

TEST REPORT

FCC CA_66B Test for SM-S721U

Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2407-FC042

DATE OF ISSUE July 23, 2024

Tested byJae Ryang Do

Technical Manager Jong Seok Lee

HCT CO., LTD.

Bongjai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2407-FC042

DATE OF ISSUE July 23, 2024

Additional Model SM-S721U1

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Product Name Model Name	Mobile Phone SM-S721U
Model Name	3M-31210
Date of Test	May 16, 2024 ~ July 19, 2024
FCC ID	A3LSMS721U
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, 17383 Republic of Korea)
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Test Standard Used	FCC Rule Part: § 27
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 158

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 23, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 158

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	8
2.1. DESCRIPTION OF EUT	
2.2. MEASURING INSTRUMENT CALIBRATION	8
2.3. TEST FACILITY	8
3. DESCRIPTION OF TESTS	9
3.1 TEST PROCEDURE	9
3.2 RADIATED POWER	
3.3 RADIATED SPURIOUS EMISSIONS	
3.4 PEAK- TO- AVERAGE RATIO	12
3.5 OCCUPIED BANDWIDTH	14
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	
3.7 BAND EDGE	16
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	18
4. LIST OF TEST EQUIPMENT	19
5. MEASUREMENT UNCERTAINTY	20
6. SUMMARY OF TEST RESULTS	21
7. SAMPLE CALCULATION	22
8. TEST DATA(Main 1 Ant)	24
8.1 Conducted Power	27
8.2 Equivalent Isotropic Radiated Power	30
8.3 Conducted Spurious Emissions	33
8.4 Channel Edge	56
8.5 Frequency Stability / Variation Of Ambient Temperature	70
8.6 Radiated Spurious Emissions	76
8.7 Occupied Bandwidth	79
8.8 Peak- to- Average Ratio	85
9. TEST DATA(Sub 5 Ant)	91
9.1 Conducted Power	94
9.2 Equivalent Isotropic Radiated Power	97
9.3 Conducted Spurious Emissions	100
9.4 Channel Edge	123
9.5 Frequency Stability / Variation Of Ambient Temperature	
9.6 Radiated Spurious Emissions	
9.7 Occupied Bandwidth	
9.8 Peak- to- Average Ratio	
10 ANNEX A TEST SETUP PHOTO	

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMS721U
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§ 27
EUT Type:	Mobile phone
Model(s):	SM-S721U
Additional Model(s)	SM-S721U1
	1712.5 - 1777.5: 5 MHz+5 MHz
	1712.8 - 1775.0: 5 MHz+10 MHz
	1715.0 - 1777.2: 10 MHz+5 MHz
Tx Frequency:	1713.0 - 1772.5: 5 MHz+15 MHz
	1717.5 - 1777.0: 15 MHz+5 MHz
	1715.0 - 1775.0: 10 MHz+10 MHz
Date(s) of Tests:	May 16, 2024 ~ July 19, 2024
Cardal manufacture	Radiated: 67d50971e8197ece
Serial number:	Conducted: R3CX506LPYM
LTE CA:	CA 66B (Uplink)

F-TP22-03 (Rev. 06) Page 5 of 158

1.1. MAXIMUM OUTPUT POWER

Main 1 Ant (Antenna A)

Mode	Ty Fraguency		Emission -	EIRP		
(PCC+SCC)	Tx Frequency (MHz)	Modulation	Designator Max. Po		Max. Power (W)	
		QPSK	9M29G7D	23.14	0.206	
E MUZIE MUZ	1712 5 1777 5	16QAM	9M31W7D	22.31	0.170	
5 MHz+5 MHz	1712.5 - 1777.5	64QAM	9M30W7D	20.26	0.106	
		256QAM	9M27W7D	18.14	0.065	
		QPSK	13M9G7D	23.13	0.206	
5 MHz+10 MHz	1712.0 1775.0	16QAM	13M9W7D	22.31	0.170	
2 MHZ+10 MHZ	1712.8 - 1775.0	64QAM	13M8W7D	20.27	0.106	
		256QAM	13M9W7D	18.27	0.067	
		QPSK	13M9G7D	23.28	0.213	
10 MH-15 MH-	1715.0 - 1777.2	16QAM	14M0W7D	22.40	0.174	
10 MHz+5 MHz 1715.0 - 1777.2		64QAM	13M9W7D	20.34	0.108	
	256QAM	13M9W7D	18.43	0.070		
		QPSK	18M3G7D	23.31	0.214	
E MII- : 1E MII-	1712 0 1772 5	16QAM	18M2W7D	22.56	0.180	
5 MHz+15 MHz 1	1713.0 - 1772.5	64QAM	18M2W7D	20.48	0.112	
		256QAM	18M2W7D	18.40	0.069	
		QPSK	18M2G7D	23.20	0.209	
15 MHz+5 MHz	1717.5 - 1777.0	16QAM	18M3W7D	22.25	0.168	
13 MHZ+3 MHZ	1/1/.5 - 1///.0	64QAM	18M3W7D	20.38	0.109	
		256QAM	18M3W7D	18.28	0.067	
		QPSK	18M8G7D	23.14	0.206	
10 MU-, 10 MU-	1715.0 - 1775.0	16QAM	18M8W7D	22.32	0.171	
10 MHz+10 MHz	1115.0 - 1115.0	64QAM	18M8W7D	20.34	0.108	
		256QAM	18M8W7D	18.29	0.067	

F-TP22-03 (Rev. 06) Page 6 of 158

Sub 5 Ant (Antenna F)

Mode	Tx Frequency		Emission		RP
(PCC+SCC)	(MHz)	Modulation	Designator	Max. Power (dBm)	Max. Power (W)
		QPSK	9M27G7D	22.00	0.159
5 MHz+5 MHz	1712.5 - 1777.5	16QAM	9M27W7D	21.27	0.134
S MHZ+S MHZ	1112.5 - 1111.5	64QAM	9M27W7D	19.19	0.083
		256QAM	9M27W7D	16.92	0.049
		QPSK	13M9G7D	21.98	0.158
5 MHz+10 MHz	1712.8 - 1775.0	16QAM	13M9W7D	21.33	0.136
2 MU5+10 MU5	1112.6 - 1115.0	64QAM	13M9W7D	19.17	0.083
		256QAM	13M9W7D	17.10	0.051
		QPSK	13M9G7D	21.99	0.158
10 MHz+5 MHz	1715.0 - 1777.2	16QAM	13M9W7D	21.33	0.136
10 MHZ+5 MHZ 1715.U - 1717.2		64QAM	13M9W7D	19.13	0.082
		256QAM	13M9W7D	17.15	0.052
		QPSK	18M3G7D	21.92	0.156
5 MHz+15 MHz	1713.0 - 1772.5	16QAM	18M3W7D	21.29	0.135
2 MILT+12 MILT	1115.0 - 1112.5	64QAM	18M3W7D	19.12	0.082
		256QAM	18M2W7D	16.99	0.050
		QPSK	18M3G7D	21.81	0.152
15 MHz+5 MHz	1717.5 - 1777.0	16QAM	18M3W7D	21.10	0.129
13 MILITA MILIT	1111.5 - 1111.0	64QAM	18M3W7D	19.03	0.080
		256QAM	18M2W7D	16.82	0.048
		QPSK	18M7G7D	22.08	0.161
10 MHz+10 MHz	1715.0 - 1775.0	16QAM	18M8W7D	21.42	0.139
10 MUZ+10 MUZ	1115.0 - 1115.0	64QAM	18M8W7D	19.14	0.082
		256QAM	18M9W7D	17.12	0.052

F-TP22-03 (Rev. 06) Page 7 of 158

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6, mmWave. It also supports IEEE 802.11 a/b/g/n/ac/ax (20/40/80/160 MHz), Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 06) Page 8 of 158

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 – Section 4.3 - ANSI C63.26-2015 – Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 – Section 5.7 - ANSI C63.26-2015 – Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Isotropic Radiated Power	- ANSI/TIA-603-E-2016 – Section 2.2.17
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 – Section 6.2 - ANSI/TIA-603-E-2016 – Section 2.2.12

F-TP22-03 (Rev. 06) Page 9 of 158

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3. VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 10 of 158

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

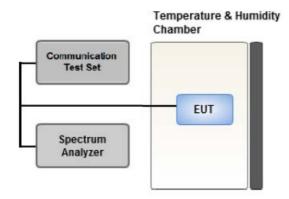
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 11 of 158

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

② Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P Pk.

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P $_{\text{Avg}}$. Determine the P.A.R. from:

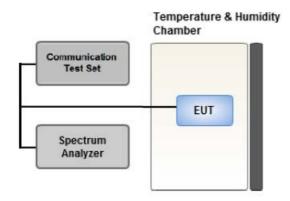
P.A.R (dB) = P Pk (dBm) - P Avg (dBm) (P Avg = Average Power + Duty cycle Factor)

F-TP22-03 (Rev. 06) Page 12 of 158

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span \geq 2 × OBW.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set \geq [10 × (number of points in sweep) × (transmission period)] for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 13 of 158

3.5 OCCUPIED BANDWIDTH.

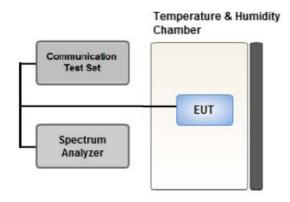
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5 % of the 99 % occupied bandwidth observed in Step 7

F-TP22-03 (Rev. 06) Page 14 of 158

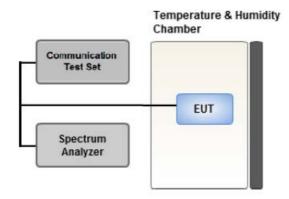
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. $VBW \ge 3 MHz$
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep \geq 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 15 of 158

3.7 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

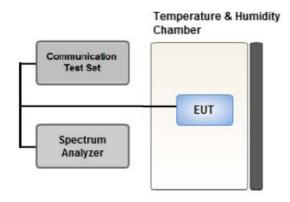
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

F-TP22-03 (Rev. 06) Page 16 of 158

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)


The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by 10 log(1 MHz/ RB) or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 17 of 158

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at $10\,^{\circ}$ C intervals ranging from -30 $^{\circ}$ C to +50 $^{\circ}$ C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 18 of 158

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	FBSR-02B(1.2G HPF+LNA)	T&M SYSTEM	F1L1	12/11/2024	Annual
RF Switching System	FBSR-02B(3.3G HPF+LNA)	T&M SYSTEM	F1L2	12/11/2024	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	KR01009150	04/18/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	03/09/2025	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	03/09/2025	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	08/17/2024	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	09/16/2024	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	09/16/2024	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/17/2024	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	12/11/2024	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMW200A	REOHDE & SCHWARZ	100988	02/26/2025	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 19 of 158

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 20 of 158

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(h)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
Conducted Output Power	§ 2.1046	N/A	PASS
Peak- to- Average Ratio	§ 27.50(d)(5)	<13 dB	PASS
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	
Equivalent Isotropic Radiated Power	§ 27.50(d)(4)	< 1 Watts max. EIRP	PASS	
Radiated Spurious and	§ 2.1053,	< 43 + 10log10 (P[Watts]) for	PASS	
Harmonic Emissions	§ 27.53(h)	all out-of band emissions		

F-TP22-03 (Rev. 06) Page 21 of 158

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch./ Freq.		Measured	Substitute	Ant. Gain	CI	Dol	ERP	
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	C.L Pol.		dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	CI	Del	EII	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 22 of 158

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 23 of 158

8. TEST DATA(Main 1 Ant)

Test Overview

The EUT is set up to transmit two contiguous LTE channels. The power level of both carriers and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Note

- 1. All tests were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth.
- 2. Channel bandwidth is shown in the tables below based only on the channel bandwidths that were supported in this device.

Channel Bandwidth (PCC)	Channel Bandwidth (SCC)	Maximum aggregated bandwidth (MHz)
5	5	10
5	10	15
10	5	15
5	15	20
15	5	20
10	10	20

F-TP22-03 (Rev. 06) Page 24 of 158

- 3. All modes of operation were investigated and the worst case configuration results are reported in this section. Please refer to the table below.
- Worst case(Conducted Spurious Emissions, Band Edge)
- : We have selected higher of the Conduction Output Power.
- Worst case(Radiated Spurious Emissions): We have selected higher of the EIRP.
- Worst case(OBW, PAR, Frequency stability)
- : All modes of operation were investigated and the worst case configuration results are reported.
- 4. All modes of operation were investigated and the worst case configuration results are reported.

Mode: Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)

Worst case: Stand alone

- 5. All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.
 - Therefore, only the worst case(stand-alone) results were reported
- 6. All 3 channels(low/mid/high) of conducted power and radiated power were investigated and the worst case channel results are reported.

[Worst case]

Took		Onerstina			PCC					SCC		
Test Description	Mod	Operating frequency	BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset	BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset
		Low	10	1715.0	132022	1	49	5	1722.2	132094	1	0
		Mid	5	1752.6	132398	1	24	5	1757.4	132446	1	0
		High	10	1765.1	132523	1	49	10	1775.0	132622	1	0
Conducted		Low	10	1715.0	132022	1	0	5	1722.2	132094	1	24
Spurious		Mid	5	1752.6	132398	1	0	5	1757.4	132446	1	24
Emissions/	QPSK	High	10	1765.1	132523	1	0	10	1775.0	132622	1	49
Band		Low	5	1712.5	131997	25	0	5	1717.3	132045	25	0
Edge		Mid	10	1752.5	132397	50	0	5	1759.7	132469	25	0
		High	10	1765.1	132523	50	0	10	1775.0	132622	50	0
		Low	10	1715.0	132022	50	0	10	1724.9	132121	50	0
		Mid	10	1750.1	132373	50	0	10	1760.0	132472	50	0
Radiated		Low	5	1712.5	131997	1	24	5	1717.3	132045	1	0
Spurious	QPSK	Mid	5	1748.1	132353	1	24	15	1757.4	132446	1	0
Emissions		High	5	1763.2	132504	1	24	15	1772.5	132597	1	0

F-TP22-03 (Rev. 06) Page 25 of 158

[Worst case]

T 4		0			PCC					SCC		
Test Description	Mod	Operating frequency	BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset	BW (MHz)	Freq. (MHz)	Ch.	RB	RB Offset
			5	1752.6	132398	25	0	5	1757.4	132446	25	0
	QPSK,		5	1750.3	132375	25	0	10	1757.5	132447	50	0
OBW,	16QAM,	N4: 1	10	1752.5	132397	50	0	5	1759.7	132469	25	0
PAR	64QAM 256QAM	Mid	5	1748.1	132353	25	0	15	1757.4	132446	75	0
			15	1752.6	132398	75	0	5	1761.9	132491	25	0
			10	1750.1	132373	50	0	10	1760.0	132472	50	0
			5	1712.5	131997	25	0	5	1717.3	132045	25	0
		Low	10	1715.0	132022	50	0	5	1722.2	132094	25	0
Frequency stability	QPSK -	Low	15	1717.5	132047	75	0	5	1726.8	132140	25	0
			5	1772.7	132599	25	0	5	1777.5	132647	25	0
		High	10	1770.0	132572	50	0	5	1777.2	132644	25	0
			15	1767.7	132549	75	0	5	1777.0	132642	25	0

F-TP22-03 (Rev. 06) Page 26 of 158

8.1 Conducted Power

			PCC					scc			Conducted.
Operating frequency	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Power [dBm]
	5	1712.5	131997	1	24	5	1717.3	132045	1	0	24.35
	5	1712.8	132000	1	24	10	1720.0	132072	1	0	24.29
•	10	1715.0	132022	1	49	5	1722.2	132094	1	0	24.54
Low	5	1713.0	132002	1	24	15	1722.3	132095	1	0	24.34
	15	1717.5	132047	1	74	5	1726.8	132140	1	0	24.48
	10	1715.0	132022	1	49	10	1724.9	132121	1	0	24.50
	5	1752.6	132398	1	24	5	1757.4	132446	1	0	24.66
	5	1750.3	132375	1	24	10	1757.5	132447	1	0	24.57
	10	1752.5	132397	1	49	5	1759.7	132469	1	0	24.57
Mid	5	1748.1	132353	1	24	15	1757.4	132446	1	0	24.55
	15	1752.6	132398	1	74	5	1761.9	132491	1	0	24.56
	10	1750.1	132373	1	49	10	1760.0	132472	1	0	24.58
	5	1772.7	132599	1	24	5	1777.5	132647	1	0	24.55
	5	1767.8	132550	1	24	10	1775.0	132622	1	0	24.51
	10	1770.0	132572	1	49	5	1777.2	132644	1	0	24.51
High	5	1763.2	132504	1	24	15	1772.5	132597	1	0	24.48
	15	1767.7	132549	1	74	5	1777.0	132642	1	0	24.50
	10	1765.1	132523	1	49	10	1775.0	132622	1	0	24.67

Note:

Modulation: QPSK(1RB)

F-TP22-03 (Rev. 06) Page 27 of 158

			PCC					scc			Conducted.
Operating frequency	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Power [dBm]
	5	1712.5	131997	25	0	5	1717.3	132045	25	0	22.53
	5	1712.8	132000	25	0	10	1720.0	132072	50	0	22.50
	10	1715.0	132022	50	0	5	1722.2	132094	25	0	22.24
Low	5	1713.0	132002	25	0	15	1722.3	132095	75	0	22.43
	15	1717.5	132047	75	0	5	1726.8	132140	25	0	22.52
	10	1715.0	132022	50	0	10	1724.9	132121	50	0	22.50
	5	1752.6	132398	25	0	5	1757.4	132446	25	0	22.58
	5	1750.3	132375	25	0	10	1757.5	132447	50	0	22.57
Mid	10	1752.5	132397	50	0	5	1759.7	132469	25	0	22.63
міа	5	1748.1	132353	25	0	15	1757.4	132446	75	0	22.62
	15	1752.6	132398	75	0	5	1761.9	132491	25	0	22.55
	10	1750.1	132373	50	0	10	1760.0	132472	50	0	22.60
	5	1772.7	132599	25	0	5	1777.5	132647	25	0	22.56
	5	1767.8	132550	25	0	10	1775.0	132622	50	0	22.59
111-1-	10	1770.0	132572	50	0	5	1777.2	132644	25	0	22.55
High	5	1763.2	132504	25	0	15	1772.5	132597	75	0	22.61
	15	1767.7	132549	75	0	5	1777.0	132642	25	0	22.57
	10	1765.1	132523	50	0	10	1775.0	132622	50	0	22.66

Note:

Modulation : QPSK(Full RB)

F-TP22-03 (Rev. 06) Page 28 of 158

			PCC					scc			Conducted.
Operating frequency	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Power [dBm]
Low	10	1715.0	132022	1	49	5	1722.2	132094	1	0	23.81
Mid	5	1752.6	132398	1	24	5	1757.4	132446	1	0	24.05
High	10	1765.1	132523	1	49	10	1775.0	132622	1	0	23.99
Low	5	1712.5	131997	25	0	5	1717.3	132045	25	0	21.54
Mid	10	1752.5	132397	50	0	5	1759.7	132469	25	0	21.64
High	10	1765.1	132523	50	0	10	1775.0	132622	50	0	21.44

Note:

Modulation: 16QAM

			PCC					Conducted.			
Operating frequency	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Power [dBm]
Low	10	1715.0	132022	1	49	5	1722.2	132094	1	0	21.60
Mid	5	1752.6	132398	1	24	5	1757.4	132446	1	0	21.67
High	10	1765.1	132523	1	49	10	1775.0	132622	1	0	21.76
Low	5	1712.5	131997	25	0	5	1717.3	132045	25	0	21.45
Mid	10	1752.5	132397	50	0	5	1759.7	132469	25	0	21.60
High	10	1765.1	132523	50	0	10	1775.0	132622	50	0	21.62

Note:

Modulation: 64QAM

			PCC					scc			Conducted.
Operating frequency	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Power [dBm]
Low	10	1715.0	132022	1	49	5	1722.2	132094	1	0	19.63
Mid	5	1752.6	132398	1	24	5	1757.4	132446	1	0	19.60
High	10	1765.1	132523	1	49	10	1775.0	132622	1	0	19.69
Low	5	1712.5	131997	25	0	5	1717.3	132045	25	0	19.42
Mid	10	1752.5	132397	50	0	5	1759.7	132469	25	0	19.63
High	10	1765.1	132523	50	0	10	1775.0	132622	50	0	19.56

Note:

Modulation: 256QAM

F-TP22-03 (Rev. 06) Page 29 of 158

8.2 Equivalent Isotropic Radiated Power

		PCC			scc				Ant.			E.I.	R.P
	BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset	Measured Level (dBm)	Substitute Level (dBm)	Gain (dBi)	C.L	Pol.	w	dBm
	5	131997	1/24	5	132045	1/0	-18.58	15.04	9.98	2.23	Н	0.190	22.78
	5	132000	1/24	10	132072	1/0	-18.91	14.71	9.98	2.23	Н	0.176	22.45
Low	10	132022	1/49	5	132094	1/0	-19.16	14.35	10.01	2.22	Н	0.164	22.14
LOW	5	132002	1/24	15	132095	1/0	-18.77	14.74	10.01	2.22	Н	0.179	22.53
	15	132047	1/74	5	132140	1/0	-18.87	14.64	10.01	2.22	Н	0.175	22.43
	10	132022	1/49	10	132121	1/0	-19.24	14.27	10.01	2.22	Н	0.161	22.06
	5	132398	1/24	5	132446	1/0	-18.55	15.13	10.18	2.17	Н	0.206	23.14
	5	132375	1/24	10	132447	1/0	-18.56	15.12	10.18	2.17	Н	0.206	23.13
Mid	10	132397	1/49	5	132469	1/0	-18.41	15.27	10.18	2.17	Н	0.213	23.28
міа	5	132353	1/24	15	132446	1/0	-18.42	15.29	10.17	2.15	Н	0.214	23.31
	15	132398	1/74	5	132491	1/0	-18.46	15.19	10.19	2.18	Н	0.209	23.20
	10	132373	1/49	10	132472	1/0	-18.55	15.13	10.18	2.17	Н	0.206	23.14
	5	132599	1/24	5	132647	1/0	-18.85	14.80	10.21	2.25	Н	0.189	22.76
	5	132550	1/24	10	132622	1/0	-18.93	14.68	10.20	2.23	Н	0.184	22.65
11:	10	132572	1/49	5	132644	1/0	-18.89	14.76	10.21	2.25	Н	0.187	22.72
High	5	132504	1/24	15	132597	1/0	-18.42	15.19	10.20	2.23	Н	0.207	23.16
	15	132549	1/74	5	132642	1/0	-18.90	14.71	10.20	2.23	Н	0.185	22.68
	10	132523	1/49	10	132622	1/0	-18.88	14.73	10.20	2.23	Н	0.186	22.70

Note:

Modulation : QPSK
 Limit : < 1 Watts

F-TP22-03 (Rev. 06) Page 30 of 158

	PCC			scc							E.I.	R.P
BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset	Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	w	dBm
5	131997	1/24	5	132045	1/0	-19.28	14.34	9.98	2.23	Н	0.162	22.08
5	132398	1/24	5	132446	1/0	-19.38	14.30	10.18	2.17	Н	0.170	22.31
5	132375	1/24	10	132447	1/0	-19.38	14.30	10.18	2.17	Н	0.170	22.31
10	132397	1/49	5	132469	1/0	-19.29	14.39	10.18	2.17	Н	0.174	22.40
5	132353	1/24	15	132446	1/0	-19.17	14.54	10.17	2.15	Н	0.180	22.56
15	132398	1/74	5	132491	1/0	-19.41	14.24	10.19	2.18	Н	0.168	22.25
10	132373	1/49	10	132472	1/0	-19.37	14.31	10.18	2.17	Н	0.171	22.32
5	132504	1/24	15	132597	1/0	-19.64	13.97	10.20	2.23	Н	0.156	21.94

Note:

Modulation: 16QAM
 Limit: < 1 Watts

	PCC			scc							E.I.	R.P
BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset	Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	w	dBm
5	131997	1/24	5	132045	1/0	-21.24	12.38	9.98	2.23	Н	0.103	20.12
5	132398	1/24	5	132446	1/0	-21.43	12.25	10.18	2.17	Н	0.106	20.26
5	132375	1/24	10	132447	1/0	-21.42	12.26	10.18	2.17	Н	0.106	20.27
10	132397	1/49	5	132469	1/0	-21.35	12.33	10.18	2.17	Н	0.108	20.34
5	132353	1/24	15	132446	1/0	-21.25	12.46	10.17	2.15	Н	0.112	20.48
15	132398	1/74	5	132491	1/0	-21.28	12.37	10.19	2.18	Н	0.109	20.38
10	132373	1/49	10	132472	1/0	-21.35	12.33	10.18	2.17	Н	0.108	20.34
5	132504	1/24	15	132597	1/0	-21.68	11.93	10.20	2.23	Н	0.098	19.90

Note:

Modulation: 64QAM
 Limit: < 1 Watts

F-TP22-03 (Rev. 06) Page 31 of 158

PCC			SCC								E.I.R.P	
BW [MHz]	Channel	RB/ Offset	BW [MHz]	Channel	RB/ Offset	Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	w	dBm
5	131997	1/24	5	132045	1/0	-23.38	10.24	9.98	2.23	Н	0.063	17.98
5	132398	1/24	5	132446	1/0	-23.55	10.13	10.18	2.17	Н	0.065	18.14
5	132375	1/24	10	132447	1/0	-23.42	10.26	10.18	2.17	Н	0.067	18.27
10	132397	1/49	5	132469	1/0	-23.26	10.42	10.18	2.17	Н	0.070	18.43
5	132353	1/24	15	132446	1/0	-23.33	10.38	10.17	2.15	Н	0.069	18.40
15	132398	1/74	5	132491	1/0	-23.38	10.27	10.19	2.18	Н	0.067	18.28
10	132373	1/49	10	132472	1/0	-23.40	10.28	10.18	2.17	Н	0.067	18.29
5	132504	1/24	15	132597	1/0	-23.70	9.91	10.20	2.23	Н	0.061	17.88

Note:

Modulation: 256QAM
 Limit: < 1 Watts

F-TP22-03 (Rev. 06) Page 32 of 158

8.3 Conducted Spurious Emissions

Operating frequency		PC	cc		scc				Measurement		Measurement	
	BW [MHz]	Ch.	Freq. (MHz)	RB/ Offset	BW [MHz]	Ch.	Freq. RB/ Frequency (MHz) Offset (GHz)		Factor (dB)	Maximum Data (dBm)	Result (dBm)	
Low	10	132022	1715.0	1/49	5	132094	1722.2	1/0	3.8101	27.976	-75.84	-47.86
Mid	5	132398	1752.6	1/24	5	132446	1757.4	1/0	8.8654	28.591	-76.13	-47.54
High	10	132523	1765.1	1/49	10	132622	1775.0	1/0	8.8500	28.591	-76.25	-47.66
Low	10	132022	1715.0	1/0	5	132094	1722.2	1/24	9.7039	28.591	-76.13	-47.54
Mid	5	132398	1752.6	1/0	5	132446	1757.4	1/24	8.2936	28.591	-75.94	-47.35
High	10	132523	1765.1	1/0	10	132622	1775.0	1/49	4.9228	27.976	-75.86	-47.89
Low	5	131997	1712.5	25/0	5	132045	1717.3	25/0	4.0330	27.976	-75.46	-47.48
Mid	10	132397	1752.5	50/0	5	132469	1759.7	25/0	3.7802	27.976	-75.98	-48.00
High	10	132523	1765.1	50/0	10	132622	1775.0	50/0	4.8998	27.976	-75.89	-47.91
Low	10	132022	1715.0	50/0	10	132121	1724.9	50/0	8.8535	28.591	-75.30	-46.71
Mid	10	132373	1750.1	50/0	10	132472	1760.0	50/0	6.0150	28.591	-75.94	-47.35

Note:

1. Modulation: QPSK

2. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter

3. Factors for frequency:

Frequency Range (GHz)	Factor [dB]					
0.03 – 1	25.270					
1 - 5	27.976					
5 – 10	28.591					
10 – 15	29.116					
15 – 20	29.489					
Above 20(26.5)	30.131					

4. Limit: -13.0 dBm

F-TP22-03 (Rev. 06) Page 33 of 158

Frequency Range: 30 MHz ~ 10 GHz

PCC 10MHz Ch132523 RB50 Offset0 SCC 10MHz Ch132622 RB50 Offset0

F-TP22-03 (Rev. 06) Page 34 of 158

Spectrum Analyzer 1 Swept SA ø Frequency Input Z: 50 Ω PNO: Fast Gate: Off IF Gain. Low Sig Track: Off #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 8.850 0 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -76.253 dBm Ref Level 6.00 dBm Swept Span Zero Span Log **◊2** Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 8.850 0 GHz Ν -76.25 dBm Freq Offset 3 4 Ν 1.769 3 GHz -3.632 dBm 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:05:36 PM

PCC 10MHz Ch132523 RB1 Offset49 SCC 10MHz Ch132622 RB1 Offset0

F-TP22-03 (Rev. 06) Page 35 of 158

PCC 10MHz Ch132523 RB1 Offset0 SCC 10MHz Ch132622 RB1 Offset49

F-TP22-03 (Rev. 06) Page 36 of 158

Spectrum Analyzer 1 Swept SA ø Frequency PNO: Fast Gate: Off IF Gain. Low Sig Track: Off Input Z: 50 Ω #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 3.780 2 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.978 dBm Ref Level 6.00 dBm Swept Span Zero Span Log **⊘**2 Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 3.780 2 GHz Ν -75.98 dBm Freq Offset 1.750 8 GHz -13.99 dBm 3 4 Ν 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:14:53 PM

PCC 10MHz Ch132397 RB50 Offset0 SCC 5MHz Ch132469 RB25 Offset0

F-TP22-03 (Rev. 06) Page 37 of 158

Spectrum Analyzer 1 Swept SA ø Frequency PNO: Fast Gate: Off IF Gain. Low Sig Track: Off Input Z: 50 Ω #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz ANNNNN ĻXI Mkr1 6.015 0 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.938 dBm Ref Level 6.00 dBm Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 6.015 0 GHz -75.94 dBm Ν Freq Offset 3 4 Ν 1.751 3 GHz -15.60 dBm 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:19:39 PM

PCC 10MHz Ch132373 RB50 Offset0 SCC 10MHz Ch132472 RB50 Offset0

F-TP22-03 (Rev. 06) Page 38 of 158

X Axis Scale Log Lin

Spectrum Analyzer 1 Swept SA ø Frequency PNO: Fast Gate: Off IF Gain. Low Sig Track: Off Input Z: 50 Ω #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 8.853 5 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.301 dBm Ref Level 6.00 dBm Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 8.853 5 GHz -75.30 dBm Ν Freq Offset -15.84 dBm 3 4 Ν 1.711 9 GHz 0 Hz Local

Jul 04, 2024 4:17:57 PM

PCC 10MHz Ch132022 RB50 Offset0 SCC 10MHz Ch132121 RB50 Offset0

F-TP22-03 (Rev. 06) Page 39 of 158

Spectrum Analyzer 1 Swept SA ø Frequency PNO: Fast Gate: Off IF Gain. Low Sig Track: Off Input Z: 50 Ω #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 3.810 1 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.836 dBm Ref Level 6.00 dBm Swept Span Zero Span Log **⊘**2 Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 3.810 1 GHz -75.84 dBm Ν Freq Offset 3 4 Ν 1.719 4 GHz -4.426 dBm 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:02:25 PM

PCC 10MHz Ch132022 RB1 Offset49 SCC 5MHz Ch132094 RB1 Offset0

F-TP22-03 (Rev. 06) Page 40 of 158

PCC 10MHz Ch132022 RB1 Offset0 SCC 5MHz Ch132094 RB1 Offset24

F-TP22-03 (Rev. 06) Page 41 of 158

Spectrum Analyzer 1 Swept SA ø Frequency Input Z: 50 Ω PNO: Fast Gate: Off IF Gain. Low Sig Track: Off #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 8.865 4 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -76.133 dBm Ref Level 6.00 dBm Swept Span Zero Span Log \Diamond 2 Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 8.865 4 GHz Ν -76.13 dBm Freq Offset 3 4 Ν 1.751 3 GHz -20.00 dBm 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:04:10 PM

PCC 5MHz Ch132398 RB1 Offset24 SCC 5MHz Ch132446 RB1 Offset0

F-TP22-03 (Rev. 06) Page 42 of 158

Local

X Axis Scale Log Lin

Spectrum Analyzer 1 Swept SA ø Frequency Input Z: 50 Ω PNO: Fast Gate: Off IF Gain. Low Sig Track: Off #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 8.293 6 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.942 dBm Ref Level 6.00 dBm Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 8.293 6 GHz -75.94 dBm Ν Freq Offset 1.750 3 GHz 3 4 Ν -13.32 dBm 0 Hz

Jul 04, 2024 4:10:07 PM

PCC 5MHz Ch132398 RB1 Offset0 SCC 5MHz Ch132446 RB1 Offset24

F-TP22-03 (Rev. 06) Page 43 of 158

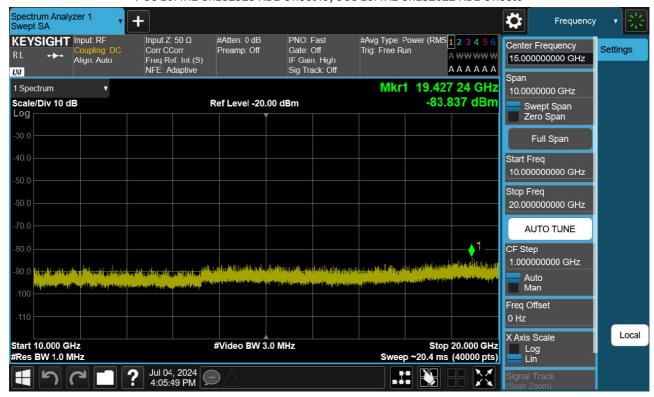
Spectrum Analyzer 1 Swept SA ø Frequency Input Z: 50 Ω PNO: Fast Gate: Off IF Gain. Low Sig Track: Off #Atten: 16 dB Preamp: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run KEYSIGHT Input: RF Center Frequency Settings Corr CCorr Freq Ref. Int (S) NFE: Adaptive Align. Auto 5.015000000 GHz AAAAAA ĻXI Mkr1 4.033 0 GHz 1 Spectrum 9.97000000 GHz Scale/Div 10 dB -75.458 dBm Ref Level 6.00 dBm Swept Span Zero Span Log Full Span Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz **AUTO TUNE** Start 30 MHz #Res BW 1.0 MHz #Video BW 3.0 MHz Stop 10.000 GHz Sweep ~18.7 ms (20001 pts) CF Step 997.000000 MHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 4.033 0 GHz -75.46 dBm Ν Freq Offset 3 4 Ν 1.711 4 GHz -19.36 dBm 0 Hz Local X Axis Scale Log Lin

Jul 04, 2024 4:12:58 PM

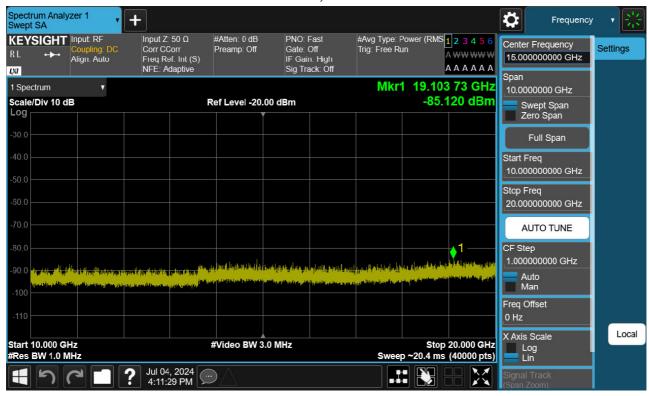
PCC 5MHz Ch131997 RB25 Offset0 SCC 5MHz Ch132045 RB25 Offset0

F-TP22-03 (Rev. 06) Page 44 of 158

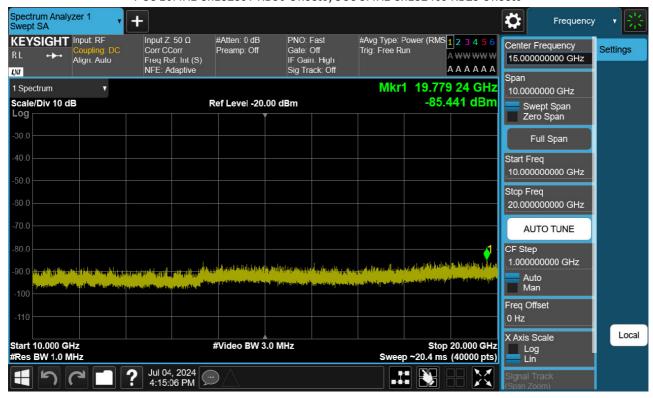
Frequency Range: 10 GHz ~ 20 GHz


PCC 10MHz Ch132523 RB50 Offset0, SCC 10MHz Ch132622 RB50 Offset0

F-TP22-03 (Rev. 06) Page 45 of 158


PCC 10MHz Ch132523 RB1 Offset49, SCC 10MHz Ch132622 RB1 Offset0

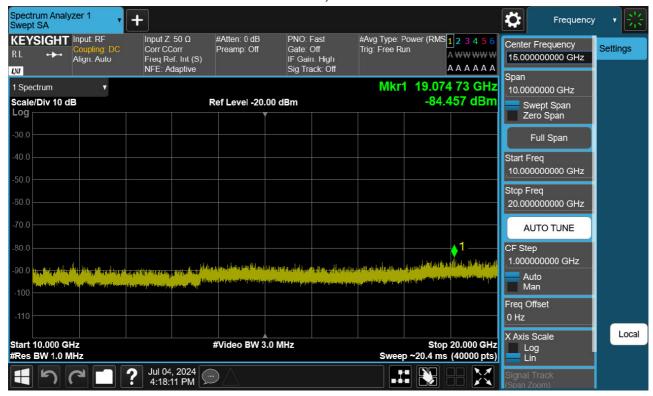
F-TP22-03 (Rev. 06) Page 46 of 158


PCC 10MHz Ch132523 RB1 Offset0, SCC 10MHz Ch132622 RB1 Offset49

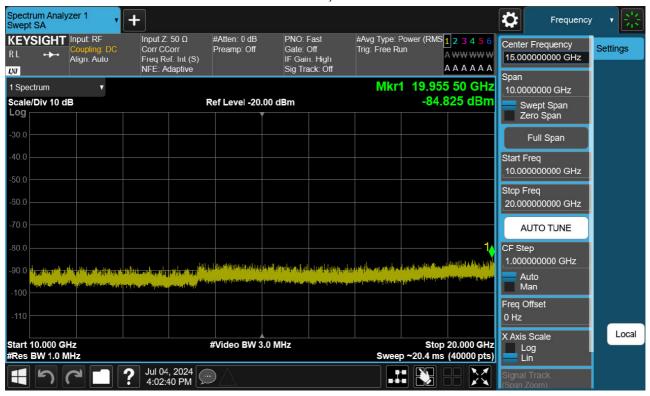
F-TP22-03 (Rev. 06) Page 47 of 158

PCC 10MHz Ch132397 RB50 Offset0, SCC 5MHz Ch132469 RB25 Offset0

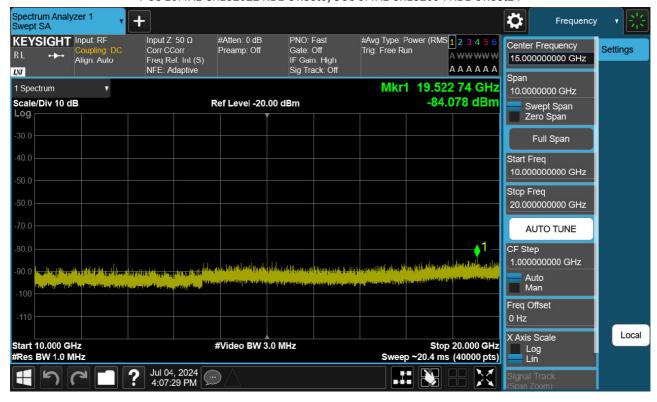
F-TP22-03 (Rev. 06) Page 48 of 158


PCC 10MHz Ch132373 RB50 Offset0, SCC 10MHz Ch132472 RB50 Offset0

F-TP22-03 (Rev. 06) Page 49 of 158


PCC 10MHz Ch132022 RB50 Offset0, SCC 10MHz Ch132121 RB50 Offset0

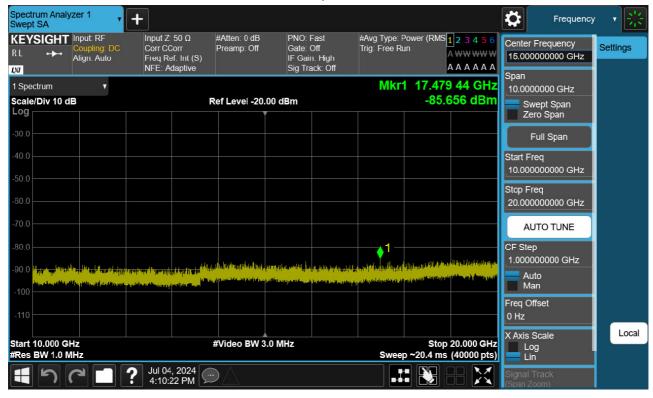
F-TP22-03 (Rev. 06) Page 50 of 158


PCC 10MHz Ch132022 RB1 Offset49, SCC 5MHz Ch132094 RB1 Offset0

F-TP22-03 (Rev. 06) Page 51 of 158

PCC 10MHz Ch132022 RB1 Offset0, SCC 5MHz Ch132094 RB1 Offset24

F-TP22-03 (Rev. 06) Page 52 of 158


PCC 5MHz Ch132398 RB1 Offset24, SCC 5MHz Ch132446 RB1 Offset0

F-TP22-03 (Rev. 06) Page 53 of 158

PCC 5MHz Ch132398 RB1 Offset0, SCC 5MHz Ch132446 RB1 Offset24

F-TP22-03 (Rev. 06) Page 54 of 158

PCC 5MHz Ch131997 RB25 Offset0, SCC 5MHz Ch132045 RB25 Offset0

F-TP22-03 (Rev. 06) Page 55 of 158

8.4 Channel Edge

Highest Channel_PCC 10MHz Ch132523 RB1 Offset0 SCC 10MHz Ch132622 RB1 Offset49(1)

F-TP22-03 (Rev. 06) Page 56 of 158

Highest Channel_PCC 10MHz Ch132523 RB1 Offset0 SCC 10MHz Ch132622 RB1 Offset49(2)

F-TP22-03 (Rev. 06) Page 57 of 158

Highest Channel_PCC 10MHz Ch132523 RB1 Offset49 SCC 10MHz Ch132622 RB1 Offset0(1)

F-TP22-03 (Rev. 06) Page 58 of 158