

Plot 7-62. UWB Peak Power Measurement - ANT 1 - CH.5 - BPRF

Plot 7-63. UWB Peak Power Measurement - ANT 1 - CH.9 – BPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 86
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Faye 40 01 00
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-64. UWB Peak Power Measurement - ANT 2 - CH.5 - BPRF

Plot 7-65. UWB Peak Power Measurement - ANT 2 - CH.9 - BPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 49 01 00
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-66. UWB Average Power Measurement - ANT 1 - CH.5 – BPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 86
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 50 01 86
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-68. UWB Average Power Measurement - ANT 2 - CH.5 - BPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 86
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Fage 51 01 80
© 2021 PCTEST			V 9.0 02/01/2019

RESULTS – HPRF

	2	MODE	Broamblo	Meas.		Peak Power	Peak Limit	Margin
ANI	СП	NIODE	Freample	Ant.	rivi[GH2]	(dBm/50MHz)	(dBm/50MHz)	[dB]
1	5	SPO	27	V	6.3647	-6.59	0	-6.59
1	9	SPO	27	V	7.8673	-7.71	0	-7.71
2	5	SPO	27	V	6.6125	-8.24	0	-8.24
2	9	SPO	27	V	8.1136	-6.43	0	-6.43

Table 7-7. HPRF Highest Peak Power Results

ANIT	CLI	MODE	Proomble	Meas.	EMICH-1	Average Power	Average Limit	Margin
	CIT	WIODE	Ficality	Ant.		(dBm)	(dBm)	[dB]
1	5	SP3	27	V	6.4541	-43.18	-41.3	-1.88
1	9	SP3	27	V	7.7828	-43.48	-41.3	-2.18
2	5	SP3	27	V	6.6145	-43.19	-41.3	-1.89
2	9	SP3	27	V	8.1246	-43.35	-41.3	-2.05

Table 7-8. HPRF Highest Average Power Results

Sample Calculation

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meter

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) – 104.8

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 96
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset	Page 52 01 66
© 2021 PCTEST			V 9 0 02/01/2019

Plot 7-70. UWB Peak Power Measurement - ANT 1 - CH.5 – HPRF

Plot 7-71. UWB Peak Power Measurement - ANT 1 - CH.9 - HPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 55 01 60
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-72. UWB Peak Power Measurement - ANT 2 - CH.5 – HPRF

Plot 7-73. UWB Peak Power Measurement - ANT 2 - CH.9 - HPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage E4 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 54 01 66
© 2021 PCTEST	•	·	V 9.0 02/01/2019

Plot 7-74. UWB Average Power Measurement - ANT 1 - CH.5 - HPRF

Plot 7-75. UWB Average Power Measurement - ANT 1 - CH.9 – HPRF

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga FE of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset		Page 55 01 66
© 2021 PCTEST				V 9.0 02/01/2019

Plot 7-76. UWB Average Power Measurement - ANT 2 - CH.5 – HPRF

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga F6 of 96
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset	Fage 50 01 80
© 2021 PCTEST			V 9.0 02/01/2019

7.5 Radiated Measurement Data above 960MHz §15.519 (c), §15.519(d), §15.209(a)

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

§15.519(c)

Frequency in MHz	EIRP in dBm		
960-1610	-75.3		
1610-1990	-63.3		
1990-3100	-61.3		
3100-10600 -41.3			
Above 10600 -61.3			
Table 7-9. Above 960MHz Average Limits			

§15.519(d)

Frequency in MHz	EIRP in dBm			
1164-1240	-85.3			
1559-1610	-85.3			
Table 7.40 Above OCOMULE Average Limite				

Table 7-10. Above 960MHz Average Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Average EIRP Measurements

- 1. Analyzer frequency set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz (30kHz for emissions in the GPS bands)
- 3. VBW = 3MHz (100kHz for the emissions in the GPS bands)
- 4. Detector = RMS
- 5. Sweep time = No more than 1ms integration period over each measurement bin
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMS906E	PCTEST°	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 57 of 96	
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset			
© 2021 PCTEST				V 9 0 02/01/2019	

Test Setup

The EUT and measurement equipment were set up as shown test setup photos provided.

Figure 7-3. Radiated Test Setup > 1GHz

Test Notes

- 1. All modes of operation and settings (Preamble, Packet Type, etc) were investigated and the worst-case emissions are reported.
- 2. The RBW for measurements in the GPS Bands were reduced to 30kHz in order to prove compliance.
- 1000 ~ 18000 MHz and above 18000 MHz pre-scan plots were conducted at 0.7 and 0.6 meter respectively. The plots are only for the purpose of spurious emission identification.
- 4. All final measurements were made at 0.7 meters.
- All readings are calibrated by a signal generator with accuracy traceable to the National Institute of Standards and Technology (NIST).
- 6. AFCL (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB)

Sample Calculation

The raw radiated spurious level is converted to field strength in dBuV/m. Then, the EIRP RSE level is calculated by applying the additional factors shown below for a test distance of 3 meter

RSE EIRP (dBm) = Analyzer Level (dBm) + 107 + AFCL (dB/m) + 20Log(Dm) - 104.8

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 59 of 96
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset	Page 50 01 00
© 2021 PCTEST			V 9 0 02/01/2019

Channel 5 ANTENNA 1:

Plot 7-78. Radiated Spurious Pre-Scan 1000 - 10600 MHz - CH.5 - ANT 1

Plot 7-79. Radiated Spurious Pre-Scan 10600 - 18000 MHz - CH.5 - ANT 1

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	NG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 96
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset		Page 59 01 66
© 2021 PCTEST				V 9.0 02/01/2019

MultiView 〓	Spectrum 5	× Spectr	um 6 🗙	Spectrum 2	× Spect	rum 4	×		•
Ref Level -20 Att TDE "SEU Thru -4	0.00 dBm Offs 0 dB • SW1	et -0.90 dB ● R f 1 s ● V Sunol Horn Ant	BW 30 kHz BW 100 kHz 1 DRH118 A1060	Mode Auto Swee	p				SGL Count 5/5
1 Frequency S	weep								•1Rm Max
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
ventrika-diktetorovykhow	n han sekkan maan an	water water water of	walter and the second second	na ana ana ana ana ana ana ana ana ana	Sound Sound Standards	daghantaraa	yddyrrod gwladd y fylawrho	novenuovennumhan	nappalanana
-110 dBm-									
1.164 GHz			1001 pt	3	7	.6 MHz/			1.24 GHz
	*					~	Ready		30.09.2021 16:15:31

Plot 7-80. Radiated Spurious Pre-Scan 1164 - 1240 MHz - CH.5 - ANT 1 - GPS band

Plot 7-81. Radiated Spurious Pre-Scan 1559 - 1610 MHz - CH.5 - ANT 1 – GPS band

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Fage 00 01 00
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-82. Radiated Spurious Pre-Scan 18 – 40 GHz - CH.5 - ANT 1

3

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Spurious Emission Level[dBm]	Limit [dBm]	Margin [dB]
1428	RMS	Н	-	-	-72.44	-9.71	-12.64	-83.05	-75.30	-7.75
1996	RMS	н	150	273.2	-62.83	-8.38	-12.64	-72.11	-61.30	-10.81
10526	RMS	н	-	-	-75.22	7.32	-12.64	-68.80	-41.30	-27.50
13104	RMS	V	150	352	-75.28	8.73	-12.64	-67.45	-61.30	-6.15
13824	RMS	V	150	352	-76.48	10.52	-12.64	-66.86	-61.30	-5.56
14845	RMS	V	-	-	-76.18	12.38	-12.64	-64.70	-61.30	-3.40

Table 7-11. Radiated Spurious Emissions CH. 5 – ANT1

Channel:	5
Frequency (MHz):	6489.6
Preamble ID	11
Config	SP1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Spurious Emission Level[dBm]	Limit [dBm]	Margin [dB]
1210	RMS	Н	-	-	-86.52	-11.53	-12.64	-98.95	-85.30	-13.65
1230	RMS	Н	-	-	-86.31	-11.43	-12.64	-98.64	-85.30	-13.34
1235	RMS	Н	-	-	-86.75	-11.41	-12.64	-99.06	-85.30	-13.76
1564	RMS	Н	-	-	-87.05	-9.28	-12.64	-97.23	-85.30	-11.93
1600	RMS	Н	-	-	-87.14	-9.43	-12.64	-97.47	-85.30	-12.17
1609	RMS	Н	-	=	-86.95	-9.49	-12.64	-97.34	-85.30	-12.04

Table 7-12. Radiated Spurious Emissions CH. 5 – ANT1 – GPS BANDs

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Degra 61 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 61 01 66
© 2021 PCTEST			V 9 0 02/01/2019

Channel 5 ANTENNA 2:

Plot 7-83. Radiated Spurious Pre-Scan 1000 - 10600 MHz - CH.5 - ANT 2

Plot 7-84. Radiated Spurious Pre-Scan 10600 - 18000 MHz - CH.5 - ANT 2

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	G	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset		
© 2021 PCTEST				V 9.0 02/01/2019

MultiView 〓	Spectrum 5	× Spectr	um 6 🗙	Spectrum 2	× Spec	trum 4	×		•
Ref Level -20 Att TDF "SEU Thru -4	0.00 dBm Offs 0 dB • SWT	et -0.90 dB ● F · 1 s ● V Sunol Horn Ant	BW 30 kHz BW 100 kHz 1 DBH118 A1060	Mode Auto Swee	p				SGL Count 5/5
1 Frequency S	weep								•1Rm Max
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
n 492-405 any status	naandradd graed taadhaad	lan saddar air ar an air	an a	awayawahana)	ngevennet Anstrachter Arton	Anna ann ann ann ann ann ann ann ann ann	an a	-southernorser lanks	Mangentingen
-110 dBm									
1.164 GHz			1001 pt	S	7	.6 MHz/			1.24 GHz
							Ready		30.09.2021 17:01:19

Plot 7-85. Radiated Spurious Pre-Scan 1164 - 1240 MHz - CH.5 - ANT 2 - GPS band

Plot 7-86. Radiated Spurious Pre-Scan 1559 - 1610 MHz - CH.5 - ANT 2 – GPS band

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 63 01 66
© 2021 PCTEST			V 9.0 02/01/2019

MultiView	= Spectrum	5 🔆 🗙	Spectrum 2	×				*
Ref Level 0.1 Att TDF "KR R&S 4	00 dBm Offset 0 dB • SWT 40GHz Horn SN-	: -2.24 dB ● RB 44 s ● VB T058701-3"."KB	WIMHz WIMHz Mod R-STS-PR1840	e Auto Sweep AMP"."KR mmV	/ave Cable 2+3			SGL Count 2/2
1 Frequency S	Sweep							 • 1Rm Max
-30 dBm								
-60 dBm								
A CARGO CONTRACTOR	mannowww.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******	Mar Marian	
-80 dBm								
10.0.00			11000					10.0.01
18.0 GHz			44000 pt	S	2	.2 GHZ/		40.0 GHz
							Ready	10:00:10

Plot 7-87. Radiated Spurious Pre-Scan 18 – 40 GHz - CH.5 - ANT 2

5
6489.6
9
SP3

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Spurious Emission Level[dBm]	Limit [dBm]	Margin [dB]
1427	RMS	Н	-	-	-72.61	-9.72	-12.64	-83.23	-75.30	-7.93
1891	RMS	Н	-	-	-54.75	-26.13	-12.64	-81.78	-63.30	-18.48
1996	RMS	Н	150	31	-63.07	-8.59	-12.64	-72.56	-61.30	-11.26
12979	RMS	V	150	275	-72.58	8.67	-12.64	-64.81	-61.30	-3.51
13103	RMS	V	150	275	-72.71	8.73	-12.64	-64.88	-61.30	-3.58
14857	RMS	V	-	-	-76.22	12.43	-12.64	-64.69	-61.30	-3.39

Table 7-13. Radiated Spurious Emissions CH. 5 – ANT2

Channel:		5										
Frequency (MHz):	6489.6	6									
Preamble ID		9										
Config		SP3										
Frequency			Ant		Antenna	Turntable	Analyzer	AFCI	Dist. Corr.	Spurious	1 final de	Manain
IMH-1	Dete	ctor		POI.	Height	Azimuth	Level		Factor	Emission	[dBm]	iviargin [dB]
נויורבן			[U	v]	[cm]	[degree]	[dBm]	[ab/m]	[dB]	Level[dBm]	[abm]	[ab]
1218	RM	1S	Н		-	-	-86.77	-11.49	-12.64	-99.17	-85.30	-13.87
1233	RM	1S	Н		-	-	-86.57	-11.42	-12.64	-98.89	-85.30	-13.59
1238	RM	1S	Н		-	-	-86.82	-11.39	-12.64	-99.11	-85.30	-13.81
1559	RM	1S	Н		-	-	-87.36	-9.27	-12.64	-97.53	-85.30	-12.23
1570	RM	15	Н		-	-	-87.29	-9.29	-12.64	-97.48	-85.30	-12.18
1600	RM	15	Н		-	-	-86.35	-9.43	-12.64	-96.68	-85.30	-11.38

Table 7-14. Radiated Spurious Emissions CH. 5 – ANT2 – GPS BANDs

FCC ID: A3LSMS906E	PCTEST Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 96
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset	Page 64 01 66
© 2021 PCTEST			V 9 0 02/01/2019

Channel 9 ANTENNA 1:

Plot 7-88. Radiated Spurious Pre-Scan 1000 - 10600 MHz - CH.9 - ANT 1

Plot 7-89. Radiated Spurious Pre-Scan 10600 - 18000 MHz - CH.9 - ANT 1

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 86
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Fage 05 01 80
© 2021 PCTEST			V 9.0 02/01/2019

MultiView 〓	Spectrum 5	× Spectr	um 6 🗙	Spectrum 2	× Spect	trum 4	×		•
Ref Level -20 Att TDF "SEU Thru -4	0.00 dBm Offs 0 dB • SWT	et -0.90 dB ● R 1 s ● V Sunol Horn, Ant	BW 30 kHz BW 100 kHz I DRH118 A1060	Mode Auto Swee	:p				SGL Count 5/5
1 Frequency S	weep								o1Rm Max
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
2NN PENdessAuronen	ah yarahin dataasti kuska	n www.alwey.alk.com	iter for the second	ndyaddorraachindiadaddolad	and a second second	www.www.www.www.www.www.www.www.www.ww	ydenesoga,	mountainternet	demand departments
-110 dBm									
1.164 GHz			1001 pt	S	7	.6 MHz/			1.24 GHz
	*						Ready		30.09.2021 15:30:44

Plot 7-90. Radiated Spurious Pre-Scan 1164 - 1240 MHz - CH.9 - ANT 1 - GPS band

Plot 7-91. Radiated Spurious Pre-Scan 1559 - 1610 MHz - CH.9 - ANT 1 – GPS band

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 66 of 96
1M2110010116-17.A3L	9/27 - 10/10/2021	Portable Handset	Page 66 01 66
© 2021 PCTEST			V 9.0 02/01/2019

MultiView	= Spectrum	5 🔆 🗙	Spectrum 2	×					•
Ref Level C	0.00 dBm Offset	: -2.24 dB • RB	W 1 MHz						SGL
• Att	0 dB • SWT	44 s • VB	W 3 MHz Mod	e Auto Sweep					Count 2/2
1 Frequency	_40GHz_Horn_5N- Sweep	1058701-3°, "KR	_R-5_15-PR1840	_AMP","KR_mm	wave_Cable_2+3				• 1Rm Max
-10 dBm									
-30 dBm									
20 d8m	and the second second	water and and and a second	manne		and the second second	www.www.www.www.www.www.www.www.www.ww	mann		
-90 dBm									
10.0.011									
18.0 GHŻ			44000 pt	IS	2	Z GHZ/		And in case of the local division of the loc	40.0 GHz
							Ready		11:14:12

Plot 7-92. Radiated Spurious Pre-Scan 18 – 40 GHz - CH.9 - ANT 1

9			
7987.2			
9			
SP3			

Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Spurious Emission Level[dBm]	Limit [dBm]	Margin [dB]
RMS	Н	-	-	-72.61	-9.71	-12.64	-83.22	-75.30	-7.92
RMS	н	150	44	-73.08	-9.50	-12.64	-83.47	-63.30	-20.17
RMS	н	150	44	-73.92	-8.42	-12.64	-83.23	-63.30	-19.93
RMS	V	-	-	-76.47	8.68	-12.64	-68.69	-61.30	-7.39
RMS	V	-	-	-74.02	10.26	-12.64	-64.66	-61.30	-3.36
RMS	V	150	124	-73.85	6.74	-12.64	-68.01	-61.30	-6.71
	Detector RMS RMS RMS RMS RMS RMS	DetectorAnt. Pol. [H/V]RMSHRMSHRMSVRMSVRMSVRMSV	Ant. Pol [H/V]Antenna Height [cm]RMSH5RMSH150RMSH150RMSV-RMSV5RMSV150	Ant. Pol.Antenna HeightTurntableHeightHeightAzimuth[H/V][cm][degree]RMSH-RMSH15044RMSH15044RMSVRMSVRMSV150124	Ant. Pol. [H/V]Antenna Height [HarmanTurntable AzimuthAnalyzerRMS[H/V][Ieght][Iegree][IelBm]RMSH-72.61RMSH150444-73.08RMSH150444-73.92RMSV76.47RMSV74.02RMSV150124-73.85	Ant. Pol [H/V]Antenna HeightTurntable AzimuthAnalyzer LevelAFCL [dB/M]RMS[H/V][Idegree][IdBm][dB/M]RMSH-7-72.61-9.71RMSH150444-73.08-9.50RMSH150444-73.92-8.42RMSV-7-76.478.68RMSV-7-74.0210.26RMSV150124-73.856.74	Ant. Pol. [H/V]Antenna Height [Gm]Turntable AzimuthAnalyzer Level [GBm]AFCL [GBm]Dist. Corr. Factor [GB]RMSH-Idegree][dBm]Idegree]0RMSH72.619.71-12.64RMSH150444-73.089.500-12.64RMSH150444-73.92-8.42-12.64RMSV76.478.68-12.64RMSV74.0210.26-12.64RMSV150124-73.856.74-12.64	Peter Peter (H/V)Antenna HeightTurntable AzimuthAnalyzer LevelAFCL (BM)Dist. Corr.Spurious EmissionRMS(H/V)Iciggne)Idegree)IdBm) 72.61 9.71 712.64 83.22 RMSH150444-73.089.500 -12.64 83.22 RMSH150444 73.92 8.42 -12.64 83.23 RMSH150 -76.47 8.68 -12.64 -68.69 RMSV -74.02 10.26 -64.66 RMSV150124 -73.85 6.74 -12.64 -68.01	DetectorAnt. Pol. [H/V]Antenna HeightTurntable AzimuthAnalyzer LevelAFCL (BM)Dist. Corr. FactorSpurious Emission Level[dBm]RMS(H)[Idegree][IdBm]-72.61-9.71-12.64-83.22-75.30RMSH-50-72.61-9.70-12.64-83.22-75.30RMSH150444-73.08-9.50-12.64-83.23-63.30RMSH150-44-73.92-84.2-12.64-83.23-63.30RMSV-50-74.028.68-12.64-68.69-61.30RMSV-50-74.0210.26-12.64-64.66-61.30RMSV150124-73.856.74-12.64-68.01-61.30

Table 7-15. Radiated Spurious Emissions CH. 9 – ANT1

Channel:	9
Frequency (MHz):	7987.2
Preamble ID	9
Config	SP3

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Spurious Emission Level[dBm]	Limit [dBm]	Margin [dB]
1217	RMS	V	-	-	-86.52	-11.50	-12.64	-98.92	-85.30	-13.62
1231	RMS	V	-	-	-86.20	-11.43	-12.64	-98.53	-85.30	-13.23
1238	RMS	V	-	-	-86.79	-11.39	-12.64	-99.09	-85.30	-13.79
1578	RMS	V	-	-	-89.64	-9.31	-12.64	-99.85	-85.30	-14.55
1584	RMS	V	-	-	-89.57	-9.34	-12.64	-99.81	-85.30	-14.51
1588	RMS	V	-	-	-89.58	-9.36	-12.64	-99.85	-85.30	-14.55

Table 7-16. Radiated Spurious Emissions CH. 9 – ANT1 – GPS BANDs

FCC ID: A3LSMS906E	PCTEST Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 67 of 96	
1M2110010116-17.A3L	M2110010116-17.A3L 9/27 – 10/10/2021 Portable Handset		Page 67 01 86	
© 2021 PCTEST	•	·	V 0 0 02/01/2010	

Channel 9 ANTENNA 2:

Plot 7-93. Radiated Spurious Pre-Scan 1000 - 10600 MHz - CH.9 - ANT 2

Plot 7-94. Radiated Spurious Pre-Scan 10600 - 18000 MHz - CH.9 - ANT 2

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 69 of 96	
1M2110010116-17.A3L	9/27 – 10/10/2021	Portable Handset	Page 68 01 86	
© 2021 PCTEST			V 9.0 02/01/2019	

MultiView 〓	Spectrum 5	× Spect	um 6 🗙	Spectrum 2	× Spec	trum 4	×		
Ref Level -20 Att TDF "SFU Thru -4	0.00 dBm Offs 0 dB • SW1	et -0.90 dB ● F f 1 s ● N Sun ol Horn An t	BW 30 kHz BW 100 kHz 1 DRH118 A1060	Mode Auto Swee	p				SGL Count 5/5
1 Frequency S	weep								1Rm Max
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
p-hikkyddigh-nursysper	or marine and a second	pronter approxim	unnan training	proventing and the providence of the second s	ene approximation	al the state of the	and an	in mangan gan dan menerikan seber menerikan seber kan berken seber kan berken seber kan berken seber seber sebe	hhigh-normalis-ada-adarkahash
-110 dBm									
1.164 GHz			1001 pt	5	7	.6 MHz/			1.24 GHz
	*						Ready		30.09.2021 17:10:29

Plot 7-95. Radiated Spurious Pre-Scan 1164 - 1240 MHz - CH.9 - ANT 2 - GPS band

Plot 7-96. Radiated Spurious Pre-Scan 1559 - 1610 MHz – CH 9 - ANT 2 – GPS band

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 96	
1M2110010116-17.A3L 9/27 – 10/10/2021 Porta		Portable Handset	Page 69 01 66	
© 2021 PCTEST			V 9.0 02/01/2019	