

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 WLAN

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 09/09/2021 – 12/06/2021 Report Issue Date: 12/07/2021 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2110010116-07.A3L

FCC ID:

A3LSMS906E

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type:	Certification
Model:	SM-S906E/DS
Additional Model:	SM-S906E
EUT Type:	Portable Handset
Frequency Range:	2412 – 2472MHz
Modulation Type:	CCK/DSSS/OFDM
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15 Subpart C (15.247)
Test Procedure(s):	ANSI C63.10-2013, KDB 558074 D01 v05r02,
	KDB 662911 D01 v02r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 110
1M2110010116-07.A3L 09/09/2021 - 12/06/2021		Portable Handset		Page 1 of 110
© 2021 PCTEST	·	•		V 9.0 02/01/2019

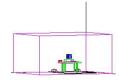


TABLE OF CONTENTS

1.0	INTRO	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	7
	2.4	Antenna Description	7
	2.5	Software and Firmware	7
	2.6	EMI Suppression Device(s)/Modifications	7
3.0	DESC	CRIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	AC Line Conducted Emissions	8
	3.3	Radiated Emissions	9
	3.4	Environmental Conditions	9
4.0	ANTE	ENNA REQUIREMENTS	10
5.0	MEAS	SUREMENT UNCERTAINTY	11
6.0	TEST	F EQUIPMENT CALIBRATION DATA	12
7.0	TEST	۲ RESULTS	13
	7.1	Summary	
	7.2	6dB Bandwidth Measurement	
	7.3	Output Power Measurement	
	7.4	Power Spectral Density	
	7.5	Conducted Emissions at the Band Edge	
	7.6	Conducted Spurious Emissions	
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	
		7.7.1 SISO Antenna-1 Radiated Spurious Emission Measurements	
		7.7.2 SISO Antenna-2 Radiated Spurious Emission Measurements	87
		7.7.3 MIMO/CDD Radiated Spurious Emission Measurements	91
		7.7.4 SISO Antenna-1 Radiated Restricted Band Edge Measurements	95
		7.7.5 SISO Antenna-2 Radiated Restricted Band Edge Measurements	97
		7.7.6 MIMO Radiated Restricted Band Edge Measurements	99
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	102
	7.9	Line-Conducted Test Data	106
8.0	CON	CLUSION	110

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:		Dogo 2 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 2 of 110
© 2021 PCTEST	-			V 9.0 02/01/2019

MEASUREMENT REPORT

	ANT1			ANT2			MIMO						
T	Avg Co	nducted	Peak Co	onducted	Avg Co	nducted	Peak Co	nducted	Avg Cor	nducted	Peak Co	nducted	
Mode	Tx Frequency (MHz)	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
	(11112)	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power	Power
		(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(dBm)
802.11b	2412 - 2472	83.560	19.22	146.218	21.65	87.498	19.42	156.315	21.94	N/A			
802.11g	2412 - 2472		N	/A			N	/A		119.124	20.76	582.103	27.66
802.11n	2412 - 2472		N/A			N	/A		119.674	20.78	603.949	27.81	
802.11ax	2412 - 2472		N	/A		N/A		122.744	20.89	672.977	28.28		

EUT Overview

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 3 of 110
© 2021 PCTEST				V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
•		EUT Type:		Dage 4 of 110	
		Portable Handset		Page 4 of 110	
© 2021 PCTEST		•		V 9.0 02/01/2019	

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMS906E**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 1229M, 0292M, 0298M, 1224M, 0278M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR, 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles							
		ANT1	ANT2	ΜΙΜΟ			
802.11 N	Mode/Band	Duty Cycle [%]					
2.4GHz	b	99.8	99.9	99.8			
	g			98.6			
	n			96.8			
	ах			96.5			

Table 2-2. Measured Duty Cycles

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of 110
1M2110010116-07.A3L 09/09/2021 - 12/06/2021		Portable Handset		Page 5 of 110
© 2021 PCTEST		•		V 9.0 02/01/2019

The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		CDD	
WIFI COIII	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
2.4GHz 11b 11g 11n 11ax	✓	~	✓	✓	×	×	
	11g	×	×	×	×	✓	✓
	11n	×	×	×	×	✓	✓
	11ax	×	×	×	×	✓	\checkmark

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity - 2Tx Function

 Data Rates Supported:
 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)

 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g)

 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n)

 13/14.4Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 78/86.7Mbps, 104/115.6Mbps, 117/130Mbps, 130/144.4Mbps (MIMO n)

This device supports simultaneous transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. The following tables show the worst case configurations determined during testing. The data for these configurations is contained in the UNII test report.

Configuration 1: ANT1 transmitting in 2.4GHz mode and ANT1 and ANT2 in 5GHz mode

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	1,2
Channel	6	100
Operating Frequency (MHz)	2437	5500
Data Rate (Mbps)	6	6
Mode	b	а

Table 2-4. Config-1 (ANT1 2.4GHz & ANT2 5GHz)

Configuration 2: ANT1 and ANT2 transmitting in 5GHz mode and ANT2 in 2.4GHz mode

Description	2.4 GHz Emission	5 GHz Emission
Antenna	2	1,2
Channel	6	100
Operating Frequency (MHz)	2437	5500
Data Rate (Mbps)	6	6
Mode	b	а

Table 2-5. Config-2 (ANT1 5GHz & ANT2 2.4GHz)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage C of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 6 of 110	
© 2021 PCTEST	·			V 9.0 02/01/2019	

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1, 2	1, 2
Channel	6	100
Operating Frequency (MHz)	2437	5500
Data Rate (Mbps)	6	6
Mode	b	а

Configuration 3: ANT1 and ANT2 both transmitting in 2.4GHz and 5GHz modes simultaneously

Table 2-6. Config-3 (ANT1 MIMO & ANT2 MIMO)

Configuration 3: ANT1 and ANT2 both transmitting in 2.4GHz and 6GHz modes simultaneously

Description	2.4 GHz Emission	6 GHz Emission
Antenna	1, 2	1, 2
Channel	6	117
Operating Frequency (MHz)	2437	6535
Data Rate (Mbps)	6	6
Mode	b	а

Table 2-7. Config-3 (ANT1 MIMO & ANT2 MIMO)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Antenna Description

Following antenna was used for the testing.

Frequency [GHz]	Antenna 1 Gain [dBi]	Antenna 2 Gain [dBi]
2.4	-7.3	-6.1

Table 2-8. Antenna Peak Gain

2.5 Software and Firmware

The test was conducted with firmware version S906USQU0AUJ9 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega Z of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 7 of 110	
© 2021 PCTEST	·			V 9.0 02/01/2019	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 9 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 8 of 110
© 2021 PCTEST	•	•		V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 9 of 110
© 2021 PCTEST		•		V 9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 10 of 110
© 2021 PCTEST	•			V 9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 11 of 110
© 2021 PCTEST		•		V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	8/18/2021	Annual	8/18/2022	WL25-1
-	WL25-2	Conducted Cable Set (25GHz)	8/18/2021	Annual	8/18/2022	WL25-2
-	WL25-3	Conducted Cable Set (25GHz)	8/18/2021	Annual	8/18/2022	WL25-3
Agilent	N9030A	PXA Signal Analyzer (44GHz)	7/21/2020	Annual	7/21/2022	MY49430494
Anritsu	ML2495A	Power Meter	3/4/2021	Annual	3/4/2022	1328004
Anritsu	ML2495A	Power Meter	1/18/2021	Annual	1/18/2022	941001
Anritsu	ML2496A	Power Meter	11/25/2020	Annual	11/25/2021	1405003
Anritsu	MA2411B	Pulse Power Sensor	9/21/2021	Annual	9/21/2022	1315051
Anritsu	MA2411B	Pulse Power Sensor	1/18/2021	Annual	1/18/2022	846215
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	7/9/2020	Biennial	7/9/2022	114451
Keysight Technologies	N9030A	PXA Signal Analyzer (3Hz-26.5GHz)	7/21/2021	Annual	7/21/2022	MY54490576
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	9/10/2021	Annual	9/10/2022	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/3/2021	Annual	8/23/2022	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	5/25/2021	Annual	5/25/2022	100348
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 12 of 110
© 2021 PCTEST	-			V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
---------------	-------------------------------

FCC ID: <u>A3LSMS906E</u>

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 13 of 110
© 2021 PCTEST	<u>.</u>			V 9.0 02/01/2019

7.2 6dB Bandwidth Measurement §15.247(a.2); RSS-247 [5.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

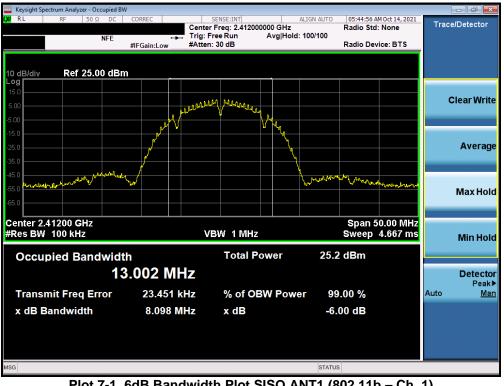
- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

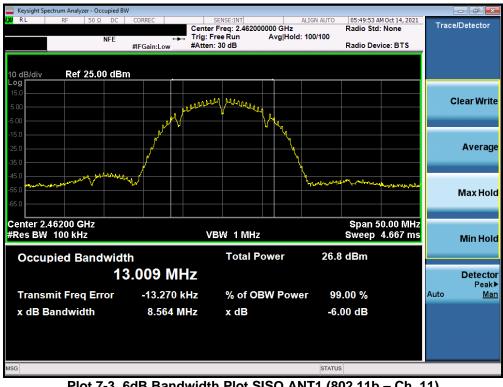
Test Notes


None

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 14 of 110
© 2021 PCTEST				V 9.0 02/01/2019

SISO Antenna-1 6 dB Bandwidth Measurements

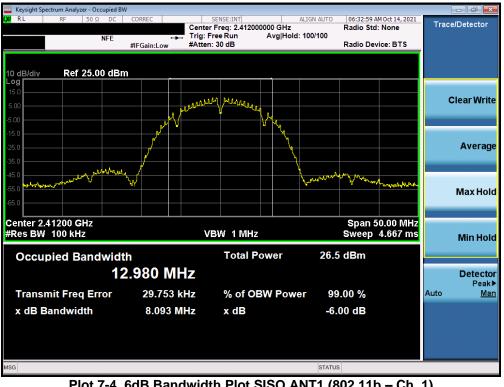
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.098	0.500
2437	6	b	1	8.085	0.500
2462	11	b	1	8.564	0.500


Plot 7-1. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 1)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 15 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 15 of 110
© 2021 PCTEST			V 9.0 02/01/2019

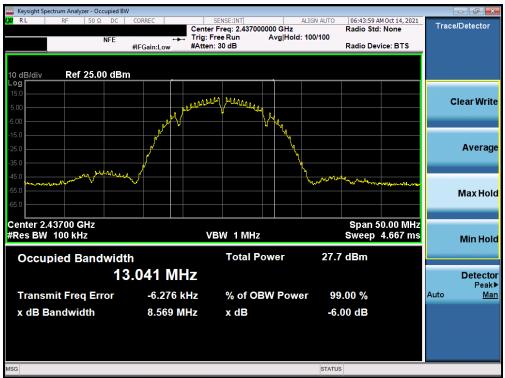
Plot 7-2. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 6)

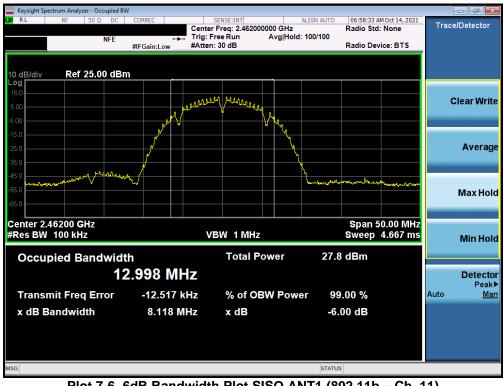
Plot 7-3. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 11)


FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 16 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 16 of 110
© 2021 PCTEST				V 9.0 02/01/2019

SISO Antenna-2 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.093	0.500
2437	6	b	1	8.569	0.500
2462	11	b	1	8.118	0.500

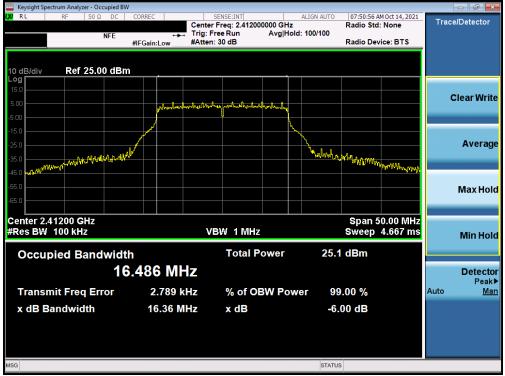

Table 7-3. Conducted Bandwidth Measureme	nts SISO ANT2
--	---------------


Plot 7-4. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Daga 17 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 17 of 110
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-5. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-6. 6dB Bandwidth Plot SISO ANT1 (802.11b - Ch. 11)


FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 18 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 18 of 110	
© 2021 PCTEST V 9.0 02/01/2019				

MIMO 6 dB Bandwidth Measurements

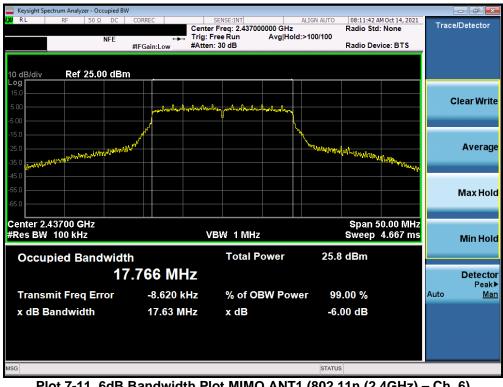
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	g	6	16.36	16.37	0.500
2437	6	g	6	16.37	16.39	0.500
2462	11	g	6	16.37	16.38	0.500
2412	1	n	6.5/7.2 (MCS0)	17.59	17.63	0.500
2437	6	n	6.5/7.2 (MCS0)	17.63	17.65	0.500
2462	11	n	6.5/7.2 (MCS0)	17.62	17.64	0.500
2412	1	ax	6.5/7.2 (MCS0)	18.93	18.91	0.500
2437	6	ax	6.5/7.2 (MCS0)	18.81	18.72	0.500
2462	11	ax	6.5/7.2 (MCS0)	18.89	18.90	0.500

Table 7-4. Conducted Bandwidth Measurements MIMO

Plot 7-7. 6dB Bandwidth Plot MIMO ANT1 (802.11g – Ch. 1)

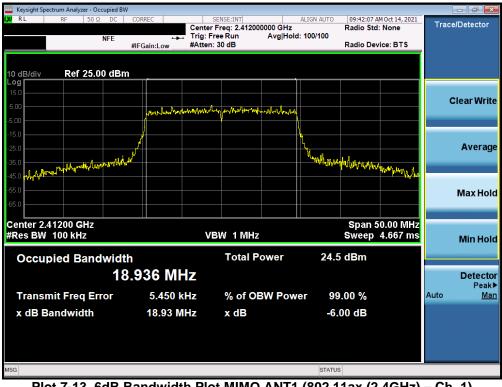
FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 10 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 19 of 110
© 2021 PCTEST	•	•		V 9.0 02/01/2019


Plot 7-8. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 6)


Plot 7-9. 6dB Bandwidth Plot MIMO ANT1 (802.11g – Ch. 11)

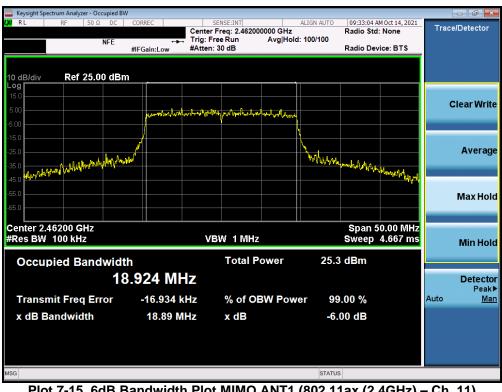
FCC ID: A3LSMS906E	PCTEST [®] Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 20 of 110
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-10. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 1)


Plot 7-11. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 21 of 110
© 2021 PCTEST V 9.0 02/01/2019				

Plot 7-12. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 11)


Plot 7-13. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) – Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 22 of 110
© 2021 PCTEST V 9.0 02/01/2019				

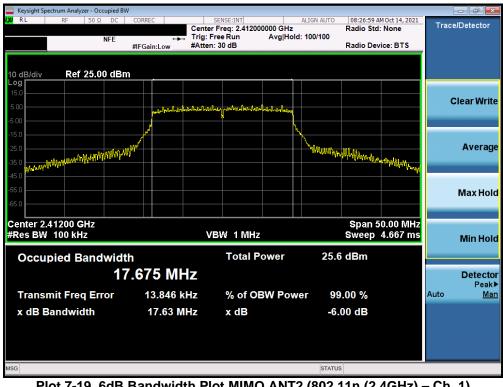
Keysight Spectrum Analyzer - Occupied	d BW					
IXI RL RF 50 Ω DC	Cente ⊷⊷ Trig: F	SENSE:INT r Freq: 2.437000000 GHz Free Run Avg Hold n: 30 dB	Radio Std		Trace/Dete	ctor
10 dB/div Ref 25.00 d	Bm					
5.00	Jashral-allowertanthurtur	log marter have a further was			Clear	Write
-5.00 -15.0 -25.0 -35.0 -45.0 Walther Digestry Marthurstoff			h. h.h.umvelinhapalalin	Aughton Manager	Ave	erage
-45.0					Max	Hold
Center 2.43700 GHz #Res BW 100 kHz	V	BW 1 MHz		0.00 MHz 4.667 ms	Min	Hold
Occupied Bandwi	^{dth} 18.906 MHz	Total Power	25.0 dBm			ector ^{Peak} ►
Transmit Freq Error	2.759 kHz	% of OBW Powe	er 99.00 %		Auto	Man
x dB Bandwidth	18.81 MHz	x dB	-6.00 dB			
MSG			STATUS			

Plot 7-14. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 6)

Plot 7-15. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 11)

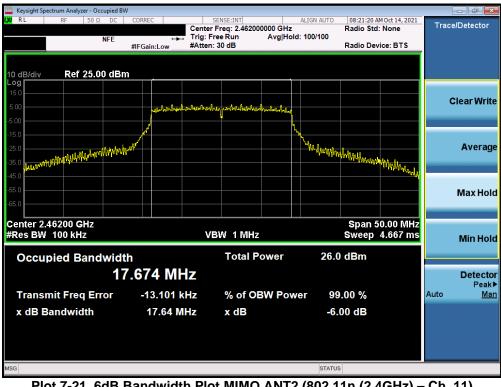
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 23 of 110
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-16. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 1)


Plot 7-17. 6dB Bandwidth Plot MIMO ANT2 (802.11g – Ch. 6)

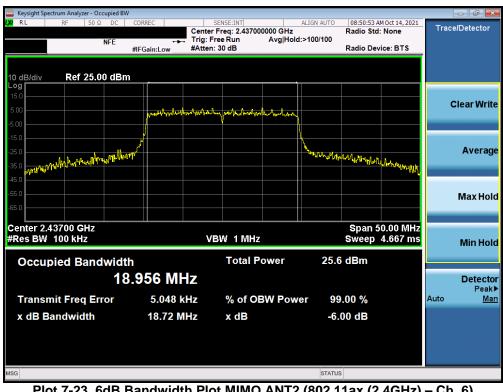
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 24 of 110
© 2021 PCTEST V 9.0 02/01/2019				


Plot 7-18. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 11)


Plot 7-19. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 25 of 110	
© 2021 PCTEST V 9.0 02/01/2019				

Plot 7-20. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 6)


Plot 7-21. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) – Ch. 11)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 26 of 110
© 2021 PCTEST V 9.0 02/01/2019				

Plot 7-22. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 1)

Plot 7-23. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 27 of 110
© 2021 PCTEST	•		V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupie	ed BW				
LX/ RL RF 50Ω D		SENSE:INT enter Freg: 2.462000000 GH		M Oct 14, 2021	Trace/Detector
NFE	T	rig: Free Run Avg H	old: 100/100		
	#IFGain:Low #/	Atten: 30 dB	Radio Dev	/ice: BTS	
10 dB/div Ref 25.00 d	IBm				
15.0					
5.00		whether with Martin by			Clear Write
-5.00	And Dama and Advertising and A	the second field and all the second for the second s	~		
-15.0					
			<u>h</u>		Average
-25.0	Ma ^{lu} n		"When what has had a for		·····g·
-45.0				apply and the	
-55.0					
-65.0					Max Hold
-65.0					
Center 2.46200 GHz				60.00 MHz	
#Res BW 100 kHz		VBW 1 MHz	Sweep	4.667 ms	Min Hold
Occupied Bandwi	idth	Total Power	25.8 dBm		
			20.0 0011		
	18.930 MHz				Detector Peak▶
Transmit Freq Error	-19.065 kHz	% of OBW Po	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	18.90 MHz	x dB	-6.00 dB		
	10.00 1012		-0.00 ab		
MSG			STATUS		

Plot 7-24. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) – Ch. 11)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 28 of 110
© 2021 PCTEST		•		V 9.0 02/01/2019

7.3 Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM) ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 29 of 110
© 2021 PCTEST				V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11b	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
	2412	1	AVG	19.22	30.00	-10.78
N			PEAK	21.65	30.00	-8.35
Hz	2437	6	AVG	18.99	30.00	-11.01
Q			PEAK	21.38	30.00	-8.62
2.4G	2462	11	AVG	18.86	30.00	-11.14
• •			PEAK	21.21	30.00	-8.79
	2467	12	AVG	13.48	30.00	-16.52
			PEAK	24.56	30.00	-5.44
	2472	13	AVG	2.62	30.00	-27.38
			PEAK	17.82	30.00	-12.18

Table 7-5. Conducted Output Power Measurements SISO ANT1

	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11b	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
	2412	1	AVG	19.42	30.00	-10.58
N			PEAK	21.94	30.00	-8.06
2.4GHz	2437	6	AVG	18.55	30.00	-11.45
Ŭ			PEAK	20.85	30.00	-9.15
	2462	11	AVG	18.51	30.00	-11.49
			PEAK	20.84	30.00	-9.16
	2467	12	AVG	13.12	30.00	-16.88
			PEAK	24.32	30.00	-5.68
	2472	13	AVG	2.52	30.00	-27.48
			PEAK	17.69	30.00	-12.31

Table 7-6. Conducted Output Power Measurements SISO ANT2

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 30 of 110
© 2021 PCTEST			V 9.0 02/01/2019

	Freq [MHz]	Channel	Channel Detector		Conducted Power [dBm]		Conducted Power Limit	Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
	2412	1	AVG	17.59	17.15	20.39	30.00	-9.61
			PEAK	24.86	24.39	27.64	30.00	-2.36
N	2437	6	AVG	17.78	17.71	20.76	30.00	-9.24
T			PEAK	24.82	24.38	27.62	30.00	-2.38
2.4G	2457	10	AVG	17.54	17.69	20.63	30.00	-9.37
4			PEAK	24.92	24.33	27.65	30.00	-2.35
	2462	11	AVG	16.01	15.62	18.83	30.00	-11.17
			PEAK	22.51	22.49	25.51	30.00	-4.49
	2467	12	AVG	13.73	13.44	16.60	30.00	-13.40
			PEAK	24.56	24.44	27.51	30.00	-2.49
	2472	13	AVG	2.29	2.20	5.25	30.00	-24.75
			PEAK	13.51	13.68	16.60	30.00	-13.40

Table 7-7. Conducted Output Power Measurements MIMO (802.11g)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 31 of 110
© 2021 PCTEST		•		V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
	2412	1	AVG	17.68	17.19	20.45	30.00	-9.55
			PEAK	25.26	24.60	27.95	30.00	-2.05
N	2437	6	AVG	17.76	17.68	20.73	30.00	-9.27
エ			PEAK	25.00	24.52	27.78	30.00	-2.22
2.4G	2457	10	AVG	17.56	17.72	20.65	30.00	-9.35
4			PEAK	24.96	24.62	27.81	30.00	-2.19
	2462	11	AVG	14.31	14.66	17.50	30.00	-12.50
			PEAK	22.01	22.41	25.22	30.00	-4.78
	2467	12	AVG	13.79	13.40	16.61	30.00	-13.39
			PEAK	24.36	24.39	27.39	30.00	-2.61
	2472	13	AVG	2.42	2.11	5.28	30.00	-24.72
			PEAK	13.40	13.21	16.32	30.00	-13.68

Table 7-8. Conducted Output Power Measurements MIMO (802.11n)

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
	2412	1	AVG	17.66	17.33	20.51	30.00	-9.49
			PEAK	25.12	24.71	27.93	30.00	-2.07
N	2437	6	AVG	17.95	17.80	20.89	30.00	-9.11
HZ			PEAK	25.08	24.54	27.83	30.00	-2.17
.4G	2457	10	AVG	17.84	17.21	20.55	30.00	-9.45
5.4			PEAK	25.10	24.98	28.05	30.00	-1.95
(1	2462	11	AVG	13.90	13.46	16.70	30.00	-13.30
			PEAK	22.41	22.68	25.56	30.00	-4.44
	2467	12	AVG	13.72	13.44	16.59	30.00	-13.41
			PEAK	25.15	25.42	28.29	30.00	-1.71
	2472	13	AVG	2.25	2.19	5.23	30.00	-24.77
			PEAK	14.02	13.98	17.01	30.00	-12.99

Table 7-9. Conducted Output Power Measurements MIMO (802.11ax)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 32 01 110
© 2021 PCTEST				V 9.0 02/01/2019

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 17.76 dBm for Antenna-1 and 17.68 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(17.76 dBm + 17.68 dBm) = (59.70 mW + 58.61 mW) = 118.32 mW = 20.73 dBm

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 33 of 110
© 2021 PCTEST	·	•		V 9.0 02/01/2019

7.4 Power Spectral Density

§15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

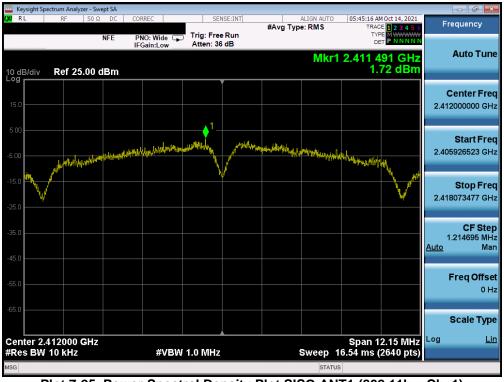
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None


FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	
© 2021 PCTEST	-		V 9.0 02/01/2019

SISO Antenna-1 Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	1.72	8.00	-6.29	Pass
2437	6	b	1	1.64	8.00	-6.36	Pass
2462	11	b	1	2.83	8.00	-5.17	Pass

Table 7-10. Conducted Power Density Measurements SISO ANT1

Plot 7-25. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 35 of 110
© 2021 PCTEST			V 9.0 02/01/2019

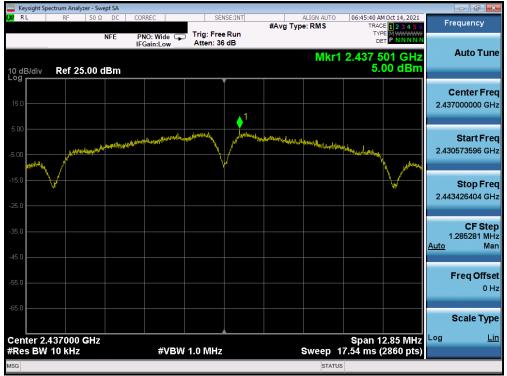
Plot 7-26. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-27. Power Spectral Density Plot SISO ANT1 (802.11b - Ch. 11)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 36 of 110
© 2021 PCTEST				V 9.0 02/01/2019

SISO Antenna-2 Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	3.64	8.00	-4.36	Pass
2437	6	b	1	5.00	8.00	-3.00	Pass
2462	11	b	1	4.34	8.00	-3.67	Pass

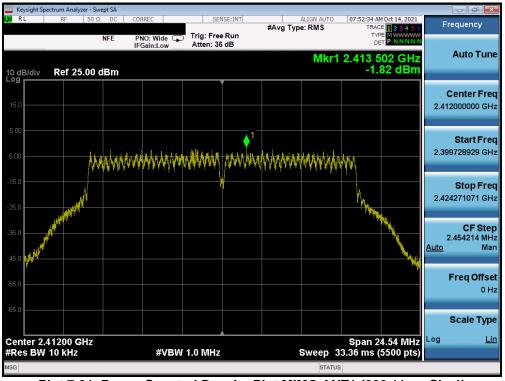

Table 7-11. Conducted Power Density Measurements SISO ANT2

Plot 7-28. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 1)

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 37 of 110
© 2021 PCTEST			V 9.0 02/01/2019

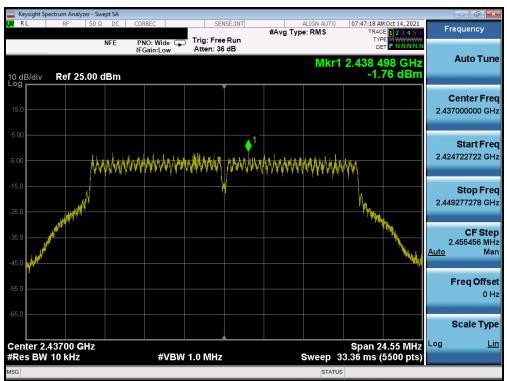
Plot 7-29. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 6)

Plot 7-30. Power Spectral Density Plot SISO ANT2 (802.11b - Ch. 11)


FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 38 of 110	
© 2021 PCTEST V 9.0 02/01/2019					

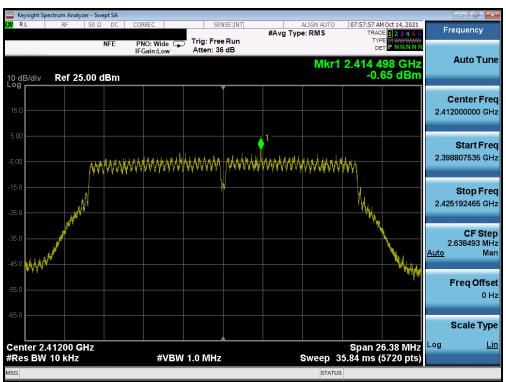
MIMO Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	g	6	-1.82	-2.06	1.07	8.00	-6.93	Pass
2437	6	g	6	-1.76	-0.89	1.71	8.00	-6.29	Pass
2462	11	g	6	-1.91	-0.69	1.75	8.00	-6.25	Pass
2412	1	n	6.5/7.2 (MCS0)	-0.65	0.09	2.74	8.00	-5.26	Pass
2437	6	n	6.5/7.2 (MCS0)	-0.34	0.30	3.00	8.00	-5.00	Pass
2462	11	n	6.5/7.2 (MCS0)	-0.71	0.16	2.76	8.00	-5.24	Pass
2412	1	ax	6.5/7.2 (MCS0)	-2.89	-3.13	0.00	8.00	-8.00	Pass
2437	6	ax	6.5/7.2 (MCS0)	-2.87	-2.33	0.42	8.00	-7.58	Pass
2462	11	ax	6.5/7.2 (MCS0)	-2.67	-2.40	0.48	8.00	-7.52	Pass

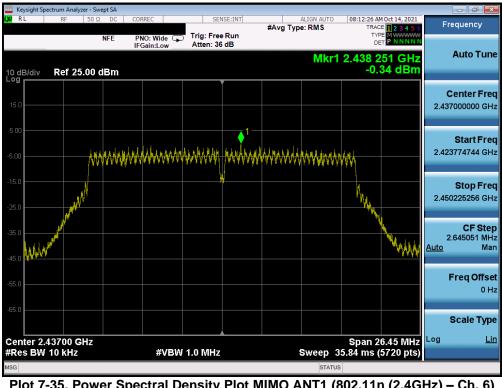

Table 7-12.MIMO Conducted Power Density Measurements

Plot 7-31. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 1)

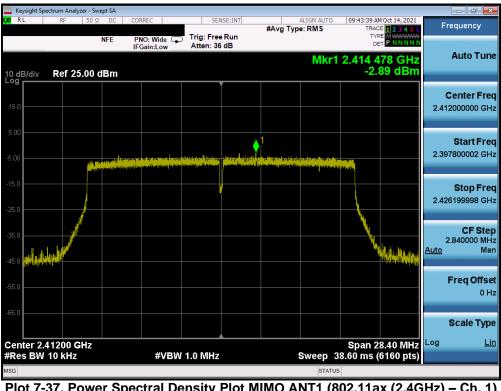
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 39 of 110
© 2021 PCTEST				V 9.0 02/01/2019


Plot 7-32. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 6)

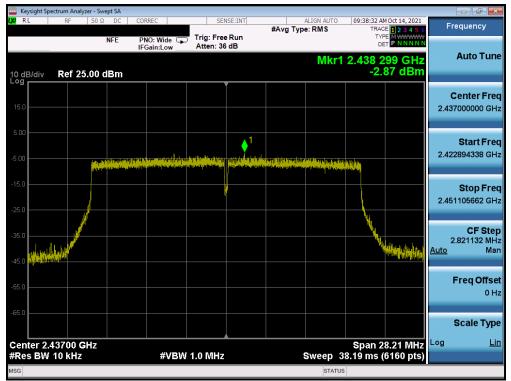


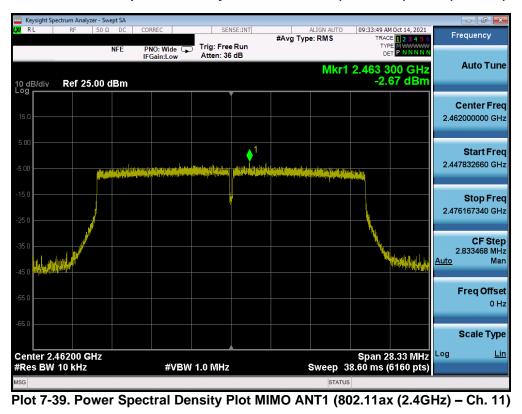

Plot 7-33. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 11)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 40 of 110
© 2021 PCTEST				V 9.0 02/01/2019

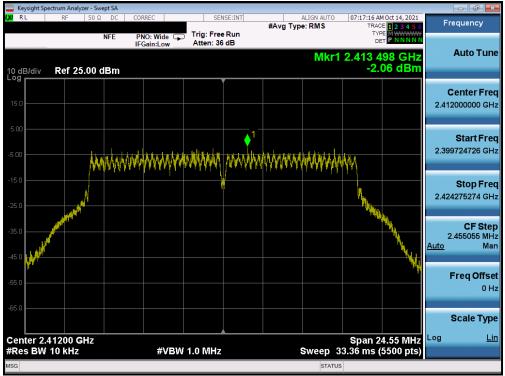

Plot 7-35. Power Spectral Density Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 41 of 110
© 2021 PCTEST			V 9.0 02/01/2019

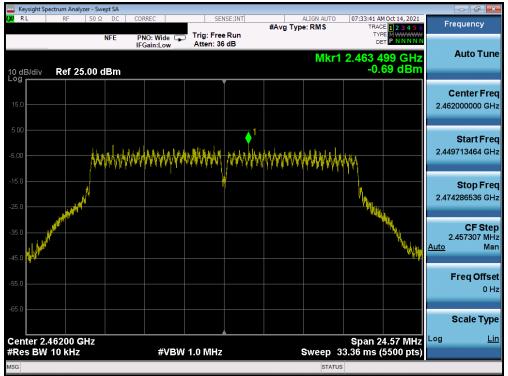



Plot 7-37. Power Spectral Density Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 1)

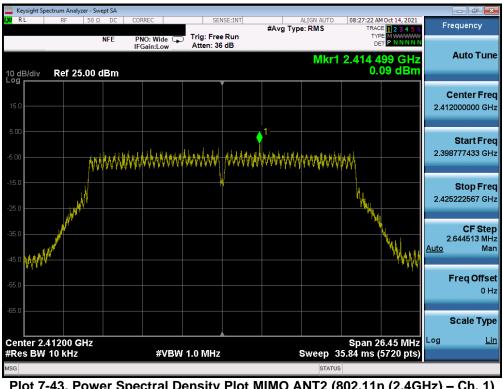
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 42 of 110
© 2021 PCTEST			V 9.0 02/01/2019



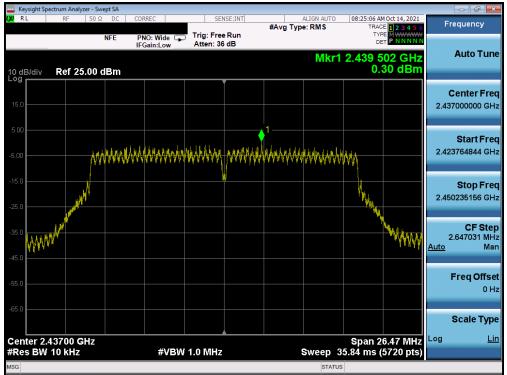
PCTEST (re MEASUREMENT REPORT Approved by: SAMSUNG FCC ID: A3LSMS906E (CERTIFICATION) Proud to be part of 🚗 ele **Technical Manager** Test Report S/N: Test Dates: EUT Type: Page 43 of 110 1M2110010116-07.A3L 09/09/2021 - 12/06/2021 Portable Handset © 2021 PCTEST V 9.0 02/01/2019

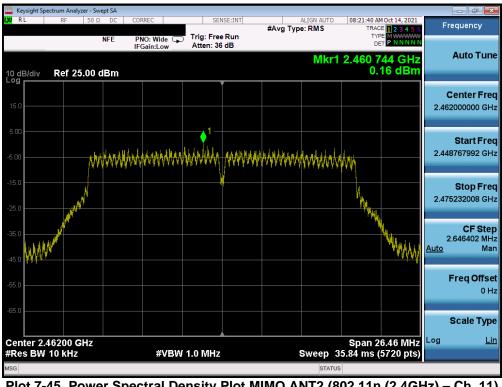


Plot 7-40. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 1)

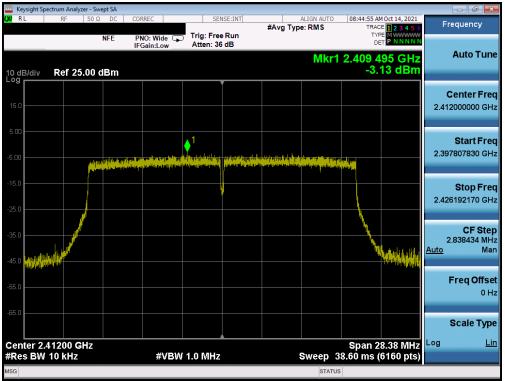


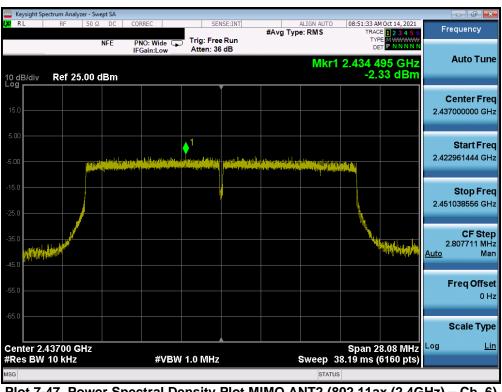
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 44 of 110
© 2021 PCTEST			V 9.0 02/01/2019


Plot 7-42. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 11)

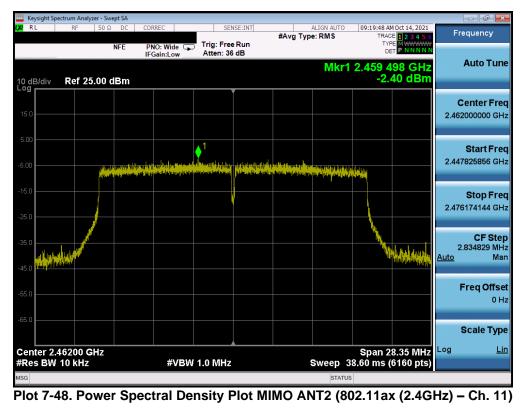

Plot 7-43. Power Spectral Density Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 45 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 45 of 110
© 2021 PCTEST	•			V 9.0 02/01/2019




Plot 7-45. Power Spectral Density Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 46 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 46 of 110
© 2021 PCTEST	•			V 9.0 02/01/2019



Plot 7-47. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMS906E	Pctest* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 47 of 110
© 2021 PCTEST	·			V 9.0 02/01/2019

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 D01 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted power spectral density was measured to be -0.65 dBm for Antenna-1 and 0.09 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(-0.65 dBm + 0.09 dBm) = (0.86 mW + 1.02 mW) = 1.88 mW = 2.74 dBm

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 48 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	dset	
© 2021 PCTEST	•	•		V 9.0 02/01/2019

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5/7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

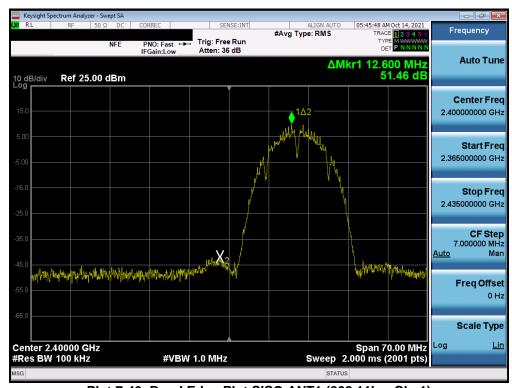
ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

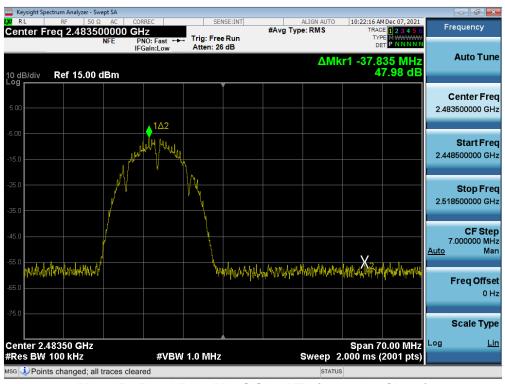

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

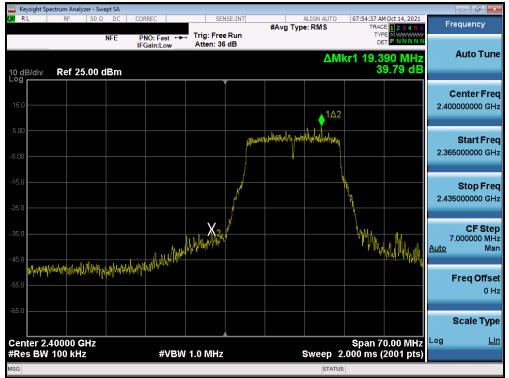
None

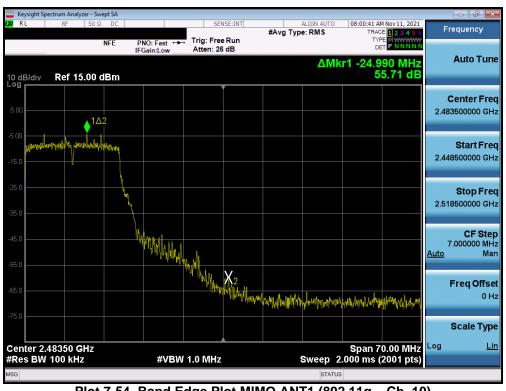
FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 49 of 110	
© 2021 PCTEST				V 9.0 02/01/2019	

Antenna-1 Conducted Emissions at the Band Edge

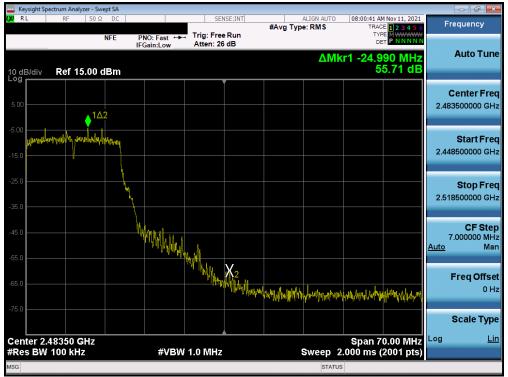

Plot 7-50. Band Edge Plot SISO ANT1 (802.11b – Ch. 11)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 50 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	set	
© 2021 PCTEST		•		V 9.0 02/01/2019


Plot 7-51. Band Edge Plot SISO ANT1 (802.11b - Ch. 12)



FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 51 of 110	
© 2021 PCTEST			V 9.0 02/01/2019	


Plot 7-53. Band Edge Plot MIMO ANT1 (802.11g- Ch. 1)


Plot 7-54. Band Edge Plot MIMO ANT1 (802.11g - Ch. 10)

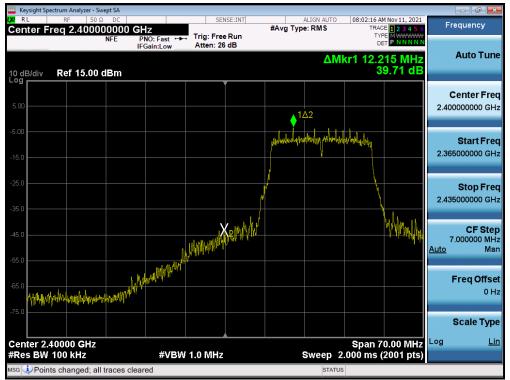
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	et	
© 2021 PCTEST				V 9.0 02/01/2019

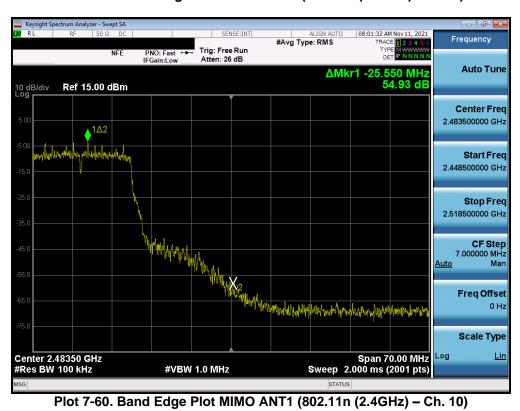
Plot 7-55. Band Edge Plot MIMO ANT1 (802.11g - Ch. 11)

Plot 7-56. Band Edge Plot MIMO ANT1 (802.11g – Ch. 12)

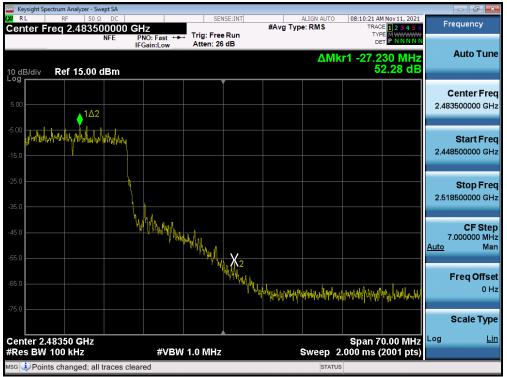
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 53 of 110
© 2021 PCTEST	•		V 9.0 02/01/2019

	ectrum Analyzer - Swept S								-	- 6 ×
Center F	RF 50 Ω A req 2.4835000	000 GHz		SE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Dec 07, 2021 E 1 2 3 4 5 6 PE M W N N N F P N N N N N	Fre	quency
10 dB/div Log	Ref 15.00 dBi	IFGain:Low	Atten: 26	dB		ΔM	r1 -16.5		,	Auto Tune
5.00										enter Frec 500000 GH2
5.00		122 hmailweightway yalaa	hite work why							Start Free 500000 GH
35.0										Stop Fre 500000 GH
45.0 55.0			X	2					7.0 <u>Auto</u>	CF Ste 000000 MH Ma
65.0	ull Man Martin			My Mary Avilying	Hylvanin/M/14/4	ntha Maridaana M	unan undur da	pulphilauphil	F	r eq Offse 0 H
	48350 GHz						Span 7	0.00 MHz		cale Type Lii
	ts changed; all trac		W 1.0 MHz			Sweep 2	2.000 ms (2001 pts)		


Plot 7-57. Band Edge Plot MIMO ANT1 (802.11g - Ch. 13)


Plot 7-58. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) – Ch. 1)

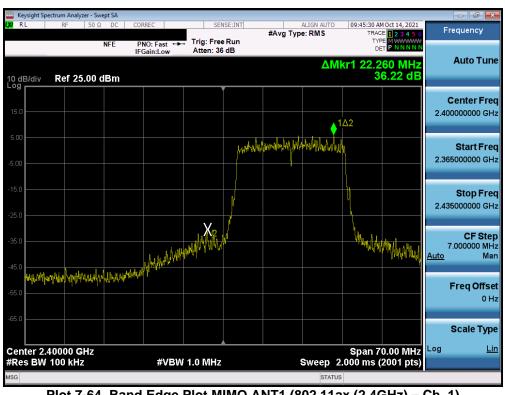
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 54 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 54 of 110
© 2021 PCTEST			V 9.0 02/01/2019



Plot 7-59. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 2)



PCTEST 6 MEASUREMENT REPORT SAMSUNG Approved by: FCC ID: A3LSMS906E (CERTIFICATION) Proud to be part of 🚗 e **Technical Manager** EUT Type: Test Report S/N: Test Dates: Page 55 of 110 1M2110010116-07.A3L 09/09/2021 - 12/06/2021 Portable Handset © 2021 PCTEST V 9.0 02/01/2019



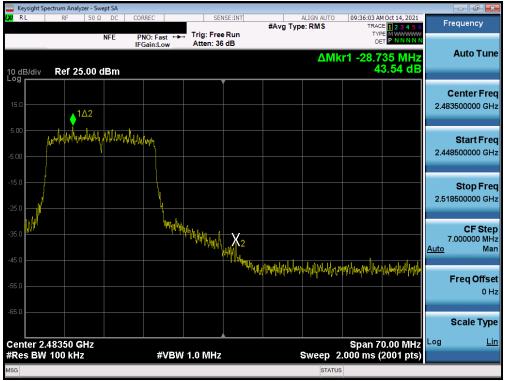
FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 56 of 110
© 2021 PCTEST	•	·		V 9.0 02/01/2019

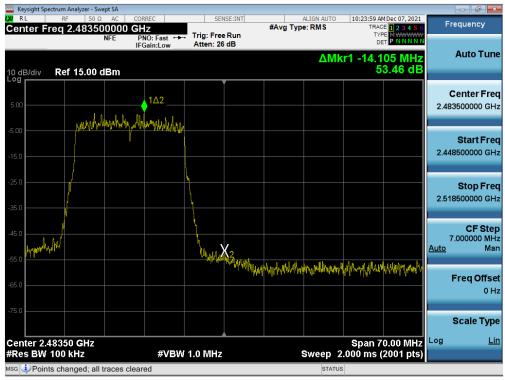
🔤 Keysight Spectru	m Analyzer - Swept	t SA									
Center Fred	^{RF} 50 Ω 1 2.483500	AC COR			NSE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Dec 07, 2021	Fr	equency
		FE PN	IO: Fast ↔ Gain:Low	 Trig: Fre Atten: 20 				TYI Di	PE M WWWWW ET P N N N N N		
							ΔM	kr1 -16.6	95 MHz		Auto Tune
10 dB/div R	ef 15.00 dE	3m						4	2.27 dB		
					Í					c	enter Frea
5.00											500000 GHz
-5.00		1 ∆	2								Start Freq
-15.0			white musice	h.t n						2.448	3500000 GHz
-15.0		Uti - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Internet Charles							
-25.0	ļ										04 a.m. 5 m.a.m
	/			1						2.519	Stop Freq 500000 GHz
-35.0	<u> </u>			<u> </u>						2.510	500000 6112
											CF Step
-45.0										7	CF Step .000000 MHz
					X2					<u>Auto</u>	Man
-55.0	helew hel				Walk Lak bahinda	A. Harry Million	MANNOR	YMAN WANA	Mar water it mark		
-65.0					1.4.3.0.04	a de ladran	hide in the first of the	. Abur & A.I. ka		F	req Offset
											0 Hz
-75.0											
											Scale Type
Center 2.483	50 GHz							Span 7	0.00 MHz	Log	Lin
#Res BW 10			#VBW	1.0 MHz			Sweep 2	2.000 ms ((2001 pts)		
мsg 🗼 Points cl	hanged; all tra	aces clear	ed				STATU	s			

Plot 7-63. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 13)


Plot 7-64. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 1)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:			
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	09/2021 - 12/06/2021 Portable Handset		Page 57 of 110	
© 2021 PCTEST		·		V 9.0 02/01/2019	


Plot 7-65. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 2)

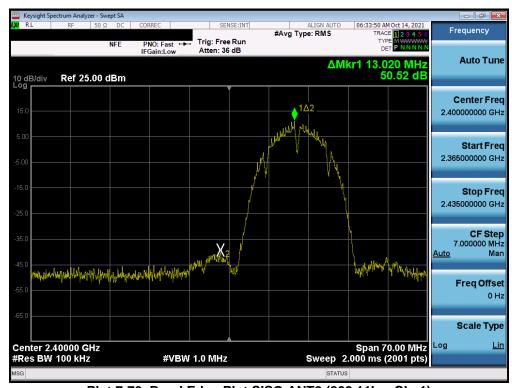

Plot 7-66. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 10)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 58 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 58 of 110
© 2021 PCTEST			V 9.0 02/01/2019

Plot 7-67. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 11)

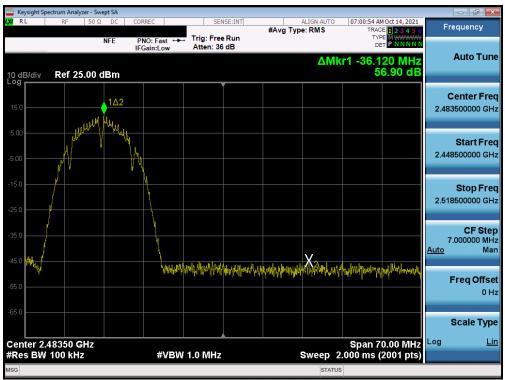
Plot 7-68. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 12)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 59 of 110
© 2021 PCTEST				V 9.0 02/01/2019

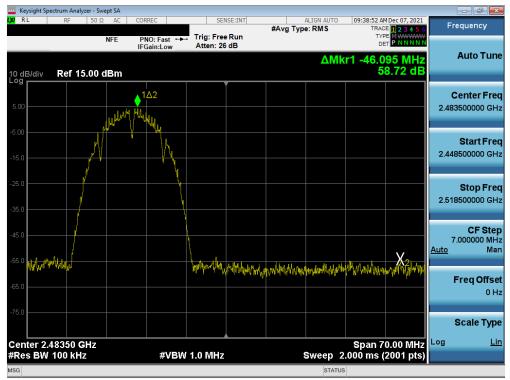


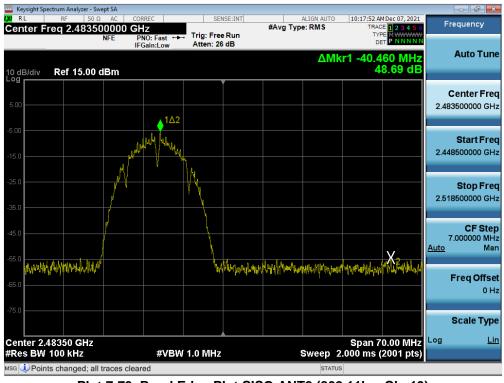
	ectrum Analyzer - Sv										d X
Center F	R⊧ 50 മ req 2.4835		PNO: Fast +	, Trig: Free		#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Dec 07, 2021 DE 1 2 3 4 5 6 PE M WWWWW T P N N N N N	Frequen	ісу
10 dB/div	Ref 15.00	dBm	IFGain:Low	Atten: 26	dB		ΔMk	r1 -12.9	50 MHz 2.57 dB	Auto	Tune
5.00										Cente 2.48350000	
-5.00		mandal	162	West-lassy						Star 2.44850000	t Freq 00 GHz
-25.0										Stop 2.51850000	p Freq 00 GHz
-45.0					X2					CF 7.00000 <u>Auto</u>	= Step 00 MHz Man
-65.0	Mpd.H.M.Moham 4*				475. huhu aquipa	hnykhadtraanhei	hllhur harana hal	Murinanana	manyawa	Freq	Offset 0 Hz
-75.0 Center 2.4	48350 GHz							Span 7	0.00 MHz	Log	e Type <u>Lin</u>
#Res BW	100 kHz		#VBV	/ 1.0 MHz			Sweep 2	.000 ms (2001 pts)		
usg 횢 Poin	ts changed; all	traces cle	eared				STATUS				

Plot 7-69. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) – Ch. 13)

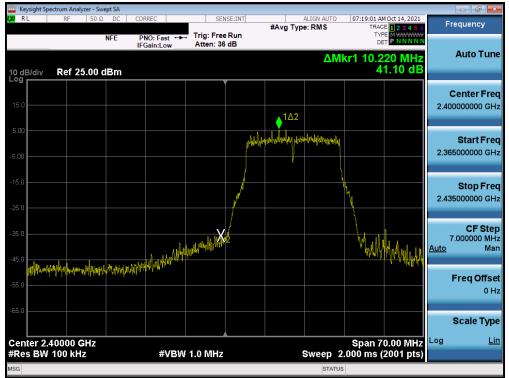

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 60 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 60 of 110
© 2021 PCTEST	•	•		V 9.0 02/01/2019

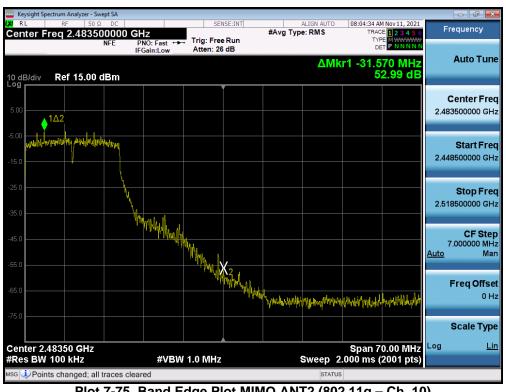
Antenna-2 Conducted Emissions at the Band Edge



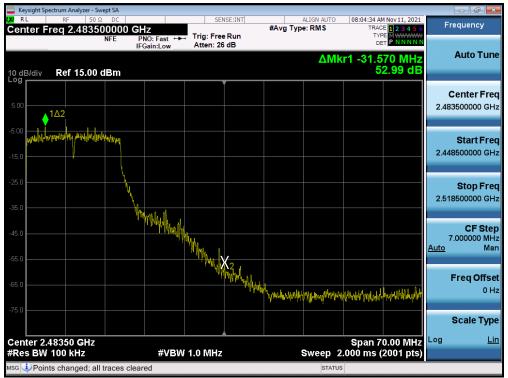

Plot 7-71. Band Edge Plot SISO ANT2 (802.11b - Ch. 11)

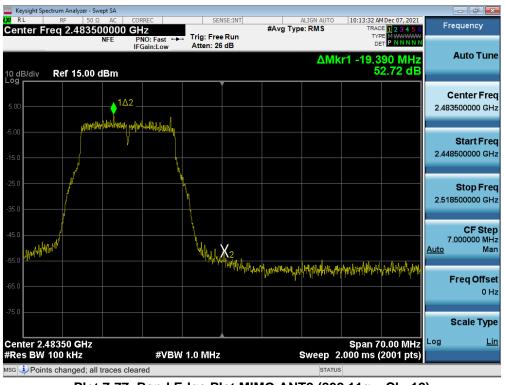
FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 61 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 61 of 110
© 2021 PCTEST	<u>.</u>	•		V 9.0 02/01/2019


Plot 7-72. Band Edge Plot SISO ANT2 (802.11b - Ch. 12)


Plot 7-73. Band Edge Plot SISO ANT2 (802.11b – Ch. 13)

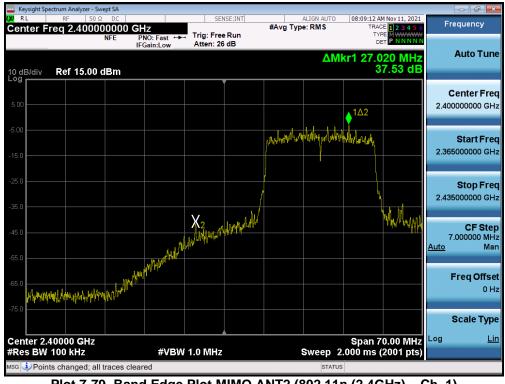
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 62 of 110
© 2021 PCTEST	•		V 9.0 02/01/2019


Plot 7-74. Band Edge Plot MIMO ANT2 (802.11g- Ch. 1)


Plot 7-75. Band Edge Plot MIMO ANT2 (802.11g - Ch. 10)

FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 63 of 110
© 2021 PCTEST			V 9.0 02/01/2019

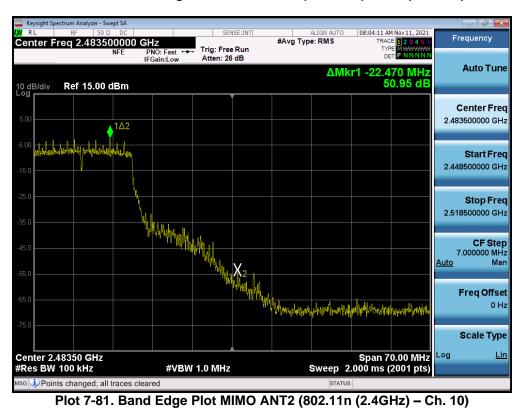
Plot 7-76. Band Edge Plot MIMO ANT2 (802.11g - Ch. 11)


Plot 7-77. Band Edge Plot MIMO ANT2 (802.11g – Ch. 12)

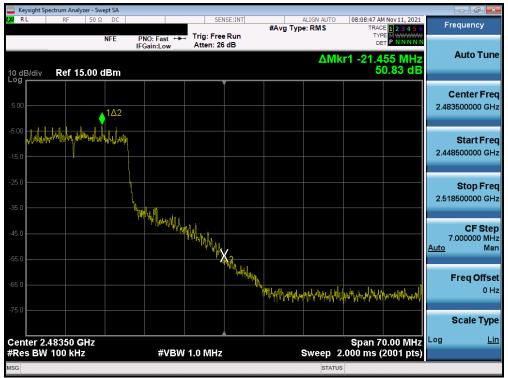
FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 64 of 110
© 2021 PCTEST	•		V 9.0 02/01/2019

🔤 Keysight Sp	ectrum Analyzer - Swept SA									
🗶 RL	RF 50 Ω AC req 2.483500000		SEN	SE:INT	#Avg Typ	ALIGN AUTO		M Dec 07, 2021	Frequenc	y
Center F	NFE NFE	PNO: Fast ++- IFGain:Low	. Trig: Free Atten: 26				TYF			
10 dB/div Log	Ref 15.00 dBm					ΔMł	(r1 -16.4 4	85 MHz 4.99 dB	Auto ⁻	Tune
5.00		▲ 1∆2							Center 2.483500000	
-5.00	hitten	duralited police when peaks	Materia						Start 2.448500000	
-25.0									Stop 2.518500000	
-45.0									CF 7.000000 <u>Auto</u>	Step 0 MHz Man
-55.0	mynddi hogwlegu ^{fer}			WWWWWW	phalphatelling	mymilitate	huhrszentlemelitt	uph which diffe	Freq O	Offset 0 Hz
-75.0									Scale	Type Lin
Center 2.4 #Res BW	48350 GHz 100 kHz	#VBW	(1.0 MHz			Sweep 2	Span 7 2.000 ms (0.00 MHz 2001 pts)	Log	Lin
мsg 🔱 Poin	ts changed; all traces	cleared				STATU	s			

Plot 7-78. Band Edge Plot MIMO ANT2 (802.11g - Ch. 13)


Plot 7-79. Band Edge Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 1)

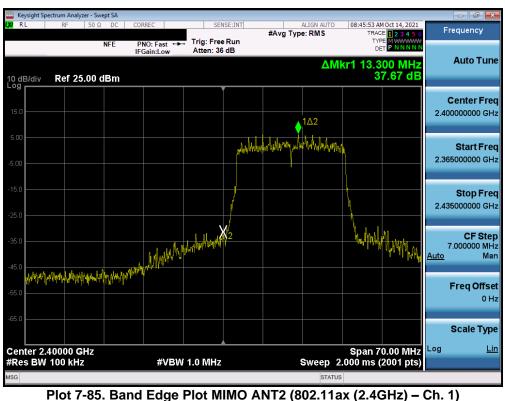
FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 65 of 110
© 2021 PCTEST	•			V 9.0 02/01/2019



Plot 7-80. Band Edge Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 2)

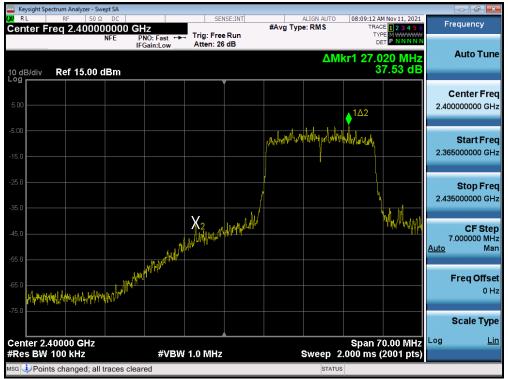


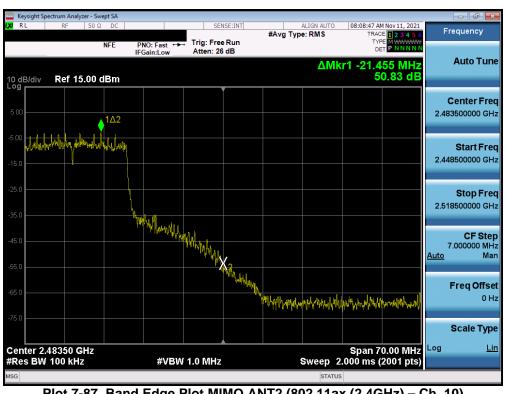
PCTEST 6 MEASUREMENT REPORT SAMSUNG Approved by: FCC ID: A3LSMS906E (CERTIFICATION) Proud to be part of 🚗 e **Technical Manager** EUT Type: Test Report S/N: Test Dates: Page 66 of 110 1M2110010116-07.A3L 09/09/2021 - 12/06/2021 Portable Handset © 2021 PCTEST V 9.0 02/01/2019



FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 67 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 67 01 110
© 2021 PCTEST	•			V 9.0 02/01/2019

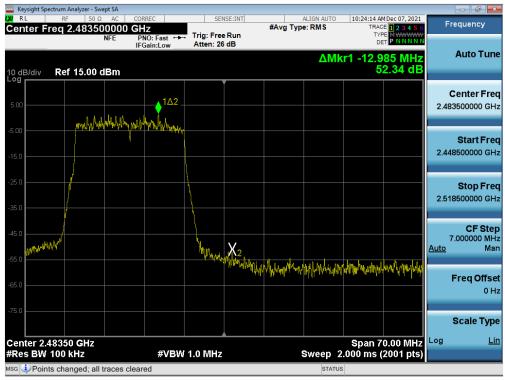
enter Freq 2.483500000 GHz #Avg Type: RMS Trace 1 2 3 4 5 5 Frequency NFE PNO: Fast +++ Trig: Free Run Trig: Free Run Trig: Free Run NFE PNO: Fast +++ Trig: Free Run Trig: Free Run 0 dB/div Ref 15.00 dBm Center Fit O dB/div Ref 15.00 dBm Center Fit		ectrum Analyzer - S									
Δινικι r -r0.390 winz 42.08 dB Center Fi 2.48350000 G 500 1Δ2 1Δ2 1Δ2 160 1Δ2 1Δ2 160 1Δ2 1Δ2 160 1Δ2 1Δ2 1Δ2 160 1Δ2 1Δ2 1Δ2 1Δ2 160 1Δ2 1Δ2 1Δ2 1Δ2 1Δ2 160 1Δ2 1Δ2 1Δ2 1Δ2 1Δ3 1Δ3 1Δ3 1Δ4	enter F		00000	GHz PNO: Fast ↔	. Trig: Free	Run			TRAC	E 1 2 3 4 5 6	Frequency
5.00 1.02	0 dB/div	Ref 15.00	dBm					ΔMk	16.5 xr1 -16.5 4	90 MHz 2.08 dB	Auto Tu
Start Fr 1500 <t< td=""><td>5.00</td><td></td><td></td><td>142</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5.00			142							
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0				1.6. 14.	Nistan Itan						
No.0 No.0 No.0 No.0 No.0 No.0 No.0 No.0 No.0 Freq Offs No.0 Scale Ty Scale Ty			/								
50 Freq Offs 50 Scale Ty enter 2.48350 GHz Span 70.00 MHz						< <mark>2</mark>					7.000000 N
enter 2.48350 GHz Scale Ty	pm/Mp	or Walking and				water hydrighter a	nthumallhuma	ht worker the features	hain hain hain hain hain hain hain hain	aditis.Millang	
Res BW 100 kHz #VBW 1.0 MHz Sweep 2.000 ms (2001 pts)		48350 GHz							Span 7	0.00 MHz	-
	Res BW	100 kHz		#VBW	1.0 MHz			Sweep 2	.000 ms (2001 pts)	


Plot 7-84. Band Edge Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 13)

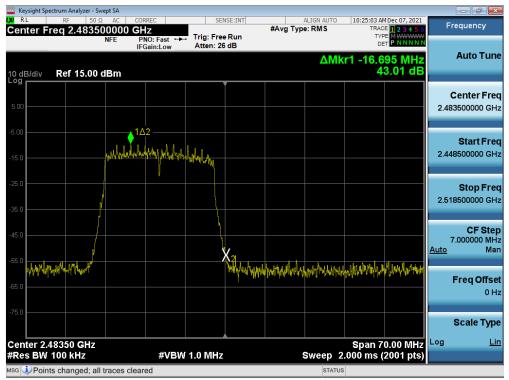

Plot 7-65. Band Edge Plot MIMO ANTZ (602.118x (2.46 mz) = Ch. 1)

FCC ID: A3LSMS906E	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 68 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 68 of 110
© 2021 PCTEST	-	·	V 9.0 02/01/2019

Plot 7-86. Band Edge Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 2)


Plot 7-87. Band Edge Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 10)

FCC ID: A3LSMS906E	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 60 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 69 of 110
© 2021 PCTEST	•		V 9.0 02/01/2019



FCC ID: A3LSMS906E	PCTEST [®] Proud to be part of ® element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Page 70 of 110	
© 2021 PCTEST			V 9.0 02/01/2019	

Plot 7-90. Band Edge Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 13)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 71 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	6/2021 Portable Handset		Page 71 of 110	
© 2021 PCTEST	·	•		V 9.0 02/01/2019	

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n", "ax" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v05r02.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5 ANSI C63.10-2013 – Section 14.3.3 KDB 662911 D01 v02r01 – Section E)3)b)

Test Settings

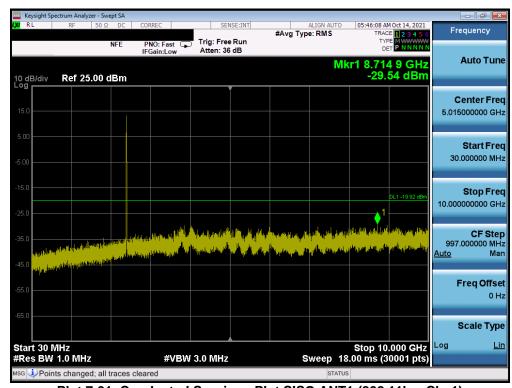
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	2021 - 12/06/2021 Portable Handset		Page 72 of 110
© 2021 PCTEST	·	•		V 9.0 02/01/2019

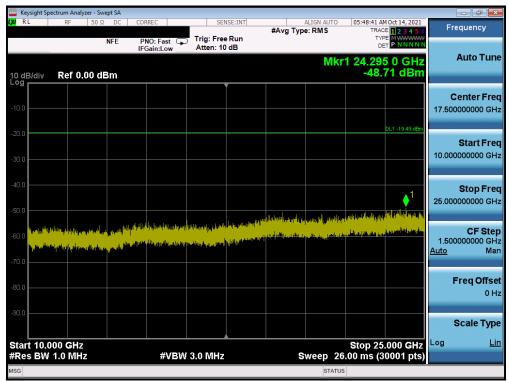


Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)3)b), it was unnecessary to show compliance through the summation of test results of the individual outputs.


FCC ID: A3LSMS906E	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 73 of 110	
© 2021 PCTEST	·	•		V 9.0 02/01/2019	

SISO Antenna-1 Conducted Spurious Emission


Plot 7-92. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 1)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 74 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 74 of 110
© 2021 PCTEST		•		V 9 0 02/01/2019

								alyzer - Swept S			
requency	05:48:19 AM Oct 14, 2021 TRACE 1 2 3 4 5 6	ALIGN AUTO	#Avg Ty	NSE:INT		REC	C COR	50 Ω D	RF	RL	<u>XI</u>
					Trig: Fre Atten: 36	IO: Fast 🕞	PI IFC	NFE			
Auto Tun	r1 4.941 2 GHz -29.05 dBm	Mk					n	25.00 dBr	Ref∶	dB/div	10 c Log
Center Fre											15.0
1000000 011											5.00
Start Fre											5.UI
Stop Fre	DL1 -19.49 dBm										
00000000 GH				1						•	-25.0
CF Ste 7.000000 MH		ha that ta see	"Pertilising the fit		ling Jackson Handl	and the state of the	e outer and	···· totale book		o	-35.0
Ma				7 7 8 9		and the particular of the part	n talintan		ana ang sa	n and the second	-45 (
Freq Offse											
он											-55.0
Scale Typ											
Li	Stop 10.000 GHz								MHz	art 30	Sta
	00 ms (30001 pts)	Sweep 18	Ş		3.0 MHz	#VBW		Hz	/ 1.0 M		
CF 7.00000 Freq 1	Stop 10.000 GHz	Sweep 18	hitetling she ti Degister og f tog			#VBW		Here and the second sec	MHz 1.0 M	o Line o Line D	-55.0 -65.0 Sta #Re

Plot 7-93. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 6)

Plot 7-94. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 6)

FCC ID: A3LSMS906E	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 110	
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset		Page 75 of 110	
© 2021 PCTEST	•	•		V 9.0 02/01/2019	

		Analyzer - Sw											d X
L <mark>XI</mark> RL	RF	50 Ω	DC	COF	REC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Oct 14, 2021	Freque	псу
			NFE	PI IF(NO: Fast 🕞 Sain:Low	Trig: Free Atten: 36				TY D		Auto	o Tune
10 dB/div Log	v Rei	f 25.00 (dBm							-28.	3 9 GHz 59 dBm		
							Ī						er Freq
5.00												5.0150000	00 GHz
5.00													rt Freq
-5.00												30.0000	00 MHz
-15.0											DL1 -18.46 dBm		p Freq
-25.0											1	10.000000	00 GHz
-35.0				, and the pair	alatherine, the	Nutring to A. and	AULA		and the state of the second	اليونين الوراد الس عامي التي يقلع	and a second		F Step
		ala seri andara dalara da Mana seri di Seri da dalar	a la callera	ا _{مور م} اللغانين	and the second s							997.0000 <u>Auto</u>	00 MHz Man
-55.0												Freq	Offset
-65.0													0 Hz
-00.0												Scal	е Туре
Start 30 #Res B		MHz			#VBV	v 3.0 MHz		s	weep 18	Stop 10	.000 GHz 00001 pts)	Log	<u>Lin</u>
MSG									STATUS				

Plot 7-95. Conducted Spurious Plot SISO ANT1 (802.11b - Ch. 11)

Plot 7-96. Conducted Spurious Plot SISO ANT1 (802.11b – Ch. 11)

FCC ID: A3LSMS906E	PCTEST [®] Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 76 of 110
1M2110010116-07.A3L	09/09/2021 - 12/06/2021	Portable Handset	Handset	
© 2021 PCTEST	-			V 9.0 02/01/2019