

## PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com



## PART 27 C2PC TEST REPORT

#### Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

## Date of Testing:

02/02/2022 – 02/28/2022 **Test Report Issue Date:** 02/28/2022 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2202030011-03.A3L

## FCC ID:

Applicant Name:

## A3LSMS908E

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Class II Permissive Change: Original Grant Date: Class II Permissive Change SM-S908E/DS SM-S908E Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 27 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04 Please see FCC Documentation 01/07/2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President



| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Dage 1 of 95                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Page 1 of 85                      |
| © 2022 PCTEST       | •                                       | •                                                        | V3.0 1/6/2022                     |



## TABLE OF CONTENTS

| 1.0 | INTR | ODUCTION                                            | 4  |
|-----|------|-----------------------------------------------------|----|
|     | 1.1  | Scope                                               | 4  |
|     | 1.2  | PCTEST Test Location                                | 4  |
|     | 1.3  | Test Facility / Accreditations                      | 4  |
| 2.0 | PRO  | DUCT INFORMATION                                    | 5  |
|     | 2.1  | Equipment Description                               | 5  |
|     | 2.2  | Device Capabilities                                 | 5  |
|     | 2.3  | Test Configuration                                  | 5  |
|     | 2.4  | EMI Suppression Device(s)/Modifications             | 5  |
| 3.0 | DESC | CRIPTION OF TESTS                                   | 6  |
|     | 3.1  | Evaluation Procedure                                | 6  |
|     | 3.2  | Radiated Power and Radiated Spurious Emissions      | 7  |
| 4.0 | MEA  | SUREMENT UNCERTAINTY                                | 8  |
| 5.0 | TEST | EQUIPMENT CALIBRATION DATA                          | 9  |
| 6.0 | SAM  | PLE CALCULATIONS                                    | 10 |
| 7.0 | TEST | RESULTS                                             | 11 |
|     | 7.1  | Summary                                             | 11 |
|     | 7.2  | Conducted Power Output Data                         | 12 |
|     | 7.3  | Occupied Bandwidth                                  | 15 |
|     | 7.4  | Spurious and Harmonic Emissions at Antenna Terminal | 28 |
|     | 7.5  | Band Edge Emissions at Antenna Terminal             | 49 |
|     | 7.6  | Radiated Power (EIRP)                               | 62 |
|     | 7.7  | Radiated Spurious Emissions Measurements            | 66 |
|     | 7.8  | Frequency Stability / Temperature Variation         | 83 |
| 8.0 | CON  | CLUSION                                             | 85 |

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 2 of 85                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 2 01 65                      |
| © 2022 PCTEST       | •                       |                                                          | V3.0 1/6/2022                     |



## PART 27 MEASUREMENT REPORT



|               |                      |          |                             | EIRP              |                     |                        |
|---------------|----------------------|----------|-----------------------------|-------------------|---------------------|------------------------|
| Mode Ba       | Bandwidth Modulation |          | Tx Frequency<br>Range [MHz] | Max. Power<br>[W] | Max. Power<br>[dBm] | Emission<br>Designator |
|               |                      | π/2 BPSK | 2546.0 - 2640.0             | 0.163             | 22.13               | 96M9G7D                |
|               | 100 MHz              | QPSK     | 2546.0 - 2640.0             | 0.145             | 21.60               | 97M8G7D                |
|               |                      | 16QAM    | 2546.0 - 2640.0             | 0.126             | 21.01               | 97M8W7D                |
|               |                      | π/2 BPSK | 2541.0 - 2645.0             | 0.172             | 22.36               | 86M9G7D                |
|               | 90 MHz               | QPSK     | 2541.0 - 2645.0             | 0.149             | 21.72               | 87M7G7D                |
|               |                      | 16QAM    | 2541.0 - 2645.0             | 0.131             | 21.16               | 87M6W7D                |
|               | 80 MHz               | π/2 BPSK | 2536.0 - 2650.0             | 0.167             | 22.23               | 77M2G7D                |
|               |                      | QPSK     | 2536.0 - 2650.0             | 0.135             | 21.30               | 77M5G7D                |
|               |                      | 16QAM    | 2536.0 - 2650.0             | 0.111             | 20.44               | 77M4W7D                |
|               | 60 MHz               | π/2 BPSK | 2526.0 - 2660.0             | 0.145             | 21.61               | 58M0G7D                |
|               |                      | QPSK     | 2526.0 - 2660.0             | 0.144             | 21.60               | 58M1G7D                |
| NR Band n41   |                      | 16QAM    | 2526.0 - 2660.0             | 0.124             | 20.92               | 58M1W7D                |
| INR Danu 14 I | 50 MHz               | π/2 BPSK | 2521.0 - 2665.0             | 0.164             | 22.15               | 45M9G7D                |
|               |                      | QPSK     | 2521.0 - 2665.0             | 0.139             | 21.42               | 47M8G7D                |
|               |                      | 16QAM    | 2521.0 - 2665.0             | 0.113             | 20.52               | 47M8W7D                |
|               |                      | π/2 BPSK | 2516.0 - 2670.0             | 0.175             | 22.44               | 36M1G7D                |
|               | 40 MHz               | QPSK     | 2516.0 - 2670.0             | 0.140             | 21.47               | 38M0G7D                |
|               |                      | 16QAM    | 2516.0 - 2670.0             | 0.116             | 20.65               | 38M0W7D                |
|               |                      | π/2 BPSK | 2511.0 - 2675.0             | 0.155             | 21.91               | 27M0G7D                |
|               | 30 MHz               | QPSK     | 2511.0 - 2675.0             | 0.143             | 21.54               | 28M0G7D                |
|               |                      | 16QAM    | 2511.0 - 2675.0             | 0.125             | 20.97               | 28M0W7D                |
|               |                      | π/2 BPSK | 2506.0 - 2680.0             | 0.167             | 22.22               | 18M0G7D                |
|               | 20 MHz               | QPSK     | 2506.0 - 2680.0             | 0.148             | 21.70               | 18M4G7D                |
|               |                      | 16QAM    | 2506.0 - 2680.0             | 0.113             | 20.52               | 18M4W7D                |

#### **EUT Overview**

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 3 of 85                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 5 01 65                      |
| © 2022 PCTEST       |                         | •                                                        | V3.0 1/6/2022                     |



## **1.0 INTRODUCTION**

### 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

## 1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

#### 1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

| FCC ID: A3LSMS908E  | PCTEST<br>Proad to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Dage 4 of 95                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Page 4 of 85                      |
| © 2022 PCTEST       | -                                       |                                                          | V3.0 1/6/2022                     |



## 2.0 PRODUCT INFORMATION

## 2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID** : **A3LSMS908E**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

Test Device Serial No.: 6044M, 0090V, 0105V, 6048M

## 2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, Ultra Wideband

The device has 1 Tx antenna for n41 data (Ant J) and 3 Rx antennas (Ant B, D, E). With SRS operations, all 4 antennas can transmit the SRS signal to check for the channel quality of n41. The antennas cannot simultaneously transmit. Only the single TX/RX antenna is used for Data transmission.

## 2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 3.4 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

## 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 5 of 85                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 5 01 65                      |
| © 2022 PCTEST       |                         | ·                                                        | V3.0 1/6/2022                     |



## 3.0 DESCRIPTION OF TESTS

### 3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 6 of 85                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 0 01 65                      |
| © 2022 PCTEST       | •                             | ·                                                        | V3.0 1/6/2022                     |



## 3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI/TIA-603-E-2016. A halfwave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

#### P<sub>d [dBm]</sub> = P<sub>g [dBm]</sub> – cable loss [dB] + antenna gain [dBd/dBi];

where  $P_d$  is the dipole equivalent power,  $P_g$  is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to  $P_{g \ [dBm]}$  – cable loss [dB].

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\muV/m]}$  = Measured amplitude level<sub>[dBm]</sub> + 107 + Cable Loss<sub>[dB]</sub> + Antenna Factor<sub>[dB/m]</sub> And EIRP<sub>[dBm]</sub> =  $E_{[dB\muV/m]}$  + 20logD – 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Daga 7 of 95                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 7 of 85                      |
| © 2022 PCTEST       | •                                       |                                                          |         | V3.0 1/6/2022                     |



## 4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                            | EUT Type:                                                |         | Dere 9 of 95                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                | Portable Handset                                         |         | Page 8 of 85                      |
| © 2022 PCTEST       | -                                      | -                                                        |         | V3.0 1/6/2022                     |



## 5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

| Manufacturer          | Model      | Description                    | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|------------|--------------------------------|------------|--------------|------------|---------------|
| -                     | AP2        | EMC Cable and Switch System    | 3/4/2021   | Annual       | 3/4/2022   | AP2           |
| -                     | AP1        | EMC Cable and Switch System    | 3/9/2021   | Annual       | 3/9/2022   | AP1           |
| -                     | ETS        | EMC Cable and Switch System    | 3/4/2021   | Annual       | 3/4/2022   | ETS           |
| -                     | LTx3       | LIcensed Transmitter Cable Set | 2/26/2021  | Annual       | 2/26/2022  | LTx3          |
| -                     | LTx4       | Licensed Transmitter Cable Set | 3/12/2021  | Annual       | 3/12/2022  | LTx4          |
| Emco                  | 3115       | Horn Antenna (1-18GHz)         | 6/18/2020  | Biennial     | 6/18/2022  | 9704-5182     |
| Espec                 | ESX-2CA    | Environmental Chamber          | 8/27/2020  | Annual       | 8/27/2022  | 17620         |
| ETS Lindgren          | 3117       | 1-18 GHz DRG Horn (Medium)     | 4/20/2021  | Biennial     | 4/20/2023  | 00125518      |
| ETS Lindgren          | 3164-08    | Quad Ridge Horn Antenna        | 3/12/2020  | Biennial     | 3/12/2022  | 128337        |
| ETS Lindgren          | 3816/2NM   | LISN                           | 7/9/2020   | Biennial     | 7/9/2022   | 00114451      |
| Mini-Circuits         | SSG-4000HP | Synthesized Signal Generator   |            | N/A          |            | 11208010032   |
| Mini-Circuits         | SSG-4000HP | Synthesized Signal Generator   |            | N/A          |            | 11403100002   |
| Sunol                 | JB5        | Bi-Log Antenna (30M - 5GHz)    | 7/27/2020  | Biennial     | 7/27/2022  | A051107       |
| Sunol                 | JB6        | LB6 Antenna                    | 11/13/2020 | Biennial     | 11/13/2022 | A082816       |
| Keysight Technologies | N9038A     | MXE EMI Receiver               | 1/21/2022  | Annual       | 1/21/2023  | MY51210133    |
| Rohde & Schwarz       | ESU26      | EMI Test Receiver (26.5GHz)    | 8/3/2021   | Annual       | 8/3/2022   | 100342        |

Table 5-1. Test Equipment

#### Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 9 of 85                      |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 9 01 65                      |
| © 2022 PCTEST       |                         |                                                          | V3.0 1/6/2022                     |



## 6.0 SAMPLE CALCULATIONS

## **QPSK Modulation**

#### Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

## **QAM Modulation**

Emission Designator = 8M45W7D LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

### **Spurious Radiated Emission**

#### Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

| FCC ID: A3LSMS908E  | Potest*                 | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Dage 10 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 10 of 85                     |
| © 2022 PCTEST       | •                       | •                                                        |         | V3.0 1/6/2022                     |



## 7.0 TEST RESULTS

## 7.1 Summary

| Company Name:       | Samsung Electronics Co., Ltd.              |
|---------------------|--------------------------------------------|
| FCC ID:             | A3LSMS908E                                 |
| FCC Classification: | PCS Licensed Transmitter Held to Ear (PCE) |
| Mode(s):            | LTE/NR                                     |

| Test<br>Condition | Test Description                         | FCC Part Section(s)  | Test Limit                                                         | Test Result | Reference            |
|-------------------|------------------------------------------|----------------------|--------------------------------------------------------------------|-------------|----------------------|
|                   | Transmitter Conducted Output Power*      | 2.1046(a), 2.1046(c) | N/A                                                                | PASS        | Section 7.2          |
| CONDUCTED         | Occupied Bandwidth                       | 2.1049(h)            | N/A                                                                | PASS        | Section 7.3          |
| CONDI             | Conducted Band Edge / Spurious Emissions | 2.1051, 27.53(m)(4)  | Undesirable emissions must meet the limits detailed in 27.53(m)(4) | PASS        | Sections<br>7.4, 7.5 |
|                   | Frequency Stability                      | 2.1055, 27.54        | Fundamental emissions stay within authorized frequency<br>block    | PASS        | Section 7.8          |
| RADIATED          | Equivalent Isotropic Radiated Power      | 27.50(h)(2)          | ≤ 2 Watts max. EIRP                                                | PASS        | Section 7.6          |
| RADI              | Radiated Spurious Emissions              | 2.1053, 27.53(m)     | Undesirable emissions must meet the limits detailed in 27.53(m)    | PASS        | Section 7.7          |

\* The only transmitter output conducted powers included in this report are those where the Pmax value, per the tune-up document, is higher than any of the DSI power levels. For the remaining conducted power measurements, see the **RF Exposure Report**.

#### Table 7-1. Summary of Test Results (FCC)

#### Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool v1.1.

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Dage 11 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 11 of 85                     |
| © 2022 PCTEST       | •                       | •                                                        |         | V3.0 1/6/2022                     |



# 7.2 Conducted Power Output Data §2.1046

#### Test Overview

The EUT is set up to transmit at maximum power. All power levels are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### **Test Settings**

- 1. Span =  $2 \times OBW$  to  $3 \times OBW$
- 2. RBW = 1% to 5% of the OBW
- 3. Number of measurement points in sweep  $\geq$  2 x span / RBW
- 4. Sweep = auto-couple (less than transmission burst duration)
- 5. Detector = RMS (power)
- 6. Trigger was set to enable power measurements only on full power bursts
- 7. Trace was allowed to stabilize
- 8. Spectrum analyzer's "Channel Power" function was used to compute the power by integrating the spectrum across the OBW of the signal

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup

#### Test Notes:

- 1. Conducted power measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 2. All other conducted power measurements are contained in the RF exposure report for this filing.

| FCC ID: A3LSMS908E          | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |  |
|-----------------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|--|--|
| Test Report S/N:            | Test Dates:                   | EUT Type:                                                | Page 12 of 85                     |  |  |
| 1M2202030011-03.A3L         | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 12 01 05                     |  |  |
| © 2022 PCTEST V3.0 1/6/2022 |                               |                                                          |                                   |  |  |



| Bandwidth | Modulation | Channel          | Frequency<br>[MHz] | RB<br>Size/Offset  | Conducted<br>Power [dBm] |
|-----------|------------|------------------|--------------------|--------------------|--------------------------|
|           |            | 509202           | 2546.0             | 1 / 204            | 23.61                    |
| 100 MHz   | π/2 BPSK   | 518598           | 2593.0             | 1 / 204            | 23.86                    |
|           |            | 528000           | 2640.0             | 1 / 204            | 24.10                    |
|           | QPSK       | 509202           | 2546.0             | 1 / 204            | 23.73                    |
| 10        |            | 518598           | 2593.0             | 1 / 204            | 23.98                    |
|           |            | 528000           | 2640.0             | 1 / 204            | 24.17                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 204            | 23.41                    |
|           |            | 508200           | 2541.0             | 1 / 183            | 24.01                    |
| N         | π/2 BPSK   | 518592           | 2593.0             | 1 / 183            | 24.09                    |
| Ĥ         | -          | 529002           | 2645.0             | 1 / 122            | 23.92                    |
| 90 MHz    | 0001/      | 508200           | 2541.0             | 1 / 183            | 23.72                    |
|           | QPSK       | 518592           | 2593.0             | 1 / 183            | 24.10                    |
|           | 40.0414    | 529002           | 2645.0             | 1 / 122            | 24.35                    |
|           | 16-QAM     | 518592           | 2593.0             | 1 / 183            | 23.56                    |
|           |            | 507204           | 2536.0             | 1 / 162            | 23.81                    |
| N         | π/2 BPSK   | 518598           | 2593.0             | 1 / 162            | 23.96                    |
| Ë         |            | 529998           | 2650.0             | 1 / 162            | 24.29                    |
| 80 MHz    | 0001/      | 507204           | 2536.0             | 1 / 162            | 23.56                    |
| 80        | QPSK       | 518598           | 2593.0             | 1 / 162            | 23.68                    |
|           | 10 0014    | 529998           | 2650.0             | 1 / 162<br>1 / 162 | 24.09                    |
|           | 16-QAM     | 518598<br>505200 | 2593.0             |                    | 22.84                    |
| 60 MHz    | π/2 BPSK   | 518598           | 2526.0<br>2593.0   | 1 / 121<br>1 / 121 | 23.10                    |
|           | T/2 BPSK   | 531996           | 2660.0             |                    | 23.34<br>23.77           |
|           | QPSK       | 505200           | 2526.0             | 1 / 121<br>1 / 121 | 23.62                    |
|           |            | -                | 2526.0             |                    |                          |
|           |            | 518598<br>531996 | 2660.0             | 1 / 121            | 23.98                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 121<br>1 / 121 | 24.42<br>23.32           |
|           | 10-02-101  | 504204           | 2521.0             | 1/99               | 23.73                    |
|           | π/2 BPSK   | 518598           | 2593.0             | 1/99               | 23.87                    |
| N         |            | 532998           | 2665.0             | 1 / 99             | 24.20                    |
| 50 MHz    | QPSK       | 504204           | 2521.0             | 1 / 99             | 23.67                    |
| 20        |            | 518598           | 2593.0             | 1 / 99             | 23.80                    |
|           |            | 532998           | 2665.0             | 1 / 99             | 24.01                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 99             | 22.92                    |
|           |            | 503202           | 2516.0             | 1 / 26             | 23.98                    |
|           | π/2 BPSK   | 518598           | 2593.0             | 1 / 26             | 24.17                    |
| 우         |            | 534000           | 2670.0             | 1 / 26             | 24.37                    |
| ž         |            | 503202           | 2516.0             | 1 / 26             | 23.80                    |
| 40        | QPSK       | 518598           | 2593.0             | 1 / 26             | 23.85                    |
|           |            | 534000           | 2670.0             | 1 / 26             | 24.29                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 26             | 23.05                    |
|           |            | 502203           | 2511.0             | 1 / 39             | 23.35                    |
|           | π/2 BPSK   | 518598           | 2593.0             | 1 / 39             | 23.64                    |
| Ŧ         |            | 534999           | 2675.0             | 1 / 39             | 24.39                    |
| 30 MHz    |            | 502203           | 2511.0             | 1 / 39             | 23.79                    |
| 30        | QPSK       | 518598           | 2593.0             | 1 / 39             | 23.92                    |
|           |            | 534999           | 2675.0             | 1 / 39             | 24.40                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 39             | 23.37                    |
|           |            | 501204           | 2506.0             | 1 / 25             | 23.30                    |
|           | π/2 BPSK   | 518598           | 2593.0             | 1 / 13             | 23.95                    |
| Hz        |            | 535998           | 2680.0             | 1 / 13             | 24.45                    |
| 20 MHz    |            | 501204           | 2506.0             | 1 / 25             | 23.69                    |
| 20        | QPSK       | 518598           | 2593.0             | 1 / 13             | 24.08                    |
|           |            | 535998           | 2680.0             | 1 / 13             | 24.32                    |
|           | 16-QAM     | 518598           | 2593.0             | 1 / 13             | 22.92                    |

Table 7-1. Conducted Power Output Data (n41 – ANT J)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 13 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 15 01 05                     |
| © 2022 PCTEST       | •                       | •                                                        | V3.0 1/6/2022                     |



| Bandwidth | Modulation | Channel | Frequency<br>[MHz] | RB<br>Size/Offset | Conducted<br>Power [dBm] |
|-----------|------------|---------|--------------------|-------------------|--------------------------|
|           |            | 509202  | 2546.0             | 1 / 136           | 22.23                    |
|           | π/2 BPSK   | 518598  | 2593.0             | 1 / 204           | 22.33                    |
| MHz       |            | 528000  | 2640.0             | 1 / 204           | 22.36                    |
| 0         |            | 509202  | 2546.0             | 1 / 136           | 22.27                    |
|           | QPSK       | 518598  | 2593.0             | 1 / 204           | 22.37                    |
|           |            | 528000  | 2640.0             | 1 / 204           | 22.36                    |
|           | 16-QAM     | 518598  | 2593.0             | 1 / 204           | 21.50                    |

Table 7-2. Conducted Power Output Data (n41 SRS2 – ANT B)

|  | Bandwidth | Modulation | Channel | Frequency<br>[MHz] | RB<br>Size/Offset | Conducted<br>Power [dBm] |
|--|-----------|------------|---------|--------------------|-------------------|--------------------------|
|  |           |            | 510000  | 2550.0             | 1 / 68            | 18.97                    |
|  | 100 MHz   | π/2 BPSK   | 518598  | 2593.0             | 1 / 68            | 18.40                    |
|  |           |            | 528000  | 2640.0             | 1 / 68            | 17.82                    |
|  |           |            | 510000  | 2550.0             | 1 / 68            | 18.99                    |
|  |           | QPSK       | 518598  | 2593.0             | 1 / 68            | 18.68                    |
|  |           |            | 528000  | 2640.0             | 1 / 68            | 18.13                    |
|  |           | 16-QAM     | 510000  | 2550.0             | 1 / 68            | 18.04                    |

Table 7-3. Conducted Power Output Data (n41 SRS3 – ANT E)

| Bandwidth | Modulation | Channel | Frequency<br>[MHz] | RB<br>Size/Offset | Conducted<br>Power [dBm] |
|-----------|------------|---------|--------------------|-------------------|--------------------------|
|           |            | 510000  | 2550.0             | 1 / 204           | 20.97                    |
| 100 MHz   | π/2 BPSK   | 518598  | 2593.0             | 1 / 204           | 21.00                    |
|           |            | 528000  | 2640.0             | 1 / 204           | Power [dBm] 20.97        |
|           | QPSK       | 510000  | 2550.0             | 1 / 204           | 21.32                    |
|           |            | 518598  | 2593.0             | 1 / 204           | 21.34                    |
|           |            | 528000  | 2640.0             | 1 / 204           | 21.44                    |
|           | 16-QAM     | 518598  | 2593.0             | 1 / 204           | 20.19                    |

Table 7-4. Conducted Power Output Data (n41 SRS4 – ANT D)

| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                                                | Dage 14 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                  | Portable Handset                                         | Page 14 of 85                     |
| © 2022 PCTEST       | •                                        |                                                          | V3.0 1/6/2022                     |



## 7.3 Occupied Bandwidth

#### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### **Test Procedure Used**

KDB 971168 D01 v03r01 - Section 4.2

#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\ge$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
  - 1-5% of the 99% occupied bandwidth observed in Step 7

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup

#### Test Notes

None.

| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                              | EUT Type:                                                | Page 15 of 85                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                  | Portable Handset                                         | Page 15 01 65                     |  |
| © 2022 PCTEST       | •                                        |                                                          | V3.0 1/6/2022                     |  |





Plot 7-5. Occupied Bandwidth Plot (NR Band n41 - 100MHz π/2 BPSK - Full RB - AntJ)



Plot 7-6. Occupied Bandwidth Plot (NR Band n41 - 100MHz QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Dage 16 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 16 of 85                     |
| © 2022 PCTEST       |                         | •                                                        |         | V3.0 1/6/2022                     |



| Eysight Spectrum Analyzer - Occupied BW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|-----------------|
| XX RL RF 50 Ω DC CORREC                 | SENSE:INT<br>Center Freg: 2.593000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | M Feb 17, 2022    | Trace/Detector  |
|                                         | Trig: Free Run Avg H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | old: 100/100                       |                   |                 |
| #IFGain:Low                             | #Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radio Dev                          | vice: BTS         |                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
| 10 dB/div Ref 40.00 dBm                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                  |                   |                 |
| Log<br>30.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
| 20.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   | Clear Write     |
| 10.0 mm.e                               | and the second and th | ~                                  |                   |                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
| 0.00                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   | Average         |
| -10.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   | Average         |
| -20.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " Wood the way all the approved by | mar A.            |                 |
| -30.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | and second second |                 |
| -40.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   | Max Hold        |
| -50.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
| Center 2.5930 GHz                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 3                             | 250.0 MHz         |                 |
| Res BW 2.4 MHz                          | #VBW 8 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Swe                                | eep 1 ms          | Min Hold        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | <u> </u>          | MILLHOID        |
| Occupied Bandwidth                      | Total Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.8 dBm                           |                   |                 |
| 97.758 M                                | H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                   | Detector        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   | Peak▶           |
| Transmit Freq Error -124.48             | kHz % of OBW Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wer 99.00 %                        |                   | Auto <u>Man</u> |
| x dB Bandwidth 103.3 I                  | MHz xdB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -26.00 dB                          |                   |                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                   |                 |
| MSG                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                             |                   |                 |

Plot 7-7. Occupied Bandwidth Plot (NR Band n41 - 100MHz 16-QAM - Full RB - AntJ)




Plot 7-8. Occupied Bandwidth Plot (NR Band n41 - 90MHz π/2 BPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Page 17 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Fage 17 01 05                     |
| © 2022 PCTEST       | •                                       | ·                                                        | V3.0 1/6/2022                     |



| 🔤 Keysight Spectrum Analyzer - Occupied | BW             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
|-----------------------------------------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------------------|
| <mark>(XI</mark> RL RF 50Ω DC           | CORREC         | SENSE:INT                  | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09:35:09 PM Feb<br>Radio Std: Nor |       | Trace/Detector    |
|                                         | Laper Tr       | ig: Free Run               | Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |       |                   |
|                                         | #IFGain:Low #A | tten: 20 dB                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radio Device: I                   | BTS   |                   |
|                                         |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| 10 dB/div Ref 40.00 dE                  | 3m             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| Log<br>30.0                             |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| 20.0                                    |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       | Clear Write       |
| 10.0                                    | monsola        | ware and the second second | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |       |                   |
| 0.00                                    |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| -10.0                                   |                |                            | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |       | Average           |
| -20.0                                   |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       | Average           |
| an automation in                        |                |                            | a state of the sta | man the other                     | ~m    |                   |
| -30.0                                   |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| -40.0                                   |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       | Max Hold          |
| -50.0                                   |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| Center 2.5930 GHz                       |                | I                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 225.0                        | 0 MHz |                   |
| Res BW 2.2 MHz                          |                | #VBW 8 MHz                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sweep                             |       | Min Hold          |
|                                         |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       | inititiona        |
| Occupied Bandwic                        |                | Total Po                   | ower 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l dBm                             |       |                   |
| 8                                       | 7.661 MHz      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       | Detector          |
| Tranomit Frag Error                     | -111.15 kHz    | % of OB                    | W Power 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.00 %                            |       | Peak►<br>Auto Man |
| Transmit Freq Error                     |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | í l   |                   |
| x dB Bandwidth                          | 92.98 MHz      | x dB                       | -26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 dB                             |       |                   |
|                                         |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
|                                         |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
|                                         |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |       |                   |
| MSG                                     |                |                            | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                 |       |                   |

Plot 7-9. Occupied Bandwidth Plot (NR Band n41 - 90MHz QPSK - Full RB - AntJ)



Plot 7-10. Occupied Bandwidth Plot (NR Band n41 - 90MHz 16-QAM - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Page 18 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Fage to 01 00                     |
| © 2022 PCTEST       |                                         |                                                          | V3.0 1/6/2022                     |



| Keysight Spectrum Analyzer - Occupied B | W           |                                   |                   |                             |                    |                  |
|-----------------------------------------|-------------|-----------------------------------|-------------------|-----------------------------|--------------------|------------------|
| <mark>(X</mark> RL RF 50Ω DC            | CORREC      | SENSE:INT<br>Center Freg: 2.59302 | ALIGN AUTO        | 09:36:11 PM<br>Radio Std: 1 |                    | Trace/Detector   |
|                                         | - <b>-</b>  | Trig: Free Run                    | Avg Hold: 100/100 |                             |                    |                  |
|                                         | #IFGain:Low | #Atten: 20 dB                     |                   | Radio Devid                 | e: BTS             |                  |
|                                         |             |                                   |                   |                             |                    |                  |
| 10 dB/div Ref 40.00 dBr                 | n           |                                   |                   |                             |                    |                  |
| Log<br>30.0                             |             |                                   |                   |                             |                    |                  |
| 20.0                                    |             |                                   |                   |                             |                    | Clear Write      |
|                                         | how         | mannen                            | homen             |                             |                    |                  |
| 10.0                                    |             |                                   |                   |                             |                    |                  |
| 0.00                                    |             |                                   |                   |                             |                    | •                |
| -10.0                                   |             |                                   |                   |                             |                    | Average          |
| -20.0                                   | hand        |                                   |                   |                             |                    |                  |
| -30.0                                   |             |                                   |                   | - marine                    | - Maria            |                  |
| -40.0                                   |             |                                   |                   |                             |                    | Max Hold         |
| -50.0                                   |             |                                   |                   |                             |                    |                  |
|                                         |             |                                   |                   | 0                           | 0-0 B4U            |                  |
| Center 2.5930 GHz<br>Res BW 1.8 MHz     |             | #VBW 6 MH:                        | 7                 |                             | 0.0 MHz<br>ep 1 ms |                  |
|                                         |             | #VDVV 014111                      | 2                 | James                       | sp Tins            | Min Hold         |
| Occupied Bandwid                        | th          | Total P                           | ower 31.          | 9 dBm                       |                    |                  |
|                                         | 7.170 MH    | _                                 |                   |                             |                    | Detecto          |
|                                         |             | 2                                 |                   |                             |                    | Detector<br>Peak |
| Transmit Freq Error                     | -68.796 kH  | z % of OE                         | SW Power 99       | 9.00 %                      |                    | Auto <u>Mar</u>  |
| x dB Bandwidth                          | 81.52 MF    | lz xdB                            | -26               | .00 dB                      |                    |                  |
|                                         | 0 113/2-101 |                                   |                   | .00 08                      |                    |                  |
|                                         |             |                                   |                   |                             |                    |                  |
|                                         |             |                                   |                   |                             |                    |                  |
|                                         |             |                                   |                   |                             |                    |                  |
| MSG                                     |             |                                   | STATU             | IS                          |                    |                  |

Plot 7-11. Occupied Bandwidth Plot (NR Band n41 - 80MHz π/2 BPSK - Full RB - AntJ)



Plot 7-12. Occupied Bandwidth Plot (NR Band n41 - 80MHz QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 19 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 19 01 05                     |
| © 2022 PCTEST       | •                       | •                                                        | V3.0 1/6/2022                     |



| Keysight Spectrum Analyzer - Occupied BV | V                |                                   |                     |                         |                  |       |            |
|------------------------------------------|------------------|-----------------------------------|---------------------|-------------------------|------------------|-------|------------|
| LXI RL RF 50Ω DC                         | CORREC           | SENSE:INT<br>Center Freg: 2.59302 | ALIGN AUT           | 09:36:41 P<br>Radio Std | M Feb 17, 2022   | Trace | /Detector  |
|                                          | - <b>-</b>       | Trig: Free Run                    | Avg Hold:>100/100   |                         |                  |       |            |
|                                          | #IFGain:Low      | #Atten: 20 dB                     |                     | Radio Dev               | ice: BTS         |       |            |
|                                          |                  |                                   |                     |                         |                  |       |            |
| 10 dB/div Ref 40.00 dBn                  | n                |                                   |                     |                         |                  |       |            |
| Log<br>30.0                              |                  |                                   |                     |                         |                  |       |            |
| 20.0                                     |                  |                                   |                     |                         |                  | С     | lear Write |
| 10.0                                     | manner           | when and the second second        | man with the second |                         |                  | _     |            |
| 0.00                                     |                  |                                   |                     |                         |                  |       |            |
|                                          |                  |                                   |                     |                         |                  |       | Average    |
| -10.0                                    |                  |                                   |                     |                         |                  |       | Average    |
| -20.0                                    | w <sup>rev</sup> |                                   |                     | www. www.               | The transfer the |       |            |
| -30.0 Vincentrantinger 40.00             |                  |                                   |                     |                         | - 19 M           |       |            |
| -40.0                                    |                  |                                   |                     |                         |                  |       | Max Hold   |
| -50.0                                    |                  |                                   |                     |                         |                  |       |            |
| Center 2.5930 GHz                        |                  |                                   |                     | Span 2                  | 00.0 MHz         |       |            |
| Res BW 1.8 MHz                           |                  | #VBW 6 MH                         | Z                   |                         | ep 1 ms          |       | Min Hold   |
|                                          |                  |                                   |                     |                         |                  |       | Millinoid  |
| Occupied Bandwidt                        | h                | Total P                           | ower 29             | .9 dBm                  |                  |       |            |
| 77                                       | 7.410 MH         | Z                                 |                     |                         |                  |       | Detector   |
|                                          |                  |                                   |                     |                         |                  |       | Peak►      |
| Transmit Freq Error                      | -94.952 kl       | HZ % of OI                        | BW Power            | 99.00 %                 |                  | Auto  | Man        |
| x dB Bandwidth                           | 82.16 MI         | Hz xdB                            | -2                  | 6.00 dB                 |                  |       |            |
|                                          |                  |                                   |                     |                         |                  |       |            |
|                                          |                  |                                   |                     |                         |                  |       |            |
|                                          |                  |                                   |                     |                         |                  |       |            |
| MSG                                      |                  |                                   | STA                 | TUS                     |                  |       |            |

Plot 7-13. Occupied Bandwidth Plot (NR Band n41 - 80MHz 16-QAM - Full RB - AntJ)



Plot 7-14. Occupied Bandwidth Plot (NR Band n41 - 60MHz π/2 BPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Poul to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                | Dage 20 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         | Page 20 of 85                     |  |
| © 2022 PCTEST       | •                            |                                                          | V3.0 1/6/2022                     |  |



| Keysight Spectrum Analyzer - Occupied BW |                                           |                                  |                 |                 |
|------------------------------------------|-------------------------------------------|----------------------------------|-----------------|-----------------|
| IXI RL RF 50 Ω DC CORREC                 | SENSE:INT<br>Center Freg: 2.593020000 GHz | ALIGN AUTO 09:37:26<br>Radio Sto | PM Feb 17, 2022 | Trace/Detector  |
|                                          | Trig: Free Run Avg Hold                   | : 100/100                        |                 |                 |
| #IFGain:Low                              | #Atten: 20 dB                             | Radio De                         | vice: BTS       |                 |
|                                          |                                           |                                  |                 |                 |
| 10 dB/div Ref 40.00 dBm                  |                                           |                                  |                 |                 |
| Log<br>30.0                              |                                           |                                  |                 |                 |
| 20.0                                     |                                           |                                  |                 | Clear Write     |
|                                          | and the south and the second              |                                  |                 |                 |
| 10.0                                     |                                           |                                  |                 |                 |
|                                          |                                           |                                  |                 | A.v.o.v.o.v.o.  |
| -10.0                                    |                                           | <b>1</b>                         |                 | Average         |
| -20.0<br>-30.0 ministration              |                                           | hand have the work               | Walsh war       |                 |
| -30.0                                    |                                           |                                  |                 |                 |
| -40.0                                    |                                           |                                  |                 | Max Hold        |
| -50.0                                    |                                           |                                  |                 |                 |
| Center 2.59302 GHz                       |                                           |                                  | 150.0 MHz       |                 |
| Res BW 1.5 MHz                           | #VBW 5 MHz                                |                                  | eep 1 ms        | Min Hala        |
|                                          |                                           |                                  | cob             | Min Hold        |
| Occupied Bandwidth                       | Total Power                               | 30.0 dBm                         |                 |                 |
| 58.074 MI                                | 7                                         |                                  |                 | Detector        |
|                                          | 12-                                       |                                  |                 | Peak►           |
| Transmit Freq Error -41.554              | (Hz % of OBW Pow                          | er 99.00 %                       |                 | Auto <u>Man</u> |
| x dB Bandwidth 61.87 N                   | IHz x dB                                  | -26.00 dB                        |                 |                 |
|                                          |                                           |                                  |                 |                 |
|                                          |                                           |                                  |                 |                 |
|                                          |                                           |                                  |                 |                 |
| MSG                                      |                                           | STATUS                           |                 |                 |

Plot 7-15. Occupied Bandwidth Plot (NR Band n41 - 60MHz QPSK - Full RB - AntJ)



Plot 7-16. Occupied Bandwidth Plot (NR Band n41 - 60MHz 16-QAM - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Poud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                | Dage 21 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         | Page 21 of 85                     |  |
| © 2022 PCTEST       | •                            | •                                                        | V3.0 1/6/2022                     |  |



| Keysight Spectrum Analyzer -                       | Occupied BW | V                  |                                                                      |                                             |                                                                  |                 |
|----------------------------------------------------|-------------|--------------------|----------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|-----------------|
| RL RF 5                                            | DΩ DC       | CORREC<br>↔        | SENSE:INT<br>Center Freq: 2.59302<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO<br>0000 GHz<br>Avg Hold: 100/100 | 09:39:40 PM Feb 17, 2022<br>Radio Std: None<br>Radio Device: BTS | Trace/Detector  |
| . <b>og</b><br>30.0                                | 0.00 dBn    |                    |                                                                      |                                             |                                                                  | Clear Writ      |
| 20.0                                               |             |                    |                                                                      |                                             |                                                                  | Averag          |
| 0.0                                                |             |                    |                                                                      |                                             |                                                                  | Max Ho          |
| enter 2.59302 GHz<br>es BW 1.2 MHz<br>Occupied Bar |             | h                  | #VBW 4 MH:<br>Total P                                                |                                             | Span 125.0 MHz<br>Sweep 1 ms<br>2 dBm                            | Min Ho          |
|                                                    | 45          | 5.850 M            | Hz                                                                   |                                             |                                                                  | Detect<br>Peal  |
| Transmit Freq B<br>x dB Bandwidth                  |             | -883.86<br>49.06 M |                                                                      |                                             | 0.00 %<br>00 dB                                                  | Auto <u>M</u> i |
| G                                                  |             |                    |                                                                      | STATU                                       | 3                                                                |                 |

Plot 7-17. Occupied Bandwidth Plot (NR Band n41 - 50MHz π/2 BPSK - Full RB - AntJ)




Plot 7-18. Occupied Bandwidth Plot (NR Band n41 - 50MHz QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Dage 22 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Page 22 of 85                     |  |
| © 2022 PCTEST       | •                                       | ·                                                        | V3.0 1/6/2022                     |  |



| 🔤 Keysight Spectrum Analyzer - Occup | •            |                                       |                   |                                  |                 |               | ×            |
|--------------------------------------|--------------|---------------------------------------|-------------------|----------------------------------|-----------------|---------------|--------------|
| <b>LXI</b> R L RF 50 Ω               | DC CORREC    | SENSE:INT<br>Center Freg: 2.59302     | ALIGN AUTO        | 09:40:13 PM Feb<br>Radio Std: No |                 | Trace/Detecto | or           |
|                                      | #IEGain:Low  |                                       | Avg Hold: 100/100 | Radio Device:                    |                 |               |              |
|                                      | #IFGain:Low  | #Atten: 30 ab                         |                   | Raulo Device.                    |                 |               |              |
| 10 dB/div Ref 40.00                  | dBm          |                                       |                   |                                  |                 |               |              |
| Log<br>30.0                          |              |                                       |                   |                                  |                 |               |              |
| 20.0                                 |              |                                       |                   |                                  |                 | Clear W       | rite         |
| 10.0                                 | monte        | ₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ | landary           |                                  |                 |               |              |
| 0.00                                 |              |                                       |                   |                                  |                 |               |              |
| -10.0                                |              |                                       |                   |                                  |                 | Avera         | age          |
| -20.0                                | ~ market     |                                       | - Marine          | when the second                  |                 |               |              |
| -30.0 - Marine Marine                |              |                                       |                   |                                  | - and and and a |               |              |
| -40.0                                |              |                                       |                   |                                  |                 | MaxH          | lold         |
| -50.0                                |              |                                       |                   |                                  |                 |               |              |
| Center 2.59302 GHz                   |              |                                       |                   | Span 125.                        | 0.MHz           |               |              |
| Res BW 1.2 MHz                       |              | #VBW 4 MH:                            | 2                 | Sweep                            | 1 ms            | Min H         | blo          |
|                                      |              | Total P                               | 20.0              | dBm                              |                 |               |              |
| Occupied Bandw                       |              |                                       | ower 29.9         | abm                              |                 |               |              |
|                                      | 47.762 MH    | Z                                     |                   |                                  |                 | Detec         | ctor<br>ak ▶ |
| Transmit Freq Erro                   | or 36.789 kl | Hz % of OE                            | 3W Power 99       | .00 %                            |                 |               | Man          |
| x dB Bandwidth                       | 50.81 MI     | Hz xdB                                | -26.              | 00 dB                            |                 |               |              |
|                                      |              |                                       |                   |                                  |                 |               |              |
|                                      |              |                                       |                   |                                  |                 |               |              |
|                                      |              |                                       |                   |                                  |                 |               |              |
| MSG                                  |              |                                       | STATUS            | 3                                |                 |               |              |

Plot 7-19. Occupied Bandwidth Plot (NR Band n41 - 50MHz 16-QAM - Full RB - AntJ)



Plot 7-20. Occupied Bandwidth Plot (NR Band n41 - 40MHz π/2 BPSK - Full RB - AntJ)

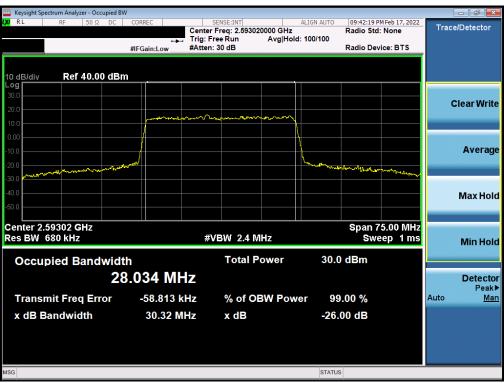
| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Dage 22 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Page 23 of 85                     |  |
| © 2022 PCTEST       | •                                       | ·                                                        | V3.0 1/6/2022                     |  |



| 🔤 Keysight Spectrum Analyzer - Occupied B |             |                                   |                   |                                   |       |         |           |
|-------------------------------------------|-------------|-----------------------------------|-------------------|-----------------------------------|-------|---------|-----------|
| LXI RL RF 50Ω DC                          | CORREC      | SENSE:INT<br>Center Freq: 2.59302 | ALIGN AUTO        | 09:41:13 PM Feb<br>Radio Std: Nor |       | Trace/D | etector   |
|                                           | •••         | Trig: Free Run                    | Avg Hold: 100/100 |                                   |       |         |           |
|                                           | #IFGain:Low | #Atten: 30 dB                     |                   | Radio Device:                     | BTS   |         |           |
|                                           |             |                                   |                   |                                   |       |         |           |
| 10 dB/div Ref 40.00 dBi                   | m           |                                   |                   |                                   |       |         |           |
| 30.0                                      |             |                                   |                   |                                   |       |         |           |
| 20.0                                      |             |                                   |                   |                                   |       | Cle     | ar Write  |
| 10.0                                      | mennen      | man marine and a man              | money             |                                   |       |         |           |
| 0.00                                      | ļ i         |                                   |                   |                                   |       |         |           |
| -10.0                                     |             |                                   |                   |                                   |       |         | Average   |
|                                           |             |                                   |                   |                                   |       |         | Average   |
| -20.0                                     | - 47        |                                   |                   | mash and water                    | when  |         |           |
| -30.0                                     |             |                                   |                   |                                   |       |         |           |
| -40.0                                     |             |                                   |                   |                                   |       | N       | lax Hold  |
| -50.0                                     |             |                                   |                   |                                   |       |         |           |
| Center 2.59302 GHz                        |             |                                   |                   | Span 100.                         | 0 MHz |         |           |
| Res BW 910 kHz                            |             | #VBW 3 MH:                        | Z                 | Sweep                             | 1 ms  | Ν       | /lin Hold |
|                                           |             |                                   |                   |                                   |       |         | intriord  |
| Occupied Bandwid                          | th          | Total P                           | ower 30.3         | dBm                               |       |         |           |
| 3                                         | 7.997 MH    | Z                                 |                   |                                   |       | [       | Detector  |
|                                           |             |                                   |                   |                                   |       |         | Peak▶     |
| Transmit Freq Error                       | -64.138 kH  | Iz % of OE                        | 3W Power 99       | .00 %                             |       | Auto    | Man       |
| x dB Bandwidth                            | 40.92 MF    | lz xdB                            | -26.              | 00 dB                             |       |         |           |
|                                           |             |                                   |                   |                                   |       |         |           |
|                                           |             |                                   |                   |                                   |       |         |           |
|                                           |             |                                   |                   |                                   |       |         |           |
| MSG                                       |             |                                   | STATUS            | 3                                 |       |         |           |

Plot 7-21. Occupied Bandwidth Plot (NR Band n41 - 40MHz QPSK - Full RB - AntJ)




Plot 7-22. Occupied Bandwidth Plot (NR Band n41 - 40MHz 16-QAM - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Poud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                | Dage 24 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         | Page 24 of 85                     |  |
| © 2022 PCTEST       | •                            | •                                                        | V3.0 1/6/2022                     |  |



| Keysight Spectrum Analyzer - Oc      |       |                      |                                                                       |                                             |                                                                  |                 |
|--------------------------------------|-------|----------------------|-----------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|-----------------|
| α RL RF 50 Ω                         |       | RREC                 | SENSE:INT<br>Center Freq: 2.593020<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO<br>0000 GHz<br>Avg Hold: 100/100 | 09:42:00 PM Feb 17, 2022<br>Radio Std: None<br>Radio Device: BTS | Trace/Detector  |
| 10 dB/div Ref 40.0                   | 0 dBm |                      |                                                                       |                                             |                                                                  | Clear Writ      |
| 20.0                                 |       |                      | ······                                                                |                                             |                                                                  | Averag          |
| 20.0<br>30.0<br>40.0<br>50.0         |       |                      |                                                                       |                                             |                                                                  | Max Hol         |
| Center 2.59302 GHz<br>Les BW 680 kHz | width |                      | #VBW 2.4 M                                                            |                                             | Span 75.00 MHz<br>Sweep 1 ms<br>3 dBm                            | Min Hol         |
|                                      | 27.0  | 04 MI                | łz                                                                    |                                             |                                                                  | Detecto<br>Peak |
| Transmit Freq Er<br>x dB Bandwidth   | ror   | -518.80 k<br>29.32 M |                                                                       |                                             | 0.00 %<br>00 dB                                                  | Auto <u>Ma</u>  |
| G                                    |       |                      |                                                                       | STATU                                       | 5                                                                |                 |

Plot 7-23. Occupied Bandwidth Plot (NR Band n41 - 30MHz π/2 BPSK - Full RB - AntJ)



Plot 7-24. Occupied Bandwidth Plot (NR Band n41 - 30MHz QPSK - Full RB - AntJ)

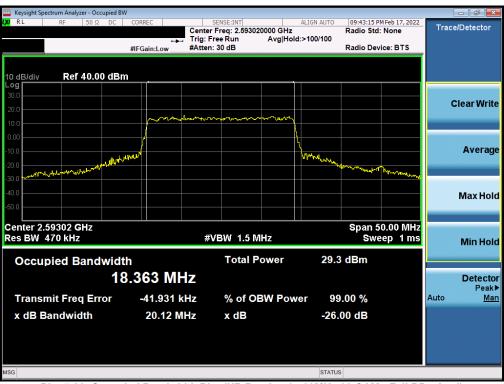
| FCC ID: A3LSMS908E  | Poud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                | Page 25 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         | Page 25 01 65                     |
| © 2022 PCTEST       | •                            | •                                                        | V3.0 1/6/2022                     |



| 🔤 Keysight Spectrum Analyzer - Occupi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        | - 6 -           |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|------------------------|-----------------|
| <mark>(X)</mark> RL RF 50Ω [          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT<br>ter Freg: 2.593020000 GHz              | ALIGN AUTO 09:42:27<br>Radio St | PM Feb 17, 2022        | Trace/Detector  |
|                                       | +++ Trig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j: Free Run Avg Holo                                | d: 100/100                      |                        |                 |
|                                       | #IFGain:Low #Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ten: 30 dB                                          | Radio De                        | evice: BTS             |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
| 10 dB/div Ref 40.00 c                 | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                 |                        |                 |
| Log<br>30.0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
| 20.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        | Clear Write     |
|                                       | mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marina Marina and and and and and and and and and a |                                 |                        |                 |
| 10.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
| 0.00                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | }                               |                        | •               |
| -10.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | tu,                             |                        | Average         |
| -20.0                                 | Agricognical and a second and a |                                                     | "Much on the set of the         | 1 marter allow         |                 |
| -30.0 -30.0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 | Weiter Levin           |                 |
| -40.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        | Max Hold        |
| -50.0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
| Center 2.59302 GHz                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | Enon                            | 75 00 MILI-            |                 |
| Res BW 680 kHz                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW 2.4 MHz                                        |                                 | 75.00 MHz<br>reep 1 ms |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 | aob 1 mo               | Min Hold        |
| Occupied Bandw                        | idth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Power                                         | 29.8 dBm                        |                        |                 |
|                                       | 27.955 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                 |                        | Detector        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        | Peak►           |
| Transmit Freq Error                   | -43.510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % of OBW Pow                                        | ver 99.00 %                     |                        | Auto <u>Man</u> |
| x dB Bandwidth                        | 30.21 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x dB                                                | -26.00 dB                       |                        |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | Lotoo al                        |                        |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                 |                        |                 |
| MSG                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | STATUS                          |                        |                 |

Plot 7-25. Occupied Bandwidth Plot (NR Band n41 - 30MHz 16-QAM - Full RB - AntJ)




Plot 7-26. Occupied Bandwidth Plot (NR Band n41 - 20MHz π/2 BPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Dage 26 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Page 26 of 85                     |  |
| © 2022 PCTEST       | -                                       |                                                          | V3.0 1/6/2022                     |  |



| 🔤 Keysight Spectrum Analyzer - Occupied B | W                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------------|---------------------|
| KI RE 50Ω DC                              | CORREC                                                                                                           | SENSE:INT<br>er Freg: 2.5930200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09:43:29 PM     |         | Trace/Dete | ctor                |
|                                           | Trig:                                                                                                            | Free Run /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radio Stu. I    | vone    |            |                     |
|                                           | #IFGain:Low #Atte                                                                                                | en: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radio Devic     | e: BTS  |            |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
| 10 dB/div Ref 40.00 dBr                   | m                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
| Log<br>30.0                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         | Clear      | Write               |
| 20.0                                      | and a start and a start and a start a st | er and a state of the state of | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |         |            |                     |
| 10.0                                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
| 0.00                                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |            |                     |
| -10.0                                     | السليم                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - mun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |         | Ave        | erage               |
| -20.0                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar and a second state of the second state of | war and a start | o       |            |                     |
| -30.0                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Colone  |            |                     |
| -40.0                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         | Max        | Hold                |
| -50.0                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         | IVIAX      |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
| Center 2.59302 GHz                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Span 50         |         |            |                     |
| Res BW 470 kHz                            |                                                                                                                  | #VBW 1.5 MH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Swee            | ep 1 ms | Min        | Hold                |
| Occurried Denducid                        |                                                                                                                  | Total Pov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vor 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBm             |         |            |                     |
| Occupied Bandwid                          |                                                                                                                  | Total Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ubm             |         |            |                     |
| 1                                         | 8.358 MHz                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            | ector               |
| Transmit Freq Error                       | -41.207 kHz                                                                                                      | % of OBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V Power 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .00 %           |         | Auto       | Peak▶<br><u>Man</u> |
| x dB Bandwidth                            | 20.97 MHz                                                                                                        | x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 dB           |         |            |                     |
|                                           | 20.97 11112                                                                                                      | хuв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JU UB           |         |            |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
|                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |            |                     |
| MSG                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         |            |                     |

Plot 7-27. Occupied Bandwidth Plot (NR Band n41 - 20MHz QPSK - Full RB - AntJ)



Plot 7-28. Occupied Bandwidth Plot (NR Band n41 - 20MHz 16-QAM - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Poud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                | Page 27 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         | Fage 27 01 05                     |
| © 2022 PCTEST       | •                            | •                                                        | V3.0 1/6/2022                     |



## 7.4 Spurious and Harmonic Emissions at Antenna Terminal

#### **Test Overview**

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

# The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts.

For Band 41, the minimum permissible attenuation level of any spurious emission is 55 + 10log<sub>10</sub>(*P*<sub>[Watts]</sub>).

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

#### Test Setup

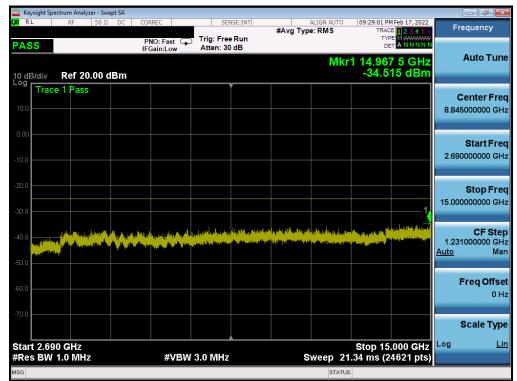
The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

#### Test Notes

- 1. Per Part 27, RSS-195 and RSS-199, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Dago 29 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 28 of 85                     |
| © 2022 PCTEST       | ·                       | ·                                                        |         | V3.0 1/6/2022                     |

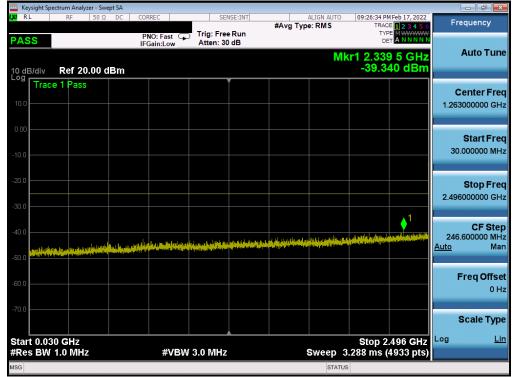


## NR Band n41 – AntJ

|                     | Spectrum Analy |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           | _           |            |
|---------------------|----------------|---------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------------------------|---------------------|--------------------------|------------------|-------------------------------------------|-------------|------------|
| <mark>0</mark> RL   | RF             | 50 Ω    | DC | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | SEN                     | ISE:INT                | #Avg Typ            | ALIGN AUTO               |                  | M Feb 17, 2022                            | F           | requency   |
| PASS                |                |         |    | PNO: Fast<br>IFGain:Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Trig: Free<br>Atten: 30 |                        | #Avg iyp            | e: RIVIS                 | TY               | CE 1 2 3 4 5 6<br>PE MWWWW<br>A N N N N N |             |            |
| 10 dB/div           | Ref 20         | ).00 dE | 3m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     | Mk                       | r1 2.40<br>-38.8 | 4 6 GHz<br>66 dBm                         |             | Auto Tu    |
| - <sup>og</sup> Tra | ice 1 Pass     |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | ,                       |                        |                     |                          |                  |                                           |             |            |
| 40.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | Center Fi  |
| 10.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           | 1.25        | 6000000 G  |
| 0.00                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             |            |
| 0.00                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | Start Fr   |
| 10.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           | 30          | 0.000000 N |
| 10.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             |            |
| 20.0 ——             |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | _          |
| -20.0               |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | Stop F     |
| 30.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           | 2.47        | 0000000 0  |
| -30.0               |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  | .1                                        |             |            |
| 40.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | CF St      |
| 40.0                |                |         |    | and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hann Jur.      | فانقانا والعريب         | أفيلغيك ومتلاقها       |                     | of the state of the      | and an aider the |                                           |             | 4.000000 N |
| 50.0 <b>1111</b>    |                |         |    | A second s | Milling of the | الأوساعين ويعالمه       | and the set of the set | na palatijatijatije | date limites e. f. f. r. |                  |                                           | <u>Auto</u> | N          |
| 0.0                 |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             |            |
| 60.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | Freq Off   |
| 00.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | 0          |
| 70.0                |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             |            |
|                     |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             | Scale Ty   |
|                     |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          |                  |                                           |             |            |
|                     | )30 GHz        |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     |                          | Stop 2           | .470 GHz                                  | Log         |            |
| ¢Res BV             | N 1.0 MHz      | Z       |    | #\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /BW :          | 3.0 MHz                 |                        |                     | Sweep 3                  | .260 ms          | 4891 pts)                                 |             |            |
| ISG                 |                |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |                        |                     | STATUS                   | 3                |                                           |             |            |

Plot 7-29. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntJ)




Plot 7-30. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntJ)

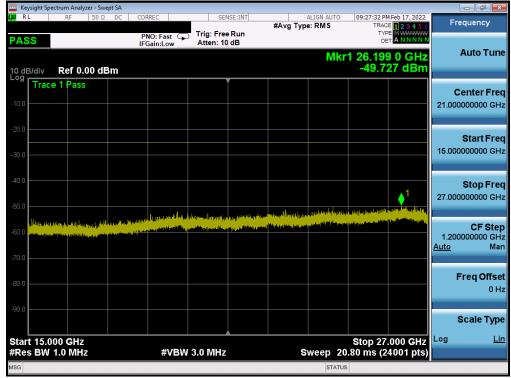
| FCC ID: A3LSMS908E  | PCTEST<br>Proad to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Page 29 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 29 01 65                     |
| © 2022 PCTEST       | •                                       | •                                                        |         | V3.0 1/6/2022                     |



|                              | ht Spectrum Anal       |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             | - 6             |
|------------------------------|------------------------|----------|-------------------|--------------------------|------------------------------------------|--------------------|------------------------------------------|---------------------|--------------------------|-----------------------------------|-------------|-----------------|
| 🗶 RL                         | RF                     | 50 Ω     | DC C              | DRREC                    |                                          | ISE:INT            | #Avg Ty                                  | ALIGN AUT           | TRA                      | PM Feb 17, 2022<br>CE 1 2 3 4 5 6 | Fre         | quency          |
| PASS                         |                        |          |                   | PNO: Fast 🖵<br>FGain:Low | Trig: Free<br>Atten: 10                  |                    |                                          |                     | C                        |                                   |             |                 |
|                              |                        |          |                   |                          |                                          |                    |                                          | М                   | kr1 26.05                | 1 5 GHz<br>27 dBm                 |             | Auto Tun        |
| 10 dB/di<br><sup>Log</sup> 🖵 | iv Ref 0<br>race 1 Pas | .00 dBr  | n                 |                          |                                          |                    |                                          |                     | -49.7                    |                                   |             |                 |
|                              | race i Pas             | s        |                   |                          |                                          |                    |                                          |                     |                          |                                   |             | enter Fre       |
| -10.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | 21.000      | 000000 GH       |
| -20.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             |                 |
| _                            |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             | Start Fre       |
| -30.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | 15.000      | 000000 GH       |
| -40.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             |                 |
| -40.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          | <u>^1</u>                         | 07.000      | Stop Fre        |
| -50.0                        |                        |          |                   |                          |                                          |                    |                                          | 1 1                 | المعربة والمراجع المراجع |                                   | 27.000      | 000000 GF       |
|                              |                        | ويعلمونه | րյեւպետես         |                          | an ang ang ang ang ang ang ang ang ang a | Allen and a second | n an | All Provide Streets |                          | and the stationard states have    |             | CF Ste          |
| -60.0                        |                        |          | گەللەر ھېچە لەر ب |                          |                                          |                    |                                          |                     |                          |                                   |             | 000000 GI       |
| -70.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | <u>Auto</u> | Ma              |
|                              |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | _           |                 |
| -80.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | F           | req Offs)<br>۱۰ |
|                              |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             |                 |
| -90.0                        |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   | 5           | Scale Typ       |
|                              |                        |          |                   |                          |                                          |                    |                                          |                     |                          |                                   |             | L               |
|                              | 5.000 GHz<br>3W 1.0 MH |          |                   | #VBW                     | 3.0 MHz                                  |                    | \$                                       | Sweep               | 20.80 ms (2              | .000 0112                         | LUg         | 5               |
| ISG                          |                        |          |                   |                          |                                          |                    |                                          |                     | TUS                      |                                   |             |                 |

Plot 7-31. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntJ)




Plot 7-32. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntJ)

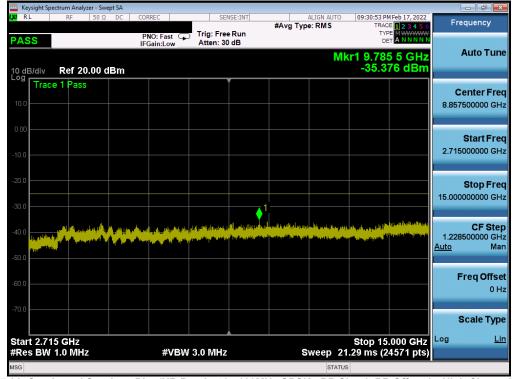
| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be point of Solement | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dage 20 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 30 of 85                     |
| © 2022 PCTEST       | ·                                       | ·                                                        |         | V3.0 1/6/2022                     |



| Keysight S<br>RL | Spectrum Analy:<br>RF |      |    | CORREC           | 0.00                           | ICT.INT                             |                                        |                                            | 00.27.00 0                 | M Feb 17 2022                    | l           |                            |
|------------------|-----------------------|------|----|------------------|--------------------------------|-------------------------------------|----------------------------------------|--------------------------------------------|----------------------------|----------------------------------|-------------|----------------------------|
| V KL             | KF                    | 50 Ω | DC | CORREC           | SEI                            | ISE:INT                             | #Avg Typ                               | ALIGN AUTO<br>e: RMS                       | TRA                        | M Feb 17, 2022<br>CE 1 2 3 4 5 6 | Fre         | quency                     |
| PASS             |                       |      |    | PNO: Fast 🖵      | Trig: Free<br>Atten: 30        |                                     |                                        |                                            | TY<br>D                    | PE MWWWWW<br>ET A N N N N N      |             |                            |
|                  |                       |      |    |                  |                                |                                     |                                        | Mk                                         | r1 14.21                   | 0 0 GHz                          |             | Auto Tur                   |
| 0 dB/div         |                       |      | Вm |                  |                                |                                     |                                        |                                            | -34.9                      | 54 dBm                           |             |                            |
| Tra              | ice 1 Pass            |      |    |                  |                                |                                     |                                        |                                            |                            |                                  | с           | enter Fr                   |
| 10.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | 000000 G                   |
|                  |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             |                            |
| 0.00             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | Start Fr                   |
| 10.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | 000000 G                   |
| 10.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             |                            |
| 20.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | Oton Er                    |
|                  |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | <b>Stop Fr</b><br>000000 G |
| 30.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            | <b>1</b>                         | 10.000      |                            |
|                  |                       | 1    |    | 1                |                                | ويتلاز وأخره وبتله التأو            | ورياس المتلقان ووروا والا              |                                            | ala peter ta constratività | in the state of the state        |             | CF St                      |
| 40.0             |                       |      |    |                  | A Reflect of a local sector of | رد در چې د د د<br>الطور محدومات الل | a na anna anna anna anna anna anna ann | na na na series<br>Print de la composition | a the set of the second    | and a state of the second        | 1.231       | 000000 G                   |
| 50.0             |                       |      |    | - <b>1</b> 41. 4 | "                              |                                     |                                        |                                            |                            |                                  | <u>Auto</u> | M                          |
| 50.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             |                            |
| 60.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  | F           | req Offs                   |
|                  |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             | 0                          |
| 70.0             |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  |             |                            |
|                  |                       |      |    |                  |                                |                                     |                                        |                                            |                            |                                  | S           | cale Ty                    |
| Start 2.6        | 90 GHz                |      |    |                  |                                |                                     |                                        |                                            | Stop 15                    | 5.000 GHz                        | Log         | <u>l</u>                   |
|                  | V 1.0 MHz             | Z    |    | #VBW             | 3.0 MHz                        |                                     | s                                      | weep 2                                     | 1.34 ms (2                 | 24621 pts)                       |             |                            |
| ISG              |                       |      |    |                  |                                |                                     |                                        | STAT                                       | us                         |                                  |             |                            |

Plot 7-33. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntJ)




Plot 7-34. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 31 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage ST 01 05                     |
| © 2022 PCTEST       |                         |                                                          | V3.0 1/6/2022                     |



| RL                   | ectrum Analy<br>RF | 2er - 3we            |         | CORREC                      | 0.00                                                                                                             | ISE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | ALIGN AUTO | 00.20.24 0        | 4 Feb 17, 2022        |                     |               |
|----------------------|--------------------|----------------------|---------|-----------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------------|-----------------------|---------------------|---------------|
| RL                   | KF                 | 50 Ω                 | DC      | CORREC                      | SEI                                                                                                              | ISE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #Avg Typ            |            |                   | E 1 2 3 4 5 6         | Fre                 | equency       |
| PASS                 |                    |                      |         | PNO: Fast 🖵<br>IFGain:Low   | Trig: Free<br>Atten: 30                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • //                |            | TYP               |                       |                     |               |
| 0 dB/div             | Ref 20             | ).00 d               | Bm      |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | M          | (r1 2.41<br>-39.4 | 15 GHz<br>10 dBm      |                     | Auto Tui      |
| .od                  | e 1 Pass           |                      |         |                             |                                                                                                                  | í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |            |                   |                       |                     |               |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     | enter Fr      |
| 10.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       | 1.263               | 000000 G      |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     |               |
| ).00                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     | Start Fr      |
| 10.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       | 30.                 | 000000 N      |
| 10.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     |               |
| 20.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     |               |
| .0.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     | Stop Fr       |
| 30.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       | 2.496               | 000000 G      |
| .0.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   | .1                    |                     |               |
| 40.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   | <b>•</b>              |                     | CF St         |
| .0.0                 |                    | and the second       | . Letak |                             | and the state of the state                                                                                       | of the section of the | and a little of all |            |                   |                       | 246.<br><u>Auto</u> | 600000 M<br>N |
|                      |                    | in the second second |         | A REAL PROPERTY AND INCOME. | and the second | فنقد ويقافه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |            |                   |                       | Auto                | IN IN         |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     |               |
| 50.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       | F                   | req Offs      |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     | 0             |
| 70.0                 |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       |                     |               |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                   |                       | \$                  | Scale Ty      |
|                      |                    |                      |         |                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            | 01                |                       | Log                 |               |
| itart 0.03<br>Res BW |                    | 7                    |         | #\/B\/                      | 3.0 MHz                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Sween 3    | Stop 2            | .496 GHz<br>4933 pts) | 209                 | -             |
| 1111                 | THU INITIA         | -                    |         | # V D VV                    | <b>3</b> .0 WH12                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | oweeh -    | 1200 1115         | rada pis)             |                     |               |

Plot 7-35. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntJ)



Plot 7-36. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntJ)

| FCC ID: A3LSMS908E  | Poud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                 | EUT Type:                                                | Page 32 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022     | Portable Handset                                         | Fage 52 01 65                     |
| © 2022 PCTEST       |                             |                                                          | V3.0 1/6/2022                     |



|                      | pectrum Analy           |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   | _                   |                   |
|----------------------|-------------------------|---------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|------------|-------------------------------------------------|-------------------|---------------------|-------------------|
| L <mark>XI</mark> RL | RF                      | 50 Ω          | DC          | CORREC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEI                                                          | ISE:INT                                           | #Avg Ty                                    | ALIGN AUTO |                                                 | M Feb 17, 2022    | Fr                  | equency           |
| PASS                 |                         |               |             | PNO: F<br>IFGain:l | ast 🖵<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trig: Free<br>Atten: 10                                      |                                                   |                                            |            | TYI<br>DI                                       |                   |                     |                   |
| 10 dB/div            | Ref 0.                  | 00 dBi        | m           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            | Mk         | r1 26.28<br>-49.4                               | 5 5 GHz<br>82 dBm |                     | Auto Tune         |
| Tra                  | ce 1 Pass               |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                        |                                                   |                                            |            |                                                 |                   |                     | enter Fred        |
| -10.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   | 21.00               | 0000000 GH:       |
| -20.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   |                     | Start Free        |
| -30.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   | 15.00               | 0000000 GH2       |
| -40.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   |                     | Stop Free         |
| -50.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            | ang a san ang ang ang ang ang ang ang ang ang a |                   | 27.00               | 0000000 GH:       |
|                      | an tili anna dir ay faa | and pressions | njiliorite  | Legender Hare der  | and the second s | ngali <sup>an</sup> Anggangan Mala<br>Mananaka di Sanaharaka | a J <sub>al</sub> Piter Alaph<br>Nacional de Cara | agian <mark>i ana kabuna dina kab</mark> u |            |                                                 | and the second    |                     | CF Ster           |
| -60.0                | llee Ritche open when   | Lang Sile     | فالاختلادية |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   | 1.20<br><u>Auto</u> | 0000000 GH<br>Mai |
|                      |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   |                     | Freq Offse        |
| -80.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   |                     | 0 H               |
| -90.0                |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                   |                                            |            |                                                 |                   |                     | Scale Type        |
|                      | 000 GHz<br>/ 1.0 MHz    |               |             |                    | #\/B\\(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0 MHz                                                      |                                                   |                                            | Sween 2    | Stop 27<br>0.80 ms (2                           | .000 GHZ          | Log                 | Lir               |
| MSG                  |                         |               |             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0 WH12                                                     |                                                   |                                            | STAT       |                                                 | actor proj        |                     |                   |

Plot 7-37. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntJ)

| FCC ID: A3LSMS908E  | Proud to be post of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Dogo 22 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Page 33 of 85                     |
| © 2022 PCTEST       | •                             | ·                                                        | V3.0 1/6/2022                     |

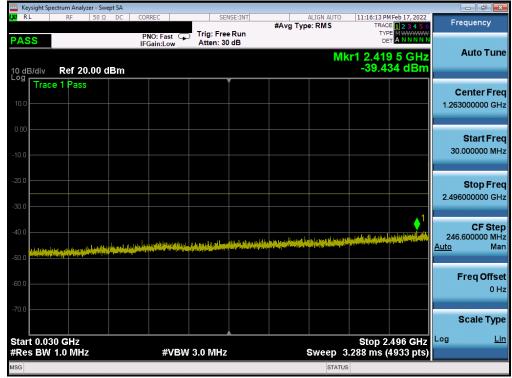


## NR Band n41 SRS2 – AntB

|                  | Spectrum Analy       |                      |             |                                |          |                 |                                                                                                                   |          |          |
|------------------|----------------------|----------------------|-------------|--------------------------------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------|----------|----------|
| XI RL            | RF                   | 50 Ω D0              | CORREC      | SENSE:IN                       | #Avg Typ | ALIGN AUTO      | 11:17:30 PM Feb 17, 20<br>TRACE 1 2 3 4                                                                           | Fre      | quency   |
| PASS             |                      |                      | PNO: Fast G | Trig: Free Run<br>Atten: 30 dB | 1        |                 | DET A N N N                                                                                                       | I N      |          |
|                  |                      |                      |             |                                |          | M               | (r1 2.470 0 GF                                                                                                    | <b>Z</b> | Auto Tui |
| 10 dB/div<br>Log |                      | .00 dBn              | 1           |                                |          |                 | -39.637 dB                                                                                                        | n        |          |
| Tra              | ice 1 Pass           |                      |             |                                |          |                 |                                                                                                                   | Ce       | enter Fr |
| 10.0             |                      |                      |             |                                |          |                 |                                                                                                                   | 1.2500   | 000000   |
| 0.00             |                      |                      |             |                                |          |                 |                                                                                                                   |          |          |
| 0.00             |                      |                      |             |                                |          |                 |                                                                                                                   |          | Start F  |
| 10.0             |                      |                      |             |                                |          |                 |                                                                                                                   | 30.0     | 00000    |
|                  |                      |                      |             |                                |          |                 |                                                                                                                   |          |          |
| 20.0             |                      |                      |             |                                |          |                 |                                                                                                                   |          | Stop F   |
| 30.0             |                      |                      |             |                                |          |                 |                                                                                                                   | 2.4700   | 000000   |
|                  |                      |                      |             |                                |          |                 |                                                                                                                   | 1        |          |
| 40.0             |                      |                      |             |                                |          | about the state | والمراجع والمحمد والمراجع والمراجع والمحمد والمراجع والمحمد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع | 244.0    | CF S     |
| al de            |                      | an halisting des bid |             |                                |          |                 | an an a' har an bhann air an                                                  | Auto     | I        |
| 50.0             |                      |                      |             |                                |          |                 |                                                                                                                   |          |          |
| 60.0             |                      |                      |             |                                |          |                 |                                                                                                                   | F        | req Off  |
|                  |                      |                      |             |                                |          |                 |                                                                                                                   |          | C        |
| 70.0             |                      |                      |             |                                |          |                 |                                                                                                                   |          | cale Ty  |
|                  |                      |                      |             |                                |          |                 |                                                                                                                   |          |          |
|                  | )30 GHz<br>V 1.0 MHz |                      | #\/D\       | V 3.0 MHz                      |          | Swoon-9         | Stop 2.470 GH<br>3.260 ms (4891 pt                                                                                |          |          |
| SG SG            | V T.U MIHZ           |                      | #VBI        | V 5.0 WIHZ                     |          | Sweep 3         |                                                                                                                   | 57       |          |

Plot 7-38. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntB)




Plot 7-39. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntB)

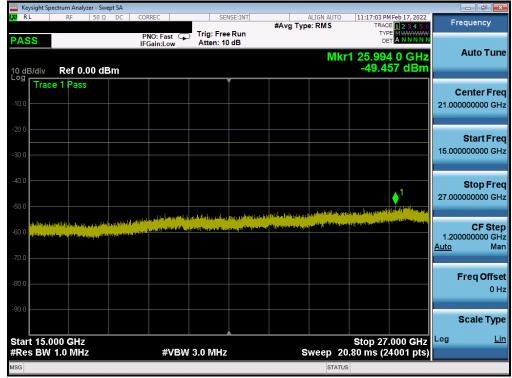
| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Page 34 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Fage 34 01 05                     |
| © 2022 PCTEST       | •                                       |                                                          | V3.0 1/6/2022                     |



|                    | t Spectrum Ana          |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             |                      |
|--------------------|-------------------------|-------------------------------------------------------|-------------------|-------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|----------------------------------|-------------|----------------------|
| <mark>()</mark> RL | RF                      | 50 Ω                                                  | DC                | CORREC                        | SEI                                   | ISE:INT                             | #Avg Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALIGN AUTO         | TRA                                     | M Feb 17, 2022<br>CE 1 2 3 4 5 6 | Fre         | equency              |
| PASS               |                         |                                                       |                   | PNO: Fast G                   | Trig: Free<br>Atten: 10               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | TY<br>D                                 | PE MWWWWW<br>ET ANNNNN           |             |                      |
| 0 dB/di            | v Ref (                 | ).00 dE                                               | m                 |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MI                 | kr1 26.25<br>-49.1                      | 5 5 GHz<br>62 dBm                |             | Auto Tur             |
| -og Tr             | ace 1 Pas               | S                                                     |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             | enter Fr             |
| 10.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             | enter Fr             |
|                    |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | 21.000      |                      |
| 20.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             |                      |
|                    |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | 15 000      | Start Fr<br>000000 G |
| 30.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | 15.000      | 000000 G             |
| 40.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             |                      |
| 40.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         | ▲1                               | 27.000      | Stop Fr              |
| 50.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         | all loss William dis Like        | 27.000      | 000000 G             |
|                    | a dikata kaoma or       | المراجبين المراجب                                     | n ta Juanat a chi | re real thready and the first | ( [glasses]] Beerlee                  | an <mark>likest generality</mark> i | an tha sealer that the second s | Contraction of the | r - r - r - r - r - r - r - r - r - r - | n al faiblicht de lan            |             | CF St                |
| 50.0               | وبالعادر مخد تطالطها وا | e de engles de la | للأرسائل مالل     | In the party of the second    | در ماند را بد با بند الانتخار ان<br>ا | CASE AND DESCRIPTION OF             | And Internet in the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                         |                                  | 1.200       | 000000 G             |
|                    |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | <u>Auto</u> | N                    |
| 70.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             |                      |
| 30.0               |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | F           | req Offs             |
|                    |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             | 0                    |
| 0.0                |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  |             |                      |
|                    |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         |                                  | 5           | Scale Ty             |
|                    | 5.000 GH                |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                         | .000 0112                        | Log         | <u>I</u>             |
| Res B              | W 1.0 M                 | lz                                                    |                   | #VBV                          | / 3.0 MHz                             |                                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sweep :            | 20.80 ms (2                             | 24001 pts)                       |             |                      |
| SG                 |                         |                                                       |                   |                               |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STAT               | TUS                                     |                                  |             |                      |

Plot 7-40. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntB)




Plot 7-41. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntB)

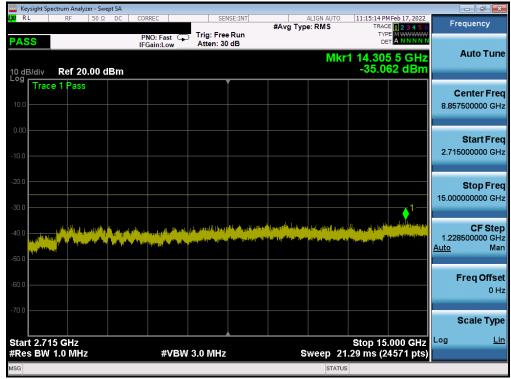
| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Page 35 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Fage 55 01 65                     |
| © 2022 PCTEST       | •                                       |                                                          | V3.0 1/6/2022                     |



|                      | it Spectrum A |                                       |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         |                                 | 5 X               |
|----------------------|---------------|---------------------------------------|-----|-------------------------|-------------------------|---------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|-------------------|
| K <mark>I</mark> RL  | RF            | <u>50 Ω</u>                           | DC  | CORREC                  |                         | ISE:INT | #Avg Typ                                           | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                        | TRA                                                                                                                                                                                    | M Feb 17, 2022<br>CE 1 2 3 4 5 6                                        | Frequen                         | су                |
| PASS                 |               |                                       |     | PNO: Fast<br>IFGain:Low | Trig: Free<br>Atten: 30 |         |                                                    | M                                                                                                                                                                                                                                                                                                                                                 | kr1 9.49                                                                                                                                                                               |                                                                         | Auto                            | Tu                |
| 0 dB/di              |               | 20.00 d                               | IBm |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   | -35.4                                                                                                                                                                                  | 58 dBm                                                                  |                                 |                   |
| 10.0                 | race 1 Pa     | ass                                   |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         | Cente<br>8.84500000             |                   |
| 1.00                 |               |                                       |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         | Star<br>2.69000000              |                   |
| 20.0                 |               |                                       |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         | Stop<br>15.00000000             |                   |
| 10.0<br>10.0<br>10.0 |               | n på "landstaft.<br>Henst "Janne Mary |     |                         |                         |         | en gesting Korper (Korpe<br>Minger Korper (Korper) | a da da se da se da se se da se<br>Se da se da se<br>Se da se | la trefa la <sub>trenov</sub> a com<br>19 desentes de la comunicación<br>19 desentes de la comunicación de | de <sup>l</sup> assandhot sonan filosofa<br>Vyskas general sonan olas k | CF<br>1.23100000<br><u>Auto</u> | = St<br>00 G<br>N |
| 0.0                  |               |                                       |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         | Freq                            | Offs<br>0         |
| 70.0                 |               |                                       |     |                         |                         |         |                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                         | Scale                           | -                 |
|                      | .690 GH       |                                       |     | #VBW                    | / 3.0 MHz               |         | 6                                                  | weep 2                                                                                                                                                                                                                                                                                                                                            | Stop 15                                                                                                                                                                                | 5.000 GHz<br>24621 pts)                                                 | Log                             | <u>!</u>          |
| SG                   |               |                                       |     |                         |                         |         |                                                    | STATU                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | nozi proj                                                               |                                 |                   |

Plot 7-42. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntB)




Plot 7-43. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntB)

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                |         | Dage 26 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         |         | Page 36 of 85                     |
| © 2022 PCTEST       | •                             | •                                                        |         | V3.0 1/6/2022                     |



|                  | Spectrum Analy       |        |            |                                  |                        |            |                                  |                          |                    |                         |                    |                                |
|------------------|----------------------|--------|------------|----------------------------------|------------------------|------------|----------------------------------|--------------------------|--------------------|-------------------------|--------------------|--------------------------------|
| X/RL             | RF                   | 50 Ω   | DC         | CORREC                           |                        | NSE:INT    | #Avg Typ                         | ALIGN AUTO               | TRA                | CE 12 3 4 5 6           | Fn                 | equency                        |
| PASS             |                      |        |            | PNO: Fast C<br>IFGain:Low        | Trig: Fre<br>Atten: 3  |            |                                  | Μ                        | kr1 2.33           |                         |                    | Auto Tun                       |
| 10 dB/div<br>Log | Ref 20               | 0.00 d | Bm         |                                  |                        |            |                                  |                          | -38.5              | 56 dBm                  |                    |                                |
| 10.0             | ace 1 Pass           |        |            |                                  |                        |            |                                  |                          |                    |                         |                    | Center Fre                     |
| 10.00            |                      |        |            |                                  |                        |            |                                  |                          |                    |                         | 30                 | <b>Start Fr</b><br>.000000 M   |
| 20.0             |                      |        |            |                                  |                        |            |                                  |                          |                    |                         | 2.496              | <b>Stop Fr</b><br>5000000 G    |
| 40.0             | المتأمل ومقربة       | الطويع | ومازلزوامي | an the alternation of the states | n de la su di ili sato | والتوميالي | al des alle sal des sister de la | الألفانية إيراعية والمعر |                    | 1<br>Hardish matalana   | 246<br><u>Auto</u> | <b>CF St</b><br>.600000 M<br>M |
| 50.0<br>50.0     |                      |        |            |                                  |                        |            |                                  |                          |                    |                         |                    | F <b>req Off</b> s<br>0        |
| '0.0 <u> </u>    |                      |        |            |                                  |                        |            |                                  |                          |                    |                         |                    | Scale Ty                       |
|                  | 030 GHz<br>W 1.0 MH: | z      |            | #VB                              | W 3.0 MHz              |            |                                  | Sweep                    | Stop 2<br>3.288 ms | 2.496 GHz<br>(4933 pts) | Log                | ļ                              |
| SG               |                      |        |            |                                  |                        |            |                                  | STAT                     |                    |                         |                    |                                |

Plot 7-44. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntB)



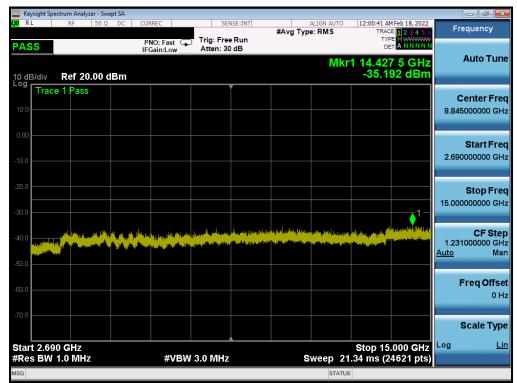
Plot 7-45. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntB)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Dage 27 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 37 of 85                     |
| © 2022 PCTEST       | •                       |                                                          | V3.0 1/6/2022                     |



|                     | Spectrum Analy                   | zer - Swe          | pt SA         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             | J X     |
|---------------------|----------------------------------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|---------|
| 🗶 RL                | RF                               | 50 Ω               | DC            | CORREC                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEN                     | ISE:INT                                                                                                                                                                                                                           | #Ava Ty                                  | ALIGN AU<br>(pe: RMS) | TF                               | B PM Feb 17, 2022                                                                                              | Frequen     | су      |
| PASS                |                                  |                    |               | PNO: Fas<br>IFGain:Lo                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trig: Free<br>Atten: 10 |                                                                                                                                                                                                                                   |                                          |                       |                                  | DET ANNNN                                                                                                      |             |         |
|                     |                                  |                    |               | IFGain:Lo                                                                                                                                                                                                                         | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atten. To               | чв                                                                                                                                                                                                                                |                                          | R.                    |                                  | 00 5 GHz                                                                                                       | Auto        | Tune    |
| 10 dB/div           | Ref 0.                           | 00 dB              | m             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          | IV                    | -48.                             | 782 dBm                                                                                                        |             |         |
| Log Tra             | ice 1 Pass                       | ;                  |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             |         |
| 10.0                |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Center      |         |
| -10.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | 21.0000000  | 00 GH:  |
| -20.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             |         |
| -20.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Star        | tFree   |
| -30.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | 15.0000000  | 00 GH   |
|                     |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             |         |
| -40.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Stor        | Free    |
|                     |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  | 1                                                                                                              | 27.00000000 |         |
| -50.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       | hanging the participation of the | and the same of the second |             |         |
| dante.              | وجادير الاستأما والمواسيلين بليه | المغلومين وبرا     |               | he al the transmitter                                                                                                                                                                                                             | inter and the first state of the second state | arristan aktuar         | all a sur a su<br>Sur a sur | an a |                       |                                  |                                                                                                                | CE          | Ster    |
| -60.0 <b>-60.</b> 0 | فيعاقفهم واراحطا الما            | ر.<br>الأسلى ويويا | لأد الأقمرية) | a na ann an Anna an An<br>Anna an Anna an | ىلى <u>ت مىلالىكە بە</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second second   |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | 1.20000000  |         |
|                     |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | <u>Auto</u> | Mai     |
| -70.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             |         |
| -80.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Freq        | Offse   |
| -00.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             | οн      |
| -90.0               |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                |             |         |
|                     |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Scale       | Туре    |
|                     | 000 011-                         |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          |                       |                                  |                                                                                                                | Log         | Lir     |
|                     | .000 GHz<br>V 1.0 MH:            |                    |               | #                                                                                                                                                                                                                                 | VBW 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 MHz                  |                                                                                                                                                                                                                                   |                                          | Sween                 | 20 80 ms                         | 27.000 GHz<br>(24001 pts)                                                                                      | 209         | <u></u> |
| MSG                 |                                  |                    |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ac 1011/2               |                                                                                                                                                                                                                                   |                                          |                       | ATUS                             | (E-roor pts)                                                                                                   |             |         |
|                     |                                  | _                  |               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                   |                                          | 51                    |                                  |                                                                                                                |             |         |

Plot 7-46. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntB)


| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | N G | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |     | Dogo 29 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |     | Page 38 of 85                     |
| © 2022 PCTEST       | •                       |                                                          |     | V3.0 1/6/2022                     |

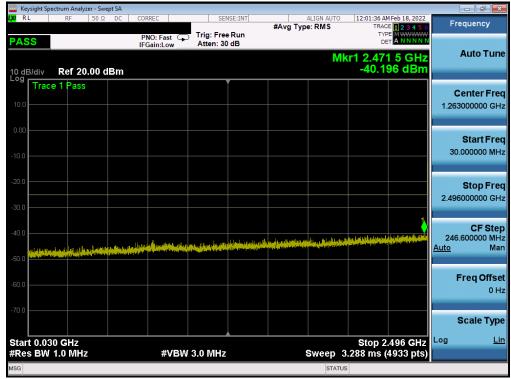


## NR Band n41 SRS3- AntE

|                      | pectrum Analyz               |                       |             |                                           |                                                                                                                  |                      |                            |            |                          |
|----------------------|------------------------------|-----------------------|-------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|------------|--------------------------|
| XI RL                | RF                           | 50Ω DC                | CORREC      | SENSE:INT                                 | #Avg Typ                                                                                                         | ALIGN AUTO<br>e: RMS | 12:00:16 AM Feb<br>TRACE   |            | Frequency                |
| PASS                 |                              |                       | PNO: Fast G | Trig: Free Run<br>Atten: 30 dB            |                                                                                                                  |                      |                            |            |                          |
| 10 dB/div            | Ref 20                       | .00 dBm               |             |                                           |                                                                                                                  | M                    | r1 2.466 5<br>-39.151      | GHz<br>dBm | Auto Tur                 |
| Tra                  | ce 1 Pass                    |                       |             | Ĭ                                         |                                                                                                                  |                      |                            |            | Center Fr                |
| 10.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | 1.250000000 G            |
| 0.00                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            |                          |
| 0.00                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | Start Fr                 |
| -10.0                |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | 30.000000 M              |
| 20.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            |                          |
| 20.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | Stop Fr<br>2.470000000 G |
| 30.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            |                          |
| 40.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | CF St                    |
| أر وينظر رام ال      | ولمحرز وجانيم وبالمزاورين    | A State of the second |             | in an | and the line of the second s |                      |                            |            | 244.000000 M<br>Auto N   |
| 50.0 <b>(11-11-1</b> | interin an air a nair mainte |                       |             |                                           |                                                                                                                  |                      |                            |            |                          |
| -60.0                |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | Freq Offs                |
|                      |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | 0                        |
| 70.0                 |                              |                       |             |                                           |                                                                                                                  |                      |                            |            | Scale Ty                 |
|                      | 00.011                       |                       |             |                                           |                                                                                                                  |                      | <b>0</b> 4 0 - <b>1</b> -7 |            | Log                      |
| Start 0.0<br>#Res BV | 30 GHz<br>/ 1.0 MHz          |                       | #VBV        | V 3.0 MHz                                 |                                                                                                                  | Sweep 3              | Stop 2.470<br>260 ms (489  |            |                          |
| ISG                  |                              |                       |             |                                           |                                                                                                                  | STATUS               |                            |            |                          |

Plot 7-47. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntE)




Plot 7-48. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntE)

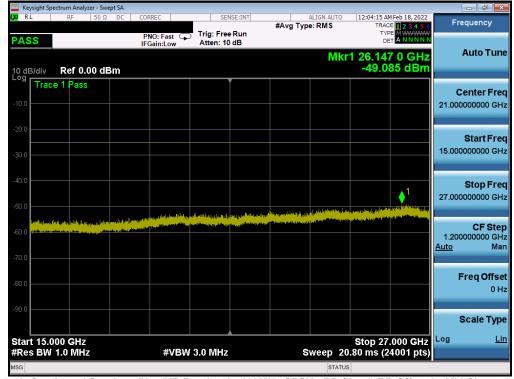
| FCC ID: A3LSMS908E  | PCTEST <sup>*</sup><br>Prod to be part of <b>@</b> element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                                                | EUT Type:                                                | Page 39 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                                    | Portable Handset                                         | Fage 39 01 65                     |
| © 2022 PCTEST       | •                                                          |                                                          | V3.0 1/6/2022                     |



|            | Spectrum Anal           |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
|------------|-------------------------|---------------------|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| RL         | RF                      | 50 Ω                | DC            | CORREC                     | SE                                                                                                              | NSE:INT                                                                                                         | #Ava Tv                      | ALIGN AUT             |                                         | M Feb 18, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fr          | equency   |
| PASS       |                         |                     |               | PNO: Fast                  | Trig: Fre                                                                                                       |                                                                                                                 |                              | period                | TY                                      | PE M WWWWWW<br>ET A N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |           |
| A33        |                         |                     |               | IFGain:Low                 | Atten: 10                                                                                                       | ) dB                                                                                                            |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Auto Tur  |
|            |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              | M                     | kr1 26.37                               | 3 5 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Auto Tu   |
| 0 dB/div   |                         |                     | m             |                            |                                                                                                                 |                                                                                                                 |                              |                       | -50.1                                   | 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |           |
| Tra        | ace 1 Pass              | S                   |               |                            |                                                                                                                 | Ĭ                                                                                                               |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Center Fr |
| 10.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0000000 G |
|            |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.00       | 000000 G  |
| 20.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
|            |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Start Fr  |
| 30.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00       | 0000000 G |
|            |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
| 40.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
| 40.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Stop Fr   |
| 50.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         | │ ♦'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.00       | 0000000 G |
| 30.0       |                         |                     |               |                            | L. 14400                                                                                                        | al.,                                                                                                            | a shalada da ka              | فيعقد اللاريل وال     | alling program in the                   | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
| 50.0       | وراما والخريات أعاوس    | Manda               | and the start | And the Association of the | and the second secon | and the second secon | and Mitchild antibale person | and the second second | فأرفز بالاربية فالتعريد النعرية إلامياه | And the second s |             | CF St     |
| a hite ter | م قد الم حض الأقاد الله | Bernen an state and | idia attiite  |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0000000 G |
| 70.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Auto</u> | M         |
| · U.U      |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
| 30.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Freq Offs |
| 50.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0         |
| 30.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |
| 90.0       |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Scale Ty  |
|            |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | could by  |
| tart 15    | .000 GHz                |                     |               |                            |                                                                                                                 |                                                                                                                 |                              |                       | Stop 27                                 | .000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Log         | <u> </u>  |
| Res B      | W 1.0 MH                | z                   |               | #VB\                       | N 3.0 MHz                                                                                                       |                                                                                                                 |                              | Sweep                 | 20.80 ms (2                             | 24001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |
| SG         |                         |                     |               |                            |                                                                                                                 |                                                                                                                 |                              | STA                   | TUS                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |

Plot 7-49. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntE)




Plot 7-50. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntE)

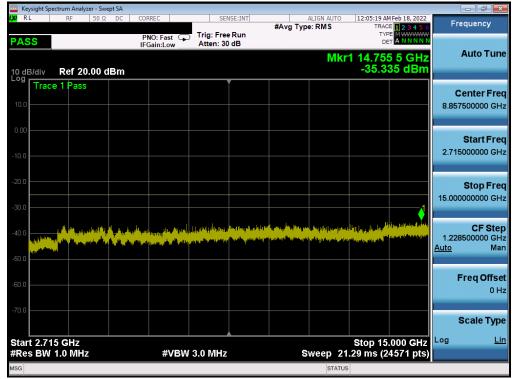
| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                                                | Page 40 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                  | Portable Handset                                         | Fage 40 01 05                     |
| © 2022 PCTEST       | •                                        |                                                          | V3.0 1/6/2022                     |



|                    | t Spectrum Analy |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        |                   |
|--------------------|------------------|---------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|---------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------|--------|-------------------|
| XI RL              | RF               | 50 Ω    | DC                                                                                                             | CORREC                                                                                                           | SE                     | NSE:INT | #Avg Typ                        | ALIGN AUTO                                                                                                                                            |                   | M Feb 18, 2022                                             | Fre    | equency           |
| PASS               |                  |         |                                                                                                                | PNO: Fast<br>IFGain:Low                                                                                          | Trig: Fre<br>Atten: 30 |         | • •                             |                                                                                                                                                       | TY                |                                                            |        |                   |
| 10 dB/div          | Ref 20           | ).00 di | Bm                                                                                                             |                                                                                                                  |                        |         |                                 | M                                                                                                                                                     | r1 14.31<br>-34.8 | 0 5 GHz<br>66 dBm                                          |        | Auto Tur          |
| - <sup>og</sup> Tr | ace 1 Pass       | ;       |                                                                                                                |                                                                                                                  |                        | Ĭ       |                                 |                                                                                                                                                       |                   |                                                            | -      | enter Fre         |
| 10.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | 6000000 GI        |
|                    |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        |                   |
| 0.00               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | Start Fr          |
| 10.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            | 2.690  | 000000 G          |
|                    |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        |                   |
| 20.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | Stop Fr           |
| 30.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   | 4                                                          | 15.000 | 000000 G          |
| 30.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        |                   |
| 40.0               |                  | and a   | all all a                                                                                                      | territe approximation for the                                                                                    |                        |         | na og vingen skyrden.<br>Status | de la propertie de la composition<br>Notation de la composition de la composi |                   | an an Marian an Anna Marian.<br>An a Marian an Anna Marian | 1 231  | CF St<br>000000 G |
| a second           |                  |         | The second s | and the second |                        |         |                                 |                                                                                                                                                       |                   |                                                            | Auto   | M                 |
| 50.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        |                   |
| 50.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            | F      | req Offs          |
|                    |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | 0                 |
| 70.0               |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | Deele Tre         |
|                    |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       |                   |                                                            |        | Scale Ty          |
|                    | 690 GHz          |         |                                                                                                                |                                                                                                                  |                        |         |                                 |                                                                                                                                                       | Stop 15           | 5.000 GHz                                                  | Log    | ļ                 |
|                    | W 1.0 MH         | Z       |                                                                                                                | #VBW                                                                                                             | / 3.0 MHz              |         | 8                               |                                                                                                                                                       | 21.34 ms (2       | 24621 pts)                                                 |        |                   |
| SG                 |                  |         |                                                                                                                |                                                                                                                  |                        |         |                                 | STAT                                                                                                                                                  | US                |                                                            |        |                   |

Plot 7-51. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntE)




Plot 7-52. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntE)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 41 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 41 01 05                     |
| © 2022 PCTEST       |                         | ·                                                        | V3.0 1/6/2022                     |



|                    | Spectrum Analy     |                 |    |                             |                         |                        |          |            |           |                                   |                    |                                |
|--------------------|--------------------|-----------------|----|-----------------------------|-------------------------|------------------------|----------|------------|-----------|-----------------------------------|--------------------|--------------------------------|
| XU <mark>RL</mark> | RF                 | 50 Ω            | DC | CORREC                      |                         | NSE:INT                | #Avg Typ | ALIGN AUTO | TRA       | AM Feb 18, 2022<br>CE 1 2 3 4 5 6 | Fr                 | equency                        |
| PASS               | Ref 20             | ).00 dl         | Bm | PNO: Fast (<br>IFGain:Low   | Trig: Fre<br>Atten: 3   |                        |          | M          | lkr1 2.41 | 10 GHz<br>53 dBm                  |                    | Auto Tur                       |
| -og<br>Tra         | ace 1 Pass         |                 |    |                             |                         |                        |          |            |           |                                   |                    | Center Fre                     |
| 0.00               |                    |                 |    |                             |                         |                        |          |            |           |                                   | 30                 | <b>Start Fre</b><br>.000000 Mi |
| 20.0               |                    |                 |    |                             |                         |                        |          |            |           |                                   | 2.490              | <b>Stop Fr</b><br>5000000 G    |
| 40.0               | kaded over and com | , Ni de sin due |    | ورجد أمسا فعنامين المقلومين | fel is his state of the | land the factor of the |          |            |           |                                   | 246<br><u>Auto</u> | CF Sto<br>.600000 M<br>M       |
| 60.0               |                    |                 |    |                             |                         |                        |          |            |           |                                   | 1                  | F <b>req Off</b> s<br>0        |
|                    | 030 GHz            |                 |    |                             |                         |                        |          |            | Stop 2    | 2.496 GHz                         | Log                | Scale Ty                       |
| Res Bl             | N 1.0 MH           | Z               |    | #VB                         | W 3.0 MHz               |                        |          | Sweep      |           | (4933 pts)                        |                    |                                |

Plot 7-53. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntE)



Plot 7-54. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntE)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dogo 42 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 42 of 85                     |
| © 2022 PCTEST       | ·                                       | •                                                        |         | V3.0 1/6/2022                     |



|            | pectrum Analyz    | zer - Swep  | ot SA                                                                                                           |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               |                 |
|------------|-------------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------------|-----------------|
| X/RL       | RF                | 50 Ω        | DC                                                                                                              | CORREC            |                           | SEI                          | ISE:INT                                                                                                         | #Avg Ty                                                                                                         | ALIGN AUT                                                                                                      | TR                              | AM Feb 18, 2022            | Fn            | equency         |
| PASS       |                   |             |                                                                                                                 | PNO: Fain:L       | ast 🖵                     | Trig: Free<br>Atten: 10      |                                                                                                                 |                                                                                                                 |                                                                                                                | т                               | YPE MWWWWW<br>DET ANNNNN   |               |                 |
|            |                   |             |                                                                                                                 | IFGami            | JOW                       | Atten: Te                    | uD                                                                                                              |                                                                                                                 | М                                                                                                              | kr1 26.33                       | 34 5 GHz                   |               | Auto Tune       |
| 10 dB/div  | Ref 0.0           | 00 dB       | m                                                                                                               |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                | -49.                            | 798 dBm                    |               |                 |
| Log Trac   | e 1 Pass          |             |                                                                                                                 |                   |                           | ,                            |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | -             | enter Fred      |
| -10.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               | 0000000 GH      |
|            |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               |                 |
| -20.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               | Start Free      |
| -30.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | 15.000        | 0000000 GH      |
| -30.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               |                 |
| -40.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               | Stop Free       |
|            |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 | 1                          | 27.000        | 0000000 GH      |
| -50.0      |                   |             |                                                                                                                 |                   | ا الله ال                 |                              | L Internet of                                                                                                   |                                                                                                                 | a day and provides                                                                                             | Dengel kalenstan milagi seritar | ald mental a production of |               |                 |
| -60.0      | all shall some as | and a state | daharik                                                                                                         | n (na se institut | annan anns<br>Anns anns a | i an in ditensi fi ang si sa | and the second secon | a il literature de la companya de la | and sold all the second se | أدفار ورفاعين ببادر منعرية      | بالاحطائة الأخاذ بار       |               | CF Step         |
|            |                   | and a state | a in the second seco |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | 1.200<br>Auto | 000000 GH<br>Ma |
| -70.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | <u>rture</u>  |                 |
|            |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | F             | Freq Offse      |
| -80.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               | он              |
| -90.0      |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            |               |                 |
|            |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                |                                 |                            | :             | Scale Type      |
| Start 15.0 | 000 GHz           |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 |                                                                                                                | Stop 2                          | 7.000 GHz                  | Log           | Lir             |
| #Res BW    |                   |             |                                                                                                                 | \$                | #VBW                      | 3.0 MHz                      |                                                                                                                 |                                                                                                                 | Sweep                                                                                                          | 20.80 ms (                      | 24001 pts)                 | -             |                 |
| MSG        |                   |             |                                                                                                                 |                   |                           |                              |                                                                                                                 |                                                                                                                 | STA                                                                                                            | ATUS                            |                            |               |                 |

Plot 7-55. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntE)

| FCC ID: A3LSMS908E  | Poud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                |         | Dogo 42 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         |         | Page 43 of 85                     |
| © 2022 PCTEST       | ·                            |                                                          |         | V3.0 1/6/2022                     |

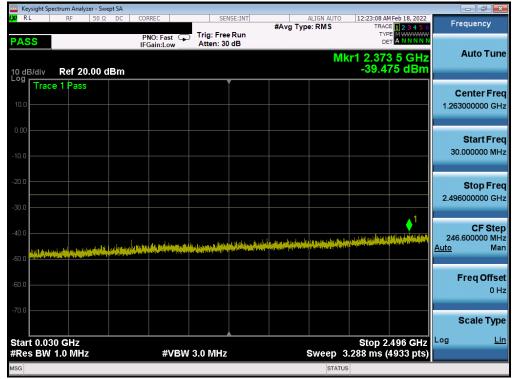


## NR Band n41 SRS4– AntD

| Keysight Spectrum Analyzer - Si             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                              |                                                              |                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|
| 🗶 RL RF 50 !                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SENSE:INT                                 | #Avg Type: RMS                                               | 12:24:22 AM Feb 18, 2022<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Frequency                                       |
| PASS<br>10 dB/div Ref 20.00                 | PNO: Fast<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Atten: 30 dB                              | Mk                                                           | r1 2.407 6 GHz<br>-39.531 dBm                                | Auto Tun                                        |
| 10.0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                              |                                                              | Center Fre<br>1.250000000 GH                    |
| -10.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                              |                                                              | Start Fre<br>30.000000 M⊦                       |
| -20.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                              |                                                              | <b>Stop Fre</b><br>2.470000000 GF               |
| -40.0                                       | and to a law of the first provide the state of the state | hynnystaal allystaan statebilla sed ladyd | la pi, il in alla a instrum la danta<br>Parta la instrumenta |                                                              | <b>CF Ste</b><br>244.000000 MI<br><u>Auto</u> M |
| 60.0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                              |                                                              | Freq Offs<br>0                                  |
| -70.0<br>Start 0.030 GHz<br>#Res BW 1.0 MHz | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0 MHz                                   | Sweep_3                                                      | Stop 2.470 GHz<br>.260 ms (4891 pts)                         | Scale Tyj<br>Log <u>L</u>                       |
| MSG                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | STATUS                                                       |                                                              |                                                 |

Plot 7-56. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntD)




Plot 7-57. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proad to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dogo 44 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 44 of 85                     |
| © 2022 PCTEST       |                                         |                                                          |         | V3.0 1/6/2022                     |



|                            | Spectrum Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|----------------------|---------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
| <mark>u</mark> RL          | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 Ω         | DC           | CORREC                      | SE                                                                                                              | NSE:INT          | #Ava Tv              | ALIGN AUT                 |                               | M Feb 18, 2022<br>CE 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fr          | equency    |
| PASS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | PNO: Fast                   | Trig: Fre                                                                                                       |                  |                      | pe. remo                  | TY                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| A33                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | IFGain:Low                  | Atten: 1                                                                                                        | ) dB             |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Auto Tur   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      | M                         | kr1 26.29                     | 8 0 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Auto Tui   |
| 0 dB/div                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | m            |                             |                                                                                                                 |                  |                      |                           | -48.9                         | 63 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |            |
| Tra                        | ace 1 Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S            |              |                             |                                                                                                                 | Ĭ                |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | enter Fr   |
| 10.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0000000 GI |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.00       | 000000 G   |
| 20.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 20.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Start Fr   |
| 30.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00       | 000000 G   |
| 00.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 40.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 40.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               | <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Stop Fr    |
| 50.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.00       | 0000000 G  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              | والانتقاد والمردية والمراجع | a se de la companya d | بهر محتد عليها و | In Part Universions, | a property filled and the | example (publication) process | and the state of t |             |            |
| <mark>Кађуа</mark><br>60.0 | al and the second states of th | op del passo | al a Hadler  | Constitution and the second | and the second second                                                                                           |                  |                      |                           | Contractor Andrewson          | a mentikit ili kula, sis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | CF St      |
| SOLO VELEN                 | a second and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Walk of the  | and a second |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0000000 G  |
| 70.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Auto</u> | N          |
| /0.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Freq Offs  |
| 30.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0          |
| 90.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |
| 90.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Scale Ty   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      |                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | o cure i y |
| Start 15                   | 5.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |                             |                                                                                                                 |                  |                      |                           | Stop 27                       | .000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Log         | <u> </u>   |
|                            | W 1.0 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |              | #VB                         | W 3.0 MHz                                                                                                       |                  |                      | Sweep                     | 20.80 ms (2                   | 24001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |            |
| SG                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                             |                                                                                                                 |                  |                      | STA                       | TUS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |

Plot 7-58. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Low Channel AntD)



Plot 7-59. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntD)

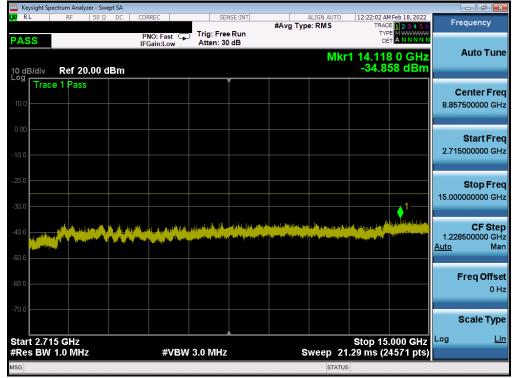
| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 45 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 45 01 65                     |
| © 2022 PCTEST       | •                             |                                                          | V3.0 1/6/2022                     |



|                   | Spectrum Analy                                                                                                   |        | •              |                             |                         |                     |                           |                   |                     |                                                 |             |           |
|-------------------|------------------------------------------------------------------------------------------------------------------|--------|----------------|-----------------------------|-------------------------|---------------------|---------------------------|-------------------|---------------------|-------------------------------------------------|-------------|-----------|
| <mark>(</mark> RL | RF                                                                                                               | 50 Ω   | DC             | CORREC                      | SE                      | NSE:INT             | #Avg Typ                  | ALIGN AUTO        |                     | M Feb 18, 2022<br>CE 1 2 3 4 5 6                | Fr          | equency   |
|                   |                                                                                                                  |        |                | PNO: Fast                   | Trig: Fre               | Run                 | #Avg iy                   | Je. RIVIS         | TY                  |                                                 |             |           |
| PASS              |                                                                                                                  |        |                | IFGain:Low                  | Atten: 30               |                     |                           |                   | C                   | ET A N N N N N                                  |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           | ML                | r1 10 34            | 2 5 GHz                                         |             | Auto Tur  |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   | -34 0               | 13 dBm                                          |             |           |
| 0 dB/div          | Ref 20                                                                                                           | υ.υυ α | вm             |                             |                         |                     |                           |                   | -04.0               |                                                 |             |           |
| 🍈 🛛 Tra           | ace 1 Pass                                                                                                       | s      |                |                             |                         | Ĩ                   |                           |                   |                     |                                                 |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | Center Fr |
| 10.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     | +                                               | 8.84        | 5000000 G |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
| 0.00              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | Start Fr  |
| 10.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 | 2.69        | 0000000 G |
| 10.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
| 20.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | Stop Fr   |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   | _                   |                                                 | 15.00       | 0000000 G |
| 30.0              |                                                                                                                  |        |                |                             |                         |                     | + <u> </u>                |                   |                     | <u> </u>                                        | 10.00       |           |
|                   |                                                                                                                  |        |                |                             |                         |                     | 🔶 "                       |                   |                     |                                                 |             |           |
|                   | a da da con                                                                                                      |        | ورباند ساريكار | يلير فقريهان براريه والأربي | وأطرار خنام وطنور يرارز | distantia (         | period by all printing to | 1 and a stimution | In the state of the | a dharada a san san san san san san san san san |             | CF St     |
| 40.0              | Here and                                                                                                         |        |                | Sector of the Sector        | ى.<br>ئەمەلىرەر ھىيىس   | All Manager and All | a humphilipping the       | ويتقر بالتقدر أ   | المعدية بسوريط علم  | المتأثبين ألاأتهما                              | 1.23        | 1000000 G |
| de setting        | and the second |        | 1.6.1          | 1. W M                      |                         |                     |                           |                   |                     |                                                 | <u>Auto</u> | N         |
| 50.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
| 50.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | Freq Offs |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | 0         |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
| 70.0              |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             |           |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 |             | Scale Ty  |
|                   |                                                                                                                  |        |                |                             |                         |                     |                           |                   |                     |                                                 | Log         |           |
|                   | 690 GHz                                                                                                          |        |                |                             |                         |                     |                           |                   | Stop 1:             |                                                 |             |           |
| Res B             | N 1.0 MH                                                                                                         | Z      |                | #VBW                        | / 3.0 MHz               |                     | \$                        | sweep 2           | 21.34 ms (2         | 24621 pts)                                      |             |           |
| SG                |                                                                                                                  |        |                |                             |                         |                     |                           | STAT              | us                  |                                                 |             |           |

Plot 7-60. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntD)




Plot 7-61. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel AntD)

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 46 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Page 40 01 05                     |
| © 2022 PCTEST       |                               |                                                          | V3.0 1/6/2022                     |



|                   | ght Spectrum    |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             |                             |
|-------------------|-----------------|---------|-------|----|-------------------------|---------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|-------------------|-------------|-----------------------------|
| <mark>0</mark> RL | R               | F I     | 50 Ω  | DC | CORREC                  |                           | SENSE:INT                       | #Avg Ty                                                                                                        | ALIGN AUTO<br>De: RMS           |                   | M Feb 18, 2022    | Fr          | equency                     |
| PASS              | <b>S</b>        |         |       |    | PNO: Fast<br>IFGain:Low | Trig: Fi<br>Atten:        | ree Run<br>30 dB                |                                                                                                                |                                 | TYI<br>DI         |                   |             | Auto Tur                    |
| 0 dB/             | div Re          | ef 20.0 | )0 dl | Bm |                         |                           |                                 |                                                                                                                | М                               | kr1 2.42<br>-39.0 | 2 0 GHz<br>77 dBm |             | Auto Tur                    |
| <sup>- og</sup> [ | Trace 1 I       | Pass    |       |    |                         |                           | Ĭ                               |                                                                                                                |                                 |                   |                   | 0           | Center Fre                  |
| 10.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | 3000000 GI                  |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             |                             |
| 0.00              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | Start Fr                    |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   | 30          | .000000 M                   |
| 10.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             |                             |
| 20.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | Oton En                     |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   | 2 /0        | <b>Stop Fr</b><br>5000000 G |
| 30.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   | 2.43        |                             |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   | ↓ 1               |             | CF St                       |
| \$0.0             |                 |         |       |    |                         |                           | هرين التراجيكي                  | والمراجع والمراجع والمراجع                                                                                     | وأربق الترقان والقانور ومالك    | kan din watika    |                   | 246         | .600000 M                   |
| 50.0              | liste weiterste |         |       |    |                         | handlig ship light if the | and a state of the state of the | and a second | a ter Bendar solari bili bili b |                   |                   | <u>Auto</u> | M                           |
| .0.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             |                             |
| 50.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | Freq Offs                   |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | 0                           |
| 70.0              |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             |                             |
|                   |                 |         |       |    |                         |                           |                                 |                                                                                                                |                                 |                   |                   |             | Scale Ty                    |
|                   | 0.030 G         |         |       |    |                         |                           |                                 |                                                                                                                |                                 | Stop 2            | .496 GHz          | Log         | l                           |
| Res               | BW 1.0          | MHz     |       |    | #VI                     | 3W 3.0 MH                 | Z                               |                                                                                                                | Sweep                           | 3.288 ms (        | 4933 pts)         |             |                             |
| SG                |                 |         |       |    |                         |                           |                                 |                                                                                                                | STAT                            | US                |                   |             |                             |

Plot 7-62. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntD)



Plot 7-63. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dago 47 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 47 of 85                     |
| © 2022 PCTEST       | ·                                       | •                                                        |         | V3.0 1/6/2022                     |



|           | pectrum Analy               | zer - Swep             | t SA                           |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
|-----------|-----------------------------|------------------------|--------------------------------|------------------------------------------|-----------------------|------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| X/RL      | RF                          | 50 Ω                   | DC                             | CORREC                                   |                       | SEI                          | SE:INT                | #Avg Ty                                                                                                         | ALIGN AUT                |                             | AM Feb 18, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fr            | equency            |
| PASS      |                             |                        |                                | PNO: Fa                                  |                       | Trig: Free<br>Atten: 10      |                       |                                                                                                                 |                          | T                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
|           |                             |                        |                                | IFGain:L                                 | ow                    | Atten. It                    |                       |                                                                                                                 | M                        | kr1 26.14                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Auto Tune          |
| 10 dB/div | Ref 0.                      | 00 dBi                 | m                              |                                          |                       |                              |                       |                                                                                                                 |                          | -49.7                       | 62 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                    |
| Log Tra   | ce 1 Pass                   |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -             | enter Fred         |
| -10.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0000000 GHz        |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.000        |                    |
| -20.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Start Fred         |
| -30.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.000        | 000000 GHz         |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
| -40.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Stop Free          |
| 50.0      |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             | <b>♦</b> <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.000        | 0000000 GHz        |
| -50.0     |                             |                        |                                | المالير بريان                            |                       | na katana daga k             | ut, and then it to be |                                                                                                                 | and the property of      | Higgs age Coord Supples And | and the second se |               |                    |
| -60.0     | all See physical Action and | that the states of the | o Alterativeli<br>Alterativeli | an a | and the second second | and the second states of the | المعادية فأشتر وعال   | and a state of the second s | and an other designed as | أتحقد فالغنا                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | CF Step            |
|           |                             | Highes Minister        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.200<br>Auto | 0000000 GH:<br>Mar |
| -70.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>/(uto</u>  | ma                 |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
| -80.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ľ             | Freq Offset        |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0112               |
| -90.0     |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |
|           |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Scale Type         |
|           | 000 GHz                     |                        |                                |                                          |                       |                              |                       |                                                                                                                 |                          | Stop 2                      | 7.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Log           | Lin                |
| #Res BV   | 1.0 MH                      | Z                      |                                | #                                        | VBW                   | 3.0 MHz                      |                       |                                                                                                                 | Sweep                    | 20.80 ms (                  | 24001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                    |
| MSG       |                             |                        |                                |                                          |                       |                              |                       |                                                                                                                 | STA                      | TUS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |

Plot 7-64. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel AntD)

| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                                                | Dogo 49 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                  | Portable Handset                                         | Page 48 of 85                     |
| © 2022 PCTEST       | •                                        |                                                          | V3.0 1/6/2022                     |



## 7.5 Band Edge Emissions at Antenna Terminal

#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

# The minimum permissible attenuation level for Band 41 is as noted in the Test Notes on the following page.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### **Test Settings**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                |         | Dago 40 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         |         | Page 49 of 85                     |
| © 2022 PCTEST       | •                             | •                                                        |         | V3.0 1/6/2022                     |



- Per 27.53(m) for operations in the BRS/EBS bands, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dago 50 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 50 of 85                     |
| © 2022 PCTEST       | •                                       | ·                                                        |         | V3.0 1/6/2022                     |



| PASS                            |             | RF 50Ω I                               | DC CORREC                              | Trig:                               | SENSE:INT<br>r Freq: 2.546000000<br>Free Run<br>n: 32 dB | ALIGN AUTO                             | 09:49:09 Pl<br>Radio Std:<br>Radio Dev |                     | Frequency                           |
|---------------------------------|-------------|----------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------|-------------------------------------|
| 10 dB/                          | /div        | Ref 30.00 (                            | dBm                                    |                                     |                                                          |                                        |                                        |                     |                                     |
| _ <b>og</b><br>20.0<br>10.0     |             |                                        |                                        |                                     |                                                          |                                        |                                        |                     | <b>Center Fre</b><br>2.546000000 GH |
| 0.00 -                          |             |                                        |                                        |                                     |                                                          |                                        |                                        |                     |                                     |
| -20.0 -                         |             |                                        |                                        |                                     |                                                          |                                        |                                        | and a second second |                                     |
| -50.0                           |             | ngmmmmmmmmmm                           |                                        |                                     |                                                          |                                        |                                        |                     |                                     |
| Start                           | 2.371 (     | GHz                                    |                                        |                                     |                                                          |                                        | Stop 2                                 | .621 GHz            | CF Ste<br>525.200000 Mi             |
|                                 |             |                                        |                                        |                                     | 1                                                        |                                        |                                        |                     | Auto Ma                             |
| Spur                            | Range       | Start Freq                             | Stop Freq                              | RBW                                 | Frequency                                                | Amplitude                              | ∆ Limit                                |                     | <u>Auto</u>                         |
| Spur<br>1                       | Range       | 2.3710 GHz                             | 2.4905 GHz                             | 1.000 MHz                           | 2.489495798 GHz                                          | -38.13 dBm                             | △ Limit<br>-13.13 dB                   | ;                   |                                     |
| 1<br>2                          | 1<br>2      | 2.3710 GHz<br>2.4905 GHz               | 2.4905 GHz<br>2.4950 GHz               | 1.000 MHz<br>1.000 MHz              | 2.489495798 GHz<br>2.494910000 GHz                       | -38.13 dBm<br>-36.19 dBm               | -13.13 dB<br>-23.19 dB                 | 3                   |                                     |
| 3                               | 1<br>2<br>3 | 2.3710 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.4905 GHz<br>2.4950 GHz<br>2.4960 GHz | 1.000 MHz<br>1.000 MHz<br>1.000 MHz | 2.489495798 GHz<br>2.494910000 GHz<br>2.496000000 GHz    | -38.13 dBm<br>-36.19 dBm<br>-29.22 dBm | -13.13 dB<br>-23.19 dB<br>-16.22 dB    | 3                   | Freq Offs                           |
| <b>Spur</b><br>1<br>2<br>3<br>4 | 1<br>2      | 2.3710 GHz<br>2.4905 GHz               | 2.4905 GHz<br>2.4950 GHz               | 1.000 MHz<br>1.000 MHz<br>1.000 MHz | 2.489495798 GHz<br>2.494910000 GHz                       | -38.13 dBm<br>-36.19 dBm<br>-29.22 dBm | -13.13 dB<br>-23.19 dB                 | 3                   |                                     |
| 1<br>2<br>3                     | 1<br>2<br>3 | 2.3710 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.4905 GHz<br>2.4950 GHz<br>2.4960 GHz | 1.000 MHz<br>1.000 MHz<br>1.000 MHz | 2.489495798 GHz<br>2.494910000 GHz<br>2.496000000 GHz    | -38.13 dBm<br>-36.19 dBm<br>-29.22 dBm | -13.13 dB<br>-23.19 dB<br>-16.22 dB    | 3                   | Freq Offs                           |

Plot 7-65. Lower ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntJ)

| Keysig              |                                                                                                                  | m Analyzer - Spur<br>RF 50 Ω |      | ons<br>CORREC |           | SENSE:INT                                |        | ALIGN AUT                               | ) 09:52:05 F | PM Feb 17, 2022 |                |                           |
|---------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|------|---------------|-----------|------------------------------------------|--------|-----------------------------------------|--------------|-----------------|----------------|---------------------------|
| PASS                | Ga                                                                                                               | ite: LO                      |      | IFGain:Low    | +++ Trig: | er Freq: 2.64000<br>Free Run<br>n: 32 dB | 0000 G | θHz                                     | Radio Std    |                 | Frequ          | ency                      |
| 10 dB/d             | div                                                                                                              | Ref 30.00                    | dBm  |               |           |                                          |        |                                         |              |                 |                |                           |
| - <b>og</b><br>20.0 |                                                                                                                  |                              |      |               |           |                                          |        |                                         |              |                 | Cen<br>2.64000 | <b>ter Fre</b><br>0000 GH |
| 0.00                |                                                                                                                  |                              |      | <u> </u>      | n         |                                          |        |                                         |              |                 |                |                           |
| 20.0                |                                                                                                                  | ]                            |      |               |           |                                          |        |                                         |              |                 |                |                           |
| 40.0                | and the second |                              |      |               |           |                                          | ~~~~~  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              |                 |                |                           |
| 60.0                | 2.565                                                                                                            | GHz                          |      |               |           |                                          |        |                                         | Stop 2       | 2.815 GHz       |                | CF Ste                    |
|                     |                                                                                                                  |                              |      |               |           |                                          |        |                                         |              |                 |                | 0000 MF<br>Ma             |
| Spur                |                                                                                                                  | Start Freq                   |      | p Freq        | RBW       | Frequency                                |        | Amplitude                               | ∆ Limit      |                 | Auto           | inic                      |
|                     | 1                                                                                                                | 2.5650 GHz                   |      | 00 GHz        |           | 2.607670683                              |        |                                         | -22.69 dl    |                 |                |                           |
| 2                   | 2                                                                                                                | 2.6900 GHz                   |      | 10 GHz        |           | 2.690000000                              |        |                                         | -19.11 dE    |                 | Fre            | q Offs                    |
| 3                   | 3                                                                                                                | 2.6910 GHz                   |      | 50 GHz        |           | 2.691000000                              |        |                                         | -23.22 dE    |                 |                | 0H                        |
| 1<br>5              | 4                                                                                                                | 2.6950 GHz                   |      | 00 GHz        |           | 2.695000000                              |        |                                         | -21.61 dE    |                 |                |                           |
|                     | 0                                                                                                                | 2.7900 GHz                   | 2.31 | 50 GHz        | 1.000 MHz | 2.793000000                              | GHZ -  | 50.93 dBm                               | -25.93 df    |                 |                |                           |
| SG                  |                                                                                                                  |                              |      |               |           |                                          |        | STA                                     | TUS          |                 |                |                           |

Plot 7-66. Upper ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Dogo 51 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 51 of 85                     |
| © 2022 PCTEST       | •                       | ·                                                        |         | V3.0 1/6/2022                     |



|                                   |                      |                                                             | ous Emissio             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
|-----------------------------------|----------------------|-------------------------------------------------------------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------|-----------------------------|-----------------------|
| K <mark>I</mark> RL               | 6-1                  | kF 50 Ω                                                     | DC C                    | ORREC                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT<br>ter Freq: 2.5410<br>: Free Run  | 00000 GH                                                                                      | ALIGN AUTO                       | 09:59:37 P<br>Radio Std                        | M Feb 17, 2022<br>: None | Frequ                       | ency                  |
| PASS                              | Gat                  | le: LO                                                      |                         | FGain:L                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en: 32 dB                                    |                                                                                               |                                  | Radio Dev                                      | vice: BTS                |                             |                       |
|                                   |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| 10 d <u>B/d</u>                   | liv                  | Ref 30.00                                                   | dBm                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| -og<br>20.0                       |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          | 0                           | ion Eng               |
| 10.0                              |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             | ter Fre               |
|                                   |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          | 2.541000                    | 000 GF                |
| 0.00                              |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| 10.0                              |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| 20.0                              |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| -30.0                             |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| 40.0                              |                      |                                                             |                         |                            | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | name of the second                           |                                                                                               |                                  |                                                |                          |                             |                       |
| -50.0                             |                      |                                                             |                         |                            | and a start of the |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
| -60.0                             |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
|                                   |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
|                                   |                      |                                                             |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  |                                                |                          |                             |                       |
|                                   | 2.396 Q              | GHz                                                         |                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                               |                                  | Stop 2                                         | .596 GHz                 |                             |                       |
| Start 2                           |                      |                                                             | Stor                    | Freq                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency                                    |                                                                                               | mplitude                         |                                                | .596 GHz                 | (<br>525.200<br><u>Auto</u> | 000 MH                |
| Start 2                           | Range                |                                                             |                         | o Freq<br>05 GHz           | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency                                    |                                                                                               | mplitude                         | Stop 2                                         |                          | 525.200                     | 000 MH                |
| Start 2                           | Range<br>1           | Start Freq                                                  | 2.49                    |                            | 1.000 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | GHz -3                                                                                        | 9.15 dBm                         | ∆ Limit                                        | 3                        | 525.200<br><u>Auto</u>      | Ма                    |
| Start 2<br>Spur  <br>1 2 2<br>3 3 | Range<br>1<br>2<br>3 | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>60 GHz | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000<br>2.496000000 | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE<br>-18.00 dE | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 0000 M⊢<br>Ma         |
| Start 2<br>Spur  <br>1 2<br>3 3   | Range<br>1<br>2      | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz               | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz           | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000                | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE              | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 000 Mi<br>M<br>q Offs |
| Start 2                           | Range<br>1<br>2<br>3 | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>60 GHz | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000<br>2.496000000 | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE<br>-18.00 dE | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 000 MH<br>Ma          |
| Start 2<br>Spur  <br>1 2<br>3 3   | Range<br>1<br>2<br>3 | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>60 GHz | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000<br>2.496000000 | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE<br>-18.00 dE | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 000 MH<br>Ma          |
| Start 2<br>Spur  <br>1 2 2<br>3 3 | Range<br>1<br>2<br>3 | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>60 GHz | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000<br>2.496000000 | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE<br>-18.00 dE | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 0000 MH<br>Ma         |
| Start 2                           | Range<br>1<br>2<br>3 | <b>Start Freq</b><br>2.3960 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>60 GHz | 1.000 MHz<br>1.000 MHz<br>910.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z 2.49050000<br>z 2.494550000<br>2.496000000 | GHz         -39           GHz         -36           GHz         -36           GHz         -36 | 9.15 dBm<br>5.94 dBm<br>1.00 dBm | ∆ Limit<br>-14.15 dE<br>-23.94 dE<br>-18.00 dE | 3<br>3<br>3              | 525.200<br><u>Auto</u>      | 0000 MH<br>Ma         |

Plot 7-67. Lower ACP Plot (NR Band n41 - 90MHz CP-OFDM-QPSK - Full RB - AntJ)



Plot 7-68. Upper ACP Plot (NR Band n41 - 90MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Proud to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Dage 52 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Page 52 of 85                     |
| © 2022 PCTEST       | -                             |                                                          | V3.0 1/6/2022                     |



| Keys                            | ight Spectrur | n Analyz<br>RF | er - Spur<br>50 Ω |     | issions<br>CORI | 250     |      |        | 051   | or mut     |      | _      |            |      |         | DU 5 1 4 3            |    |             |                        |
|---------------------------------|---------------|----------------|-------------------|-----|-----------------|---------|------|--------|-------|------------|------|--------|------------|------|---------|-----------------------|----|-------------|------------------------|
| AS                              |               | κ⊧<br>te: LO   | 50 Ω              | DC  |                 |         | •••  | Trig:  | r Fre |            | 0000 |        | ALIGN AUTO | R    | adio St | PM Feb 17,<br>d: None |    | Fre         | quency                 |
| - 43                            | <u> </u>      |                |                   |     | IFG             | ain:Lov | N    | #Atte  | n: 32 | dB         |      |        |            | Ra   | adio De | evice: BT             | s  |             |                        |
| 0 dB<br>₋og <b>[</b>            | /div          | Ref            | 30.00             | dBn | n               |         |      |        |       |            |      |        |            |      |         |                       |    |             |                        |
| 20.0<br>10.0                    |               |                |                   |     |                 |         |      |        |       |            |      |        |            |      |         |                       |    |             | enter Fre<br>990000 G⊦ |
| 0.00<br>10.0 -                  |               |                |                   |     |                 |         |      |        |       | ſ <b></b>  |      |        |            | ~~~~ | ~~      | }                     |    |             |                        |
| 20.0<br>30.0 -                  |               |                |                   |     |                 |         |      |        |       |            |      |        |            |      |         |                       |    |             |                        |
| 40.0 -                          |               |                |                   |     |                 |         |      |        |       |            |      |        |            |      |         |                       |    |             |                        |
| -50.0 <mark>-</mark><br>-60.0 - | T             |                |                   |     |                 | ~       |      |        |       |            |      |        |            |      |         |                       |    |             |                        |
| Start                           | 2.396 (       | GHz            |                   |     |                 |         |      |        |       |            |      |        |            |      | Stop    | 2.596 Q               | Hz | 525.        | CF Ste<br>200000 MH    |
| Spur                            | Range         | Star           | t Freq            | S   | top F           | req     | RB   | W      | Fre   | equency    |      | Ampli  | itude      | 4    | Limit   |                       |    | <u>Auto</u> | Ma                     |
| 1                               | 1             | 2.396          | 60 GHz            | 2.  | 4905            | GHz     | 1.00 | 00 MHz | 2.4   | 90500000 ( | GHz  | -38.29 | dBm        | -1   | 13.29 d | В                     |    |             |                        |
| 2                               | 2             |                | )5 GHz            |     | 4950            | GHz     |      |        |       | 95000000 ( |      |        |            |      | 23.01 d |                       |    | F           | reg Offs               |
| 3                               | 3             |                | 50 GHz            |     | 4960            |         |      |        |       | 96000000 ( |      |        |            |      | 23.11 d |                       |    |             | 01                     |
| 1                               | 4             | 2.496          | 60 GHz            | 2.  | 5960            | GHz     | 1.00 | 00 MHz | 2.5   | 60321608 ( | GHz  | 3.440  | dBm        | -2   | 21.56 d | В                     |    |             | 0 1                    |
|                                 |               |                |                   |     |                 |         |      |        |       |            |      |        |            |      |         |                       |    |             |                        |
| G                               |               | _              |                   | _   | _               |         | _    | _      |       |            |      |        | STAT       | US   | _       |                       |    |             |                        |

Plot 7-69. Lower ACP Plot (NR Band n41 - 80MHz CP-OFDM-QPSK - Full RB - AntJ)



Plot 7-70. Upper ACP Plot (NR Band n41 - 80MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | AMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|--------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |        | Dogo 52 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |        | Page 53 of 85                     |
| © 2022 PCTEST       | •                                       | •                                                        |        | V3.0 1/6/2022                     |



|          | Freque                  |                             | Radio Std: I<br>Radio Devic                    |            |                                  | NSE:INT<br>reg: 2.5260000                                            | Canta                                                                                                            |             | ORREC                                    |                         | zer - Spuriou<br>50 Ω [                            | RF                              | F                    | RL                   |
|----------|-------------------------|-----------------------------|------------------------------------------------|------------|----------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|-------------------------|----------------------------------------------------|---------------------------------|----------------------|----------------------|
|          |                         |                             |                                                |            | 000 GH2                          | e Run                                                                |                                                                                                                  | w _         | Gain:Lo                                  | I                       |                                                    | te: LO                          | S Gat                | AS                   |
|          |                         |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          | dBm                     | 30.00                                              | Ref                             | /div                 | 0 dB<br>.og <b>F</b> |
| nter Fre | Cente<br>2.5260000      |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    |                                 |                      | 20.0<br>10.0         |
|          |                         |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    |                                 |                      | ).00<br>10.0         |
|          |                         | Construction and the second |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    |                                 |                      | 20.0<br>30.0         |
|          |                         |                             |                                                |            |                                  |                                                                      | a di sa di | Marken and  |                                          |                         |                                                    |                                 | ur left for the ball | 10.0<br>50.0         |
| CF Ste   | 6                       | 571 GHz                     | Stop 2.                                        |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    | GHz                             | 2.421 (              | io.o  -<br>itart     |
|          | 525.2000                |                             | 1 4 1 1                                        | 4          | 1.0                              |                                                                      |                                                                                                                  | Inc         | <b>F</b>                                 | 0.0                     | at Passa                                           | 0.0                             | Denne                | 0                    |
|          |                         |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    |                                 |                      | spur                 |
|          |                         |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          |                         |                                                    |                                 |                      | ,                    |
| eq Offs  | Freq                    |                             |                                                |            |                                  |                                                                      |                                                                                                                  |             |                                          | _                       |                                                    |                                 |                      |                      |
| 01       |                         |                             | -19.83 dB                                      |            |                                  |                                                                      |                                                                                                                  |             |                                          | _                       |                                                    |                                 | 4                    |                      |
| 0        | 525.2000<br><u>Auto</u> |                             | Δ Limit<br>-10.66 dB<br>-20.72 dB<br>-20.65 dB | dBm<br>dBm | Hz -35.6<br>Hz -33.7<br>Hz -33.6 | requency<br>490500000 G<br>495000000 G<br>495976667 G<br>543500000 G | 10 MHz<br>10 MHz<br>10 kHz                                                                                       | 1.00<br>620 | Freq<br>5 GHz<br>0 GHz<br>0 GHz<br>0 GHz | 2.490<br>2.495<br>2.496 | rt Freq<br>10 GHz<br>105 GHz<br>150 GHz<br>160 GHz | Star<br>2.421<br>2.490<br>2.495 | Range Range 2 3      | Spur                 |

Plot 7-71. Lower ACP Plot (NR Band n41 - 60MHz CP-OFDM-QPSK - Full RB - AntJ)




Plot 7-72. Upper ACP Plot (NR Band n41 - 60MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dago 54 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 54 of 85                     |
| © 2022 PCTEST       | •                                       | •                                                        |         | V3.0 1/6/2022                     |



| X/RL                       |             | n Analyzer - Spurio<br>RF 50 Ω |                  | s<br>RREC      |                        | SENSE:INT                               |                      | ALIGN AUTO       | 10:20:33              | PM Feb 17, 2022             |                  |                            |
|----------------------------|-------------|--------------------------------|------------------|----------------|------------------------|-----------------------------------------|----------------------|------------------|-----------------------|-----------------------------|------------------|----------------------------|
| PAS                        | S Gat       | te: LO                         | IF               | Gain:Lov       | +++ Trig:              | r Freq: 2.52100<br>Free Run<br>n: 32 dB | 0000 GHz             |                  | Radio Ste<br>Radio De | d: None<br>vice: BTS        | Frequ            | ency                       |
| 10 dB<br>Log <b>F</b>      | 3/div       | Ref 30.00                      | dBm              | 1              |                        |                                         |                      |                  |                       |                             |                  | ·                          |
| 20.0<br>10.0               |             |                                |                  |                |                        |                                         |                      |                  |                       |                             | Cent<br>2.521000 | t <b>er Fre</b><br>1000 GH |
| 0.00<br>10.0 -             |             |                                |                  |                |                        |                                         |                      |                  |                       |                             |                  |                            |
| 20.0 -<br>30.0 -<br>40.0 - |             |                                |                  |                |                        | ~~                                      |                      |                  |                       | Warman Multiger Contraction |                  |                            |
| 50.0 <b>-</b><br>60.0 -    |             |                                | <u> </u>         |                |                        |                                         |                      |                  |                       |                             |                  |                            |
| L<br>Start                 | 2.434 (     | GHz                            |                  |                |                        |                                         |                      |                  | Stop :                | 2.559 GHz                   | (<br>525.200     | CF Ste<br>000 M⊦           |
|                            | Range       | Start Freq                     | Stop             | Frea           | RBW                    | Frequency                               | Am                   | plitude          | ∆ Limit               |                             | <u>Auto</u>      | Ma                         |
| Spur                       |             |                                |                  |                |                        | 2.490500000                             |                      |                  | -10.55 d              | B                           |                  |                            |
| Spur                       | 1           | 2.4335 GHz                     | 2.4905           | o GHZ          |                        |                                         |                      |                  | -10.55 u              |                             |                  |                            |
| <b>Spur</b><br>1<br>2      |             | 2.4335 GHz<br>2.4905 GHz       | 2.4905           |                |                        | 2.494550000                             |                      |                  | -20.74 d              |                             | Ero              |                            |
| 1                          | 1           |                                |                  | ) GHz          | 1.000 MHz              |                                         | GHz -33.             | 74 dBm           |                       | В                           | Free             | q Offs                     |
|                            | 1 2         | 2.4905 GHz                     | 2.4950           | ) GHz<br>) GHz | 1.000 MHz<br>560.0 kHz | 2.494550000                             | GHz -33.<br>GHz -35. | 74 dBm<br>55 dBm | -20.74 d              | B<br>B                      | Free             |                            |
| 2                          | 1<br>2<br>3 | 2.4905 GHz<br>2.4950 GHz       | 2.4950<br>2.4960 | ) GHz<br>) GHz | 1.000 MHz<br>560.0 kHz | 2.494550000<br>2.495960000              | GHz -33.<br>GHz -35. | 74 dBm<br>55 dBm | -20.74 d<br>-22.55 d  | B<br>B                      | Free             | q Offs<br>0 I              |

Plot 7-73. Lower ACP Plot (NR Band n41 - 50MHz CP-OFDM-QPSK - Full RB - AntJ)



Plot 7-74. Upper ACP Plot (NR Band n41 - 50MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                |         | Dogo 55 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         |         | Page 55 of 85                     |
| © 2022 PCTEST       |                               | ·                                                        |         | V3.0 1/6/2022                     |

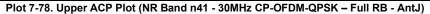


| 📕 Keysi<br>🗶 R L    | ight Spectrun                           | n <mark>Analyz</mark><br>RF | er - Spur<br>50 Ω | ious Em |        | RREC    |         |         | CEN           | ISE:INT            |      |          | ALIGN AUT | 0   | 10.20-  | 40 DM | 1Feb 17, 2022 | _           |                       |
|---------------------|-----------------------------------------|-----------------------------|-------------------|---------|--------|---------|---------|---------|---------------|--------------------|------|----------|-----------|-----|---------|-------|---------------|-------------|-----------------------|
|                     |                                         | te: LO                      | 50.32             | DC      | COI    |         | -<br>-→ | , Trig: | er Fr<br>Free | eq: 2.51598<br>Run | 0000 | GHz      | ALIGN ADT |     | Radio   |       |               | F           | requency              |
| PASS                |                                         |                             |                   |         | IFG    | Gain:Lo | w       | #Atte   | n: 32         | 2 dB               |      |          |           |     | Radio I | Devi  | ce: BTS       |             |                       |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| 10 d <u>B</u> /     | div                                     | Ref                         | 30.00             | dBr     | n      |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| - <b>°g</b><br>20.0 |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             | <b>.</b>              |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             | Center Fre            |
| 10.0                |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               | 2.51        | 5980000 GH            |
| 0.00                |                                         |                             |                   |         |        |         |         |         |               |                    |      | <u> </u> |           |     |         |       |               |             |                       |
| 10.0                |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| 20.0                |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| 30.0                |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| 40.0                |                                         |                             |                   |         |        |         |         |         | ~~.           | ſ                  |      |          |           |     |         | ~~    |               |             |                       |
| 50.0                |                                         |                             |                   |         | مسمحى  |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
|                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| 60.0                |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
| Start               | 2.446 0                                 | SHz                         |                   |         |        |         |         |         |               |                    |      |          |           |     | Sto     | p 2.  | 546 GHz       |             | 05.04                 |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               | 525         | CF Ste<br>5.200000 MH |
| Spur                | Range                                   | Star                        | t Freg            | 8       | Stop F | Freq    | R       | BW      | Fr            | equency            |      | Ampl     | itude     |     | ΔLim    | it    |               | <u>Auto</u> | Ma                    |
| 1                   | 1                                       | 2.446                       | 60 GHz            | 2.      | 4905   | GHz     | 1.0     | 000 MHz | 2.4           | 89610000           | GHz  | -35.14   | dBm       |     | -10.14  | dB    |               |             |                       |
| 2                   | 2                                       |                             | )5 GHz            |         | 4950   |         |         |         |               | 93425000           |      |          |           |     | -20.54  |       |               |             | Freq Offs             |
| 3                   | 3                                       |                             | 50 GHz            |         | 4960   |         |         |         |               | 96000000           |      |          |           |     | -23.10  |       |               |             | 0 H                   |
| 4                   | 4                                       | 2.496                       | 60 GHz            | 2.      | 5460   | GHz     | 43      | 0.0 kHz | 2.5           | 30199134           | GHz  | 3.172    | dBm       |     | -21.83  | dB    |               |             | 01                    |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
|                     |                                         |                             |                   |         |        |         |         |         |               |                    |      |          |           |     |         |       |               |             |                       |
|                     |                                         | _                           | _                 | _       | _      | _       | _       | _       |               |                    |      |          |           |     | -       |       |               |             |                       |
| G                   |                                         |                             |                   |         |        |         |         |         |               |                    |      |          | STA       | TUS |         |       |               |             |                       |

Plot 7-75. Lower ACP Plot (NR Band n41 - 40MHz CP-OFDM-QPSK - Full RB - AntJ)



Plot 7-76. Upper ACP Plot (NR Band n41 - 40MHz CP-OFDM-QPSK - Full RB - AntJ)


| FCC ID: A3LSMS908E  | PCTEST.<br>Proud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dogo 56 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 56 of 85                     |
| © 2022 PCTEST       |                                         | •                                                        |         | V3.0 1/6/2022                     |



|                                                                                                                                                                                                                                                                                                                                                        | 10-21-22 DM                         | ALIGN AUTO                             | art.                                      |                      |                                     | DRREC                   |                | lyzer - Spuriou<br>50 Ω [ | nt Spectrum<br>RF | Keys<br>R L         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------|----------------------|-------------------------------------|-------------------------|----------------|---------------------------|-------------------|---------------------|
| SENSE:INT         ALIGN AUTO         10:31:23 PM Feb 17, 2022         Frequency           Center Freq: 2.51100000 GHz         Radio Std: None         Frequency           →         Trig: Free Run         Frequency         Frequency                                                                                                                 |                                     | ALIGN AUTO                             | 2.511000000 G                             | nter                 |                                     | JRREC                   |                |                           | Gate              |                     |
| Low #Atten: 32 dB Radio Device: BTS                                                                                                                                                                                                                                                                                                                    | Radio Devi                          |                                        |                                           | tten:                | w #Atte                             | Gain:Low                | IF             | <u> </u>                  | Gate              | AS                  |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         | dBm            | f 30.00 d                 | iv                | 0 dB<br>og <b>[</b> |
| Center F                                                                                                                                                                                                                                                                                                                                               |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 20.0                |
| 2.511000000                                                                                                                                                                                                                                                                                                                                            |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 10.0                |
|                                                                                                                                                                                                                                                                                                                                                        | q                                   |                                        |                                           |                      |                                     |                         |                |                           |                   | 1.00                |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                        | •                                   |                                        |                                           |                      |                                     |                         |                |                           |                   | 10.0                |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                | ممسمه                     |                   | 0.0 L               |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   | 0.0                 |
| Stop 2.534 GHz CF St                                                                                                                                                                                                                                                                                                                                   | Stop 2.                             |                                        |                                           |                      |                                     |                         |                | 2                         | 2.459 G           | tart                |
| 525.20000 M                                                                                                                                                                                                                                                                                                                                            |                                     |                                        |                                           |                      |                                     |                         |                |                           |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                        |                                     | 114 1                                  | ency                                      |                      | RBW                                 | Fred                    | Stop           | art Freq                  | Range             | Spur                |
|                                                                                                                                                                                                                                                                                                                                                        |                                     |                                        |                                           |                      |                                     | 1 log                   |                |                           |                   |                     |
| z 1.000 MHz 2.490500000 GHz -31.76 dBm -6.761 dB                                                                                                                                                                                                                                                                                                       | -6.761 dB                           | 6 dBm                                  | 00000 GHz -                               | Hz 2                 | 1.000 MHz                           | 5 GHz                   | 2.490          | 585 GHz                   |                   |                     |
| RBW         Prequency         Amplitude         A Linit           z         1.000 MHz         2.490500000 GHz         -31.76 dBm         -6.761 dB           z         1.000 MHz         2.494820000 GHz         -30.73 dBm         -17.73 dB         Freq Off                                                                                         | -6.761 dB<br>-17.73 dB              | ' <mark>6 dBm</mark><br>'3 dBm         | 00000 GHz -<br>20000 GHz -                | Hz 2<br>Hz 2         | 1.000 MHz                           | 5 GHz<br>0 GHz          | 2.490<br>2.495 | 905 GHz                   | 2                 |                     |
| RBW         Prequency         Amplitude         A Limit           z         1.000 MHz         2.49050000 GHz         31.76 dBm         -6.761 dB           z         1.000 MHz         2.49482000 GHz         -30.73 dBm         -17.73 dB           z         330.0 kHz         2.495720000 GHz         -35.19 dBm         -22.19 dB         Freq Off | -6.761 dB<br>-17.73 dB<br>-22.19 dB | <mark>'6 dBm</mark><br>'3 dBm<br>9 dBm | 00000 GHz -<br>20000 GHz -<br>20000 GHz - | Hz 2<br>Hz 2<br>Iz 2 | 1.000 MHz<br>1.000 MHz<br>330.0 kHz | 5 GHz<br>0 GHz<br>0 GHz | 2.490          |                           | 2 :<br>3 :        |                     |

Plot 7-77. Lower ACP Plot (NR Band n41 - 30MHz CP-OFDM-QPSK - Full RB - AntJ)






| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 57 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 57 01 65                     |
| © 2022 PCTEST       | •                             |                                                          | V3.0 1/6/2022                     |



| 🚾 Keysi<br>🗶 R L       | ight Spectrun |       | r - Spuri<br>50 Ω | ous Emi | issions<br>CORF | DEC     |     |        | CEN           | SE:INT           |                                        |                 | ALIGN AUT    | 0                                          | 10.25.5 | 50 DM | 1Feb 17, 2022 | _           |                          |
|------------------------|---------------|-------|-------------------|---------|-----------------|---------|-----|--------|---------------|------------------|----------------------------------------|-----------------|--------------|--------------------------------------------|---------|-------|---------------|-------------|--------------------------|
| PASS                   |               | te:LO | 20.22             | DC      |                 |         |     | Trig:  | r Fre<br>Free | q: 2.5059<br>Run | 90000                                  | GHz             | ALIGN AUT    | Radio Std: None Frequ<br>Radio Device: BTS |         |       | equency       |             |                          |
| -433                   |               |       |                   |         |                 | ain:Lov | N   | #Atte  | n: 32         | dB               |                                        |                 |              |                                            | Radio I | Devi  | ce: BTS       |             |                          |
| i0 dB/<br>₋og <b>Г</b> | div           | Ref 3 | 30.00             | dBn     | n               |         |     |        |               |                  |                                        |                 |              |                                            |         |       |               |             |                          |
| 20.0                   |               |       |                   |         |                 |         |     |        |               |                  |                                        |                 |              |                                            |         |       |               |             | Center Fre<br>5990000 G⊢ |
| 0.00                   |               |       |                   |         |                 |         |     |        |               |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~ <u>~</u> ~~ | and a second | ~~~                                        | ~       | ł     |               | 2.000       | 5550000 011              |
| 10.0                   |               |       |                   |         |                 |         |     |        | =             |                  |                                        |                 |              |                                            |         | Ļ     |               |             |                          |
| 20.0 -<br>30.0 -       |               |       |                   |         |                 |         |     |        |               | ļ                |                                        |                 |              |                                            |         |       |               |             |                          |
| 40.0 -                 |               |       |                   | ****    |                 | ~       |     | ~      | تمد           |                  |                                        |                 |              |                                            |         |       | m vvr         |             |                          |
| -50.0 💻                |               | ~~~~~ |                   |         |                 |         |     |        |               |                  |                                        |                 |              |                                            |         |       |               |             |                          |
| -60.0                  |               |       |                   |         |                 |         |     |        |               |                  |                                        |                 |              |                                            |         |       |               |             |                          |
| Start                  | 2.471 (       | SHZ   |                   |         |                 |         |     |        |               |                  |                                        |                 |              |                                            | Stop    | o 2.  | 521 GHz       |             | CF Ste<br>.200000 MH     |
| Spur                   | Range         | Start | Freq              | S       | top F           | req     | RB  | W      | Fre           | quency           |                                        | Ampl            | itude        |                                            | ∆ Lim   | it    |               | <u>Auto</u> | Ma                       |
|                        | 1             | 2.471 |                   |         | 4905            |         |     |        |               | 38355000         |                                        |                 |              |                                            | -7.266  |       |               |             |                          |
| 2                      | 2             | 2.490 |                   |         | 4950            |         |     |        |               | 9500000          |                                        |                 |              |                                            | -16.77  |       |               |             | Freq Offs                |
| 3                      | 3             | 2.495 |                   |         | 4960            |         |     |        |               | 9600000          |                                        |                 |              |                                            | -19.66  |       |               |             | 0 -                      |
| 4                      | 4             | 2.496 | 0 GHz             | 2.      | 5210            | GHz     | 240 | .0 kHz | 2.50          | 9768116          | 6 GHz                                  | 3.734           | dBm          |                                            | -21.27  | dB    |               |             | 01                       |
|                        |               |       |                   |         |                 |         |     |        |               |                  |                                        |                 |              |                                            |         |       |               |             |                          |
| SG                     |               |       |                   |         |                 |         |     |        |               |                  |                                        |                 | STA          | TUS                                        |         |       |               |             |                          |

Plot 7-79. Lower ACP Plot (NR Band n41 - 20MHz CP-OFDM-QPSK - Full RB - AntJ)



Plot 7-80. Upper ACP Plot (NR Band n41 - 20MHz CP-OFDM-QPSK - Full RB - AntJ)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be post of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Daga 59 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 58 of 85                     |
| © 2022 PCTEST       | ·                                       |                                                          |         | V3.0 1/6/2022                     |



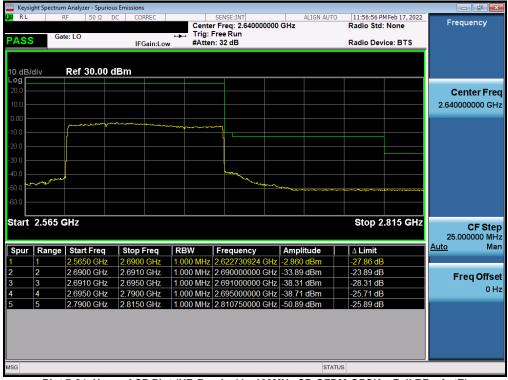
## NR Band n41 SRS2 – AntB

| Keysight S |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             | <b>.</b> |
|------------|------|-------|-------|----|--------|--------|-----|---------|-----------|--------------------------|-----|--------|------------|---------|-------------------------------|-------------|----------|
| KU RL      | R    | F     | 50 Ω  | DC | CO     | RREC   |     | Cent    |           | NSE:INT<br>reg: 2.546000 | 000 |        | ALIGN AUTO |         | 5 PM Feb 17, 2022<br>td: None | Freque      | ncy      |
|            | Gat  | e: LO |       |    |        |        | •   |         |           | e Run                    |     | 5112   |            | Raulo 3 | tu. None                      |             |          |
| PASS       | out  |       |       |    | IF     | Gain:L | wo  | #Att    | en: 3     | 2 dB                     |     |        |            | Radio D | evice: BTS                    |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| 10 dB/div  |      | Ref 3 | 10 OO | dB | m      |        |     |         |           |                          |     |        |            |         |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| 20.0       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               | Cent        | er Fre   |
| 10.0       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               | 2.546000    | 000 GH   |
| 0.00       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         | _                             |             |          |
| 10.0       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         | ļ                             |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| 20.0       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| 30.0       |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| 40.0       |      |       |       |    |        |        |     | _       | ليهيدوهما |                          |     |        |            |         |                               |             |          |
| 50.0       |      |       |       |    |        |        |     | - And - |           |                          |     |        |            |         |                               |             |          |
| 60.0       |      |       | -7    |    | ****** |        |     |         |           |                          |     |        |            |         |                               |             |          |
| ·6U.U      |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| Start 2.3  | 71 G | Hz    |       |    |        |        |     |         |           |                          |     |        |            | Stop    | 2.621 GHz                     |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               | 244.000     | F Ste    |
| Spur   Ra  | ange | Start | Freq  |    | Stop   | Freq   |     | RBW     | Fi        | requency                 |     | Ampli  | tude       | ∆ Limi  | t                             | <u>Auto</u> | Ma       |
| 1 1        |      | 2.371 | 0 GHz | 2  | .490   | 5 GHz  | : 1 | .000 MH | z 2.4     | 486985294 (              | GHz | -38.37 | dBm        | -13.37  | dB                            |             |          |
| 2 2        |      | 2.490 | 5 GHz | 2  | .495(  | 0 GHz  | : 1 | .000 MH | z 2.4     | 195000000 0              | GHz | -38.52 | dBm        | -25.52  | dB                            | Free        | Offs     |
| 3 3        |      | 2.495 |       |    |        | 0 GHz  |     |         | _         | 496000000                |     |        |            | -17.36  |                               | 1100        | 013      |
| 4 4        |      | 2.496 | 0 GHz | 2  | .621(  | 0 GHz  | . 1 | .000 MH | z 2.5     | 592887550 (              | GHz | 1.275  | dBm        | -23.72  | dB                            |             | 0 1      |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |
| SG         | _    |       | _     | _  |        | _      |     |         |           |                          | _   |        | STATU      | s       |                               |             |          |
|            |      |       |       |    |        |        |     |         |           |                          |     |        |            |         |                               |             |          |

Plot 7-81. Lower ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntB)

| Keysigl       | F                    | n Analyzer - Spurio<br>F 50 Ω<br>re: LO | DC CORREC  | Trig:     | SENSE:INT<br>r Freq: 2.6400000<br>Free Run<br>n: 32 dB | ALIGN AUTO    | Radio Std: None                        | Frequency                    |
|---------------|----------------------|-----------------------------------------|------------|-----------|--------------------------------------------------------|---------------|----------------------------------------|------------------------------|
| 10 dB/d       |                      | Ref 30.00                               | IFGain:L   | ow_#Atte  | n: 32 aB                                               |               | Radio Device: BTS                      |                              |
| -og           |                      |                                         |            |           |                                                        |               |                                        |                              |
| 10.0          |                      |                                         |            |           |                                                        |               |                                        | Center Fre<br>2.640000000 GH |
| 0.00          |                      | /- ···                                  |            |           | ~                                                      |               |                                        |                              |
| 20.0          |                      |                                         |            |           |                                                        |               |                                        |                              |
| 30.0          |                      |                                         |            |           |                                                        |               |                                        |                              |
| 40.0          | لىمىيەتىم<br>مەمامىي |                                         |            |           |                                                        | ~~            |                                        |                              |
| 50.0 <u> </u> |                      |                                         |            |           |                                                        | **            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                              |
| Start :       | 2.565 C              | Hz                                      |            |           |                                                        |               | Stop 2.815 GHz                         | CF Ste<br>244.000000 MH      |
| Spur          | Range                | Start Freq                              | Stop Freq  | RBW       | Frequency                                              | Amplitude     | ∆ Limit                                | <u>Auto</u> Ma               |
|               | 1                    | 2.5650 GHz                              | 2.6900 GHz | 1.000 MHz | 2.604658635 GH                                         | lz 0.678 dBm  | -24.32 dB                              |                              |
|               | 2                    | 2.6900 GHz                              | 2.6910 GHz |           | 2.690000000 GH                                         |               | -21.16 dB                              | Freq Offse                   |
|               | 3                    | 2.6910 GHz                              | 2.6950 GHz |           | 2.695000000 GH                                         |               | -25.03 dB                              | 0 H                          |
|               | 4                    | 2.6950 GHz                              | 2.7900 GHz |           | 2.695000000 GH                                         |               | -22.19 dB                              | 011                          |
| 5             | 5                    | 2.7900 GHz                              | 2.8150 GHz | 1.000 MHz | 2.804750000 GH                                         | iz -50.86 dBm | -25.86 dB                              |                              |
| 5G            | _                    |                                         |            |           |                                                        | STAT          | TUS                                    |                              |

Plot 7-82. Upper ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntB)


| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dage 50 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 59 of 85                     |
| © 2022 PCTEST       | •                                       | ÷                                                        |         | V3.0 1/6/2022                     |



## NR Band n41 SRS3 – AntE

| RL                 | im Analyzer - Spurio<br>RF 50 Ω        | DC CORREC                              |                                           | SENSE:INT                                       | ALIGN AUTO                                                                               |                                                | 4 Feb 17, 2022                                                                                                   | Frequen              | 5 ×            |
|--------------------|----------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|----------------|
| ASS                | ate: LO                                | IFGain:                                | Trig:                                     | er Freq: 2.546000<br>Free Run<br>m: 32 dB       | 0000 GHz                                                                                 | Radio Std:<br>Radio Devi                       |                                                                                                                  | Frequen              | cy             |
| 0 dB/div           | Ref 30.00                              | dBm                                    |                                           |                                                 |                                                                                          |                                                |                                                                                                                  |                      |                |
| 0.0                |                                        |                                        |                                           |                                                 |                                                                                          |                                                |                                                                                                                  | Center<br>2.54600000 |                |
| 0.00<br>0.0<br>0.0 |                                        |                                        |                                           |                                                 |                                                                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~         |                                                                                                                  |                      |                |
| 0.0                |                                        |                                        |                                           |                                                 |                                                                                          |                                                | and the second |                      |                |
| 0.0                |                                        | ~~_L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                           |                                                 |                                                                                          |                                                |                                                                                                                  |                      |                |
| tart 2.371         | GHz                                    |                                        |                                           |                                                 |                                                                                          | Stop 2.                                        | .621 GHz                                                                                                         | CF<br>25.00000       | F Ste<br>00 M⊦ |
| Spur   Range       | Start Freq                             | Stop Freq                              | RBW                                       | Frequency                                       | Amplitude                                                                                | ∆ Limit                                        |                                                                                                                  | Auto                 | Ma             |
| 1                  | 2.3710 GHz                             | 2.4905 GH                              | z 1.000 MHz                               | 2.489997899                                     | GHz -43.20 dBm                                                                           | -18.20 dB                                      |                                                                                                                  |                      |                |
| 2                  | 2.4905 GHz                             | 2.4950 GH                              | z 1.000 MHz                               | 2.490500000                                     | GHz -43.17 dBm                                                                           | -30.17 dB                                      |                                                                                                                  | Ereat                | Offe           |
| 3                  | 2.4950 GHz                             | 2.4960 GH                              | z 1.000 MHz                               | 2.496000000                                     | GHz -34.50 dBm                                                                           | -21.50 dB                                      |                                                                                                                  | rieqv                | 015            |
| 4                  | 2.4960 GHz                             | 2.6210 GH                              | z 1.000 MHz                               | 2.546702811                                     | GHz -2.990 dBm                                                                           | -27.99 dB                                      |                                                                                                                  |                      | UF             |
| 1<br>2<br>3        | 2.3710 GHz<br>2.4905 GHz<br>2.4950 GHz | 2.4905 GH<br>2.4950 GH<br>2.4960 GH    | z 1.000 MHz<br>z 1.000 MHz<br>z 1.000 MHz | 2.489997899 (<br>2.490500000 (<br>2.496000000 ( | GHz         -43.20 dBm           GHz         -43.17 dBm           GHz         -34.50 dBm | Δ Limit<br>-18.20 dB<br>-30.17 dB<br>-21.50 dB |                                                                                                                  |                      | 0              |

Plot 7-83. Lower ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntE)



Plot 7-84. Upper ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntE)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dage 60 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 60 of 85                     |
| © 2022 PCTEST       | •                                       | •                                                        |         | V3.0 1/6/2022                     |



## NR Band n41 SRS4 – AntD

|                      | Spectrum |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
|----------------------|----------|-------------|-------|----------------------------------------|---------|--------|--------|----------|-------|--------------------------|-------|-------|------------|---------|-----------------|--------|------------------------|
| I <mark>XI</mark> RL | R        | F           | 50 Ω  | DC                                     | CO      | RREC   |        | Cent     |       | NSE:INT<br>req: 2.546000 | 000 G |       | ALIGN AUTO |         | AM Feb 18, 2022 | F      | requency               |
| _                    | Gat      | e: LO       |       |                                        |         |        |        | Trig:    | Fre   | e Run                    | 000 0 | 5112  |            | Radio 3 | u. None         |        |                        |
| PASS                 |          |             |       |                                        | IF      | Gain:L | .ow    | #Atte    | n: 3  | 2 dB                     |       |       |            | Radio D | evice: BTS      |        |                        |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| 10 dB/div            | v        | Ref :       | 30.00 | dB                                     | m       |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| Log                  |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| 20.0                 |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        | Center Free            |
| 10.0                 |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 | 2.54   | 6000000 GH             |
| 0.00                 |          |             |       |                                        |         |        |        |          |       |                          | ~~~~  |       |            |         | -               |        |                        |
| -10.0                |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| -20.0                |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| -30.0                |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| -40.0                |          |             |       |                                        |         |        |        | منعم     | نيم.^ |                          |       |       |            |         | man and         |        |                        |
|                      |          |             |       |                                        |         |        |        | 1        |       |                          |       |       |            |         |                 |        |                        |
| -50.0                | ,        | ·           |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | daahood | t      | Janago | ~~^      |       |                          |       |       |            |         |                 |        |                        |
| -60.0                |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| Start 2              | 371 6    | <u>د ال</u> |       |                                        |         |        |        |          | _     |                          |       |       |            | Ston    | 2.621 GHz       |        |                        |
| Start Z              | .3710    | 2112        |       |                                        |         |        |        |          |       |                          |       |       |            | Stop    | 2.021 962       |        | CF Step<br>5.000000 MH |
| Spur   F             | Range    | Ohard       | Freq  |                                        | 04      | Freg   |        | RBW      |       | requency                 |       | Ampli |            | ∆ Limit |                 | Auto   | Mar<br>Mar             |
| 3pur   r             |          |             | 0 GHz |                                        |         | 5 GHz  |        |          |       | 188993697 G              |       |       |            | -9.352  |                 |        |                        |
| 2 2                  |          |             | 5 GHz |                                        |         | 0 GHz  |        |          |       | 494055000 G              |       |       |            | -21.96  |                 |        |                        |
| 3 3                  |          |             | 0 GHz |                                        |         | 0 GHz  |        |          |       | 496000000 G              |       |       |            | -18.72  |                 |        | Freq Offse             |
| 4 4                  |          | 2.496       | 0 GHz | : 2                                    | .6210   | ) GHz  | . 1    | .000 MHz | 2.5   | 591381526 G              | Hz -  | 0.155 | dBm        | -25.16  | dΒ              |        | 0 H:                   |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
|                      |          |             |       |                                        |         |        |        |          |       |                          |       |       |            |         |                 |        |                        |
| MSG                  |          |             |       |                                        |         |        |        |          |       |                          |       |       | STATU      | 3       |                 |        |                        |
|                      | -        |             | -     |                                        |         | -      |        |          | -     |                          |       |       |            |         |                 | 2 1 10 |                        |

Plot 7-85. Lower ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntD)



Plot 7-86. Upper ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK - Full RB - AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dogo 61 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 61 of 85                     |
| © 2022 PCTEST       | •                                       | •                                                        |         | V3.0 1/6/2022                     |



## 7.6 Radiated Power (EIRP)

#### Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

#### Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\ge$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 62 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 02 01 05                     |
| © 2022 PCTEST       | •                             |                                                          | V3.0 1/6/2022                     |



The EUT and measurement equipment were set up as shown in the diagram below.

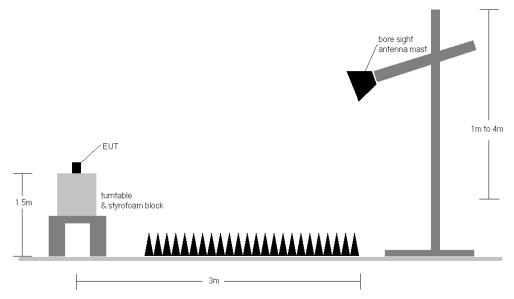



Figure 7-5. Radiated Test Setup >1GHz

#### Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 63 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 03 01 05                     |
| © 2022 PCTEST       |                               |                                                          | V3.0 1/6/2022                     |



| Bandwidth | Mod.                 | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|----------------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
|           | π/2 BPSK             | 2546.0             | V                  | 108                       | 25                               | 9.40               | 1 / 136           | 11.56                     | 20.96         | 0.125           | 33.01               | -12.05         |
| ~         | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 136           | 12.67                     | 22.13         | 0.163           | 33.01               | -10.88         |
| 100 MHz   | π/2 BPSK             | 2640.0             | V                  | 114                       | 26                               | 9.50               | 1 / 68            | 11.59                     | 21.09         | 0.129           | 33.01               | -11.92         |
| N O       | QPSK                 | 2546.0             | V                  | 108                       | 25                               | 9.40               | 1 / 136           | 10.84                     | 20.24         | 0.106           | 33.01               | -12.77         |
| 10(       | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 136           | 12.14                     | 21.60         | 0.145           | 33.01               | -11.41         |
|           | QPSK                 | 2640.0             | V                  | 114                       | 26                               | 9.50               | 1 / 68            | 10.89                     | 20.39         | 0.109           | 33.01               | -12.62         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 136           | 11.55                     | 21.01         | 0.126           | 33.01               | -12.00         |
|           | π/2 BPSK             | 2541.0             | V                  | 108                       | 25                               | 9.46               | 1 / 183           | 11.90                     | 21.36         | 0.137           | 33.01               | -11.65         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 183           | 12.90                     | 22.36         | 0.172           | 33.01               | -10.65         |
| Hz        | π/2 BPSK             | 2645.0             | V                  | 114                       | 26                               | 9.51               | 1 / 122           | 11.40                     | 20.91         | 0.123           | 33.01               | -12.10         |
| 90 MHz    | QPSK                 | 2541.0             | V                  | 108                       | 25                               | 9.46               | 1 / 183           | 10.77                     | 20.23         | 0.105           | 33.01               | -12.78         |
| 6         | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 183           | 12.26                     | 21.72         | 0.149           | 33.01               | -11.29         |
|           | QPSK                 | 2645.0             | V                  | 114                       | 26                               | 9.51               | 1 / 122           | 11.06                     | 20.57         | 0.114           | 33.01               | -12.44         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 183           | 11.69                     | 21.16         | 0.131           | 33.01               | -11.85         |
|           | π/2 BPSK             | 2536.0             | V                  | 108                       | 25                               | 9.49               | 1 / 162           | 11.67                     | 21.16         | 0.131           | 33.01               | -11.85         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 162           | 12.77                     | 22.23         | 0.167           | 33.01               | -10.78         |
| 80 MHz    | π/2 BPSK             | 2650.0             | V                  | 114                       | 26                               | 9.52               | 1 / 162           | 11.76                     | 21.27         | 0.134           | 33.01               | -11.74         |
| ×         | QPSK                 | 2536.0             | V                  | 108                       | 25                               | 9.49               | 1 / 162           | 10.57                     | 20.06         | 0.101           | 33.01               | -12.95         |
| 80        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 162           | 11.84                     | 21.30         | 0.135           | 33.01               | -11.71         |
|           | QPSK                 | 2650.0             | V                  | 114                       | 26                               | 9.52               | 1 / 162           | 10.79                     | 20.31         | 0.107           | 33.01               | -12.70         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 162           | 10.97                     | 20.44         | 0.111           | 33.01               | -12.57         |
|           | π/2 BPSK             | 2526.0             | V                  | 108                       | 25                               | 9.52               | 1 / 121           | 10.93                     | 20.45         | 0.111           | 33.01               | -12.56         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 121           | 12.15                     | 21.61         | 0.145           | 33.01               | -11.40         |
| 60 MHz    | π/2 BPSK             | 2660.0             | V                  | 114                       | 26                               | 9.50               | 1 / 121           | 11.26                     | 20.76         | 0.119           | 33.01               | -12.25         |
| N N N     | QPSK                 | 2526.0             | V                  | 108                       | 25                               | 9.52               | 1 / 121           | 10.61                     | 20.12         | 0.103           | 33.01               | -12.89         |
| 60        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 121           | 12.14                     | 21.60         | 0.144           | 33.01               | -11.41         |
|           | QPSK                 | 2660.0             | V                  | 114                       | 26                               | 9.50               | 1 / 121           | 11.14                     | 20.64         | 0.116           | 33.01               | -12.37         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 121           | 11.46                     | 20.92         | 0.124           | 33.01               | -12.09         |
|           | π/2 BPSK             | 2521.0             | V                  | 108                       | 25                               | 9.51               | 1 / 99            | 11.57                     | 21.08         | 0.128           | 33.01               | -11.93         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 99            | 12.68                     | 22.15         | 0.164           | 33.01               | -10.86         |
| Hz        | π/2 BPSK             | 2665.0             | V                  | 114                       | 26                               | 9.51               | 1 / 99            | 11.68                     | 21.19         | 0.131           | 33.01               | -11.82         |
| 50 MHz    | QPSK                 | 2521.0             | V                  | 108                       | 25                               | 9.51               | 1 / 99            | 10.66                     | 20.17         | 0.104           | 33.01               | -12.84         |
| 50        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 99            | 11.96                     | 21.42         | 0.139           | 33.01               | -11.59         |
|           | QPSK                 | 2665.0             | V                  | 114                       | 26                               | 9.51               | 1 / 99            | 10.72                     | 20.23         | 0.105           | 33.01               | -12.78         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 99            | 11.06                     | 20.52         | 0.113           | 33.01               | -12.49         |
|           | Π/2 BPSK             | 2516.0             | V                  | 108                       | 25                               | 9.52               | 1 / 26            | 11.81                     | 21.33         | 0.136           | 33.01               | -11.68         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 26            | 12.98                     | 22.44         | 0.175           | 33.01               | -10.57         |
| 40 MHz    | π/2 BPSK             | 2670.0             | V                  | 114                       | 26                               | 9.52               | 1 / 26            | 11.84                     | 21.36         | 0.137           | 33.01               | -11.65         |
| ×         | QPSK                 | 2516.0             | V                  | 108                       | 25                               | 9.52               | 1 / 26            | 10.78                     | 20.30         | 0.107           | 33.01               | -12.71         |
| 40        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 26            | 12.01                     | 21.47         | 0.140           | 33.01               | -11.54         |
|           | QPSK                 | 2670.0             | V                  | 114                       | 26                               | 9.52               | 1 / 26            | 10.99                     | 20.51         | 0.113           | 33.01               | -12.50         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 26            | 11.18                     | 20.65         | 0.116           | 33.01               | -12.36         |
|           | π/2 BPSK             | 2511.0             | V                  | 108                       | 25                               | 9.54               | 1 / 39            | 11.16                     | 20.70         | 0.118           | 33.01               | -12.31         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 39            | 12.45                     | 21.91         | 0.155           | 33.01               | -11.10         |
| 30 MHz    | π/2 BPSK             | 2675.0             | V                  | 114                       | 26                               | 9.52               | 1 / 39            | 11.87                     | 21.38         | 0.137           | 33.01               | -11.63         |
| Ē         | QPSK                 | 2511.0             | V                  | 108                       | 25                               | 9.54               | 1 / 39            | 10.76                     | 20.30         | 0.107           | 33.01               | -12.71         |
| 30        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 39            | 12.08                     | 21.54         | 0.143           | 33.01               | -11.47         |
|           | QPSK                 | 2675.0             | V                  | 114                       | 26                               | 9.52               | 1 / 39            | 11.11                     | 20.62         | 0.115           | 33.01               | -12.39         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 39            | 11.50                     | 20.97         | 0.125           | 33.01               | -12.04         |
|           | π/2 BPSK             | 2506.0             | V                  | 108                       | 25                               | 9.54               | 1 / 25            | 11.10                     | 20.65         | 0.116           | 33.01               | -12.36         |
|           | π/2 BPSK             | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 13            | 12.76                     | 22.22         | 0.167           | 33.01               | -10.79         |
| 20 MHz    | π/2 BPSK             | 2680.0             | V                  | 114                       | 26                               | 9.51               | 1 / 13            | 11.93                     | 21.44         | 0.139           | 33.01               | -11.57         |
| Ξ         | QPSK                 | 2506.0             | V                  | 108                       | 25                               | 9.54               | 1 / 25            | 10.65                     | 20.19         | 0.105           | 33.01               | -12.82         |
| 20        | QPSK                 | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 13            | 12.24                     | 21.70         | 0.148           | 33.01               | -11.31         |
|           | QPSK                 | 2680.0             | V                  | 114                       | 26                               | 9.51               | 1 / 13            | 11.03                     | 20.54         | 0.113           | 33.01               | -12.47         |
|           | 16-QAM               | 2593.0             | V                  | 118                       | 26                               | 9.46               | 1 / 13            | 11.06                     | 20.52         | 0.113           | 33.01               | -12.49         |
|           | QPSK (CP-OFDM)       | 2593.0             | V                  | 118                       | 25                               | 9.46               | 1 / 136           | 11.00                     | 20.46         | 0.111           | 33.01               | -12.55         |
| 100 MHz   | QPSK (Opposite Pol.) | 2593.0             | Н                  | 143                       | 43                               | 9.46               | 1 / 136           | 11.62                     | 21.08         | 0.128           | 33.01               | -11.93         |
|           | QPSK (WCP)           | 2593.0             | V                  | 148                       | 332                              | 9.46               | 1 / 136           | 8.82                      | 18.28         | 0.067           | 33.01               | -14.73         |

Table 7-2. EIRP Data (NR Band n41 – AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Daga 64 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Page 64 of 85                     |
| © 2022 PCTEST       | •                       | ·                                                        |         | V3.0 1/6/2022                     |



| Bandwidth | Mod.                 | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|----------------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
|           | π/2 BPSK             | 2546.0             | Н                  | 136                       | 139                              | 9.38               | 1 / 204           | 9.40                      | 18.78         | 0.075           | 33.01               | -14.23         |
|           | π/2 BPSK             | 2593.0             | Н                  | 139                       | 140                              | 9.49               | 1 / 204           | 11.54                     | 21.03         | 0.127           | 33.01               | -11.98         |
| MHz       | π/2 BPSK             | 2640.0             | Н                  | 143                       | 135                              | 9.89               | 1 / 136           | 9.81                      | 19.70         | 0.093           | 33.01               | -13.31         |
|           | QPSK                 | 2546.0             | Н                  | 136                       | 139                              | 9.38               | 1 / 204           | 8.81                      | 18.19         | 0.066           | 33.01               | -14.82         |
| 100       | QPSK                 | 2593.0             | Н                  | 139                       | 140                              | 9.49               | 1 / 204           | 10.94                     | 20.43         | 0.110           | 33.01               | -12.58         |
|           | QPSK                 | 2640.0             | Н                  | 143                       | 135                              | 9.89               | 1 / 136           | 9.14                      | 19.03         | 0.080           | 33.01               | -13.98         |
|           | 16-QAM               | 2593.0             | Н                  | 139                       | 140                              | 9.49               | 1 / 204           | 10.07                     | 19.56         | 0.090           | 33.01               | -13.45         |
|           | QPSK (CP-OFDM)       | 2593.0             | Н                  | 138                       | 146                              | 9.38               | 1 / 136           | 9.43                      | 18.81         | 0.076           | 33.01               | -14.20         |
| 100 MHz   | QPSK (Opposite Pol.) | 2593.0             | V                  | 142                       | 279                              | 9.38               | 1 / 136           | 8.45                      | 17.83         | 0.061           | 33.01               | -15.18         |
|           | QPSK (WCP)           | 2593.0             | Н                  | 140                       | 156                              | 9.38               | 1 / 136           | 10.08                     | 19.46         | 0.088           | 33.01               | -13.55         |

#### Table 7-3. EIRP Data (NR Band n41 SRS2 - AntB)

| Bandwidth | Mod.                 | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|----------------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
|           | π/2 BPSK             | 2550.0             | Н                  | 148                       | 226                              | 9.38               | 1 / 136           | 5.20                      | 14.58         | 0.029           | 33.01               | -18.43         |
|           | π/2 BPSK             | 2593.0             | Н                  | 150                       | 227                              | 9.49               | 1 / 204           | 3.99                      | 13.48         | 0.022           | 33.01               | -19.53         |
| MHz       | π/2 BPSK             | 2640.0             | Н                  | 143                       | 227                              | 9.89               | 1 / 68            | 4.42                      | 14.31         | 0.027           | 33.01               | -18.70         |
|           | QPSK                 | 2550.0             | Н                  | 148                       | 226                              | 9.38               | 1 / 136           | 5.22                      | 14.60         | 0.029           | 33.01               | -18.41         |
| 100       | QPSK                 | 2593.0             | Н                  | 150                       | 227                              | 9.49               | 1 / 204           | 4.09                      | 13.58         | 0.023           | 33.01               | -19.43         |
|           | QPSK                 | 2640.0             | Н                  | 143                       | 227                              | <mark>9.8</mark> 9 | 1 / 68            | 4.45                      | 14.34         | 0.027           | 33.01               | -18.67         |
|           | 16-QAM               | 2550.0             | Н                  | 148                       | 226                              | 9.38               | 1 / 136           | 4.47                      | 13.85         | 0.024           | 33.01               | -19.16         |
|           | QPSK (CP-OFDM)       | 2546.0             | Н                  | 147                       | 225                              | 9.38               | 1 / 68            | 4.48                      | 13.86         | 0.024           | 33.01               | -19.15         |
| 100 MHz   | QPSK (Opposite Pol.) | 2546.0             | V                  | 103                       | 276                              | 9.38               | 1 / 136           | 5.14                      | 14.52         | 0.028           | 33.01               | -18.49         |
|           | QPSK (WCP)           | 2546.0             | Н                  | 108                       | 172                              | 9.38               | 1 / 136           | 3.60                      | 12.98         | 0.020           | 33.01               | -20.03         |

Table 7-4. EIRP Data (NR Band n41 SRS3 - AntE)

| Bandwidth | Mod.                 | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|----------------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
|           | π/2 BPSK             | 2550.0             | V                  | 121                       | 308                              | 9.40               | 1 / 136           | 3.81                      | 13.21         | 0.021           | 33.01               | -19.80         |
|           | π/2 BPSK             | 2593.0             | V                  | 121                       | 352                              | 9.46               | 1 / 136           | 5.73                      | 15.19         | 0.033           | 33.01               | -17.82         |
| MHz       | π/2 BPSK             | 2640.0             | V                  | 150                       | 352                              | 9.50               | 1 / 68            | 4.58                      | 14.08         | 0.026           | 33.01               | -18.93         |
|           | QPSK                 | 2550.0             | V                  | 121                       | 308                              | 9.40               | 1 / 136           | 3.21                      | 12.61         | 0.018           | 33.01               | -20.40         |
| 100       | QPSK                 | 2593.0             | V                  | 121                       | 352                              | 9.46               | 1 / 136           | 5.05                      | 14.51         | 0.028           | 33.01               | -18.50         |
| -         | QPSK                 | 2640.0             | V                  | 150                       | 352                              | 9.50               | 1 / 68            | 3.96                      | 13.46         | 0.022           | 33.01               | -19.55         |
|           | 16-QAM               | 2593.0             | V                  | 121                       | 352                              | 9.46               | 1 / 136           | 4.43                      | 13.89         | 0.025           | 33.01               | -19.12         |
|           | QPSK (CP-OFDM)       | 2593.0             | V                  | 119                       | 353                              | 9.40               | 1 / 136           | 3.81                      | 13.21         | 0.021           | 33.01               | -19.80         |
| 100 MHz   | QPSK (Opposite Pol.) | 2593.0             | Н                  | 172                       | 190                              | 9.40               | 1 / 136           | 4.16                      | 13.56         | 0.023           | 33.01               | -19.45         |
|           | QPSK (WCP)           | 2593.0             | V                  | 175                       | 324                              | 9.40               | 1 / 136           | 1.11                      | 10.51         | 0.011           | 33.01               | -22.50         |

Table 7-5. EIRP Data (NR Band n41 SRS4 - AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be port of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Daga 65 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 65 of 85                     |
| © 2022 PCTEST       | •                                       |                                                          |         | V3.0 1/6/2022                     |



## 7.7 Radiated Spurious Emissions Measurements

#### **Test Overview**

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.8

#### **Test Settings**

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 66 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 00 01 05                     |
| © 2022 PCTEST       | •                       | ·                                                        | V3.0 1/6/2022                     |



The EUT and measurement equipment were set up as shown in the diagram below.

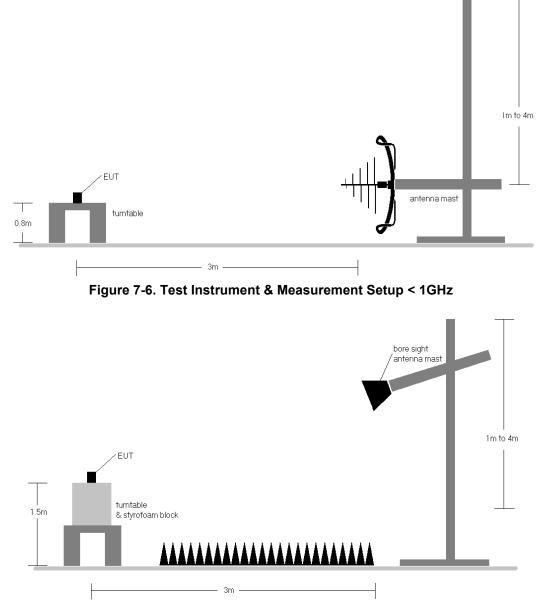
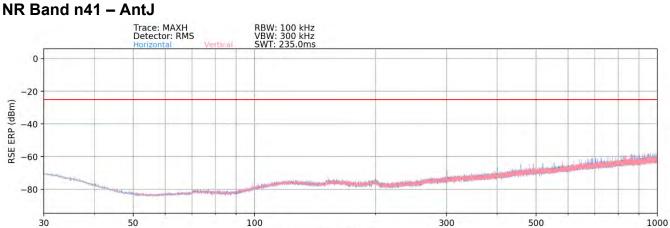
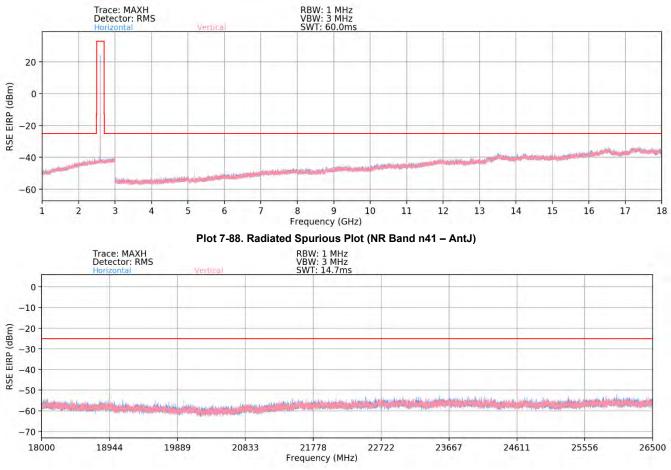


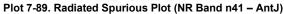

Figure 7-7. Test Instrument & Measurement Setup >1 GHz


| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | NG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|----|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |    | Page 67 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |    | Fage 07 01 05                     |
| © 2022 PCTEST       |                         |                                                          |    | V3.0 1/6/2022                     |




- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
   a) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
   b) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 8) Spurious emissions shown in this section are measured while operating in EN-DC mode with Sub 6GHz NR carrier as well as an LTE carrier (anchor). Spurious emissions from the NR carrier device, is subject to the rules under which the NR carrier operates. Spurious emission caused by the LTE carrier must meet the requirements of the rules under which the LTE carrier operates.


| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 68 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Page 66 01 65                     |
| © 2022 PCTEST       |                               |                                                          | V3.0 1/6/2022                     |














| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 69 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 09 01 05                     |
| © 2022 PCTEST       |                         |                                                          | V3.0 1/6/2022                     |



| 100         |
|-------------|
| 2546.0      |
| 1 / 136     |
| Stand Alone |
|             |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5092.00         | Н                  | 128                    | 59                               | -71.42                     | 9.98           | 45.56                         | -49.70                                   | -25.00         | -24.70         |
| 7638.00         | Н                  | -                      | -                                | -74.80                     | 16.41          | 48.61                         | -46.65                                   | -25.00         | -21.65         |
| 10184.00        | Н                  | -                      | -                                | -76.18                     | 21.26          | 52.08                         | -43.18                                   | -25.00         | -18.18         |
| 12730.00        | н                  | -                      | -                                | -77.36                     | 23.85          | 53.49                         | -41.77                                   | -25.00         | -16.77         |

Table 7-6. Radiated Spurious Data (NR Band n41 – Low Channel – AntJ)

| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2593.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand Alone |
|                  |             |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.00         | Н                  | 113                    | 59                               | -63.87                     | 10.21          | 53.34                         | -41.91                                   | -25.00         | -16.91         |
| 7779.00         | Н                  | -                      | -                                | -74.56                     | 16.37          | 48.81                         | -46.44                                   | -25.00         | -21.44         |
| 10372.00        | Н                  | -                      | -                                | -75.73                     | 20.21          | 51.48                         | -43.78                                   | -25.00         | -18.78         |
| 12965.00        | Н                  | -                      | -                                | -76.91                     | 24.68          | 54.77                         | -40.49                                   | -25.00         | -15.49         |

Table 7-7. Radiated Spurious Data (NR Band n41 – Mid Channel – AntJ)

| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2640.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | Н                  | 126                    | 52                               | -58.55                     | 10.54          | 58.99                         | -36.27                                   | -25.00         | -11.27         |
| 7920.00         | н                  | 135                    | 293                              | -66.84                     | 16.37          | 56.53                         | -38.73                                   | -25.00         | -13.73         |
| 10560.00        | н                  | 104                    | 343                              | -73.67                     | 20.37          | 53.70                         | -41.56                                   | -25.00         | -16.56         |
| 13200.00        | Н                  | -                      | -                                | -76.37                     | 25.41          | 56.04                         | -39.22                                   | -25.00         | -14.22         |
| 15840.00        | Н                  | -                      | -                                | -77.10                     | 28.63          | 58.53                         | -36.72                                   | -25.00         | -11.72         |

Table 7-8. Radiated Spurious Data (NR Band n41 – High Channel – AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 70 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage 70 01 65                     |
| © 2022 PCTEST       |                         | •                                                        | V3.0 1/6/2022                     |

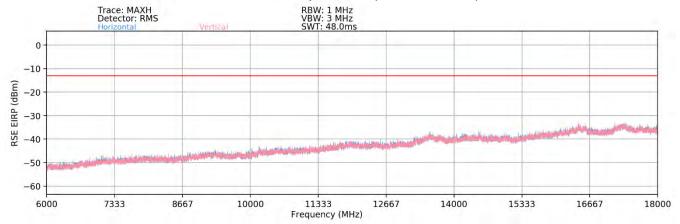


| Case:            | w/ Wireless Charging Pad |
|------------------|--------------------------|
| Bandwidth (MHz): | 100                      |
| Frequency (MHz): | 2640.0                   |
| RB / Offset:     | 1 / 136                  |
| Mode:            | WCP                      |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | Н                  | 163                    | 344                              | -60.75                     | 10.54          | 56.79                         | -38.47                                   | -25.00         | -13.47         |
| 7920.00         | Н                  | 113                    | 297                              | -67.10                     | 16.37          | 56.27                         | -38.99                                   | -25.00         | -13.99         |
| 10560.00        | Н                  | -                      | -                                | -75.33                     | 20.37          | 52.04                         | -43.22                                   | -25.00         | -18.22         |
| 13200.00        | Н                  | -                      | -                                | -76.40                     | 25.41          | 56.01                         | -39.25                                   | -25.00         | -14.25         |
| 15840.00        | Н                  | -                      | -                                | -77.65                     | 28.63          | 57.98                         | -37.27                                   | -25.00         | -12.27         |

Table 7-9. Radiated Spurious Data with WCP (NR Band n41 - AntJ)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Dage 71 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 71 of 85                     |
| © 2022 PCTEST       |                         |                                                          | V3.0 1/6/2022                     |




-60 -

## 

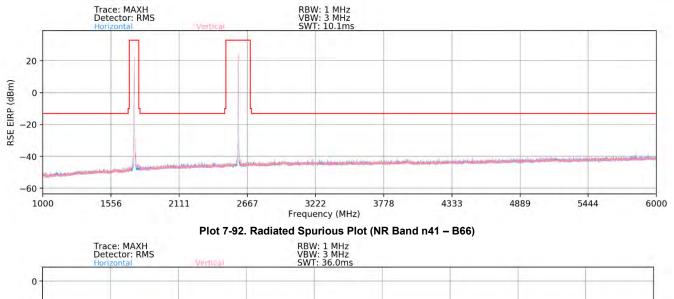
Plot 7-90. Radiated Spurious Plot (NR Band n41 – B12)

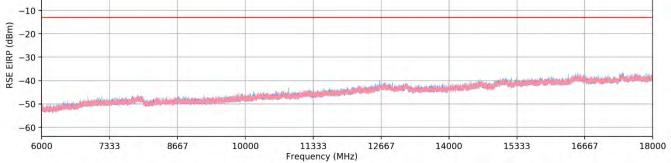
Frequency (MHz)

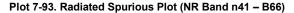




| Case:            | n41 + LTE Band 12 |
|------------------|-------------------|
| Bandwidth (MHz): | 100 & 10          |
| Frequency (MHz): | 2593 & 707.5      |
| RB / Offset:     | 1 / 136 & 1 / 25  |
| Mode:            | EN-DC             |
| Anchor Band:     | LTE Band 12       |


| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 1178.00         | V                  | -                      | -                                | -77.61                     | 6.79           | 36.18                         | -59.07                                   | -25.00         | -34.07         |
| 3063.50         | V                  | -                      | -                                | -79.82                     | 15.79          | 42.97                         | -52.29                                   | -25.00         | -27.29         |
| 4478.50         | V                  | -                      | -                                | -80.63                     | 10.57          | 36.94                         | -58.32                                   | -25.00         | -33.32         |
| 6364.00         | V                  | -                      | -                                | -81.88                     | 13.13          | 38.25                         | -57.01                                   | -25.00         | -32.01         |
| 8249.50         | V                  | -                      | -                                | -83.08                     | 17.68          | 41.60                         | -53.66                                   | -25.00         | -28.66         |


Table 7-10. Radiated Spurious Data (NR Band n41 – B12)


| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |  |  |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|--|--|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 72 of 85                     |  |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 72 01 05                     |  |  |
| © 2022 PCTEST       |                               |                                                          | V3.0 1/6/2022                     |  |  |



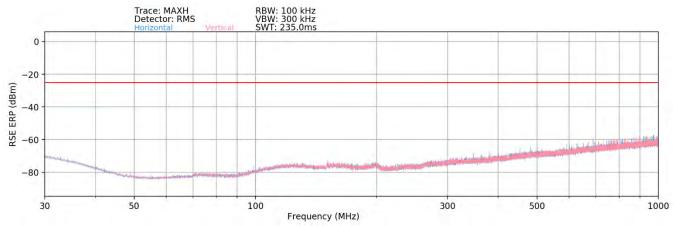
## NR Band n41 – B66

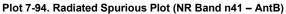


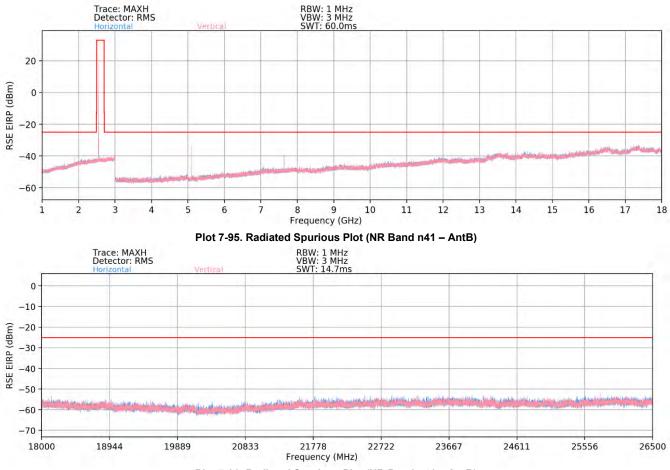


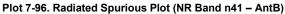


| Case:            | n41 + LTE Band 66 |
|------------------|-------------------|
| Bandwidth (MHz): | 100 & 20          |
| Frequency (MHz): | 2593 & 1745       |
| RB / Offset:     | 1 / 136 & 1 / 50  |
| Mode:            | EN-DC             |
| Anchor Band:     | 66                |


| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 2980.90         | V                  | -                      | -                                | -77.80                     | 13.79          | 42.99                         | -52.27                                   | -25.00         | -27.27         |
| 3129.70         | Н                  | -                      | -                                | -77.65                     | 14.11          | 43.46                         | -51.79                                   | -25.00         | -26.79         |
| 3441.00         | Н                  | -                      | -                                | -78.30                     | 14.58          | 43.28                         | -51.97                                   | -25.00         | -26.97         |
| 3982.40         | Н                  | -                      | -                                | -78.42                     | 15.54          | 44.12                         | -51.13                                   | -25.00         | -26.13         |
| 4289.00         | Н                  | -                      | -                                | -78.41                     | 15.70          | 44.29                         | -50.97                                   | -25.00         | -25.97         |
| 5137.00         | Н                  | -                      | -                                | -79.33                     | 17.28          | 44.95                         | -50.31                                   | -25.00         | -25.31         |


Table 7-11. Radiated Spurious Data (NR Band n41 – B66)


| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 73 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Fage 75 01 65                     |
| © 2022 PCTEST       | •                             |                                                          | V3.0 1/6/2022                     |




## NR Band n41 SRS2 – AntB









| FCC ID: A3LSMS908E  | Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                   | EUT Type:                                                | Page 74 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022       | Portable Handset                                         | Page 74 01 65                     |
| © 2022 PCTEST       | •                             | •                                                        | V3.0 1/6/2022                     |



| Bandwidth (MHz): | 100        |
|------------------|------------|
| Frequency (MHz): | 2546.0     |
| RB / Offset:     | 1 / 136    |
| Mode:            | Standalone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5092.0          | V                  | 120                    | 9                                | -52.86                     | 9.98           | 64.12                         | -31.14                                   | -25.00         | -6.14          |
| 7638.0          | V                  | 101                    | 26                               | -61.67                     | 16.41          | 61.74                         | -33.52                                   | -25.00         | -8.52          |
| 10184.0         | V                  | 117                    | 7                                | -76.09                     | 21.26          | 52.17                         | -43.09                                   | -25.00         | -18.09         |
| 12730.0         | V                  | -                      | -                                | -77.31                     | 23.85          | 53.54                         | -41.72                                   | -25.00         | -16.72         |
| 15276.0         | V                  | -                      | -                                | -77.91                     | 28.07          | 57.16                         | -38.09                                   | -25.00         | -13.09         |

Table 7-12. Radiated Spurious Data (NR Band n41 – Low Channel – AntB)

| Bandwidth (MHz): | 100        |
|------------------|------------|
| Frequency (MHz): | 2593.0     |
| RB / Offset:     | 1 / 136    |
| Mode:            | Standalone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.0          | V                  | 101                    | 345                              | -61.49                     | 10.21          | 55.72                         | -39.53                                   | -25.00         | -14.53         |
| 7779.0          | V                  | 298                    | 28                               | -74.43                     | 16.37          | 48.94                         | -46.31                                   | -25.00         | -21.31         |
| 10372.0         | V                  | -                      | -                                | -76.01                     | 20.21          | 51.20                         | -44.06                                   | -25.00         | -19.06         |
| 12965.0         | V                  | -                      | -                                | -76.39                     | 24.68          | 55.29                         | -39.97                                   | -25.00         | -14.97         |
| 15558.0         | V                  | -                      | -                                | -76.92                     | 28.60          | 58.68                         | -36.58                                   | -25.00         | -11.58         |

Table 7-13. Radiated Spurious Data (NR Band n41 – Mid Channel – AntB)

| Bandwidth (MHz): | 100        |
|------------------|------------|
| Frequency (MHz): | 2640.0     |
| RB / Offset:     | 1 / 136    |
| Mode:            | Standalone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.0          | V                  | 112                    | 3                                | -58.72                     | 10.54          | 58.82                         | -36.44                                   | -25.00         | -11.44         |
| 7920.0          | V                  | 116                    | 41                               | -69.02                     | 16.37          | 54.35                         | -40.91                                   | -25.00         | -15.91         |
| 10560.0         | V                  | 131                    | 25                               | -75.52                     | 20.37          | 51.85                         | -43.41                                   | -25.00         | -18.41         |
| 13200.0         | V                  | -                      | -                                | -76.42                     | 25.41          | 55.99                         | -39.27                                   | -25.00         | -14.27         |
| 15840.0         | V                  | -                      | -                                | -76.80                     | 28.63          | 58.83                         | -36.42                                   | -25.00         | -11.42         |

Table 7-14. Radiated Spurious Data (NR Band n41 – High Channel – AntB)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE |  | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|--|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |  | Dego 75 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |  | Page 75 of 85                     |
| © 2022 PCTEST       | •                                       |                                                          |  | V3.0 1/6/2022                     |



| Case:            | w/ Wireless Charging Pad |
|------------------|--------------------------|
| Bandwidth (MHz): | 100                      |
| Frequency (MHz): | 2546.0                   |
| RB / Offset:     | 1 / 136                  |
| Mode:            | WCP                      |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5092.0          | V                  | 101                    | 359                              | -57.32                     | 9.98           | 59.66                         | -35.60                                   | -25.00         | -10.60         |
| 7638.0          | V                  | 254                    | 21                               | -62.29                     | 16.41          | 61.12                         | -34.14                                   | -25.00         | -9.14          |
| 10184.0         | V                  | -                      | -                                | -76.56                     | 21.26          | 51.70                         | -43.56                                   | -25.00         | -18.56         |
| 12730.0         | V                  | -                      | -                                | -76.93                     | 23.85          | 53.92                         | -41.34                                   | -25.00         | -16.34         |
| 15276.0         | V                  | -                      | -                                | -77.50                     | 28.07          | 57.57                         | -37.68                                   | -25.00         | -12.68         |

Table 7-15. Radiated Spurious Data with WCP (NR Band n41 - AntB)

| FCC ID: A3LSMS908E  | Proud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------|----------------------------------------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                |         | Dago 76 of 95                     |  |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         |         | Page 76 of 85                     |  |
| © 2022 PCTEST       |                              | ·                                                        |         | V3.0 1/6/2022                     |  |





| FCC ID: A3LSMS908E  |                                          | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                                                |         | Page 77 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 – 02/28/2022 Portable Handset |                                                          |         | Fage // 01 05                     |
| © 2022 PCTEST       |                                          |                                                          |         | V3.0 1/6/2022                     |



| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2546.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand-Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5092.00         | V                  | 278                    | 355                              | -69.03                     | 4.45           | 42.42                         | -52.83                                   | -25.00         | -27.83         |
| 7638.00         | V                  | -                      | -                                | -76.25                     | 7.84           | 38.59                         | -56.66                                   | -25.00         | -31.66         |
| 10184.00        | V                  | -                      | -                                | -77.35                     | 11.03          | 40.68                         | -54.58                                   | -25.00         | -29.58         |
| 12730.00        | V                  | -                      | -                                | -77.66                     | 14.48          | 43.82                         | -51.44                                   | -25.00         | -26.44         |

Table 7-16. Radiated Spurious Data (NR Band n41 – Low Channel – AntE)

| Bandwidth (MHz): | 100         |  |
|------------------|-------------|--|
| Frequency (MHz): | 2593.0      |  |
| RB / Offset:     | 1 / 136     |  |
| Mode:            | Stand-Alone |  |
|                  |             |  |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.00         | V                  | 127                    | 340                              | -68.70                     | 4.91           | 43.21                         | -52.05                                   | -25.00         | -27.05         |
| 7779.00         | V                  | -                      | -                                | -75.75                     | 7.30           | 38.55                         | -56.71                                   | -25.00         | -31.71         |
| 10372.00        | V                  | -                      | -                                | -76.46                     | 11.04          | 41.58                         | -53.68                                   | -25.00         | -28.68         |
| 12965.00        | V                  | -                      | -                                | -77.44                     | 14.49          | 44.05                         | -51.21                                   | -25.00         | -26.21         |

Table 7-17. Radiated Spurious Data (NR Band n41 – Mid Channel – AntE)

| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2640.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand-Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | V                  | 313                    | 16                               | -66.35                     | 4.66           | 45.31                         | -49.95                                   | -25.00         | -24.95         |
| 7920.00         | V                  | -                      | -                                | -76.60                     | 8.30           | 38.70                         | -56.56                                   | -25.00         | -31.56         |
| 10560.00        | V                  | -                      | -                                | -78.02                     | 11.56          | 40.54                         | -54.72                                   | -25.00         | -29.72         |
| 13200.00        | V                  | -                      | -                                | -77.55                     | 14.06          | 43.51                         | -51.74                                   | -25.00         | -26.74         |

Table 7-18. Radiated Spurious Data (NR Band n41 – High Channel – AntE)

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | <b>Approved by:</b><br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|------------------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 78 of 85                            |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Page 76 01 65                            |
| © 2022 PCTEST       |                         | •                                                        | V3.0 1/6/2022                            |



| Case:            | w/ Wireless Charging Pad |
|------------------|--------------------------|
| Bandwidth (MHz): | 100                      |
| Frequency (MHz): | 2640.0                   |
| RB / Offset:     | 1 / 136                  |
| Mode:            | SA                       |

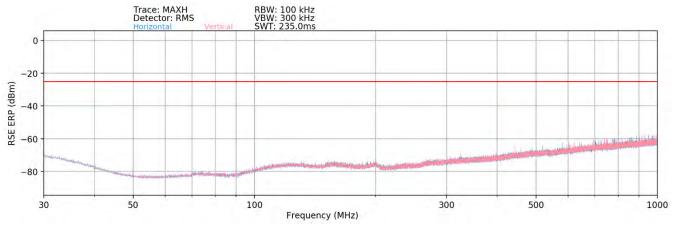
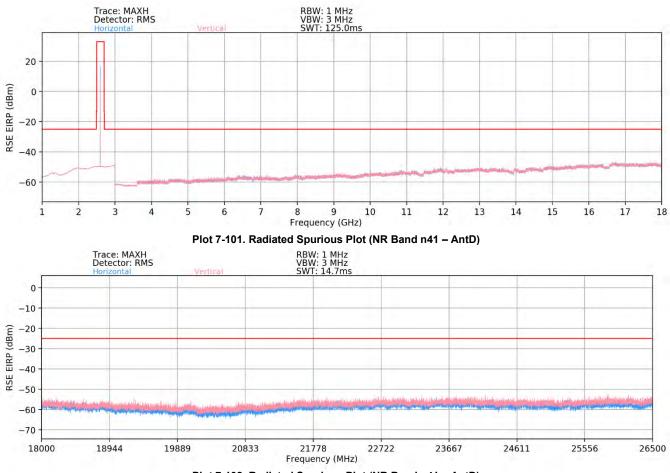

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | V                  | 117                    | 352                              | -67.22                     | 4.66           | 44.44                         | -50.82                                   | -25.00         | -25.82         |
| 7920.00         | V                  | 141                    | 9                                | -75.22                     | 8.30           | 40.08                         | -55.18                                   | -25.00         | -30.18         |
| 10560.00        | V                  | -                      | -                                | -77.94                     | 11.56          | 40.62                         | -54.64                                   | -25.00         | -29.64         |
| 13200.00        | V                  | -                      | -                                | -77.39                     | 14.06          | 43.67                         | -51.58                                   | -25.00         | -26.58         |
| 15840.00        | V                  | -                      | -                                | -78.25                     | 17.07          | 45.82                         | -49.44                                   | -25.00         | -24.44         |

Table 7-19. Radiated Spurious Data with WCP (NR Band n41 - AntE)


| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |         | Dage 70 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |         | Page 79 of 85                     |
| © 2022 PCTEST       | -                                       | ÷                                                        |         | V3.0 1/6/2022                     |



## NR Band n41 SRS4 – AntD









| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 80 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | Fage of 01 05                     |
| © 2022 PCTEST       | •                       | •                                                        | V3.0 1/6/2022                     |



| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2546.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand-Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5092.00         | Н                  | 191                    | 26                               | -70.92                     | 4.48           | 40.56                         | -54.70                                   | -25.00         | -29.70         |
| 7638.00         | Н                  | 144                    | 296                              | -70.37                     | 7.81           | 44.44                         | -50.81                                   | -25.00         | -25.81         |
| 10184.00        | Н                  | 136                    | 309                              | -74.21                     | 11.10          | 43.89                         | -51.36                                   | -25.00         | -26.36         |
| 12730.00        | Н                  | 152                    | 332                              | -74.39                     | 14.20          | 46.81                         | -48.45                                   | -25.00         | -23.45         |
| 15276.00        | Н                  | -                      | -                                | -77.88                     | 15.92          | 45.04                         | -50.22                                   | -25.00         | -25.22         |
| 17822.00        | Н                  | -                      | -                                | -78.38                     | 18.75          | 47.37                         | -47.89                                   | -25.00         | -22.89         |
| 20368.00        | Н                  | -                      | -                                | -58.67                     | 2.10           | 50.43                         | -54.37                                   | -25.00         | -29.37         |
| 22914.00        | Н                  | -                      | -                                | -59.53                     | 2.96           | 50.43                         | -54.37                                   | -25.00         | -29.37         |

Table 7-20. Radiated Spurious Data (NR Band n41 – Low Channel – AntD)

| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2593.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand-Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.00         | Н                  | 164                    | 33                               | -70.59                     | 4.91           | 41.32                         | -53.94                                   | -25.00         | -28.94         |
| 7779.00         | Н                  | 286                    | 298                              | -71.75                     | 7.30           | 42.55                         | -52.71                                   | -25.00         | -27.71         |
| 10372.00        | Н                  | -                      | -                                | -77.25                     | 11.04          | 40.79                         | -54.47                                   | -25.00         | -29.47         |
| 12965.00        | Н                  | 196                    | 334                              | -73.96                     | 14.49          | 47.53                         | -47.73                                   | -25.00         | -22.73         |
| 15558.00        | Н                  | -                      | -                                | -77.05                     | 15.73          | 45.68                         | -49.58                                   | -25.00         | -24.58         |
| 18151.00        | Н                  | -                      | -                                | -57.88                     | 1.18           | 50.30                         | -54.50                                   | -25.00         | -29.50         |
| 20744.00        | Н                  | 150                    | 364                              | -54.39                     | 2.73           | 55.33                         | -49.47                                   | -25.00         | -24.47         |
| 23337.00        | Н                  | -                      | -                                | -59.81                     | 2.88           | 50.08                         | -54.72                                   | -25.00         | -29.72         |

Table 7-21. Radiated Spurious Data (NR Band n41 – Mid Channel – AntD)

| Bandwidth (MHz): | 100         |
|------------------|-------------|
| Frequency (MHz): | 2640.0      |
| RB / Offset:     | 1 / 136     |
| Mode:            | Stand-Alone |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | Н                  | 156                    | 40                               | -68.59                     | 4.66           | 43.07                         | -52.19                                   | -25.00         | -27.19         |
| 7920.00         | Н                  | 139                    | 301                              | -75.36                     | 8.30           | 39.94                         | -55.32                                   | -25.00         | -30.32         |
| 10560.00        | Н                  | 212                    | 359                              | -74.63                     | 11.56          | 43.93                         | -51.33                                   | -25.00         | -26.33         |
| 13200.00        | Н                  | 119                    | 327                              | -71.40                     | 14.06          | 49.66                         | -45.59                                   | -25.00         | -20.59         |
| 15840.00        | Н                  | -                      | -                                | -78.10                     | 17.07          | 45.97                         | -49.29                                   | -25.00         | -24.29         |
| 18480.00        | Н                  | -                      | -                                | -58.22                     | 1.13           | 49.91                         | -54.89                                   | -25.00         | -29.89         |
| 21120.00        | Н                  | -                      | -                                | -58.47                     | 2.78           | 51.31                         | -53.49                                   | -25.00         | -28.49         |
| 23760.00        | Н                  | -                      | -                                | -59.59                     | 3.03           | 50.44                         | -54.36                                   | -25.00         | -29.36         |

Table 7-22. Radiated Spurious Data (NR Band n41 – High Channel – AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                | Page 81 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         | Fage of 01 05                     |
| © 2022 PCTEST       | •                                       | ·                                                        | V3.0 1/6/2022                     |



| Case:            | w/ Wireless Charging Pad |
|------------------|--------------------------|
| Bandwidth (MHz): | 100                      |
| Frequency (MHz): | 2640.0                   |
| RB / Offset:     | 1 / 136                  |
| Mode:            | SA                       |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5280.00         | Н                  | 124                    | 68                               | -71.31                     | 4.66           | 40.35                         | -54.91                                   | -25.00         | -29.91         |
| 7920.00         | н                  | -                      | -                                | -76.44                     | 8.30           | 38.86                         | -56.40                                   | -25.00         | -31.40         |
| 10560.00        | н                  | -                      | -                                | -77.50                     | 11.56          | 41.06                         | -54.20                                   | -25.00         | -29.20         |
| 13200.00        | Н                  | 125                    | 38                               | -74.98                     | 14.06          | 46.08                         | -49.17                                   | -25.00         | -24.17         |
| 15840.00        | Н                  | -                      | -                                | -78.16                     | 17.07          | 45.91                         | -49.35                                   | -25.00         | -24.35         |

Table 7-23. Radiated Spurious Data with WCP (NR Band n41 - AntD)

| FCC ID: A3LSMS908E  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE |  | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------------------------------------|--|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                                                |  | Dage 92 of 95                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022                 | Portable Handset                                         |  | Page 82 of 85                     |
| © 2022 PCTEST       | •                                       | -                                                        |  | V3.0 1/6/2022                     |



# 7.8 Frequency Stability / Temperature Variation

#### **Test Overview and Limit**

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

#### Test Procedure Used

ANSI/TIA-603-E-2016

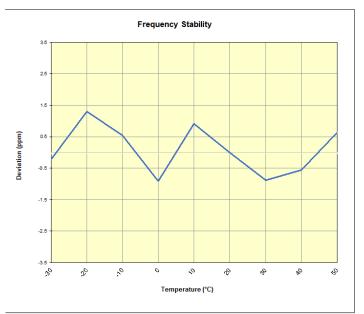
#### Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes


None

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                |         | Page 83 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         |         | Fage 65 01 65                     |
| © 2022 PCTEST       |                         | ·                                                        |         | V3.0 1/6/2022                     |



| NR Band n41      |                     |                |                |                    |                  |  |  |
|------------------|---------------------|----------------|----------------|--------------------|------------------|--|--|
|                  | Operating F         | requency (Hz): | 2,593,000,000  |                    |                  |  |  |
|                  | Ref. Voltage (VDC): |                | 4.38           |                    | _                |  |  |
|                  |                     |                |                |                    | -                |  |  |
| Voltage (%)      | Power (VDC)         | Temp (°C)      | Frequency (Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |  |
|                  |                     | - 30           | 2,592,969,242  | -578               | -0.0000223       |  |  |
|                  |                     | - 20           | 2,592,973,210  | 3,390              | 0.0001307        |  |  |
|                  |                     | - 10           | 2,592,971,243  | 1,423              | 0.0000549        |  |  |
|                  |                     | 0              | 2,592,967,452  | -2,368             | -0.0000913       |  |  |
| 100 %            | 4.38                | + 10           | 2,592,972,170  | 2,350              | 0.0000906        |  |  |
|                  |                     | + 20 (Ref)     | 2,592,969,820  | 0                  | 0.0000000        |  |  |
|                  |                     | + 30           | 2,592,967,544  | -2,276             | -0.0000878       |  |  |
|                  |                     | + 40           | 2,592,968,373  | -1,447             | -0.0000558       |  |  |
|                  |                     | + 50           | 2,592,971,470  | 1,650              | 0.0000636        |  |  |
| Battery Endpoint | 3.80                | + 20           | 2,592,970,331  | 511                | 0.0000197        |  |  |

Table 7-24. NR Band n41 Frequency Stability Data



Plot 7-103. NR Band n41 Frequency Stability Chart

| FCC ID: A3LSMS908E  |                         | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | Approved by:<br>Technical Manager |
|---------------------|-------------------------|----------------------------------------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:             | EUT Type:                                                | Page 84 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022 | Portable Handset                                         | raye 04 01 05                     |
| © 2022 PCTEST       | •                       | •                                                        | V3.0 1/6/2022                     |



# 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung **Portable Handset FCC ID : A3LSMS908E** complies with all the requirements of Part 27 of the FCC rules.

| FCC ID: A3LSMS908E  | Proud to be part of @element | PART 27 MEASUREMENT REPORT<br>CLASS II PERMISSIVE CHANGE | NG | Approved by:<br>Technical Manager |
|---------------------|------------------------------|----------------------------------------------------------|----|-----------------------------------|
| Test Report S/N:    | Test Dates:                  | EUT Type:                                                |    | Page 85 of 85                     |
| 1M2202030011-03.A3L | 02/02/2022 - 02/28/2022      | Portable Handset                                         |    | Fage 05 01 05                     |
| © 2022 PCTEST       |                              |                                                          |    | V3.0 1/6/2022                     |