

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

PART 27 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

11/19/2021 - 12/07/2021 **Test Report Issue Date:** 12/14/2021 **Test Site/Location:** PCTEST Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2109220110-04.A3L

FCC ID: APPLICANT:

A3LSMS908E

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SM-S908E/DS SM-S908E Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 27 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04

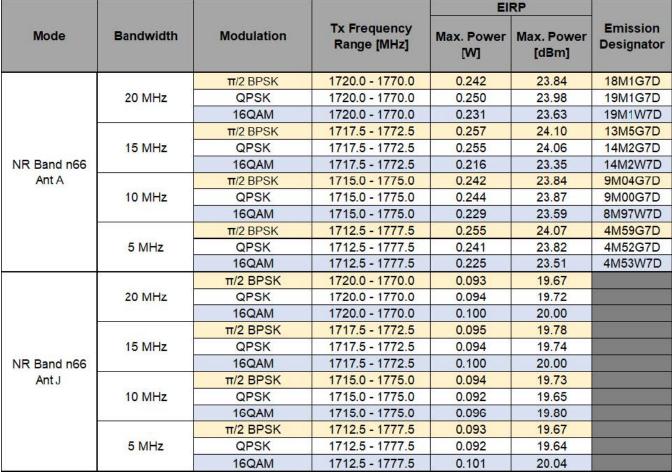
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 1 of 60
© 2021 PCTEST	·	·		V2.0 4/5/2021

TABLE OF CONTENTS


1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEA	SUREMENT UNCERTAINTY	7
5.0	TES	T EQUIPMENT CALIBRATION DATA	8
6.0	SAM	IPLE CALCULATIONS	9
7.0	TES	T RESULTS	10
	7.1	Summary	10
	7.2	ULCA Conducted Output Power	11
	7.3	Occupied Bandwidth	13
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	20
	7.5	Band Edge Emissions at Antenna Terminal	28
	7.6	Peak-Average Ratio	37
	7.7	Radiated Power (ERP/EIRP)	44
	7.8	Radiated Spurious Emissions Measurements	49
	7.9	Frequency Stability / Temperature Variation	58
8.0	CON	ICLUSION	60

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 2 01 00
© 2021 PCTEST	•			V2.0 4/5/2021

MEASUREMENT REPORT FCC Part 27

Overview Table

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 3 01 60
© 2021 PCTEST		•		V2.0 4/5/2021

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMS908E	Post to be part of the element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 4 01 60
© 2021 PCTEST				\/2.0.4/5/2021

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMS908E**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

Test Device Serial No.: 3741R, 3782R, 2680M, 2675MCW

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5 & 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 5 of 60
© 2021 PCTEST	•	-		V2.0 4/5/2021

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss _{[dB]} + antenna gain _{[dBd/dBi]}$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \ [dBm]}$ – cable loss $_{[dB]}$.

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v03r01 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-E-2016.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01.

FCC ID: A3LSMS908E	Potest element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 6 of 60
© 2021 PCTEST				V2 0 4/5/2021

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 7 of 60
© 2021 PCTEST	•	•		V2.0 4/5/2021

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description Cal Date Cal Interval Cal Due		Cal Due	Serial Number	
-	AP2	EMC Cable and Switch System	3/4/2021	Annual	3/4/2022	AP2
-	AP1	EMC Cable and Switch System	3/9/2021	Annual	3/9/2022	AP1
-	ETS	EMC Cable and Switch System	3/4/2021	Annual	3/4/2022	ETS
-	LTx1	Licensed Transmitter Cable Set	3/12/2021	Annual	3/12/2022	LTx1
-	LTx2	Licensed Transmitter Cable Set	3/12/2021	Annual	3/12/2022	LTx2
Agilent	N9030A	50GHz PXA Signal Analyzer	1/20/2021	Annual	1/20/2022	US51350301
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6201381794
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
Espec	ESX-2CA	Environmental Chamber	8/27/2020	Annual	8/27/2022	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/20/2021	Biennial	4/20/2023	00125518
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/12/2020	Biennial	3/12/2022	128337
Keysight Technologies	N9020A	MXA Signal Analyzer 12/22/2020 Annual 12/22/		12/22/2021	MY54500644	
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	7/21/2021 Annual 7/21/2022		7/21/2022	MY49430494
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/3/2021	Annual	8/3/2022	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	4/30/2021	Annual	4/30/2022	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	1/21/2021	Annual	1/21/2022	101716
Rohde & Schwarz	FSW26	2Hz-26.5GHz Signal and Spectrum Analyzer	2/10/2021	Annual	2/10/2022	103187
Sunol	JB6	LB6 Antenna	11/13/2020	Biennial	11/13/2022	A082816

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	ortable Handset	
© 2021 PCTEST				V2 0 4/5/2021

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So, 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80) = 50.3 dBc.

FCC ID: A3LSMS908E	Post to be part of the element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 9 of 60
© 2021 PCTEST	•			V2.0 4/5/2021

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS908E
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	LTE/NR/UL-CA

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power	2.1046	N/A	PASS	See RF Exposure Report
	ULCA Conducted Output Power	2.1046	N/A	PASS	Section 7.2
CONDUCTED	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.3
CONDI	Conducted Band Edge / Spurious Emissions (NR Band n66)	2.1051, 27.53(h)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Sections 7.4, 7.5
	Peak-to-Average Ratio (NR Band n66)	27.50(d)(5)	≤ 13 dB	PASS	Section 7.6
	Frequency Stability	2.1055, 27.54	Fundamental emissions stay within authorized frequency block	PASS	Section 7.9
RADIATED	Equivalent Isotropic Radiated Power (NR Band n66)	27.50(d)(10)	≤ 1 Watt max. EIRP	PASS	Section 7.7
RADI	Radiated Spurious Emissions (NR Band n66)	2.1053, 27.53(h)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Section 7.8

Table 7-1. Summary of Test Results (FCC)

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool v1.0.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 10 01 60	
© 2021 PCTEST	-	·		V2.0 4/5/2021	

7.2 ULCA Conducted Output Power §2.1046

Test Overview

The EUT is set up to transmit at maximum power for LTE. All power levels are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Span = $2 \times OBW$ to $3 \times OBW$
- 2. RBW = 1% to 5% of the OBW
- 3. Number of measurement points in sweep \geq 2 x span / RBW
- 4. Sweep = auto-couple (less than transmission burst duration)
- 5. Detector = RMS (power)
- 6. Trigger was set to enable power measurements only on full power bursts
- 7. Trace was allowed to stabilize
- 8. Spectrum analyzer's "Channel Power" function was used to compute the power by integrating the spectrum across the OBW of the signal

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Note

Conducted power measurements are evaluated for simultaneous transmission of two LTE carriers operating in different bands (inter-band LTE ULCA). The powers were investigated while both bands are operating at their widest supported channel bandwidth.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 11 of CO
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 11 of 60
© 2021 PCTEST	·			V2.0 4/5/2021

		PCC					SCC					
PCC Band	PCC Bandwidth [MHz]	PCC (UL) channel	Mod.	PCC UL RB#/Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL) channel	Mod.	SCC UL RB#/Offset	Power	SCC Conducted Power [dBm]	Inter-Band ULCA Total Tx. Power (dBm)
			QPSK	50/0				QPSK	100 / 0	23.10	20.57	25.03
			QPSK	1/0				QPSK	1/0	23.31	20.25	25.05
		Low	QPSK	1/25			Low	QPSK	1/50	23.42	20.65	25.26
			QPSK	1/49				QPSK	1/99	23.24	20.47	25.08
		16QAM	16QAM	1/25				16QAM	1/50	22.98	20.55	24.94
			QPSK	50/0		20	20 Mid	QPSK	100/0	23.03	20.65	25.01
			QPSK	1/0				QPSK	1/0	23.41	20.38	25.16
12	10	Mid	QPSK	1/25	66			QPSK	1/50	23.44	20.77	25.32
			QPSK	1/49				QPSK	1/99	23.37	20.54	25.19
			16QAM	1/25				16QAM	1/50	22.98	20.56	24.95
			QPSK	50/0				QPSK	100/0	23.06	20.90	25.12
			QPSK	1/0				QPSK	1/0	23.32	21.03	25.33
		High	QPSK	1/25			High	QPSK	1/50	23.28	20.95	25.28
			QPSK	1/49				QPSK	1/99	23.29	20.97	25.29
			16QAM	1/0				16QAM	1/0	23.02	20.77	25.05

Table 7-2. Conducted Power Output Data (ULCA LTE Band 12 – Band 66)

		PCC					SCC					
PCC Band	PCC Bandwidth [MHz]	PCC (UL) channel	Mod.	PCC UL RB#/Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL) channel	Mod.	SCC UL RB#/Offset	Power	SCC Conducted Power [dBm]	Inter-Band ULCA Total Tx. Power (dBm)
			QPSK	100/0				QPSK	100 / 0	20.31	19.19	22.8
			QPSK	1/0			Low	QPSK	1/0	20.35	19.04	22.75
		Low	QPSK	1/50		20		QPSK	1/50	20.52	18.98	22.83
			QPSK	1/99				QPSK	1/99	19.99	18.95	22.51
			16QAM	1/50				16QAM	1/50	20.05	18.95	22.55
		-	QPSK	100/0			20 Mid	QPSK	100/0	20.35	19.18	22.81
			QPSK	1/0				QPSK	1/0	20.57	18.95	22.85
2	20	Mid	QPSK	1/50	4			QPSK	1/50	20.89	19.4	23.22
			QPSK	1/99				QPSK	1/99	20.63	19.39	23.06
			16QAM	1/50				16QAM	1/50	20.39	19.05	22.78
			QPSK	100/0				QPSK	100/0	20.45	19.29	22.92
			QPSK	1/0				QPSK	1/0	20.32	19.55	22.96
		High	QPSK	1/50			High	QPSK	1/50	20.62	19.62	23.16
			QPSK	1/99				QPSK	1/99	20.37	19.25	22.86
			16QAM	1/50				16QAM	1/50	19.88	19.09	22.51

Table 7-3. Conducted Power Output Data (ULCA LTE Band 2– Band 4)

FCC ID: A3LSMS908E	Potest Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 12 01 00
© 2021 PCTEST	·	•		V2.0 4/5/2021

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 60
1M2109220110-04.A3L	0110-04.A3L 11/19/2021 - 12/07/2021 Portable Handset			Fage 13 01 00
© 2021 PCTEST	•	·		V2.0 4/5/2021

	w						
KU RE 50Ω AC	tipe Ti	SENSE:INT enter Freq: 1.745000000 G rig: Free Run Avg Atten: 36 dB	ALIGN AUTO Hz Hold: 100/100	12:25:20 AM Radio Std: Radio Devi		Trace/D	etector
10 dB/div Ref 40.00 dB l	m						
30.0 20.0 10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Cle	ear Write
-20.0 -20.0 -30.0			-land ward	Ladron Wardy	ᡃᡡᢦᡑᡗᡃᢌ᠊᠊ᠬ		Average
-30.0						N	lax Hold
Center 1.74500 GHz Res BW 470 kHz		#VBW 1.6 MHz			0.00 MHz ep 1 ms	ı	/lin Hold
Occupied Bandwid	th	Total Power	32.	7 dBm			
	8.071 MHz						Detector Peak▶
Transmit Freq Error	-580.45 kHz	% of OBW P	ower 99	9.00 %		Auto	Man
x dB Bandwidth	19.22 MHz	x dB	-26.	00 dB			
MSG			STATU	S			

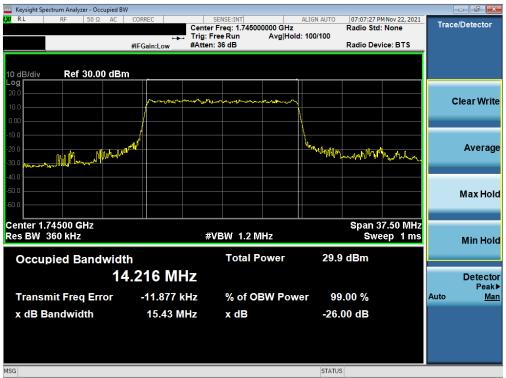
Plot 7-1. Occupied Bandwidth Plot (NR Band n66 - 20.0MHz DFT's-OFDM BPSK - Full RB – ANT A)

Plot 7-2. Occupied Bandwidth Plot (NR Band n66 - 20.0MHz CP-OFDM QPSK - Full RB - ANT A)


FCC ID: A3LSMS908E	Potest*	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 14 of 60	
© 2021 PCTEST	•	•		V2.0 4/5/2021	

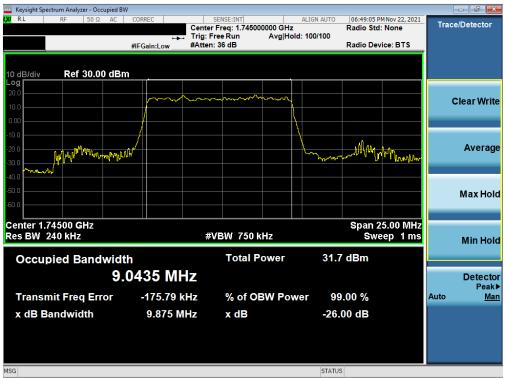
2021 PCTEST

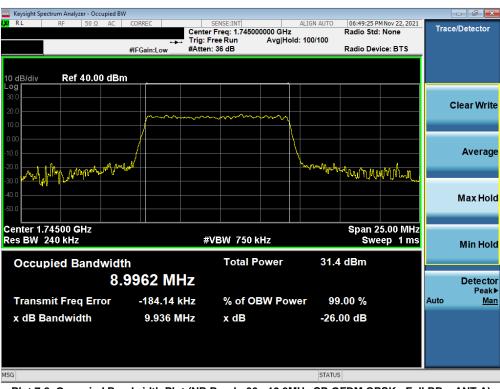
Keysight Spectrum Analyzer -	· · · · · · · · · · · · · · · · · · ·							_	
<mark>0 R L RF 50</mark>	Ω AC	CORREC	SENSE:INT		ALIGN AUTO	07:28:42 PI Radio Std:	Mov 22, 2021	Trace	Detector
		#IFGain:Low			d: 100/100	Radio Dev			
0 dB/div Ref 30	.00 dBm								
20.0			all and the second s	man and a star				с	lear Writ
0.00 10.0 20.0 30.0	and the second				A Contraction of the second se	-	han the state of t		Averag
0.0									Max Hol
enter 1.74500 GHz es BW 470 kHz			#VBW 1	.6 MHz			0.00 MHz ep 1 ms		Min Hol
Occupied Ban	dwidt	h	Tota	al Power	30.1	dBm			
		.054 MI	Ηz						Detecto
Transmit Freq E	rror	-2.853 I	kHz %o	f OBW Pow	er 99	.00 %		Auto	Ma
x dB Bandwidth		20.54 N	IHz x dE	3	-26.	00 dB			
G					STATUS				


Plot 7-3. Occupied Bandwidth Plot (NR Band n66 - 20.0MHz CP-OFDM 16QAM - Full RB - ANT A)

Plot 7-4. Occupied Bandwidth Plot (NR Band n66 - 15.0MHz DFT-s-OFDM BPSK - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 60
1M2109220110-04.A3L	09220110-04.A3L 11/19/2021 - 12/07/2021 Portable Handset			Fage 15 01 60
© 2021 PCTEST	·			V2.0 4/5/2021


Plot 7-5. Occupied Bandwidth Plot (NR Band n66 - 15.0MHz CP-OFDM QPSK - Full RB – ANT A)


Plot 7-6. Occupied Bandwidth Plot (NR Band n66 - 15.0MHz CP-OFDM 16QAM - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 60		
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Portable Handset			
© 2021 PCTEST	·			V2.0 4/5/2021		

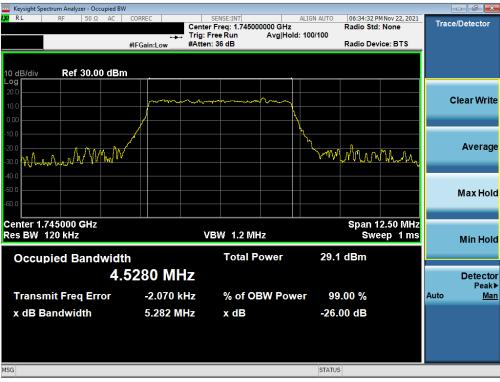
Plot 7-7. Occupied Bandwidth Plot (NR Band n66 - 10.0MHz DFT-s-OFDM BPSK - Full RB – ANT A)

Plot 7-8. Occupied Bandwidth Plot (NR Band n66 - 10.0MHz CP-OFDM QPSK - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 17 of 60
© 2021 PCTEST	•	·		V2.0 4/5/2021

www.www.www.www.www.www.www.www.www.ww							
L <mark>X/</mark> RL RF 50Ω A	AC CORREC	SENSE:INT Center Freg: 1.745	ALIGN AUTO	06:49:49 PM No Radio Std: No		Trace	/Detector
		Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 36 dB		Radio Device:	BTS		
10 dB/div Ref 40.00 c	lBm						
Log 30.0							
20.0						c	lear Write
	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-mana				
10.0	/						
0.00	/						
-10.0	<i>}</i>						Average
-20.0	1 Lad		~^/M_4	V V Warmon	1.0110		
-20.0	11/14 -			Y ՆՆ ^վ ՝աֆնա/Մտ	w livin		
-40.0							Max Hold
-50.0							
				A			
Center 1.74500 GHz Res BW 240 kHz		#VBW 750	kU7	Span 25.0	0 1 ms		
NCS DW 240 KHZ		#0000 750	KIIZ	Gweep			Min Hold
Occupied Bandw	idth	Total	Power 30.4	4 dBm			
		l					
	8.9705 M⊦	12					Detector Peak▶
Transmit Freq Error	-173.84 k	Hz % of (DBW Power 99	9.00 %		Auto	Man
x dB Bandwidth	9.945 M	Hz x dB	-26	.00 dB			
	0.040 III		E				
MSG			STATU	S			

Plot 7-9. Occupied Bandwidth Plot (NR Band n66 - 10.0MHz CP-OFDM 16QAM - Full RB - ANT A)


Plot 7-10. Occupied Bandwidth Plot (NR Band n66 - 5.0MHz DFT-s-OFDM BPSK - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 18 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Page 18 of 60	
© 2021 PCTEST	·	· ·		V2.0 4/5/2021

Keysight Spectrur		Occupie	ed BW										
X/RL	RF 50	ΩΑ	IC C	ORRE		Cente	SENSE:INT Freq: 1.7450	00000 GHz	ALIGN AUTO	06:34:18 P Radio Std	MNov 22, 2021	Trac	e/Detector
					⊷ n:Low	, Trig: F	ree Run : 36 dB		ld: 100/100	Radio Dev			
			#	IFGail	n:Low	#Atter	. 30 UB			Radio Dev	ICE. DTS		
	-	~~ `											
10 dB/div Log	Ref 30.	.00 d	IBm										
20.0													
10.0				\rightarrow	harris	mp-m-	monton	h					Clear Write
0.00				_/					<u>\</u>				
-10.0				,					- \				
-20.0			- /						- ¹ /w1.	6 D			Average
-30.0 M JA MWW	hand	nah	<u>^^</u>						· ~/	handhing	Mann		
-40.0													
-50.0													Max Hold
-60.0				\rightarrow									Wax Hore
Center 1.745 Res BW 120		Z				v	BW 1.2 M	U -7			2.50 MHz ep 1 ms		
RUS DW 120	ЛПД					v		пz		SWG	ep mis		Min Hold
Occupie	ed Ban	dw	idth				Total	Power	28.9	dBm			
				າາ	5 M	47							Detector
			1.0/	22									Peak
Transmit	Freq E	irror		-	2.880	kHz	% of O	BW Pov	ver 99	.00 %		Auto	Mar
x dB Ban	dwidth			5	.168 N	ЛНz	x dB		-26.	00 dB			
ISG									STATUS	6			

Plot 7-11. Occupied Bandwidth Plot (NR Band n66 - 5.0MHz CP-OFDM QPSK - Full RB – ANT A)

Plot 7-12. Occupied Bandwidth Plot (NR Band n66 - 5.0MHz CP-OFDM 16QAM - Full RB - ANT A)

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 19 of 60
© 2021 PCTEST		·		V2.0 4/5/2021

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

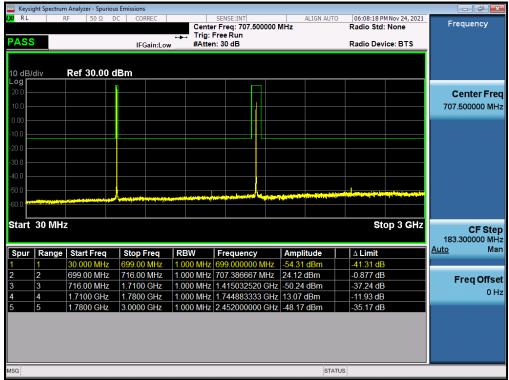
Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 18GHz (separated into at least two plots per channel)
- 2. RBW ≥ 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

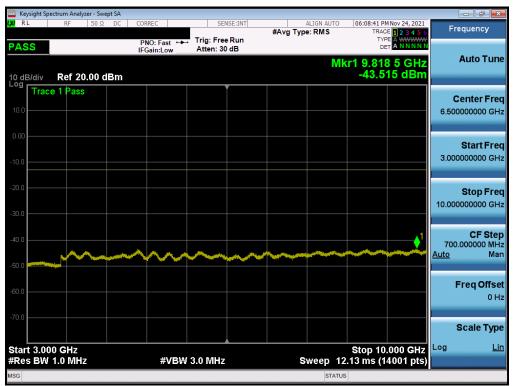
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup


Test Notes

- 1. Per Part 27 and RSS-139, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz and a resolution bandwidth of 1MHz for measurements above 1GHz.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 20 of 60
© 2021 PCTEST		•		V2.0 4/5/2021

LTE ULCA Band 12 - Band 66

Plot 7-13. Conducted Spurious Plot (LTE ULCA Band 12 - Band 66 - 1 RB - Mid Channel)

Plot 7-14. Conducted Spurious Plot (LTE ULCA Band 12 - Band 66 - 1 RB - Mid Channel)

FCC ID: A3LSMS908E	PCTEST Proud to be part of the element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Page 21 of 60	
© 2021 PCTEST	•		V2.0 4/5/2021	

© 2021 PCTEST

	ectrum Analyz												
LXU RL	RF	50 Ω	DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		MNov 24, 2021	Fre	quency
PASS				PNO: Fa IFGain:L	nst ↔ .ow	Trig: Fre Atten: 30		#///8//JP		TY D			
10 dB/div Log	Ref 20	.00 di	Bm						Μ	kr1 19.8 -39.8	589 GHz 63 dBm	,	Auto Tune
10.0 Trac	e 1 Pass												e nter Freq 000000 GHz
-10.0													Start Freq 000000 GHz
-20.0													Stop Freq 000000 GHz
-40.0	~~~	~~~~~	~		~~~~	****		*****			1	1.0000 <u>Auto</u>	CF Step 000000 GHz Man
-50.0												F	r eq Offset 0 Hz
-70.0													cale Type
Start 10.0 #Res BW		:		#	VBW	3.0 MHz		s	weep 1	Stop 20 6.67 ms (1	.000 GHz 0001 pts)	Log	<u>Lin</u>
MSG									STATU				


Plot 7-15. Conducted Spurious Plot (LTE ULCA Band 12 – Band 66 - 1 RB - Mid Channel)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021 Portable Handset			Fage 22 01 00
© 2021 PCTEST				V2 0 4/5/2021

Keysight Spectrum Analyz	er - Swept SA						
X RL RF	50 Ω AC CO	DRREC	SENSE:INT	#Avg Typ	ALIGN AUTO	07:44:11 PM Nov 22, 2021 TRACE 1 2 3 4 5 6	Frequency
PASS		PNO: Fast 😱 FGain:Low	Trig: Free Run Atten: 30 dB	#Avg typ	e. Rivij		
	.00 dBm				M	r1 1.709 5 GHz -42.58 dBm	Auto Tune
Trace 1 Pass			The second se				Center Free
10.0							870.000000 MH
0.00							Start Fre
-10.0							30.000000 MH
-20.0							Stop Fre
-30.0							1.71000000 GH
30.0							
40.0							CF Ste 168.000000 MH
							<u>Auto</u> Ma
50.0	And the other designments of the other designm				a way was to be the second state of the second		
-60.0							FreqOffse
							0 H
70.0							Seale Tru
							Scale Typ
Start 0.0300 GHz		40 (D) M			0	Stop 1.7100 GHz	Log <u>Li</u>
Res BW 1.0 MHz		#VBW	3.0 MHz			.240 ms (3361 pts)	
iu iii					STATUS		

Plot 7-16. Conducted Spurious Plot (NR Band n66 -20MHz - 1 RB - Low Channel - ANT A)

Plot 7-17. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - Low Channel – ANT A)

FCC ID: A3LSMS908E	Postest Prod to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 23 of 60	
© 2021 PCTEST		·		V2.0 4/5/2021	

2021 PCTEST

RL		zer - Swep												
ASS	RF	50 Ω	AC	PNO: Fa	ast 🖵			#Avg Ty	ALIGN AU pe: RMS	TO 07:4	8:01 PM Nov TRACE 1 TYPE A DET A	v 22, 2021 2 3 4 5 6 WWWWW N N N N N	Fi	requency
0 dB/div	Ref 0.0	00 dB	m	II Guille					M	lkr1 18 -5	.296 (9.095) GHz dBm		Auto Tun
og Trace	e 1 Pass													Center Fre 0000000 GH
80.0													10.00	Start Fre
io.o													20.00	Stop Fre
0.0			and the second secon							~~~ ^ 1			1.00 <u>Auto</u>	CF Ste 0000000 GI Ma
0.0														Freq Offs 0 I
0.0 tart 10.0										Sto	p 20.00	0 GHz	Log	Scale Typ L
Res BW	1.0 MHz	z		7	#VBW	3.0 MH	Z			25.33 m	ns (200	01 pts)		

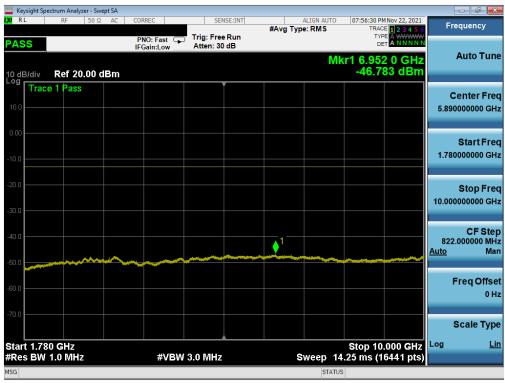
Plot 7-18. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - Low Channel - ANT A)

Plot 7-19. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - Mid Channel - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Faye 24 01 60
© 2021 PCTEST	·	•		V2.0 4/5/2021

🔤 Keysight Spe	ctrum Analy												- 0
XU RL	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO	TRAC	M Nov 22, 2021	Fr	equency
PASS				PNO: F IFGain:l	ast ⊊ ₋ow_	Trig: Fre Atten: 30		•		TYI Di			
10 dB/div	Ref 20	.00 di	Bm						MI	46.7 kr1 6.92	5 5 GHz 19 dBm		Auto Tune
Trace	e 1 Pass						Ĭ						Center Fred
10.0												5.89	0000000 GHz
0.00													
-10.0												1.78	Start Frec
-10.0													
-20.0													Stop Fred
-30.0												10.00	0000000 GHz
-40.0													CF Step
-40.0								1				822 <u>Auto</u>	.000000 MH2 Mar
-50.0		~~~	~	~~~	~~~	and the second second							
-60.0												1	Freq Offse 0 Ha
-70.0													0 112
-70.0													Scale Type
Start 1.78							<u> </u>			Stop 10	.000 GHz	Log	Lin
#Res BW	1.0 MHz	2		;	#VBW	3.0 MHz		s		l.25 ms (1	6441 pts)		
ISG									STATU	5			

Plot 7-20. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - Mid Channel - ANT A)


Plot 7-21. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - Mid Channel - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 25 01 60
© 2021 PCTEST		·		V2.0 4/5/2021

	ctrum Analyzer - Swe	ept SA										
L <mark>XI</mark> RL	RF 50 Ω	AC	CORREC		SEN		#Avg Typ	ALIGN AUTO	TRAC	MNov 22, 2021	Fr	equency
PASS	Ref 20.00 c	dBm	PNO: Fas IFGain:Lo		Atten: 30			M	(r1 1.57	1 0 GHz 62 dBm		Auto Tune
Log Trace	e 1 Pass											Center Freq .000000 MHz
-10.0											30	Start Freq
-20.0											1.71	Stop Freq 0000000 GHz
-40.0										↓ ¹	168 <u>Auto</u>	CF Step .000000 MHz Man
-60.0	mallow weekstelle place of	and all size of the	*******		مود میں علیہ میں میں میں اور	and the second secon	terrene og til som for som for søkker og klaur		****	, , , , , , , , , , , , , , , , , , ,		Freq Offset 0 Hz
-70.0 Start 0.03									Stop 1.7	'100 GHz	Log	Scale Type <u>Lin</u>
#Res BW	1.0 MHz		#	VBW 3	.0 MHz			Sweep 2		3361 pts)		

Plot 7-22. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - High Channel - ANT A)

Plot 7-23. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - High Channel - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 20 01 00
© 2021 PCTEST		·		V2.0 4/5/2021

	ectrum Analyz	er - Swept S	5A									-	- @ X
XU RL	RF	50 Ω A	AC C	ORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		MNov 22, 2021 CE 1 2 3 4 5 6	Fre	quency
PASS				PNO: Fa FGain:Lo		Trig: Fre Atten: 1				T			
10 dB/div	Ref 0.0	00 dBm							Mk	r1 18.30 -58.7	9 5 GHz 37 dBm		Auto Tune
-10.0	e 1 Pass												enter Freq 000000 GHz
-20.0													Start Fred 000000 GHz
-40.0													Stop Fred 000000 GH:
60.0												1.0000 <u>Auto</u>	CF Step 000000 GH Mar
-70.0												F	re q Offse 0 Ha
-90.0													cale Type
Start 10.0 #Res BW				#	VBW	3.0 MHz		s	weep 2	Stop 2 5.33 ms (:	0.000 GHz 20001 pts)	Log	Lin
ISG									STAT			L	

Plot 7-24. Conducted Spurious Plot (NR Band n66 - 20MHz - 1 RB - High Channel – ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 27 01 00
© 2021 PCTEST	•			V2.0 4/5/2021

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes


Per 27.53(h) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	EUT Type:				
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 28 of 60			
© 2021 PCTEST							

Plot 7-25. Lower Band Edge Plot (NR Band n66 - 20.0MHz - Full RB - ANT A)

Plot 7-26. Lower Extended Band Edge Plot (NR Band n66 - 20.0MHz - Full RB - ANT A)


FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 29 01 60
© 2021 PCTEST	•	•		V2.0 4/5/2021

²⁰²¹ PCTEST

	pectrum Analy												- @ X
X/RL	RF	50 Ω	AC	CORREC		SE		#Avg Typ	ALIGN AUTO e: RMS	TRA	M Nov 22, 2021	Fre	equency
PASS				PNO: Fa IFGain:L		#Atten: 3			Mkr				Auto Tune
10 dB/div Log	Ref 25		m							-26.	76 dBm		
Tra	e 1 Pass						Ĭ						enter Frec
15.0												1.780	000000 GHz
5.00	por	mm	mand	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	when	m							Start Free
-5.00												1.755	000000 GH2
15.0													Stop Free
25.0							1					1.805	000000 GH
	war						M. M. Marine						CF Ster
35.0								Anna manager	many			5. <u>Auto</u>	000000 MH Mar
45.0									 \	hora and the second sec			
55.0										www.	4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		req Offse 0 Ha
65.0													
													Scale Type
	.78000 G 240 kHz			#	VBW	820 kHz			Sweep_1	Span 5 000 ms.	i0.00 MHz (1001 pts)	Log	Lin
1SG									STATUS				

Plot 7-27. Upper Band Edge Plot (NR Band n66 - 20.0MHz - Full RB - ANT A)


Plot 7-28. Upper Extended Band Edge Plot (NR Band n66 - 20.0MHz - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 30 of 60
© 2021 PCTEST		•		V2.0 4/5/2021

	ectrum Analyz												
X/RL	RF	50 Ω	AC	CORREC		SI	ENSE:INT		ALIGN AUTO		Nov 22, 2021	Free	quency
PASS				PNO: Wi IFGain:L	ide ↔ ow	Trig: Fre #Atten:		#Avg Ty	pe: RIVIS	TYP	E 1 2 3 4 5 6 E A WWWWW T A N N N N N		
10 dB/div Log	Ref 25	.00 d	Bm						Mkr1 1	.710 00 -30.) 0 GHz 39 dBm	4	Auto Tune
15.0 Trac	e 1 Pass												enter Freq 000000 GHz
-5.00								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Start Freq 250000 GHz
-15.0							1						Stop Fred 50000 GHz
35.0				~	war war w	~~~~	/				Land and a start of the start o	3.7 <u>Auto</u>	CF Step 50000 MHz Mar
-45.0 -55.0		~~~~	~~~~~									F	req Offse 0 Ha
-65.0													cale Type
Center 1. #Res BW				#	VBW	620 kH:	z		Sweep 1	Span 3 .000 ms (7.50 MHz 1001 pts)	Log	Lin
MSG									STATUS				

Plot 7-29. Lower Band Edge Plot (NR Band n66 - 15.0MHz - Full RB - ANT A)

Plot 7-30. Lower Extended Band Edge Plot (NR Band n66 - 15.0MHz - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 31 of 60
© 2021 PCTEST		· ·		V2.0 4/5/2021

Keysight Spe		zer - Swep	t SA										- 0
RL	RF	50 Ω	AC	CORREC			ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Nov 22, 2021	Fr	equency
ASS				PNO: W IFGain:L	ide ↔ .ow	Trig: Free #Atten: 3				DI			A
0 dB/div	Ref 25	i.00 dE	3m						Mkr1 1	780 00. -25.	0 0 GHz 24 dBm		Auto Tune
og Trace	e 1 Pass					,						c	enter Freq
15.0												1.78	0000000 GHz
5.00	ſ	•••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										Start Free
5.00												1.76	1250000 GHz
15.0													Stop Free
25.0							1					1.79	3750000 GH
	~						LA.						CF Step
35.0	✓ -						~~~~~	m M	m	2		3 <u>Auto</u>	.750000 MHa Mar
45.0										Mun and			
55.0											M. Marine Ma Marine Marine Marin		req Offse ⁼ 0 Hz
65.0													• • • •
													Scale Type
enter 1.7 Res BW				;	≠VBW	620 kHz			Sweep	Span 3 1.000 ms (7.50 MHz 1001 pts)	Log	Lin
SG									STATU				

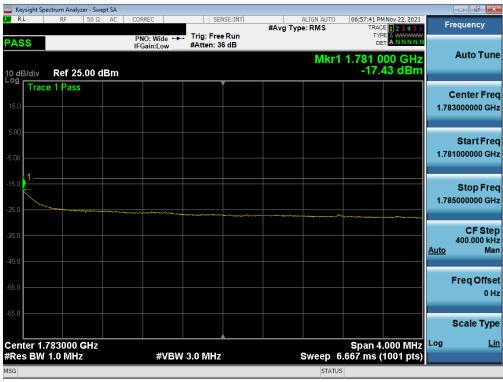
Plot 7-31. Upper Band Edge Plot (NR Band n66 - 15.0MHz - Full RB - ANT A)

Plot 7-32. Upper Extended Band Edge Plot (NR Band n66 - 15.0MHz - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 32 of 60
© 2021 PCTEST				V2.0 4/5/2021

	ectrum Analyzer - Sw	ept SA									
X/RL	RF 50 Ω	AC C	DRREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		Nov 22, 2021	Frequ	ency
PASS			PNO: Wide ↔ Gain:Low	. Trig: Free #Atten: 3		#/ (18 1) P		TYF DE			4. T
10 dB/div	Ref 25.00 o	dBm					Mkr1	1.710 0 -25.3	00 GHz 34 dBm	Au	to Tune
Log Trac	e 1 Pass										ter Freq 0000 GHz
-5.00							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				art Freq 0000 GHz
-15.0					1						op Freq 0000 GHz
-35.0				m					m		CFStep 0000 MH2 Mar
-45.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									Fre	q Offset 0 Hz
-65.0											ale Type
Center 1. #Res BW	71000 GHz 120 kHz		#VBW	430 kHz			Sweep 1	Span 2 .000 ms (5.00 MHz 1001 pts)	Log	<u>Lin</u>
MSG							STATUS				

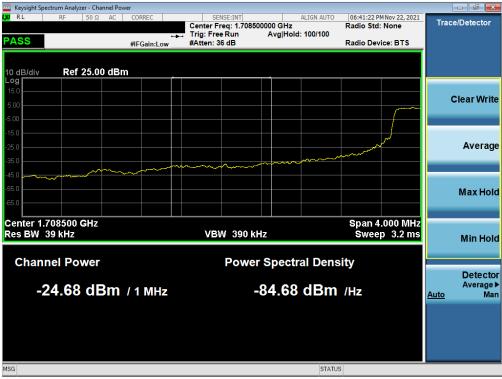
Plot 7-33. Lower Band Edge Plot (NR Band n66 - 10.0MHz - Full RB - ANT A)


Plot 7-34. Lower Extended Band Edge Plot (NR Band n66 - 10.0MHz - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 33 01 60
© 2021 PCTEST	· · · · · · · · · · · · · · · · · · ·	•		V2.0 4/5/2021

									pt SA	Analyzer - Sw		
Frequency	56:19 PM Nov 22, 2021 TRACE 1 2 3 4 5 6 TYPE A WWWW		ALIGN AUTO	#/	NSE:INT		/ide ↔→	CORREC	AC	50 Ω	R	RL
Auto Tune	80 025 GHz	r1 1.78	Mkr			#Atten: 3		IFGain:				ASS
	-26.54 dBm	-							Bm	25.00 (/ Re	0 dB/di og
Center Free 1.78000000 GH										ass	ace 1 F	15.0
1.10000000000												
Start Free 1.767500000 GH									*****	(marine and the second		5.00
												5.00
Stop Free 1.792500000 GH					1							15.0
CF Step				0.	h					1	~~~	25.0
2.500000 MH Auto Mar		Lange and the second	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								45.0
FreqOffse	mon	ww										
0 H:												55.0
Scale Type												i5.0 —
Log <u>Lir</u>	oan 25.00 MHz	Spa				420 kH	4\/D\4				1.7800	
	ms (1001 pts)		Sweep			430 kHz	#VBW			AnZ	W 120	Res E

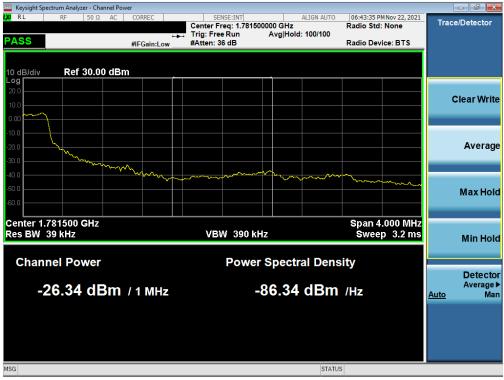
Plot 7-35. Upper Band Edge Plot (NR Band n66 - 10.0MHz - Full RB - ANT A)


Plot 7-36. Upper Extended Band Edge Plot (NR Band n66 - 10.0MHz - Full RB - ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 34 of 60
© 2021 PCTEST		•		V2.0 4/5/2021

	pectrum Analyz	er - Swep	pt SA										
X/RL	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Ty	ALIGN AUTO		M Nov 22, 2021	F	requency
PASS				PNO: W IFGain:L	ide ↔ ₋ow	Trig: Fre #Atten: 3		#Avg iy	pe: RIVIS	TYF	CE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N		
10 dB/div Log	Ref 25	.00 d	Bm						Mkr1 1	.709 98 -24.	75GHz 70dBm		Auto Tune
15.0 Tra	ce 1 Pass												Center Freq 0000000 GHz
-5.00								over other to				1.70	Start Fred 3750000 GHz
-15.0							1					1.71	Stop Fred 6250000 GH2
-35.0		M	L.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	pm,	and the second					www.www	<u>Auto</u>	CF Step 1.250000 MH Mar
-55.0		V											Freq Offse 0 H:
-65.0	.710000 (SHz								Span 1	2.50 MHz		Scale Type <u>Lir</u>
	62 kHz			3	#VB₩	220 kHz	:		Sweep 1	.400 ms ((1001 pts)		
ASG									STATUS	8		_	

Plot 7-37. Lower Band Edge Plot (NR Band n66 - 5.0MHz - Full RB - ANT A)


Plot 7-38. Lower Extended Band Edge Plot (NR Band n66 – 5.0MHz - Full RB – ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 35 01 00
© 2021 PCTEST				V2.0 4/5/2021

	ectrum Analy:	er - Swept SA										- 0 ×
X/RL	RF	50 Ω AC	CORREC		SEN	SE:INT		ALIGN AUTO		M Nov 22, 2021	E	requency
PASS			PNO: Wi IFGain:L		ig: Free Atten: 36		#Avg I	/pe: RMS	TΥ	CE 1 2 3 4 5 6 PE A WWWWW A N N N N N		
10 dB/div Log	Ref 25	.00 dBm	1					Mkr1 '	1.780 00 -25	0 0 GHz .35 dBm		Auto Tune
Trac	e 1 Pass				Ĭ							Center Freq
15.0											1.78	0000000 GHz
5.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~							Start Freq
-5.00											1.77	3750000 GHz
-15.0												Stop Fred
-25.0						1					1.78	6250000 GHz
35.0	\int											CF Step
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						\$- V.	$\sim \sim \sim$	m	~		Auto ¹	1.250000 MHz Mar
-45.0										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
55.0												Freq Offse 0 Hz
-65.0												
												Scale Type
Center 1. #Res BW		GHZ	#	VBW 22	0 kHz			Sweep	′ Span 1.400 ms	12.50 MHz (1001 pts)	Log	Lin
ASG								STATU	IS			

Plot 7-39. Upper Band Edge Plot (NR Band n66 - 5.0MHz - Full RB - ANT A)



Plot 7-40. Upper Extended Band Edge Plot (NR Band n66 – 5.0MHz - Full RB – ANT A)

FCC ID: A3LSMS908E	PCTEST* Proud to be part of @ element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Fage So OI OU
© 2021 PCTEST			V2.0 4/5/2021



## 7.6 Peak-Average Ratio

### **Test Overview**

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 5.7.1

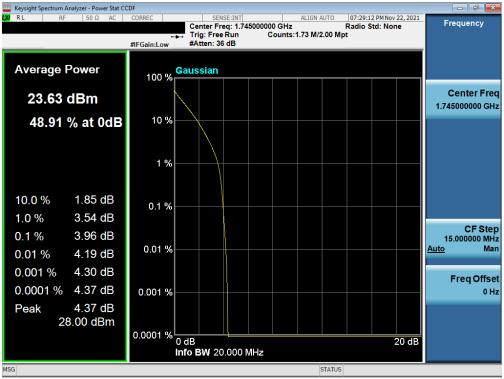
### **Test Settings**

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

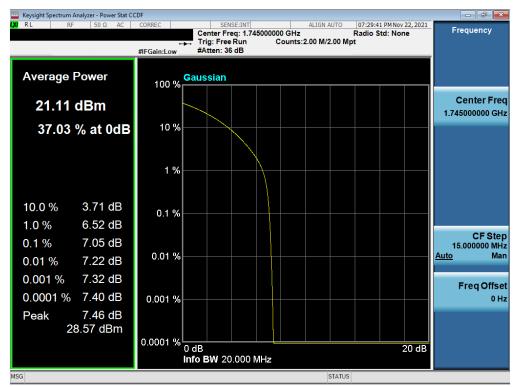
#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-5. Test Instrument & Measurement Setup

## Test Notes

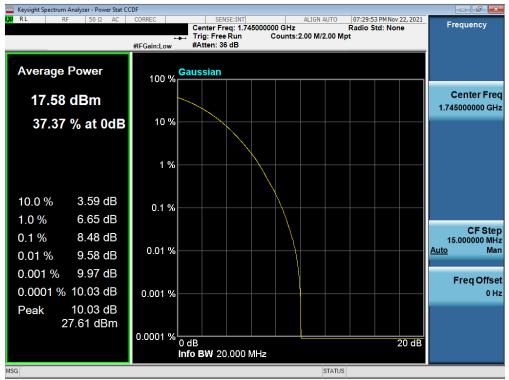

None.

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 27 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 37 of 60
© 2021 PCTEST	· · · · · · · · · · · · · · · · · · ·	•		V2.0 4/5/2021

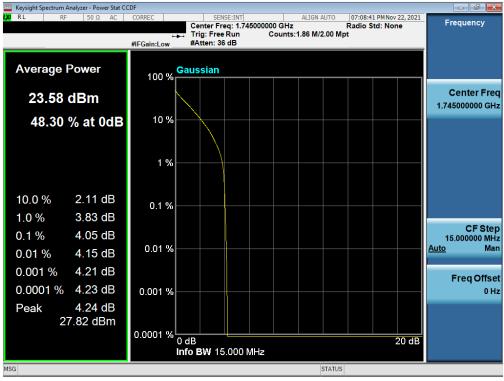




Plot 7-41. PAR Plot (NR Band n66 - 20.0MHz DFT-s-OFDM BPSK - Full RB - ANT A)



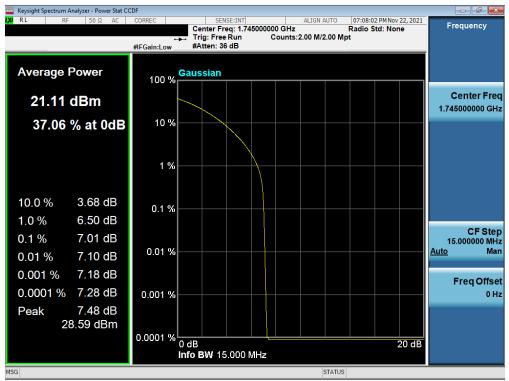

Plot 7-42. PAR Plot (NR Band n66 - 20.0MHz CP-OFDM QPSK - Full RB - ANT A)


FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 38 of 60
© 2021 PCTEST	•			V2.0 4/5/2021

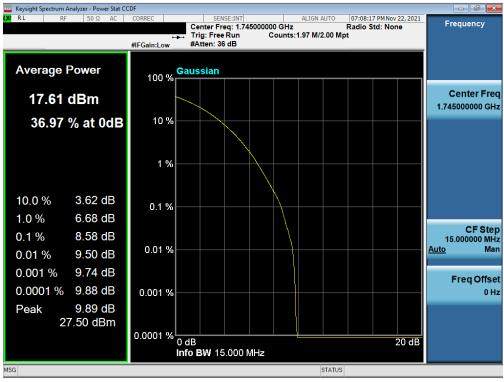
© 2021 PCTEST






Plot 7-43. PAR Plot (NR Band n66 - 20.0MHz CP-OFDM 256-QAM - Full RB - ANT A)

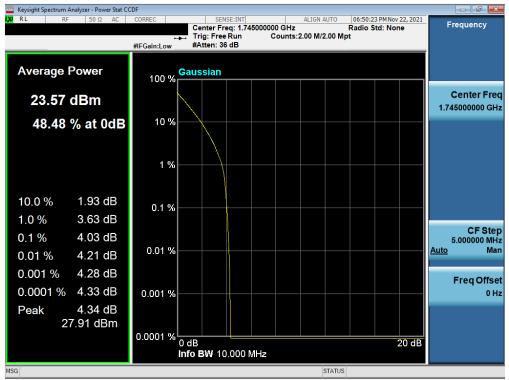



Plot 7-44. PAR Plot (NR Band n66 - 15.0MHz DFT-s-OFDM BPSK - Full RB – ANT A)

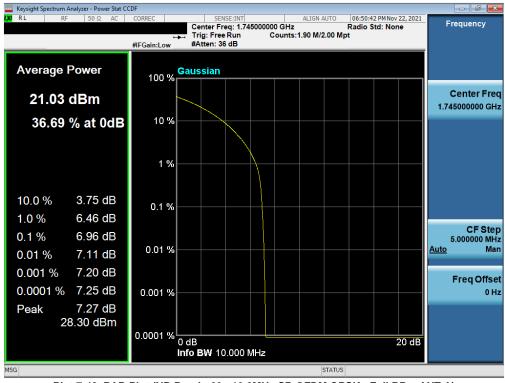
FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021 Portable Handset			Page 39 of 60
© 2021 PCTEST		•		V2.0 4/5/2021






Plot 7-45. PAR Plot (NR Band n66 - 15.0MHz CP-OFDM QPSK - Full RB - ANT A)

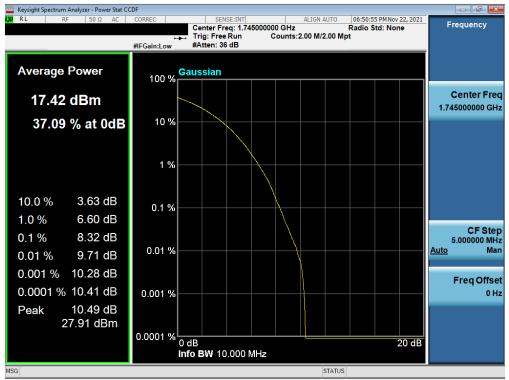



Plot 7-46. PAR Plot (NR Band n66 - 15.0MHz CP-OFDM 256-QAM - Full RB - ANT A)

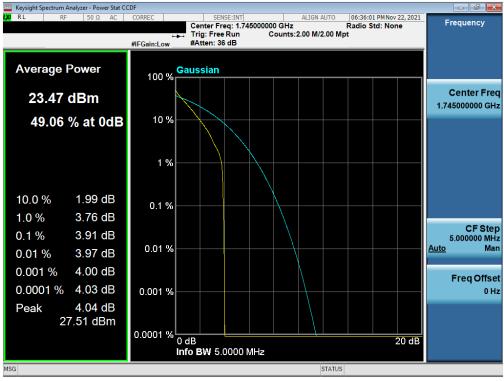
FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 60
1M2109220110-04.A3L	0110-04.A3L 11/19/2021 - 12/07/2021 Portable Handset			Page 40 01 60
© 2021 PCTEST				V2.0 4/5/2021






Plot 7-47. PAR Plot (NR Band n66 - 10.0MHz DFT-s-OFDM BPSK - Full RB - ANT A)

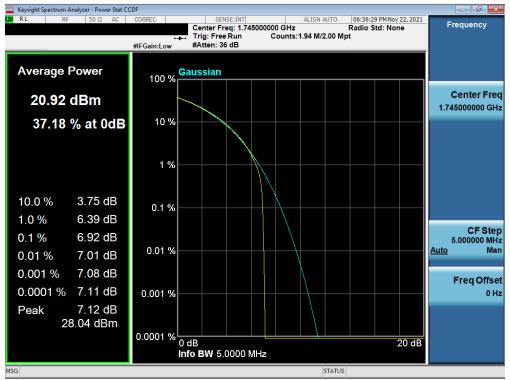



Plot 7-48. PAR Plot (NR Band n66 - 10.0MHz CP-OFDM QPSK - Full RB – ANT A)

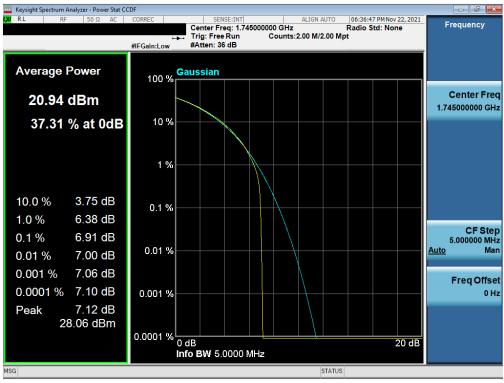
FCC ID: A3LSMS908E	PORT 27 MEASUREMENT REPORT		SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 60
1M2109220110-04.A3L	0110-04.A3L 11/19/2021 - 12/07/2021 Portable Handset			Page 41 of 60
© 2021 PCTEST	·	•		V2.0 4/5/2021






Plot 7-49. PAR Plot (NR Band n66 - 10.0MHz CP-OFDM 256-QAM - Full RB - ANT A)




Plot 7-50. PAR Plot (NR Band n66 - 5.0MHz DFT-s-OFDM BPSK - Full RB – ANT A)

FCC ID: A3LSMS908E	3LSMS908E PART 27 MEASUREMENT REPORT		SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	07/2021 Portable Handset		Page 42 of 60
© 2021 PCTEST	· · · · · · · · · · · · · · · · · · ·	•		V2.0 4/5/2021





Plot 7-51. PAR Plot (NR Band n66 - 5.0MHz CP-OFDM QPSK - Full RB - ANT A)



Plot 7-52. PAR Plot (NR Band n66 - 5.0MHz CP-OFDM 256-QAM - Full RB – ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 43 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021 Portable Handset			Fage 45 01 00
© 2021 PCTEST	•	·		V2.0 4/5/2021



# 7.7 Radiated Power (ERP/EIRP)

### **Test Overview**

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.2.1

### Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points  $\geq$  2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 44 of 60	
© 2021 PCTEST				V2 0 4/5/2021	



## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

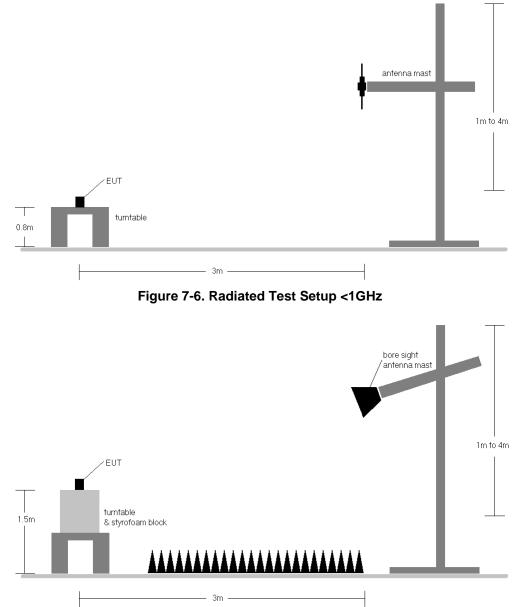



Figure 7-7. Radiated Test Setup >1GHz

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 45 of 60	
© 2021 PCTEST	·			V2.0 4/5/2021	



- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: A3LSMS908E	3LSMS908E PART 27 MEASUREMENT REPORT		SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	2021 - 12/07/2021 Portable Handset		Page 46 of 60
© 2021 PCTEST				V2.0 4/5/2021



Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	π/2 BPSK	1720.0	Н	132	163	9.47	1 / 79	14.22	23.69	0.234	30.00	-6.31
	π/2 BPSK	1745.0	Н	119	161	9.48	1 / 26	14.36	23.84	0.242	30.00	-6.16
	π/2 BPSK	1770.0	Н	126	177	9.39	1 / 79	13.23	22.62	0.183	30.00	-7.38
20 MHz	QPSK	1720.0	Н	132	163	9.47	1 / 26	13.96	23.42	0.220	30.00	-6.58
	QPSK	1745.0	Н	119	161	9.48	1 / 26	14.50	23.98	0.250	30.00	-6.02
	QPSK	1770.0	Н	126	177	9.39	1 / 79	13.44	22.83	0.192	30.00	-7.17
	16-QAM	1745.0	Н	119	161	9.48	1 / 26	14.15	23.63	0.231	30.00	-6.37
	π/2 BPSK	1717.5	Н	132	163	9.49	1 / 58	14.19	23.69	0.234	30.00	-6.31
	π/2 BPSK	1745.0	Н	119	161	9.48	1 / 20	14.62	24.10	0.257	30.00	-5.90
	π/2 BPSK	1772.5	Н	126	177	9.36	1 / 58	13.51	22.87	0.194	30.00	-7.13
15 MHz	QPSK	1717.5	Н	132	163	9.49	1 / 58	14.25	23.74	0.237	30.00	-6.26
	QPSK	1745.0	Н	119	161	9.48	1 / 20	14.58	24.06	0.255	30.00	-5.94
	QPSK	1772.5	Н	126	177	9.36	1 / 58	13.46	22.83	0.192	30.00	-7.17
	16-QAM	1717.5	Н	132	163	9.49	1 / 58	13.85	23.35	0.216	30.00	-6.65
	π/2 BPSK	1715.0	Н	132	163	9.52	1 / 38	13.97	23.49	0.223	30.00	-6.51
	π/2 BPSK	1745.0	Н	119	161	9.48	1 / 13	14.36	23.84	0.242	30.00	-6.16
	π/2 BPSK	1775.0	Н	126	177	9.34	1 / 26	13.50	22.84	0.192	30.00	-7.16
10 MHz	QPSK	1715.0	Н	132	163	9.52	1 / 38	13.93	23.45	0.221	30.00	-6.55
	QPSK	1745.0	Н	119	161	9.48	1 / 13	14.38	23.87	0.244	30.00	-6.13
	QPSK	1775.0	Н	126	177	9.34	1 / 26	13.37	22.71	0.187	30.00	-7.29
	16-QAM	1745.0	Н	119	161	9.48	1 / 13	14.11	23.59	0.229	30.00	-6.41
	π/2 BPSK	1712.5	Н	132	163	9.54	1 / 18	13.94	23.48	0.223	30.00	-6.52
	π/2 BPSK	1745.0	Н	119	161	9.48	1 / 12	14.59	24.07	0.255	30.00	-5.93
	π/2 BPSK	1777.5	Н	126	177	9.31	1 / 18	13.53	22.84	0.192	30.00	-7.16
5 MHz	QPSK	1712.5	Н	132	163	9.54	1 / 18	13.85	23.40	0.219	30.00	-6.60
	QPSK	1745.0	Н	119	161	9.48	1 / 12	14.34	23.82	0.241	30.00	-6.18
	QPSK	1777.5	Н	126	177	9.31	1 / 18	13.40	22.71	0.187	30.00	-7.29
	16-QAM	1745.0	Н	119	161	9.48	1 / 12	14.03	23.51	0.225	30.00	-6.49
	QPSK (CP-OFDM)	1745.0	Н	120	171	9.48	1 / 26	12.91	22.39	0.173	30.00	-7.61
20 MHz	QPSK (Opposite Pol.)	1745.0	V	147	338	9.48	1 / 26	13.63	23.11	0.205	30.00	-6.89
	QPSK (WCP)	1745.0	Н	133	185	9.48	1/ 26	14.01	23.49	0.223	30.00	-6.51

Table 7-4. EIRP Data (NR Band n66 – ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021 Portable Handset			Page 47 of 60
© 2021 PCTEST		•		V2.0 4/5/2021



Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	π/2 BPSK	1720.0	Н	248	6	9.47	1 / 79	10.20	19.67	0.093	30.00	-10.33
	π/2 BPSK	1745.0	Н	250	8	9.48	1 / 53	10.17	19.65	0.092	30.00	-10.35
	π/2 BPSK	1770.0	н	243	6	9.39	1 / 53	9.11	18.50	0.071	30.00	-11.50
20 MHz	QPSK	1720.0	н	248	6	9.47	1 / 79	10.07	19.54	0.090	30.00	-10.46
	QPSK	1745.0	н	250	8	9.48	1 / 79	10.24	19.72	0.094	30.00	-10.28
	QPSK	1770.0	н	243	6	9.39	1 / 79	9.18	18.57	0.072	30.00	-11.43
	16-QAM	1720.0	Н	248	6	9.47	1 / 79	10.53	20.00	0.100	30.00	-10.00
	π/2 BPSK	1717.5	Н	248	6	9.49	1 / 58	10.21	19.71	0.093	30.00	-10.29
	π/2 BPSK	1745.0	Н	250	8	9.48	1 / 39	10.30	19.78	0.095	30.00	-10.22
	π/2 BPSK	1772.5	Н	243	6	9.36	1 / 58	9.10	18.46	0.070	30.00	-11.54
15 MHz	QPSK	1717.5	Н	248	6	9.49	1 / 58	10.25	19.74	0.094	30.00	-10.26
	QPSK	1745.0	Н	250	8	9.48	1 / 39	10.26	19.74	0.094	30.00	-10.26
	QPSK	1772.5	Н	243	6	9.36	1 / 58	8.96	18.32	0.068	30.00	-11.68
	16-QAM	1717.5	Н	248	6	9.49	1 / 58	10.50	20.00	0.100	30.00	-10.00
	π/2 BPSK	1715.0	Н	248	6	9.52	1 / 38	9.82	19.34	0.086	30.00	-10.66
	π/2 BPSK	1745.0	н	250	8	9.48	1 / 38	10.25	19.73	0.094	30.00	-10.27
	π/2 BPSK	1775.0	н	243	6	9.34	1 / 38	8.98	18.32	0.068	30.00	-11.68
10 MHz	QPSK	1715.0	н	248	6	9.52	1 / 38	9.77	19.29	0.085	30.00	-10.71
	QPSK	1745.0	Н	250	8	9.48	1 / 38	10.17	19.65	0.092	30.00	-10.35
	QPSK	1775.0	н	243	6	9.34	1 / 38	9.03	18.37	0.069	30.00	-11.63
	16-QAM	1745.0	Н	250	8	9.48	1 / 38	10.32	19.80	0.096	30.00	-10.20
	π/2 BPSK	1712.5	Н	248	6	9.54	1 / 12	10.13	19.67	0.093	30.00	-10.33
	π/2 BPSK	1745.0	Н	250	8	9.48	1 / 12	10.12	19.60	0.091	30.00	-10.40
	π/2 BPSK	1777.5	н	243	6	9.31	1 / 12	9.24	18.55	0.072	30.00	-11.45
5 MHz	QPSK	1712.5	н	248	6	9.54	1 / 12	10.01	19.55	0.090	30.00	-10.45
	QPSK	1745.0	Н	250	8	9.48	1 / 12	10.16	19.64	0.092	30.00	-10.36
	QPSK	1777.5	н	243	6	9.31	1 / 12	9.15	18.46	0.070	30.00	-11.54
	16-QAM	1745.0	н	250	8	9.48	1 / 12	10.56	20.04	0.101	30.00	-9.96
	QPSK (CP-OFDM)	1720.0	н	248	6	9.33	1 / 53	8.57	17.90	0.062	30.00	-12.10
20 MHz	QPSK (Opposite Pol.)	1720.0	V	154	8	9.03	1 / 26	9.83	18.86	0.077	30.00	-11.14
	QPSK (WCP)	1720.0	н	142	10	9.33	1 / 79	10.27	19.60	0.091	30.00	-10.40

Table 7-5. EIRP Data (NR Band n66 – ANT J)

FCC ID: A3LSMS908E	PCTEST* Proud to be per tot @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 48 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Page 48 of 60	
© 2021 PCTEST		•		V2 0 4/5/2021



# 7.8 Radiated Spurious Emissions Measurements

### **Test Overview**

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

#### Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points  $\geq$  2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:		Page 49 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 49 01 60	
© 2021 PCTEST	·			V2.0 4/5/2021	

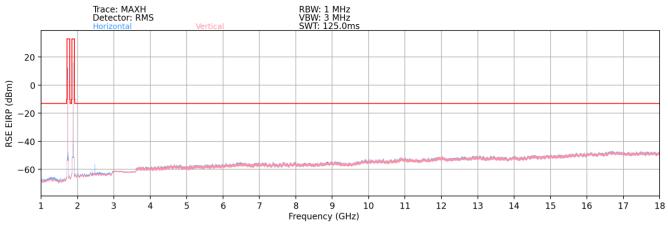


bore sight antenna mast 1m to 4m EUT turntable 1.5m & styrofoam block 3m

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-8. Test Instrument & Measurement Setup

#### **Test Notes**


- 1) Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4. a) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB $\mu$ V/m) + 20logD - 104.8; where D is the measurement distance in meters.
- The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case 2) emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- This unit was tested with its standard battery. 3)
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at 5) a 1 meter test distance with the application of a distance correction factor.
- The "-" shown in the following RSE tables are used to denote a noise floor measurement. 6)
- 7) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 8) Spurious emissions shown in this section are measured while operating in EN-DC mode with Sub 6GHz NR carrier as well as an LTE carrier (anchor). Spurious emissions from the NR carrier device, is subject to the rules under which the NR carrier operates. Spurious emission caused by the LTE carrier must meet the requirements of the rules under which the LTE carrier operates.
- 9) Spurious emissions measurements are included in this section to address compliance of the NR FR1 ULCA capability. The EUT was set to transmit at the widest bandwidth and on the middle channel of each band.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset	Page 50 of 60	
© 2021 PCTEST	·			V2.0 4/5/2021

2021 PCTEST

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.







Bandwidth (MHz):	20 & 20
Frequency (MHz):	1880 <b>&amp;</b> 1732.5
RB / Offset:	1 / 50 & 1 / 50
Mode:	ULCA
Band:	2A-4A

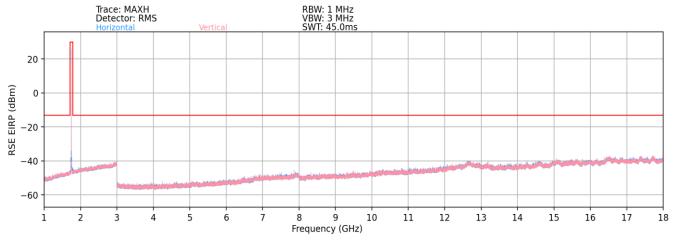

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1142.50	Н	-	-	-76.92	-3.25	26.83	-68.42	-13.00	-55.42
1290.00	Н	-	-	-77.00	-1.63	28.37	-66.89	-13.00	-53.89
1437.50	Н	-	-	-77.14	-2.65	27.21	-68.05	-13.00	-55.05
1585.00	Н	-	-	-77.64	-2.73	26.63	-68.63	-13.00	-55.63
2027.50	Н	-	-	-77.56	0.94	30.38	-64.87	-13.00	-51.87
2175.00	Н	-	-	-78.05	1.23	30.18	-65.08	-13.00	-52.08
2322.50	Н	-	-	-78.33	1.36	30.03	-65.22	-13.00	-52.22
2470.00	Н	-	-	-77.31	1.99	31.68	-63.58	-13.00	-50.58

Table 7-6. Radiated Spurious Data (LTE ULCA Band 2 - Band 4)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:		Page 51 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 51 of 60	
© 2021 PCTEST		· ·		V2.0 4/5/2021	



# NR Band n66 – ANT A





20
1720
1 / 53

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3440.00	Н	-	-	-78.60	7.95	36.35	-58.90	-13.00	-45.90
5160.00	Н	-	-	-79.29	12.13	39.84	-55.42	-13.00	-42.42
6880.00	Н	-	-	-79.91	15.54	42.63	-52.62	-13.00	-39.62

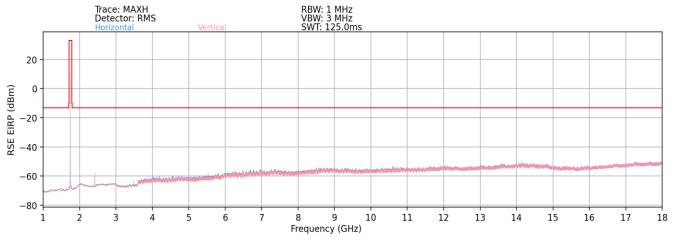
### Table 7-7. Radiated Spurious Data (NR Band n66 – Low Channel – ANT A)

Bandwidth (MHz):	20
Frequency (MHz):	1745
RB / Offset:	1 / 53

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3490.00	Н	-	-	-78.51	7.09	35.58	-59.68	-13.00	-46.68
5235.00	Н	-	-	-79.37	10.20	37.83	-57.43	-13.00	-44.43
6980.00	Н	-	-	-79.79	14.41	41.62	-53.64	-13.00	-40.64

## Table 7-8. Radiated Spurious Data (NR Band n66 – Mid Channel – ANT A)

Bandwidth (MHz):	20
Frequency (MHz):	1770
RB / Offset:	1 / 53


Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3540.00	Н	-	-	-78.52	7.83	36.31	-58.95	-13.00	-45.95
5310.00	Н	-	-	-79.17	11.33	39.16	-56.10	-13.00	-43.10
7080.00	Н	-	-	-79.70	16.03	43.33	-51.93	-13.00	-38.93

### Table 7-9. Radiated Spurious Data (NR Band n66 – High Channel – ANT A)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 52 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 52 of 60
© 2021 PCTEST				V2.0 4/5/2021



# EN-DC n66 (ANT A) + LTE Band 5





Bandwidth (MHz):	20 & 10
Frequency (MHz):	1745 & 836.5
RB / Offset:	1/53 & 1/25
Mode:	EN-DC
Anchor Band:	LTE Band 5

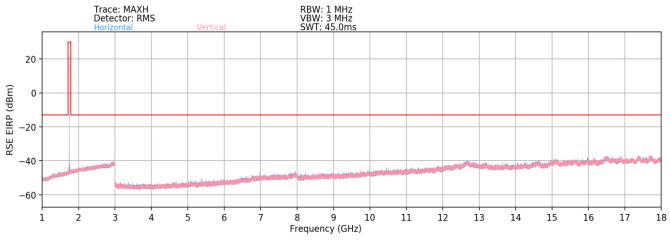

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1889.00	V	-	-	-74.93	-7.49	24.58	-70.68	-13.00	-57.68
2653.50	V	-	-	-75.34	-4.83	26.83	-68.43	-13.00	-55.43
2797.50	V	-	-	-76.15	-4.51	26.34	-68.92	-13.00	-55.92
3562.00	V	-	-	-77.16	-2.06	27.78	-67.48	-13.00	-54.48
3706.00	V	-	-	-76.16	-2.11	28.73	-66.53	-13.00	-53.53
4470.50	V	-	-	-76.93	0.08	30.15	-65.11	-13.00	-52.11
5379.00	V	-	-	-77.57	1.51	30.94	-64.32	-13.00	-51.32
6287.50	V	-	-	-77.50	4.71	34.21	-61.05	-13.00	-48.05

Table 7-10. Radiated Spurious Data (EN-DC n66 (ANT A) + B5)

FCC ID: A3LSMS908E	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 53 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 53 01 60
© 2021 PCTEST	·	•		V2.0 4/5/2021



## NR Band n66 – ANT J





Bandwidth (MHz):	20
Frequency (MHz):	1720
RB / Offset:	1/53

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3440.00	Н	-	-	-78.65	7.95	36.30	-58.95	-13.00	-45.95
5160.00	Н	106	154	-73.90	12.13	45.23	-50.03	-13.00	-37.03
6880.00	Н	-	-	-79.83	15.54	42.71	-52.54	-13.00	-39.54

Table 7-11. Radiated Spurious Data (NR Band n66 – Low Channel – ANT J)

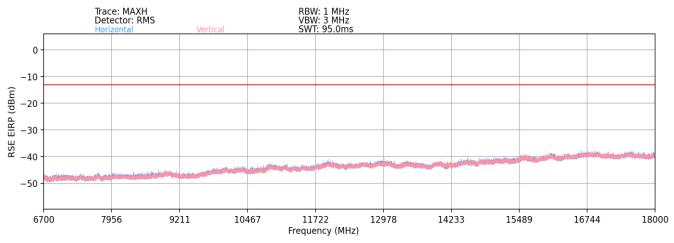
: 20	Bandwidth (MHz):
: 1745	Frequency (MHz):
: 1/53	RB / Offset:
: 1745	Frequency (MHz):

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3490.00	Н	-	-	-78.49	7.98	36.49	-58.77	-13.00	-45.77
5235.00	Н	104	189	-77.34	10.96	40.62	-54.63	-13.00	-41.63
6980.00	Н	-	-	-79.80	15.58	42.78	-52.48	-13.00	-39.48

Table 7-12. Radiated Spurious Data (NR Band n66 – Mid Channel – ANT J)

RB / Offset:	 1 / 53	
Frequency (MHz):	1770	
Bandwidth (MHz):	20	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3540.00	Н	100	214	-70.36	7.83	44.47	-50.79	-13.00	-37.79
5310.00	Н	103	195	-75.26	11.33	43.07	-52.19	-13.00	-39.19
7080.00	Н	-	-	-76.02	16.03	47.01	-48.25	-13.00	-35.25


Table 7-13. Radiated Spurious Data (NR Band n66 – High Channel – ANT J)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 54 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 54 01 00
© 2021 PCTEST				V2 0 4/5/2021



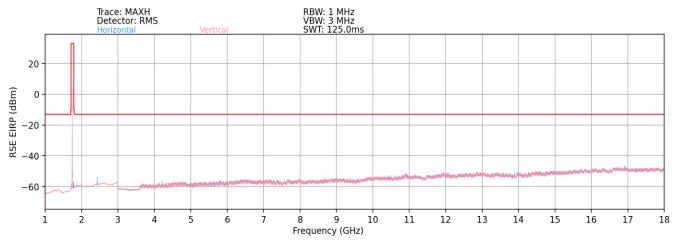








Case:	n66 & B2
Bandwidth (MHz):	20MHz & 20MHz
Frequency (MHz):	1745MHz & 1880MHz
RB / Offset:	1 / 53 & 1 / 50
Mode:	EN-DC


Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1475.00	Н	-	-	-76.58	12.19	42.61	-52.65	-13.00	-39.65
2015.00	Н	-	-	-76.98	12.84	42.86	-52.40	-13.00	-39.40
3625.00	Н	-	-	-77.90	8.33	37.43	-57.83	-13.00	-44.83
5370.00	Н	-	-	-78.38	11.63	40.25	-55.01	-13.00	-42.01
7115.00	Н	-	-	-78.74	15.59	43.85	-51.40	-13.00	-38.40

#### Table 7-14. Radiated Spurious Data (EN-DC n66 (ANT J) + B2)

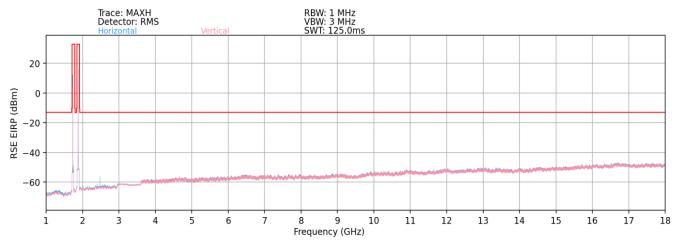
FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EE of CO
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 55 of 60
© 2021 PCTEST		•		V2.0 4/5/2021



# LTE ULCA Band 12 - Band 66






Bandwidth (MHz):	10 / 20
Frequency (MHz):	707.5/ 1745
RB / Offset:	1/25 & 1/50
Detector / Trace Mode:	RMS / Average
RBW/VBW:	1MHz / 3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1367.50	Н	-	-	-76.91	-2.34	27.75	-67.50	-13.00	-54.50
2405.00	Н	-	-	-76.44	1.56	32.12	-63.14	-13.00	-50.14
2782.50	Н	-	-	-77.71	1.90	31.19	-64.07	-13.00	-51.07
3442.50	Н	-	-	-77.76	3.74	32.98	-62.27	-13.00	-49.27
3820.00	н	-	-	-78.62	4.84	33.22	-62.04	-13.00	-49.04
4480.00	Н	-	-	-78.10	5.18	34.08	-61.18	-13.00	-48.18
4857.50	Н	-	-	-78.64	5.35	33.71	-61.55	-13.00	-48.55
5895.00	Н	-	-	-79.57	6.99	34.42	-60.83	-13.00	-47.83

Table 7-15. Radiated Spurious Data (LTE ULCA Band 12 - Band 66)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 56 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 56 01 60
© 2021 PCTEST	·	·		V2.0 4/5/2021





Plot 7-60. Radiated Spurious Plot (LTE ULCA Band 4 - Band 2)

Bandwidth (MHz):	20 / 20
Frequency (MHz):	1880/ 1732.5
RB / Offset:	1/50 & 1/50
Detector / Trace Mode:	RMS / Average
RBW/VBW:	100kHz / 300kHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1142.50	н	-	-	-76.92	-3.25	26.83	-68.42	-13.00	-55.42
1290.00	н	-	-	-77.00	-1.63	28.37	-66.89	-13.00	-53.89
1437.50	Н	-	-	-77.14	-2.65	27.21	-68.05	-13.00	-55.05
1585.00	Н	-	-	-77.64	-2.73	26.63	-68.63	-13.00	-55.63
2027.50	н	-	-	-77.56	0.94	30.38	-64.87	-13.00	-51.87
2175.00	Н	-	-	-78.05	1.23	30.18	-65.08	-13.00	-52.08
2322.50	Н	-	-	-78.33	1.36	30.03	-65.22	-13.00	-52.22
2470.00	Н	-	-	-77.31	1.99	31.68	-63.58	-13.00	-50.58

Table 7-16. Radiated Spurious Data (LTE ULCA Band 4 - Band 2)

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 57 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021 Portable Handset			Page 57 of 60
© 2021 PCTEST	·	•		V2.0 4/5/2021



## 7.9 Frequency Stability / Temperature Variation

#### **Test Overview and Limit**

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### Test Procedure Used

ANSI/TIA-603-E-2016

#### Test Settings

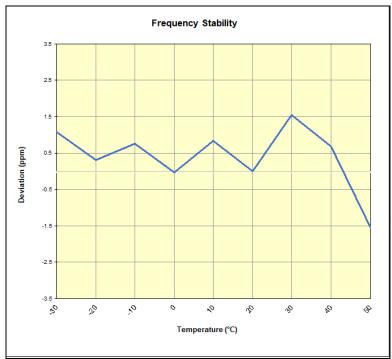
- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes

None


FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 58 of 60		
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 58 of 60		
© 2021 PCTEST V2.0.4						



# Frequency Stability / Temperature Variation

NR Band n66								
	Operating F	requency (Hz):	1,745,0	00,000				
	Ref.	Voltage (VDC):	4.3	39				
		Deviation Limit:	± 0.00025%	or 2.5 ppm				
					•			
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)			
		- 30	1,745,088,220	1,901	0.0001089			
		- 20	1,745,086,865	546	0.0000313			
		- 10	1,745,087,645	1,326	0.0000760			
		0	1,745,086,276	-44	-0.0000025			
100 %	4.39	+ 10	1,745,087,782	1,462	0.0000838			
		+ 20 (Ref)	1,745,086,320	0	0.0000000			
		+ 30	1,745,089,017	2,697	0.0001546			
		+ 40	1,745,087,496	1,176	0.0000674			
		+ 50	1,745,083,612	-2,708	-0.0001552			
Battery Endpoin	3.40	+ 20	1,745,086,932	612	0.0000351			

Table 7-17. NR Band n66 Frequency Stability Data



Plot 7-61. NR Band n66 Frequency Stability Chart

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 59 of 60
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Fage 59 01 00
© 2021 PCTEST	·			V2.0 4/5/2021



# 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMS908E** complies with all the requirements of Part 27 of the FCC rules.

FCC ID: A3LSMS908E		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 60 of 60	
1M2109220110-04.A3L	11/19/2021 - 12/07/2021	Portable Handset		Page 60 01 60	
© 2021 PCTEST				V2.0 4/5/2021	