

	Input: RF Coupling Align: Au	: DC Corr	CCorr Ref: Int (S)	Atten: 26 dB	Gate	Free Run : LO iin: Low	Center Fred Radio Std: I	1: 3.460000000 None	GHz		Frequency 00000 GHz	Settings
II Range Gra	ph v										00 MHz	
ale/Div 10.0	dB		F	Ref Value 30.0	00 dBm					Au		
9 .0										Ma		
					1		****			Freq Of 0 Hz	fset	
.0								\				
		and the second the second		· · · · · · · · · · · · · · · · · · ·					"weene and the			
.0												
	_											
rt 3.425 GH								Stop	3.475 GHz			
ll Range Tab	le '											
						easure Tra ace Type		Trace Averag	Trace 1			
Spur	Range	Start Freg	Stop Freq	RBW	Frequ		Amplitude	∆Limit	c (Active)			
		3.4250 GHz						-17.29				
2		3.4450 GHz					-30.56 dBm	-17.56				
3		3.4490 GHz 3.4500 GHz					-29.04 dBm 11.29 dBm	-16.04 -14.71				
4						000 0112	11.20 GDIII	-14./1	u D			

Plot 7-131. Lower ACP Plot (NR Band n77 (DoD) - 20MHz CP-OFDM-QPSK - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 90 of 179
© 2022 PCTEST	•		V3.0 1/6/2022

All Range Graph All Range Graph All Range Graph All Range Graph	LO Radio Std: None Center Frequency Settin	Trig: Free Gate: LO IF Gain: L	Atten: 26 dB	CCorr Ref: Int (S)	DC Corr	Input: RF Coupling: Align: Aut	YSIGHT ++- PASS
All Range Table Spur Range Start Freq Stop Freq RBW Frequency Amplitude ALlimit 1 1 3.4313 CHz 3.4450 CHz 1.000 MHz 3.4444820000 CHz -23.69 dBH 2 2 3.4450 CHz 3.4450 CHz 1.000 MHz 3.4444820000 CHz -23.69 dBH 2 2 3.4450 CHz 3.4450 CHz 1.000 MHz 3.4444820000 CHz -23.69 dBH							
Measure Trace Trace 1 1 3.4313 GHz 3.4450 GHz 3.44450000 GHz 2.89 dBm -19.69 dB 4.99 dB		00 dBm	Ref Value 30.0	5		dB	
Measure Trace Trace 1 1 3.431 GHz 3.4450 GHz Measure Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ALimit 1 1.3431 GHz 3.44350 GHz 1.100 MHz 3.444450000 GHz -2.269 dBm -15.63 dB -15.63 dB							
Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ALimit 1 1 3.431 GHz 3.4450 GHz 3.444560000 GHz 3.469 GHz							
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1							
Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ALimit 1 1 3.433 GHz 3.4435 GHz 3.44450000 GHz 3.444450000 GHz 3.444450000 GHz 3.469 GHz 2 3.4450 GHz 3.44450000 GHz -3.269 GBm -15.63 dB -15.63 dB -15.63 dB -19.69 dB -1							
Measure Trace Trace 1 It 3.431 GHz Measure Trace Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ALimit 1 1 3.4313 GHz 3.443500 Hz 3.444450000 GHz -15.63 dB -15.63 dB -15.63 dB -19.69 dB<	The state of the s			treasticker at 171	ette anne stateste	-	
rt 3.431 GHz II Range Table II Range Table Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude Limit 1 1 3.4430 GHz 3.44450 GHz 3.444450000 GHz -28.63 dBm -15.63 dB 2 2 3.44450 GHz 510.0 KHz 3.444682000 GHz -28.63 dBm -19.69 dB							
Il Range Table ▼ Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude △Llimit 1 1 3.4313 GHz 3.4450 GHz 1.000 MHz 3.444450000 GHz -28.63 dBm -15.63 dB 2 2 3.4450 GHz 3.4490 GHz 510.0 KHz 3.446820000 GHz -32.69 dBm 19.69 dB							
Measure Trace Trace 1 Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ∆Limit 1 1 3.4450 GHz 3.444450000 GHz -28.63 dBm -15.63 dB 2 2 3.4450 GHz 51.00 KHz 3.446820000 GHz -32.69 dBm -19.69 dB	Stop 3.469 GHz					z	rt 3.431 GH
Trace Type Trace Average (Active) Spur Range Start Freq Stop Freq RBW Frequency Amplitude ∆Limit 1 1 3.4430 GHz 3.4440 GHz 3.444450000 GHz -28.63 dBm -15.63 dB 2 2 3.4440 GHz 51.00 KHz 3.446820000 GHz -32.69 dBm -19.69 dB						e 🔻	ll Range Tabl
Spur Range Start Freq Stop Freq RBW Frequency Amplitude ∆Limit 1 1.3.4313 GHz 3.4450 GHz 1.000 MHz 3.44450000 GHz -28.63 dBm -15.63 dB 2 2 3.4450 GHz 510.0 KHz 3.446820000 GHz -32.69 dBm -19.69 dB	asure Trace Trace 1	Measu					
1 1 3.4313 GHz 3.4450 GHz 1.000 MHz 3.444450000 GHz -28.63 dBm -15.63 dB 2 2 3.4450 GHz 3.4490 GHz 510.0 KHz 3.446820000 GHz -32.69 dBm -19.69 dB	ce Type Trace Average (Active)	Trace					
2 2 3.4450 GHz 3.4490 GHz 510.0 kHz 3.446820000 GHz -32.69 dBm -19.69 dB							Spur
							1
3 3 3,4490 GHz 3,4500 GHz 360.0 kHz 3,449923333 GHz -29,13 dBm -16,13 dB							
4 4 3.4500 GHz 3.4688 GHz 1.000 MHz 3.457500000 GHz 12.79 dBm -13.21 dB							


Plot 7-133. Lower ACP Plot (NR Band n77 (DoD) - 15MHz CP-OFDM-QPSK - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 01 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 91 of 179
© 2022 PCTEST	•		V3.0 1/6/2022

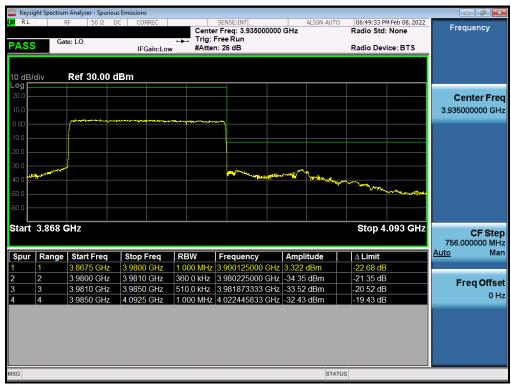
Plot 7-135. Lower ACP Plot (NR Band n77 (DoD) - 10MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 02 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 92 of 179
© 2022 PCTEST	•		V3.0 1/6/2022

NR Band n77 – C- Band – SRS-1-Ant F

Plot 7-137. Lower ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant F)

Plot 7-138. Upper ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant F)


FCC ID: A3LSMS906E	PCTEST* Proud to be part of @ element	PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 93 of 179
© 2022 PCTEST				V3.0 1/6/2022

© 2022 PCTEST

	· · · · · · · · · · · · · · · · · · ·	Analyzer - Sp														- Ø 💌
RL	R		2 DC	COF	REC			SENSE:INT Freq: 3.74 Free Run	5000000	GHz	ALIGN AUTO			M Feb 08, 2022 : None	Free	quency
PASS	Gat	e: LO		IFG	ain:Lo			n: 26 dB				Rad	io Dev	vice: BTS		
0 dB/div		Ref 30.0	0 dB	m												
- og 20.0															C (enter Fre
10.0																000000 GH
0.00									-						3.7400	00000 GH
10.0								ſ								
20.0																
30.0																
					-		-	n a						and an and a state of the state		
40.0		, marine and the second	and the second	and the second se	The second	and a start	1000 ²									
60.0																
Start 3.	588 G	iHz						I				S	top 3	3.813 GHz		CF Ste
															756.0	000000 MH
Spur R	ange	Start Fre	q S	Stop F	req	RBV	V	Frequence	:y	Amp	litude	Δ	.imit		<u>Auto</u>	Ma
1 1		3.5875 GI		.6950		_		I					.21 dE			
2 2		3.6950 GI		.6990				3.6987600					.81 dE		F	req Offse
3 3 4 4		3.6990 GI 3.7000 GI		.7000 .8125				3.6999133 3.7208125					.09 dE .70 dE			0H
4		3.7000 GI	12 3	.0125	GHZ	1.000		3.7200120	JOU GHZ	5.501	ubm	-22	.70 uL	,		

Plot 7-139. Lower ACP Plot (NR Band n77 - 90MHz CP-OFDM-QPSK – Full RB - Ant F)

Plot 7-140. Upper ACP Plot (NR Band n77 - 90MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 04 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 94 of 179
© 2022 PCTEST	-			V3.0 1/6/2022

Keysight Sp R L	ectrum A RF	Analyzer - S		us Emis DC	i <mark>sions</mark> CORF	REC				ISE:INT			ALIGN AUTO				Feb 08, 2022		requency
PASS	Gate:	LO			IFG	ain:Lov	••• •		Free		0000	GHz			Radio S Radio D		None ce: BTS		requeitcy
I0 dB/div ₋og	F	lef 30.	.00	dBm															
20.0																			Center Fre
30.0 40.0 		p+++++++++++++++++++++++++++++++++++++	6-9,7-	a forter	- And a second	* ****	•••••	~~~~	"herd								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
50.0 60.0 																			
start 3.6	GHz														St	op	3.8 GHz		CF Ste 5.000000 M⊦
Spur Ra	nge 🛛	Start Fr	eq	St	op F	req	RE	W	Fr	equency		Ampli	tude		∆ Limi	it		<u>Auto</u>	Ma
1	3	3.6000 C	Hz	3.6	950	GHz	1.00	00 MHz	3.6	94683333	GHz	-31.08	dBm		-18.08	dB			
2	3	.6950 C	SHz	3.6	990	GHz	510	.0 kHz	3.6	98960000	GHz	-32.01	dBm		-19.01	dB			Freq Offs
3		8.6990 G			000					99851667					-20.08				01
4	3	3.7000 C	SHz	3.8	000	GHz	1.00	DO MHz	3.7	48833333	GHz	3.730	dBm		-22.27	dB			UF
SG	_		_						_		_		STAT	rus					

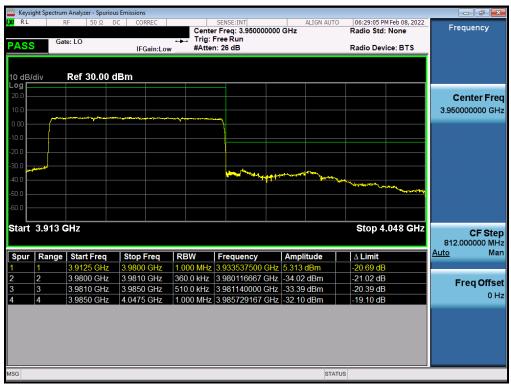
Plot 7-141. Lower ACP Plot (NR Band n77 - 80MHz CP-OFDM-QPSK – Full RB - Ant F)

Plot 7-142. Upper ACP Plot (NR Band n77 - 80MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 05 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 95 of 179
© 2022 PCTEST				V3.0 1/6/2022

	Feb 08, 2022	06:34:53 PM	ALIGN AUTO		SENSE:INT		RREC		halyzer - Spuriou 50 Ω D	ght Spectrum Ri	Keysi R L
Frequency		Radio Std: I		000 GHz	Freq: 3.735000 ree Run : 26 dB	Trig:	Gain:Low	IF	LO	Gate	ASS
								lBm	ef 30.00 c	div	0 dB/
Center Fr 3.735000000 G											og :0.0
											0.00
	^{eve} nnesh _{el} arfal				~	and the second second	are a start and		Junter	*******	0.0 0.0 0.0
CF Ste	788 GHz	Stop 3.							z	3.613 G	o.o tart
756.000000 M Auto M		∆ Limit	itude	Amr	Frequency	RBW	rea	Stop	tart Freq	Range	Spur
		-17.76 dB			3.694862500 (3.6950	6125 GHz		- pui
Freq Offs		-18.07 dB			3.698280000			3.6990	6950 GHz		
rred Olis		-19.98 dB	dBm	Hz -32.9	3.699011667 0	360.0 kHz	GHz	3.7000	6990 GHz	3	
0		-21.48 dB			3.759937500 (011	3.7875	7000 GHz	4	

Plot 7-143. Lower ACP Plot (NR Band n77 - 70MHz CP-OFDM-QPSK - Full RB - Ant F)


Plot 7-144. Upper ACP Plot (NR Band n77 - 70MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 06 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 96 of 179
© 2022 PCTEST				V3.0 1/6/2022

Keysight Sp							_					_						_	
<mark>(</mark> RL	RF		50 Ω	DC	C	ORREC		Cent		SE:INT eq: 3.73000	0000		ALIGN AUT		06:21:49 Radio S		08,2022	Fr	equency
PASS	Gate	: L0						Trig: #Atte	Free	Run					Radio D		DTC		
A00					11	Gain:	Low	#Atte	en: 20	a B					Radio D	evice:	ыз		
I0 dB/div ₋og		Ref 3	30.00	IdB	m														
20.0																		C	enter Fre
10.0																			000000 GH
0.00										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			pagenter and a second	~~		<u>ب</u>			
10.0																<u> </u>			
20.0																			
30.0																			
40.0							the	and an array of the								Margaret,	www.www.ulagor		
50.0 •••••••• ••			-																
60.0																			
Start 3.6	23 G	Ηz													Stop	3.77	'8 GHz		CF Ste
																			.000000 MH
Spur Ra			Freq			Freq		RBW		equency		Ampli	tude		∆ Limit			<u>Auto</u>	Ma
1 1			5 GHz			0 GH			_	94758333					-21.64 (
2 2 3 3			0 GHz 0 GHz			0 GH			_	98120000 99941667					-22.08 (-22.49 (F	Freq Offse
<u> </u>			0 GHz			5 GH				299666667					-22.49				0 H
SG													STA	TUS					

Plot 7-145. Lower ACP Plot (NR Band n77 - 60MHz CP-OFDM-QPSK - Full RB - Ant F)

Plot 7-146. Upper ACP Plot (NR Band n77 - 60MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 97 of 179
© 2022 PCTEST				V3.0 1/6/2022

u RL	R	n Analyzer - Spuri F 50 Ω		ORREC	Cente	SENSE:INT Freq: 3.72500 Free Run	0000 GH	ALIGN AUTO	06:07:18 Radio St	PM Feb 08, 2022 d: None	Frequency	
PASS	Gat	e: LO	1	FGain:Lo		n: 26 dB			Radio De	evice: BTS		
10 dB/	div	Ref 30.00	dBm									
-og 20.0											Center F	re
10.0											3.725000000	
0.00									-			
10.0												
20.0 —												
30.0 —					~ .					an warman		
40.0 —		-	also and a state	dinional ^{ar}								
50.0	an all the second	Mar a										
60.0 —												
Start	3.638 C	GHZ							Stop	3.763 GHz	CF S 756.000000	МH
Spur	Range	Start Freq	Stop	Freq	RBW	Frequency	A	mplitude	∆ Limit		Auto	Ma
	1	3.6375 GHz		50 GHz		3.681104167			-18.33 d			
	2	3.6950 GHz		90 GHz		3.698960000			-17.42 d		Freq Of	fse
				00 GHz		3.699881667			-18.21 d -20.31 d			0 +
1 2 3 4	3	3.6990 GHz	2 761									
;		3.7000 GHz	3.762	25 GHZ		3.731354167	GHZ [5.	000 dBm	-20.010	0		
;	3		3.762	25 GHZ	T.000 MH2	5751554107	6nz 5.		-20.010			

Plot 7-147. Lower ACP Plot (NR Band n77 - 50MHz CP-OFDM-QPSK - Full RB - Ant F)

Plot 7-148. Upper ACP Plot (NR Band n77 - 50MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 08 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 98 of 179
© 2022 PCTEST	•			V3.0 1/6/2022

a RL		Spurious Em	CORREC		SENSE:INT	ALIGN AUTO	05:47:17 PM Feb 08, 2022	
PASS	Gate: LO		IFGain:Low	🛶 Trig:	r Freq: 3.72000000 Free Run n: 26 dB		Radio Std: None Radio Device: BTS	Frequency
I0 dB/div	Ref 30	.00 dBr	n					
- og 20.0 10.0						مېرو مېرو کې د مې و کې د مې و کې د مې و کې و کې و ک د مې و کې و		Center Fre 3.720000000 GH
0.00								
30.0 40.0	and the second	~~~~~	w and a second way	~~~~				ć
60.0								
Mart 26	6 CH2						Oton 2 75 CU-	
tart 3.6	5 GHz						Stop 3.75 GHz	756.000000 MH
Spur Ra	nge Start F		top Freq	RBW	Frequency	Amplitude	∆ Limit	756.000000 MH
Spur Ra 1	inge Start F 3.6500	GHz 3	6950 GHz	1.000 MHz	3.683600000 GHz	-34.58 dBm	Δ Limit -21.58 dB	756.000000 MH
Spur Ra	inge Start F 3.6500 3.6950	GHz 3. GHz 3.	6950 GHz 6990 GHz	1.000 MHz 510.0 kHz	3.683600000 GHz 3.698386667 GHz	-34.58 dBm -33.88 dBm	Δ Limit -21.58 dB -20.88 dB	756.000000 MH Auto Ma
1 1	inge Start F 3.6500	GHz 3. GHz 3. GHz 3.	6950 GHz	1.000 MHz 510.0 kHz 360.0 kHz	3.683600000 GHz	-34.58 dBm -33.88 dBm -34.48 dBm	Δ Limit -21.58 dB	756.000000 MH
Spur Ra 1 2 2 3 3	inge Start F 3.6500 3.6950 3.6990	GHz 3. GHz 3. GHz 3.	6950 GHz 6990 GHz 7000 GHz	1.000 MHz 510.0 kHz 360.0 kHz	3.683600000 GHz 3.698386667 GHz 3.699905000 GHz	-34.58 dBm -33.88 dBm -34.48 dBm	Δ Limit -21.58 dB -20.88 dB -21.48 dB	Auto Ma

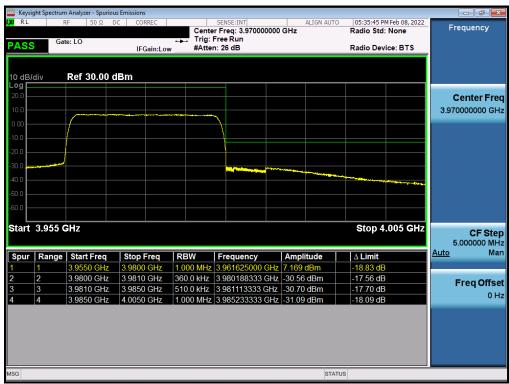
Plot 7-149. Lower ACP Plot (NR Band n77 - 40MHz CP-OFDM-QPSK - Full RB - Ant F)


Plot 7-150. Upper ACP Plot (NR Band n77 - 40MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 00 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 99 of 179
© 2022 PCTEST		·		V3.0 1/6/2022

R L	ght Spectrum R			DC DC	isions CORRE	C		nter F	NSE:INT req: 3.71500	0000		ALIGN AUTO			PM Feb 08, 2022 d: None	Fre	equency
ASS	Gat	e: LO			IFGai	n:Low		g: Fre tten: 2	e Run 16 dB				Ra	dio De	vice: BTS		
0 dB/	div	Ref 3	0.00	dBm													
.og 20.0																с	enter Fre
10.0													****	~			000000 GH
0.00									{					\rightarrow			
0.0					-				1								
20.0																	
40.0 L					متجلزو ومير	earing	at a set of the set of	la inte	-						A STATISTICS AND A STATISTICS		
50.0	يينجا مطاوا لوليا. م		****	and the second													
60.0																	
∟ Start	3.663 G	SHz												Stop	3.738 GHz		
																756.	CF Ste 000000 MH
Spur	Range	Start F	req	St	op Fr	eq	RBW		requency		Ampl		Δ	Limit		<u>Auto</u>	Ma
	1	3.6625			i950 G				694025000					8.12 d			
	2	3.6950			990 G				698853333					9.49 d		F	req Offs
;	3	3.6990 3.7000			'000 G '375 G				699975000 715750000					9.73 d 8.17 d			0 H
		0.1000	ONZ	5.1	0100		1.000 M			OHZ	1.921			u			

Plot 7-151. Lower ACP Plot (NR Band n77 - 30MHz CP-OFDM-QPSK – Full RB - Ant F)


Plot 7-152. Upper ACP Plot (NR Band n77 - 30MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 100 of 179
© 2022 PCTEST	-			V3.0 1/6/2022

Keysi RL	ght Spectrum F				ons CORREC		Cente	er Fre	E:INT q: 3.71000	0000		ALIGN AUTO			PM Feb 08, 2022 d: None	Fr	equency
PASS	Gat	te: LO			IFGain:L	↔ .ow	Trig: #Atte						Ra	adio De	vice: BTS		
10 dB/ _og [/div	Ref 30	.00 c	: IB m													
20.0																(Center Fre
10.0										~~~~			~	- mark		3.71	0000000 GH
0.00																	
10.0			-					=									
20.0																	
30.0					and the second	North Street,		<i>.</i> //							and the second second		
40.0		- www.exections															
50.0 -																	
0.0																	
Start	3.675 C	GHz												Stop :	3.725 GHz	e	CF Ste
Spur	Range	Start F	req	Sto	p Freq	R	BW	Fre	quency		Ampli	tude	Δ	Limit		<u>Auto</u>	Ma
	1	3.6750			50 GHz				2200000					7.95 d			
2	2	3.6950			90 GHz				8960000					8.47 d			Freq Offs
3 1	3	3.6990			00 GHz				3500000					8.07 dl			0 F
		0.1000	-	0.72				0.7			10.10			0.00 G			
								_					บร			_	

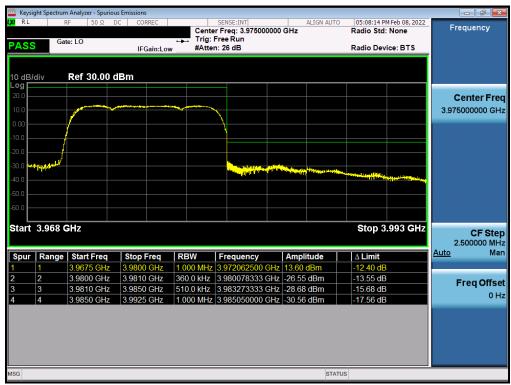
Plot 7-153. Lower ACP Plot (NR Band n77 - 20MHz CP-OFDM-QPSK - Full RB - Ant F)

Plot 7-154. Upper ACP Plot (NR Band n77 - 20MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 101 of 179
© 2022 PCTEST		·		V3.0 1/6/2022

PASS	RF 50 Gate: LO	DC DC	CORREC	Trig:	SENSE:INT er Freq: 3.7075000 Free Run	ALIGN AUTO	Radio Std		Frequency
10 dB/div	Ref 30.0	0 dBm	IFGain:L	.ow #Atte	n: 26 dB		Radio Dev	/ice: BTS	
20.0									Center Fre 3.707500000 GH
0.00 10.0 20.0									
30.0 40.0 50.0	Patrony Calendaria Stationers	ang	****					n negeligetetetetetetetetetetetetetetetetetetet	
.60.0									
tart 36	21 CHz						Stop 3		
Start 3.6	81 GHz						Stop 3	3.719 GHz	CF Ste 5.000000 M⊦
	i81 GHz inge Start Fre	q Si	top Freq	RBW	Frequency	Amplitude	Stop 3).719 GHz	
			top Freq 6950 GHz		Frequency 3.694335417 GF				5.000000 MH
Spur Ra	inge Start Fre	Hz 3.6		1.000 MHz		Iz -28.43 dBm	∆ Limit	3	5.000000 MH <u>Auto</u> Ma
Spur R a 1 2 2 3 3	inge Start Fre 3.6813 G 3.6950 G 3.6990 G	Hz 3.6 Hz 3.6 Hz 3.7	6950 GHz	2 1.000 MHz 510.0 kHz 360.0 kHz	3.694335417 GH 3.699000000 GH 3.699938333 GH	tz -28.43 dBm tz -32.07 dBm tz -28.91 dBm	∆ Limit -15.43 dE	3 3	5.000000 MH <u>Auto</u> Ma Freq Offs
Spur Ra 1 2 2	inge Start Fre 3.6813 G 3.6950 G	Hz 3.6 Hz 3.6 Hz 3.7	6950 GHz 6990 GHz	2 1.000 MHz 510.0 kHz 360.0 kHz	3.694335417 GH 3.699000000 GH	tz -28.43 dBm tz -32.07 dBm tz -28.91 dBm	∆ Limit -15.43 dE -19.07 dE	3 3 3	5.000000 Mi <u>Auto</u> Mi Freq Offs
Spur Ra 1 2 2 3 3	inge Start Fre 3.6813 G 3.6950 G 3.6990 G	Hz 3.6 Hz 3.6 Hz 3.7	6950 GHz 6990 GHz 7000 GHz	2 1.000 MHz 510.0 kHz 360.0 kHz	3.694335417 GH 3.699000000 GH 3.699938333 GH	tz -28.43 dBm tz -32.07 dBm tz -28.91 dBm	∆ Limit -15.43 dE -19.07 dE -15.91 dE	3 3 3	5.000000 Mł <u>Auto</u> Ma

Plot 7-155. Lower ACP Plot (NR Band n77 - 15MHz CP-OFDM-QPSK - Full RB - Ant F)


Plot 7-156. Upper ACP Plot (NR Band n77 - 15MHz CP-OFDM-QPSK – Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 102 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 102 of 179
© 2022 PCTEST	-			V3.0 1/6/2022

Keysight Sp					-				_				_	
XI RL	RF	50 Ω	DC	CORREC		Cente	SENSE:INT r Freq: 3.7050	00000		IGN AUTO	05:03:32 F Radio Std	M Feb 08, 2022	Fred	uency
PASS	Gate: LO	C			- -	Trig:	Free Run n: 26 dB				Radio De	See BTC		
AOO				IFGain:L	ow	#Atte	n: 26 dB				Radio De	VICE: DI S		
10 dB/div Log	Re	f 30.00	dBm					_						
20.0													Ce	nter Fre
10.0									-		-			00000 GH
0.00							/							
-10.0														
-20.0														
-30.0												hanne -		
-40.0				***		-								
-50.0														
-60.0														
Start 3.6	88 GHz							_			Stop 3	3.713 GHz		CF Ster
													756.0	00000 MH
Spur Ra	nge Sta	art Freq	Sto	p Freq	RB	N	Frequency		Amplitu	ıde	∆ Limit		<u>Auto</u>	Mai
1 1		875 GHz		50 GHz			3.694987500				-19.41 dl	3		
2 2		950 GHz		90 GHz			3.696746667				-16.04 dl		Fr	eq Offse
3 3 4 4		990 GHz 000 GHz		00 GHz 25 GHz			3.699955000				-14.53 dE			- 0 H:
4 4	3.1	000 GHZ	5.7	23 6112	1.00		3.101331300	GHZ	13.45 UL	5111	- 12.33 ul	,		

Plot 7-157. Lower ACP Plot (NR Band n77 - 10MHz CP-OFDM-QPSK – Full RB - Ant F)

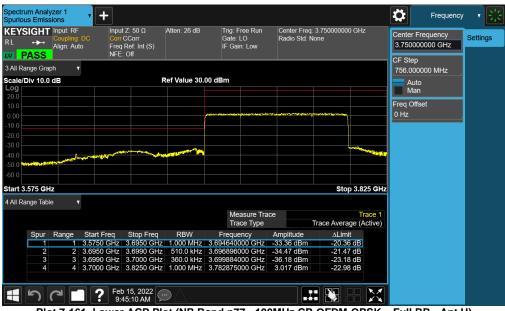


Plot 7-158. Upper ACP Plot (NR Band n77 - 10MHz CP-OFDM-QPSK – Full RB - Ant F)


FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 102 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 103 of	
© 2022 PCTEST	-			V3.0 1/6/2022

NR Band n77 – DoD Band – SRS-2-Ant H

Plot 7-159. Lower ACP Plot (NR Band n77 (DoD) - 100MHz CP-OFDM-QPSK – Full RB - Ant H)

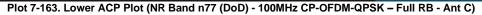


Plot 7-160. Upper ACP Plot (NR Band n77 (DoD) - 100MHz CP-OFDM-QPSK - Full RB - Ant H)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 104 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 104 of 179
© 2022 PCTEST	-			V3.0 1/6/2022

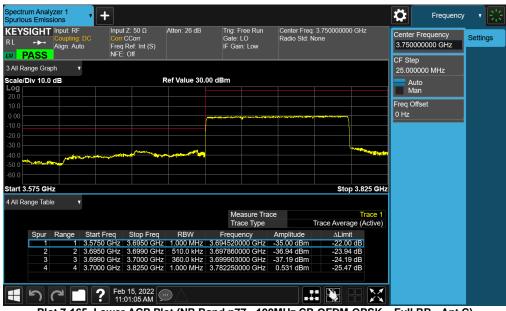
NR Band n77 - C- Band - SRS-2-Ant H

Plot 7-161. Lower ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant H)


Plot 7-162. Upper ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant H)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 105 of 179
© 2022 PCTEST	·	•		V3.0 1/6/2022

NR Band n77 – DoD Band – SRS-3-Ant C



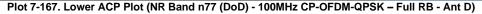
Plot 7-164. Upper ACP Plot (NR Band n77 (DoD) - 100MHz CP-OFDM-QPSK - Full RB - Ant C)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 106 of	
© 2022 PCTEST		•		V3.0 1/6/2022

NR Band n77 – C- Band – SRS-3-Ant C

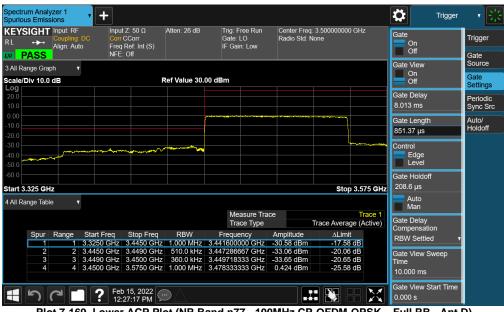
Plot 7-165. Lower ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant C)




Plot 7-166. Upper ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant C)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 107 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 107 of 179
© 2022 PCTEST	·	•		V3.0 1/6/2022

NR Band n77 – DoD Band – SRS-4-Ant D



Plot 7-168. Upper ACP Plot (NR Band n77 (DoD) - 100MHz CP-OFDM-QPSK - Full RB - Ant D)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 108 of 179
© 2022 PCTEST			V3.0 1/6/2022

NR Band n77 - C- Band - SRS-4-Ant D

Plot 7-169. Lower ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK - Full RB - Ant D)

Plot 7-170. Upper ACP Plot (NR Band n77 - 100MHz CP-OFDM-QPSK – Full RB - Ant D)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 109 of 179
© 2022 PCTEST	•	·		V3.0 1/6/2022

7.6 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 5.7.1

Test Settings

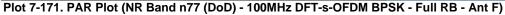
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Note


The Peak-Average Ratio was only measured on the antenna with the highest power for each band (SRS-1 / ANT F).

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 110 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 110 of	
© 2022 PCTEST	*	•		V3.0 1/6/2022

NR Band n77 – DoD Band -SRS-1-Ant F

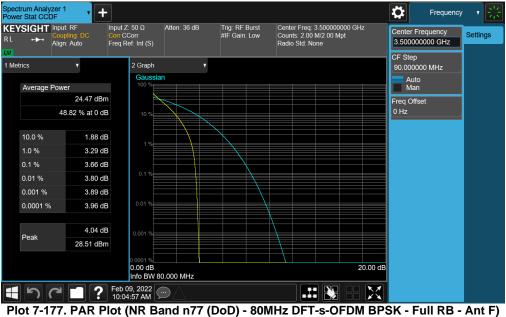
Plot 7-172. PAR Plot (NR Band n77 (DoD) - 100MHz CP-OFDM QPSK - Full RB - Ant F)

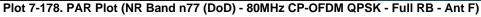
FCC ID: A3LSMS906E	PCTEST* Preud to be part of @ element	PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 111 of 179
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 111 01 179
© 2022 PCTEST				V3.0.1/6/2022

Spectrum Analyzer 1 Power Stat CCDF KEYSIGHT Input RF Coupling DC

Plot 7-174. PAR Plot (NR Band n77 (DoD) - 90MHz DFT-s-OFDM BPSK - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 112 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 112 of 179
© 2022 PCTEST	·	·		V3.0 1/6/2022


Plot 7-175. PAR Plot (NR Band n77 (DoD) - 90MHz CP-OFDM QPSK - Full RB - Ant F)


Plot 7-176. PAR Plot (NR Band n77 (DoD) - 90MHz CP-OFDM 256-QAM - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 113 of 179
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 113	
© 2022 PCTEST		•		V3.0 1/6/2022

pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 90.000000 MHz 1 Metrics 2 Graph Gau Auto Man Average Power 21.98 dBm Freq Offset 37.57 % at 0 dB 10.0 % 3.58 dB 1.0 % 6.47 dB 7.47 dB 0.01 % 7.68 dB 7.80 dB 0.001 % 0.0001 % 7 85 dB 7.87 dB Peak 29.85 dBm 0.0001 % 0.00 dB Info BW 80.000 MHz 20.00 dE モッペロ ? Feb 09, 2022 💬 X

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 114 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 114 of 179
© 2022 PCTEST		·	V3.0 1/6/2022

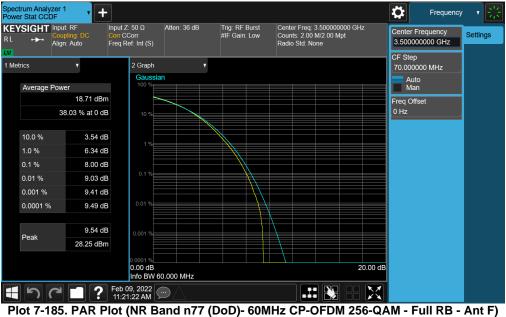
pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 80.000000 MHz 1 Metrics 2 Graph Gai Auto Man Average Power 24.52 dBm Freq Offset 49.15 % at 0 dB 10.0 % 2.11 dB 1.0 % 3.47 dB 3.87 dB 0.01 % 4.05 dB 4.20 dB 0.001 % 0.0001 % 4 28 dB 4.29 dB Peak 28.81 dBm 0.0001 % 0.00 dB Info BW 70.000 MHz 20.00 dE モッペロ ? Feb 09, 2022 💬 X

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 115 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 115 of 179
© 2022 PCTEST			V3.0 1/6/2022

Plot 7-181. PAR Plot (NR Band n77 (DoD)- 70MHz CP-OFDM QPSK - Full RB - Ant F)

Plot 7-182. PAR Plot (NR Band n77 (DoD)- 70MHz CP-OFDM 256-QAM - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 116 of 179
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 116 01 179
© 2022 PCTEST	·	·		V3.0 1/6/2022

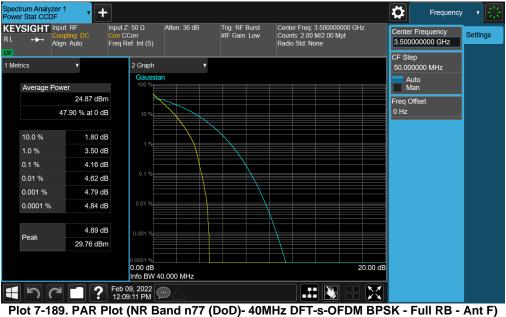

Plot 7-183. PAR Plot (NR Band n77 (DoD)- 60MHz DFT-s-OFDM BPSK - Full RB - Ant F)

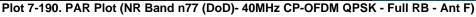
Plot 7-184. PAR Plot (NR Band n77 (DoD)- 60MHz CP-OFDM QPSK - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 117 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 117 of 179
© 2022 PCTEST		·		V3.0 1/6/2022

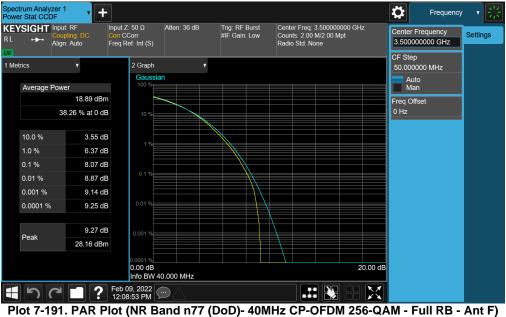
pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 60.000000 MHz 1 Metrics 2 Graph Gau Auto Man Average Power 24.65 dBm Freq Offset 47.20 % at 0 dB 10.0 % 1.92 dB 1.0 % 3.55 dB 4.29 dB 0.01 % 4.75 dB 4.95 dB 0.001 % 0.0001 % 5 04 dB 5.06 dB Peak 29.71 dBm 0.0001 % 0.00 dB Info BW 50.000 MHz 20.00 dE X E 5 C I ? Feb 09, 2022

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 110 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 118 of 179
© 2022 PCTEST	•	•	V3.0 1/6/2022

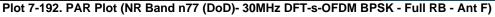

Plot 7-187. PAR Plot (NR Band n77 (DoD)- 50MHz CP-OFDM QPSK - Full RB - Ant F)


Plot 7-188. PAR Plot (NR Band n77 (DoD)- 50MHz CP-OFDM 256-QAM - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 119 of 179
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 119 01 179
© 2022 PCTEST	·			V3.0 1/6/2022



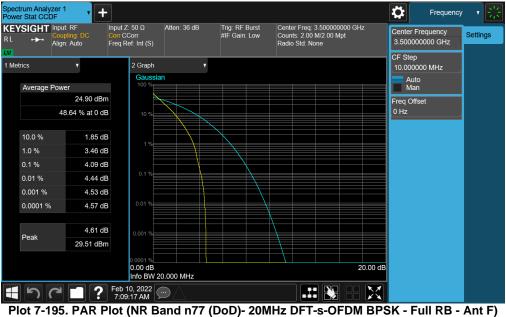
pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 50.000000 MHz 1 Metrics 2 Graph Gau Auto Man Average Power 22.35 dBm Freq Offset 37.69 % at 0 dB 10.0 % 3.61 dB 1.0 % 6.36 dB 7.03 dB 0.01 % 7.18 dB 7.26 dB 0.001 % 0.0001 % 7.31 dB 7.33 dB Peak 29.68 dBm 0.0001 % 0.00 dB Info BW 40.000 MHz 20.00 dE モッペロ ? Feb 09, 2022 💬 X

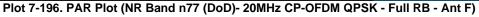


FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 100 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 120 of 179
© 2022 PCTEST		•	V3.0 1/6/2022

pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 5.000000 MHz 1 Metrics 2 Graph Gai Auto Man Average Power 24.89 dBm Freq Offset 47.10 % at 0 dB 10.0 % 2.06 dB 1.0 % 3.93 dB 4.40 dB 0.01 % 4.62 dB 4.71 dB 0.001 % 0.0001 % 4 79 dB 4.80 dB Peak 29.69 dBm 0.0001 % 0.00 dB Info BW 30.000 MHz 20.00 dE モッペロ ? Feb 10, 2022 💬 X

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 101 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 121 of 179
© 2022 PCTEST	•		V3.0 1/6/2022


Plot 7-193. PAR Plot (NR Band n77 (DoD)- 30MHz CP-OFDM QPSK - Full RB - Ant F)


Plot 7-194. PAR Plot (NR Band n77 (DoD)- 30MHz CP-OFDM 256-QAM - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 122 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 122 of 179
© 2022 PCTEST	·			V3.0 1/6/2022

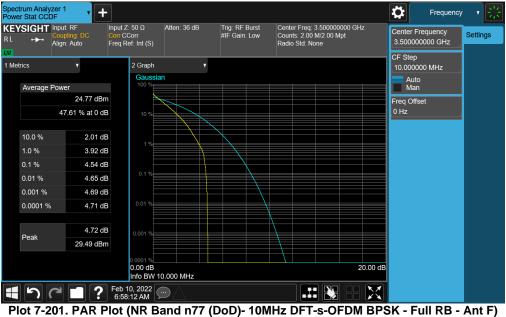
pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 10.000000 MHz 1 Metrics 2 Graph Gau Auto Man Average Power 22.38 dBm Freq Offset 37.90 % at 0 dB 10.0 % 3.62 dB 1.0 % 6.15 dB 6.66 dB 0.01 % 6.79 dB 6.86 dB 0.001 % 0.0001 % 6 92 dB 6.99 dB Peak 29.37 dBm 0.0001 % 0.00 dB Info BW 20.000 MHz 20.00 dE モッペロ ? Feb 10, 2022 💬 X

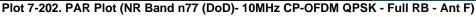
FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	Page 123 of 179
© 2022 PCTEST	•		V3.0 1/6/2022

Plot 7-197. PAR Plot (NR Band n77 (DoD)- 20MHz CP-OFDM 256-QAM - Full RB - Ant F)

Plot 7-198. PAR Plot (NR Band n77 (DoD)- 15MHz DFT-s-OFDM BPSK - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 124 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 124 of 179
© 2022 PCTEST	•			V3.0 1/6/2022


Plot 7-199. PAR Plot (NR Band n77 (DoD)- 15MHz CP-OFDM QPSK - Full RB - Ant F)


Plot 7-200. PAR Plot (NR Band n77 (DoD)- 15MHz CP-OFDM 256-QAM - Full RB - Ant F)

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 125 of 170
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset		Page 125 of 179
© 2022 PCTEST				V3.0 1/6/2022

pectrum Analyzer 1 ower Stat CCDF Ö + Frequency KEYSIGHT Input: RF Trig: RF Burst #IF Gain: Low Center Freq: 3.500000000 GHz Counts: 2.00 M/2.00 Mpt Radio Std: None Input Z: 50 Ω Atten: 36 dB Center Frequency Settings Corr CCorr Freg Ref: Int (S) 3.500000000 GHz Align: Auto CF Step 10.000000 MHz 1 Metrics 2 Graph Gau Auto Man Average Power 22.25 dBm Freq Offset 37.76 % at 0 dB 10.0 % 3.68 dB 1.0 % 6.28 dB 6.94 dB 0.01 % 7.12 dB 7.20 dB 0.001 % 0.0001 % 7 23 dB 7.23 dB Peak 29.48 dBm 0.0001 % 0.00 dB Info BW 10.000 MHz 20.00 dE モッペロ ? Feb 10, 2022 💬 X

FCC ID: A3LSMS906E		PART 27 MEASUREMENT REPORT CLASS II PERMISSIVE CHANGE	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 126 of 179
1M2202030009-03.A3L	02/01/2022 - 02/28/2022	Portable Handset	
© 2022 PCTEST			V3.0 1/6/2022