 PCTEST        | -                                       |                                       | V 9.0 02/01/2019                  |





Plot 7-198. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 48)




Plot 7-199. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 38)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dogo 142 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 143 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |



|                  | ctrum Analyzer - S |                |                     |            |                |                |            |             |                                                            |                                             |
|------------------|--------------------|----------------|---------------------|------------|----------------|----------------|------------|-------------|------------------------------------------------------------|---------------------------------------------|
| RL               | RF 50              | Ω AC NFE       | CORREC<br>PNO: Fast | Trig: Fre  |                | #Avg Typ       | ALIGN AUTO | TRAC<br>TYP | I Oct 27, 2021<br>E 1 2 3 4 5 6<br>E A WWWW<br>A N N N N N | Frequency                                   |
| 10 dB/div<br>Log | Ref 20.00          | dBm            | IFGain:Low          | Atten: 30  |                |                | M          | (r1 5.23)   | -                                                          | Auto Tune                                   |
| 10.0             |                    |                |                     |            | ↓ <sup>1</sup> |                |            |             |                                                            | Center Freq<br>5.230000000 GHz              |
| -10.0            |                    |                |                     |            |                | - and a second |            |             |                                                            | <b>Start Freq</b><br>5.180000000 GHz        |
| -20.0            |                    |                |                     |            |                |                |            |             |                                                            | <b>Stop Freq</b><br>5.280000000 GHz         |
| -40.0            | North Martin       | meradonitation | الا <mark>ر</mark>  |            |                |                | Manuflan   | freder Mus  | the welf to see when                                       | CF Step<br>10.000000 MHz<br><u>Auto</u> Man |
| -60.0            |                    |                |                     |            |                |                |            |             |                                                            | <b>Freq Offset</b><br>0 Hz                  |
| -70.0            | 23000 GHz          |                |                     |            |                |                |            | Span 1      | 00.0 MHz                                                   | Scale Type                                  |
| #Res BW          |                    |                | #V                  | BW 3.0 MHz |                |                | Sweep 1    | .000 ms (   | 1001 pts)                                                  |                                             |
| MSG              |                    |                |                     |            |                |                | STATUS     | 6           |                                                            |                                             |

Plot 7-200. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 46)



Plot 7-201. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 42)

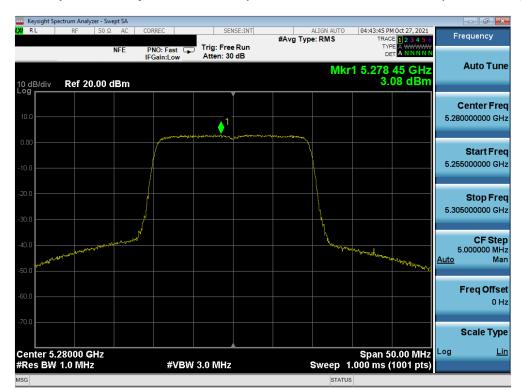
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 111 of 212                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 144 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |





Plot 7-202. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax - Full Tones (UNII Band 1/2A) - Ch. 50)




Plot 7-203. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax - Full Tones (UNII Band 1/2A) - Ch. 50)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 145 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 145 of 242                   |
| © 2022 PCTEST        |                               | · · · · · · · · · · · · · · · · · · · | V 9.0 02/01/2019                  |



|                  | ctrum Analyzer - S |                                     |            |            |    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                            |
|------------------|--------------------|-------------------------------------|------------|------------|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| LXI RL           | RF 50              | Ω AC (                              | PNO: Fast  | Trig: Free |    | #Avg Typ | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRAC<br>TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oct 27, 2021<br>E 1 2 3 4 5 6<br>E A WWWWW | Frequency                                  |
| 10 dB/div<br>Log | Ref 20.00          |                                     | IFGain:Low | Atten: 30  | dB |          | Mki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 5.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35 GHz<br>02 dBm                           | Auto Tune                                  |
| 10.0             |                    |                                     |            |            | ↓1 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | Center Fred<br>5.260000000 GHz             |
| -10.0            |                    |                                     |            |            |    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | Start Free<br>5.235000000 GHz              |
| -20.0            |                    |                                     |            |            |    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | Stop Fred<br>5.285000000 GHz               |
| -40.0            | Mananatan          | and the second of the second of the |            |            |    |          | Can a construction of the | and the state of t | Manoporation                               | CF Step<br>5.000000 MHz<br><u>Auto</u> Mar |
| -60.0            |                    |                                     |            |            |    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | Freq Offset<br>0 Hz                        |
| -70.0            | :6000 GHz          |                                     |            |            |    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Span 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 MHz                                   | Scale Type                                 |
| #Res BW          |                    |                                     | #VBV       | V 3.0 MHz  |    |          | Sweep 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.000 ms (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1001 pts)                                  |                                            |
| MSG              |                    |                                     |            |            |    |          | STATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                            |

Plot 7-204. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 52)



Plot 7-205. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax – Full Tones (UNII Band 2A) – Ch. 56)

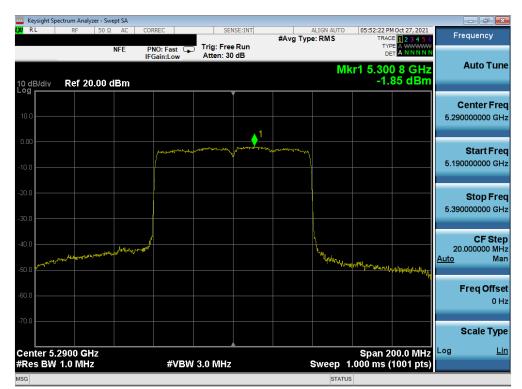
| FCC ID: A3LSMS908JPN | Proved to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|--------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                    | EUT Type:                             |         | Dama 440 at 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021         | Portable Handset                      |         | Page 146 of 242                   |
| © 2022 PCTEST        | · ·                            | ·                                     |         | V 9.0 02/01/2019                  |



| 🔤 Keysight Spectrum Analyzer - S      |                  |                           |                                                                                                                  |            |          |                      |                     |                                 |                                            |
|---------------------------------------|------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|------------|----------|----------------------|---------------------|---------------------------------|--------------------------------------------|
| LX/ RL RF 50                          | Ω ΑC Ο           | ORREC                     | SEN                                                                                                              | ISE:INT    | #Avg Typ | ALIGN AUTO<br>e: RMS |                     | 1 Oct 27, 2021<br>E 1 2 3 4 5 6 | Frequency                                  |
|                                       | NFE              | PNO: Fast 📮<br>IFGain:Low | Trig: Free<br>Atten: 30                                                                                          | eRun<br>dB |          |                      | TYP                 |                                 |                                            |
| 10 dB/div Ref 20.00                   | dBm              |                           |                                                                                                                  |            |          | Mkr                  | 1 5.323<br>3.:      | 40 GHz<br>20 dBm                | Auto Tune                                  |
| 10.0                                  |                  | ممريناتين                 | and the second | 1          |          |                      |                     |                                 | Center Freq<br>5.320000000 GHz             |
| -10.0                                 |                  |                           |                                                                                                                  |            |          |                      |                     |                                 | <b>Start Freq</b><br>5.295000000 GHz       |
| -20.0                                 |                  |                           |                                                                                                                  |            |          |                      |                     |                                 | <b>Stop Freq</b><br>5.345000000 GHz        |
| -40.0                                 | W. Markanakarika |                           |                                                                                                                  |            |          |                      | megnorentrestytune  | mussinger                       | CF Step<br>5.000000 MHz<br><u>Auto</u> Man |
| -60.0                                 |                  |                           |                                                                                                                  |            |          |                      |                     |                                 | <b>Freq Offset</b><br>0 Hz                 |
| -70.0                                 |                  |                           |                                                                                                                  |            |          |                      | 0                   |                                 | Scale Type                                 |
| Center 5.32000 GHz<br>#Res BW 1.0 MHz |                  | #VBW                      | 3.0 MHz                                                                                                          |            |          | Sweep 1              | span 5<br>.000 ms ( | 0.00 MHz<br>1001 pts)           |                                            |
| MSG                                   |                  |                           |                                                                                                                  |            |          | STATUS               |                     |                                 |                                            |

Plot 7-206. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 64)

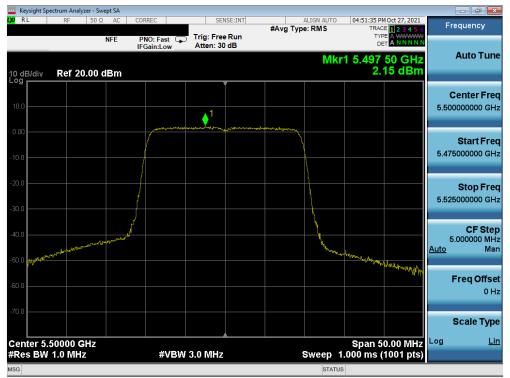



Plot 7-207. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 54)

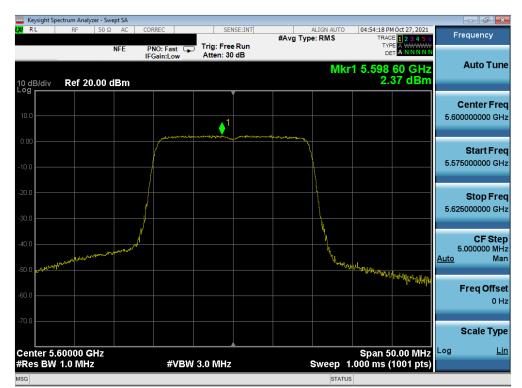
| FCC ID: A3LSMS908JPN | Proud to be part of element | MEASUREMENT REPORT<br>(CERTIFICATION) | ISUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:     | Test Dates:                 | EUT Type:                             |       | Dage 117 of 212                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021      | Portable Handset                      |       | Page 147 of 242                   |
| © 2022 PCTEST        | •                           |                                       |       | V 9.0 02/01/2019                  |



|                     | ctrum Analyzer - Sw |                             |          |                                                                                                                |          |          |                      |                                                                                                                 |                   |                                            |
|---------------------|---------------------|-----------------------------|----------|----------------------------------------------------------------------------------------------------------------|----------|----------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|
| LXI RL              | RF 50 Ω             |                             | NO: Fast |                                                                                                                |          | #Avg Typ | ALIGN AUTO<br>e: RMS | TRAC<br>TYP                                                                                                     | E 1 2 3 4 5 6     | Frequency                                  |
| 10 dB/div           | Ref 20.00 (         | IFO                         | Gain:Low | Atten: 30                                                                                                      |          |          | Mk                   | r1 5.301                                                                                                        | I 8 GHz<br>01 dBm | Auto Tune                                  |
| 10.0                |                     |                             |          | `<br>1                                                                                                         |          |          |                      |                                                                                                                 |                   | Center Free<br>5.310000000 GH              |
| -10.0               |                     |                             |          | and a second | pannerai |          |                      |                                                                                                                 |                   | Start Free<br>5.260000000 GH               |
| -20.0               |                     |                             |          |                                                                                                                |          |          |                      |                                                                                                                 |                   | Stop Free<br>5.360000000 GH                |
| -40.0               | Alderson            | and a second de la constant |          |                                                                                                                |          |          | anna anna            | توم المرجعين المراجع المرجع | mayartury         | CF Step<br>10.000000 MH<br><u>Auto</u> Mar |
| -60.0               |                     |                             |          |                                                                                                                |          |          |                      |                                                                                                                 |                   | Freq Offse<br>0 H                          |
| -70.0<br>Center 5.3 |                     |                             |          |                                                                                                                |          |          |                      | Snan 1                                                                                                          | 00.0 MHz          | Scale Type                                 |
| #Res BW             |                     |                             | #VBW     | / 3.0 MHz                                                                                                      |          |          | Sweep 1              | opan n<br>.000 ms (                                                                                             | 00.0 191112       |                                            |
| MSG                 |                     |                             |          |                                                                                                                |          |          | STATUS               |                                                                                                                 |                   |                                            |


Plot 7-208. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 62)

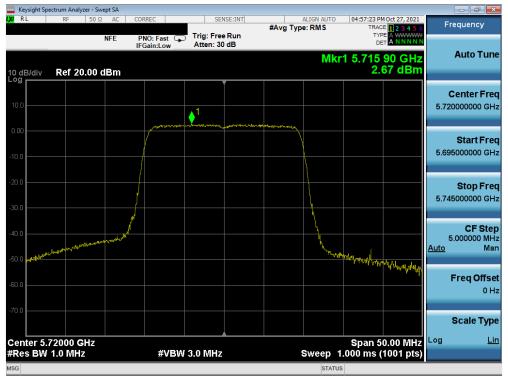



Plot 7-209. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax – Full Tones (UNII Band 2A) – Ch. 58)

| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Dama (10 af 010                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         | Page 148 of 242                   |
| © 2022 PCTEST        | ·                                       |                                       |         | V 9.0 02/01/2019                  |






Plot 7-210. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 100)

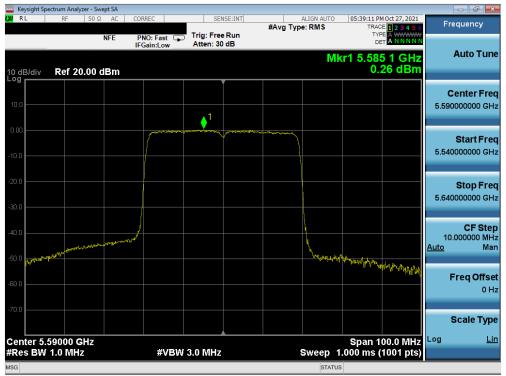


Plot 7-211. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 120)

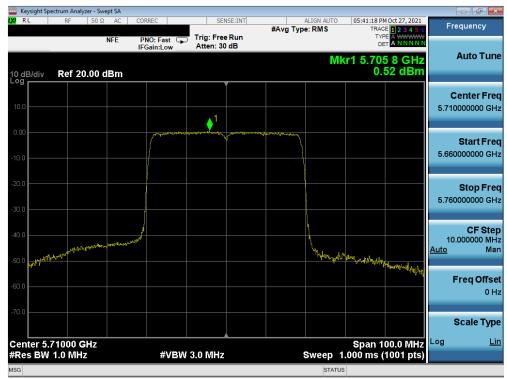
| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Daga 140 of 242                   |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 149 of 242                   |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |  |






Plot 7-212. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 144)




Plot 7-213. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 102)

| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Daga 150 of 242                   |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 150 of 242                   |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |  |





Plot 7-214. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 118)

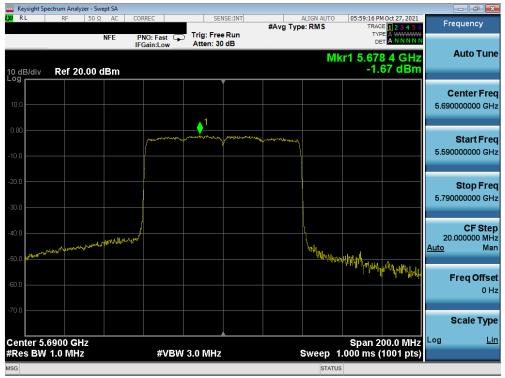


Plot 7-215. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – Full Tones (UNII Band 2C) – Ch. 142)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Daga 151 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 151 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |






Plot 7-216. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 106)



Plot 7-217. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax – Full Tones (UNII Band 2C) – Ch. 122)

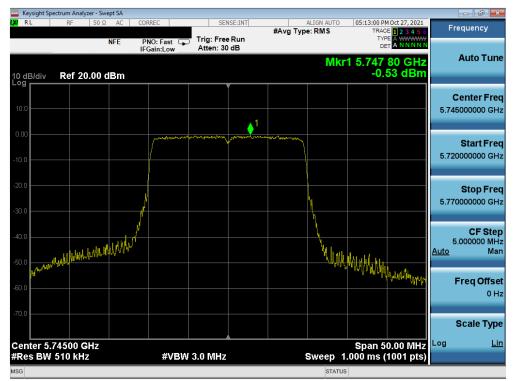
| FCC ID: A3LSMS908JPN           | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |  |  |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------------|--|--|
| Test Report S/N:               | Test Dates:                   | EUT Type:                             | Dage 152 of 242                   |  |  |
| 1M2112100159-08.A3L            | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 152 of 242                   |  |  |
| © 2022 PCTEST V 9.0 02/01/2019 |                               |                                       |                                   |  |  |





Plot 7-218. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 138)

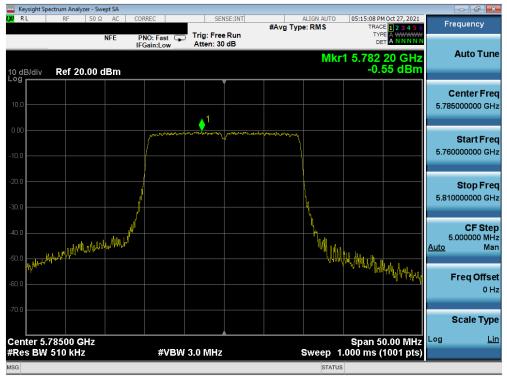



Plot 7-219. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax - Full Tones (UNII Band 2C) - Ch. 114)

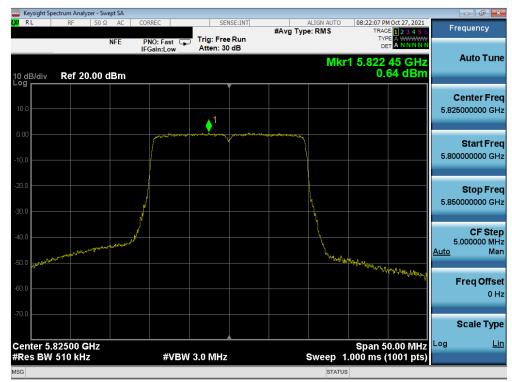
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | ISUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |       | Dama 450 at 040                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |       | Page 153 of 242                   |
| © 2022 PCTEST        |                               |                                       |       | V 9.0 02/01/2019                  |






Plot 7-220. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax - Full Tones (UNII Band 2C) - Ch. 114)




Plot 7-221. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 3) - Ch. 149)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dogo 154 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 154 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |






Plot 7-222. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax – Full Tones (UNII Band 3) – Ch. 157)

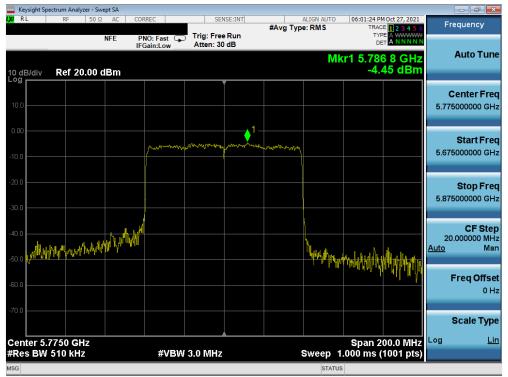


Plot 7-223. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 3) - Ch. 165)

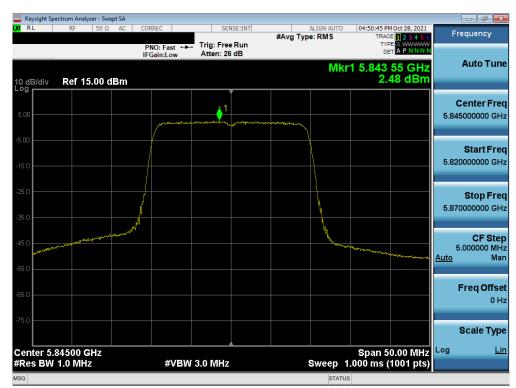
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Dage 155 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 155 of 242                   |
| © 2022 PCTEST        | •                             |                                       |         | V 9.0 02/01/2019                  |






Plot 7-224. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 3) - Ch. 151)




Plot 7-225. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – Full Tones (UNII Band 3) – Ch. 159)

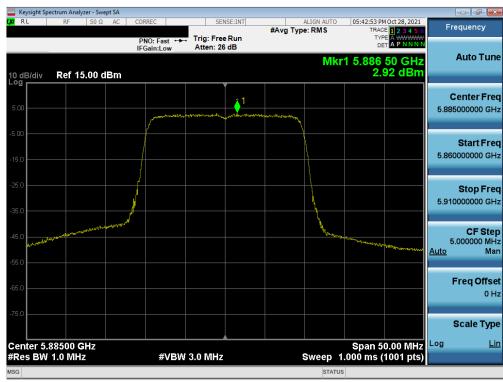
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |       | Dage 156 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |       | Page 156 of 242                   |
| © 2022 PCTEST        |                               |                                       |       | V 9.0 02/01/2019                  |





Plot 7-226. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 3) - Ch. 155)




Plot 7-227. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 242 Tones (UNII Band 3/4) - Ch. 169)

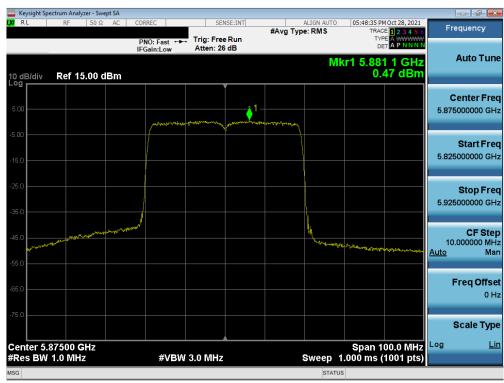
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Daga 157 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 157 of 242                   |
| © 2022 PCTEST        |                               |                                       | V 9.0 02/01/2019                  |



|             | ectrum Analyzer - Sv         |     |                        |                           |                           |           |                      |            |                  |                         |
|-------------|------------------------------|-----|------------------------|---------------------------|---------------------------|-----------|----------------------|------------|------------------|-------------------------|
| Center F    | RF 50 Ω<br>req 5.8650        |     | RREC Z                 |                           | ISE:INT                   | #Avg Type | ALIGN AUTO<br>e: RMS | TRAC       | 4 Oct 28, 2021   | Frequency               |
|             |                              |     | NO: Fast 🔸<br>Gain:Low | . Trig: Free<br>Atten: 26 |                           |           |                      |            |                  |                         |
|             |                              |     |                        |                           |                           |           | Mkr                  | 1 5.868    | 15 GHz<br>85 dBm | Auto Tune               |
| 10 dB/div   | Ref 15.00                    | dBm |                        | ,<br>,                    |                           | 1         | 1                    | 2.4        |                  |                         |
|             |                              |     |                        |                           | <u>≏ 1</u>                |           |                      |            |                  | Center Freq             |
| 5.00        |                              |     | _                      | and mark a more share     | - provinsion and a second | - Hours - |                      |            |                  | 5.865000000 GHz         |
| -5.00       |                              |     | /                      |                           |                           |           |                      |            |                  |                         |
| -5.00       |                              |     |                        |                           |                           |           | l                    |            |                  | Start Freq              |
| -15.0       |                              |     |                        |                           |                           |           | }                    |            |                  | 5.840000000 GHz         |
|             |                              |     |                        |                           |                           |           | ł                    |            |                  |                         |
| -25.0       |                              |     |                        |                           |                           |           | 1                    |            |                  | Stop Freq               |
| -35.0       |                              | /   |                        |                           |                           |           | <u> </u>             |            |                  | 5.89000000 GHz          |
|             |                              |     |                        |                           |                           |           | 1                    |            |                  |                         |
| -45.0       | and the second second second |     |                        |                           |                           |           | term                 | Warnach de |                  | CF Step<br>5.000000 MHz |
| and a start |                              |     |                        |                           |                           |           |                      |            | Montenate        | <u>Auto</u> Man         |
| -55.0       |                              |     |                        |                           |                           |           |                      |            |                  |                         |
| -65.0       |                              |     |                        |                           |                           |           |                      |            |                  | Freq Offset             |
|             |                              |     |                        |                           |                           |           |                      |            |                  | 0 Hz                    |
| -75.0       |                              |     |                        |                           |                           |           |                      |            |                  |                         |
|             |                              |     |                        |                           |                           |           |                      |            |                  | Scale Type              |
|             | 86500 GHz                    |     |                        |                           |                           |           |                      | Span 5     | 0.00 191112      | Log <u>Lin</u>          |
| #Res BW     | 1.0 MHz                      |     | #VBW                   | 3.0 MHz                   |                           |           | Sweep 1              | .000 ms (  | 1001 pts)        |                         |
| MSG         |                              |     |                        |                           |                           |           | STATU                | S          |                  |                         |

Plot 7-228. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 173)




Plot 7-229. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 177)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 159 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 158 of 242                   |
| © 2022 PCTEST        |                               | · · · · · · · · · · · · · · · · · · · | V 9.0 02/01/2019                  |



| 🔤 Keysight Spectrum Analyzer - Swept SA |                                           |                    |                       |                                                                                                                 |                                      |
|-----------------------------------------|-------------------------------------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <b>,X/</b> RL RF 50Ω AC                 | CORREC S                                  | SENSE:INT #Avg Typ | e: RMS T              | 6 PM Oct 28, 2021<br>RACE 1 2 3 4 5 6                                                                           | Frequency                            |
|                                         | PNO: Fast ↔ Trig: Fr<br>IFGain:Low Atten: |                    |                       | DET A WWWWW                                                                                                     |                                      |
| 10 dB/div Ref 15.00 dBm                 |                                           |                    | Mkr1 5.8              | 31 3 GHz<br>0.38 dBm                                                                                            | Auto Tune                            |
| 5.00                                    | î                                         |                    |                       |                                                                                                                 | Center Freq<br>5.835000000 GHz       |
| -5.00                                   |                                           |                    |                       |                                                                                                                 | <b>Start Freq</b><br>5.785000000 GHz |
| -25.0                                   |                                           |                    |                       |                                                                                                                 | <b>Stop Freq</b><br>5.885000000 GHz  |
| -45.0<br>-55.0                          |                                           |                    | hannester             | and the stand of the | CF Step<br>10.000000 MHz<br>Auto Man |
| -65.0                                   |                                           |                    |                       |                                                                                                                 | <b>Freq Offset</b><br>0 Hz           |
| -75.0                                   |                                           |                    |                       |                                                                                                                 | Scale Type                           |
| Center 5.83500 GHz<br>#Res BW 1.0 MHz   | #VBW 3.0 MH                               | Z                  | Spar<br>Sweep 1.000 m | 100.0 MHz                                                                                                       | .og <u>Lin</u>                       |
| MSG                                     |                                           |                    | STATUS                |                                                                                                                 |                                      |

Plot 7-230. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 484 Tones (UNII Band 3/4) - Ch. 167)



Plot 7-231. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – 484 Tones (UNII Band 4) – Ch. 175)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Daga 150 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 159 of 242                   |
| © 2022 PCTEST        |                               | ·                                     | V 9.0 02/01/2019                  |



|                      |        | trum Analyzer -                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
|----------------------|--------|-----------------------------------------------------------------------------------------------------------------|--------|----------------|---------------|----------------------|--------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| l <mark>XI</mark> RI | L      | RF 50                                                                                                           | Ω AC   | CORREC         | SEI           | NSE:INT              | #Avg Typ                                   | ALIGN AUTO             |                                                                                                                 | HOct 28, 2021      | Frequency       |
|                      |        |                                                                                                                 |        | PNO: Fast ↔    | Trig: Fre     | Run                  |                                            |                        | TYP                                                                                                             |                    |                 |
|                      | _      |                                                                                                                 |        | IFGain:Low     | Atten: 26     | dB                   |                                            |                        |                                                                                                                 |                    | Auto Tune       |
|                      |        |                                                                                                                 |        |                |               |                      |                                            | Mk                     | (r1 5.84)                                                                                                       | 2 6 GHz            | Auto Tune       |
| 10 dE<br>Log         | 3/div  | Ref 15.00                                                                                                       | ) dBm  |                |               |                      | _                                          |                        | -2.                                                                                                             | 01 dBm             |                 |
|                      |        |                                                                                                                 |        |                |               | Ĭ                    |                                            |                        |                                                                                                                 |                    | Center Freq     |
| 5.00                 |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | 5.855000000 GHz |
|                      |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
| -5.00                |        |                                                                                                                 |        | powerstand     | wall the good | man and the start of | and all all all all all all all all all al |                        |                                                                                                                 |                    |                 |
|                      |        |                                                                                                                 |        |                |               |                      | 1                                          |                        |                                                                                                                 |                    | Start Freq      |
| -15.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | 5.755000000 GHz |
|                      |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
| -25.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | Stop Freq       |
|                      |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | 5.955000000 GHz |
| -35.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
|                      |        |                                                                                                                 |        | w <sup>2</sup> |               |                      |                                            | ۲,                     |                                                                                                                 |                    | CF Step         |
| -45.0                | enally | and the state of the | -10 QL |                |               |                      |                                            | Maple and a free house | hybelanan                                                                                                       |                    | 20.000000 MHz   |
|                      |        |                                                                                                                 |        |                |               |                      |                                            |                        | Million and a second | Mar for the second | <u>Auto</u> Man |
| -55.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
| -65.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | Freq Offset     |
| -65.U                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | 0 Hz            |
| -75.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
| -75.0                |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    | Scale Type      |
|                      |        |                                                                                                                 |        |                |               |                      |                                            |                        |                                                                                                                 |                    |                 |
|                      |        | 550 GHz                                                                                                         |        |                |               |                      |                                            |                        | Span 2                                                                                                          | 00.0 MHz           | Log <u>Lin</u>  |
| #Res                 | s BW 1 | .0 MHz                                                                                                          |        | #VBW           | / 3.0 MHz     |                      |                                            | Sweep 1                | .000 ms (                                                                                                       | 1001 pts)          |                 |
| MSG                  |        |                                                                                                                 |        |                |               |                      |                                            | STATUS                 | 6                                                                                                               |                    |                 |

Plot 7-232. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 171)



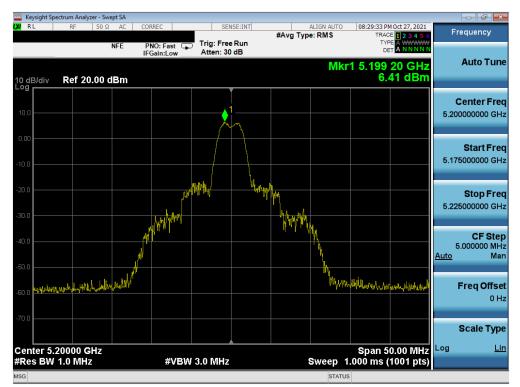
Plot 7-233. Power Spectral Density Plot MIMO ANT1 (160MHz BW L 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element           | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             | Daga 160 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021 Portable Handset |                                       | Page 160 of 242                   |
| © 2022 PCTEST        |                                         | · · · · · · · · · · · · · · · · · · · | V 9.0 02/01/2019                  |



| Keysight Spectrum Analyzer - Swept SA |                           |                           |         |             |            |                                                |                       |                                    | ×                    |
|---------------------------------------|---------------------------|---------------------------|---------|-------------|------------|------------------------------------------------|-----------------------|------------------------------------|----------------------|
| LXX RL RF 50Ω DC                      | CORREC                    | SEN                       | ISE:INT | #Avg Type   | ALIGN AUTO |                                                | MNov 12, 2021         | Frequency                          |                      |
| 10 dB/div Ref 15.00 dBm               | PNO: Fast ↔<br>IFGain:Low | . Trig: Free<br>Atten: 28 |         |             |            | TYF<br>DE<br>1 5.838                           | 45 GHz<br>28 dBm      | Auto Ti                            | une                  |
| 5.00                                  |                           |                           | 1       | a mantanati | _          |                                                |                       | Center F<br>5.815000000            |                      |
| -5.00                                 |                           |                           |         | Y           |            |                                                |                       | <b>Start F</b><br>5.640000000 (    |                      |
| -25.0                                 |                           | WW WWW                    |         |             | NKU U      | A 11                                           |                       | <b>Stop F</b><br>5.990000000 (     |                      |
| -45.0                                 | phine and a second        | M <sup>r</sup>            |         |             | ¥1[N       | Ч <u>М</u><br>Н Н <sub>М</sub> М <sub>ИL</sub> | nd striktling         | CF S<br>35.000000 M<br><u>Auto</u> |                      |
| -65.0                                 |                           |                           |         |             |            |                                                |                       | Freq Off<br>(                      | f <b>set</b><br>0 Hz |
| -75.0                                 |                           |                           |         |             |            |                                                |                       | Scale Ty                           |                      |
| Center 5.8150 GHz<br>#Res BW 1.0 MHz  | #VBW                      | 3.0 MHz                   |         | 5           | Sweep 1.   | Span 3<br>.000 m <u>s (</u>                    | 50.0 MHz<br>1001 pts) | _                                  | Lin                  |
| MSG                                   |                           |                           |         |             | STATUS     |                                                |                       |                                    | _                    |

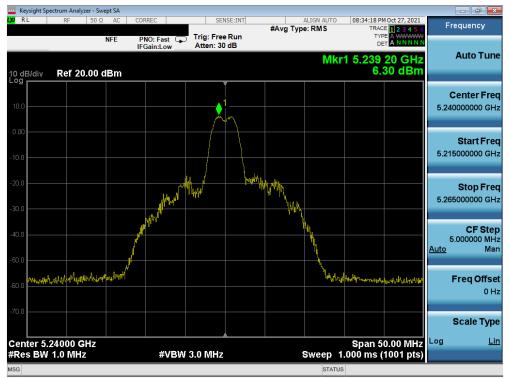
Plot 7-234. Power Spectral Density Plot MIMO ANT1 (160MHz BW U 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 163)


| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             | Dage 161 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      | Page 161 of 242                   |
| © 2022 PCTEST        |                               | •                                     | V 9.0 02/01/2019                  |

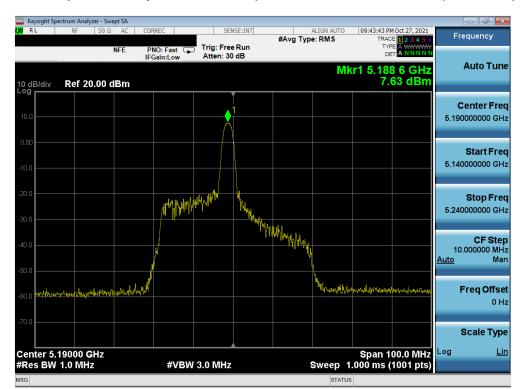


## MIMO Antenna-2 Power Spectral Density Measurements (26 Tones)




Plot 7-235. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 36)

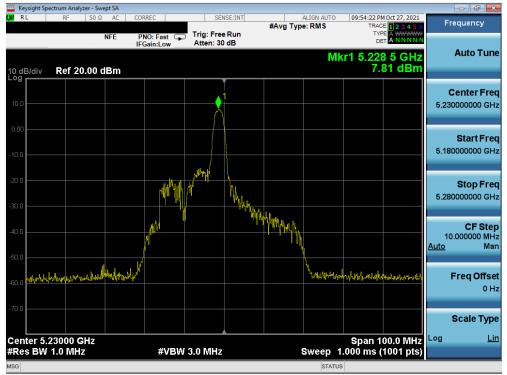



Plot 7-236. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 40)

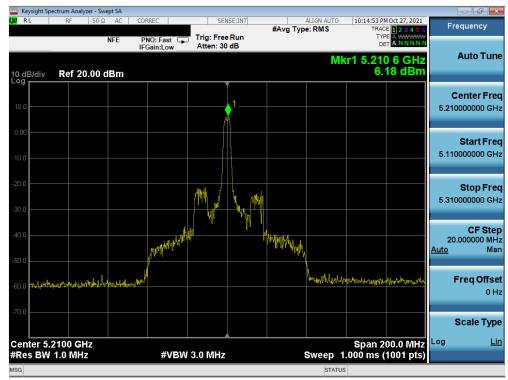
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Dogo 162 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         | Page 162 of 242                   |
| © 2022 PCTEST        | •                             |                                       |         | V 9.0 02/01/2019                  |






Plot 7-237. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 48)

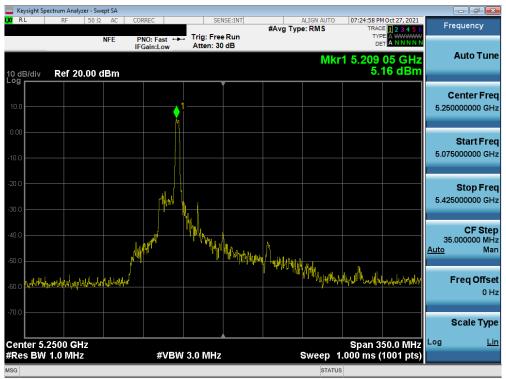



Plot 7-238. Power Spectral Density Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 38)

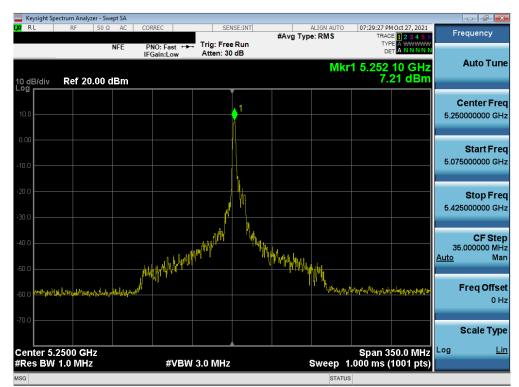
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG   | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|-----------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |           | Page 163 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      | e Handset |                                   |
| © 2022 PCTEST        |                                         | ·                                     |           | V 9.0 02/01/2019                  |






Plot 7-239. Power Spectral Density Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 46)

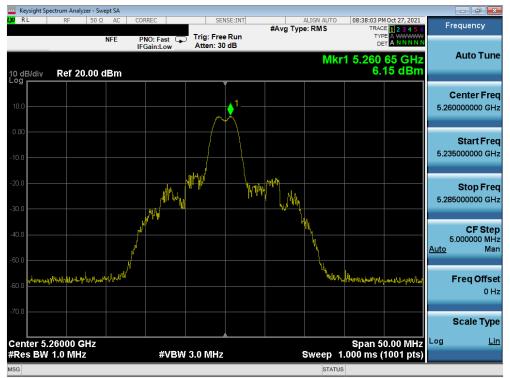



Plot 7-240. Power Spectral Density Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 42)

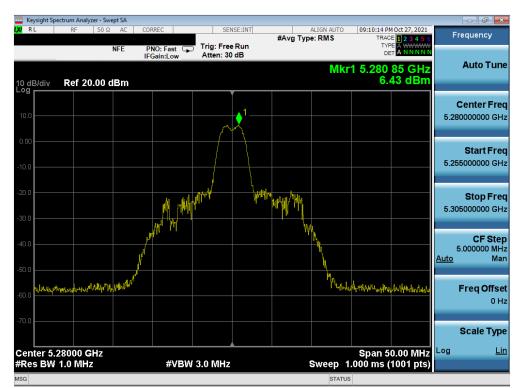
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Page 164 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         |                                   |
| © 2022 PCTEST        |                               |                                       |         | V 9.0 02/01/2019                  |






Plot 7-241. Power Spectral Density Plot MIMO ANT2 (160MHz BW L 802.11ax - 26 Tones (UNII Band 1/2A) - Ch. 50)




Plot 7-242. Power Spectral Density Plot MIMO ANT2 (160MHz BW U 802.11ax - 26 Tones (UNII Band 1/2A) - Ch. 50)

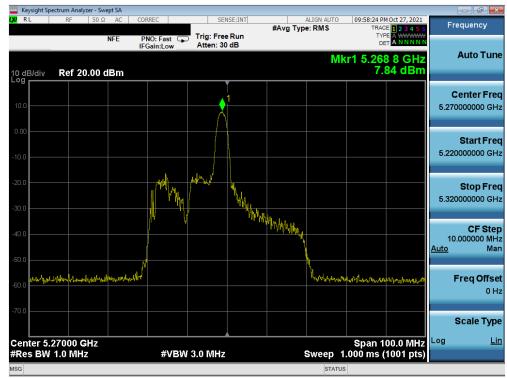
| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Page 165 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         |                                   |
| © 2022 PCTEST        | -                                       | ·                                     |         | V 9.0 02/01/2019                  |





Plot 7-243. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 52)




Plot 7-244. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 56)

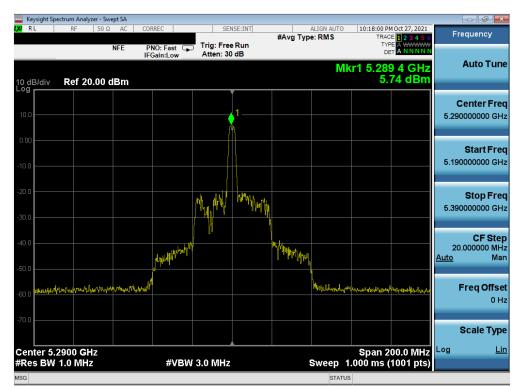
| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |         | Page 166 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |         |                                   |
| © 2022 PCTEST        |                               | •                                     |         | V 9.0 02/01/2019                  |






Plot 7-245. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 64)




Plot 7-246. Power Spectral Density Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 54)

| FCC ID: A3LSMS908JPN | Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | MSUNG | Approved by:<br>Technical Manager |
|----------------------|-------------------------------|---------------------------------------|-------|-----------------------------------|
| Test Report S/N:     | Test Dates:                   | EUT Type:                             |       | Page 167 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021        | Portable Handset                      |       |                                   |
| © 2022 PCTEST        |                               |                                       |       | V 9.0 02/01/2019                  |





Plot 7-247. Power Spectral Density Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 62)



Plot 7-248. Power Spectral Density Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 58)

| FCC ID: A3LSMS908JPN | PCTEST<br>Proud to be part of @ element | MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|----------------------|-----------------------------------------|---------------------------------------|---------|-----------------------------------|
| Test Report S/N:     | Test Dates:                             | EUT Type:                             |         | Page 168 of 242                   |
| 1M2112100159-08.A3L  | 9/14/2021 - 11/12/2021                  | Portable Handset                      |         |                                   |
| © 2022 PCTEST        |                                         | ·                                     |         | V 9.0 02/01/2019                  |