APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{0}^{a} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Additional information:

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID A3LSMS901E		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	10/08/21 - 12/14/21	Portable Handset			Page 1 of 3
000	A DOTEOT				

Schmid & Partner Engineering AG

S peag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)	
Product No.	SL AAM U16 BC (Batch: 200803-1)	
Manufacturer	SPEAG	

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the KDB 865664 compliance standard.

Ambient Cond	ition 22°C ; 30% humidity	
TSL Temperat	ture 22°C	
Test Date	6-Aug-20	
Operator	CL	
Additional Inf	ormation	
TSL Density		
TSL Heat-cap	acity	

Results

120	Measu	ured		Targe	et	Diff.to Tar	get [%]	15.0	-	-					
[MHz]	e'	0"	sigma	eps	sigma	∆-eps	∆-sigma	10.0		1918	-			0.000	
600	56.3	26.8	0.89	56.1	0.95	0.3	-6.3	%	1.2.2						
750	55.8	22.6	0.94	55.5	0.96	0.5	-2.1	(tivit)							
800	55.7	21.6	0.96	55.3	0.97	0.7	-1.0	E						-	-
825	55.7	21.1	0.97	55.2	0.98	0.8	-1.0		122						
835	55.7	20.9	0.98	55.1	0.99	1.0	-0.5	o.01- De	1000	or Jack	10.10	00100100			
850	55.6	20.7	0.98	55.2	0.99	0.8	-1.0	-15.0	500	1500	2500	3600	4500	550	0
900	55.5	19.9	1.00	55.0	1.05	0.9	-4.8		500	1500	Freque	ancy MHz	4000	550	·
1400	54.7	15.9	1.24	54.1	1.28	1.1	-3.1	15.0	The second second		1. A. A. S.			10.00	
1450	54.6	15.8	1.27	54.0	1.30	1.1	-2.3	10.0	1		100	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19.0	_
1600	54.4	15.3	1.36	53.8	1.39	1.1	-2.2	%			1			17	-
1625	54.4	15.3	1.38	53.8	1.41	1.2	-2.1	Conductivity 0.0 0'5	2	1	1			/	
1640	54.4	15.2	1.39	53.7	1.42	1.3	-2.1	onpus -5.0	Λ.	~	1		/		
1650	54.3	15.2	1.39	53.7	1.43	1.1	-2.8		1-			-			
1700	54.2	15.1	1.43	53.6	1.46	1.2	-2.1	à-10.0	1000	-	Sec.	1200			
1750	54.2	15.0	1.46	53.4	1.49	1.4	-2.0	-15.0	500	1500	2500	3500	4500	550	0
1800	54.1	14.9	1.50	53.3	1.52	1.5	-1.3				Freque	3500 ncy MHz			- -
1810	54.1	14.9	1.51	53.3	1.52	1.5	-0.7	3500	51.4	16.0	3.11	51.3	3.31	0.2	-6.
1825	54.1	14.9	1.52	53.3	1.52	1.5	0.0	3700	51.1	16.2	3.34	51.1	3.55	0.1	-5.
1850	54.0	14.9	1.53	53.3	1.52	1.3	0.7	5200	48.3	18.7	5.42	49.0	5.30	-1.5	2.3
1900	54.0	14.8	1.57	53.3	1.52	1.3	3.3	5250	48.2	18.8	5.50	49.0	5.36	-1.6	2.5
1950	53.9	14.8	1.60	53.3	1.52	1.1	5.3	5300	48.1	18.9	5.57	48.9	5.42	-1.7	2.8
2000	53.8	14.8	1.64	53.3	1.52	0.9	7.9	5500	47.7	19.2	5.86	48.6	5.65	-2.0	3.8
2050	53.8	14.7	1.68	53.2	1.57	1.1	7.0	5600	47.5	19.3	6.01	48.5	5.77	-2.1	4.3
2100	53.7	14.7	1.72	53.2	1.62	1.0	6.2	5700	47.3	19.4	6.16	48.3	5.88	-2.3	4.8
2150	53.7	14.7	1.76	53.1	1.66	1.1	6.0	5800	47.0	19.6	6.32	48.2	6.00	-2.4	5.3
2200	53.6	14.7	1.80	53.0	1.71	1.1	5.3	6000	46.6	19.8	6.62	47.9	6.23	-2.7	6.3
2250	53.5	14.8	1.85	53.0	1.76	1.0	5.1	6500	1.20						
2300	53.5	14.8	1.89	52.9	1.81	1.1	4.4	7000							
2350	53.4	14.8	1.94	52.8	1.85	1.1	4.9	7500							
2400	53.3	14.8	1.98	52.8	1.90	1.0	4.2	8000	1999						
2450	53.3	14.9	2.03	52.7	1.95	1.1	4.1	8500	289						
2500	53.2	14.9	2.07	52.6	2.02	1.1	2.5	9000							
2550	53.1	15.0	2.12	52.6	2.09	1.0	1.4	9500			21.				
			2.17	52.5	2.16	0.9	0.5	10000						1	

Figure C-2 600 – 6000 MHz Body Tissue Equivalent Matter

FCC ID A3LSMS901E	Road to be part of @ element	AR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX C: Page 2 of 3
 10/08/21 - 12/14/21	Portable Handset			. ugo <u>-</u> 0. 0

Schmid & Partner Engin	eer	ng	A
------------------------	-----	----	---

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue	e Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16	BC (Batch: 200805-4)	
Manufacturer	SPEAG		

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Ambient Condition	1 22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	6-Aug-20	
Operator	CL	
Additional Inform	nation	

TSL Heat-capacity

Results

	Measu	ired		Targe	et	Diff.to Tar	get [%]	15.0	-						
[MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0	1	The Martin	a dente	1000 Hours	1	Sale.	
600	44.7	25.7	0.86	42.7	0.88	4.6	-2.5	\$ 5.0							
750	44.1	21.7	0.90	41.9	0.89	5.1	0.7				-	-			
800	44.0	20.7	0.92	41.7	0.90	5.6	2.5	Permittivity 0.0	a d				-		
825	43.9	20.3	0.93	41.6	0.91	5.6	2.6	E -5.0	1000						-
835	43.9	20.1	0.94	41.5	0.91	5.7	3.1	210.0 -15.0		Sec. 10	10.2				
850	43.8	19.9	0.94	41.5	0.92	5.5	2.6			0.0500			500 7500	0500.00	
900	43.7	19.1	0.96	41.5	0.97	5.3	-1.0	2	500 150	0 2500		00 5500 6 ncy MHz	500 7500	8500 95	300
1400	42.7	15.1	1.18	40.6	1.18	5.2	0.0	15.0							
1450	42.6	14.9	1.20	40.5	1.20	5.2	0.0	10.0	SEAN		12	MERICE SI			
1600	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	20		٨	a an		12250		
1625	42.4	14.4	1.30	40.3	1.30	5.3	0.1	5.0 0.0 0.0 0.0		$\boldsymbol{\Lambda}$		-			_
1640	42.4	14.3	1.31	40.3	1.31	5.3	0.3	0.0 Incti	p	/		/			
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	6-5.0					12221103		
1700	42.2	14.2	1.34	40.2	1.34	5.1	-0.2	A10.0	AREAS P				R. Hall	L. B. S.	
1750	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 :	3500 450	00 5500 6	500 7500	8500 95	500
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0				Freque	ncy MHz			2007
1810	42.1	14.0	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.7	~
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.3	2.95	37.7	3.12	3.5	-
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	15.9	4.61	36.0	4.66	1.3	-
1900	41.9	13.8	1.46	40.0	1.40	4.7	4.3	5250	36.4	16.0	4.67	35.9	4.71	1.2	-
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.3	16.0	4.72	35.9	4.76	1.1	-
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0.7	-0
2050	41.7	13.7	1.56	39.9	1.44	4.5	8.0	5600	35.7	16.3	5.07	35.5	5.07	0.5	C
2100	41.7	13.7	1.60	39.8	1.49	4.7	7.5	5700	35.5	16.4	5.19	35.4	5.17	0.3	0
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.4	16.5	5.31	35.3	5.27	0.1	C
2200	41.5	13.6	1.67	39.6	1.58	4.7	5.8	6000	35.0	16.6	5.54	35.1	5.48	-0.2	1
2250	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.1	17.1	6.17	34.5	6.07	-1.1	1
2300	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.2	17.4	6.78	33.9	6.65	-2.0	2
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-2.9	2
2400	41.2	13.6	1.82	39.3	1.76	4.9	3.7	8000	31.5	18.0	8.01	32.7	7.84	-3.8	2
2450	41.2	13.6	1.85	39.2	1.80	5.1	2.8	8500	30.6	18.2	8.63	32.1	8.45	-4.7	2
2500	41.1	13.6	1.89	39.1	1.85	5.0	1.9	9000	29.8	18.4	9.24	31.5	9.08	-5.6	1
2550	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	29.0	18.6	9.84	31.0	9.71	-6.5	1
2600	40.9	13.7	1.98	39.0	1.96	4.8	0.8	10000	28.1	18.8	10.44	30.4	10.36	-7.4	C

Figure C-3 600 – 6000 MHz Head Tissue Equivalent Matter

	FCC ID A3LSMS901E	Road to be part of @ demonst	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	10/08/21 – 12/14/21	Portable Handset			Page 3 of 3
© 202	1 PCTEST				