

TEST REPORT

FCC BT LE Test for SM-S721B/DS Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2407-FC079

DATE OF ISSUE July 24, 2024

> Tested by Jin Gwan Lee

Technical Manager Jong Seok Lee

Mrzy A.

F-TP22-03(Rev.06)

The report shall not be (partly) reproduced except in full without approval of the laboratory. **HCT CO., LTD.** 2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

1/84

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

T E S T R E P O R T	REPORT NO. HCT-RF-2407-FC079 DATE OF ISSUE July 24, 2024 Additional Model SM-S721B
Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Product Name Model Name	Mobile Phone SM-S721B/DS
FCC ID	A3LSMS721B
Average Output Power	Ant.1: 16.26 dBm (42.30 mW) Ant.2: 14.49 dBm (28.15 mW) Dual Ant.1+ Ant.2: 14.55 dBm (28.48 mW)
Date of Test	June 03, 2024 ~ July 23, 2024
FCC Classification	Digital Transmission System(DTS)
Test Standard Used	FCC Rule Part(s): Part 15.247
Test Results	PASS
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi- do, Republic of Korea)

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 24, 2024	Initial Release

Notice

Content

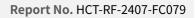
Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *. Information provided by the applicant is marked **. Test results provided by external providers are marked ***.


When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

CONTENTS

1. EUT DESCRIPTION	5
ANTENNA CONFIGURATIONS	6
2. TEST METHODOLOGY	7
EUT CONFIGURATION	7
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	8
3. INSTRUMENT CALIBRATION	8
4. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
5. ANTENNA REQUIREMENTS	9
6. MEASUREMENT UNCERTAINTY	9
7. DESCRIPTION OF TESTS	10
8. SUMMARY TEST OF RESULTS	26
9. TEST RESULT	27
9.1 DUTY CYCLE	27
9.2 6 dB BANDWIDTH	30
9.3 OUTPUT POWER	38
9.4 POWER SPECTRAL DENSITY	45
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	51
9.6 RADIATED SPURIOUS EMISSIONS	57
9.7 RADIATED RESTRICTED BAND EDGES	73
9.8 POWERLINE CONDUCTED EMISSIONS	79
10. LIST OF TEST EQUIPMENT	81
11. ANNEX A_ TEST SETUP PHOTO	84

1. EUT DESCRIPTION

Model	SM-S721B/DS						
Additional Model	SM-S721B	SM-S721B					
EUT Type	Mobile Pho	Mobile Phone					
Power Supply	DC 3.88 V	DC 3.88 V					
Frequency Range		1M Bit/s : 2402 - 2480 MHz 404 - 2478 MHz (Except for					
Number of Channels		1M Bit/s : 40 Channels					
Max. RF Output		Peak (For information only)	1 M Bit/s: 2 M Bit/s: 125 k Bit/s : 500 k Bit/s :	16.527 dBm (44.95 mW) 16.737 dBm (47.17 mW) 8.159 dBm (6.54 mW) 8.281 dBm (6.73 mW)			
	Ant.1	Average	1 M Bit/s: 2 M Bit/s: 125 k Bit/s : 500 k Bit/s :	16.26 dBm (42.30 mW) 16.22 dBm (41.84 mW) 7.87 dBm (6.13 mW) 7.89 dBm (6.15 mW)			
Power (Normal)	Ant.2	Peak (For information only)	1 M Bit/s: 2 M Bit/s:	14.681 dBm (29.38 mW) 14.684 dBm (29.40 mW)			
	7.11(.2	Average	1 M Bit/s: 2 M Bit/s:	14.48 dBm (28.05 mW) 14.49 dBm (28.15 mW)			
	Dual Ant.1 +	Peak (For information only)	1 M Bit/s: 2 M Bit/s:	14.593 dBm (28.80 mW) 14.755 dBm (29.88 mW)			
	Ant.1 + Ant.2	Average	1 M Bit/s: 2 M Bit/s:	14.41 dBm (27.64 mW) 14.55 dBm (28.48 mW)			
Modulation Type	GFSK		· · ·	· · · · · · · · ·			
Bluetooth Version	5.3						
Antenna Specification	Type: Metal ANT.1 Peak Gain: -2.42 dBi, ANT.2 Peak Gain: -4.07 dBi						
Serial number	Conducted : R3CX503F4BK Radiated : R3CX40LGFHH						

ANTENNA CONFIGURATIONS

1. Below Tables are the possible configurations.

Configurations —	SI	Dual BT	
	Ant1(Core-0)	Ant2(Core-1)	Ant1 & Ant2
Bluetooth Low Energy	0	0	0

Note:

1) O = Support, X = Not Support

2) BLE 1M/2Mbps Mode support Ant2(Core-1) and Dual BT, But 125k/500kbps do not support Ant2(Core-1) and Dual BT.

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 11, 2024 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

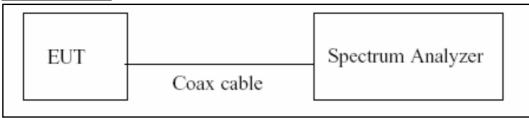
(2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

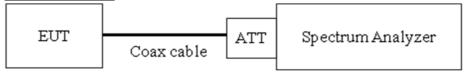
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6 dB Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to

(Procedure 8.2 in KDB 558074 v05r02, Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

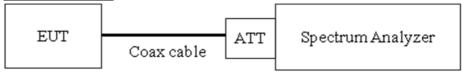
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

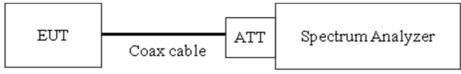
The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = power averaging (rms) or sample detector (when rms not available).
- 7) Ensure that the number of measurement points in the sweep $\geq [2 \times \text{span} / \text{RBW}].$
- 8) Employ trace averaging (rms) mode over a minimum of 100 traces
- 9) Use the peak marker function to determine the maximum amplitude level.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11) if then duty factor shall be added to adjust the result if the duty cycle is less than 98 %

Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss + Duty Cycle Factor

7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions


Limit

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least

30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

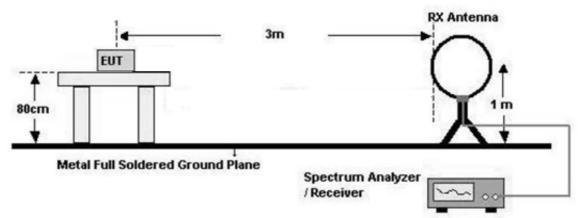
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points \geq 2 x Span/VBW
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for frequency

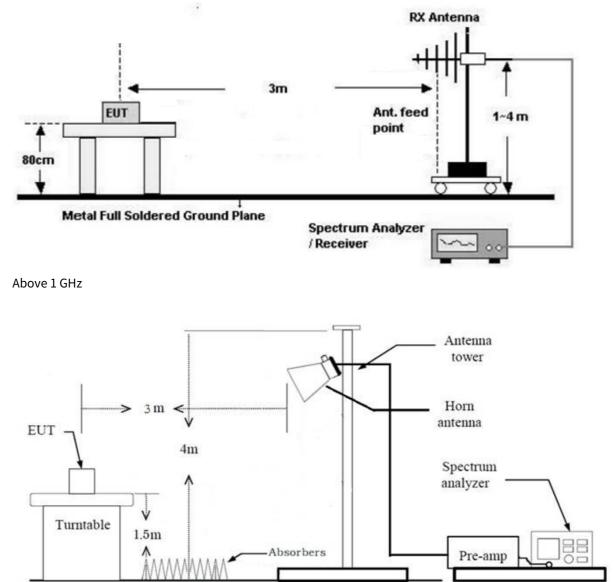
Freq(MHz)	ANT.1 Factor(dB)	ANT.2 Factor(dB)
30	10.04	10.56
100	10.21	10.71
200	10.24	10.75
300	10.22	10.72
400	10.23	10.71
500	10.41	10.91
600	10.44	11.93
700	10.58	11.09
800	10.60	11.11
900	10.70	11.21
1 000	10.71	11.20
2 000	10.72	11.23
2 400	10.74	11.24
2 500	10.74	11.24
3 000	11.32	11.30
4 000	11.56	11.54
5 000	11.82	11.82
6 000	11.82	11.82
7 000	12.16	12.18
8 000	12.30	12.31
9 000	12.35	12.33
10 000	12.41	10.43
11 000	12.58	12.60
12 000	12.88	12.85
13 000	13.04	13.02
14 000	13.07	13.04
15 000	12.97	12.97
16 000	13.00	13.01
17 000	12.89	12.92
18 000	13.15	13.13
19 000	13.59	13.56
20 000	13.41	13.43
21 000	13.54	13.51
22 000	13.52	13.50
23 000	13.60	13.61
24 000	13.62	13.63
25 000	13.63	13.64
26 000	13.71	13.75

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.


7.6. Radiated Test

Limit

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 - 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Test Configuration

Below 30 MHz

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

6. Distance Correction Factor(0.009 MHz - 0.490 MHz) = 40log(3 m/300 m) = - 80 dB

Measurement Distance : 3 m

7. Distance Correction Factor(0.490 MHz - 30 MHz) = 40log(3 m/30 m) = - 40 dB

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)

8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than $\pm 2~$ %
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total (Measurement Type : Peak)

- = Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F)
- Total (Measurement Type : Average)
- = Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F)

#Note : Used Average measurement method according to KDB 558074 Section11 Q3

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than $\pm 2~\%$
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.

- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11.Total
 - (1)Measurement(Peak)
 - = Measured Value(Peak)
 - (2)Measurement(Avg)
 - = Measured Value(Avg)
 - We apply to the offset in range 1 GHz 18 GHz
 - The offset = Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

#Note : Used Average measurement method according to KDB 558074 Section11 Q3

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/50 ohms line impedance stabilization network (LISN).

Frequency Dange (MHz)	Limits	(dBµV)
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.

- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

7.8. Worst case configuration and mode

Radiated Test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone + External accessories(Earphone etc)
- Worstcase : Stand alone
- 2. EUT Axis
 - (1) Ant.1
 - Radiated Spurious Emissions : X
 - Radiated Restricted Band Edge : X
 - (2) Ant.2
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : Y
 - (3) Dual Ant.1+ Ant.2
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X

3. All packet length of operation were investigated and the test results are worst case in lowest packet length.

(Worst case :1M Bit/s 37 Byte, 2M Bit/s 37 Byte)

(125k, 500k, 1M Bit/s all have the same 1 MHz Band width and only Worst result is attached.)

- 4. All datarate of operation were investigated and the worst case configuration results are reported.
 - Worst case : 1 M, 2 M

5. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane
- 9. SM-S721B/DS, SM-S721B were tested and the worst case results are reported.

(Worst case: SM-S721B/DS)

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone+ External accessories(Earphone, etc)+Travel Adapter

Stand alone + Travel Adapter

- Worstcase : Stand alone + Travel Adapter

2. SM-S721B/DS, SM-S721B were tested and the worst case results are reported.

(Worst case: SM-S721B/DS)

Conducted test

- 1. The EUT was configured with packet length of highest power.
 - ALL supported mode tested.
 - Worst Results refer to Notes for each test item
- 2. SM-S721B/DS, SM-S721B were tested and the worst case results are reported.

(Worst case: SM-S721B/DS)

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 30 dBc	*	PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7	*	PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6		PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

9. TEST RESULT

9.1 DUTY CYCLE

Data rate (Bit/s)	Packet length (Byte)	T₀n (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
114	37	0.393	0.756	0.520	2.839
1M	255	2.135	2.499	0.854	0.684
214	37	0.208	0.536	0.388	4.115
2M	255	1.079	1.408	0.766	1.156
125k	37	3.104	4.112	0.755	1.221
125K	255	17.060	18.070	0.944	0.250
F001.	37	1.067	1.816	0.588	2.310
500k	255	4.555	5.309	0.858	0.665

500 k Bit/s(255 Byte)

500 k Bit/s(37 Byte)

Keylight Spectrum Analyzer: Singet SA RF 50 G AC SPINE:INT Inter Freq 2.402000000 GHZ; PNC: Fast →→ Trig: Free Run PNC: Fast →→ Trig: Free Run Staten: 24 dB	ALION NITO 0120-45 PM 02-2024 #Avg Type: RMS TRACE to a set or Alion NITO 0120-45 PM 02-2024 Frequency California	Keyright Spectrum Anslyzer - Swept SA	GHz SENSE:INT FRO: Fast →→ IFGain:Low #Atten: 24 dB	ALIGN AUTO 01:31:42 PM 6 20, 2024 #Avg Type: RMS TRACE 0, 2024 TYPE PM 6 20, 2024 TYPE PM 6 2024 TYPE	Frequency
Ref Offset 10.74 dB dB/div Ref 24.74 dBm	ΔMkr3 1.816 ms 0.30 dB	Ref Offset 10.74 dB 10 dB/div Ref 24.74 dBm		ΔMkr3 5.309 ms -0.37 dB	Auto Tune
	Center Freq 2.402000000 GHz	Log 4 14.7 4.74 5.26	X.	()1∆2 3∆4	Center Freq 2.402000000 GHz
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Start Freq 2.402000000 GHz	-15.3 -25.3 -35.3			Start Freq 2.402000000 GHz
	Stop Freq 2.40200000 GHz	-45.3			Stop Freq 2.402000000 GHz
nter 2.402000000 GHz s BW 8 MHz #VBW 8.0 MHz*	Span 0 Hz Sweep 7.596 ms (2000 pts) Auto Man	Center 2.402000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Span 0 Hz Sweep 15.06 ms (2000 pts)	CF Step 8.000000 MHz uto Man
KubE Tricl Sci. X Y Function Function A2 1 t (A) 1.067 ms (A) .195 dB F 1 t 1.388 ms (A) .135 dBm (A) .300 dB A4 1 t (A) 1.185 ms (A) .030 dB P 1 t (A) 1.318 ms (A) .030 dB P 1 t 1.399 ms (A) .343 dBm	PUICTION PUICTION WOTH PUICTION VAUE Freq Offset 0 Hz	2 F 1 t 3 Δ4 1 t (Δ)	4.555 ms (Δ) 1.22 dB 5.828 ms 13.44 dBm 5.309 ms (Δ) -0.37 dB 5.828 ms 13.44 dBm	N FUNCTION WIDTH FUNCTION VALUE	Freq Offset 0 Hz
	Scale Type	7 8 9			Scale Type
	, Log <u>Lin</u>				.og <u>Lir</u>
	STATUS	MSG		STATUS	

F-TP22-03 (Rev. 06)

9.2 6 dB BANDWIDTH

[Ant. 1]

Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)
1M(37)	37	688.8	> 500
	17	682.7	
	39	677.4	
1M(255)	37	666.4	> 500
	17	667.8	
	39	667.5	
	0	1156	> 500
2M(37)	17	1152	
	36	1155	
	0	1154	> 500
2M(255)	17	1148	
	36	1155	
125k(37)	37	611.8	> 500
	17	612.8	
	39	612.3	
125k(255)	37	614.2	> 500
	17	613.8	
	39	612.3	
500k(37)	37	666.1	
	17	665.1	> 500
	39	662.4	
500k(255)	37	671.2	
	17	666.1	> 500
	39	665.1	

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW Channel.

1M Bit/s: 255 Byte

2M Bit/s: 255 Byte

125k Bit/s: 37 Byte

500k Bit/s: 37 Byte

Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)
1M(37)	37	685.6	
	17	682.5	> 500
	39	681.0	
1M(255)	37	667.3	
	17	667.4	> 500
	39	667.5	
2M(37)	0	1153	
	17	1157	> 500
	36	1155	
2M(255)	0	1159	
	17	1162	> 500
	36	1151	

[Ant. 2]

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW Channel.

1M Bit/s: 255 Byte

2M Bit/s: 255 Byte

Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)
	37	683.7	
1M(37)	17	672.6	> 500
	39	697.5	
1M(255)	37	665.6	
	17	663.1	> 500
	39	672.3	
2M(37)	0	1153	
	17	1148	> 500
	36	1148	
2M(255)	0	1143	
	17	1154	> 500
	36	1155	

[Dual Ant. 1]

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW Channel. 1M Bit/s: 255 Byte 2M Bit/s: 255 Byte

Dual Ant. 2]	I		
Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)
	37	678.1	
1M(37)	17	672.8	> 500
	39	688.0	
	37	662.6	
1M(255)	17	664.8	> 500
	39	669.3	
2M(37)	0	1148	
	17	1141	> 500
	36	1132	
	0	1154	
2M(255)	17	1155	> 500
	36	1153	

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW Channel 1M Bit/s: 255 Byte

2M Bit/s: 37 Byte



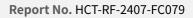
[Ant.1]

F-TP22-03 (Rev. 06)

[Ant.2]

[Dual Ant.1]

[Dual Ant.2]



9.3 OUTPUT POWER

Peak Power


[Ant.1]

Data rate	Packet length	LE M	ode	- Peak Power	Limit (dBm)
(Bit/s)	(Byte)	Frequency [MHz]	Channel	dBm)	
		2402	37	15.492	
	37	2440	17	16.527	
114		2480	39	15.796	
1M		2402	37	15.190	
	255	2440	17	16.377	
		2480	39	15.627	
		2404	0	15.690	
	37	2440	17	16.737	
214		2478	36	16.295	- 30
2M		2404	0	15.646	
	255	2440	17	16.654	
		2478	36	16.149	
	37	2402	37	6.451	
		2440	17	8.127	
125k —		2480	39	7.649	
125K -		2402	37	6.660	
	255	2440	17	8.159	
		2480	39	7.602	
		2402	37	6.538	
500k —	37	2440	17	8.174	
		2480	39	7.697	
		2402	37	6.480	
	255	2440	17	8.281	
		2480	39	7.647	

Data rate	Packet length	LE M	lode	Deals Dower	Limit	
(Bit/s)	(Byte)	Frequency [MHz]	Channel	– Peak Power (dBm)	(dBm)	
		2402	37	14.681		
	37	2440	17	14.221		
114		2480	39	14.145		
1M255		2402	37	14.388		
	255	2440	17	14.244		
		2480	39	14.179	20	
		2404	0	14.613	- 30	
	37	2440	17	14.524		
214		2478	36	14.522		
2M 255		2404	0	14.684	_	
	255	2440	17	14.234		
		2478	36	14.334		

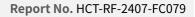
Data rate	Packet length	LE Mo	ode	Dual Ant.1	Dual Ant.2	Dual	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	Power(dBm)	(Ant. 1 + Ant. 2) Power(dBm)	(dBm)
		2402	37	10.719	11.299	14.029	
	37	2440	17	12.173	10.751	14.530	
1.14		2480	39	11.677	11.487	14.593	
1M		2402	37	10.755	11.568	14.191	
	255	2440	17	12.195	10.746	14.541	
		2480	39	11.616	11.541	14.589	20
		2404	0	10.956	11.850	14.436	30
	37	2440	17	12.234	10.764	14.571	
214		2478	36	12.124	11.328	14.755	
2M		2404	0	11.069	11.748	14.432	
	255	2440	17	12.403	10.721	14.653	
		2478	36	12.095	11.165	14.665	

[Dual (Ant. 1 + Ant .2)]

Average Power

Note :

1. Total Power [dBm] = Measured Power [dBm] + Duty Cycle Factor [dB]


[Ant.1]

Data rate	Packet length	LE M	lode	Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	- (dBm
		2402	37	12.42	2.84	15.26	
	37	2440	17	13.20	2.84	16.04	
114		2480	39	12.73	2.84	15.57	
1M		2402	37	14.40	0.68	15.08	
	255	2440	17	15.58	0.68	16.26	
		2480	39	14.79	0.68	15.47	
		2404	0	11.07	4.11	15.18	
2M	37	2440	17	12.02	4.11	16.13	
		2478	36	11.63	4.11	15.74	
ZIVI	255	2404	0	14.21	1.16	15.37	
		2440	17	15.06	1.16	16.22	
		2478	36	14.51	1.16	15.67	20
		2402	37	5.15	1.22	6.37	30
	37	2440	17	6.65	1.22	7.87	
1054		2480	39	6.27	1.22	7.49	
125k		2402	37	6.01	0.25	6.26	
	255	2440	17	7.61	0.25	7.86	
		2480	39	7.25	0.25	7.50	
		2402	37	4.01	2.31	6.32	
500k	37	2440	17	5.57	2.31	7.88	1
		2480	39	5.25	2.31	7.56	
		2402	37	5.64	0.67	6.31	
	255	2440	17	7.22	0.67	7.89	1
		2480	39	6.82	0.67	7.49	

[Ant.2]

Data rate	Packet length	LE Mode		Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel (dBm)		(dB)	(dBm)	- (dBm)
		2402	37	11.64	2.84	14.48	
	37	2440	17	11.22	2.84	14.06	
114		2480	39	11.20	2.84	14.04	
1M		2402	37	13.63	0.68	14.31	
	255	2440	17	13.38	0.68	14.06	
		2480	39	13.36	0.68	14.04	20
		2404	0	10.38	4.11	14.49	- 30
	37	2440	17	10.17	4.11	14.28	
214		2478	36	9.99	4.11	14.10	
2M		2404	0	13.30	1.16	14.46	1
	255	2440	17	12.95	1.16	14.11	1
		2478	36	13.10	1.16	14.26	

Data rate	Packet length	LE Mode		Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(dBm)
	37	2402	37	7.78	2.84	10.62	
		2440	17	9.07	2.84	11.91	
1M		2480	39	8.63	2.84	11.47	
		2402	37	9.85	0.68	10.53	
	255	2440	17	11.18	0.68	11.86	
		2480	39	10.58	0.68	11.26	30
		2404	0	6.61	4.11	10.72	50
	37	2440	17	7.72	4.11	11.83	
2M		2478	36	7.71	4.11	11.82	
		2404	0	9.64	1.16	10.80	-
	255	2440	17	10.79	1.16	11.95	
		2478	36	10.61	1.16	11.77	

[Dual Ant.1]

[Dual Ant.2]

Data rate	Packet length	LE Mode		Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(dBm)
	37 1M	2402	37	8.35	2.84	11.19	
		2440	17	7.74	2.84	10.58	
114		2480	39	8.50	2.84	11.34	
TM		2402	37	10.73	0.68	11.41	
	255	2440	17	9.89	0.68	10.57	
		2480	39	10.72	0.68	11.40	30
		2404	0	7.56	4.11	11.67	30
	37	2440	17	6.50	4.11	10.61	
214		2478	36	7.11	4.11	11.22	
ZM	2M 255	2404	0	10.49	1.16	11.65	
		2440	17	9.45	1.16	10.61	
		2478	36	9.90	1.16	11.06	

	Packet			Dual	Dual		
Data rate		LE Mode		Ant.1	Ant.2	Dual	Limit
	length			Power	Power	(Ant. 1 + Ant. 2)	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dBm)	Power (dBm)	(dBm)
		2402	37	10.62	11.19	13.92	
	37	2440	17	11.91	10.58	14.31	
114		2480	39	11.47	11.34	14.41	
1M		2402	37	10.53	11.41	14.01	
	255	2440	17	11.86	10.57	14.28	
		2480	39	11.26	11.40	14.34	20
		2404	0	10.72	11.67	14.24	- 30
	37	2440	17	11.83	10.61	14.28	
214		2478	36	11.82	11.22	14.55	
2M	2404	0	10.80	11.65	14.25		
	255	2440	17	11.95	10.61	14.34	
		2478	36	11.77	11.06	14.44	

[Dual (Ant. 1 + Ant .2)]

9.4 POWER SPECTRAL DENSITY

[Ant.1]

				Test Result				
Frequency (MHz)	Channel No.	Mode	Measured PSD (dBm)	Duty Cycle Factor(dB)	Total PSD (dBm)	Limit		
2402	37		1.913	2.84	4.752			
2440	17	1 MBit/s 37 Byte	2.697	2.84	5.536			
2480	39	ST Dyte	2.027	2.84	4.866			
2402	37	1 MBit/s 255 Byte	2.251	0.68	2.935			
2440	17		4.246	0.68	4.930			
2480	39	200 Dyte	3.500	0.68	4.184			
2404	0	2 MBit/s 37 Byte 2 MBit/s 255 Byte	-0.500	4.11	3.615			
2440	17		0.929	4.11	5.044			
2478	36		0.759	4.11	4.874			
2404	0		-0.346	1.16	0.810	-		
2440	17		1.518	1.16	2.674			
2478	36	233 Dyte	0.417	1.16	1.573	8 dBm /		
2402	37		-1.091	1.22	0.130	3 kHz		
2440	17	125k 37 Byte	0.549	1.22	1.770			
2480	39	JI Dyte	0.078	1.22	1.299			
2402	37		-0.136	0.25	0.114			
2440	17	125k 255 Byte	1.573	0.25	1.823			
2480	39	200 Dyte	1.102	0.25	1.352	-		
2402	37		-4.567	2.31	-2.257			
2440	17	500k 37 Byte	-3.495	2.31	-1.185			
2480	39	37 Byte	-3.926	2.31	-1.616			
2402	37		-5.826	0.67	-5.161			
2440	17	500k	-4.221	0.67	-3.556	-		
2480	39	255 Byte	-5.171	0.67	-4.506			

Note :

1. Total PSD = Measured PSD + Duty Cycle Factor

2. In order to simplify the report, The plots were attached with the highest PSD Mode. Worst case : 1M Bit/s (37 Byte)

ΓA	nt.	21
17	IIC.	~]

				Test Re	esult	lt			
Frequency (MHz)	Channel No.	Mode	Measured PSD (dBm)	Duty Cycle Factor(dB)	Total PSD (dBm)	Limit			
2402	37		1.386	2.84	4.225				
2440	17	1 MBit/s 37 Byte	0.044	2.84	2.883				
2480	39	o, byte	0.420	2.84	3.259]			
2402	37	1 MBit/s 255 Byte	2.087	0.68	2.771				
2440	17		2.067	0.68	2.751				
2480	39	200 Dyte	1.363	0.68	2.047	8 dBm			
2404	0		-2.138	4.11	1.977	3 kHz			
2440	17	2 MBit/s 37 Byte	-1.960	4.11	2.155				
2478	36	0, 5,00	-1.768	4.11	2.347				
2404	0		-0.240	1.16	0.916]			
2440	17	2 MBit/s 255 Byte	-0.657	1.16	0.499]			
2478	36	200 Dyte	-1.230	1.16	-0.074				

Note :

1. Total PSD = Measured PSD + Duty Cycle Factor

2. In order to simplify the report, The plots were attached with the highest PSD Mode. Worst case : 1M Bit/s (37 Byte)

[Dual Ant.1]

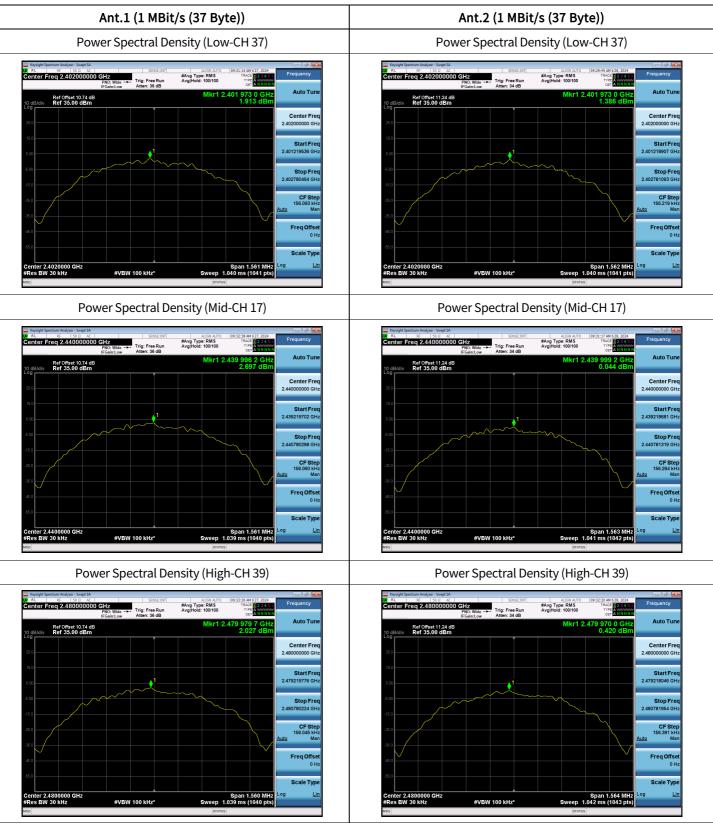
			Test Result					
Frequency (MHz)	Channel No.	Mode	Measured PSD (dBm)	Duty Cycle Factor(dB)	Total PSD (dBm)	Limit		
2402	37		-2.111	2.84	0.728			
2440	17	1M Bit/s 37 Byte	-1.032	2.84	1.807			
2480	39	or byte	-1.208	2.84	1.631			
2402	37		-1.135	0.68	-0.451			
2440	17	1M Bit/s 255 Byte	-0.166	0.68	0.518			
2480	39		-1.123	0.68	-0.439	8dBm/3kHz		
2404	0		-4.076	4.11	0.039	OUDIII/SKHZ		
2440	17	2M Bit/s 37 Byte	-2.633	4.11	1.482			
2478	36	of byte	-4.632	4.11	-0.517			
2404	0		-4.176	1.16	-3.020			
2440	17	2M Bit/s 255 Byte	-3.478	1.16	-2.322			
2478	36		-2.987	1.16	-1.831			

[Dual Ant.2]

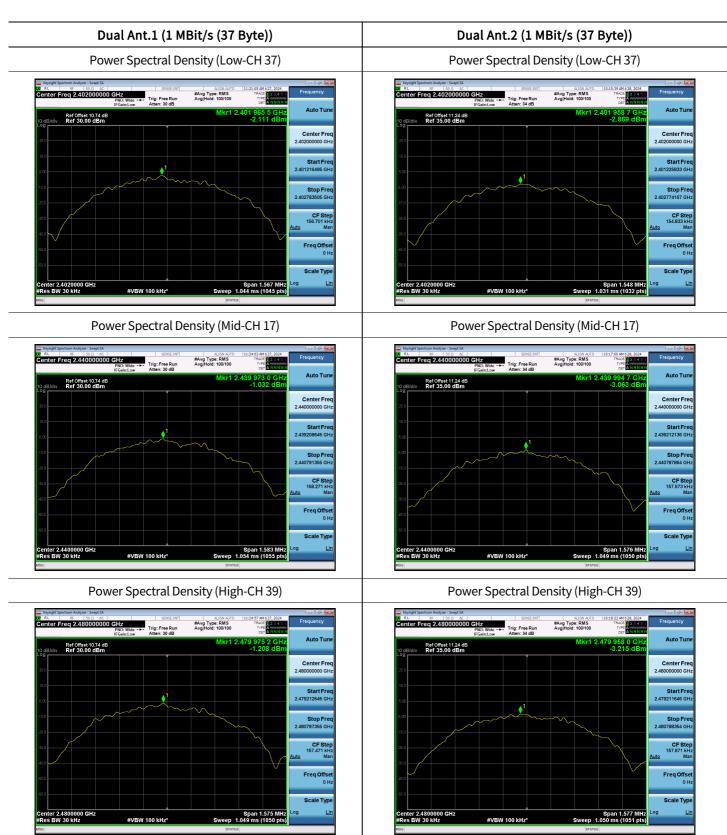
				Test	Result	
Frequency (MHz)	Channel No.	Mode	Measured PSD (dBm)	Duty Cycle Factor(dB)	Total PSD (dBm)	Limit
2402	37		-2.869	2.84	-0.030	
2440	17	1M Bit/s 37 Byte	-3.063	2.84	-0.224	
2480	39	or byte	-3.215	2.84	-0.376	
2402	37		-0.627	0.68	0.057	
2440	17	1M Bit/s 255 Byte	-2.424	0.68	-1.740	
2480	39	200 Dyte	-1.113	0.68	-0.429	OdDres/21/11-
2404	0		-4.560	4.11	-0.445	8dBm/3kHz
2440	17	2M Bit/s 37 Byte	-6.133	4.11	-2.018	
2478	36	ST Dyte	-5.521	4.11	-1.406	
2404	0		-3.280	1.16	-2.124	
2440	17	2M Bit/s 255 Byte	-5.522	1.16	-4.366	
2478	36	200 0 9 00	-4.515	1.16	-3.359	

			Test Result					
Frequency (MHz)	Channel No.	Mode	Dual Ant. 1 PSD (dBm)	Dual Ant. 2 PSD (dBm)	Dual (Ant.1 + Ant.2) PSD (dBm)	Limit		
2402	37		0.728	-0.030	3.376			
2440	17	1 MBit/s 37 Byte	1.807	-0.224	3.920			
2480	39	JI Dyte	1.631	-0.376	3.753			
2402	37		-0.451	0.057	2.820			
2440	17	1 MBit/s 255 Byte	0.518	-1.740	2.544			
2480	39	235 Dyte	-0.439	-0.429	2.576	8 dBm /		
2404	0		0.039	-0.445	2.814	3 kHz		
2440	17	2 MBit/s 37 Byte	1.482	-2.018	3.085			
2478	36	J. Dyte	-0.517	-1.406	2.071]		
2404	0		-3.020	-2.124	0.461			
2440	17	2 MBit/s 255 Byte	-2.322	-4.366	-0.215			
2478	36	200 Dyte	-1.831	-3.359	0.482			

[Dual (Ant.1+ Ant.2)]


Note :

1. Total PSD = Measured PSD + Duty Cycle Factor


2. In order to simplify the report, The plots were attached with the highest PSD Mode. Worst case : 1M Bit/s (37 Byte)

Test Plots

The report shall not be (partly) reproduced except in full without approval of the laboratory.

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

[BAND EDGE]

[Ant. 1]

				Test	Result
Frequency (MHz)	Mode	Channel No.	Position	Measured Level (dB)	Limit (dBc)
2402	114 014 /2 27 0 42	37	Lower	56.126	30
2480	1M Bit/s 37 Byte	39	Upper	62.841	30
2402		37	Lower	56.260	30
2480	– 1M Bit/s 255 Byte	39	Upper	62.538	30
2404	2M Bit/s 37 Byte	0	Lower	61.015	30
2478		36	Upper	62.813	30
2404		0	Lower	60.950	30
2478	2M Bit/s 255 Byte	36	Upper	63.024	30
2402		37	Lower	55.630	30
2480	125k Bit/s 37 Byte	39	Upper	58.852	30
2402		37	Lower	58.008	30
2480	– 125k Bit/s 255 Byte -	39	Upper	63.106	30
2402		37	Lower	54.887	30
2480	500k Bit/s 37 Byte	39	Upper	59.766	30
2402		37	Lower	56.429	30
2480	500k Bit/s 255 Byte	39	Upper	59.657	30

Note :

In order to simplify the report, attached plots were only the worst case channel and data rate.

- Lower Band Edge: 500k Bit/s (37 Byte)

- Upper Band Edge: 125k Bit/s (37 Byte)

[Ant.	21
[/	~_ J

				Test Result		
Frequency (MHz)	Mode	Mode Channel No.		Measured Level (dB)	Limit (dBc)	
2402		37	Lower	55.269	30	
2480	1M Bit/s 37 Byte	39	Upper	59.408	30	
2402		37	Lower	55.218	30	
2480	1M Bit/s 255 Byte	39	Upper	59.590	30	
2404	2M Bit/c 27 Buto	0	Lower	59.905	30	
2478	2M Bit/s 37 Byte	36	Upper	61.003	30	
2404	2M Dit/c 255 Duto	0	Lower	59.267	30	
2478	2M Bit/s 255 Byte	36	Upper	61.291	30	

Note :

In order to simplify the report, attached plots were only the worst case channel and data rate.

- Lower Band Edge: 1M Bit/s (255 Byte)

- Upper Band Edge: 1M Bit/s (37 Byte)

				Test Result		
Frequency (MHz)	Mode	Channel No.	Position	Measured Level (dB)	Limit (dBc)	
2402	1M D:+/- 27 D: +-	37	Lower	55.049	30	
2480	1M Bit/s 37 Byte	39	Upper	63.042	30	
2402	1M Dit/a 255 Duta	37	Lower	55.360	30	
2480	1M Bit/s 255 Byte	39	Upper	63.105	30	
2404	2M Dit/c 27 Duto	0	Lower	57.688	30	
2478	2M Bit/s 37 Byte	36	Upper	59.302	30	
2404	2M Dit/a 255 Duta	0	Lower	57.528	30	
2478	2M Bit/s 255 Byte	36	Upper	59.587	30	

[Dual Ant. 1]

Note :

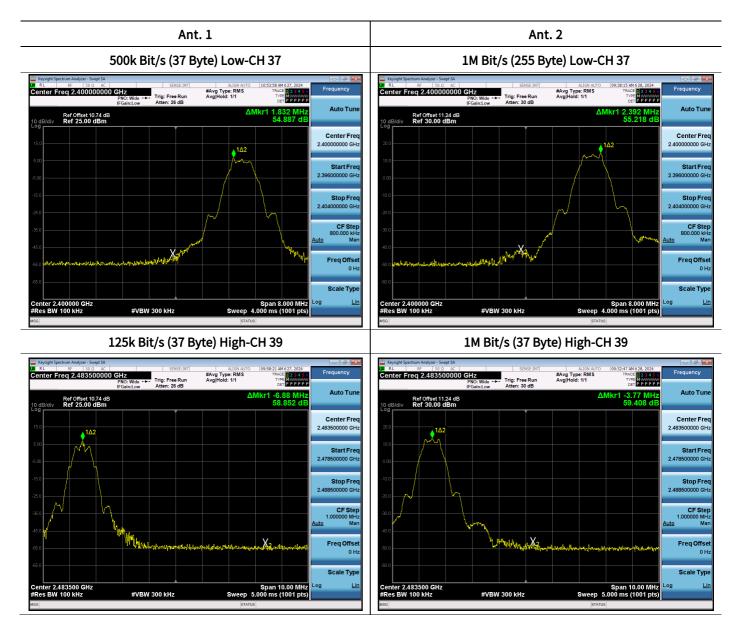
In order to simplify the report, attached plots were only the worst case channel and data rate.

- Lower Band Edge: 1M Bit/s (37 Byte)

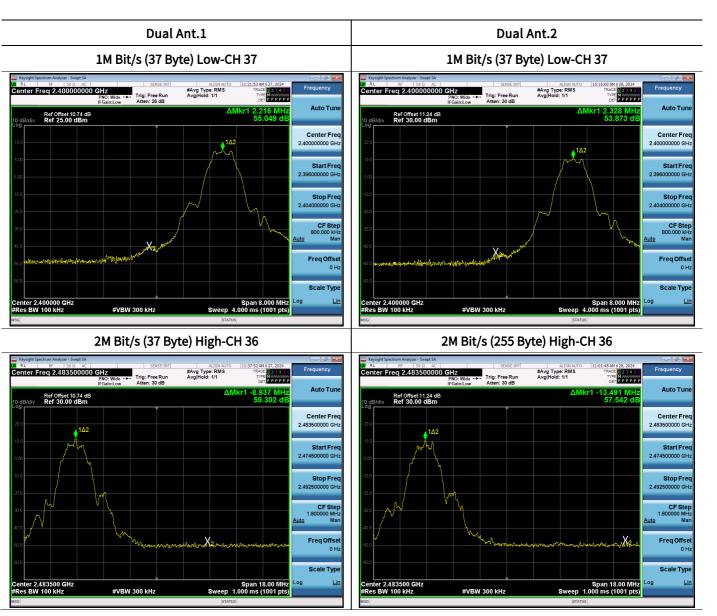
- Upper Band Edge: 2M Bit/s (37 Byte)

[Dual Ant. 2]

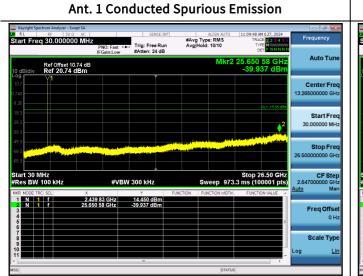
				Test Result		
Frequency (MHz)	Mode		Position	Measured Level (dB)	Limit (dBc)	
2402		37	Lower	53.873	30	
2480	1M Bit/s 37 Byte	39	Upper	58.066	30	
2402	1M Dit/c 255 Duto	37	Lower	54.909	30	
2480	1M Bit/s 255 Byte	39	Upper	58.465	30	
2404	2M Bit/c 27 Buto	0	Lower	58.234	30	
2478	2M Bit/s 37 Byte	36	Upper	57.898	30	
2404	2M Dit/o 255 Duto	0	Lower	58.000	30	
2478	2M Bit/s 255 Byte	36	Upper	57.542	30	


Note :

In order to simplify the report, attached plots were only the worst case channel and data rate.


- Lower Band Edge: 1M Bit/s (37 Byte)
- Upper Band Edge: 2M Bit/s (255 Byte)

Test Plot(Band Edge)

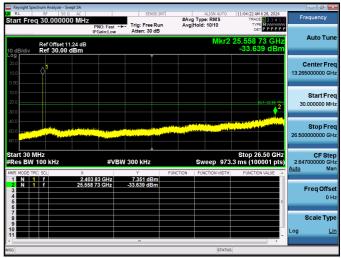


[CONDUCTED SPURIOUS EMISSIONS]

In order to simplify the report, attached plots were only the worst case channel and data rate. - Worst case

Ant. 1 : 1M Bit/s 255 Byte Ch. 17(2 440 MHz) Ant. 2 : 2M Bit/s 37 Byte Ch. 0(2 404 MHz) Dual Ant. 1 : 2M Bit/s 255 Byte Ch. 17(2 440 MHz) Dual Ant. 2 : 2M Bit/s 37 Byte Ch. 0(2 404 MHz)

Test Plots(Conducted Spurious Emission (30 MHz – 26.5 GHz))



Dual BT Ant. 1 Conducted Spurious Emission

Ant. 2 Conducted Spurious Emission

Dual BT Ant. 2 Conducted Spurious Emission

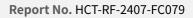
9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30 MHz

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.


- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

[Ant.1]

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2402 MHz
Channel No	CH 37

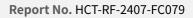
Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	50.21	-5.49	V	44.72	73.98	29.26	РК
4804	39.54	-5.49	V	34.05	53.98	19.93	AV
7206	46.54	1.86	V	48.40	73.98	25.58	РК
7206	34.91	1.86	V	36.77	53.98	17.21	AV
4804	50.37	-5.49	Н	44.88	73.98	29.10	РК
4804	39.59	-5.49	Н	34.10	53.98	19.88	AV
7206	46.60	1.86	Н	48.46	73.98	25.52	РК
7206	34.99	1.86	Н	36.85	53.98	17.13	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	51.28	-5.18	V	46.10	73.98	27.88	РК
4880	40.22	-5.18	V	35.04	53.98	18.94	AV
7320	47.68	1.94	V	49.62	73.98	24.36	PK
7320	35.51	1.94	V	37.45	53.98	16.53	AV
4880	51.64	-5.18	Н	46.46	73.98	27.52	РК
4880	40.34	-5.18	Н	35.16	53.98	18.82	AV
7320	47.96	1.94	Н	49.90	73.98	24.08	PK
7320	35.64	1.94	Н	37.58	53.98	16.40	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2480 MHz
Channel No	CH 39

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	50.40	-4.82	V	45.58	73.98	28.40	PK
4960	39.11	-4.82	V	34.29	53.98	19.69	AV
7440	47.68	2.13	V	49.81	73.98	24.17	PK
7440	35.78	2.13	V	37.91	53.98	16.07	AV
4960	50.45	-4.82	Н	45.63	73.98	28.35	PK
4960	39.13	-4.82	Н	34.31	53.98	19.67	AV
7440	47.51	2.13	Н	49.64	73.98	24.34	PK
7440	35.72	2.13	Н	37.85	53.98	16.13	AV



Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2404 MHz
Channel No	CH 0

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4808	50.60	-5.49	V	45.11	73.98	28.87	РК
4808	38.61	-5.49	V	33.12	53.98	20.86	AV
7212	46.88	1.92	V	48.80	73.98	25.18	PK
7212	35.37	1.92	V	37.29	53.98	16.69	AV
4808	50.67	-5.49	Н	45.18	73.98	28.80	РК
4808	38.74	-5.49	Н	33.25	53.98	20.73	AV
7212	46.95	1.92	Н	48.87	73.98	25.11	PK
7212	35.40	1.92	Н	37.32	53.98	16.66	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	52.18	-5.18	V	47.00	73.98	26.98	РК
4880	39.35	-5.18	V	34.17	53.98	19.81	AV
7320	47.08	1.94	V	49.02	73.98	24.96	PK
7320	35.42	1.94	V	37.36	53.98	16.62	AV
4880	52.83	-5.18	Н	47.65	73.98	26.33	РК
4880	39.40	-5.18	Н	34.22	53.98	19.76	AV
7320	47.19	1.94	Н	49.13	73.98	24.85	РК
7320	35.58	1.94	Н	37.52	53.98	16.46	AV

Operation Mo	de 2	2 M Bit/s (37 Bytes)					
Operating Free	quency 2	478 MHz		_			
Channel No	(CH 36				_	
Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4956	50.00	-4.93	V	45.07	73.98	28.91	РК
4956	38.43	-4.93	V	33.50	53.98	20.48	AV
7434	48.22	2.11	V	50.33	73.98	23.65	PK
7434	35.58	2.11	V	37.69	53.98	16.29	AV
4956	50.01	-4.93	Н	45.08	73.98	28.90	РК
4956	38.48	-4.93	Н	33.55	53.98	20.43	AV
7434	47.99	2.11	Н	50.10	73.98	23.88	PK
7434	35.45	2.11	Н	37.56	53.98	16.42	AV

[Ant.2]

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2402 MHz
Channel No	CH 37

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	49.16	-5.49	V	43.67	73.98	30.31	РК
4804	37.55	-5.49	V	32.06	53.98	21.92	AV
7206	46.73	1.86	V	48.59	73.98	25.39	РК
7206	34.79	1.86	V	36.65	53.98	17.33	AV
4804	49.17	-5.49	Н	43.68	73.98	30.30	PK
4804	37.58	-5.49	Н	32.09	53.98	21.89	AV
7206	46.89	1.86	Н	48.75	73.98	25.23	РК
7206	34.99	1.86	Н	36.85	53.98	17.13	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	49.82	-5.18	V	44.64	73.98	29.34	РК
4880	38.54	-5.18	V	33.36	53.98	20.62	AV
7320	46.94	1.94	V	48.88	73.98	25.10	РК
7320	35.15	1.94	V	37.09	53.98	16.89	AV
4880	50.07	-5.18	Н	44.89	73.98	29.09	РК
4880	38.61	-5.18	Н	33.43	53.98	20.55	AV
7320	47.01	1.94	Н	48.95	73.98	25.03	РК
7320	35.38	1.94	Н	37.32	53.98	16.66	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2480 MHz
Channel No	CH 39

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	49.87	-4.82	V	45.05	73.98	28.93	PK
4960	37.70	-4.82	V	32.88	53.98	21.10	AV
7440	47.50	2.13	V	49.63	73.98	24.35	PK
7440	35.55	2.13	V	37.68	53.98	16.30	AV
4960	49.81	-4.82	Н	44.99	73.98	28.99	PK
4960	37.59	-4.82	Н	32.77	53.98	21.21	AV
7440	46.80	2.13	Н	48.93	73.98	25.05	PK
7440	35.50	2.13	Н	37.63	53.98	16.35	AV

Operation Mode	2 M Bit/s (37 Bytes)			
Operating Frequency	2404 MHz			
Channel No	CH 0			
Management AE+CI				

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	49.33	-5.49	V	43.84	73.98	30.14	РК
4804	37.14	-5.49	V	31.65	53.98	22.33	AV
7206	46.42	1.86	V	48.28	73.98	25.70	РК
7206	34.85	1.86	V	36.71	53.98	17.27	AV
4804	49.45	-5.49	Н	43.96	73.98	30.02	РК
4804	37.54	-5.49	Н	32.05	53.98	21.93	AV
7206	46.45	1.86	Н	48.31	73.98	25.67	РК
7206	35.04	1.86	Н	36.90	53.98	17.08	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	50.61	-5.18	V	45.43	73.98	28.55	РК
4880	38.05	-5.18	V	32.87	53.98	21.11	AV
7320	47.05	1.94	V	48.99	73.98	24.99	PK
7320	35.25	1.94	V	37.19	53.98	16.79	AV
4880	50.96	-5.18	Н	45.78	73.98	28.20	РК
4880	38.37	-5.18	Н	33.19	53.98	20.79	AV
7320	47.08	1.94	Н	49.02	73.98	24.96	РК
7320	35.37	1.94	Н	37.31	53.98	16.67	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2478 MHz
Channel No	CH 36

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	47.42	-4.82	V	42.60	73.98	31.38	PK
4960	35.82	-4.82	V	31.00	53.98	22.98	AV
7440	47.49	2.13	V	49.62	73.98	24.36	PK
7440	35.69	2.13	V	37.82	53.98	16.16	AV
4960	47.39	-4.82	Н	42.57	73.98	31.41	PK
4960	35.80	-4.82	Н	30.98	53.98	23.00	AV
7440	47.55	2.13	Н	49.68	73.98	24.30	PK
7440	35.77	2.13	Н	37.90	53.98	16.08	AV

[Dual Ant.1+ Ant.2]

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2402 MHz
Channel No	CH 37

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	48.78	-5.49	V	43.29	73.98	30.69	РК
4804	37.48	-5.49	V	31.99	53.98	21.99	AV
7206	46.41	1.86	V	48.27	73.98	25.71	РК
7206	34.81	1.86	V	36.67	53.98	17.31	AV
4804	48.64	-5.49	Н	43.15	73.98	30.83	РК
4804	37.40	-5.49	Н	31.91	53.98	22.07	AV
7206	46.48	1.86	Н	48.34	73.98	25.64	РК
7206	34.83	1.86	Н	36.69	53.98	17.29	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	50.20	-5.18	V	45.02	73.98	28.96	PK
4880	38.40	-5.18	V	33.22	53.98	20.76	AV
7320	46.67	1.94	V	48.61	73.98	25.37	PK
7320	35.21	1.94	V	37.15	53.98	16.83	AV
4880	49.91	-5.18	Н	44.73	73.98	29.25	РК
4880	38.29	-5.18	Н	33.11	53.98	20.87	AV
7320	46.77	1.94	Н	48.71	73.98	25.27	PK
7320	35.37	1.94	Н	37.31	53.98	16.67	AV

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2480 MHz
Channel No	CH 39

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	49.42	-4.82	V	44.60	73.98	29.38	PK
4960	37.61	-4.82	V	32.79	53.98	21.19	AV
7440	47.25	2.13	V	49.38	73.98	24.60	PK
7440	35.49	2.13	V	37.62	53.98	16.36	AV
4960	49.50	-4.82	Н	44.68	73.98	29.30	PK
4960	37.68	-4.82	Н	32.86	53.98	21.12	AV
7440	47.38	2.13	Н	49.51	73.98	24.47	PK
7440	35.66	2.13	Н	37.79	53.98	16.19	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2404 MHz
Channel No	CH 0

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4808	48.72	-5.49	V	43.23	73.98	30.75	PK
4808	37.29	-5.49	V	31.80	53.98	22.18	AV
7212	46.25	1.92	V	48.17	73.98	25.81	PK
7212	34.69	1.92	V	36.61	53.98	17.37	AV
4808	48.75	-5.49	Н	43.26	73.98	30.72	PK
4808	37.43	-5.49	Н	31.94	53.98	22.04	AV
7212	46.43	1.92	Н	48.35	73.98	25.63	PK
7212	34.85	1.92	Н	36.77	53.98	17.21	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2440 MHz
Channel No	CH 17

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	50.13	-5.18	V	44.95	73.98	29.03	PK
4880	38.37	-5.18	V	33.19	53.98	20.79	AV
7320	46.48	1.94	V	48.42	73.98	25.56	РК
7320	35.19	1.94	V	37.13	53.98	16.85	AV
4880	49.93	-5.18	Н	44.75	73.98	29.23	РК
4880	38.25	-5.18	Н	33.07	53.98	20.91	AV
7320	46.65	1.94	Н	48.59	73.98	25.39	PK
7320	35.22	1.94	Н	37.16	53.98	16.82	AV

Operation Mode	2 M Bit/s (37 Bytes)
Operating Frequency	2478 MHz
Channel No	CH 36

Frequency	Measured Value	AF+CL- AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4956	49.11	-4.93	V	44.18	73.98	29.80	PK
4956	37.58	-4.93	V	32.65	53.98	21.33	AV
7434	47.59	2.11	V	49.70	73.98	24.28	PK
7434	35.15	2.11	V	37.26	53.98	16.72	AV
4956	49.23	-4.93	Н	44.30	73.98	29.68	РК
4956	37.64	-4.93	Н	32.71	53.98	21.27	AV
7434	47.78	2.11	Н	49.89	73.98	24.09	PK
7434	35.54	2.11	Н	37.65	53.98	16.33	AV

[Ant.1] I M Bit/s 37 Bytes Test Plots

Spectrum	Spect	trum 2	🛛 🔊 SI	ectrum 3	XS	pectrum -	4 🛛 🔊		
Ref Level 97	.00 dBµV		🕳 RBW	1 MHz					
Att	0 dB	SWT 4 r	ns 👄 VBW	3 MHz N	lode Sweep	D			
Count 200/200 1Rm AvgPwr									
					м	1[1]			35.78 dBµ
эо dвµv						-1-1			37681 GH
зо авµv——									
70 dBµV									
io dBµV									
50 dBµV									
		ا	والمراسيات	ير ارتابوا	la la sum	، الله ،	بالمعادية الم	ւս են հ	վել և հ
hudia hatili dina			n training the				uh/it./s /14/4		
₩ ₩~₩~~ ₩+₩₽₩₽ ₽	at dimber 1	┉╟╍┤┧╴╣┤	a second a sublicit	-unille sectores	┈╫╫┾╍╍┥╫╢		┝╋┅╬╧╸╬┠╌╬┝┨	┥╣┼╴┫╌╹╉┥╬	- A- All III (44 4
30 dBµV									
20 dBµV									
LO dBµV									
) dBuV									
CF 7.44 GHz				2001					10.0 MHz

Date: 2.JUL.2024 21:48:15

Radiated Spurious Emissions plot – Peak Result (Ch.39 3rd Harmonic, X-H)

	Spectrum 2	Spectrum 3	Spectrum	4 🗙	
Ref Level 97.00 d		👄 RBW 1 MHz			
	dB SWT 4 ms	; 👄 VBW 3 MHz 🛛 M	ode Sweep		
Count 200/200					
●1Pk Max●2Pk Clrw					
			M1[1]		47.68 dBµV
90 dBµV				7.	44386307 GHz
80 dBµV					
70 10 11					
70 dBµV					
60 dBµV					
50 dBµV					M1
or de stille de san de la de san de la desta de la	المهده وجرار المتعطين والبراند ارتبا الموادي	on an and the set of t	adarraintantaniphary. In walasiphatica	ومهدره فاطرا ومخيصة والجار أديار واروان والمدوان المحروف	where we have the second
hat have a second a stand a stand a stand a stand a second second second second second second second second se	فتعاملنا المراقية المتلاطين	أهطابه اعتليه اطريته والشار الألطاء	la a di u u Annal ne a di ini a di a	والباب والمشاب والمشاب والمشاب والمسابق	المريقية والمالية المراجع المراجع
LINATADAN LAMBAN MALA IL	Manual da Na Aurolan Mula	o in the other water in the particular is	u An Album an An Ministry an A	ali kuli kuli kuli kuli kuli kuli kuli ku	and the standard stands
30 dBµV	. I I I I I I I I I	լու կարում մ		ן ריר יריד ב	Tailt year a
30 GBHA					
20 dBµV					-
10 dBµV					
0 dBµV					
CF 7.44 GHz		2001	nts	SI SI	pan 10.0 MHz
		2001	PC3		02.07.2024
			Measuring		

Date: 2.JUL.2024 21:48:44

Note:

Plots of worst case are only reported.

[Ant.2] 2 M Bit/s 37 Bytes Test Plots

Radiated Spurious Emissions plot – Average Result (Ch.36 3rd Harmonic, Y-H)

Spectrum	Spectrum 2	X Sr	pectrum 3	X S	Spectrum ·	4 X		
Ref Level 97.0 Att			1 MHz 3 MHz Ny	lode Sweep	5			
Count 200/200								
)1Rm AvgPwr⊜2	Pk Clrw			М	1[1]			35.77 dBµ\ 65217 GH:
90 dBµV					1		7.429	
80 dBµV								
70 dBµV								
60 dBµV								
50 dBµV								
30 dBµV	i Thulan at a	r fr i		יזי וך י	4.001 - 1.		aras II. A	in
20 dBµV								
10 dBµV								
0 dBµV CF 7.434 GHz			2001	nte			Snan	10.0 MHz
5F 7.464 GHZ			2001	, pro			span	10.0 MHZ

Date: 3.JUL.2024 03:25:53

Radiated Spurious Emissions plot – Peak Result (Ch.36 3rd Harmonic, Y-H)

⊖1Pk Max⊜	2Pk Clrw									
90 dBµV					M	1[1] 	1	47.55 dBµ 7.43084658 G⊢ 		
30 dBµV—										
′0 dBµV—										
0 dBµV										
50 dBuV	M1	it and the ball is soluted at	the file of the set	aliter and a state of the state		a such all the such and	ate a construction	endel an and a second		
RAMAN		Automobile Automobil			rⁱklyvi i k initikl		a data data data data data data data da			
р и риц 30 dBµV—	4 . 4 1.			. [n. 1141.		L		a, It ,	111	
?0 dBµV										
.0 dBµV										

Date: 3.JUL.2024 03:26:21

Note:

Plots of worst case are only reported.

[Dual Ant.1+ Ant.2] I M Bit/s 37 Bytes Test Plots

Radiated Spurious Emissions plot – Average Result (Ch.39 3rd Harmonic, Y-H)

Spectrum	Spectrum 2	X Sp	ectrum 3	× s	pectrum -	4 X		
Ref Level 97.0		e RBW ms e VBW	1 MHz 3 MHz №	lode Sweep				
Count 200/200				1040 01100	-			
●1Rm AvgPwr●2P	k Clrw							
				M1[1]			35.66 dBµ\ 7.43922539 GHz	
90 dBµV								
80 dBµV								
70 dBµV								
60 dBµV								
50 dBµV								
	wheeler and the states of the						uktori telekt ikalit.	
30 двнл . 		t. I. k. M. M.	an ann an hana	and the second	hter 1 - 2 within	art rat attal		a curi cutof natifa ci
20 dBµV								
10 dBµV								
0 dBµV								
CF 7.44 GHz			2001	pts			Span	10.0 MHz

Date: 3.JUL.2024 05:51:14

Radiated Spurious Emissions plot – Peak Result (Ch.39 3rd Harmonic, Y-H)

	2Pk Clrw				м	1[1]	47.38 dBµ		
90 dBµV						I	I	7.443	70315 GH
80 dBµV									
70 dBµV									
60 dBµV									
50 dBµV								M1	
onikekentosileentie Miskeleitikke	n statelander og som det s sektet tilstelaktigt statelaktigt	and a state of the second s	ملحو فانتخب المعيول وحمر المحاول المحاول المعاول المحاول	an internet in the state	, es, boeten ander die Jese Milleder Mildelichen is	n pandalasan (n. sali nakisi. Kalabida bilan kalabida	and a state of the second	hiliyyyddiad yw yn yw diad yn	adramatic interests Automotic interests
India Contract of	A MARINA MARINA	an la cata ha an	a tatata putata pu	NU XANUMUMAKA A	and distribution	nadari. Madada	linis bilinistra	house desidies in	ha hahida ka
30 dBµV									
20 dBµV									
10 dBuV									
10 dBµV									
0 dBµV									

Date: 3.JUL.2024 05:51:33

Note:

Plots of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

[Ant.1]

Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2402 MHz, 2480 MHz
Channel No.	37 CH, 39 CH

Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	55.00	-	Н	55.00	73.98	18.98	PK
2390.0	42.58	-	н	42.58	53.98	11.40	AV
2390.0	55.03	-	V	55.03	73.98	18.95	РК
2390.0	42.96	-	V	42.96	53.98	11.02	AV
2483.5	63.64	-	Н	63.64	73.98	10.34	РК
2483.5	45.21	-	Н	45.21	53.98	8.77	AV
2483.5	62.76	-	V	62.76	73.98	11.22	РК
2483.5	45.19	-	V	45.19	53.98	8.79	AV

Operation Mode
Operating Frequency
Channel No.

2 M Bit/s (37 Bytes)
2404 MHz, 2478 MHz
0 CH, 36 CH

Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	55.42	-	Н	55.42	73.98	18.56	PK
2390.0	42.67	-	н	42.67	53.98	11.31	AV
2390.0	55.50	-	V	55.50	73.98	18.48	PK
2390.0	42.94	-	V	42.94	53.98	11.04	AV
2483.5	60.12	-	Н	60.12	73.98	13.86	PK
2483.5	44.42	-	Н	44.42	53.98	9.56	AV
2483.5	59.93	-	V	59.93	73.98	14.05	PK
2483.5	44.29	-	V	44.29	53.98	9.69	AV

[Ant.2]

Operation Mode	1 M Bit/s (37 Bytes)			
Operating Frequency	2402 MHz, 2480 MHz			
Channel No.	37 CH, 39 CH			

Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	54.94	0.00	Н	54.94	73.98	19.04	PK
2390.0	42.91	0.00	н	42.91	53.98	11.07	AV
2390.0	54.76	0.00	V	54.76	73.98	19.22	PK
2390.0	42.65	0.00	V	42.65	53.98	11.33	AV
2483.5	62.94	0.00	Н	62.94	73.98	11.04	PK
2483.5	44.96	0.00	Н	44.96	53.98	9.02	AV
2483.5	62.84	0.00	V	62.84	73.98	11.14	PK
2483.5	44.65	0.00	V	44.65	53.98	9.33	AV

Operation Mode Operating Frequency Channel No. 2 M Bit/s (37 Bytes) 2404 MHz, 2478 MHz 0 CH, 36 CH

Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	54.98	0.00	Н	54.98	73.98	19.00	PK
2390.0	42.85	0.00	Н	42.85	53.98	11.13	AV
2390.0	54.84	0.00	V	54.84	73.98	19.14	PK
2390.0	42.68	0.00	V	42.68	53.98	11.30	AV
2483.5	59.66	0.00	Н	59.66	73.98	14.32	PK
2483.5	44.22	0.00	Н	44.22	53.98	9.76	AV
2483.5	59.15	0.00	V	59.15	73.98	14.83	РК
2483.5	44.18	0.00	V	44.18	53.98	9.80	AV

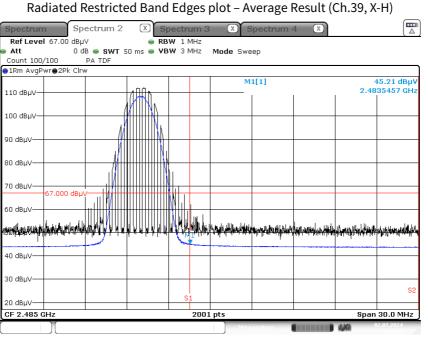
[Dual Ant.1+ Ant.2]

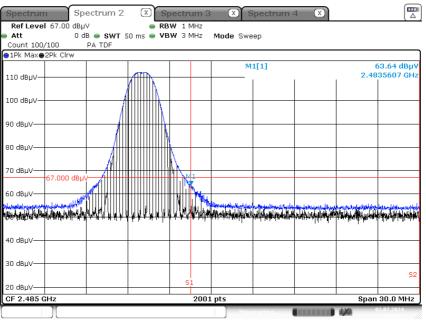
Operation Mode	1 M Bit/s (37 Bytes)
Operating Frequency	2402 MHz, 2480 MHz
Channel No.	37 CH, 39 CH

Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	55.15	-	Н	55.15	73.98	18.83	PK
2390.0	42.75	-	н	42.75	53.98	11.23	AV
2390.0	55.02	-	V	55.02	73.98	18.96	PK
2390.0	42.61	-	V	42.61	53.98	11.37	AV
2483.5	61.57	-	Н	61.57	73.98	12.41	PK
2483.5	44.27	-	Н	44.27	53.98	9.71	AV
2483.5	61.08	-	V	61.08	73.98	12.90	РК
2483.5	44.18	-	V	44.18	53.98	9.80	AV

Operation Mode Operating Frequency Channel No.

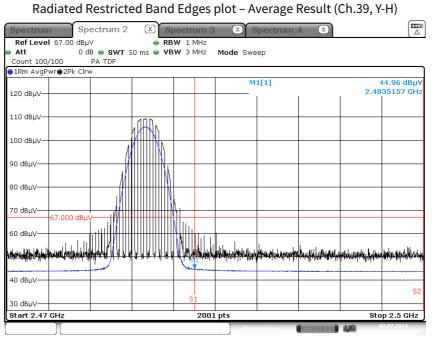
2 M Bit/s (37 Bytes)	
2404 MHz, 2478 MHz	
0 CH, 36 CH	


Frequency	Measured Value	A.F+C.L	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	54.64	-	Н	54.64	73.98	19.34	PK
2390.0	42.69	-	н	42.69	53.98	11.29	AV
2390.0	54.42	-	V	54.42	73.98	19.56	РК
2390.0	42.58	-	V	42.58	53.98	11.40	AV
2483.5	58.52	-	Н	58.52	73.98	15.46	РК
2483.5	43.88	-	Н	43.88	53.98	10.10	AV
2483.5	58.48	-	V	58.48	73.98	15.50	РК
2483.5	43.29	-	V	43.29	53.98	10.69	AV


[Ant.1]

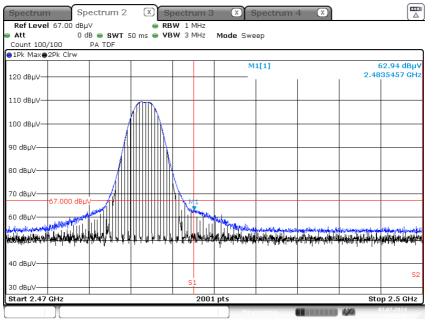
Mode : 1 M Bit/s (37 Bytes) Test Plots

Date: 2.JUL.2024 23:12:00


Date: 2.JUL.2024 23:12:24

Note:

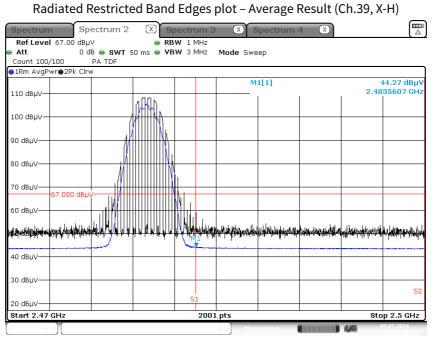
In order to simplify the report, Plot of worst case are only reported.



[Ant.2] Mode : 1 M Bit/s (37 Bytes) Test Plots

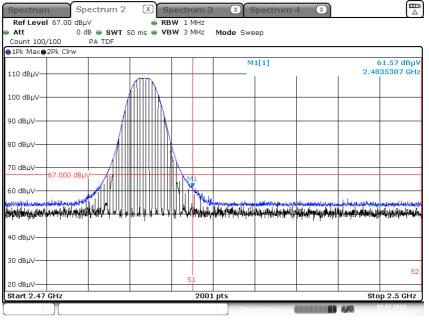
Date: 2.JUL.2024 23:34:39

Radiated Restricted Band Edges plot – Peak Result (Ch.39, Y-H)


Date: 2.JUL.2024 23:35:26

Note:

In order to simplify the report, Plot of worst case are only reported.



[Dual Ant.1+ Ant.2] Mode : 1 M Bit/s (37 Bytes) Test Plots

Date: 3.JUL.2024 08:27:40

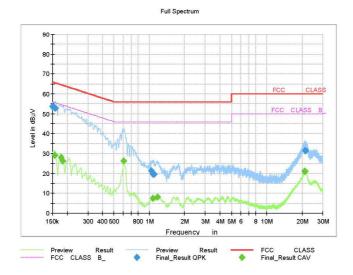
Date: 3.JUL.2024 08:28:21

Note:

In order to simplify the report, Plot of worst case are only reported.

1/2

9.8 POWERLINE CONDUCTED EMISSIONS


Conducted Emissions

Test

Test Report

Common Information

EUT : Operating Conditions : Comment : SM-S721B/DS BLE Mode

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1500	53.71	66.00	12.29	9.000	L1	9.6
0.1545	53.37	65.75	12.39	9.000	L1	9.6
0.1590	52.70	65.52	12.81	9.000	N	9.6
1.0378	21.37	56.00	34.63	9.000	L1	9.7
1.0738	19.71	56.00	36.29	9.000	L1	9.7
1.0940	19.71	56.00	36.29	9.000	L1	9.7
21.1258	31.44	60.00	28.56	9.000	L1	10.4
21.3733	31.34	60.00	28.66	9.000	L1	10.4
21.3980	31.43	60.00	28.57	9.000	L1	10.4

2024-07-10

오후 3:56:53

2/2

Test

Final_Result_CAV

Frequency (MHz)	CAverage (dBμV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1568	29.27	55.63	26.36	9.000	N	9.6
0.1770	28.01	54.63	26.61	9.000	L1	9.6
0.1838	26.15	54.31	28.17	9.000	N	9.6
0.6080	26.34	46.00	19.66	9.000	L1	9.6
1.0783	7.37	46.00	38.63	9.000	L1	9.7
1.1705	8.10	46.00	37.90	9.000	L1	9.7
20.9773	20.92	50.00	29.08	9.000	L1	10.4
21.0020	21.06	50.00	28.94	9.000	L1	10.4
21.0515	20.94	50.00	29.06	9.000	L1	10.4

2024-07-10

오후 3:56:53

10. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	07/17/2025	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	07/02/2025	Annual
Temperature Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Signal Analyzer	N9030A	Keysight	MY55410508	09/04/2024	Annual
Power Meter	N1911A	Agilent	MY45100523	02/28/2025	Annual
Power Sensor	N1921A	Agilent	MY57820067	02/22/2025	Annual
Directional Coupler	87300B	Agilent	3116A03621	10/30/2024	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/06/2025	Annual
DC Power Supply	E3632A	Agilent	KR01009150	04/18/2025	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C-010	Agilent	08285	05/28/2025	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	02/20/2025	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A
Bluetooth Tester	CBT	Rohde & Schwarz	100808	02/15/2025	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibratior Interval
Controller (Antenna mast & Turn Table)	CO3000	Innco system	CO3000/ 15421/57580623/G	N/A	N/A
Antenna Position Tower	MA4640	Innco system	9320422	04/05/2025	Biennial
Turn Table	N/A	Innco system	5930623	N/A	N/A
Loop Antenna	FMZB 1513	Schwarzbeck	1513-175	01/16/2025	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-1135	08/16/2024	Biennial
Horn Antenna	HF907	Rohde & Schwarz	103224	05/07/2026	Biennial
Horn Antenna (15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Amp & Filter Bank Switch Controller	FBSM-01B	T&M system	TM2009001	N/A	N/A
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/02/2025	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	5	06/04/2025	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	6	06/04/2025	Annual
Band Reject Filter	WRCJV5100/5850- 40/50-8EEK	Wainwright Instruments	1	02/14/2025	Annual
RF Switching System	FMSR-05B (HPF(3~18GHz) + LNA1(1~18GHz))	T&M system	S5L1	03/12/2025	Annual
RF Switching System	FMSR -05B (ATT(10dB) + LNA1(1~18GHz))	T&M system	S5L2	03/12/2025	Annual
RF Switching System	FMSR -05B (ATT(3dB) + LNA1(1~18GHz))	T&M system	S5L3	03/12/2025	Annual
RF Switching System	FMSR -05B (LNA1(1~18GHz))	T&M system	S5L4	03/12/2025	Annual
RF Switching System	FMSR -05B (HPF(7~18GHz) + LNA2(6~18GHz))	T&M system	S5L5	03/12/2025	Annual
RF Switching System	FMSR -05B (Thru(30MHz ~ 18GHz))	T&M system	S5L6	03/12/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/17/2024	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	03/19/2025	Annual
Spectrum Analyzer	FSV40 (9 kHz ~ 40 GHz)	Rohde & Schwarz	101510	03/28/2025	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is

completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description		
1	HCT-RF-2407-FC079-P		