

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

## MEASUREMENT REPORT FCC PART 15.407 802.11ax (OFDMA)

#### **Applicant Name:**

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 5/24-7/31/2023 Test Report Issue Date: 8/9/2023 Test Site/Location: Element lab., Columbia, MD, USA Test Report Serial No.: 1M2304260060-18.A3L

## FCC ID: APPLICANT:

## A3LSMS711U

### Samsung Electronics Co., Ltd.

| Application Type:    | Certification                                           |
|----------------------|---------------------------------------------------------|
| Model:               | SM-S711U                                                |
| Additional Model(s): | SM-S711U1                                               |
| EUT Type:            | Portable Handset                                        |
| Frequency Range:     | 5180 – 5885MHz                                          |
| Modulation Type:     | OFDMA                                                   |
| FCC Equipment Class: | Unlicensed National Information Infrastructure TX (NII) |
| FCC Rule Part(s):    | Part 15 Subpart E (15.407)                              |
| Test Procedure(s):   | ANSI C63.10-2013, KDB 648474 D03 v01r04                 |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

Note: This revised Test Report (S/N: 1M2304260060-18.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President



| FCC ID: A3LSMS711U           |                | MEASUREMENT REPORT                |               |  |  |
|------------------------------|----------------|-----------------------------------|---------------|--|--|
| Test Report S/N:             | Test Dates:    | EUT Type:                         | Page 1 of 157 |  |  |
| 1M2304260060-18.A3L          | 5/24-7/31/2023 | 24-7/31/2023 Portable Handset Pag |               |  |  |
| © 2023 ELEMENT V 9.0 02/01/2 |                |                                   |               |  |  |



## TABLE OF CONTENTS

| 1.0 | INTR | ODUCTI  | ON                                                                    | 4   |
|-----|------|---------|-----------------------------------------------------------------------|-----|
|     | 1.1  | Scope   | e                                                                     | 4   |
|     | 1.2  | Eleme   | ent Test Location                                                     | 4   |
|     | 1.3  | Test I  | Facility / Accreditations                                             | 4   |
| 2.0 | PRO  | DUCT IN | FORMATION                                                             | 5   |
|     | 2.1  | Equip   | oment Description                                                     | 5   |
|     | 2.2  | Devic   | e Capabilities                                                        | 5   |
|     | 2.3  | Anter   | ana Description                                                       |     |
|     | 2.4  | Test (  | Configuration                                                         |     |
|     | 2.5  | Softw   | are and Firmware                                                      |     |
|     | 2.6  | EMI S   | Suppression Device(s) / Modifications                                 | 8   |
| 3.0 | DESC | RIPTIO  | N OF TESTS                                                            | 9   |
|     | 3.1  | Evalu   | ation Procedure                                                       | 9   |
|     | 3.2  | Radia   | ated Emissions                                                        | 9   |
|     | 3.3  | Envir   | onmental Conditions                                                   | 9   |
| 4.0 | ANTE | INNA RE | QUIREMENTS                                                            |     |
| 5.0 | MEAS | SUREME  | NT UNCERTAINTY                                                        | 11  |
| 6.0 | TEST | EQUIP   | MENT CALIBRATION DATA                                                 |     |
| 7.0 | TEST | RESUL   | TS                                                                    |     |
|     | 7.1  | Sumr    | nary                                                                  |     |
|     | 7.2  | 26dB    | Bandwidth Measurement                                                 |     |
|     |      | 7.2.1   | MIMO Antenna-1 26dB Bandwidth Measurements                            |     |
|     |      | 7.2.2   | MIMO Antenna-2 26dB Bandwidth Measurements                            |     |
|     | 7.3  | 6dB E   | Bandwidth Measurement                                                 |     |
|     |      | 7.3.1   | MIMO Antenna-1 6dB Bandwidth Measurements                             |     |
|     |      | 7.3.2   | MIMO Antenna-2 6dB Bandwidth Measurements                             |     |
|     | 7.4  | UNII    | Output Power Measurement                                              |     |
|     | 7.5  | Maxir   | num Power Spectral Density                                            |     |
|     |      | 7.5.1   | MIMO Antenna-1 Power Spectral Density Measurements                    |     |
|     |      | 7.5.2   | MIMO Antenna-2 Power Spectral Density Measurements                    | 91  |
|     | 7.6  | Radia   | ated Emission Measurements                                            | 110 |
|     |      | 7.6.1   | MIMO Radiated Spurious Emission Measurements (26 Tones)               | 116 |
|     |      | 7.6.2   | MIMO Radiated Spurious Emission Measurements (242 Tones)              | 129 |
|     |      | 7.6.3   | MIMO Radiated Band Edge Measurements (20MHz BW – Partial Tone – 106T) |     |
|     |      | 7.6.4   | MIMO Radiated Band Edge Measurements (20MHz BW – Full Tone – 242T)    |     |
|     |      | 7.6.5   | MIMO Radiated Band Edge Measurements (40MHz BW – Full Tone – 484T)    |     |
|     |      | 7.6.6   | MIMO Radiated Band Edge Measurements (80MHz BW – Full Tone – 996T)    | 151 |
|     |      | 7.6.7   | MIMO Radiated Band Edge Measurements (160MHz BW – Full Tone – 2x996T) | 154 |
| 8.0 | CON  | CLUSION | ۸                                                                     | 157 |
|     |      |         |                                                                       |     |

| FCC ID: A3LSMS711U              |                | MEASUREMENT REPORT       | Approved by:<br>Technical Manager |  |  |
|---------------------------------|----------------|--------------------------|-----------------------------------|--|--|
| Test Report S/N:                | Test Dates:    | EUT Type:                | Page 2 of 157                     |  |  |
| 1M2304260060-18.A3L             | 5/24-7/31/2023 | 023 Portable Handset Pag |                                   |  |  |
| © 2023 ELEMENT V 9.0 02/01/2019 |                |                          |                                   |  |  |



# **MEASUREMENT REPORT**

| Channel Tx         |           | МІМО                                                      |       |                     |  |
|--------------------|-----------|-----------------------------------------------------------|-------|---------------------|--|
| Bandwidth<br>[MHz] | UNII Band | Frequency         Max. Power           [MHz]         [mW] |       | Max. Power<br>[dBm] |  |
|                    | 1         | 5180 - 5240                                               | 98.85 | 19.95               |  |
|                    | 2A        | 5260 - 5320                                               | 94.78 | 19.77               |  |
| 20                 | 2C        | 5500 - 5720                                               | 97.34 | 19.88               |  |
|                    | 3         | 5745 - 5825                                               | 96.51 | 19.85               |  |
|                    | 4         | 5845 - 5885                                               | 66.22 | 18.21               |  |
|                    | 1         | 5190 - 5230                                               | 98.98 | 19.96               |  |
|                    | 2A        | 5270 - 5310                                               | 94.51 | 19.75               |  |
| 40                 | 2C        | 5510 - 5710                                               | 97.15 | 19.87               |  |
|                    | 3         | 5755 - 5795                                               | 97.82 | 19.90               |  |
|                    | 4         | 5835 - 5875                                               | 66.11 | 18.20               |  |
|                    | 1         | 5210                                                      | 95.77 | 19.81               |  |
|                    | 2A        | 5290                                                      | 97.58 | 19.89               |  |
| 80                 | 2C        | 5530 - 5690                                               | 97.74 | 19.90               |  |
|                    | 3         | 5775                                                      | 94.37 | 19.75               |  |
|                    | 4         | 5855                                                      | 67.96 | 18.32               |  |
|                    | 1/2A      | 5250                                                      | 98.35 | 19.93               |  |
| 160                | 2C        | 5570                                                      | 99.61 | 19.98               |  |
|                    | 3/4       | 5815                                                      | 66.20 | 18.21               |  |
| EUT Overview       |           |                                                           |       |                     |  |

Note: The UNII Band 4 max power values shown in the above table are e.i.r.p values.

| FCC ID: A3LSMS711U             |                | MEASUREMENT REPORT         | Approved by:<br>Technical Manager |  |
|--------------------------------|----------------|----------------------------|-----------------------------------|--|
| Test Report S/N:               | Test Dates:    | EUT Type:                  | Page 3 of 157                     |  |
| 1M2304260060-18.A3L            | 5/24-7/31/2023 | 2023 Portable Handset Page |                                   |  |
| © 2023 ELEMENT V 9.0 02/01/201 |                |                            |                                   |  |



## **1.0 INTRODUCTION**

#### 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

#### **1.2 Element Test Location**

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

#### 1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

| FCC ID: A3LSMS711U           |                | MEASUREMENT REPORT              |               |  |  |
|------------------------------|----------------|---------------------------------|---------------|--|--|
| Test Report S/N:             | Test Dates:    | EUT Type:                       | Page 4 of 157 |  |  |
| 1M2304260060-18.A3L          | 5/24-7/31/2023 | 5/24-7/31/2023 Portable Handset |               |  |  |
| © 2023 ELEMENT V 9.0 02/01/2 |                |                                 |               |  |  |

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.



#### **PRODUCT INFORMATION** 2.0

#### 2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMS711U. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 0543M, 0540M, 0429M, 0441M

#### 2.2 **Device Capabilities**

This device contains the following capabilities:

Ch.

54

62

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1 and FR2), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer

|     | Band 1             | nd 1 Band 2A |                    |     | Band 2C            |     | Band 3             |     |     | Band 3/4           |
|-----|--------------------|--------------|--------------------|-----|--------------------|-----|--------------------|-----|-----|--------------------|
| Ch. | Frequency<br>(MHz) | Ch.          | Frequency<br>(MHz) | Ch. | Frequency<br>(MHz) | Ch. | Frequency<br>(MHz) | ] [ | Ch. | Frequency<br>(MHz) |
| 36  | 5180               | 52           | 5260               | 100 | 5500               | 149 | 5745               | 1 [ | 169 | 5845               |
|     | :                  | :            | :                  | :   | :                  | :   | :                  | 1 [ | :   | :                  |
| 40  | 5200               | 56           | 5280               | 120 | 5600               | 157 | 5785               | 1 [ | 173 | 5865               |
| :   | :                  | :            | :                  | :   | :                  | :   | :                  |     | :   | :                  |
| 48  | 5240               | 64           | 5320               | 144 | 5720               | 165 | 5825               | ] [ | 177 | 5885               |

Table 2-1. 802.11ax (20MHz) Frequency / Channel Operations

Band 2C

Frequency

(MHz)

5510 ÷

5590

5710

|     | Band 1             |
|-----|--------------------|
| Ch. | Frequency<br>(MHz) |
| 38  | 5190               |
| :   | :                  |
| 46  | 5230               |
|     |                    |

| Band 2A            |     |
|--------------------|-----|
| Frequency<br>(MHz) | Ch. |
| 5270               | 102 |
| :                  | :   |
| 5310               | 118 |
|                    | :   |
|                    |     |

142

|     | Band 3             |
|-----|--------------------|
| Ch. | Frequency<br>(MHz) |
| 151 | 5755               |
| :   | :                  |
| 159 | 5795               |

|     | Band 3/4           |
|-----|--------------------|
| Ch. | Frequency<br>(MHz) |
| 167 | 5835               |
| :   | :                  |
| 175 | 5875               |

Table 2-2. 802.11ax (40MHz BW) Frequency / Channel Operations

|     | Band 1                                                        |     | Band 2A            |     | Band 2C            |     | Band 3             |   |     | Band 3/4           |
|-----|---------------------------------------------------------------|-----|--------------------|-----|--------------------|-----|--------------------|---|-----|--------------------|
| Ch. | Frequency<br>(MHz)                                            | Ch. | Frequency<br>(MHz) | Ch. | Frequency<br>(MHz) | Ch. | Frequency<br>(MHz) |   | Ch. | Frequency<br>(MHz) |
| 42  | 5210                                                          | 58  | 5290               | 106 | 5530               | 155 | 5775               |   | 167 | 5835               |
|     |                                                               |     |                    | :   | :                  | -   |                    | - |     |                    |
|     |                                                               |     |                    | 122 | 5610               |     |                    |   |     |                    |
|     |                                                               |     |                    | :   | :                  |     |                    |   |     |                    |
|     |                                                               |     |                    | 138 | 5690               |     |                    |   |     |                    |
|     | Table 2-3. 802.11ax (80MHz BW) Frequency / Channel Operations |     |                    |     |                    |     |                    |   |     |                    |

|                                                                | Band 1/2A       |  |     | Band 2C         |  | Band 3/4 |                 |  |  |
|----------------------------------------------------------------|-----------------|--|-----|-----------------|--|----------|-----------------|--|--|
| Ch.                                                            | Frequency (MHz) |  | Ch. | Frequency (MHz) |  | Ch.      | Frequency (MHz) |  |  |
| 50                                                             | 5250            |  | 114 | 5570            |  | 163      | 5815            |  |  |
| Table 2-4, 802 11ax (160MHz BW) Frequency / Channel Operations |                 |  |     |                 |  |          |                 |  |  |

Table 2-4. 802.11ax (160MHz BW) Frequency / Channel Operations

| FCC ID: A3LSMS711U              |                | MEASUREMENT REPORT |               |  |  |  |  |  |
|---------------------------------|----------------|--------------------|---------------|--|--|--|--|--|
| Test Report S/N:                | Test Dates:    | EUT Type:          | Daga 5 of 157 |  |  |  |  |  |
| 1M2304260060-18.A3L             | 5/24-7/31/2023 | Portable Handset   | Page 5 of 157 |  |  |  |  |  |
| © 2023 ELEMENT V 9.0 02/01/2019 |                |                    |               |  |  |  |  |  |



#### Notes:

5GHz NII operation is possible in 20MHz, 40MHz, 80MHz, and 160MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Mode     | Antenna  | Bandwidth<br>[MHz] | Tone   | Duty Cycle |
|----------|----------|--------------------|--------|------------|
|          |          |                    | 26T    | 99.31      |
| 802.11ax | MIMO     | 20                 | 52T    | 99.31      |
| NII RU   | IVIIIVIO | 20                 | 106T   | 99.27      |
|          |          |                    | 242T   | 99.25      |
|          |          |                    | 26T    | 99.31      |
| 802.11ax |          |                    | 52T    | 99.31      |
| NII RU   | MIMO     | 40                 | 106T   | 98.94      |
|          |          |                    | 242T   | 99.33      |
|          |          |                    | 484T   | 99.33      |
|          |          |                    | 26T    | 98.41      |
|          |          |                    | 52T    | 98.48      |
| 802.11ax | MIMO     | 80                 | 106T   | 99.19      |
| NII RU   |          |                    | 242T   | 98.76      |
|          |          |                    | 484T   | 99.33      |
|          |          |                    | 996T   | 99.34      |
|          |          |                    | 26T    | 98.19      |
|          |          |                    | 52T    | 98.19      |
| 802.11ax |          |                    | 106T   | 98.07      |
| NII RU   | MIMO     | 160                | 242T   | 98.02      |
|          |          |                    | 484T   | 99.09      |
|          |          |                    | 996T   | 99.02      |
|          |          |                    | 996*2T | 99.60      |

| Table 2-5. Measured Duty Cycles |
|---------------------------------|
|---------------------------------|

2. The device employs MIMO technology. Below are the possible configurations.

|         | ofigurationa | SI   | SO   | SE   | DM   | CDD          |              |  |
|---------|--------------|------|------|------|------|--------------|--------------|--|
| VIFI CO | nfigurations | ANT1 | ANT2 | ANT1 | ANT2 | ANT1         | ANT2         |  |
|         | 11a          | ×    | ×    | √    | ✓    | ✓            | √            |  |
|         | 11n          | ×    | ×    | ✓    | ✓    | ✓            | ✓            |  |
| 5GHz    | 11ac         | ×    | ×    | √    | ✓    | ✓            | $\checkmark$ |  |
|         | 11ax         | ×    | ×    | ✓    | ✓    | $\checkmark$ | ✓            |  |

#### Table 2-6. Frequency / Channel Operations

 $\checkmark$  = Support;  $\times$  = NOT Support

| FCC ID: A3LSMS711U              |                | MEASUREMENT REPORT |               |  |  |  |  |  |  |
|---------------------------------|----------------|--------------------|---------------|--|--|--|--|--|--|
| Test Report S/N:                | Test Dates:    | EUT Type:          | Dogo 6 of 157 |  |  |  |  |  |  |
| 1M2304260060-18.A3L             | 5/24-7/31/2023 | Portable Handset   | Page 6 of 157 |  |  |  |  |  |  |
| © 2023 ELEMENT V 9.0 02/01/2019 |                |                    |               |  |  |  |  |  |  |



**SISO** = Single Input Single Output **SDM** = Spatial Diversity Multiplexing – MIMO function **CDD** = Cyclic Delay Diversity – 2Tx Function

3. The device supports the following data rates (shown in Mbps):

| MCS   |         |          |          |          |          |          |          |          |          |          | OFD      | MA (802.1 | 1ax)     |          |          |          |          |          |          |          |          |          |
|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Index | Spatial |          |          |          |          |          |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          |
|       | Stream  |          | 26T      |          |          | 52T      |          |          | 106T     |          |          | 242T      |          |          | 484T     |          |          | 996T     |          |          | 2x996T   |          |
| HE    |         | 0.8µs Gl | 1.6µs Gl | 3.2µs Gl | 0.8µs GI | 1.6µs Gl | 3.2µs GI | 0.8µs GI | 1.6µs GI | 3.2µs GI | 0.8µs GI | 1.6µs GI  | 3.2µs GI | 0.8µs GI | 1.6µs Gl | 3.2µs GI | 0.8µs GI | 1.6µs GI | 3.2µs Gl | 0.8µs GI | 1.6µs GI | 3.2µs GI |
| 0     | 1       | 0.9      | 0.8      | 0.8      | 1.8      | 1.7      | 1.5      | 3.8      | 3.5      | 3.2      | 8.6      | 8.1       | 7.3      | 17.2     | 16.3     | 14.6     | 36       | 34       | 30.6     | 72.1     | 68.1     | 61.3     |
| 1     | 1       | 1.8      | 1.7      | 1.5      | 3.5      | 3.3      | 3        | 7.5      | 7.1      | 6.4      | 17.2     | 16.3      | 14.6     | 34.4     | 32.5     | 29.3     | 72.1     | 68.1     | 61.3     | 144.1    | 136.1    | 122.5    |
| 2     | 1       | 2.6      | 2.5      | 2.3      | 5.3      | 5        | 4.5      | 11.3     | 10.6     | 9.6      | 25.8     | 24.4      | 21.9     | 51.6     | 48.8     | 43.9     | 108.1    | 102.1    | 91.9     | 216.2    | 204.2    | 183.8    |
| 3     | 1       | 3.5      | 3.3      | 3        | 7.1      | 6.7      | 6        | 15       | 14.2     | 12.8     | 34.4     | 32.5      | 29.3     | 68.8     | 65       | 58.5     | 144.1    | 136.1    | 122.5    | 288.2    | 272.2    | 245      |
| 4     | 1       | 5.3      | 5        | 4.5      | 10.6     | 10       | 9        | 22.5     | 21.3     | 19.1     | 51.6     | 48.8      | 43.9     | 103.2    | 97.5     | 87.8     | 216.2    | 204.2    | 183.8    | 432.4    | 408.3    | 367.5    |
| 5     | 1       | 7.1      | 6.7      | 6        | 14.1     | 13.3     | 12       | 30       | 28.3     | 25.5     | 68.8     | 65        | 58.5     | 137.6    | 130      | 117      | 288.2    | 272.2    | 245      | 576.5    | 544.4    | 490      |
| 6     | 1       | 7.9      | 7.5      | 6.8      | 15.9     | 15       | 13.5     | 33.8     | 31.9     | 28.7     | 77.4     | 73.1      | 65.8     | 154.9    | 146.3    | 131.6    | 324.3    | 306.3    | 275.6    | 648.5    | 612.5    | 551.3    |
| 7     | 1       | 8.8      | 8.3      | 7.5      | 17.6     | 16.7     | 15       | 37.5     | 35.4     | 31.9     | 86       | 81.3      | 73.1     | 172.1    | 162.5    | 146.3    | 360.3    | 340.3    | 306.3    | 720.6    | 680.6    | 612.5    |
| 8     | 1       | 10.6     | 10       | 9        | 21.2     | 20       | 18       | 45       | 42.5     | 38.3     | 103.2    | 97.5      | 87.8     | 206.5    | 195      | 175.5    | 432.4    | 408.3    | 367.5    | 864.7    | 816.7    | 735      |
| 9     | 1       | 11.8     | 11.1     | 10       | 23.5     | 22.2     | 20       | 50       | 47.2     | 42.5     | 114.7    | 108.3     | 97.5     | 229.4    | 216.7    | 195      | 480.4    | 453.7    | 408.3    | 960.8    | 907.4    | 816.7    |
| 10    | 1       | 13.2     | 12.5     | 11.3     | 26.5     | 25       | 22.5     | 56.3     | 53.1     | 47.8     | 129      | 121.9     | 109.7    | 258.1    | 243.8    | 219.4    | 540.4    | 510.4    | 459.4    | 1080.9   | 1020.8   | 918.8    |
| 11    | 1       | 14.7     | 13.9     | 12.5     | 29.4     | 27.8     | 25       | 62.5     | 59       | 53.1     | 143.4    | 135.4     | 121.9    | 286.8    | 270.8    | 243.8    | 600.5    | 567.1    | 510.4    | 1201     | 1134.3   | 1020.8   |
| 0     | 2       | 1.8      | 1.7      | 1.5      | 3.5      | 3.3      | 3        | 7.5      | 7.1      | 6.4      | 17.2     | 16.3      | 14.6     | 34.4     | 32.5     | 29.3     | 72.1     | 68.1     | 61.3     | 144.1    | 136.1    | 122.5    |
| 1     | 2       | 3.5      | 3.3      | 3        | 7.1      | 6.7      | 6        | 15       | 14.2     | 12.8     | 34.4     | 32.5      | 29.3     | 68.8     | 65       | 58.5     | 144.1    | 136.1    | 122.5    | 288.2    | 272.2    | 245      |
| 2     | 2       | 5.3      | 5        | 4.5      | 10.6     | 10       | 9        | 22.5     | 21.3     | 19.1     | 51.6     | 48.8      | 43.9     | 103.2    | 97.5     | 87.8     | 216.2    | 204.2    | 183.8    | 432.4    | 408.3    | 367.5    |
| 3     | 2       | 7.1      | 6.7      | 6        | 14.1     | 13.3     | 12       | 30       | 28.3     | 25.5     | 68.8     | 65        | 58.5     | 137.6    | 130      | 117      | 288.2    | 272.2    | 245      | 576.5    | 544.4    | 490      |
| 4     | 2       | 10.6     | 10       | 9        | 21.2     | 20       | 18       | 45       | 42.5     | 38.3     | 103.2    | 97.5      | 87.8     | 206.5    | 195      | 175.5    | 432.4    | 408.3    | 367.5    | 864.7    | 816.7    | 735      |
| 5     | 2       | 14.1     | 13.3     | 12       | 28.2     | 26.7     | 24       | 60       | 56.7     | 51       | 137.6    | 130       | 117      | 275.3    | 260      | 234      | 576.5    | 544.4    | 490      | 1152.9   | 1088.9   | 980      |
| 6     | 2       | 15.9     | 15       | 13.5     | 31.8     | 30       | 27       | 67.5     | 63.8     | 57.4     | 154.9    | 146.3     | 131.6    | 309.7    | 292.5    | 263.3    | 648.5    | 612.5    | 551.3    | 1297.1   | 1225     | 1102.5   |
| 7     | 2       | 17.6     | 16.7     | 15       | 35.3     | 33.3     | 30       | 75       | 70.8     | 63.8     | 172.1    | 162.5     | 146.3    | 344.1    | 325      | 292.5    | 720.6    | 680.6    | 612.5    | 1441.2   | 1361.1   | 1225     |
| 8     | 2       | 21.2     | 20       | 18       | 42.4     | 40       | 36       | 90       | 85       | 76.5     | 206.5    | 195       | 175.5    | 412.9    | 390      | 351      | 864.7    | 816.7    | 735      | 1729.4   | 1633.3   | 1470     |
| 9     | 2       | 23.5     | 22.2     | 20       | 47.1     | 44.4     | 40       | 100      | 94.4     | 85       | 229.4    | 216.7     | 195      | 458.8    | 433.3    | 390      | 960.8    | 907.4    | 816.7    | 1921.6   | 1814.8   | 1633.3   |
| 10    | 2       | 26.5     | 25       | 22.5     | 52.9     | 50       | 45       | 112.5    | 106.3    | 95.6     | 258.1    | 243.8     | 219.4    | 516.2    | 487.5    | 438.8    | 1080.9   | 1020.8   | 918.8    | 2161.8   | 2041.7   | 1837.5   |
| 11    | 2       | 29.4     | 27.8     | 25       | 58.8     | 55.6     | 50       | 125      | 118.1    | 106.3    | 286.8    | 270.8     | 243.8    | 573.5    | 541.7    | 487.5    | 1201     | 1134.3   | 1020.8   | 2402     | 2268.5   | 2041.7   |
| -     |         |          |          |          |          |          |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          |

 Table 2-7. Supported Data Rates

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dago Z of 157    |  |  |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 7 of 157    |  |  |  |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |  |  |  |



## 2.3 Antenna Description

| Frequency [GHz] | Antenna 1 Gain<br>[dBi] | Antenna 2 Gain<br>[dBi] | Directional Ant.<br>Gain [dBi] |  |
|-----------------|-------------------------|-------------------------|--------------------------------|--|
| 5.20            | -5.01                   | -5.68                   | -2.33                          |  |
| 5.30            | -6.38                   | -6.72                   | -3.54                          |  |
| 5.50            | -2.04                   | -5.22                   | -0.47                          |  |
| 5.80            | -1.77                   | -4.11                   | 0.15                           |  |
| 5.85            | -3.87                   | -5.58                   | -1.67                          |  |
|                 |                         |                         |                                |  |

The following antenna gains were used for the testing.

Table 2-8. Antenna Peak Gain

## 2.4 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 7.6 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

### 2.5 Software and Firmware

The test was conducted with software/firmware version S711USQU0AWG7 installed on the EUT.

## 2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

| FCC ID: A3LSMS711U              |                | MEASUREMENT REPORT |               |  |  |  |  |  |
|---------------------------------|----------------|--------------------|---------------|--|--|--|--|--|
| Test Report S/N:                | Test Dates:    | EUT Type:          | Dage 9 of 157 |  |  |  |  |  |
| 1M2304260060-18.A3L             | 5/24-7/31/2023 | Portable Handset   | Page 8 of 157 |  |  |  |  |  |
| © 2023 ELEMENT V 9.0 02/01/2019 |                |                    |               |  |  |  |  |  |



## 3.0 DESCRIPTION OF TESTS

#### 3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

## 3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

## 3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

| FCC ID: A3LSMS711U              |                | MEASUREMENT REPORT |               |  |  |  |  |  |
|---------------------------------|----------------|--------------------|---------------|--|--|--|--|--|
| Test Report S/N:                | Test Dates:    | EUT Type:          | Dage 0 of 157 |  |  |  |  |  |
| 1M2304260060-18.A3L             | 5/24-7/31/2023 | Portable Handset   | Page 9 of 157 |  |  |  |  |  |
| © 2023 ELEMENT V 9.0 02/01/2019 |                |                    |               |  |  |  |  |  |



## 4.0 ANTENNA REQUIREMENTS

#### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

#### **Conclusion:**

The EUT complies with the requirement of §15.203.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |
|---------------------|----------------|--------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dogo 10 of 157   |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 10 of 157   |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |



## 5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Line Conducted Disturbance          | 3.09                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT                    |                  |
|---------------------|----------------|---------------------------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:                             | Dage 11 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset                      | Page 11 of 157   |
| © 2023 ELEMENT      |                | · · · · · · · · · · · · · · · · · · · | V 9.0 02/01/2019 |



## 6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

| Manufacturer          | Model            | Description                                | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|------------------|--------------------------------------------|-----------|--------------|-----------|---------------|
| -                     | AP2-001          | EMC Cable and Switch System                | 1/11/2023 | Annual       | 1/11/2024 | AP2-001       |
| -                     | AP2-002          | EMC Cable and Switch System                | 1/11/2023 | Annual       | 1/11/2024 | AP2-002       |
| -                     | ETS-001          | EMC Cable and Switch System                | 1/11/2023 | Annual       | 1/11/2024 | ETS-001       |
| -                     | ETS-002          | EMC Cable and Switch System                | 1/11/2023 | Annual       | 1/11/2024 | ETS-002       |
| -                     | WL25-1           | Conducted Cable Set (25GHz)                | 1/12/2023 | Annual       | 1/12/2024 | WL25-1        |
| -                     | WL40-1           | Conducted Cable Set (40GHz)                | 1/12/2023 | Annual       | 1/12/2024 | WL40-1        |
| Anritsu               | MA24408A         | Microwave Peak Power Sensor                | 6/1/2022  | Annual       | 8/30/2023 | 11675         |
| Anritsu               | MA24408A         | Microwave Peak Power Sensor                | 4/12022   | Annual       | 8/30/2023 | 11676         |
| EMCO                  | 3115             | Horn Antenna (1-18GHz)                     | 8/8/2022  | Biennial     | 8/8/2024  | 9704-5182     |
| EMCO                  | 3116             | Horn Antenna (18-40GHz) 7/20/2021 Biennial |           | 8/30/2023    | 9203-2178 |               |
| Keysight Technologies | N9030A           | PXA Signal Analyzer (3Hz-26.5GHz)          | 9/6/2022  | Annual       | 9/6/2023  | MY54490576    |
| Keysight Technologies | N9030A           | PXA Signal Analyzer (44GHz)                | 3/15/2023 | Annual       | 3/15/2024 | MY52350166    |
| Keysight Technologies | N9038A           | MXE EMI Receiver                           | 1/21/2022 | Annual       | 7/31/2023 | MY51210133    |
| Pasternack            | NMLC-2           | Line Conducted Emissions Cable (NM)        | 1/11/203  | Annual       | 1/11/2024 | NMLC-2        |
| Rohde & Schwarz       | TC-TA18          | Cross Polarized Vivaldi Test Antenna       | 9/28/2022 | Biennial     | 9/28/2024 | 101058        |
| Rohde & Schwarz       | ESU26            | EMI Test Receiver (26.5GHz)                | 8/29/2022 | Annual       | 8/29/2023 | 100342        |
| Rohde & Schwarz       | ESW44            | EMI Test Receiver (2Hz-44GHz)              | 3/1/2023  | Annual       | 3/1/2024  | 101716        |
| Rohde & Schwarz       | VULB9162         | Bi-Log Antenna                             | 2/21/2023 | Biennial     | 2/21/2025 | 00301         |
| Solar Electronics     | 8012-50-R-24-BNC | Line Impedance Stabilization Network       | 9/21/2021 | Biennial     | 9/21/2023 | 310233        |
| Sunol                 | DRH-118          | Horn Antenna (1-18GHz)                     | 2/14/2022 | Biennial     | 2/14/2024 | A050307       |
| Sunol                 | JB5              | Bi-Log Antenna (30M - 5GHz)                | 8/30/2022 | Biennial     | 8/30/2024 | A051107       |
| Sunol                 | JB6              | JB6 Antenna                                | 3/2/2023  | Biennial     | 3/2/2025  | A082816       |

Table 6-1. Annual Test Equipment Calibration Schedule

#### Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT              |                  |
|---------------------|----------------|---------------------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:                       | Page 12 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | 5/24-7/31/2023 Portable Handset |                  |
| © 2023 ELEMENT      | ·              |                                 | V 9.0 02/01/2019 |



## 7.0 TEST RESULTS

### 7.1 Summary

| Company Name:       | Samsung Electronics Co., Ltd.                         |
|---------------------|-------------------------------------------------------|
| FCC ID:             | A3LSMS711U                                            |
| FCC Classification: | Unlicensed National Information Infrastructure (UNII) |

| FCC Part<br>Section(s)                                | RSS<br>Section(s) | Test Description Test Limit                                                            |                                                                                                      | Test<br>Condition | Test<br>Result | Reference              |
|-------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------|
| N/A                                                   | RSS-Gen [6.7]     | 26dB Bandwidth                                                                         | N/A                                                                                                  |                   | PASS           | Section 7.2            |
| 15.407(e)                                             | RSS-Gen [6.7]     | 6dB Bandwidth                                                                          | dB Bandwidth >500kHz (5725-5850MHz and 5850 – 5895MHz)                                               |                   | PASS           | Section 7.3            |
| 15.407<br>(a)(1)(iv),<br>(a)(2), (a)(3)               | RSS-247 [6.2]     | Maximum Conducted<br>Output Power                                                      | meet the limits detailed in $15.407$ (a)                                                             |                   | PASS           | Section 7.4            |
| 15.407<br>(a)(1)(iv),<br>(a)(2), (a)(3)               | RSS-247 [6.2]     | Maximum Power<br>Spectral Density                                                      | Maximum power spectral density must<br>meet the limits detailed in 15.407 (a)<br>(RSS-247 [6.2])     |                   | PASS           | Section 7.5            |
| 15.407(h)                                             | RSS-247 [6.3]     | Dynamic Frequency<br>Selection                                                         |                                                                                                      |                   | PASS           | See DFS<br>Test Report |
| 15.407(b)(1),<br>(b)(2), (b)(3),<br>(b)(4)            | RSS-247 [6.2]     | Undesirable Emissions                                                                  | Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])                     |                   | PASS           | Section 7.6            |
| 15.205,<br>15.407(b)(1),<br>(b)(4), (b)(5),<br>(b)(6) | RSS-Gen [8.9]     | General Field Strength<br>Limits (Restricted Bands<br>and Radiated Emission<br>Limits) | Emissions in restricted bands must<br>meet the radiated limits detailed in<br>15.209 (RSS-Gen [8.9]) | RADIATED          | PASS           | Section 7.6,<br>7.7    |

Table 7-1. Summary of Test Results

#### Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.5.0.
- 802.11ax OFDMA testing was performed for all signal tone configurations as specified by the 802.11ax standard. Worst case results are determined and reported per the guidance provided at the October 2018 TCB Workshop.
- Only one RU index could be selected at a time, so no contiguous or non-contiguous RUs were considered for testing.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT              |                  |
|---------------------|----------------|---------------------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:                       | Page 13 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | 5/24-7/31/2023 Portable Handset |                  |
| © 2023 ELEMENT      | •              | •                               | V 9.0 02/01/2019 |



## 7.2 26dB Bandwidth Measurement

#### Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

#### The 26dB bandwidth is used to determine the conducted power limits.

#### Test Procedure Used

ANSI C63.10-2013 - Section 12.4

#### Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup

#### Test Notes

The 26dB Bandwidth measurement for each channel was measured with the RU index showing the highest conducted power.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |
|---------------------|----------------|--------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 14 of 157   |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 14 of 157   |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |



## **MIMO 26dB Bandwidth Measurements**

|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 26dB<br>Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|
|           | 5180               | 36             | ax (20MHz)  | 26T   | MCS0                | 20.30                               |
|           | 5200               | 40             | ax (20MHz)  | 26T   | MCS0                | 18.64                               |
| l bi      | 5240               | 48             | ax (20MHz)  | 26T   | MCS0                | 20.44                               |
| Band 1    | 5190               | 38             | ax (40MHz)  | 26T   | MCS0                | 38.19                               |
|           | 5230               | 46             | ax (40MHz)  | 26T   | MCS0                | 40.87                               |
|           | 5210               | 42             | ax (80MHz)  | 26T   | MCS0                | 78.48                               |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 26T   | MCS0                | 158.60                              |
|           | 5260               | 52             | ax (20MHz)  | 26T   | MCS0                | 18.88                               |
| ٩         | 5280               | 56             | ax (20MHz)  | 26T   | MCS0                | 19.03                               |
| d 2/      | 5320               | 64             | ax (20MHz)  | 26T   | MCS0                | 18.49                               |
| Band 2A   | 5270               | 54             | ax (40MHz)  | 26T   | MCS0                | 40.09                               |
| ш         | 5310               | 62             | ax (40MHz)  | 26T   | MCS0                | 40.35                               |
|           | 5290               | 58             | ax (80MHz)  | 26T   | MCS0                | 81.40                               |
|           | 5500               | 100            | ax (20MHz)  | 26T   | MCS0                | 20.41                               |
|           | 5600               | 120            | ax (20MHz)  | 26T   | MCS0                | 18.90                               |
|           | 5720               | 144            | ax (20MHz)  | 26T   | MCS0                | 18.58                               |
| с         | 5510               | 102            | ax (40MHz)  | 26T   | MCS0                | 38.18                               |
| d 2       | 5550               | 110            | ax (40MHz)  | 26T   | MCS0                | 40.39                               |
| Band 2C   | 5670               | 134            | ax (40MHz)  | 26T   | MCS0                | 40.54                               |
| ш         | 5530               | 106            | ax (80MHz)  | 26T   | MCS0                | 82.22                               |
|           | 5610               | 122            | ax (80MHz)  | 26T   | MCS0                | 78.50                               |
|           | 5690               | 138            | ax (80MHz)  | 26T   | MCS0                | 78.38                               |
|           | 5570               | 114            | ax (160MHz) | 26T   | MCS0                | 164.40                              |

Table 7-2. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO ANT1 (26 Tones)

| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Dage 15 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 15 of 157                    |
| © 2023 ELEMENT      |                    |                  | V 9.0 02/01/2019                  |



|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 26dB<br>Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|
|           | 5180               | 36             | ax (20MHz)  | 26T   | MCS0                | 19.88                               |
|           | 5200               | 40             | ax (20MHz)  | 26T   | MCS0                | 18.34                               |
| l bi      | 5240               | 48             | ax (20MHz)  | 26T   | MCS0                | 20.15                               |
| Band 1    | 5190               | 38             | ax (40MHz)  | 26T   | MCS0                | 38.08                               |
|           | 5230               | 46             | ax (40MHz)  | 26T   | MCS0                | 39.86                               |
|           | 5210               | 42             | ax (80MHz)  | 26T   | MCS0                | 78.13                               |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 26T   | MCS0                | 158.30                              |
|           | 5260               | 52             | ax (20MHz)  | 26T   | MCS0                | 18.40                               |
| ∢         | 5280               | 56             | ax (20MHz)  | 26T   | MCS0                | 18.41                               |
| d 2,      | 5320               | 64             | ax (20MHz)  | 26T   | MCS0                | 18.30                               |
| Band 2A   | 5270               | 54             | ax (40MHz)  | 26T   | MCS0                | 40.01                               |
| ш         | 5310               | 62             | ax (40MHz)  | 26T   | MCS0                | 40.49                               |
|           | 5290               | 58             | ax (80MHz)  | 26T   | MCS0                | 81.10                               |
|           | 5500               | 100            | ax (20MHz)  | 26T   | MCS0                | 20.03                               |
|           | 5600               | 120            | ax (20MHz)  | 26T   | MCS0                | 18.43                               |
|           | 5720               | 144            | ax (20MHz)  | 26T   | MCS0                | 18.37                               |
| O         | 5510               | 102            | ax (40MHz)  | 26T   | MCS0                | 38.08                               |
| Band 2C   | 5550               | 110            | ax (40MHz)  | 26T   | MCS0                | 40.06                               |
| and       | 5670               | 134            | ax (40MHz)  | 26T   | MCS0                | 40.03                               |
| ш         | 5530               | 106            | ax (80MHz)  | 26T   | MCS0                | 81.23                               |
|           | 5610               | 122            | ax (80MHz)  | 26T   | MCS0                | 78.06                               |
|           | 5690               | 138            | ax (80MHz)  | 26T   | MCS0                | 78.18                               |
|           | 5570               | 114            | ax (160MHz) | 26T   | MCS0                | 162.90                              |

Table 7-3. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO ANT2 (26 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |
|---------------------|----------------|--------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 16 of 157   |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |



|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 26dB<br>Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|
|           | 5180               | 36             | ax (20MHz)  | 242T  | MCS0                | 22.54                               |
|           | 5200               | 40             | ax (20MHz)  | 242T  | MCS0                | 22.73                               |
| 1 hd      | 5240               | 48             | ax (20MHz)  | 242T  | MCS0                | 22.06                               |
| Band 1    | 5190               | 38             | ax (40MHz)  | 484T  | MCS0                | 43.63                               |
|           | 5230               | 46             | ax (40MHz)  | 484T  | MCS0                | 44.02                               |
|           | 5210               | 42             | ax (80MHz)  | 996T  | MCS0                | 85.73                               |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 26T   | MCS0                | 165.50                              |
|           | 5260               | 52             | ax (20MHz)  | 242T  | MCS0                | 22.63                               |
|           | 5280               | 56             | ax (20MHz)  | 242T  | MCS0                | 22.34                               |
| Band 2A   | 5320               | 64             | ax (20MHz)  | 242T  | MCS0                | 22.64                               |
| Ban       | 5270               | 54             | ax (40MHz)  | 484T  | MCS0                | 43.47                               |
|           | 5310               | 62             | ax (40MHz)  | 484T  | MCS0                | 44.50                               |
|           | 5290               | 58             | ax (80MHz)  | 996T  | MCS0                | 87.00                               |
|           | 5500               | 100            | ax (20MHz)  | 242T  | MCS0                | 22.36                               |
|           | 5600               | 120            | ax (20MHz)  | 242T  | MCS0                | 22.08                               |
|           | 5720               | 144            | ax (20MHz)  | 242T  | MCS0                | 22.59                               |
|           | 5510               | 102            | ax (40MHz)  | 484T  | MCS0                | 43.39                               |
| d 2C      | 5590               | 118            | ax (40MHz)  | 484T  | MCS0                | 42.29                               |
| Band 2C   | 5710               | 142            | ax (40MHz)  | 484T  | MCS0                | 44.68                               |
|           | 5530               | 106            | ax (80MHz)  | 996T  | MCS0                | 86.22                               |
|           | 5610               | 122            | ax (80MHz)  | 996T  | MCS0                | 87.78                               |
|           | 5690               | 138            | ax (80MHz)  | 996T  | MCS0                | 87.63                               |
|           | 5570               | 114            | ax (160MHz) | 996T  | MCS0                | 164.30                              |

Table 7-4. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO ANT1 (Full Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 17 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 17 of 157   |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019 |



|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 26dB<br>Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|
|           | 5180               | 36             | ax (20MHz)  | 242T  | MCS0                | 22.96                               |
|           | 5200               | 40             | ax (20MHz)  | 242T  | MCS0                | 22.61                               |
| Band 1    | 5240               | 48             | ax (20MHz)  | 242T  | MCS0                | 22.93                               |
| Bar       | 5190               | 38             | ax (40MHz)  | 484T  | MCS0                | 43.96                               |
|           | 5230               | 46             | ax (40MHz)  | 484T  | MCS0                | 44.39                               |
|           | 5210               | 42             | ax (80MHz)  | 996T  | MCS0                | 89.08                               |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 26T   | MCS0                | 166.10                              |
|           | 5260               | 52             | ax (20MHz)  | 242T  | MCS0                | 22.72                               |
|           | 5280               | 56             | ax (20MHz)  | 242T  | MCS0                | 22.88                               |
| Band 2A   | 5320               | 64             | ax (20MHz)  | 242T  | MCS0                | 22.03                               |
| Ban       | 5270               | 54             | ax (40MHz)  | 484T  | MCS0                | 44.15                               |
|           | 5310               | 62             | ax (40MHz)  | 484T  | MCS0                | 45.07                               |
|           | 5290               | 58             | ax (80MHz)  | 996T  | MCS0                | 85.48                               |
|           | 5500               | 100            | ax (20MHz)  | 242T  | MCS0                | 24.41                               |
|           | 5600               | 120            | ax (20MHz)  | 242T  | MCS0                | 22.54                               |
|           | 5720               | 144            | ax (20MHz)  | 242T  | MCS0                | 22.59                               |
|           | 5510               | 102            | ax (40MHz)  | 484T  | MCS0                | 44.91                               |
| d 2C      | 5590               | 118            | ax (40MHz)  | 484T  | MCS0                | 44.87                               |
| Band 2C   | 5710               | 142            | ax (40MHz)  | 484T  | MCS0                | 45.30                               |
|           | 5530               | 106            | ax (80MHz)  | 996T  | MCS0                | 90.28                               |
|           | 5610               | 122            | ax (80MHz)  | 996T  | MCS0                | 90.07                               |
|           | 5690               | 138            | ax (80MHz)  | 996T  | MCS0                | 86.34                               |
|           | 5570               | 114            | ax (160MHz) | 996T  | MCS0                | 164.70                              |

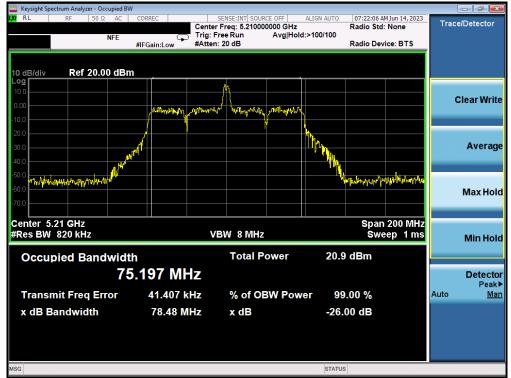
Table 7-5. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO ANT2 (Full Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | Dates: EUT Type:   |                  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 18 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |

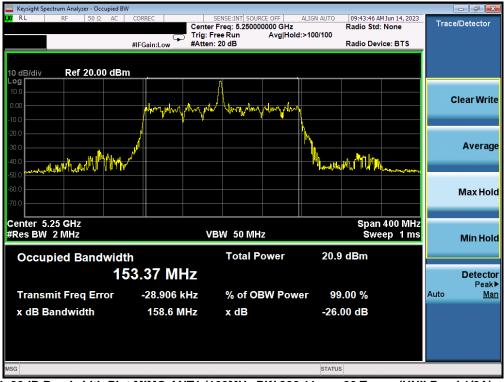


## 7.2.1 MIMO Antenna-1 26dB Bandwidth Measurements




Plot 7-1. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 40)

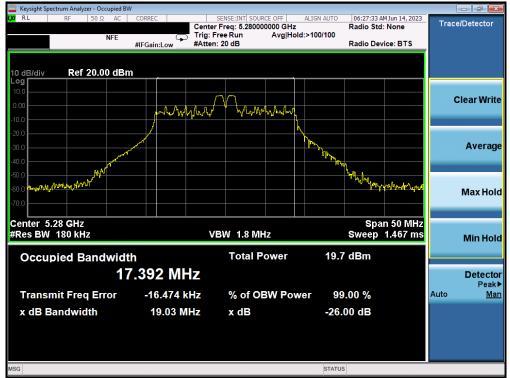



Plot 7-2. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 1) – Ch. 38)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 10 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 19 of 157   |
| © 2023 ELEMENT      |                |                    | V 9 0 02/01/2019 |






Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 42)

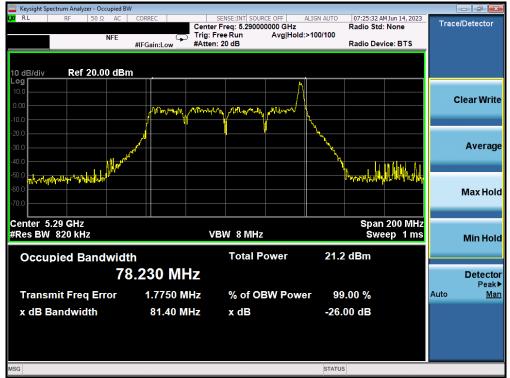


Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax – 26 Tones (UNII Band 1/2A) – Ch. 50)

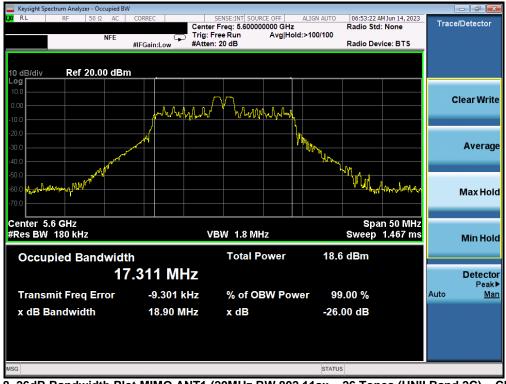
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 00 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 20 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 56)




Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 54)

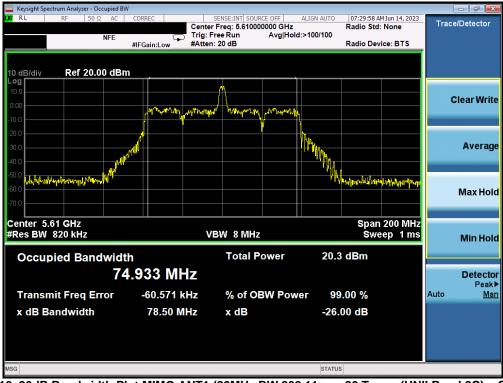
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dana 04 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 21 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |





Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 58)




Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 120)

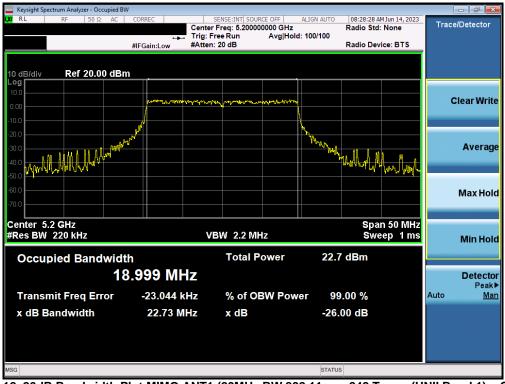
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dara 00 st 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 22 of 157   |
| © 2023 ELEMENT      | ·              | ·                  | V 9.0 02/01/2019 |





Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 2C) – Ch. 118)

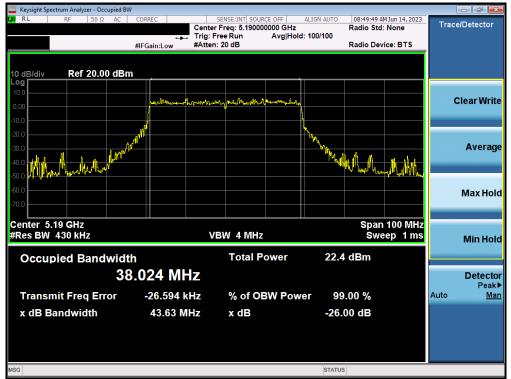



Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 122)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 22 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 23 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 114)



Plot 7-12. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 40)

| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dama 04 af 457 |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 24 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |





Plot 7-13. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax - 484 Tones (UNII Band 1) - Ch. 38)

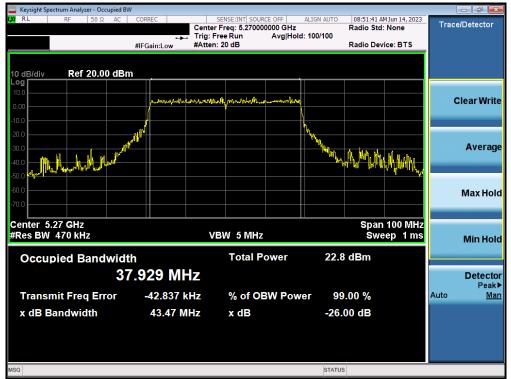


Plot 7-14. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 1) – Ch. 42)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 25 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 25 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |



| 🔤 Keysight Spectrum Analyzer - Occu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    | _    |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------------|------|--------------|
| <b>LXI</b> RL RF 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AC CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | NSE:INT SOUR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALIGN AUTO | 09:54:20 A | M Jun 14, 2023     | Trac | e/Detector   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trig: Free         | Run             | Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 100/100  |            |                    |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #IFGain:Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | w #Atten: 2        | 0 dB            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Radio Dev  | ice: BTS           |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| 10 dB/div Ref 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a state of the | rentmeen when when | moundationsplan | with the second s |            |            |                    | 1    | Clear Write  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l I        |            |                    |      |              |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4          |            |                    |      | Average      |
| and the second se | amunt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hundrent   | white made | ka. 41             |      | Average      |
| land the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            | harmflandindradera |      |              |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      | Max Hold     |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| Center 5.25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Span       | 400 MHz            |      |              |
| #Res BW 2 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VB                 | V 50 MH;        | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Swe        | ep 1 ms            |      | Min Hold     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      | minnora      |
| Occupied Bandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Total Po        | ower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.8       | dBm        |                    |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 156.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHz                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      | Detector     |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 40.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C7                 | 0/ -f OF        | NA/ D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00         | 00.0/      |                    | Auto | Peak▶<br>Man |
| Transmit Freq Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67 kHz             | % of OE         | W Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er 99      | .00 %      |                    | Auto | ivian        |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 MHz             | x dB            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -26.0      | 00 dB      |                    |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |                    |      |              |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATUS     |            |                    |      |              |


Plot 7-15. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax - 2x996 Tones (UNII Band 1/2A) - Ch. 50)

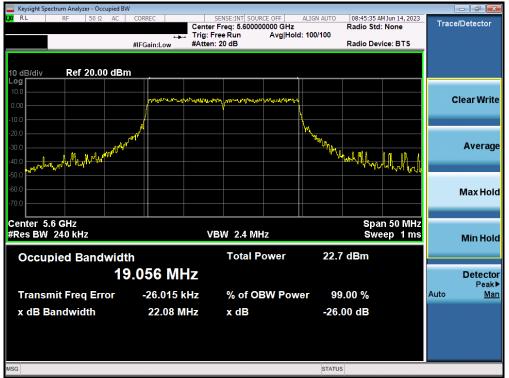


Plot 7-16. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax – 242 Tones (UNII Band 2A) – Ch. 56)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 00 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 26 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-17. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax - 484 Tones (UNII Band 2A) - Ch. 54)

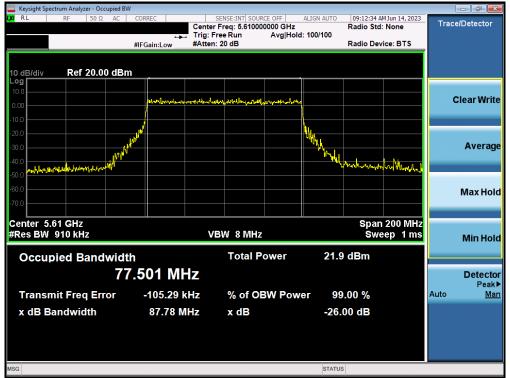


Plot 7-18. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 2A) – Ch. 58)

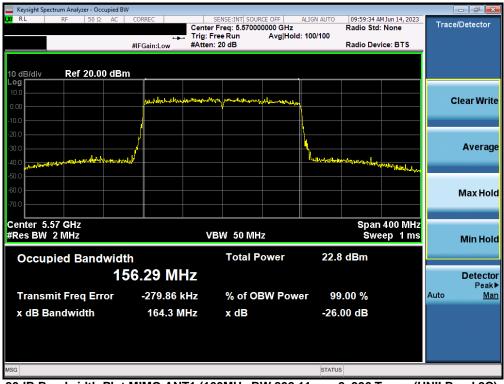
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dana 07 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 27 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-19. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax - 242 Tones (UNII Band 2C) - Ch. 120)




Plot 7-20. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 484 Tones (UNII Band 2C) – Ch. 118)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 00 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 28 of 157   |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019 |

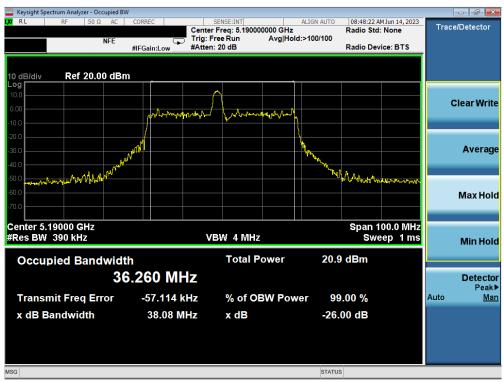




Plot 7-21. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 996 Tones (UNII Band 2C) - Ch. 122)



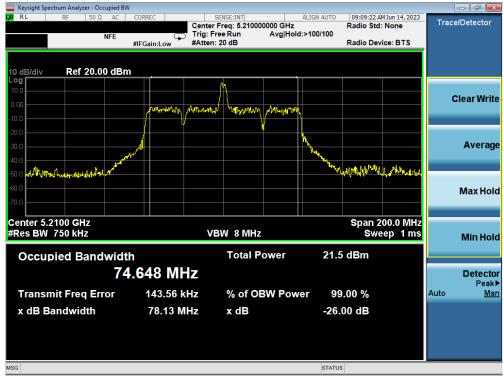
Plot 7-22. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax - 2x996 Tones (UNII Band 2C) - Ch. 114)


| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Deve 00 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 29 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |



## 7.2.2 MIMO Antenna-2 26dB Bandwidth Measurements




Plot 7-23. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 40)



Plot 7-24. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 38)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 20 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 30 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9 0 02/01/2019                  |





Plot 7-25. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 42)




Plot 7-26. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax - 26 Tones (UNII Band 1/2A) - Ch. 50)

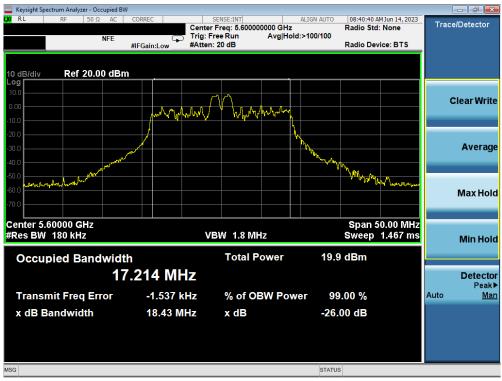
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dana 04 -6457    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 31 of 157   |
| © 2023 ELEMENT      | ·              |                    | V 9.0 02/01/2019 |





Plot 7-27. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 56)




Plot 7-28. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 2A) – Ch. 54)

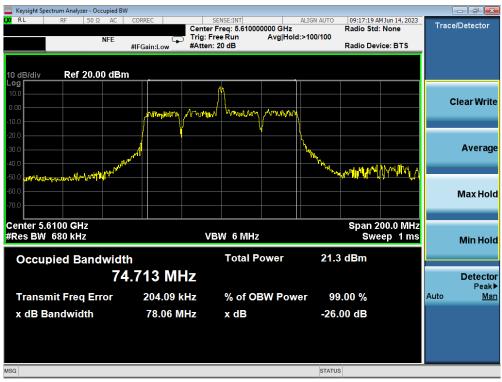
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 20 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 32 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |





Plot 7-29. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 58)

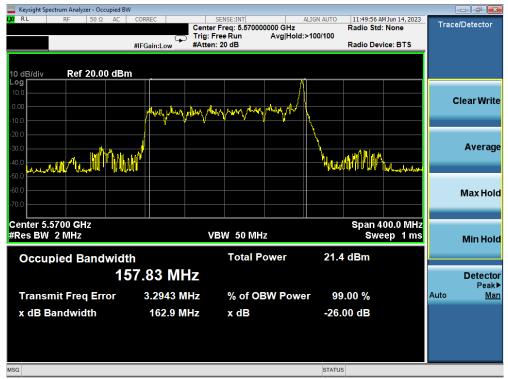



Plot 7-30. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 120)

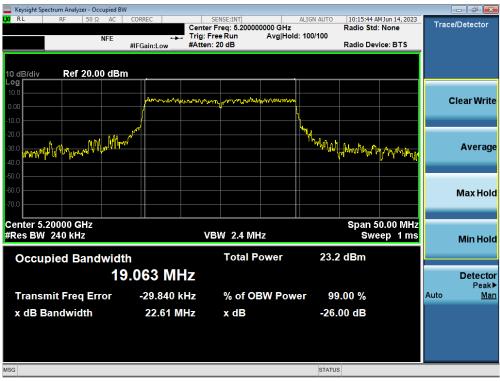
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 00 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 33 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-31. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 118)




Plot 7-32. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 122)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 04 af 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 34 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-33. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 114)



Plot 7-34. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 1) – Ch. 40)

| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dage 25 of 157 |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 35 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |





Plot 7-35. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 1) - Ch. 38)




Plot 7-36. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax – 996 Tones (UNII Band 1) – Ch. 42)

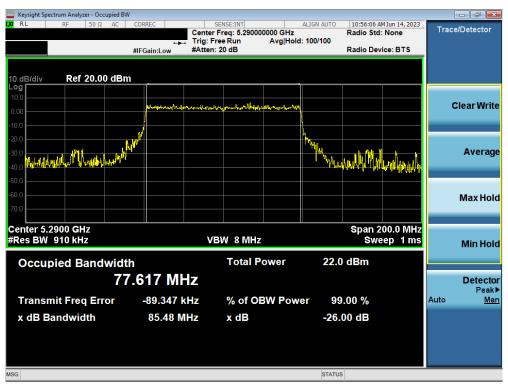
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 26 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 36 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |



| Keysight Spectrum Analyzer - Occu          | pied BW                               |                                   |                       |                               |                      |        |            |
|--------------------------------------------|---------------------------------------|-----------------------------------|-----------------------|-------------------------------|----------------------|--------|------------|
| X RL RF 50 Ω                               | AC CORREC                             | SENSE:INT<br>Center Freq: 5.25000 | ALIGN AUTO            | 11:41:36 AM J<br>Radio Std: N |                      | Trace/ | Detector   |
|                                            |                                       | Trig: Free Run                    | Avg Hold: 100/100     | Radio Std: N                  | ione                 |        |            |
|                                            | #IFGain:Low                           | #Atten: 20 dB                     |                       | Radio Device                  | e: BTS               |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
| 10 dB/div Ref 20.00                        | dBm                                   |                                   |                       |                               |                      |        |            |
| 10 dB/div Ref 20.00                        |                                       |                                   |                       |                               |                      |        |            |
| 10.0                                       |                                       |                                   |                       |                               |                      |        |            |
| 0.00                                       | and a how when the                    | munchingmandersup                 | y more and a strategy |                               |                      | Cl     | ear Write  |
|                                            |                                       |                                   |                       |                               |                      |        |            |
| -10.0                                      |                                       |                                   |                       |                               |                      |        |            |
| -20.0                                      |                                       |                                   |                       |                               |                      |        |            |
| -30.0                                      | · · · · · · · · · · · · · · · · · · · |                                   |                       |                               |                      |        | Average    |
| -40.0 กลุโศลสาราสประเมาการใหญ่หม่างสาราสาร | www.                                  |                                   | - text ( Cristian     | welling when the second       | worked and have      |        |            |
| -50.0                                      |                                       |                                   |                       |                               |                      |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
| -60.0                                      |                                       |                                   |                       |                               |                      |        | Max Hold   |
| -70.0                                      |                                       |                                   |                       |                               |                      |        |            |
| Center 5.2500 GHz                          |                                       |                                   |                       | Enon 400                      |                      |        |            |
| #Res BW 2 MHz                              |                                       | VBW 50 MH                         | 7                     | Span 40                       | 0.0 101112<br>p 1 ms |        |            |
| #Res Dov 2 IVINZ                           |                                       |                                   | 2                     | awee                          | p ms                 |        | Min Hold   |
| Occupied Bandy                             | width                                 | Total P                           | ower 23 (             | ) dBm                         |                      |        |            |
| Occupied Balluv                            |                                       |                                   | 20.0                  |                               |                      |        |            |
|                                            | 156.13 MH                             | Z                                 |                       |                               |                      |        | Detector   |
|                                            |                                       |                                   |                       |                               |                      |        | Peak►      |
| Transmit Freq Erro                         | or -89.615 kl                         | IZ % of O                         | 3W Power 99           | 0.00 %                        |                      | Auto   | <u>Man</u> |
| x dB Bandwidth                             | 166.1 MI                              | lz xdB                            | -26.                  | 00 dB                         |                      |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
|                                            |                                       |                                   |                       |                               |                      |        |            |
| MSG                                        |                                       |                                   | STATU                 | 5                             |                      |        |            |

Plot 7-37. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax - 2x996 Tones (UNII Band 1/2A) - Ch. 50)

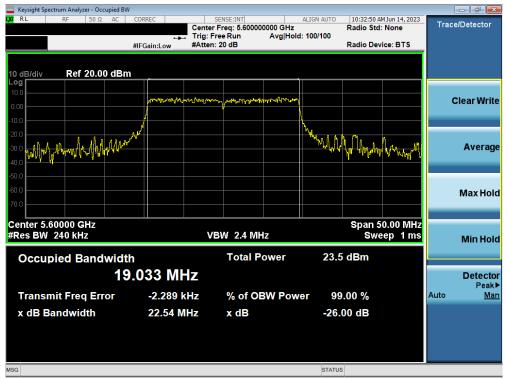



Plot 7-38. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 2A) - Ch. 56)

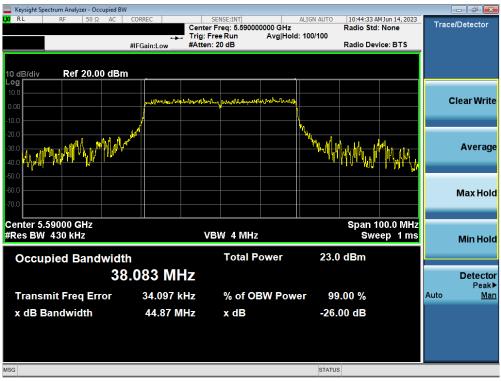
| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | De             |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 37 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |






Plot 7-39. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 2A) - Ch. 54)




Plot 7-40. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 996 Tones (UNII Band 2A) - Ch. 58)

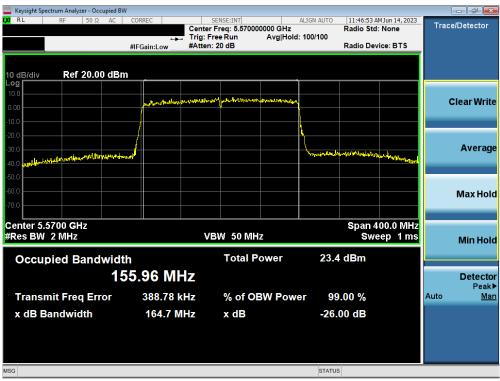
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |
|---------------------|----------------|--------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 20 of 157   |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 38 of 157   |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |






Plot 7-41. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 2C) - Ch. 120)




Plot 7-42. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax – 484 Tones (UNII Band 2C) – Ch. 118)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Deve 20 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 39 of 157   |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019 |





Plot 7-43. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 996 Tones (UNII Band 2C) - Ch. 122)



Plot 7-44. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax - 2x996 Tones (UNII Band 2C) - Ch. 114)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |
|---------------------|----------------|--------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 40 of 157   |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 40 of 157   |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |



### 7.3 6dB Bandwidth Measurement

### **Test Overview and Limit**

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

### In the 5.725 – 5.850GHz and 5.850-5.895GHz bands, the 6dB bandwidth must be $\geq$ 500 kHz.

### Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2

### **Test Settings**

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup

### **Test Notes**

The 6dB Bandwidth measurement for each channel was measured with the RU index showing the highest conducted power.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dogo 41 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 41 of 157   |
| © 2023 ELEMENT      | •              | ·                  | V 9.0 02/01/2019 |



### **MIMO 6dB Bandwidth Measurements**

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 26T   | MCS0                | 2.11                               |
| ~    | 5785               | 157            | ax (20MHz)  | 26T   | MCS0                | 7.65                               |
| 2q 3 | 5825               | 165            | ax (20MHz)  | 26T   | MCS0                | 2.14                               |
| Band | 5755               | 151            | ax (40MHz)  | 26T   | MCS0                | 2.18                               |
|      | 5795               | 159            | ax (40MHz)  | 26T   | MCS0                | 2.17                               |
|      | 5775               | 155            | ax (80MHz)  | 26T   | MCS0                | 2.98                               |

Table 7-6. Band 3 Conducted 6dB Bandwidth Measurements MIMO ANT1 (26 Tones)

|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|-------|------------------|------------------------------------|
| Band 3/4  | 5845               | 169            | ax (20MHz)  | 26T   | MCS0             | 2.13                               |
| Band 4    | 5865               | 173            | ax (20MHz)  | 26T   | MCS0             | 2.15                               |
| Dallu 4   | 5885               | 177            | ax (20MHz)  | 26T   | MCS0             | 2.13                               |
| Band 3/4  | 5835               | 167            | ax (40MHz)  | 26T   | MCS0             | 2.19                               |
| Band 4    | 5875               | 175            | ax (40MHz)  | 26T   | MCS0             | 2.17                               |
| Band 3/4  | 5855               | 171            | ax (80MHz)  | 26T   | MCS0             | 2.28                               |
| Daliu 5/4 | 5815               | 163            | ax (160MHz) | 26T   | MCS0             | 2.61                               |

Table 7-7. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO ANT1 (26 Tones)

| _    | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 26T   | MCS0                | 2.13                               |
| m    | 5785               | 157            | ax (20MHz)  | 26T   | MCS0                | 2.70                               |
|      | 5825               | 165            | ax (20MHz)  | 26T   | MCS0                | 2.11                               |
| Band | 5755               | 151            | ax (40MHz)  | 26T   | MCS0                | 2.24                               |
|      | 5795               | 159            | ax (40MHz)  | 26T   | MCS0                | 2.18                               |
|      | 5775               | 155            | ax (80MHz)  | 26T   | MCS0                | 2.93                               |

Table 7-8. Band 3 Conducted 6dB Bandwidth Measurements MIMO ANT2 (26 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dega 42 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 42 of 157   |
| © 2023 ELEMENT      | -              |                    | V 9.0 02/01/2019 |



|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|----------|--------------------|----------------|-------------|-------|------------------|------------------------------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)  | 26T   | MCS0             | 2.10                               |
| Band 4   | 5865               | 173            | ax (20MHz)  | 26T   | MCS0             | 2.13                               |
| Dallu 4  | 5885               | 177            | ax (20MHz)  | 26T   | MCS0             | 2.12                               |
| Band 3/4 | 5835               | 167            | ax (40MHz)  | 26T   | MCS0             | 2.19                               |
| Band 4   | 5875               | 175            | ax (40MHz)  | 26T   | MCS0             | 2.24                               |
| Band 3/4 | 5855               | 171            | ax (80MHz)  | 26T   | MCS0             | 2.22                               |
|          | 5815               | 163            | ax (160MHz) | 26T   | MCS0             | 2.63                               |

Table 7-9. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO ANT2 (26 Tones)

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 242T  | MCS0                | 19.09                              |
|      | 5785               | 157            | ax (20MHz)  | 242T  | MCS0                | 19.04                              |
| d 3  | 5825               | 165            | ax (20MHz)  | 242T  | MCS0                | 19.05                              |
| Band | 5755               | 151            | ax (40MHz)  | 484T  | MCS0                | 38.26                              |
|      | 5795               | 159            | ax (40MHz)  | 484T  | MCS0                | 38.16                              |
|      | 5775               | 155            | ax (80MHz)  | 996T  | MCS0                | 78.19                              |

Table 7-10. Band 3 Conducted 6dB Bandwidth Measurements MIMO ANT1 (Full Tones)

|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones  | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|--------|------------------|------------------------------------|
| Band 3/4  | 5845               | 169            | ax (20MHz)  | 242T   | MCS0             | 19.07                              |
| Band 4    | 5865               | 173            | ax (20MHz)  | 242T   | MCS0             | 19.08                              |
| Dallu 4   | 5885               | 177            | ax (20MHz)  | 242T   | MCS0             | 19.09                              |
| Band 3/4  | 5835               | 167            | ax (40MHz)  | 484T   | MCS0             | 38.20                              |
| Band 4    | 5875               | 175            | ax (40MHz)  | 484T   | MCS0             | 38.19                              |
| Band 3/4  | 5855               | 171            | ax (80MHz)  | 996T   | MCS0             | 78.35                              |
| Daliù 5/4 | 5815               | 163            | ax (160MHz) | 2x996T | MCS0             | 153.06                             |

Table 7-11. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO ANT1 (Full Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dogo 42 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 43 of 157   |
| © 2023 ELEMENT      | •              |                    | V 9.0 02/01/2019 |

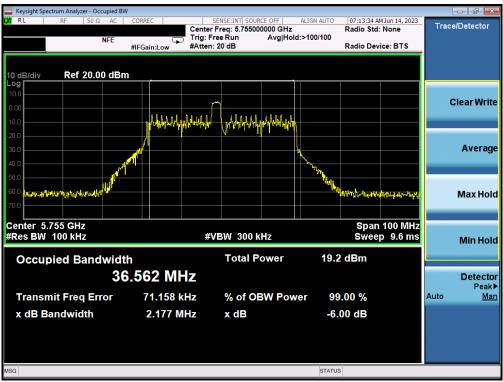


|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|-------|---------------------|------------------------------------|
|      | 5745               | 149            | ax (20MHz)  | 242T  | MCS0                | 19.07                              |
|      | 5785               | 157            | ax (20MHz)  | 242T  | MCS0                | 19.11                              |
| 1d 3 | 5825               | 165            | ax (20MHz)  | 242T  | MCS0                | 19.12                              |
| Band | 5755               | 151            | ax (40MHz)  | 484T  | MCS0                | 38.08                              |
|      | 5795               | 159            | ax (40MHz)  | 484T  | MCS0                | 38.16                              |
|      | 5775               | 155            | ax (80MHz)  | 996T  | MCS0                | 78.22                              |

Table 7-12. Band 3 Conducted 6dB Bandwidth Measurements MIMO ANT2 (Full Tones)

|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones  | Data Rate [Mbps] | Measured<br>6dB Bandwidth<br>[MHz] |
|-----------|--------------------|----------------|-------------|--------|------------------|------------------------------------|
| Band 3/4  | 5845               | 169            | ax (20MHz)  | 242T   | MCS0             | 19.09                              |
| Band 4    | 5865               | 173            | ax (20MHz)  | 242T   | MCS0             | 19.09                              |
| Danu 4    | 5885               | 177            | ax (20MHz)  | 242T   | MCS0             | 19.07                              |
| Band 3/4  | 5835               | 167            | ax (40MHz)  | 484T   | MCS0             | 38.15                              |
| Band 4    | 5875               | 175            | ax (40MHz)  | 484T   | MCS0             | 38.16                              |
| Band 3/4  | 5855               | 171            | ax (80MHz)  | 996T   | MCS0             | 78.22                              |
| Dalid 5/4 | 5815               | 163            | ax (160MHz) | 2x996T | MCS0             | 157.67                             |

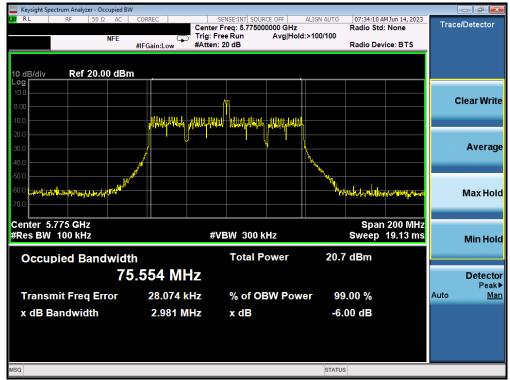
Table 7-13. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO ANT2 (Full Tones)


| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Dage 44 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 44 of 157                    |
| © 2023 ELEMENT      |                    |                  | V 9.0 02/01/2019                  |

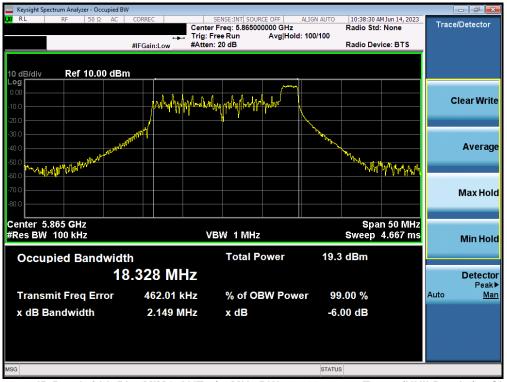


### 7.3.1 MIMO Antenna-1 6dB Bandwidth Measurements




Plot 7-45. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 157)

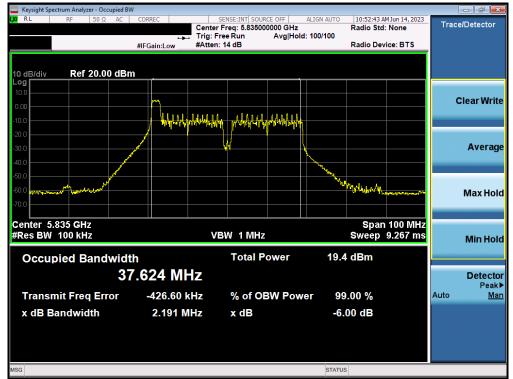



Plot 7-46. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 151)

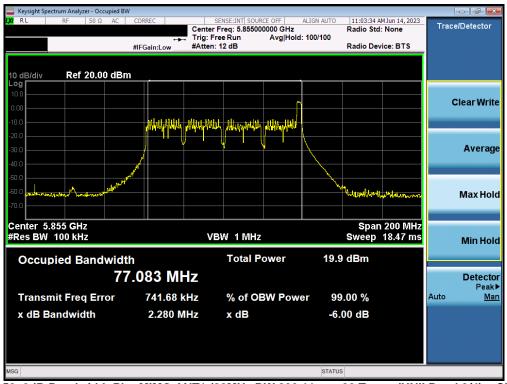
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dava 45          |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 45 of 157   |
| © 2023 ELEMENT      |                |                    | V 9 0 02/01/2019 |






Plot 7-47. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UII Band 3) - Ch. 155)




Plot 7-48. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 173)

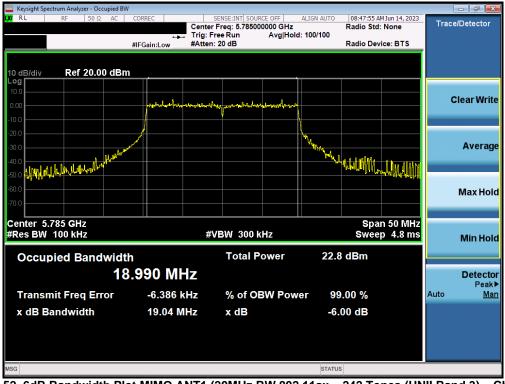
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 40 at 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 46 of 157   |
| © 2023 ELEMENT      | ·              | ·                  | V 9.0 02/01/2019 |





Plot 7-49. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 167)

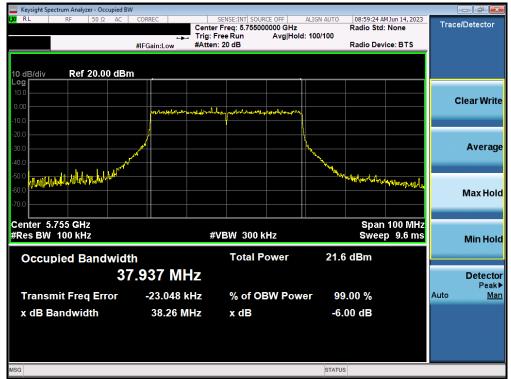



Plot 7-50. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 171)

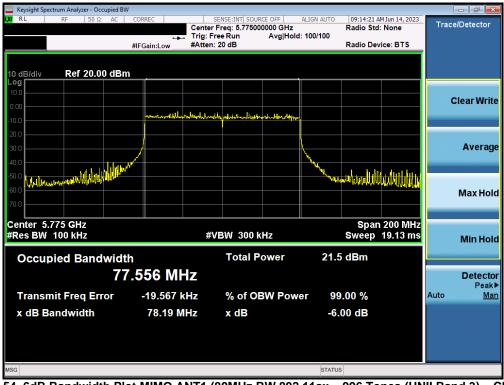
| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Daga 47 of 157 |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 47 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |



| Keysight Spectrum Analyzer - Occupied E | 3W                                      |                                   |                               |                 | - <b>5</b> ×      |
|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------|-----------------|-------------------|
| <mark>(X)</mark> RL RF 50Ω AC           |                                         | SENSE:INT SOURCE OFF              | ALIGN AUTO 10:25:42 A         | AM Jun 14, 2023 | Trace/Detector    |
|                                         | +++ Trig: F                             | ree Run Avg Hold                  | : 100/100                     |                 |                   |
|                                         | #IFGain:Low #Atten                      | : 22 dB                           | Radio De                      | vice: BTS       |                   |
|                                         |                                         |                                   |                               |                 |                   |
| 10 dB/div Ref 20.00 dB                  | m                                       |                                   |                               |                 |                   |
| Log<br>10.0                             |                                         |                                   |                               |                 |                   |
| 0.00                                    |                                         | <u> </u>                          |                               |                 | Clear Write       |
| -10.0                                   |                                         |                                   |                               |                 |                   |
| -20.0                                   | hana haha haha ha                       | na teatnat teatuar haituar haitua |                               |                 |                   |
| -30.0                                   |                                         |                                   |                               |                 | Average           |
| -40.0                                   |                                         |                                   |                               |                 | Averuge           |
|                                         |                                         |                                   | <u>\</u>                      |                 |                   |
| and a stand and the sould be with the   | ~~~ · · · · · · · · · · · · · · · · · · |                                   | "Hy conservation and the work | hummendes       |                   |
| -60.0                                   |                                         |                                   |                               |                 | Max Hold          |
| -70.0                                   |                                         |                                   |                               |                 |                   |
| Center 5.815 GHz                        |                                         |                                   | Spar                          | 1400 MHz        |                   |
| #Res BW 100 kHz                         | V                                       | BW 1 MHz                          |                               | 36.93 ms        | Min Hold          |
|                                         |                                         | Total Power                       | 21.1 dBm                      |                 |                   |
| Occupied Bandwid                        |                                         | Total Power                       | 21.1 dBm                      |                 |                   |
| 1                                       | 54.51 MHz                               |                                   |                               |                 | Detector          |
| Transmit Freq Error                     | -227.18 kHz                             | % of OBW Pow                      | er 99.00 %                    |                 | Peak▶<br>Auto Man |
|                                         |                                         |                                   |                               |                 |                   |
| x dB Bandwidth                          | 2.613 MHz                               | x dB                              | -6.00 dB                      |                 |                   |
|                                         |                                         |                                   |                               |                 |                   |
|                                         |                                         |                                   |                               |                 |                   |
|                                         |                                         |                                   |                               |                 |                   |
| MSG                                     |                                         |                                   | STATUS                        |                 |                   |


Plot 7-51. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 163)




Plot 7-52. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax – 242 Tones (UNII Band 3) – Ch. 157)

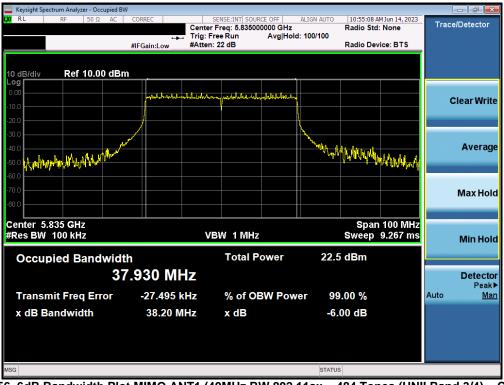
| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dama 40 of 457 |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 48 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |





Plot 7-53. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax - 484 Tones (UNII Band 3) - Ch. 151)

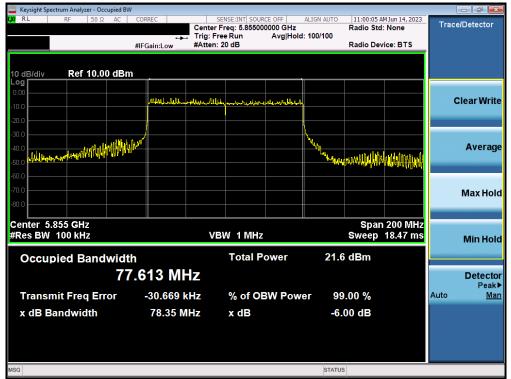



Plot 7-54. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax – 996 Tones (UNII Band 3) – Ch. 155)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 40 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 49 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |






Plot 7-55. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 173)



Plot 7-56. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11ax – 484 Tones (UNII Band 3/4) – Ch. 167)

| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |
|---------------------|------------------|--------------------|----------------|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dege 50 of 157 |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 50 of 157 |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |

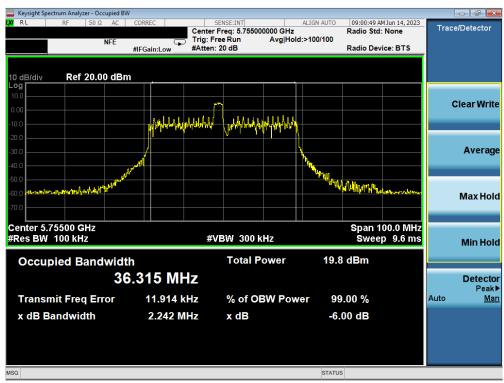




Plot 7-57. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 171)



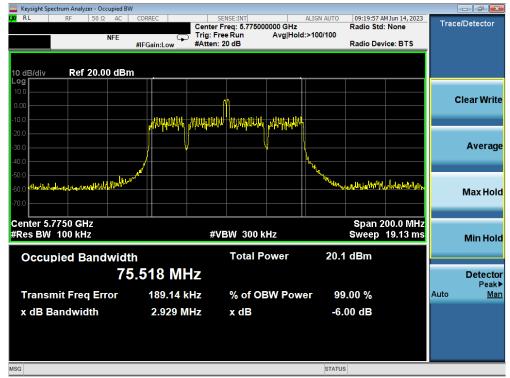
Plot 7-58. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11ax – 2x996 Tones (UNII Band 3/4) – Ch. 163)


| FCC ID: A3LSMS711U          |                | MEASUREMENT REPORT Approved<br>Technical |                |  |  |  |  |
|-----------------------------|----------------|------------------------------------------|----------------|--|--|--|--|
| Test Report S/N:            | Test Dates:    | EUT Type:                                | Daga 51 of 157 |  |  |  |  |
| 1M2304260060-18.A3L         | 5/24-7/31/2023 | Portable Handset                         | Page 51 of 157 |  |  |  |  |
| © 2023 ELEMENT V 9.0 02/01/ |                |                                          |                |  |  |  |  |



### 7.3.2 MIMO Antenna-2 6dB Bandwidth Measurements




Plot 7-59. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 157)

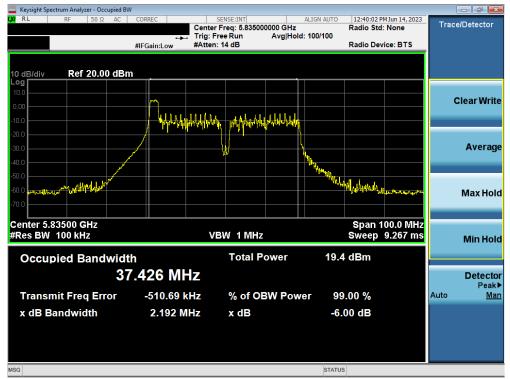



Plot 7-60. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax – 26 Tones (UNII Band 3) – Ch. 151)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 52 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9 0 02/01/2019                  |






Plot 7-61. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 26 Tones (UII Band 3) - Ch. 155)



Plot 7-62. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax – 26 Tones (UNII Band 4) – Ch. 173)

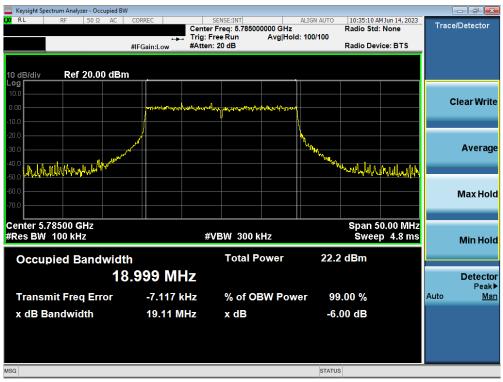
| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |  |  |
|---------------------|------------------|--------------------|----------------|--|--|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dana 50 af 457 |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 53 of 157 |  |  |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |  |  |





Plot 7-63. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 167)




Plot 7-64. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax – 26 Tones (UNII Band 3/4) – Ch. 171)

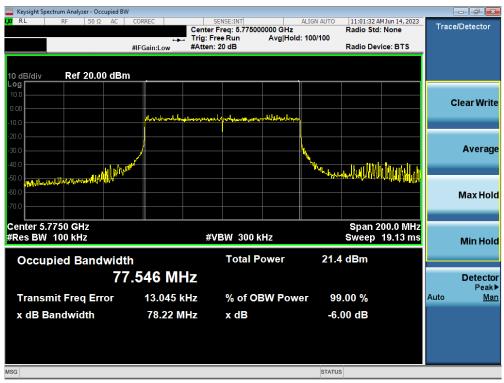
| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |  |  |
|---------------------|------------------|--------------------|----------------|--|--|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dama 54 af 457 |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 54 of 157 |  |  |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |  |  |



|           | ectrum Analyzer   | - Occup | pied BW      |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|-----------|-------------------|---------|--------------|----------|-------|-----------------|--------|------------|----------|------|--------|------------|-----------------------|-----------------|------|-------------|
| LXI RL    | RF 5              | 50 Ω    | AC (         | CORREC   |       | _               |        | NSE:IN     |          |      |        | ALIGN AUTO |                       | PM Jun 14, 2023 | Tro  | e/Detector  |
|           |                   |         |              |          |       |                 |        |            | .81500   |      |        |            | Radio Sto             | I: None         | Trac | enderector  |
|           |                   |         |              |          | •     |                 |        | e Run      |          | Avç  | j Hold | : 100/100  |                       |                 |      |             |
|           |                   |         | #            | IFGain:L | w     | #At             | ten: 2 | 2 dB       |          |      |        |            | Radio De              | vice: BTS       |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| 10 dB/div | Ref 2             | 0.00    | dBm          |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| Log       |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| 10.0      |                   |         |              |          |       |                 | _      |            |          |      |        |            |                       |                 |      | <b>O</b> I  |
| 0.00      |                   |         |              |          |       |                 | [      |            |          |      |        |            |                       |                 |      | Clear Write |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| -10.0     |                   |         |              | Muhi.    | INUH. | <u>/II4.III</u> | UNUN   | <b>DOM</b> | , ANNI   | WH G | huit   |            |                       |                 |      |             |
| -20.0     |                   |         |              | 104000   | 1.444 | (indefinition)  | a dama | Mudawa     | an Lewis | 1000 | 100    |            |                       |                 |      |             |
| -30.0     |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      | Average     |
| -30.0     |                   |         |              | i I      |       | 1               |        |            | ų        |      | 1      |            |                       |                 |      | Average     |
| -40.0     |                   |         |              |          |       |                 |        |            |          |      |        | λ          |                       |                 |      |             |
| -50.0     |                   |         |              | 1        |       |                 |        |            |          |      |        | he.        |                       |                 |      |             |
| الملمطاسف | dealer Miller and | A. A.   | "Will have a |          |       |                 |        |            |          |      |        | The Warder | and With the Property | mananen         |      |             |
| -60.0     |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      | Max Hold    |
| -70.0     |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      | maxmona     |
| -70.0     |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| Contor 5  | 8150 GHz          |         |              |          |       |                 |        |            |          |      |        |            | - Cnon                | 100.0 MHz       |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| #Res BW   | 100 kHz           |         |              |          |       |                 | VB     | W 1        | MHz      |      |        |            | sweep                 | 36.93 ms        |      | Min Hold    |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
| Occu      | pied Ba           | ndv     | vidth        |          |       |                 |        | Tot        | tal P    | owe  | r      | 21.        | 3 dBm                 |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         | 154          | .37      | M     | TZ              |        |            |          |      |        |            |                       |                 |      | Detector    |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      | Peak►       |
| Transi    | mit Freq          | Erro    | r            | 265      | .99 k | ٢Hz             |        | % (        | of OE    | 3W I | owe    | er 9       | 9.00 %                |                 | Auto | <u>Man</u>  |
|           |                   |         |              |          |       |                 |        |            | _        |      |        |            |                       |                 |      |             |
| X dB E    | Bandwidt          | h       |              | 2.6      | 29 N  | Ηz              |        | x d        | в        |      |        | -6         | .00 dB                |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            |                       |                 |      |             |
|           |                   |         |              |          |       |                 |        |            |          |      |        |            | 10                    |                 | -    |             |
| MSG       |                   |         |              |          |       |                 |        |            |          |      |        | STAT       | JS                    |                 |      |             |

Plot 7-65. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 163)




Plot 7-66. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax – 242 Tones (UNII Band 3) – Ch. 157)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 55 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |





Plot 7-67. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax - 484 Tones (UNII Band 3) - Ch. 151)




Plot 7-68. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax – 996 Tones (UNII Band 3) – Ch. 155)

| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |  |  |
|---------------------|------------------|--------------------|----------------|--|--|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dama 50 at 457 |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 56 of 157 |  |  |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |  |  |





Plot 7-69. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11ax - 242 Tones (UNII Band 4) - Ch. 173)



Plot 7-70. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11ax – 484 Tones (UNII Band 3/4) – Ch. 167)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 57 of 157   |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 57 of 157   |  |  |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019 |  |  |



| Keysight Spectrum Analyzer - Occ | upied BW                |              |           |                |                      |              |                                          |                      |      |             |
|----------------------------------|-------------------------|--------------|-----------|----------------|----------------------|--------------|------------------------------------------|----------------------|------|-------------|
| LX/ RL RF 50 Ω                   | AC COR                  | REC          |           | NSE:INT        |                      | ALIGN AUTO   |                                          | M Jun 14, 2023       | Trac | e/Detector  |
|                                  |                         |              |           | req: 5.85500   | 0000 GHz<br>Avg Hold | . 400/400    | Radio Std                                | : None               | TTAC | erbetector  |
|                                  | #IEG                    | ⊶<br>ain:Low | #Atten: 1 |                | Avginoid             | 1. 100/100   | Radio Dev                                | rice: BTS            |      |             |
|                                  | ""по                    | unicow       |           |                |                      |              |                                          |                      |      |             |
|                                  |                         |              |           |                |                      |              |                                          |                      |      |             |
| 10 dB/div Ref 10.00              | ) dBm                   |              |           |                |                      |              |                                          |                      |      |             |
| Log                              |                         |              |           |                |                      |              |                                          |                      |      |             |
| 0.00                             |                         | manulu.      | MAMANIA   | A LALLMAN MULT | _uumuulu             |              |                                          |                      |      | Clear Write |
| -10.0                            |                         |              |           |                |                      |              |                                          |                      |      |             |
| -20.0                            |                         |              |           |                |                      |              |                                          |                      |      |             |
| -30.0                            |                         |              |           |                |                      | λ.           |                                          |                      |      |             |
|                                  | الممر                   |              |           |                |                      |              |                                          |                      |      | Average     |
| -40.0                            | And and a second second |              |           |                |                      | Nul Internet | WWWW                                     | WWWWWW               |      | Average     |
| -50.0 Motor - Mature Market      | 494 · ·                 |              |           |                |                      |              | aaa a sa s | A CALL OF A          |      |             |
| -60.0                            |                         |              |           |                |                      |              |                                          |                      |      |             |
| -70.0                            |                         |              |           |                |                      |              |                                          |                      |      |             |
|                                  |                         |              |           |                |                      |              |                                          |                      |      | Max Hold    |
| -80.0                            |                         |              |           |                |                      |              |                                          |                      |      |             |
| Center 5.8550 GHz                |                         |              |           |                |                      |              | Enon 1                                   |                      |      |             |
| #Res BW 100 kHz                  |                         |              | VD        | V 1 MHz        |                      |              |                                          | 00.0 MHz<br>18.47 ms |      |             |
| #Res BW 100 KH2                  |                         |              | VD        |                |                      |              | aweep                                    | 10.47 1115           |      | Min Hold    |
| Occurried Dand                   |                         |              |           | Total P        | owor                 | 22.6         | i dBm                                    |                      |      |             |
| Occupied Band                    |                         |              |           | TOtal F        | OWEI                 | 22.0         |                                          |                      |      |             |
|                                  | 77.4                    | 69 MI        | z         |                |                      |              |                                          |                      |      | Detector    |
|                                  |                         |              |           |                |                      |              |                                          |                      |      | Peak▶       |
| Transmit Freq Err                | or                      | 15.377 k     | (Hz       | % of OE        | 3W Pow               | er 99        | .00 %                                    |                      | Auto | <u>Man</u>  |
| x dB Bandwidth                   |                         | 78.22 N      | 147       | x dB           |                      | -6           | 00 dB                                    |                      |      |             |
|                                  |                         | 10.22 1      | 11 12     | A UD           |                      | -0.          |                                          |                      |      |             |
|                                  |                         |              |           |                |                      |              |                                          |                      |      |             |
|                                  |                         |              |           |                |                      |              |                                          |                      |      |             |
|                                  |                         |              |           |                |                      |              |                                          |                      |      |             |
| MSG                              |                         |              |           |                |                      | STATUS       | ,                                        |                      |      |             |
| Mag                              |                         |              |           |                |                      | STATUS       |                                          |                      |      |             |

Plot 7-71. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11ax - 996 Tones (UNII Band 3/4) - Ch. 171)



Plot 7-72. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11ax – 2x996 Tones (UNII Band 3/4) – Ch. 163)

| FCC ID: A3LSMS711U  |                  | MEASUREMENT REPORT |                |  |  |
|---------------------|------------------|--------------------|----------------|--|--|
| Test Report S/N:    | Test Dates:      | EUT Type:          | Dama 50 at 457 |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023   | Portable Handset   | Page 58 of 157 |  |  |
| © 2023 ELEMENT      | V 9.0 02/01/2019 |                    |                |  |  |



### 7.4 UNII Output Power Measurement

### Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

### The output power limits are specified in the tables below.

| UNII Fraguenav Banga |                  | Maximum Conducted Pov                        | wer Limit | Maximum e.i.r.p |                                                                           |  |
|----------------------|------------------|----------------------------------------------|-----------|-----------------|---------------------------------------------------------------------------|--|
| Band                 | Frequency Range  | FCC ISED                                     |           | FCC             | ISED                                                                      |  |
| UNII 1               | 5.15 – 5.25GHz   | 23.98dBm (250mW)                             | N/A       | N/A             | The lesser of 23.01dBm<br>(200mW) <b>or</b> 10dBm + 10log <sub>10</sub> B |  |
| UNII 2A              | 5.25 – 5.35GHz   |                                              |           |                 |                                                                           |  |
| UNII 2C              | 5.47 – 5.725GHz  | The lesser of 23.98dBm (2<br>11dBm + 10log₁₀ |           | N/A             | The lesser of 30dBm (1W) <b>or</b><br>17dBm + 10log <sub>10</sub> B       |  |
| UNII 3               | 5.725 – 5.850GHz | 30dBm (1W)                                   |           | N/A             | N/A                                                                       |  |
| UNII 4               | 5.850 – 5.895GHz | N/A                                          |           | 30dBm (1W)      | Not Supported                                                             |  |

| UNII    | Fraguanay Panga  | Maximum Conducted Power Limit                                | Maximum e.i.r.p |
|---------|------------------|--------------------------------------------------------------|-----------------|
| Band    | Frequency Range  | FCC                                                          | FCC             |
| UNII 1  | 5.15 – 5.25GHz   | 23.98dBm (250mW)                                             | N/A             |
| UNII 2A | 5.25 – 5.35GHz   |                                                              |                 |
| UNII 2C | 5.47 – 5.725GHz  | The lesser of 23.98dBm (250mW) <b>or</b><br>11dBm + 10log₁₀B | N/A             |
| UNII 3  | 5.725 – 5.850GHz | 30dBm (1W)                                                   | N/A             |
| UNII 4  | 5.850 – 5.895GHz | N/A                                                          | 30dBm (1W)      |

| UNII    | Fraguanay Panga  | Maximum Conducted Power Limit                                             | Maximum e.i.r.p                                                              |
|---------|------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Band    | Frequency Range  | ISED                                                                      | ISED                                                                         |
| UNII 1  | 5.15 – 5.25GHz   | N/A                                                                       | The lesser of 23.01dBm<br>(200mW) <b>or</b> 10dBm +<br>10log <sub>10</sub> B |
| UNII 2A | 5.25 – 5.35GHz   |                                                                           |                                                                              |
| UNII 2C | 5.47 – 5.725GHz  | The lesser of 23.98dBm (250mW) <b>or</b><br>11dBm + 10log <sub>10</sub> B | The lesser of 30dBm (1W)<br>or 17dBm + 10log <sub>10</sub> B                 |
| UNII 3  | 5.725 – 5.850GHz | 30dBm (1W)                                                                | N/A                                                                          |

### Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

### Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 50 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 59 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |



### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



### Figure 7-3. Test Instrument & Measurement Setup

### Test Notes

None.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 60 of 157                    |
| © 2023 ELEMENT      | •              |                    | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (26 Tones)

| Bano         UH12         Channel         Iordes         RV mode: 2         RV mode: 4         RV mode: 5         Power Margin         Aff. Gan         Identity           1         5100         36         267         11.13         10.46         13.83         11.26         10.46         13.90         11.25         10.41         13.91         23.98         -10.07         -2.33         11.58           200         40         267         11.13         10.46         13.89         11.26         10.44         13.90         12.98         -10.07         -2.33         11.56           3200         44         2.267         11.33         10.35         13.89         11.52         10.53         13.86         11.43         10.38         13.86         11.43         10.38         13.96         23.86         -9.64         -3.54         10.44           5200         56         267         10.88         10.35         13.81         11.81         10.34         13.99         23.64         -9.64         -3.54         10.44           20         5500         10.0         2.67         10.88         10.07         13.88         10.91         10.72         13.82         23.64         -9.66 <t< th=""><th>Max e.ir.p.<br/>Limit (JBm)         eir.p. Ma           22.63         -11.05           22.83         -11.05           22.83         -11.05           22.83         -10.97           29.62         -19.18           29.62         -19.29           29.64         -16.21           29.64         -16.21           36.00         -22.83           36.00         -21.87           30.00         -17.75           30.00         -17.75           Max e.ir.p.<br/>Limit (BBm)         ei.r.p. ma           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.40</th><th>[dBm]<br/>11.58<br/>11.57<br/>11.66<br/>10.44<br/>10.45<br/>10.33<br/>13.51<br/>13.52<br/>14.14<br/>13.88<br/>14.13<br/>12.31<br/>12.25<br/>Max e.ir.p.<br/>[dBm]<br/>11.66</th><th>[dBi]<br/>-2.33<br/>-2.33<br/>-3.54<br/>-3.54<br/>-3.54<br/>-3.54<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.15<br/>-0.15<br/>-0.15<br/>-0.15<br/>-1.67<br/>-1.67<br/>-1.67<br/><b>Directional</b><br/>Ant. Gain</th><th>Power Margin<br/>-10.07<br/>-10.08<br/>-9.99<br/>-9.64<br/>-9.63<br/>-9.75<br/>-9.74<br/>-9.66<br/>-9.65<br/>-16.01<br/>-16.27<br/>-16.02<br/>-<br/>-<br/>-<br/>Conducted</th><th>[dBm]<br/>23.98<br/>23.98<br/>23.62<br/>23.62<br/>23.62<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>30.00<br/>30.00<br/></th><th>13.91<br/>13.90<br/>13.59<br/>13.95<br/>13.93<br/>13.82<br/>13.90<br/>13.97<br/>13.99<br/>13.97<br/>13.60<br/>13.88<br/>13.88<br/>13.88</th><th>ANT2<br/>10.51<br/>10.49<br/>10.01<br/>10.38<br/>10.34<br/>10.72<br/>10.62<br/>10.94<br/>10.84<br/>10.99<br/>9.98<br/>10.49<br/>10.52<br/>10.18<br/>10.59</th><th>11.25<br/>11.26<br/>11.09<br/>11.43<br/>10.91<br/>11.15<br/>10.98<br/>11.11<br/>11.03<br/>11.13<br/>11.23<br/>11.19<br/>11.65</th><th>13.90           13.90           13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.96           13.59</th><th>ANT2<br/>10.48<br/>10.46<br/>10.03<br/>10.35<br/>10.34<br/>10.81<br/>10.51<br/>10.92<br/>10.83<br/>10.83<br/>10.83<br/>10.04<br/>10.54<br/>10.57<br/>9.78</th><th>ANT1<br/>11.26<br/>11.28<br/>11.10<br/>11.52<br/>11.54<br/>10.92<br/>11.21<br/>11.02<br/>11.21<br/>11.02<br/>11.13<br/>11.12<br/>11.32<br/>11.36</th><th>MIMO           13.83           13.81           13.99           13.89           13.81           13.99           13.83           13.76           13.98           13.96           13.99           13.67</th><th>ANT2<br/>10.49<br/>10.45<br/>10.46<br/>10.37<br/>10.35<br/>10.76<br/>10.33<br/>10.84<br/>10.76</th><th>11.13<br/>11.13<br/>11.45<br/>11.33<br/>11.39<br/>10.88<br/>11.13<br/>11.09<br/>11.14</th><th>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T</th><th>36<br/>40<br/>48<br/>52<br/>56<br/>64<br/>100<br/>120</th><th>[MHz]<br/>5180<br/>5200<br/>5240<br/>5260<br/>5280<br/>5320<br/>5500<br/>5600</th><th>1<br/>2A</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max e.ir.p.<br>Limit (JBm)         eir.p. Ma           22.63         -11.05           22.83         -11.05           22.83         -11.05           22.83         -10.97           29.62         -19.18           29.62         -19.29           29.64         -16.21           29.64         -16.21           36.00         -22.83           36.00         -21.87           30.00         -17.75           30.00         -17.75           Max e.ir.p.<br>Limit (BBm)         ei.r.p. ma           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.40 | [dBm]<br>11.58<br>11.57<br>11.66<br>10.44<br>10.45<br>10.33<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.25<br>Max e.ir.p.<br>[dBm]<br>11.66                                  | [dBi]<br>-2.33<br>-2.33<br>-3.54<br>-3.54<br>-3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>-0.15<br>-0.15<br>-0.15<br>-1.67<br>-1.67<br>-1.67<br><b>Directional</b><br>Ant. Gain | Power Margin<br>-10.07<br>-10.08<br>-9.99<br>-9.64<br>-9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>Conducted                                | [dBm]<br>23.98<br>23.98<br>23.62<br>23.62<br>23.62<br>23.64<br>23.64<br>23.64<br>23.64<br>30.00<br>30.00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.91<br>13.90<br>13.59<br>13.95<br>13.93<br>13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                    | ANT2<br>10.51<br>10.49<br>10.01<br>10.38<br>10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.99<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59 | 11.25<br>11.26<br>11.09<br>11.43<br>10.91<br>11.15<br>10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                     | 13.90           13.90           13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.96           13.59                                 | ANT2<br>10.48<br>10.46<br>10.03<br>10.35<br>10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78 | ANT1<br>11.26<br>11.28<br>11.10<br>11.52<br>11.54<br>10.92<br>11.21<br>11.02<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                    | MIMO           13.83           13.81           13.99           13.89           13.81           13.99           13.83           13.76           13.98           13.96           13.99           13.67 | ANT2<br>10.49<br>10.45<br>10.46<br>10.37<br>10.35<br>10.76<br>10.33<br>10.84<br>10.76                                                 | 11.13<br>11.13<br>11.45<br>11.33<br>11.39<br>10.88<br>11.13<br>11.09<br>11.14 | 26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T | 36<br>40<br>48<br>52<br>56<br>64<br>100<br>120 | [MHz]<br>5180<br>5200<br>5240<br>5260<br>5280<br>5320<br>5500<br>5600 | 1<br>2A |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|---------|
| No.         ANT         ANT <th>22.63         -11.05           22.63         -11.05           22.63         -10.97           29.62         -19.18           29.62         -19.12           29.62         -19.24           29.64         -16.21           29.64         -16.12           36.00         -22.18           36.00         -22.18           30.00         -17.69           30.00         -17.69           30.00         -17.69           30.00         -17.69           20.60         -21.87           30.00         -17.69           20.61         -10.77           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.31</th> <th>11.58<br/>11.57<br/>11.66<br/>10.44<br/>10.45<br/>10.33<br/>13.51<br/>13.51<br/>13.52<br/>14.14<br/>13.88<br/>14.13<br/>12.31<br/>12.31<br/>12.31<br/>12.25<br/><b>Max e.i.r.p.</b><br/><b>[dBm]</b><br/>11.66</th> <th>-2.33<br/>-2.33<br/>-2.33<br/>-3.54<br/>-3.54<br/>-3.54<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.15<br/>-0.15<br/>-1.67<br/>-1.67<br/>-1.67<br/><b>Directional</b><br/>Ant. Gain</th> <th>-10.07<br/>-10.08<br/>-9.99<br/>-9.64<br/>-9.63<br/>-9.75<br/>-9.74<br/>-9.66<br/>-9.65<br/>-16.01<br/>-16.27<br/>-16.02<br/>-</th> <th>23.98<br/>23.98<br/>23.98<br/>23.62<br/>23.62<br/>23.62<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64<br/>24.64</th> <th>13.91<br/>13.90<br/>13.59<br/>13.95<br/>13.93<br/>13.82<br/>13.90<br/>13.97<br/>13.99<br/>13.97<br/>13.60<br/>13.88<br/>13.88<br/>13.88</th> <th>10.51<br/>10.49<br/>10.01<br/>10.38<br/>10.34<br/>10.72<br/>10.62<br/>10.94<br/>10.84<br/>10.90<br/>9.98<br/>10.49<br/>10.52<br/>10.18<br/>10.59</th> <th>11.25<br/>11.26<br/>11.09<br/>11.43<br/>10.91<br/>11.15<br/>10.98<br/>11.11<br/>11.03<br/>11.13<br/>11.23<br/>11.19<br/>11.65</th> <th>13.90           13.90           13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.96           13.59</th> <th>10.48<br/>10.46<br/>10.03<br/>10.35<br/>10.34<br/>10.81<br/>10.51<br/>10.92<br/>10.83<br/>10.83<br/>10.04<br/>10.54<br/>10.57<br/>9.78</th> <th>11.26<br/>11.28<br/>11.10<br/>11.52<br/>11.54<br/>10.92<br/>11.21<br/>11.02<br/>11.13<br/>11.12<br/>11.32<br/>11.36</th> <th>13.83<br/>13.81<br/>13.99<br/>13.89<br/>13.91<br/>13.83<br/>13.76<br/>13.98<br/>13.96<br/>13.99<br/>13.67</th> <th>10.49           10.45           10.46           10.37           10.35           10.76           10.33           10.84           10.76</th> <th>11.13<br/>11.13<br/>11.45<br/>11.33<br/>11.39<br/>10.88<br/>11.13<br/>11.09<br/>11.14</th> <th>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T</th> <th>40<br/>48<br/>52<br/>56<br/>64<br/>100<br/>120</th> <th>5180<br/>5200<br/>5240<br/>5260<br/>5280<br/>5320<br/>5500<br/>5500<br/>5600</th> <th>2A</th> | 22.63         -11.05           22.63         -11.05           22.63         -10.97           29.62         -19.18           29.62         -19.12           29.62         -19.24           29.64         -16.21           29.64         -16.12           36.00         -22.18           36.00         -22.18           30.00         -17.69           30.00         -17.69           30.00         -17.69           30.00         -17.69           20.60         -21.87           30.00         -17.69           20.61         -10.77           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                  | 11.58<br>11.57<br>11.66<br>10.44<br>10.45<br>10.33<br>13.51<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.31<br>12.31<br>12.25<br><b>Max e.i.r.p.</b><br><b>[dBm]</b><br>11.66 | -2.33<br>-2.33<br>-2.33<br>-3.54<br>-3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>-0.15<br>-1.67<br>-1.67<br>-1.67<br><b>Directional</b><br>Ant. Gain                                     | -10.07<br>-10.08<br>-9.99<br>-9.64<br>-9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-                                                                       | 23.98<br>23.98<br>23.98<br>23.62<br>23.62<br>23.62<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>23.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64<br>24.64 | 13.91<br>13.90<br>13.59<br>13.95<br>13.93<br>13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                    | 10.51<br>10.49<br>10.01<br>10.38<br>10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59         | 11.25<br>11.26<br>11.09<br>11.43<br>10.91<br>11.15<br>10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                     | 13.90           13.90           13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.96           13.59                                 | 10.48<br>10.46<br>10.03<br>10.35<br>10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                  | 11.26<br>11.28<br>11.10<br>11.52<br>11.54<br>10.92<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                              | 13.83<br>13.81<br>13.99<br>13.89<br>13.91<br>13.83<br>13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                      | 10.49           10.45           10.46           10.37           10.35           10.76           10.33           10.84           10.76 | 11.13<br>11.13<br>11.45<br>11.33<br>11.39<br>10.88<br>11.13<br>11.09<br>11.14 | 26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T        | 40<br>48<br>52<br>56<br>64<br>100<br>120       | 5180<br>5200<br>5240<br>5260<br>5280<br>5320<br>5500<br>5500<br>5600  | 2A      |
| 1         5200         40         26T         11.13         10.45         13.81         11.28         10.46         13.90         11.26         10.49         13.90         23.98         -10.08         -2.33         11.57           5200         52         26T         11.45         10.46         13.99         11.10         10.03         13.80         11.35         13.95         23.88         -9.94         -2.33         11.66           2A         520         55         26T         11.33         10.35         13.91         11.54         10.34         13.98         11.33         23.82         -9.64         -3.54         10.45           5300         100         26T         10.88         10.76         13.81         10.24         10.84         13.87         10.91         10.72         13.82         23.62         -9.75         -3.54         10.33           5700         100         28T         11.03         10.33         13.76         11.21         10.81         13.88         10.94         13.97         23.64         -9.66         -0.47         13.31           5725         149         26T         11.18         10.78         13.99         11.11         10.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.63         -11.06           22.63         -10.97           29.62         -19.18           29.62         -19.29           29.64         -16.21           29.64         -16.13           29.64         -16.21           36.00         -22.18           36.00         -22.18           30.00         -17.69           30.00         -17.69           30.00         -17.69           30.00         -17.69           30.00         -17.69           20.64         -16.12           20.64         -16.12           30.00         -17.69           30.00         -17.69           20.61         -10.77           20.62         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.31                   | 11.57<br>11.66<br>10.44<br>10.45<br>10.33<br>13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br><b>[dBm]</b><br>11.66                             | -2.33<br>-2.33<br>-3.54<br>-3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>-0.15<br>-0.15<br>-1.67<br>-1.67<br>-1.67<br><b>Directional</b><br>Ant. Gain                                     | -10.08<br>-9.99<br>-9.64<br>-9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-                                                                            | 23.98<br>23.98<br>23.62<br>23.62<br>23.62<br>23.64<br>23.64<br>23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.90<br>13.59<br>13.95<br>13.93<br>13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                             | 10.49<br>10.01<br>10.38<br>10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59         | 11.26           11.09           11.43           10.91           11.15           10.98           11.11           11.03           11.13           11.23           11.19                 | 13.90           13.60           13.98           13.99           13.87           13.88           13.99           13.87           13.98           13.99           13.99           13.99           13.98           13.99           13.73           13.98           13.98           13.98           13.98           13.98           13.98           13.98           13.98 | 10.46<br>10.03<br>10.35<br>10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                           | 11.28<br>11.10<br>11.52<br>11.54<br>10.92<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                       | 13.81<br>13.99<br>13.89<br>13.91<br>13.83<br>13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                               | 10.45<br>10.46<br>10.37<br>10.35<br>10.76<br>10.33<br>10.84<br>10.76                                                                  | 11.13<br>11.45<br>11.33<br>11.39<br>10.88<br>11.13<br>11.09<br>11.14          | 26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T        | 40<br>48<br>52<br>56<br>64<br>100<br>120       | 5200<br>5240<br>5260<br>5280<br>5320<br>5500<br>5500                  | 2A      |
| S240         48         26T         11.45         10.46         13.99         11.10         10.03         13.80         11.09         10.01         13.59         23.88         -9.99         -2.33         11.66           2A         5200         52         26T         11.33         10.57         13.89         11.52         10.35         13.98         11.43         10.36         13.96         23.62         -9.63         -3.54         10.44           5500         100         28T         11.33         10.54         13.91         11.54         10.34         13.99         11.43         10.32         23.62         -9.63         -3.54         10.45           5500         100         28T         11.13         10.33         13.76         11.21         10.51         13.88         11.15         10.62         13.90         23.64         -9.65         -0.47         13.31           5745         144         28T         11.14         10.78         13.99         11.11         10.83         13.99         11.11         10.84         13.99         23.64         -9.65         -0.47         13.51           5745         157         26T         11.38         10.71         13.81 <td>22.63         -10.97           29.62         -19.17           29.62         -19.27           29.64         -16.13           29.64         -16.13           29.64         -16.21           36.00         -22.12           36.00         -22.12           36.00         -21.87           30.00         -17.69           30.00         -17.77           30.00         -17.77           30.00         -17.79           Max e.i.r.p.         Limit (dBm)           22.63         -10.97           22.63         -10.97           29.62         -19.31</td> <td>11.66<br/>10.44<br/>10.45<br/>10.33<br/>13.43<br/>13.51<br/>13.52<br/>14.14<br/>13.88<br/>14.13<br/>12.31<br/>12.31<br/>12.25<br/><b>Max e.ir.p.</b><br/><b>[dBm]</b><br/>11.66</td> <td>-2.33<br/>-3.54<br/>-3.54<br/>-3.54<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.47<br/>-0.15<br/>-0.15<br/>-1.67<br/>-1.67<br/>-1.67<br/><b>Directional</b><br/>Ant. Gain</td> <td>-9.99<br/>-9.64<br/>-9.63<br/>-9.75<br/>-9.74<br/>-9.66<br/>-9.65<br/>-16.01<br/>-16.27<br/>-16.02<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-<br/>-</td> <td>23.98<br/>23.62<br/>23.62<br/>23.64<br/>23.64<br/>23.64<br/>23.64<br/>30.00<br/>30.00<br/>30.00<br/></td> <td>13.59         13.95         13.93         13.82         13.90         13.97         13.99         13.97         13.98         13.88         13.88         13.88         13.98</td> <td>10.01<br/>10.38<br/>10.34<br/>10.72<br/>10.62<br/>10.94<br/>10.84<br/>10.90<br/>9.98<br/>10.49<br/>10.52<br/>10.18<br/>10.59</td> <td>11.09           11.43           11.43           10.91           11.15           10.98           11.11           11.03           11.13           11.23           11.19           11.65</td> <td>13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.98           13.98           13.98           13.98           13.99</td> <td>10.03<br/>10.35<br/>10.34<br/>10.81<br/>10.51<br/>10.92<br/>10.83<br/>10.83<br/>10.04<br/>10.54<br/>10.57<br/>9.78</td> <td>11.10           11.52           11.54           10.92           11.21           11.02           11.13           11.12           11.32           11.36</td> <td>13.99           13.89           13.91           13.83           13.76           13.98           13.96           13.99           13.67</td> <td>10.46<br/>10.37<br/>10.35<br/>10.76<br/>10.33<br/>10.84<br/>10.76</td> <td>11.45<br/>11.33<br/>11.39<br/>10.88<br/>11.13<br/>11.09<br/>11.14</td> <td>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T<br/>26T</td> <td>48<br/>52<br/>56<br/>64<br/>100<br/>120</td> <td>5240<br/>5260<br/>5280<br/>5320<br/>5500<br/>5600</td> <td>2A</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.63         -10.97           29.62         -19.17           29.62         -19.27           29.64         -16.13           29.64         -16.13           29.64         -16.21           36.00         -22.12           36.00         -22.12           36.00         -21.87           30.00         -17.69           30.00         -17.77           30.00         -17.77           30.00         -17.79           Max e.i.r.p.         Limit (dBm)           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                 | 11.66<br>10.44<br>10.45<br>10.33<br>13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br><b>[dBm]</b><br>11.66                             | -2.33<br>-3.54<br>-3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>-0.15<br>-1.67<br>-1.67<br>-1.67<br><b>Directional</b><br>Ant. Gain                                                                | -9.99<br>-9.64<br>-9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.98<br>23.62<br>23.62<br>23.64<br>23.64<br>23.64<br>23.64<br>30.00<br>30.00<br>30.00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.59         13.95         13.93         13.82         13.90         13.97         13.99         13.97         13.98         13.88         13.88         13.88         13.98 | 10.01<br>10.38<br>10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                           | 11.09           11.43           11.43           10.91           11.15           10.98           11.11           11.03           11.13           11.23           11.19           11.65 | 13.60           13.98           13.99           13.87           13.88           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.98           13.98           13.98           13.98           13.98           13.99 | 10.03<br>10.35<br>10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                    | 11.10           11.52           11.54           10.92           11.21           11.02           11.13           11.12           11.32           11.36 | 13.99           13.89           13.91           13.83           13.76           13.98           13.96           13.99           13.67                                                                | 10.46<br>10.37<br>10.35<br>10.76<br>10.33<br>10.84<br>10.76                                                                           | 11.45<br>11.33<br>11.39<br>10.88<br>11.13<br>11.09<br>11.14                   | 26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T<br>26T               | 48<br>52<br>56<br>64<br>100<br>120             | 5240<br>5260<br>5280<br>5320<br>5500<br>5600                          | 2A      |
| And Part         S260         52         26T         11.33         10.37         13.89         11.52         10.35         13.88         11.43         10.38         13.95         23.62         -9.64         -3.54         10.44           5320         64         26T         10.38         10.76         13.83         10.92         10.81         13.87         10.91         10.72         13.82         23.62         -9.63         -3.54         10.45           5320         64         26T         10.88         10.76         13.83         10.92         10.81         13.87         10.91         10.72         13.82         23.62         -9.64         -3.54         10.44           500         100         26T         11.03         10.36         11.21         10.51         13.88         11.15         10.62         13.90         23.64         -9.65         -0.47         13.51           5720         11.44         26T         11.18         10.76         13.99         11.11         10.83         13.99         11.11         10.80         13.87         23.64         -9.65         -0.47         13.52           5725         157         26T         11.38         10.52         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.62         -19.18           29.62         -19.17           29.62         -19.28           29.64         -16.21           29.64         -16.21           36.00         -22.18           36.00         -21.86           36.00         -21.87           30.00         -17.69           30.00         -17.69           30.00         -17.69           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.64         -10.97                                                                                                                                                                                                                                                                           | 10.44<br>10.45<br>10.33<br>13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br><b>[dBm]</b><br>11.66                                               | -3.54<br>-3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                | -9.64<br>-9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                    | 23.62<br>23.62<br>23.64<br>23.64<br>23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.95<br>13.93<br>13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.98                                                                               | 10.38<br>10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                    | 11.43         11.43         10.91         11.15         10.98         11.11         11.03         11.13         11.23         11.19         11.65                                     | 13.98         13.99         13.87         13.88         13.98         13.99         13.99         13.99         13.99         13.99         13.99         13.99         13.73         13.98         13.96         13.59                                                                                                                                               | 10.35<br>10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                             | 11.52<br>11.54<br>10.92<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                                         | 13.89<br>13.91<br>13.83<br>13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                                                 | 10.37<br>10.35<br>10.76<br>10.33<br>10.84<br>10.76                                                                                    | 11.33<br>11.39<br>10.88<br>11.13<br>11.09<br>11.14                            | 26T<br>26T<br>26T<br>26T<br>26T<br>26T                             | 52<br>56<br>64<br>100<br>120                   | 5260<br>5280<br>5320<br>5500<br>5600                                  | -       |
| N         530         64         26T         10.88         10.76         13.83         10.92         10.81         13.87         10.91         10.72         13.82         23.62         -9.75         -3.64         10.33           20         5500         100         26T         11.13         10.33         13.76         11.21         10.51         13.88         11.15         10.62         13.90         23.64         -9.74         -0.47         13.43           5600         120         26T         11.14         10.76         13.96         11.32         10.82         13.88         10.94         13.97         23.64         -9.65         -0.47         13.51           5745         144         26T         11.14         10.76         13.99         11.11         10.83         13.99         11.31         10.82         13.89         10.62         13.80         -0.67         16.01         15         14.14           3         5785         157         26T         11.38         10.52         13.89         11.30         10.57         13.89         11.30         10.57         13.88         -         -         -1.67         12.31           5845         169         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.62         -19.17           29.62         -19.22           29.64         -16.21           29.64         -16.12           36.00         -22.18           36.00         -22.18           36.00         -21.86           30.00         -17.66           30.00         -17.66           30.00         -17.66           30.00         -17.66           30.00         -17.66           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                           | 10.45<br>10.33<br>13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br><b>[dBm]</b><br>11.66                                                        | -3.54<br>-3.54<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.15<br>0.15<br>-1.67<br>-1.67<br><b>-1.67</b><br><b>Directional</b><br>Ant. Gain                                                                                     | -9.63<br>-9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                   | 23.62<br>23.64<br>23.64<br>23.64<br>23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.93<br>13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                                                        | 10.34<br>10.72<br>10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                             | 11.43<br>10.91<br>11.15<br>10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.23<br>11.19<br>11.65                                                                                       | 13.99           13.87           13.88           13.98           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.99           13.73           13.98           13.96           13.59                                                                 | 10.34<br>10.81<br>10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                                      | 11.54<br>10.92<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                                                  | 13.91<br>13.83<br>13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                                                          | 10.35<br>10.76<br>10.33<br>10.84<br>10.76                                                                                             | 11.39<br>10.88<br>11.13<br>11.09<br>11.14                                     | 26T<br>26T<br>26T<br>26T<br>26T                                    | 56<br>64<br>100<br>120                         | 5280<br>5320<br>5500<br>5600                                          | -       |
| N         530         64         26T         10.88         10.76         13.83         10.92         10.81         13.87         10.91         10.72         13.82         23.62         -9.75         -3.64         10.33           20         5500         100         26T         11.13         10.33         13.76         11.21         10.51         13.88         11.15         10.62         13.90         23.64         -9.74         -0.47         13.43           5600         120         26T         11.14         10.76         13.96         11.32         10.82         13.88         10.94         13.97         23.64         -9.65         -0.47         13.51           5745         144         26T         11.14         10.76         13.99         11.11         10.83         13.99         11.31         10.82         13.89         10.62         13.80         -0.67         16.01         15         14.14           3         5785         157         26T         11.38         10.52         13.89         11.30         10.57         13.89         11.30         10.57         13.88         -         -         -1.67         12.31           5845         169         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.62         -19.23           29.64         -16.21           29.64         -16.13           29.64         -16.13           29.64         -16.13           36.00         -21.87           36.00         -21.87           30.00         -17.68           30.00         -17.69           30.00         -17.75           Max e.ir.p.         Limit (dBm)           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                               | 10.33<br>13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br>[dBm]<br>11.66                                                               | -3.54<br>-0.47<br>-0.47<br>-0.47<br>0.15<br>0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                              | -9.75<br>-9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>Conducted                                                                                                    | 23.62<br>23.64<br>23.64<br>30.00<br>30.00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.82<br>13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                                                                 | 10.72<br>10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                                      | 10.91<br>11.15<br>10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.23<br>11.19<br>11.65                                                                                                | 13.87           13.88           13.98           13.99           13.99           13.73           13.98           13.98           13.99                                                                                                                                                                                                                                 | 10.81           10.51           10.92           10.83           10.83           10.04           10.54           10.57           9.78       | 10.92<br>11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                                                           | 13.83<br>13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                                                                   | 10.76<br>10.33<br>10.84<br>10.76                                                                                                      | 10.88<br>11.13<br>11.09<br>11.14                                              | 26T<br>26T<br>26T<br>26T                                           | 64<br>100<br>120                               | 5320<br>5500<br>5600                                                  | -       |
| 3         5745         149         287         11.18         10.78         13.99         11.12         10.83         13.99         11.03         10.30         13.97         30.00         -16.07         0.15         14.14           5785         157         26T         11.28         9.96         13.67         11.32         10.04         13.73         11.13         9.98         13.00         30.00         -16.07         0.15         14.14           5825         165         26T         11.38         10.52         13.98         11.30         10.57         13.38         13.00         30.00         -16.07         0.15         14.13           5825         166         26T         11.38         10.52         13.98         11.12         10.49         13.88         30.00         -16.07         0.15         14.13           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.64         -16.21           29.64         -16.12           29.64         -16.12           36.00         -22.18           36.00         -21.86           36.00         -21.87           30.00         -17.69           30.00         -17.69           30.00         -17.69           20.00         -17.75           Max e.ir.p.         e.ir.p. ma           Limit (dBm)         e.ir.p. ma           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                      | 13.43<br>13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.31<br>12.25<br><b>Max e.ir.p.</b><br>[dBm]<br>11.66                                                                        | -0.47<br>-0.47<br>-0.47<br>0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                               | -9.74<br>-9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>-<br>Conducted                                                                                                   | 23.64<br>23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.90<br>13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.98                                                                                                          | 10.62<br>10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                                               | 11.15<br>10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                                                                  | 13.88<br>13.98<br>13.99<br>13.99<br>13.73<br>13.98<br>13.96<br>13.59                                                                                                                                                                                                                                                                                                  | 10.51<br>10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                                                        | 11.21<br>11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                                                                    | 13.76<br>13.98<br>13.96<br>13.99<br>13.67                                                                                                                                                            | 10.33<br>10.84<br>10.76                                                                                                               | 11.13<br>11.09<br>11.14                                                       | 26T<br>26T<br>26T                                                  | 100<br>120                                     | 5500<br>5600                                                          | 2C      |
| 3         5745         149         287         11.18         10.78         13.99         11.12         10.83         13.99         11.03         10.30         13.97         30.00         -16.07         0.15         14.14           5785         157         26T         11.28         9.96         13.67         11.32         10.04         13.73         11.13         9.98         13.00         30.00         -16.07         0.15         14.14           5825         165         26T         11.38         10.52         13.98         11.30         10.57         13.38         13.00         30.00         -16.07         0.15         14.13           5825         166         26T         11.38         10.52         13.98         11.12         10.49         13.88         30.00         -16.07         0.15         14.13           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.64         -16.13           29.64         -16.13           36.00         -21.86           36.00         -21.87           36.00         -21.87           30.00         -17.66           30.00         -17.69           30.00         -17.69           30.00         -17.69           30.00         -17.69           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                          | 13.51<br>13.52<br>14.14<br>13.88<br>14.13<br>12.31<br>12.25<br>Max e.ir.p.<br>[dBm]<br>11.66                                                                                                 | -0.47<br>-0.47<br>0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                        | -9.66<br>-9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>Conducted                                                                                                                 | 23.64<br>23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.97<br>13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.88                                                                                                                   | 10.94<br>10.84<br>10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                                                        | 10.98<br>11.11<br>11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                                                                           | 13.98         13.99         13.99         13.73         13.98         13.96         13.59                                                                                                                                                                                                                                                                             | 10.92<br>10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                                                                 | 11.02<br>11.13<br>11.12<br>11.32<br>11.36                                                                                                             | 13.98<br>13.96<br>13.99<br>13.67                                                                                                                                                                     | 10.84<br>10.76                                                                                                                        | 11.09<br>11.14                                                                | 26T<br>26T                                                         | 120                                            | 5600                                                                  | 2C      |
| 3         5745         149         287         11.18         10.78         13.99         11.12         10.83         13.99         11.03         10.30         13.97         30.00         -16.07         0.15         14.14           5785         157         26T         11.28         9.96         13.67         11.32         10.04         13.73         11.13         9.98         13.00         30.00         -16.07         0.15         14.14           5825         165         26T         11.38         10.52         13.98         11.30         10.57         13.38         13.00         30.00         -16.07         0.15         14.13           5825         166         26T         11.38         10.52         13.98         11.12         10.49         13.88         30.00         -16.07         0.15         14.13           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.64         -16.12           36.00         -21.86           36.00         -21.87           30.00         -17.68           30.00         -17.75           Max e.ir.p.         e.ir.p.           Limit (dBm)         e.ir.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.52           14.14           13.88           14.13           12.31           12.25           Max e.i.r.p.<br>[dBm]           11.66                                                        | -0.47<br>0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                 | -9.65<br>-16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>Conducted                                                                                                                          | 23.64<br>30.00<br>30.00<br>-<br>-<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.99<br>13.97<br>13.60<br>13.88<br>13.88<br>13.98                                                                                                                            | 10.84           10.90           9.98           10.49           10.52           10.18           10.59                                       | 11.11<br>11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                                                                                    | 13.99           13.99           13.73           13.98           13.96           13.59                                                                                                                                                                                                                                                                                 | 10.83<br>10.83<br>10.04<br>10.54<br>10.57<br>9.78                                                                                          | 11.13<br>11.12<br>11.32<br>11.36                                                                                                                      | 13.96<br>13.99<br>13.67                                                                                                                                                                              | 10.76                                                                                                                                 | 11.14                                                                         | 26T                                                                |                                                |                                                                       | 2C      |
| 3         5745         149         287         11.18         10.78         13.99         11.12         10.83         13.99         11.03         10.30         13.97         30.00         -16.07         0.15         14.14           5785         157         26T         11.28         9.96         13.67         11.32         10.04         13.73         11.13         9.98         13.00         30.00         -16.07         0.15         14.14           5825         165         26T         11.38         10.52         13.98         11.30         10.57         13.38         13.00         30.00         -16.07         0.15         14.13           5825         166         26T         11.38         10.52         13.98         11.12         10.49         13.88         30.00         -16.07         0.15         14.13           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.00         -21.86           36.00         -22.17           36.00         -21.87           30.00         -17.69           30.00         -17.69           30.00         -17.75           Max e.ir.p.         e.ir.p. ma           Limit [dBm]         e.ir.p. ma           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.14<br>13.88<br>14.13<br>12.31<br>12.25<br>Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                  | 0.15<br>0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                  | -16.01<br>-16.27<br>-16.02<br>-<br>-<br>-<br>Conducted                                                                                                                                   | 30.00<br>30.00<br>-<br>-<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.97<br>13.60<br>13.88<br>13.88<br>13.98                                                                                                                                     | 10.90<br>9.98<br>10.49<br>10.52<br>10.18<br>10.59                                                                                          | 11.03<br>11.13<br>11.23<br>11.19<br>11.65                                                                                                                                             | 13.99<br>13.73<br>13.98<br>13.96<br>13.59                                                                                                                                                                                                                                                                                                                             | 10.83<br>10.04<br>10.54<br>10.57<br>9.78                                                                                                   | 11.12<br>11.32<br>11.36                                                                                                                               | 13.99<br>13.67                                                                                                                                                                                       |                                                                                                                                       |                                                                               | -                                                                  | 144                                            | 5720                                                                  |         |
| 3         5745         149         287         11.18         10.78         13.99         11.12         10.83         13.99         11.03         10.30         13.97         30.00         -16.07         0.15         14.14           5785         157         26T         11.28         9.96         13.67         11.32         10.04         13.73         11.13         9.98         13.00         30.00         -16.07         0.15         14.14           5825         165         26T         11.38         10.52         13.98         11.30         10.57         13.38         13.00         30.00         -16.07         0.15         14.13           5825         166         26T         11.38         10.52         13.98         11.12         10.49         13.88         30.00         -16.07         0.15         14.13           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.00         -22.12           36.00         -21.87           30.00         -17.69           30.00         -17.75           Max e.ir.p.         Limit [dBm]           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                            | 13.88           14.13           12.31           12.31           12.25           Max e.ir.p.<br>[dBm]           11.66                                                                         | 0.15<br>0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                          | -16.27<br>-16.02<br>-<br>-<br>-<br>Conducted                                                                                                                                             | 30.00<br>30.00<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.60<br>13.88<br>13.88<br>13.98                                                                                                                                              | 9.98<br>10.49<br>10.52<br>10.18<br>10.59                                                                                                   | 11.13<br>11.23<br>11.19<br>11.65                                                                                                                                                      | 13.73<br>13.98<br>13.96<br>13.59                                                                                                                                                                                                                                                                                                                                      | 10.04<br>10.54<br>10.57<br>9.78                                                                                                            | 11.32<br>11.36                                                                                                                                        | 13.67                                                                                                                                                                                                | 10.78                                                                                                                                 | 11.18                                                                         |                                                                    |                                                | 5/20                                                                  |         |
| S825         166         26T         11.38         10.52         13.38         11.36         10.54         13.38         11.23         10.49         13.88         30.00         -16.02         0.15         14.13           5845         169         26T         11.33         10.59         13.38         11.30         10.57         13.96         11.13         10.69         13.88         -         -         -         -1.67         12.31           5885         177         26T         11.00         10.67         13.89         11.41         10.67         13.92         10.59         13.80         -         -         -         -1.67         12.31           5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           6885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -1.67         12.31           1         5190         38         26T         10.67         10.68         13.97         11.98         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.00         -21.87           30.00         -17.69           30.00         -17.75           30.00         -17.75           Max e.ir.p.<br>Limit [dBm]         e.ir.p. ma           22.63         -10.97           22.63         -10.97           22.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.13<br>12.31<br>12.31<br>12.25<br>Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                           | 0.15<br>-1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                                  | -16.02<br>-<br>-<br>Conducted                                                                                                                                                            | 30.00<br>-<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.88<br>13.88<br>13.98                                                                                                                                                       | 10.49<br>10.52<br>10.18<br>10.59                                                                                                           | 11.23<br>11.19<br>11.65                                                                                                                                                               | 13.98<br>13.96<br>13.59                                                                                                                                                                                                                                                                                                                                               | 10.54<br>10.57<br>9.78                                                                                                                     | 11.36                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               | 26T                                                                | 149                                            | 5745                                                                  |         |
| A         5845         169         26T         11.31         10.99         11.30         10.77         13.96         11.19         10.62         13.88         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.00         -17.69           30.00         -17.75           30.00         -17.75           Max e.i.r.p.<br>Limit [dBm]         e.i.r.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.31<br>12.31<br>12.25<br>Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                                    | -1.67<br>-1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                                          | -<br>-<br>-<br>Conducted                                                                                                                                                                 | -<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.88<br>13.98                                                                                                                                                                | 10.52<br>10.18<br>10.59                                                                                                                    | 11.19<br>11.65                                                                                                                                                                        | 13.96<br>13.59                                                                                                                                                                                                                                                                                                                                                        | 10.57<br>9.78                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                      | 9.96                                                                                                                                  | 11.26                                                                         | 26T                                                                | 157                                            | 5785                                                                  | 3       |
| 4         5865         173         26T         11.30         9.82         13.63         11.26         9.78         13.59         11.65         10.18         13.98         -         -         -         -1.67         12.31           8         11.77         26T         11.30         9.82         13.63         11.26         9.78         13.59         11.65         10.18         13.98         -         -         -         -         -1.67         12.31           8         6         777         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         13.80         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.00         -17.69           30.00         -17.75           Max e.i.r.p.<br>Limit [dBm]         e.i.r.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.31<br>12.25<br>Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                                             | -1.67<br>-1.67<br>Directional<br>Ant. Gain                                                                                                                                                                                   | -<br>-<br>Conducted                                                                                                                                                                      | -<br>-<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.98                                                                                                                                                                         | 10.18<br>10.59                                                                                                                             | 11.65                                                                                                                                                                                 | 13.59                                                                                                                                                                                                                                                                                                                                                                 | 9.78                                                                                                                                       | 11.30                                                                                                                                                 | 13.98                                                                                                                                                                                                | 10.52                                                                                                                                 | 11.38                                                                         | 26T                                                                | 165                                            | 5825                                                                  |         |
| No.         5885         177         26T         11.07         10.67         13.89         11.14         10.67         13.92         10.98         10.59         13.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.00         -17.75           Max e.ir.p.<br>Limit [dBm]         e.ir.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.25<br>Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                                                      | -1.67<br>Directional<br>Ant. Gain                                                                                                                                                                                            | -<br>Conducted                                                                                                                                                                           | -<br>Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                               | 10.59                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       | 13.98                                                                                                                                                                                                | 10.59                                                                                                                                 | 11.31                                                                         | 26T                                                                | 169                                            | 5845                                                                  |         |
| Band         Freq<br>[MHz]         Channel         Tones         RU Index: 0         RU Index: 17         Conducted<br>NU Index: 17         Conducted<br>Power Limit         Directional<br>Ant. Gain         Max e.ir.p.<br>(dBin)         Max e.ir.p.<br>Light)         Max e.ir.p. Light)         Max e.ir.p. Light)         Max e.ir.p. Light)         Max e.ir.p. Light)         Max e.ir.p. Light) </th <td>Max e.i.r.p.<br/>Limit (dBm)         e.i.r.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31</td> <td>Max e.i.r.p.<br/>[dBm]<br/>11.66</td> <td>Directional<br/>Ant. Gain</td> <td>Conducted</td> <td>Conducted<br/>Power Limit</td> <td>13.80</td> <td></td> <td>10.98</td> <td>13.92</td> <td></td> <td>11.26</td> <td>13.63</td> <td>9.82</td> <td>11.30</td> <td>26T</td> <td>173</td> <td>5865</td> <td>4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max e.i.r.p.<br>Limit (dBm)         e.i.r.p. ma           22.63         -10.97           22.63         -10.97           29.62         -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max e.i.r.p.<br>[dBm]<br>11.66                                                                                                                                                               | Directional<br>Ant. Gain                                                                                                                                                                                                     | Conducted                                                                                                                                                                                | Conducted<br>Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.80                                                                                                                                                                         |                                                                                                                                            | 10.98                                                                                                                                                                                 | 13.92                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            | 11.26                                                                                                                                                 | 13.63                                                                                                                                                                                                | 9.82                                                                                                                                  | 11.30                                                                         | 26T                                                                | 173                                            | 5865                                                                  | 4       |
| Band         Freq<br>[UHz]         Channel         Tones         RU Index: 0         RU Index: 1         Power Limit<br>(BB)         Conducted<br>Power Margin<br>(BB)         Ant: Gain<br>(BB)         Max e.i.r.p.<br>(BB)         Max<br>(BB)           1         5190         38         26T         10.26         13.59         11.35         10.58         10.99         10.63         13.82         10.95         10.35         13.67         23.98         -9.99         -2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         11.66         2.33         10.61         13.99         10.95         13.77         2.362         -9.77         -3.54         10.16           24         5510         10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit [dBm]<br>22.63 -10.97<br>22.63 -10.97<br>29.62 -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [dBm]<br>11.66                                                                                                                                                                               | Ant. Gain                                                                                                                                                                                                                    |                                                                                                                                                                                          | Power Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       | 10.67                                                                                                                                      | 11.14                                                                                                                                                 | 13.89                                                                                                                                                                                                | 10.67                                                                                                                                 | 11.07                                                                         | 26T                                                                | 177                                            | 5885                                                                  |         |
| Ballion         UHHzi         Challment         Form House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit [dBm]<br>22.63 -10.97<br>22.63 -10.97<br>29.62 -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [dBm]<br>11.66                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       | ver (dBm)                                                                                                                                                                                                                                                                                                                                                             | onducted Por                                                                                                                               | Average Co                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                | <b>-</b>                                                              |         |
| V         ANT         ANT2         MMO         ANT1         ANT2         MMO         Identity         Constraints           1         5190         38         26T         10.26         13.59         11.35         10.87         11.99         11.66         13.61         23.88         -9.99         -2.33         11.66           2A         5270         54         26T         11.13         10.82         13.99         10.63         13.82         20.95         13.67         23.88         -9.99         -2.33         11.66           2A         5270         54         26T         10.26         13.99         10.19         13.85         23.82         -9.99         -2.33         11.66           5310         62         26T         10.76         10.60         13.59         10.35         10.57         10.42         13.70         23.62         -9.77         -3.54         10.16           5510         10.2         26T         10.69         13.69         10.64         10.35         13.77         13.70         23.62         -9.77         -3.54         10.16           5550         118         26T         10.76         10.59         13.70         23.64         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.63 -10.97<br>22.63 -10.97<br>29.62 -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.66                                                                                                                                                                                        | [dBi]                                                                                                                                                                                                                        | Fower margin                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               | RU Index: 17                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       | RU Index: 8                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                      | RU Index: 0                                                                                                                           |                                                                               | Tones                                                              | Channel                                        |                                                                       | Band    |
| 1         5230         46         26T         11.13         10.82         13.99         10.63         13.82         10.95         10.35         13.67         23.98         -9.99         -2.33         11.66           2A         5270         64         26T         11.12         10.18         13.74         11.09         9.95         13.57         11.40         10.19         13.85         23.62         -9.77         -3.54         10.31           5310         62         26T         10.76         10.69         13.69         10.64         10.83         13.85         10.75         10.62         -9.77         -3.54         10.16           5510         102         26T         10.68         13.69         10.64         10.83         10.55         13.77         23.64         -9.85         -0.47         13.52           20         5550         118         28T         10.06         13.56         10.74         13.63         10.78         10.88         13.84         -9.85         -0.47         13.52           3         5755         1142         28T         11.05         10.52         13.84         10.42         13.84         10.88         13.84         23.64         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.63 -10.97<br>29.62 -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          | [dBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIMO                                                                                                                                                                          | ANT2                                                                                                                                       | ANT1                                                                                                                                                                                  | MIMO                                                                                                                                                                                                                                                                                                                                                                  | ANT2                                                                                                                                       | ANT1                                                                                                                                                  | MIMO                                                                                                                                                                                                 | ANT2                                                                                                                                  | ANT1                                                                          |                                                                    |                                                | [wiriz]                                                               |         |
| DA         5310         62         26T         10.76         10.60         13.69         10.64         10.63         13.65         10.75         10.62         13.70         23.62         -9.92         -3.54         10.16           26         5510         102         26T         10.98         10.06         13.56         11.33         10.61         13.99         10.96         13.77         23.64         -9.92         -3.54         10.16           26         5590         118         26T         11.05         10.59         13.84         10.71         10.54         13.63         10.78         10.88         13.84         -9.85         -0.47         13.82           5750         1142         26T         11.05         10.59         13.84         10.78         13.84         10.78         13.84         23.64         -9.80         -0.47         13.42           3         5755         151         26T         10.99         10.39         10.62         13.84         10.78         13.86         23.64         -9.80         -0.47         13.42           3         5755         151         26T         10.90         10.39         13.66         10.51         13.84         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.62 -19.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.66                                                                                                                                                                                        | -2.33                                                                                                                                                                                                                        | -9.99                                                                                                                                                                                    | 23.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.81                                                                                                                                                                         | 10.36                                                                                                                                      | 11.19                                                                                                                                                                                 | 13.99                                                                                                                                                                                                                                                                                                                                                                 | 10.58                                                                                                                                      | 11.35                                                                                                                                                 | 13.59                                                                                                                                                                                                | 10.26                                                                                                                                 | 10.87                                                                         | 26T                                                                | 38                                             | 5190                                                                  | 1       |
| DA         5310         62         26T         10.76         10.60         13.69         10.64         10.63         13.65         10.75         10.62         13.70         23.62         -9.92         -3.54         10.16           26         5510         102         26T         10.98         10.06         13.56         11.33         10.61         13.99         10.96         13.77         23.64         -9.92         -3.54         10.16           26         5590         118         26T         11.05         10.59         13.84         10.71         10.54         13.63         10.78         10.88         13.84         -9.85         -0.47         13.82           5750         1142         26T         11.05         10.59         13.84         10.78         13.84         10.78         13.84         23.64         -9.80         -0.47         13.42           3         5755         151         26T         10.99         10.39         10.62         13.84         10.78         13.86         23.64         -9.80         -0.47         13.42           3         5755         151         26T         10.90         10.39         13.66         10.51         13.84         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              | -2.33                                                                                                                                                                                                                        | -9.99                                                                                                                                                                                    | 23.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.67                                                                                                                                                                         | 10.35                                                                                                                                      | 10.95                                                                                                                                                                                 | 13.82                                                                                                                                                                                                                                                                                                                                                                 | 10.63                                                                                                                                      | 10.99                                                                                                                                                 | 13.99                                                                                                                                                                                                | 10.82                                                                                                                                 | 11.13                                                                         | 26T                                                                | 46                                             | 5230                                                                  |         |
| Still         62         26T         10.76         10.60         13.69         10.64         10.83         13.65         10.75         10.62         13.70         23.62         -9.92         -3.54         10.16           5510         102         26T         10.97         10.06         13.66         11.39         10.96         13.77         23.64         -9.85         -0.47         13.52           5500         118         26T         11.05         10.99         13.84         10.71         10.54         13.89         10.96         13.84         23.64         -9.85         -0.47         13.52           5705         118         26T         11.21         10.52         13.84         10.78         10.88         13.84         23.64         -9.85         -0.47         13.37           3         5755         151         26T         11.21         10.52         13.84         10.62         13.84         10.80         13.87         23.64         -9.75         -0.47         13.42           3         5755         151         26T         10.99         13.66         11.03         10.62         13.84         10.68         13.80         30.00         -61.66         0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.62 -19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.31                                                                                                                                                                                        | -3.54                                                                                                                                                                                                                        | -9.77                                                                                                                                                                                    | 23.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.85                                                                                                                                                                         | 10.19                                                                                                                                      | 11.40                                                                                                                                                                                 | 13.57                                                                                                                                                                                                                                                                                                                                                                 | 9.95                                                                                                                                       | 11.09                                                                                                                                                 | 13.74                                                                                                                                                                                                | 10.18                                                                                                                                 | 11.21                                                                         | 26T                                                                | 54                                             | 5270                                                                  | 24      |
| <u>3 5/55 151 261 10.90 10.39 13.66 11.03 10.62 13.84 10.68 10.51 13.60 30.00 -16.16 0.15 13.99</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -13.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.16                                                                                                                                                                                        | -3.54                                                                                                                                                                                                                        | -9.92                                                                                                                                                                                    | 23.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.70                                                                                                                                                                         |                                                                                                                                            | 10.75                                                                                                                                                                                 | 13.65                                                                                                                                                                                                                                                                                                                                                                 | 10.63                                                                                                                                      | 10.64                                                                                                                                                 |                                                                                                                                                                                                      | 10.60                                                                                                                                 | 10.76                                                                         | 26T                                                                | 62                                             | 5310                                                                  | 24      |
| <u>3 5/55 151 261 10.90 10.39 13.66 11.03 10.62 13.84 10.68 10.51 13.60 30.00 -16.16 0.15 13.99</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.64 -16.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.52                                                                                                                                                                                        | -0.47                                                                                                                                                                                                                        | -9.65                                                                                                                                                                                    | 23.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.77                                                                                                                                                                         | 10.55                                                                                                                                      | 10.96                                                                                                                                                                                 | 13.99                                                                                                                                                                                                                                                                                                                                                                 | 10.61                                                                                                                                      | 11.33                                                                                                                                                 | 13.56                                                                                                                                                                                                | 10.06                                                                                                                                 | 10.98                                                                         | 26T                                                                | 102                                            | 5510                                                                  |         |
| <u>3 5/55 151 261 10.90 10.39 13.66 11.03 10.62 13.84 10.68 10.51 13.60 30.00 -16.16 0.15 13.99</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.64 -16.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.37                                                                                                                                                                                        | -0.47                                                                                                                                                                                                                        | -9.80                                                                                                                                                                                    | 23.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.84                                                                                                                                                                         | 10.88                                                                                                                                      | 10.78                                                                                                                                                                                 | 13.63                                                                                                                                                                                                                                                                                                                                                                 | 10.54                                                                                                                                      | 10.71                                                                                                                                                 | 13.84                                                                                                                                                                                                | 10.59                                                                                                                                 | 11.05                                                                         | 26T                                                                | 118                                            | 5590                                                                  | 2C      |
| <u>3 5/55 151 261 10.90 10.39 13.66 11.03 10.62 13.84 10.68 10.51 13.60 30.00 -16.16 0.15 13.99</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.64 -16.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.42                                                                                                                                                                                        | -0.47                                                                                                                                                                                                                        | -9.75                                                                                                                                                                                    | 23.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.87                                                                                                                                                                         | 10.80                                                                                                                                      | 10.92                                                                                                                                                                                 | 13.64                                                                                                                                                                                                                                                                                                                                                                 | 10.42                                                                                                                                      | 10.83                                                                                                                                                 | 13.89                                                                                                                                                                                                | 10.52                                                                                                                                 | 11.21                                                                         | 26T                                                                | 142                                            | 5710                                                                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.00 -22.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       | 3       |
| 5795 159 26T 11.44 10.41 13.97 11.06 10.23 13.67 11.18 10.44 13.84 30.00 -16.03 0.15 14.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.00 -21.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.12                                                                                                                                                                                        | 0.15                                                                                                                                                                                                                         | -16.03                                                                                                                                                                                   | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.84                                                                                                                                                                         | 10.44                                                                                                                                      | 11.18                                                                                                                                                                                 | 13.67                                                                                                                                                                                                                                                                                                                                                                 | 10.23                                                                                                                                      | 11.06                                                                                                                                                 | 13.97                                                                                                                                                                                                | 10.41                                                                                                                                 | 11.44                                                                         | 26T                                                                | 159                                            | 5795                                                                  | 3       |
| 4 5835 167 26T 11.30 10.46 13.91 10.95 10.25 13.62 11.02 10.46 13.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.00 -17.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.24                                                                                                                                                                                        | -1.67                                                                                                                                                                                                                        | -                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.76                                                                                                                                                                         | 10.46                                                                                                                                      | 11.02                                                                                                                                                                                 | 13.62                                                                                                                                                                                                                                                                                                                                                                 | 10.25                                                                                                                                      | 10.95                                                                                                                                                 | 13.91                                                                                                                                                                                                | 10.46                                                                                                                                 | 11.30                                                                         | 26T                                                                | 167                                            | 5835                                                                  | 4       |
| <sup>4</sup> 5875 175 26T 11.24 10.21 13.77 11.36 10.40 13.92 10.99 10.07 13.561.67 12.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.00 -17.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.25                                                                                                                                                                                        | -1.67                                                                                                                                                                                                                        | -                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.56                                                                                                                                                                         | 10.07                                                                                                                                      | 10.99                                                                                                                                                                                 | 13.92                                                                                                                                                                                                                                                                                                                                                                 | 10.40                                                                                                                                      | 11.36                                                                                                                                                 | 13.77                                                                                                                                                                                                | 10.21                                                                                                                                 | 11.24                                                                         | 26T                                                                | 175                                            | 5875                                                                  | 4       |
| Average Conducted Power (dBm) Conducted Conducted Conducted Directional Max e.ir.p. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max e.i.r.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maxoirn                                                                                                                                                                                      |                                                                                                                                                                                                                              | Conducted                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       | ver (dBm)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                | From                                                                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit [dBm] e.i.r.p. ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               | Tones                                                              | Channel                                        |                                                                       | Band    |
| ANT1 ANT2 MIMO ANT1 ANT2 MIMO ANT1 ANT2 MIMO [dbm] [dbm] [dbm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                                                              | -                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.63 -10.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       |         |
| P         2A         5290         58         26T         11.39         10.19         13.84         11.30         10.02         13.72         11.63         10.20         13.88         23.62         -9.64         -3.54         10.44           F         5530         106         26T         10.96         10.50         13.75         10.62         13.79         10.29         13.88         23.62         -9.64         -3.54         10.44           5530         106         26T         10.96         10.50         13.75         10.52         13.79         10.29         13.88         23.64         -9.66         -0.47         13.32           5630         122         26T         10.99         10.06         13.56         10.94         10.62         13.79         10.29         10.91         13.82         -0.47         13.32           5690         138         26T         10.89         10.10         13.53         10.87         10.75         13.82         10.25         10.78         13.53         23.64         -9.82         -0.47         13.32           5690         138         26T         10.89         10.10         13.53         10.75         13.82         10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.62 -19.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       | 2A      |
| 5530 106 26T 10.96 10.50 13.75 10.52 10.75 13.65 10.56 11.34 13.98 23.64 -9.66 -0.47 13.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.64 -16.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       |         |
| 2C 5610 122 26T 10.99 10.06 13.56 10.94 10.62 13.79 10.29 10.91 13.62 23.64 -9.85 -0.47 13.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.64 -16.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | -                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       | 2C      |
| <b>5</b> 690 138 26T 10.89 10.10 13.53 10.87 10.75 13.82 10.25 10.78 13.53 23.64 -9.82 -0.47 13.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.64 -16.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | -                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               | -                                                                  |                                                |                                                                       |         |
| <u>3 5775 155 26T 11.59 9.79 13.79 11.63 10.21 13.99 11.02 10.04 13.57 30.00 -16.01 0.15 14.14</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.00 -21.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                              | -16.01                                                                                                                                                                                   | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    |                                                |                                                                       |         |
| 4 5855 171 26T 11.07 10.08 13.62 11.10 10.28 13.72 11.11 10.37 13.771.67 12.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.00 -17.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.10                                                                                                                                                                                        |                                                                                                                                                                                                                              | -                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.77                                                                                                                                                                         | 10.37                                                                                                                                      | 11.11                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       | 13.62                                                                                                                                                                                                | 10.08                                                                                                                                 | 11.07                                                                         | 26T                                                                | 171                                            | 5855                                                                  | 4       |
| Prog<br>0         Prod<br>1         State         Freq<br>(MHz)         Channel         Tome         Functional<br>(BB)         RU Index: 36 (U)         RU Index: 36 (U)         Power Limit<br>(BB)         Conducted<br>(MHz)         Directional<br>(MB)         Max e.i.r.p.<br>(BB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max e.i.r.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max e.i.r.p.                                                                                                                                                                                 |                                                                                                                                                                                                                              | Conducted                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                                                                                                                                                                             | 11-1 00/1                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      | DI 1. 1                                                                                                                               |                                                                               | <b>T</b>                                                           |                                                | Freq                                                                  |         |
| Band [MHz] Band [MHz] Channel Tones RU Index: 0 (L) RU Index: 36 (L) RU Index: 36 (U) Power Limit [dBm] Li [dBm] Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit [dBm] e.i.r.p. ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [dBm]                                                                                                                                                                                        |                                                                                                                                                                                                                              | Power Margin                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .,                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               | Iones                                                              | Channel                                        | [MHz]                                                                 | Band    |
| Control         Control <t< th=""><td>22.63 -11.09</td><td></td><td>[uDI]</td><td>40.44</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>OCT</td><td>50</td><td>5050</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.63 -11.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              | [uDI]                                                                                                                                                                                                                        | 40.44                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               | OCT                                                                | 50                                             | 5050                                                                  |         |
| Q UI 1 2520 50 2.61 11.05 10.21 13.56 11.49 10.17 13.67 11.43 3.60 13.70 23.96 -10.11 -2.33 11.54 10.33 11.09 13.74 23.96 -0.47 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.27 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                          | -                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                       |                                                                               |                                                                    | 50                                             |                                                                       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.64 40.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.54                                                                                                                                                                                        | -2.33                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                       | 11.50                                                                         | COL                                                                | 114                                            | 6670                                                                  | 20      |
| 4 5815 163 26T 11.33 9.72 13.61 11.19 10.33 13.79 10.88 10.38 13.65 1.67 12.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.64 -16.37<br>30.00 -17.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.54<br>13.27<br>12.12                                                                                                                                                                      | -2.33<br>-0.47<br>-1.67                                                                                                                                                                                                      | -9.90                                                                                                                                                                                    | 20.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.65                                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                       | 13.79                                                                                                                                                                                                                                                                                                                                                                 | 10.33                                                                                                                                      | 11.19                                                                                                                                                 | 13.58                                                                                                                                                                                                | 9.39                                                                                                                                  | 11.50<br>11.33                                                                | 26T<br>26T                                                         | 114<br>163                                     | 5570<br>5815                                                          | 2C      |

Table 7-14. MIMO (UNII) Maximum Conducted Output Power (26 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 61 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 61 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |



# MIMO Conducted Output Power Measurements (52 Tones)

|             |      | _             |         |            |               |                       |            | Average C     | onducted Po           | wer (dBm)  |               |                       |            | Conducted            |                           | Directional        |                       |                             |                 |
|-------------|------|---------------|---------|------------|---------------|-----------------------|------------|---------------|-----------------------|------------|---------------|-----------------------|------------|----------------------|---------------------------|--------------------|-----------------------|-----------------------------|-----------------|
| i i         | Band | Freq<br>[MHz] | Channel | Tones      |               | RU Index: 37          |            | -             | RU Index: 39          | )          |               | RU Index: 40          | )          | Power Limit          | Conducted<br>Power Margin | Ant. Gain          | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit (dBm) | e.i.r.p. margin |
| i i         |      | [IVITIZ]      |         |            | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | [dBm]                | Power wargin              | [dBi]              | Lapini                | стин (авта)                 |                 |
| ĺ           |      | 5180          | 36      | 52T        | 13.49         | 13.28                 | 16.40      | 13.59         | 13.37                 | 16.49      | 13.61         | 13.30                 | 16.47      | 23.98                | -7.49                     | -2.33              | 14.16                 | 22.63                       | -8.47           |
| 1           | 1    | 5200          | 40      | 52T        | 13.53         | 13.27                 | 16.41      | 13.62         | 13.30                 | 16.47      | 13.67         | 13.29                 | 16.49      | 23.98                | -7.49                     | -2.33              | 14.16                 | 22.63                       | -8.47           |
|             |      | 5240          | 48      | 52T        | 13.54         | 12.93                 | 16.25      | 13.35         | 12.72                 | 16.05      | 13.63         | 12.97                 | 16.32      | 23.98                | -7.66                     | -2.33              | 13.99                 | 22.63                       | -8.64           |
| BV          |      | 5260          | 52      | 52T        | 13.67         | 13.13                 | 16.42      | 13.45         | 12.92                 | 16.20      | 13.72         | 13.13                 | 16.45      | 23.62                | -7.17                     | -3.54              | 12.91                 | 29.62                       | -16.71          |
| E CO        | 2A   | 5280          | 56      | 52T        | 13.64         | 13.08                 | 16.38      | 13.49         | 12.87                 | 16.20      | 13.73         | 13.11                 | 16.44      | 23.62                | -7.18                     | -3.54              | 12.90                 | 29.62                       | -16.72          |
| N           |      | 5320          | 64      | 52T        | 13.01         | 13.35                 | 16.19      | 13.29         | 13.55                 | 16.43      | 13.00         | 13.38                 | 16.21      | 23.62                | -7.19                     | -3.54              | 12.89                 | 29.62                       | -16.73          |
| I           |      | 5500          | 100     | 52T        | 13.41         | 12.87                 | 16.16      | 13.60         | 13.17                 | 16.40      | 13.41         | 13.10                 | 16.27      | 23.64                | -7.24                     | -0.47              | 15.93                 | 29.64                       | -13.71          |
| Σ           | 2C   | 5600          | 120     | 52T        | 13.13         | 13.09                 | 16.12      | 13.45         | 13.31                 | 16.39      | 12.97         | 13.20                 | 16.10      | 23.64                | -7.25                     | -0.47              | 15.92                 | 29.64                       | -13.72          |
| 20MHz       |      | 5720          | 144     | 52T        | 13.50         | 13.42                 | 16.47      | 13.36         | 13.29                 | 16.34      | 13.47         | 13.49                 | 16.49      | 23.64                | -7.15                     | -0.47              | 16.02                 | 29.64                       | -13.62          |
| ~           |      | 5745          | 149     | 52T        | 13.52         | 13.43                 | 16.48      | 13.35         | 13.32                 | 16.35      | 13.42         | 13.50                 | 16.47      | 30.00                | -13.52                    | 0.15               | 16.63                 | 36.00                       | -19.37          |
|             | 3    | 5785          | 157     | 52T        | 13.60         | 12.28                 | 16.00      | 13.90         | 12.83                 | 16.41      | 13.50         | 12.31                 | 15.96      | 30.00                | -13.59                    | 0.15               | 16.56                 | 36.00                       | -19.44          |
|             |      | 5825          | 165     | 52T        | 13.56         | 12.98                 | 16.29      | 13.37         | 12.75                 | 16.08      | 13.45         | 12.99                 | 16.24      | 30.00                | -13.71                    | 0.15               | 16.44                 | 36.00                       | -19.56          |
|             |      | 5845          | 169     | 52T        | 13.53         | 12.99                 | 16.28      | 13.30         | 12.74                 | 16.04      | 13.40         | 12.95                 | 16.19      | -                    | -                         | -1.67              | 14.61                 | 30.00                       | -15.39          |
|             | 4    | 5865          | 173     | 52T        | 13.48         | 12.48                 | 16.02      | 13.73         | 12.81                 | 16.30      | 13.88         | 13.01                 | 16.48      | -                    | -                         | -1.67              | 14.81                 | 30.00                       | -15.19          |
|             |      | 5885          | 177     | 52T        | 13.44         | 13.48                 | 16.47      | 13.14         | 13.21                 | 16.19      | 13.39         | 13.39                 | 16.40      | -                    | -                         | -1.67              | 14.80                 | 30.00                       | -15.20          |
|             |      | Free          |         |            |               |                       |            | Average C     | onducted Po           | wer (dBm)  |               |                       |            | Conducted            | Conducted                 | Directional        | Max e.i.r.p.          | Max e.i.r.p.                |                 |
|             | Band | Freq<br>[MHz] | Channel | Tones      |               | RU Index: 37          |            |               | RU Index: 40          | )          |               | RU Index: 44          | 1          | Power Limit          | Power Margin              | Ant. Gain          | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
|             |      | [111112]      |         |            | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | [dBm]                | r ower margin             | [dBi]              | [ubiii]               | Ennie (GDing                |                 |
| >           | 1    | 5190          | 38      | 52T        | 13.51         | 13.33                 | 16.43      | 13.41         | 13.15                 | 16.29      | 13.21         | 12.87                 | 16.05      | 23.98                | -7.55                     | -2.33              | 14.10                 | 22.63                       | -8.53           |
| ΒW          | · .  | 5230          | 46      | 52T        | 12.93         | 13.45                 | 16.21      | 12.80         | 13.26                 | 16.05      | 13.14         | 13.44                 | 16.30      | 23.98                | -7.68                     | -2.33              | 13.97                 | 22.63                       | -8.66           |
| m           | 2A   | 5270          | 54      | 52T        | 13.77         | 13.15                 | 16.48      | 13.59         | 12.95                 | 16.29      | 13.82         | 13.10                 | 16.49      | 23.62                | -7.13                     | -3.54              | 12.95                 | 29.62                       | -16.67          |
| 40MHz       | 2.   | 5310          | 62      | 52T        | 13.09         | 13.44                 | 16.28      | 13.33         | 13.62                 | 16.49      | 13.17         | 13.44                 | 16.32      | 23.62                | -7.13                     | -3.54              | 12.95                 | 29.62                       | -16.67          |
| I I I       |      | 5510          | 102     | 52T        | 13.54         | 12.87                 | 16.23      | 13.37         | 12.82                 | 16.12      | 13.46         | 13.26                 | 16.37      | 23.64                | -7.27                     | -0.47              | 15.90                 | 29.64                       | -13.74          |
| ≥           | 2C   | 5590          | 118     | 52T        | 13.28         | 13.06                 | 16.18      | 13.51         | 13.39                 | 16.46      | 13.03         | 13.46                 | 16.26      | 23.64                | -7.18                     | -0.47              | 15.99                 | 29.64                       | -13.65          |
| 윾           |      | 5710          | 142     | 52T        | 13.27         | 12.82                 | 16.06      | 13.48         | 13.40                 | 16.45      | 13.02         | 13.05                 | 16.04      | 23.64                | -7.19                     | -0.47              | 15.98                 | 29.64                       | -13.66          |
|             | 3    | 5755          | 151     | 52T        | 13.47         | 13.06                 | 16.28      | 13.58         | 13.35                 | 16.48      | 13.18         | 13.21                 | 16.21      | 30.00                | -13.52                    | 0.15               | 16.63                 | 36.00                       | -19.37          |
|             | Ŭ    | 5795          | 159     | 52T        | 13.47         | 12.66                 | 16.09      | 13.70         | 13.10                 | 16.42      | 13.25         | 12.72                 | 16.00      | 30.00                | -13.58                    | 0.15               | 16.57                 | 36.00                       | -19.43          |
|             | 4    | 5835          | 167     | 52T        | 13.75         | 13.13                 | 16.46      | 13.42         | 12.93                 | 16.19      | 13.44         | 13.13                 | 16.30      | -                    | -                         | -1.67              | 14.79                 | 30.00                       | -15.21          |
|             |      | 5875          | 175     | 52T        | 13.77         | 13.16                 | 16.48      | 13.74         | 13.15                 | 16.47      | 13.53         | 13.09                 | 16.33      | -                    | -                         | -1.67              | 14.81                 | 30.00                       | -15.19          |
|             |      | Frea          |         |            |               |                       |            |               | onducted Po           |            | -             |                       |            | Conducted            | Conducted                 | Directional        | Max e.i.r.p.          | Max e.i.r.p.                |                 |
| >           | Band | [MHz]         | Channel | Tones      |               | RU Index: 37          |            |               | RU Index: 44          |            |               | RU Index: 52          |            | Power Limit          | Power Margin              | Ant. Gain          | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
| BW          |      |               |         |            | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | ANT1          | ANT2                  | MIMO       | [dBm]                |                           | [dBi]              |                       |                             |                 |
|             | 1    | 5210          | 42      | 52T        | 12.89         | 13.45                 | 16.19      | 12.96         | 13.31                 | 16.15      | 13.42         | 13.48                 | 16.46      | 23.98                | -7.52                     | -2.33              | 14.13                 | 22.63                       | -8.50           |
| ₽_          | 2A   | 5290          | 58      | 52T        | 13.79         | 13.13                 | 16.48      | 13.72         | 12.94                 | 16.36      | 13.66         | 12.60                 | 16.17      | 23.62                | -7.14                     | -3.54              | 12.94                 | 29.62                       | -16.68          |
| 80MHz       |      | 5530          | 106     | 52T        | 13.40         | 13.39                 | 16.40      | 13.06         | 13.59                 | 16.35      | 12.64         | 13.71                 | 16.22      | 23.64                | -7.24                     | -0.47              | 15.93                 | 29.64                       | -13.71          |
| N S         | 2C   | 5610          | 122     | 52T        | 13.58         | 12.87                 | 16.25      | 13.11         | 12.96                 | 16.05      | 12.95         | 13.76                 | 16.38      | 23.64                | -7.26                     | -0.47              | 15.91                 | 29.64                       | -13.73          |
| 8           |      | 5690          | 138     | 52T        | 13.68         | 12.60                 | 16.18      | 13.60         | 13.33                 | 16.48      | 13.00         | 13.26                 | 16.14      | 23.64                | -7.16                     | -0.47              | 16.01                 | 29.64                       | -13.63          |
|             | 3    | 5775          | 155     | 52T        | 14.14         | 12.29                 | 16.33      | 13.62         | 12.36                 | 16.04      | 13.52         | 12.53                 | 16.06      | 30.00                | -13.67                    | 0.15               | 16.48                 | 36.00                       | -19.52          |
|             | 4    | 5855          | 171     | 52T        | 13.59         | 12.56                 | 16.12      | 13.48         | 12.91                 | 16.22      | 13.49         | 13.12                 | 16.32      | -                    | -                         | -1.67              | 14.65                 | 30.00                       | -15.35          |
| N           | B    | Freq          |         | <b>-</b>   |               |                       |            |               | onducted Po           |            |               |                       | 10         | Conducted            | Conducted                 | Directional        | Max e.i.r.p.          | Max e.i.r.p.                |                 |
| 60MHz<br>BW | Band | [MHz]         | Channel | Tones      | ANT1          | U Index: 37 (<br>ANT2 | L)<br>MIMO | ANT1          | U Index: 52 (<br>ANT2 | L)<br>MIMO | ANT1          | U Index: 52 (<br>ANT2 | U)<br>MIMO | Power Limit<br>[dBm] | Power Margin              | Ant. Gain<br>[dBi] | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
| B W         | 1    | 5250          | 50      | 52T        | AN11<br>13.29 | AN12<br>12.86         | 16.09      | ANT1<br>13.66 | AN12<br>12.80         | 16.26      | ANT1<br>14.06 | 12.80                 | 16.49      | 23.98                | -7.49                     | -2.33              | 14.16                 | 22.63                       | -8.47           |
| <u>ю</u> ш  | 2C   | 5250          | 114     | 521<br>52T | 13.29         | 12.65                 | 16.09      | 13.00         | 13.31                 | 16.20      | 12.30         | 12.80                 | 16.49      | 23.96                | -7.49                     | -2.33              | 14.16                 | 22.63                       | -0.47           |
| ÷.          | 20   | 5815          | 163     | 521<br>52T | 13.87         | 12.65                 | 16.20      | 13.20         | 13.13                 | 16.43      | 12.30         | 13.95                 | 16.21      | 23.04                | -1.30                     | -0.47              | 14.76                 | 29.64                       | -15.24          |
|             | 4    | - 3013        | 103     | 521        | 13.07         | 12.42                 | 10.21      | 13.70         | 13.13                 | 10.45      | 13.40         | 13.22                 | 10.30      |                      |                           | -1.07              | 14.70                 | 30.00                       | -13.24          |

Table 7-15. MIMO (UNII) Maximum Conducted Output Power (52 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 62 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 62 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |



# MIMO Conducted Output Power Measurements (106 Tones)

|             |      | _             |          |              |                |                      |                | Average C      | onducted Po    | ower (dBm)     |                |                      |                | Conducted            |                           | Directional          |                       |                             |                 |
|-------------|------|---------------|----------|--------------|----------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------------|----------------|----------------------|---------------------------|----------------------|-----------------------|-----------------------------|-----------------|
|             | Band | Freq<br>[MHz] | Channel  | Tones        |                | RU Index: 53         |                | -              | RU Index: 54   | ŧ <u>, , ,</u> |                | N/A                  |                | Power Limit          | Conducted<br>Power Margin | Ant. Gain            | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p. margin |
|             |      | [WIFIZ]       |          |              | ANT1           | ANT2                 | MIMO           | ANT1           | ANT2           | MIMO           | ANT1           | ANT2                 | MIMO           | [dBm]                | Power wargin              | [dBi]                | [abm]                 | τιπίτ (αδη)                 |                 |
|             |      | 5180          | 36       | 106T         | 15.72          | 15.50                | 18.62          | 15.83          | 15.53          | 18.69          |                |                      |                | 23.98                | -5.29                     | -2.33                | 16.36                 | 22.63                       | -6.27           |
|             | 1    | 5200          | 40       | 106T         | 15.73          | 15.46                | 18.61          | 15.85          | 15.48          | 18.68          |                |                      |                | 23.98                | -5.30                     | -2.33                | 16.35                 | 22.63                       | -6.28           |
|             |      | 5240          | 48       | 106T         | 15.89          | 15.53                | 18.72          | 15.96          | 15.50          | 18.75          |                |                      |                | 23.98                | -5.23                     | -2.33                | 16.42                 | 22.63                       | -6.21           |
| BW          |      | 5260          | 52       | 106T         | 15.95          | 15.42                | 18.70          | 15.98          | 15.41          | 18.72          |                |                      |                | 23.62                | -4.90                     | -3.54                | 15.18                 | 29.62                       | -14.44          |
|             | 2A   | 5280          | 56       | 106T         | 16.09          | 15.39                | 18.76          | 16.13          | 15.38          | 18.78          |                |                      |                | 23.62                | -4.84                     | -3.54                | 15.24                 | 29.62                       | -14.38          |
| 20MHz       |      | 5320          | 64       | 106T         | 15.27          | 15.76                | 18.53          | 15.31          | 15.75          | 18.54          |                |                      |                | 23.62                | -5.08                     | -3.54                | 15.00                 | 29.62                       | -14.62          |
| . <u> </u>  |      | 5500          | 100      | 106T         | 15.74          | 15.48                | 18.62          | 15.72          | 15.66          | 18.70          |                |                      |                | 23.64                | -4.94                     | -0.47                | 18.23                 | 29.64                       | -11.41          |
| 2           | 2C   | 5600          | 120      | 106T         | 16.02          | 15.84                | 18.94          | 15.95          | 15.94          | 18.96          |                |                      |                | 23.64                | -4.68                     | -0.47                | 18.49                 | 29.64                       | -11.15          |
|             |      | 5720          | 144      | 106T         | 15.90          | 15.84                | 18.88          | 15.83          | 15.94          | 18.90          |                |                      |                | 23.64                | -4.74                     | -0.47                | 18.43                 | 29.64                       | -11.21          |
|             |      | 5745          | 149      | 106T         | 15.94          | 15.88                | 18.92          | 15.89          | 15.93          | 18.92          |                |                      |                | 30.00                | -11.08                    | 0.15                 | 19.07                 | 36.00                       | -16.93          |
|             | 3    | 5785          | 157      | 106T         | 16.00          | 15.23                | 18.64          | 15.94          | 15.28          | 18.63          |                |                      |                | 30.00                | -11.36                    | 0.15                 | 18.79                 | 36.00                       | -17.21          |
|             |      | 5825          | 165      | 106T         | 16.02          | 15.46                | 18.76          | 15.88          | 15.44          | 18.68          |                |                      |                | 30.00                | -11.24                    | 0.15                 | 18.91                 | 36.00                       | -17.09          |
|             |      | 5845          | 169      | 106T         | 15.95          | 15.48                | 18.73          | 15.84          | 15.45          | 18.66          |                |                      |                | -                    | -                         | -1.67                | 17.06                 | 30.00                       | -12.94          |
|             | 4    | 5865          | 173      | 106T         | 16.46          | 15.23                | 18.90          | 16.39          | 15.20          | 18.84          |                |                      |                | -                    | -                         | -1.67                | 17.23                 | 30.00                       | -12.77          |
|             |      | 5885          | 177      | 106T         | 15.80          | 15.55                | 18.69          | 15.73          | 15.49          | 18.62          |                |                      |                | -                    | -                         | -1.67                | 17.02                 | 30.00                       | -12.98          |
|             |      | Freq          |          |              |                |                      |                |                | onducted Po    |                | -              |                      |                | Directional          |                           | Directional          | Max e.i.r.p.          | Max e.i.r.p.                |                 |
|             | Band | [MHz]         | Channel  | Tones        |                | RU Index: 53         |                |                | RU Index: 54   |                |                | RU Index: 56         |                | Ant. Gain            | e.i.r.p. margin           | Ant. Gain            | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
|             |      |               |          |              | ANT1           | ANT2                 | MIMO           | ANT1           | ANT2           | MIMO           | ANT1           | ANT2                 | MIMO           | [dBi]                |                           | [dBi]                |                       |                             |                 |
| >           | 1    | 5190          | 38       | 106T         | 14.58          | 14.84                | 17.72          | 14.54          | 14.71          | 17.64          | 14.91          | 14.89                | 17.91          | 23.98                | -6.07                     | -2.33                | 15.58                 | 22.63                       | -7.05           |
| 40MHz BW    |      | 5230          | 46       | 106T         | 15.55          | 15.65                | 18.61          | 15.94          | 15.95          | 18.95          | 15.73          | 15.60                | 18.68          | 23.98                | -5.03                     | -2.33                | 16.62                 | 22.63                       | -6.01           |
|             | 2A   | 5270          | 54       | 106T         | 16.02          | 15.47                | 18.76          | 15.95          | 15.30          | 18.65          | 16.18          | 15.44                | 18.84          | 23.62                | -4.78                     | -3.54                | 15.30                 | 29.62                       | -14.32          |
| N           |      | 5310          | 62       | 106T         | 13.61          | 14.68                | 17.19          | 13.48          | 14.54          | 17.05          | 13.68          | 14.71                | 17.24          | 23.62                | -6.38                     | -3.54                | 13.70                 | 29.62                       | -15.92          |
| ± .         |      | 5510          | 102      | 106T         | 14.56          | 14.72                | 17.65          | 14.44          | 14.71          | 17.59          | 14.58          | 14.99                | 17.80          | 23.64                | -5.84                     | -0.47                | 17.33                 | 29.64                       | -12.31          |
| N S         | 2C   | 5590          | 118      | 106T         | 16.15          | 15.80                | 18.99          | 15.94          | 15.78          | 18.87          | 15.90          | 16.05                | 18.99          | 23.64                | -4.65                     | -0.47                | 18.52                 | 29.64                       | -11.12          |
| 4<br>V      |      | 5710          | 142      | 106T         | 16.08          | 15.83                | 18.97          | 15.87          | 15.77          | 18.83          | 15.81          | 16.05                | 18.95          | 23.64                | -4.67                     | -0.47                | 18.50                 | 29.64                       | -11.14          |
|             | 3    | 5755          | 151      | 106T         | 16.01          | 15.58                | 18.81          | 15.77          | 15.49          | 18.64          | 15.77          | 15.72                | 18.76          | 30.00                | -11.19                    | 0.15                 | 18.96                 | 36.00                       | -17.04          |
|             |      | 5795          | 159      | 106T         | 16.07          | 15.19                | 18.66          | 16.12          | 15.52          | 18.84          | 15.80          | 15.23                | 18.54          | 30.00                | -11.16                    | 0.15                 | 18.99                 | 36.00                       | -17.01          |
|             | 4    | 5835          | 167      | 106T         | 16.09          | 15.63                | 18.88          | 15.84          | 15.46          | 18.66          | 15.87          | 15.60                | 18.75          | -                    | -                         | -1.67                | 17.21                 | 30.00                       | -12.79          |
|             |      | 5875          | 175      | 106T         | 16.17          | 15.48                | 18.85          | 15.94          | 15.29          | 18.64          | 15.99          | 15.34                | 18.69          | -                    | -                         | -1.67                | 17.18                 | 30.00                       | -12.82          |
|             |      | Freq          |          | _            |                |                      |                |                | onducted Po    |                |                |                      |                | Conducted            | Conducted                 | Directional          | Max e.i.r.p.          | Max e.i.r.p.                |                 |
| 2           | Band | [MHz]         | Channel  | Tones        | ANT1           | RU Index: 53<br>ANT2 | MIMO           | ANT1           | RU Index: 56   | MIMO           | ANT1           | RU Index: 60<br>ANT2 | MIMO           | Power Limit<br>[dBm] | Power Margin              | Ant. Gain<br>[dBi]   | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
| BW          | 1    | 5040          | 40       | 1007         |                |                      | -              |                | ANT2           | -              |                |                      |                |                      | 0.00                      |                      | 44.00                 | 00.00                       | 7.07            |
|             | 2A   | 5210<br>5290  | 42<br>58 | 106T<br>106T | 13.93<br>13.85 | 14.03<br>13.76       | 16.99<br>16.82 | 13.97<br>13.83 | 13.95<br>13.58 | 16.97<br>16.72 | 13.97<br>13.78 | 13.63<br>13.35       | 16.81<br>16.58 | 23.98<br>23.62       | -6.99<br>-6.80            | -2.33                | 14.66<br>13.28        | 22.63<br>29.62              | -7.97<br>-16.34 |
| 우           | 2A   | 5290          | 106      | 106T         | 13.65          | 15.56                | 18.23          | 13.63          | 15.74          | 18.22          | 14.13          | 15.89                | 18.11          | 23.62                | -5.41                     | -0.47                | 17.76                 | 29.62                       | -10.34          |
| ŧ.          | 2C   | 5610          | 106      | 106T         | 14.04          | 15.00                | 18.61          | 14.60          | 15.74          | 18.88          | 14.13          | 15.89                | 18.67          | 23.64                | -5.41                     | -0.47                | 18.41                 | 29.64                       | -11.00          |
| 80MHz       | 20   | 5690          | 122      | 106T         | 16.07          | 15.07                | 18.61          | 15.95          | 15.87          | 18.92          | 15.42          | 15.00                | 18.60          | 23.64                | -4.70                     | -0.47                | 18.45                 | 29.64                       | -11.23          |
| õ           | 3    | 5775          | 155      | 106T         | 16.04          | 15.12                | 18.92          | 16.08          | 15.07          | 18.65          | 15.41          | 15.76                | 18.73          | 30.00                | -4.72                     | -0.47                | 10.45                 | 29.64                       | -16.93          |
|             | 4    | 5775          | 155      | 106T         | 16.51          | 15.21                | 18.92          | 15.08          | 15.14          | 18.65          | 15.99          | 15.42                | 18.73          | 30.00                | -11.06                    | -1.67                | 19.07                 | 36.00                       | -16.93          |
|             | 4    | 3855          | 171      | 1001         | 10.31          | 13.00                | 10.90          |                | onducted Po    |                | 13.04          | 15.45                | 10.05          | Conducted            | -                         | -1.67<br>Directional | 17.31                 | 30.00                       | -12.09          |
| N           | Band | Freq          | Channel  | Tones        | P              | U Index: 53 (        | 1)             |                | U Index: 60 (  |                | P              | U Index: 60 (        | 10             | Power Limit          | Conducted                 | Ant. Gain            | Max e.i.r.p.          | Max e.i.r.p.                | e.i.r.p. margin |
| 60MHz<br>BW | Canu | [MHz]         | Shamer   | 101103       | ANT1           | ANT2                 | MIMO           | ANT1           | ANT2           | MIMO           | ANT1           | ANT2                 | MIMO           | [dBm]                | Power Margin              | [dBi]                | [dBm]                 | Limit [dBm]                 | op. margin      |
|             | 1    | 5250          | 50       | 106T         | 15.68          | 15.51                | 18.60          | 15.96          | 15.35          | 18.67          | 16.48          | 15.37                | 18.97          | 23.98                | -5.01                     | -2.33                | 16.64                 | 22.63                       | -5.99           |
| 60          | 2C   | 5570          | 114      | 106T         | 16.26          | 14.64                | 18.53          | 16.00          | 15.64          | 18.84          | 15.13          | 16.28                | 18.75          | 23.64                | -4.80                     | -0.47                | 18.37                 | 29.64                       | -11.27          |
| <b>~</b>    | 4    | 5815          | 163      | 106T         | 16.45          | 14.95                | 18.78          | 15.95          | 15.42          | 18.71          | 15.65          | 15.54                | 18.61          |                      | -                         | -1.67                | 17.11                 | 30.00                       | -12.89          |
|             |      |               |          |              |                |                      | 10.10          | 10.00          |                |                | 10.00          | 10.01                |                |                      |                           |                      |                       | 00.00                       | 12.00           |

Table 7-16. MIMO (UNII) Maximum Conducted Output Power (106 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 62 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 63 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (242 Tones)

|             |      | _             |         |       |       |               |       | Average C | onducted Po   | ower (dBm) |       |               |       | Conducted   |                           | Directional |                       |                             |                 |
|-------------|------|---------------|---------|-------|-------|---------------|-------|-----------|---------------|------------|-------|---------------|-------|-------------|---------------------------|-------------|-----------------------|-----------------------------|-----------------|
| Ì           | Band | Freq<br>[MHz] | Channel | Tones |       | RU Index: 61  |       |           | N/A           |            |       | N/A           |       | Power Limit | Conducted<br>Power Margin | Ant. Gain   | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p. margin |
|             |      | [IVIFIZ]      |         |       | ANT1  | ANT2          | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       | Power wargin              | [dBi]       | [abin]                | τιπίτ (αδη)                 |                 |
|             |      | 5180          | 36      | 242T  | 16.81 | 16.60         | 19.72 |           |               |            |       |               |       | 23.98       | -4.26                     | -2.33       | 17.39                 | 22.63                       | -5.24           |
|             | 1    | 5200          | 40      | 242T  | 16.76 | 16.57         | 19.67 |           |               |            |       |               |       | 23.98       | -4.31                     | -2.33       | 17.34                 | 22.63                       | -5.29           |
| <u> </u>    |      | 5240          | 48      | 242T  | 17.34 | 16.50         | 19.95 |           |               |            |       |               |       | 23.98       | -4.03                     | -2.33       | 17.62                 | 22.63                       | -5.01           |
| BW          |      | 5260          | 52      | 242T  | 17.10 | 16.39         | 19.77 |           |               |            |       |               |       | 23.62       | -3.85                     | -3.54       | 16.23                 | 29.62                       | -13.39          |
|             | 2A   | 5280          | 56      | 242T  | 17.11 | 16.35         | 19.76 |           |               |            |       |               |       | 23.62       | -3.86                     | -3.54       | 16.22                 | 29.62                       | -13.40          |
| N           |      | 5320          | 64      | 242T  | 16.48 | 16.80         | 19.65 |           |               |            |       |               |       | 23.62       | -3.97                     | -3.54       | 16.11                 | 29.62                       | -13.51          |
|             |      | 5500          | 100     | 242T  | 16.61 | 16.54         | 19.58 |           |               |            |       |               |       | 23.64       | -4.06                     | -0.47       | 19.11                 | 29.64                       | -10.53          |
| 2           | 2C   | 5600          | 120     | 242T  | 16.85 | 16.90         | 19.88 |           |               |            |       |               |       | 23.64       | -3.76                     | -0.47       | 19.41                 | 29.64                       | -10.23          |
| 20MHz       |      | 5720          | 144     | 242T  | 16.88 | 16.77         | 19.83 |           |               |            |       |               |       | 23.64       | -3.81                     | -0.47       | 19.36                 | 29.64                       | -10.28          |
| ~           |      | 5745          | 149     | 242T  | 16.85 | 16.82         | 19.85 |           |               |            |       |               |       | 30.00       | -10.15                    | 0.15        | 20.00                 | 36.00                       | -16.00          |
|             | 3    | 5785          | 157     | 242T  | 16.97 | 16.02         | 19.53 |           |               |            |       |               |       | 30.00       | -10.47                    | 0.15        | 19.68                 | 36.00                       | -16.32          |
|             |      | 5825          | 165     | 242T  | 17.11 | 16.52         | 19.84 |           |               |            |       |               |       | 30.00       | -10.16                    | 0.15        | 19.99                 | 36.00                       | -16.01          |
|             |      | 5845          | 169     | 242T  | 17.07 | 16.52         | 19.81 |           |               |            |       |               |       | -           | -                         | -1.67       | 18.14                 | 30.00                       | -11.86          |
|             | 4    | 5865          | 173     | 242T  | 17.46 | 16.18         | 19.88 |           |               |            |       |               |       | -           | -                         | -1.67       | 18.21                 | 30.00                       | -11.79          |
|             |      | 5885          | 177     | 242T  | 16.72 | 16.64         | 19.69 |           |               |            |       |               |       | -           | -                         | -1.67       | 18.02                 | 30.00                       | -11.98          |
|             |      | -             |         |       |       |               |       | Average C | onducted Po   | wer (dBm)  |       |               |       | Directional |                           | Directional |                       |                             |                 |
|             | Band | Freq          | Channel | Tones |       | RU Index: 61  |       |           | RU Index: 62  |            |       | N/A           |       | Ant. Gain   | e.i.r.p. margin           | Ant. Gain   | Max e.i.r.p.          | Max e.i.r.p.                | e.i.r.p. margin |
|             |      | [MHz]         |         |       | ANT1  | ANT2          | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBi]       |                           | [dBi]       | [dBm]                 | Limit [dBm]                 |                 |
| _           |      | 5190          | 38      | 242T  | 14.57 | 14.69         | 17.64 | 14.77     | 14.76         | 17.78      |       |               |       | 23.98       | -6.20                     | -2.33       | 15.45                 | 22.63                       | -7.18           |
| ΒW          | 1    | 5230          | 46      | 242T  | 16.96 | 16.93         | 19.96 | 16.67     | 16.52         | 19.61      |       |               |       | 23.98       | -4.02                     | -2.33       | 17.63                 | 22.63                       | -5.00           |
| ш           |      | 5270          | 54      | 242T  | 17.02 | 16.35         | 19.71 | 17.12     | 16.34         | 19.75      |       |               |       | 23.62       | -3.87                     | -3.54       | 16.21                 | 29.62                       | -13.41          |
| N           | 2A   | 5310          | 62      | 242T  | 13.49 | 14.52         | 17.05 | 13.58     | 14.56         | 17.11      |       |               |       | 23.62       | -6.51                     | -3.54       | 13.57                 | 29.62                       | -16.05          |
| 40MHz       |      | 5510          | 102     | 242T  | 14.41 | 14.69         | 17.56 | 14.42     | 14.96         | 17.71      |       |               |       | 23.64       | -5.93                     | -0.47       | 17.24                 | 29.64                       | -12.40          |
| Σ           | 2C   | 5590          | 118     | 242T  | 16.89 | 16.80         | 19.86 | 16.92     | 16.81         | 19.87      |       |               |       | 23.64       | -3.77                     | -0.47       | 19.40                 | 29.64                       | -10.24          |
| 2           |      | 5710          | 142     | 242T  | 16.93 | 16.68         | 19.82 | 16.77     | 16.82         | 19.81      |       |               |       | 23.64       | -3.82                     | -0.47       | 19.35                 | 29.64                       | -10.29          |
| v           | 3    | 5755          | 151     | 242T  | 16.99 | 16.44         | 19.73 | 16.85     | 16.52         | 19.70      |       |               |       | 30.00       | -10.27                    | 0.15        | 19.88                 | 36.00                       | -16.12          |
|             | 3    | 5795          | 159     | 242T  | 17.28 | 16.47         | 19.90 | 17.16     | 16.50         | 19.85      |       |               |       | 30.00       | -10.10                    | 0.15        | 20.05                 | 36.00                       | -15.95          |
|             | 4    | 5835          | 167     | 242T  | 17.16 | 16.54         | 19.87 | 17.01     | 16.50         | 19.77      |       |               |       | -           | -                         | -1.67       | 18.20                 | 30.00                       | -11.80          |
|             | 4    | 5875          | 175     | 242T  | 16.99 | 16.20         | 19.62 | 16.90     | 16.12         | 19.54      |       |               |       | -           | -                         | -1.67       | 17.95                 | 30.00                       | -12.05          |
|             |      | <b>5</b>      |         |       |       |               |       | Average C | onducted Po   | wer (dBm)  |       |               |       | Conducted   | Our track                 | Directional |                       |                             |                 |
| <u> </u>    | Band | Freq<br>[MHz] | Channel | Tones |       | RU Index: 61  |       |           | RU Index: 62  | 2          |       | RU Index: 64  |       | Power Limit | Conducted<br>Power Margin | Ant. Gain   | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p. margin |
| BW          |      | [1411.12]     |         |       | ANT1  | ANT2          | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       | r ower margin             | [dBi]       | [ubiii]               | Ennie (GDing                |                 |
|             | 1    | 5210          | 42      | 242T  | 13.11 | 13.85         | 16.51 | 13.15     | 13.73         | 16.46      | 13.65 | 13.79         | 16.73 | 23.98       | -7.25                     | -2.33       | 14.40                 | 22.63                       | -8.23           |
| N           | 2A   | 5290          | 58      | 242T  | 13.86 | 13.71         | 16.80 | 13.84     | 13.59         | 16.73      | 14.13 | 13.72         | 16.94 | 23.62       | -6.68                     | -3.54       | 13.40                 | 29.62                       | -16.22          |
| Ξ_          |      | 5530          | 106     | 242T  | 14.81 | 15.61         | 18.24 | 14.64     | 15.72         | 18.22      | 14.08 | 15.71         | 17.98 | 23.64       | -5.40                     | -0.47       | 17.77                 | 29.64                       | -11.87          |
| Σ           | 2C   | 5610          | 122     | 242T  | 16.97 | 16.14         | 19.58 | 17.03     | 16.75         | 19.90      | 16.41 | 16.87         | 19.66 | 23.64       | -3.74                     | -0.47       | 19.43                 | 29.64                       | -10.21          |
| 80MHz       |      | 5690          | 138     | 242T  | 16.95 | 16.21         | 19.61 | 16.67     | 16.85         | 19.77      | 16.41 | 16.80         | 19.62 | 23.64       | -3.87                     | -0.47       | 19.30                 | 29.64                       | -10.34          |
|             | 3    | 5775          | 155     | 242T  | 17.38 | 15.92         | 19.72 | 17.42     | 15.93         | 19.75      | 16.96 | 16.13         | 19.58 | 30.00       | -10.25                    | 0.15        | 19.90                 | 36.00                       | -16.10          |
|             | 4    | 5855          | 171     | 242T  | 17.35 | 16.58         | 19.99 | 17.15     | 16.49         | 19.84      | 16.99 | 16.48         | 19.75 | -           | -                         | -1.67       | 18.32                 | 30.00                       | -11.68          |
| N           |      | Freq          |         |       |       |               |       |           | onducted Po   |            |       |               |       | Conducted   | Conducted                 | Directional | Max e.i.r.p.          | Max e.i.r.p.                |                 |
| 60MHz<br>BW | Band | [MHz]         | Channel | Tones |       | U Index: 61 ( |       |           | U Index: 64 ( |            |       | U Index: 64 ( |       | Power Limit | Power Margin              | Ant. Gain   | [dBm]                 | Limit [dBm]                 | e.i.r.p. margin |
| ΞŇ          |      |               |         |       | ANT1  | ANT2          | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       | . ene. margin             | [dBi]       | Lanut                 | Line (ability               |                 |
| <b>b m</b>  | 1    | 5250          | 50      | 242T  | 17.19 | 16.61         | 19.92 | 17.38     | 16.40         | 19.93      | 17.35 | 15.89         | 19.69 | 23.98       | -4.05                     | -2.33       | 17.60                 | 22.63                       | -5.03           |
| 9           | 2C   | 5570          | 114     | 242T  | 17.28 | 15.66         | 19.56 | 17.36     | 16.55         | 19.98      | 16.26 | 17.15         | 19.74 | 23.64       | -3.66                     | -0.47       | 19.51                 | 29.64                       | -10.13          |
| <b>-</b>    | 4    | 5815          | 163     | 242T  | 17.58 | 16.02         | 19.88 | 17.19     | 16.42         | 19.83      | 16.91 | 16.53         | 19.74 | -           | -                         | -1.67       | 18.21                 | 30.00                       | -11.79          |
|             |      |               |         |       | Table | 7-17          | MIMC  | ) (LINI   | N May         | imum       | Cond  | luctod        | Outp  |             | r (242 T                  | [onoc]      |                       |                             |                 |

Table 7-17. MIMO (UNII) Maximum Conducted Output Power (242 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 64 of 157                    |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (484 Tones)

|            |      | Frea     |         |       |       |              |       | Average C | onducted Po   | ower (dBm) |       |               |       | Conducted   | Conducted     | Directional | Max e.i.r.p. | Max e.i.r.p. |                 |
|------------|------|----------|---------|-------|-------|--------------|-------|-----------|---------------|------------|-------|---------------|-------|-------------|---------------|-------------|--------------|--------------|-----------------|
|            | Band | [MHz]    | Channel | Tones |       | RU Index: 65 |       |           | N/A           |            |       | N/A           |       | Power Limit | Power Margin  | Ant. Gain   | [dBm]        | Limit [dBm]  | e.i.r.p. margin |
|            |      | [101112] |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       | r ower margin | [dBi]       | [ubiii]      | Ennie (GDing |                 |
|            | 1    | 5190     | 38      | 484T  | 14.82 | 14.48        | 17.66 |           |               |            |       |               |       | 23.98       | -6.32         | -2.33       | 15.33        | 22.63        | -7.30           |
| BW         |      | 5230     | 46      | 484T  | 15.97 | 15.95        | 18.97 |           |               |            |       |               |       | 23.98       | -5.01         | -2.33       | 16.64        | 22.63        | -5.99           |
| m          | 2A   | 5270     | 54      | 484T  | 15.99 | 15.37        | 18.70 |           |               |            |       |               |       | 23.62       | -4.92         | -3.54       | 15.16        | 29.62        | -14.46          |
| N          | 24   | 5310     | 62      | 484T  | 14.14 | 14.78        | 17.48 |           |               |            |       |               |       | 23.62       | -6.14         | -3.54       | 13.94        | 29.62        | -15.68          |
| I I I      |      | 5510     | 102     | 484T  | 14.46 | 14.88        | 17.69 |           |               |            |       |               |       | 23.64       | -5.95         | -0.47       | 17.22        | 29.64        | -12.42          |
| Σ          | 2C   | 5590     | 118     | 484T  | 15.96 | 15.87        | 18.92 |           |               |            |       |               |       | 23.64       | -4.72         | -0.47       | 18.45        | 29.64        | -11.19          |
| 40MHz      |      | 5710     | 142     | 484T  | 15.93 | 15.88        | 18.91 |           |               |            |       |               |       | 23.64       | -4.73         | -0.47       | 18.44        | 29.64        | -11.20          |
| 7          | 3    | 5755     | 151     | 484T  | 15.83 | 15.58        | 18.71 |           |               |            |       |               |       | 30.00       | -11.29        | 0.15        | 18.86        | 36.00        | -17.14          |
|            | 3    | 5795     | 159     | 484T  | 16.11 | 15.58        | 18.86 |           |               |            |       |               |       | 30.00       | -11.14        | 0.15        | 19.01        | 36.00        | -16.99          |
|            | 4    | 5835     | 167     | 484T  | 15.91 | 15.51        | 18.73 |           |               |            |       |               |       | -           | -             | -1.67       | 17.06        | 30.00        | -12.94          |
|            | 4    | 5875     | 175     | 484T  | 15.98 | 15.33        | 18.68 |           |               |            |       |               |       | -           | -             | -1.67       | 17.01        | 30.00        | -12.99          |
|            |      | Freq     |         |       |       |              |       |           | onducted Po   |            |       |               |       | Conducted   | Conducted     | Directional | Max e.i.r.p. | Max e.i.r.p. |                 |
|            | Band | [MHz]    | Channel | Tones |       | RU Index: 65 |       |           | RU Index: 66  |            |       | N/A           |       | Power Limit | Power Margin  | Ant. Gain   | [dBm]        | Limit [dBm]  | e.i.r.p. margin |
| BV         |      |          |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       |               | [dBi]       |              |              |                 |
|            | 1    | 5210     | 42      | 484T  | 13.61 | 14.21        | 16.93 | 13.36     | 13.77         | 16.58      |       |               |       | 23.98       | -7.05         | -2.33       | 14.60        | 22.63        | -8.03           |
| N          | 2A   | 5290     | 58      | 484T  | 13.69 | 13.61        | 16.66 | 13.88     | 13.63         | 16.77      |       |               |       | 23.62       | -6.85         | -3.54       | 13.23        | 29.62        | -16.39          |
| 80MHz      |      | 5530     | 106     | 484T  | 14.57 | 15.14        | 17.87 | 13.96     | 15.14         | 17.60      |       |               |       | 23.64       | -5.77         | -0.47       | 17.40        | 29.64        | -12.24          |
| _ ≥        | 2C   | 5610     | 122     | 484T  | 16.19 | 15.62        | 18.93 | 15.81     | 16.11         | 18.97      |       |               |       | 23.64       | -4.67         | -0.47       | 18.50        | 29.64        | -11.14          |
| 2          |      | 5690     | 138     | 484T  | 16.16 | 15.78        | 18.98 | 15.78     | 16.15         | 18.98      |       |               |       | 23.64       | -4.66         | -0.47       | 18.51        | 29.64        | -11.13          |
|            | 3    | 5775     | 155     | 484T  | 16.19 | 15.12        | 18.70 | 15.89     | 15.26         | 18.60      |       |               |       | 30.00       | -11.30        | 0.15        | 18.85        | 36.00        | -17.15          |
|            | 4    | 5855     | 171     | 484T  | 16.07 | 15.45        | 18.78 | 15.85     | 15.35         | 18.62      |       |               |       | -           | -             | -1.67       | 17.11        | 30.00        | -12.89          |
| N          |      | Freq     |         |       |       |              |       |           | onducted Po   |            |       |               |       | Conducted   | Conducted     | Directional | Max e.i.r.p. | Max e.i.r.p. |                 |
| 0MHz<br>BW | Band | [MHz]    | Channel | Tones |       | RU Index: 65 |       |           | U Index: 66 ( |            |       | U Index: 66 ( |       | Power Limit | Power Margin  | Ant. Gain   | [dBm]        | Limit [dBm]  | e.i.r.p. margin |
| 23         |      |          |         |       | ANT1  | ANT2         | MIMO  | ANT1      | ANT2          | MIMO       | ANT1  | ANT2          | MIMO  | [dBm]       | -             | [dBi]       |              |              |                 |
| o m        | 1    | 5250     | 50      | 484T  | 15.79 | 15.48        | 18.65 | 15.86     | 15.34         | 18.62      | 16.33 | 15.35         | 18.88 | 23.98       | -5.10         | -2.33       | 16.55        | 22.63        | -6.08           |
| 16         | 2C   | 5570     | 114     | 484T  | 16.54 | 15.23        | 18.94 | 16.12     | 15.48         | 18.82      | 15.51 | 16.41         | 18.99 | 23.64       | -4.65         | -0.47       | 18.52        | 29.64        | -11.12          |
|            | 4    | 5815     | 163     | 484T  | 16.29 | 14.97        | 18.69 | 16.08     | 15.41         | 18.77      | 15.72 | 15.54         | 18.64 | -           | -             | -1.67       | 17.10        | 30.00        | -12.90          |

Table 7-18. MIMO (UNII) Maximum Conducted Output Power (484 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |  |  |
|---------------------|----------------|--------------------|-----------------------------------|--|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |  |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 65 of 157                    |  |  |  |
| © 2023 ELEMENT      | 2 2023 ELEMENT |                    |                                   |  |  |  |



## MIMO Conducted Output Power Measurements (996 Tones)

|     |      | Freq          |         |       |       | Aver          | age Conduc | ted Power ( | dBm)          |       | Conducted   | Conducted                 | Directional | Max e.i.r.p.          | Mayainn                     |                 |
|-----|------|---------------|---------|-------|-------|---------------|------------|-------------|---------------|-------|-------------|---------------------------|-------------|-----------------------|-----------------------------|-----------------|
|     | Band | [MHz]         | Channel | Tones |       | RU Index: 67  |            |             | N/A           |       | Power Limit | Power Margin              | Ant. Gain   | [dBm]                 | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p. margin |
| 3   |      | [1411.12]     |         |       | ANT1  | ANT2          | MIMO       | N/A         | ANT2          | MIMO  | [dBm]       | rower margin              | [dBi]       | [ubiii]               | Chine (GDing                |                 |
| m   | 1    | 5210          | 42      | 996T  | 14.82 | 14.91         | 17.87      |             |               |       | 23.98       | -6.11                     | -2.33       | 15.54                 | 22.63                       | -7.09           |
| N   | 2A   | 5290          | 58      | 996T  | 15.15 | 14.15         | 17.69      |             |               |       | 23.62       | -5.93                     | -3.54       | 14.15                 | 29.62                       | -15.47          |
| I   |      | 5530          | 106     | 996T  | 14.45 | 14.85         | 17.66      |             |               |       | 23.64       | -5.98                     | -0.47       | 17.19                 | 29.64                       | -12.45          |
| ≥   | 2C   | 5610          | 122     | 996T  | 14.96 | 14.68         | 17.83      |             |               |       | 23.64       | -5.81                     | -0.47       | 17.36                 | 29.64                       | -12.28          |
| 80M |      | 5690          | 138     | 996T  | 14.88 | 14.67         | 17.79      |             |               |       | 23.64       | -5.85                     | -0.47       | 17.32                 | 29.64                       | -12.32          |
| ω.  | 3    | 5775          | 155     | 996T  | 15.07 | 14.19         | 17.66      |             |               |       | 30.00       | -12.34                    | 0.15        | 17.81                 | 36.00                       | -18.19          |
|     | 4    | 5855          | 171     | 996T  | 14.95 | 14.20         | 17.60      |             |               |       | -           | -                         | -1.67       | 15.93                 | 30.00                       | -14.07          |
| N   |      | Free          |         |       |       | Aver          | age Conduc | ted Power ( | dBm)          |       | Conducted   | Conducted                 | Directional | Maxainn               |                             |                 |
| ÷.  | Band | Freq<br>[MHz] | Channel | Tones | R     | U Index: 67 ( | L)         | R           | U Index: 67 ( | U)    | Power Limit | Conducted<br>Power Margin | Ant. Gain   | Max e.i.r.p.<br>[dBm] | Max e.i.r.p.<br>Limit [dBm] | e.i.r.p. margin |
| 23  |      | [1411.12]     |         |       | ANT1  | ANT2          | MIMO       | ANT1        | ANT2          | MIMO  | [dBm]       | rower margin              | [dBi]       | [ubiii]               | Linic [abiii]               |                 |
|     | 1    | 5250          | 50      | 996T  | 15.14 | 14.66         | 17.92      | 15.23       | 14.11         | 17.71 | 23.98       | -6.06                     | -2.33       | 15.59                 | 22.63                       | -7.04           |
| 6   | 2C   | 5570          | 114     | 996T  | 15.14 | 14.31         | 17.75      | 14.63       | 15.13         | 17.90 | 23.64       | -5.74                     | -0.47       | 17.43                 | 29.64                       | -12.21          |
| ~   | 4    | 5815          | 163     | 996T  | 15.31 | 14.17         | 17.79      | 14.87       | 14.23         | 17.57 | -           | -                         | -1.67       | 16.12                 | 30.00                       | -13.88          |

Table 7-19. MIMO (UNII) Maximum Conducted Output Power (996 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama CC of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 66 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019                  |



## MIMO Conducted Output Power Measurements (2x996 Tones)

|          | N   |      | - Freq |         |        | Average Conducted Power (dBm) |              |       | Conducted Conducted | Directional  | Max e.i.r.p. | Max e.i.r.p. |             |                 |
|----------|-----|------|--------|---------|--------|-------------------------------|--------------|-------|---------------------|--------------|--------------|--------------|-------------|-----------------|
|          |     | Band | [MHz]  | Channel | Tones  |                               | RU Index: 68 |       | Power Limit         | Power Margin | Ant. Gain    | IdBml        | Limit [dBm] | e.i.r.p. margin |
| 5        | - 3 |      |        |         |        | ANT1                          | ANT2         | MIMO  | [dBm]               | rower margin | [dBi]        | [abiii]      |             |                 |
| C        | 5 0 | 1    | 5250   | 50      | 2x996T | 14.97                         | 14.37        | 17.69 | 23.98               | -6.29        | -2.33        | 15.36        | 22.63       | -7.27           |
| <u>u</u> |     | 2C   | 5570   | 114     | 2x996T | 15.17                         | 14.78        | 17.99 | 23.64               | -5.65        | -0.47        | 17.52        | 29.64       | -12.12          |
|          |     | 4    | 5815   | 163     | 2x996T | 15.26                         | 14.48        | 17.90 | -                   | -            | -1.67        | 16.23        | 30.00       | -13.77          |

Table 7-20. MIMO 160MHz BW (UNII) Maximum Conducted Output Power (2x996 Tones)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|----------------|--------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dage 67 of 157                    |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 67 of 157                    |  |
| © 2023 ELEMENT      |                | ·                  | V 9.0 02/01/2019                  |  |



#### Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where  $G_N$  is the gain of the nth antenna and  $N_{ANT}$ , the total number of antennas used.

Directional gain =  $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$ 

### Sample MIMO Calculation:

At 5180MHz in 802.11ax (20MHz BW 242T) mode, the average conducted output power was measured to be 16.81 dBm for Antenna 1 and 16.60 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(16.81 dBm + 16.60 dBm) = (47.97 mW + 45.70 mW) = 93.67 mW = 19.72 dBm

### Sample e.i.r.p. Calculation:

At 5180MHz in 802.11ax (20MHz BW 242T) mode, the average MIMO conducted power was calculated to be 19.72 dBm with directional gain of -2.33 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

19.72 dBm + -2.33 dBi = 17.39 dBm

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dogo 69 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 68 of 157                    |
| © 2023 ELEMENT      | •              |                    | V 9.0 02/01/2019                  |



### 7.5 Maximum Power Spectral Density

### **Test Overview and Limit**

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density.

#### The output power density limits are as specified in the tables below.

| UNII    |                     | Maximum Power Spectral Density  |                   |  |  |  |
|---------|---------------------|---------------------------------|-------------------|--|--|--|
| Band    | Frequency Range FCC |                                 | ISED              |  |  |  |
| UNII 1  | 5.15 – 5.25GHz      | 11dBm/MHz                       | 10dBm/MHz e.i.r.p |  |  |  |
| UNII 2A | 5.25 – 5.35GHz      |                                 |                   |  |  |  |
| UNII 2C | 5.47 – 5.725GHz     | 11dBn                           | n/MHz             |  |  |  |
| UNII 3  | 5.725 – 5.850GHz    | 30dBm/500kHz                    |                   |  |  |  |
| UNII 4  | 5.850 – 5.895GHz    | 14dBm/MHz e.i.r.p Not Supported |                   |  |  |  |

| UNII    | Frequency Range  | Maximum Conducted Power Limit |  |  |  |  |
|---------|------------------|-------------------------------|--|--|--|--|
| Band    | Frequency Range  | FCC                           |  |  |  |  |
| UNII 1  | 5.15 – 5.25GHz   |                               |  |  |  |  |
| UNII 2A | 5.25 – 5.35GHz   | 11dBm/MHz                     |  |  |  |  |
| UNII 2C | 5.47 – 5.725GHz  | I IUDII//WINZ                 |  |  |  |  |
| UNII 3  | 5.725 – 5.850GHz | 30dBm/500kHz                  |  |  |  |  |
| UNII 4  | 5.850 – 5.895GHz | 14dBm/MHz e.i.r.p             |  |  |  |  |

| UNII    | Fraguanay Panga  | Maximum Conducted Power Limit |
|---------|------------------|-------------------------------|
| Band    | Frequency Range  | ISED                          |
| UNII 1  | 5.15 – 5.25GHz   | 10dBm/MHz e.i.r.p             |
| UNII 2A | 5.25 – 5.35GHz   |                               |
| UNII 2C | 5.47 – 5.725GHz  | 11dBm/MHz                     |
| UNII 3  | 5.725 – 5.850GHz | 30dBm/500kHz                  |

### **Test Procedure Used**

ANSI C63.10-2013 – Section 12.3.2.2 (Method SA-1) ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

### **Test Settings**

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points  $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto

| FCC ID: A3LSMS711U  |                                   | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------|--------------------|-----------------------------------|
| Test Report S/N:    | Report S/N: Test Dates: EUT Type: |                    | Dage 60 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023                    | Portable Handset   | Page 69 of 157                    |
| © 2023 ELEMENT      |                                   |                    | V 9.0 02/01/2019                  |



- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

### Test Notes

The power spectral density for each channel was measured with the RU index showing the highest conducted power.

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dago 70 of 157   |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 70 of 157   |  |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |  |



# Summed MIMO Power Spectral Density Measurements

|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|----------------|
|           | 5180               | 36             | ax (20MHz)  | 26T   | MCS0                | 7.57                                | 6.94                                | 10.28                                 | 11.00                             | -0.72          |
|           | 5200               | 40             | ax (20MHz)  | 26T   | MCS0                | 6.62                                | 6.54                                | 9.59                                  | 11.00                             | -1.41          |
| d 1       | 5240               | 48             | ax (20MHz)  | 26T   | MCS0                | 7.94                                | 7.71                                | 10.83                                 | 11.00                             | -0.17          |
| Band 1    | 5190               | 38             | ax (40MHz)  | 26T   | MCS0                | 7.59                                | 7.59                                | 10.60                                 | 11.00                             | -0.40          |
|           | 5230               | 46             | ax (40MHz)  | 26T   | MCS0                | 7.31                                | 7.74                                | 10.54                                 | 11.00                             | -0.46          |
|           | 5210               | 42             | ax (80MHz)  | 26T   | MCS0                | 6.72                                | 6.66                                | 9.70                                  | 11.00                             | -1.30          |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 26T   | MCS0                | 7.71                                | 6.99                                | 10.38                                 | 12.00                             | -1.62          |
|           | 5260               | 52             | ax (20MHz)  | 26T   | MCS0                | 6.89                                | 6.51                                | 9.71                                  | 11.00                             | -1.29          |
| ⊲         | 5280               | 56             | ax (20MHz)  | 26T   | MCS0                | 7.03                                | 6.77                                | 9.91                                  | 11.00                             | -1.09          |
| d 2A      | 5320               | 64             | ax (20MHz)  | 26T   | MCS0                | 6.45                                | 6.84                                | 9.66                                  | 11.00                             | -1.34          |
| Band      | 5270               | 54             | ax (40MHz)  | 26T   | MCS0                | 7.65                                | 7.09                                | 10.39                                 | 11.00                             | -0.61          |
| -         | 5310               | 62             | ax (40MHz)  | 26T   | MCS0                | 7.04                                | 7.44                                | 10.25                                 | 11.00                             | -0.75          |
|           | 5290               | 58             | ax (80MHz)  | 26T   | MCS0                | 7.97                                | 7.21                                | 10.61                                 | 11.00                             | -0.39          |
|           | 5500               | 100            | ax (20MHz)  | 26T   | MCS0                | 7.29                                | 7.76                                | 10.54                                 | 11.00                             | -0.46          |
|           | 5600               | 120            | ax (20MHz)  | 26T   | MCS0                | 6.11                                | 7.03                                | 9.60                                  | 11.00                             | -1.40          |
|           | 5720               | 144            | ax (20MHz)  | 26T   | MCS0                | 6.37                                | 7.16                                | 9.79                                  | 11.00                             | -1.21          |
| 0         | 5510               | 102            | ax (40MHz)  | 26T   | MCS0                | 7.35                                | 7.90                                | 10.64                                 | 11.00                             | -0.36          |
| 9 2       | 5550               | 110            | ax (40MHz)  | 26T   | MCS0                | 6.92                                | 7.48                                | 10.22                                 | 11.00                             | -0.78          |
| Band 2C   | 5670               | 134            | ax (40MHz)  | 26T   | MCS0                | 7.29                                | 7.96                                | 10.65                                 | 11.00                             | -0.35          |
| -         | 5530               | 106            | ax (80MHz)  | 26T   | MCS0                | 7.00                                | 8.36                                | 10.74                                 | 11.00                             | -0.26          |
|           | 5610               | 122            | ax (80MHz)  | 26T   | MCS0                | 5.80                                | 6.42                                | 9.13                                  | 11.00                             | -1.87          |
|           | 5690               | 138            | ax (80MHz)  | 26T   | MCS0                | 5.87                                | 6.83                                | 9.39                                  | 11.00                             | -1.61          |
|           | 5570               | 114            | ax (160MHz) | 26T   | MCS0                | 6.16                                | 7.79                                | 10.06                                 | 12.00                             | -1.94          |

Table 7-21. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Permissihle | Margin<br>[dB] |
|------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------|----------------|
|      | 5745               | 149            | ax (20MHz)  | 26T   | MCS0                | 4.88                                | 5.10                                | 8.00                                  | 30.00       | -22.00         |
|      | 5785               | 157            | ax (20MHz)  | 26T   | MCS0                | 4.68                                | 4.36                                | 7.53                                  | 30.00       | -22.47         |
|      | 5825               | 165            | ax (20MHz)  | 26T   | MCS0                | 4.91                                | 4.89                                | 7.91                                  | 30.00       | -22.09         |
| Band | 5755               | 151            | ax (40MHz)  | 26T   | MCS0                | 4.65                                | 4.80                                | 7.74                                  | 30.00       | -22.26         |
|      | 5795               | 159            | ax (40MHz)  | 26T   | MCS0                | 5.20                                | 4.69                                | 7.97                                  | 30.00       | -22.03         |
|      | 5775               | 155            | ax (80MHz)  | 26T   | MCS0                | 4.97                                | 4.58                                | 7.79                                  | 30.00       | -22.21         |

Table 7-22. Band 3 MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm/MHz] | Antenna-2<br>Power Density<br>[dBm/MHz] | MIMO Summed<br>Power Density<br>[dBm/MHz] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] | Directional<br>Antenna Gain<br>[dBi] | EIRP Power<br>Density<br>[dBm/MHz] | Max EIRP<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|----------|--------------------|----------------|-------------|-------|---------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------|----------------|--------------------------------------|------------------------------------|----------------------------------------|----------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)  | 26T   | MCS0                | 7.37                                    | 7.60                                    | 10.50                                     | 30.00                                            | -19.50         | -1.67                                | 8.82                               | 14.00                                  | -5.18          |
| Band 4   | 5865               | 173            | ax (20MHz)  | 26T   | MCS0                | 7.73                                    | 7.16                                    | 10.47                                     |                                                  |                | -1.67                                | 8.79                               | 14.00                                  | -5.21          |
| Band 4   | 5885               | 177            | ax (20MHz)  | 26T   | MCS0                | 7.59                                    | 8.13                                    | 10.88                                     |                                                  |                | -1.67                                | 9.20                               | 14.00                                  | -4.80          |
| Band 3/4 | 5835               | 167            | ax (40MHz)  | 26T   | MCS0                | 7.53                                    | 7.29                                    | 10.42                                     | 30.00                                            | -19.58         | -1.67                                | 8.75                               | 14.00                                  | -5.25          |
| Band 4   | 5875               | 175            | ax (40MHz)  | 26T   | MCS0                | 7.56                                    | 7.27                                    | 10.43                                     |                                                  |                | -1.67                                | 8.76                               | 14.00                                  | -5.24          |
| Band 3/4 | 5855               | 171            | ax (80MHz)  | 26T   | MCS0                | 7.24                                    | 7.07                                    | 10.16                                     | 30.00                                            | -19.84         | -1.67                                | 8.49                               | 14.00                                  | -5.51          |
| Danu 5/4 | 5815               | 163            | ax (160MHz) | 26T   | MCS0                | 6.85                                    | 7.06                                    | 9.96                                      | 30.00                                            | -20.04         | -1.67                                | 8.29                               | 14.00                                  | -5.71          |
|          |                    |                |             |       |                     |                                         |                                         |                                           |                                                  |                |                                      |                                    |                                        |                |

Table 7-23. Bands 3/4 MIMO Conducted Power Spectral Density Measurements MIMO (26 Tones)

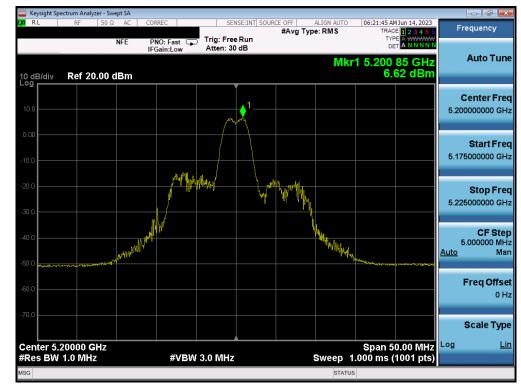
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 74 of 157   |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 71 of 157   |  |  |
| © 2023 ELEMENT      | -              |                    | V 9.0 02/01/2019 |  |  |



|           | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max Power<br>Density<br>[dBm/MHz] | Margin<br>[dB] |
|-----------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|----------------|
|           | 5180               | 36             | ax (20MHz)  | 242T  | MCS0                | 4.16                                | 4.49                                | 7.34                                  | 11.00                             | -3.66          |
|           | 5200               | 40             | ax (20MHz)  | 242T  | MCS0                | 4.16                                | 4.62                                | 7.40                                  | 11.00                             | -3.60          |
| d 1       | 5240               | 48             | ax (20MHz)  | 242T  | MCS0                | 4.81                                | 4.44                                | 7.64                                  | 11.00                             | -3.36          |
| Band 1    | 5190               | 38             | ax (40MHz)  | 484T  | MCS0                | 0.08                                | 0.20                                | 3.15                                  | 11.00                             | -7.85          |
|           | 5230               | 46             | ax (40MHz)  | 484T  | MCS0                | 0.64                                | 0.92                                | 3.79                                  | 11.00                             | -7.21          |
|           | 5210               | 42             | ax (80MHz)  | 996T  | MCS0                | -3.78                               | -3.16                               | -0.45                                 | 11.00                             | -11.45         |
| Band 1/2A | 5250               | 50             | ax (160MHz) | 996T  | MCS0                | -6.15                               | -6.02                               | -3.07                                 | 12.00                             | -15.07         |
|           | 5260               | 52             | ax (20MHz)  | 242T  | MCS0                | 4.77                                | 4.29                                | 7.55                                  | 11.00                             | -3.45          |
|           | 5280               | 56             | ax (20MHz)  | 242T  | MCS0                | 4.75                                | 4.21                                | 7.50                                  | 11.00                             | -3.50          |
| Band 2A   | 5320               | 64             | ax (20MHz)  | 242T  | MCS0                | 4.16                                | 4.54                                | 7.37                                  | 11.00                             | -3.63          |
| Ban       | 5270               | 54             | ax (40MHz)  | 484T  | MCS0                | 0.57                                | 0.44                                | 3.52                                  | 11.00                             | -7.48          |
|           | 5310               | 62             | ax (40MHz)  | 484T  | MCS0                | 0.22                                | 1.15                                | 3.72                                  | 11.00                             | -7.28          |
|           | 5290               | 58             | ax (80MHz)  | 996T  | MCS0                | -3.51                               | -3.80                               | -0.64                                 | 11.00                             | -11.64         |
|           | 5500               | 100            | ax (20MHz)  | 242T  | MCS0                | 4.12                                | 4.34                                | 7.24                                  | 11.00                             | -3.76          |
|           | 5600               | 120            | ax (20MHz)  | 242T  | MCS0                | 4.14                                | 4.80                                | 7.49                                  | 11.00                             | -3.51          |
|           | 5720               | 144            | ax (20MHz)  | 242T  | MCS0                | 4.32                                | 4.55                                | 7.44                                  | 11.00                             | -3.56          |
|           | 5510               | 102            | ax (40MHz)  | 484T  | MCS0                | 0.05                                | 0.49                                | 3.29                                  | 11.00                             | -7.71          |
| d 2C      | 5590               | 118            | ax (40MHz)  | 484T  | MCS0                | -0.10                               | 0.89                                | 3.44                                  | 11.00                             | -7.56          |
| Band 2C   | 5710               | 142            | ax (40MHz)  | 484T  | MCS0                | 0.07                                | 0.60                                | 3.35                                  | 11.00                             | -7.65          |
|           | 5530               | 106            | ax (80MHz)  | 996T  | MCS0                | -4.32                               | -2.61                               | -0.37                                 | 11.00                             | -11.37         |
|           | 5610               | 122            | ax (80MHz)  | 996T  | MCS0                | -3.92                               | -3.03                               | -0.44                                 | 11.00                             | -11.44         |
|           | 5690               | 138            | ax (80MHz)  | 996T  | MCS0                | -3.96                               | -3.20                               | -0.55                                 | 11.00                             | -11.55         |
|           | 5570               | 114            | ax (160MHz) | 996T  | MCS0                | -6.19                               | -5.34                               | -2.73                                 | 12.00                             | -14.73         |

Table 7-24. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones)

|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm] | Antenna-2<br>Power Density<br>[dBm] | Summed MIMO<br>Power Density<br>[dBm] | Max<br>Permissible<br>Power<br>Density | Margin<br>[dB] |
|------|--------------------|----------------|-------------|-------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------|
|      | 5745               | 149            | ax (20MHz)  | 242T  | MCS0                | 1.64                                | 1.96                                | 4.82                                  | 30.00                                  | -25.18         |
|      | 5785               | 157            | ax (20MHz)  | 242T  | MCS0                | 1.87                                | 1.03                                | 4.48                                  | 30.00                                  | -25.52         |
| nd 3 | 5825               | 165            | ax (20MHz)  | 242T  | MCS0                | 1.64                                | 1.48                                | 4.57                                  | 30.00                                  | -25.43         |
| Band | 5755               | 151            | ax (40MHz)  | 484T  | MCS0                | -2.72                               | -2.25                               | 0.53                                  | 30.00                                  | -29.47         |
|      | 5795               | 159            | ax (40MHz)  | 484T  | MCS0                | -2.20                               | -2.50                               | 0.66                                  | 30.00                                  | -29.34         |
|      | 5775               | 155            | ax (80MHz)  | 996T  | MCS0                | -6.35                               | -6.84                               | -3.58                                 | 30.00                                  | -33.58         |


Table 7-25. Band 3 MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones)

|          | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Tones | Data Rate<br>[Mbps] | Antenna-1<br>Power Density<br>[dBm/MHz] | Antenna-2<br>Power Density<br>[dBm/MHz] | MIMO Summed<br>Power Density<br>[dBm/MHz] | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] | Directional<br>Antenna Gain<br>[dBi] | EIRP Power<br>Density<br>[dBm/MHz] | Max EIRP<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] |
|----------|--------------------|----------------|-------------|-------|---------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------|----------------|--------------------------------------|------------------------------------|----------------------------------------|----------------|
| Band 3/4 | 5845               | 169            | ax (20MHz)  | 26T   | MCS0                | 4.28                                    | 4.22                                    | 7.26                                      | 30.00                                            | -22.74         | -1.67                                | 5.59                               | 14.00                                  | -8.41          |
| Band 4   | 5865               | 173            | ax (20MHz)  | 26T   | MCS0                | 4.63                                    | 4.14                                    | 7.40                                      |                                                  |                | -1.67                                | 5.73                               | 14.00                                  | -8.27          |
| Dallu 4  | 5885               | 177            | ax (20MHz)  | 26T   | MCS0                | 4.00                                    | 4.39                                    | 7.21                                      |                                                  |                | -1.67                                | 5.54                               | 14.00                                  | -8.46          |
| Band 3/4 | 5835               | 167            | ax (40MHz)  | 26T   | MCS0                | -0.08                                   | 0.39                                    | 3.17                                      | 30.00                                            | -26.83         | -1.67                                | 1.50                               | 14.00                                  | -12.50         |
| Band 4   | 5875               | 175            | ax (40MHz)  | 26T   | MCS0                | 0.41                                    | 0.17                                    | 3.30                                      |                                                  |                | -1.67                                | 1.63                               | 14.00                                  | -12.37         |
| Band 3/4 | 5855               | 171            | ax (80MHz)  | 26T   | MCS0                | -3.60                                   | -3.77                                   | -0.67                                     | 30.00                                            | -30.67         | -1.67                                | -2.35                              | 14.00                                  | -16.35         |
| Dan0 3/4 | 5815               | 163            | ax (160MHz) | 26T   | MCS0                | -5.75                                   | -5.67                                   | -2.70                                     | 30.00                                            | -32.70         | -1.67                                | -4.37                              | 14.00                                  | -18.37         |

Table 7-26. Bands 3/4 MIMO Conducted Power Spectral Density Measurements MIMO (Full Tones

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|----------------|--------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                                   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 72 of 157                    |
| © 2023 ELEMENT      |                |                    | V 9 0 02/01/2019                  |

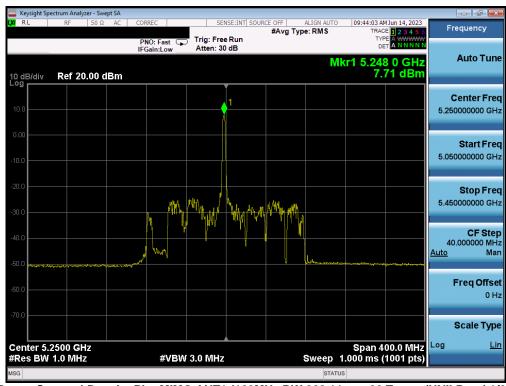




## 7.5.1 MIMO Antenna-1 Power Spectral Density Measurements






Plot 7-74. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 38)

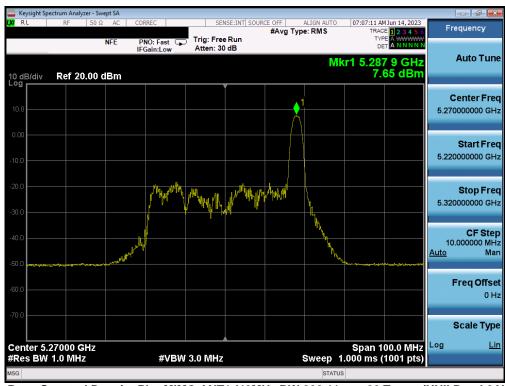
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | t Dates: EUT Type: |                  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 73 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0.02/01/2019 |





Plot 7-75. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 1) - Ch. 42)

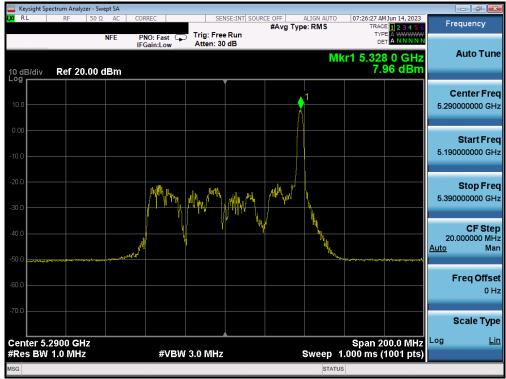



Plot 7-76. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax - 26 Tones (UNII Band 1/2A) - Ch. 50)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 74 of 157   |
| © 2023 ELEMENT      | •              |                    | V 9.0 02/01/2019 |






Plot 7-77. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 56)



Plot 7-78. Powr Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 54)

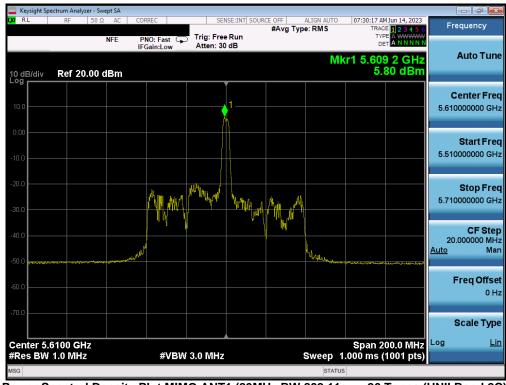
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 75 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 75 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |





Plot 7-79. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2A) - Ch. 58)




Plot 7-80. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 120)

| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Page 76 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 76 01 157                    |
| © 2023 ELEMENT      |                    |                  | V 9.0 02/01/2019                  |





Plot 7-81. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 118)



Plot 7-82. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 2C) - Ch. 122)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dava 77 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 77 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |





Plot 7-83. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax - 2 Tones (UNII Band 2C) - Ch. 114)



Plot 7-84. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 157)

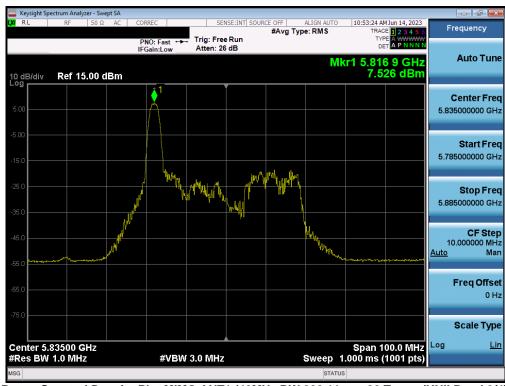
| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Dage 79 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 78 of 157                    |
| © 2023 ELEMENT      | ·                  | ·                | V 9.0 02/01/2019                  |





Plot 7-85. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 151)




Plot 7-86. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 3) - Ch. 155)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 70 of 157   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 79 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |





Plot 7-87. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - 26 Tones (UNII Band 4) - Ch. 173)

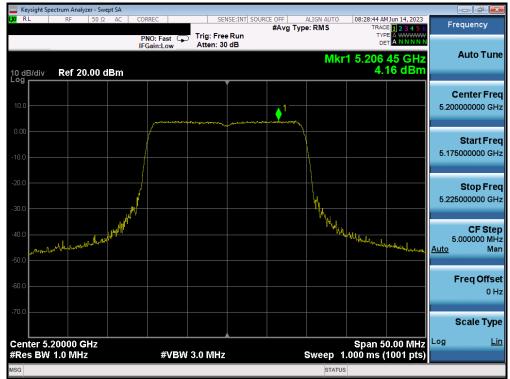


Plot 7-88. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 167)

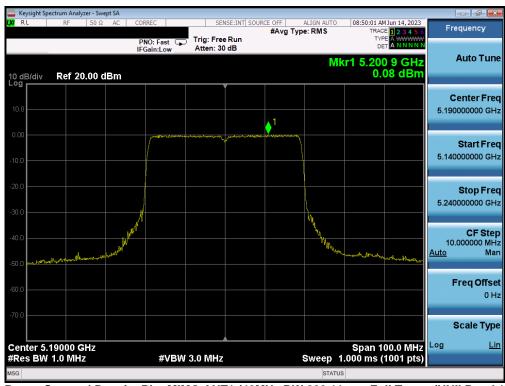
| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Daga 90 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 80 of 157                    |
| © 2023 ELEMENT      |                    |                  | V 9.0 02/01/2019                  |






Plot 7-89. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 171)




Plot 7-90. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax - 26 Tones (UNII Band 3/4) - Ch. 163)

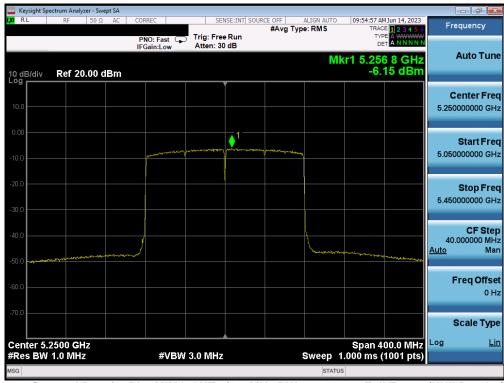
| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |
|---------------------|--------------------|------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Page 81 of 157                    |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 81 01 157                    |
| © 2023 ELEMENT      | ·                  |                  | V 9.0 02/01/2019                  |





Plot 7-91. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 40)



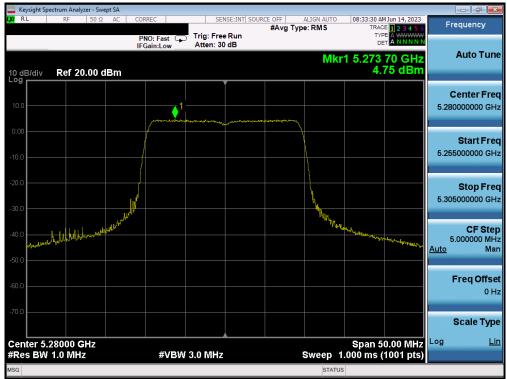

Plot 7-92. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax – Full Tones (UNII Band 1) – Ch. 38)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |
|---------------------|----------------|--------------------|------------------|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Dama 00 of 457   |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 82 of 157   |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |

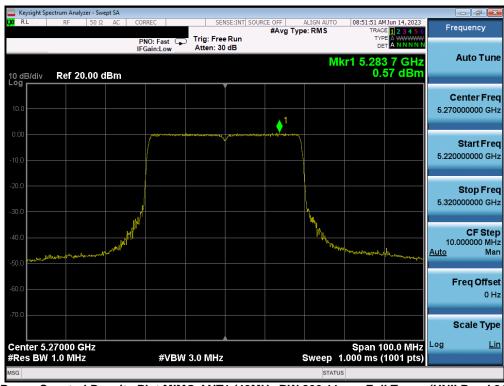


|                             | um Analyzer - Swept SA              |                           |                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |                                             |
|-----------------------------|-------------------------------------|---------------------------|------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|---------------------------------------------|
| LXU RL                      | RF 50 Ω AC                          | CORREC                    | SENSE:INT                                                                          | SOURCE OFF       | ALIGN AUTO<br>e: RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09:05:59 AM Ju<br>TRACE  | n 14, 2023     | Frequency                                   |
| 10 dB/div                   | Ref 20.00 dBm                       | PNO: Fast 🖵<br>IFGain:Low | Atten: 30 dB                                                                       |                  | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DET 4                    | B GHz<br>B dBm | Auto Tune                                   |
| 10.0                        |                                     |                           |                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | Center Freq<br>5.210000000 GHz              |
| -10.0                       |                                     | ,                         | nderlaur wegeneren Merina son generalen og som | vane and and and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | <b>Start Freq</b><br>5.110000000 GHz        |
| -20.0                       |                                     |                           |                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | <b>Stop Freq</b><br>5.310000000 GHz         |
| -40.0                       | - marine and the second free states | N<br>APM                  |                                                                                    |                  | My the type of the | normal and a loss of the | vandynant      | CF Step<br>20.000000 MHz<br><u>Auto</u> Man |
| -60.0                       |                                     |                           |                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | <b>Freq Offset</b><br>0 Hz                  |
| Center 5.210<br>#Res BW 1.0 |                                     | #VBW                      | 3.0 MHz                                                                            |                  | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Span 200<br>1.000 ms (10 | .0 MHz         | <b>Scale Type</b><br>Log <u>Lin</u>         |
| MSG                         |                                     |                           |                                                                                    |                  | STATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | `                        |                |                                             |

Plot 7-93. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 1) - Ch. 42)



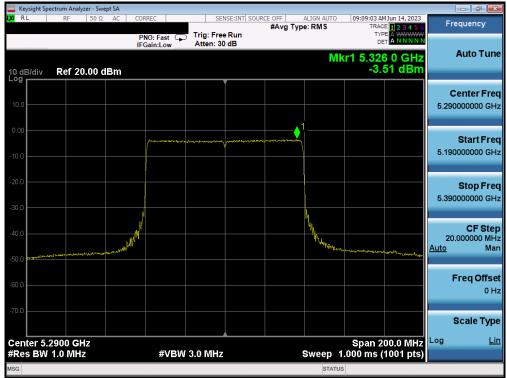

Plot 7-94. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax - Full Tones (UNII Band 1/2A) - Ch. 50)


| FCC ID: A3LSMS711U  | MEASUREMENT REPORT |                  | Approved by:<br>Technical Manager |  |
|---------------------|--------------------|------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:        | EUT Type:        | Dama 00 af 457                    |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023     | Portable Handset | Page 83 of 157                    |  |
| © 2023 ELEMENT      |                    | •                | V 9.0 02/01/2019                  |  |

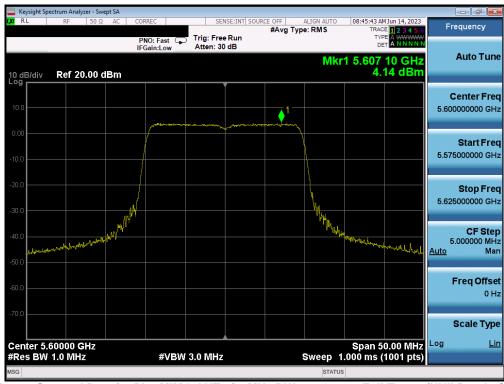
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.






Plot 7-95. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 56)

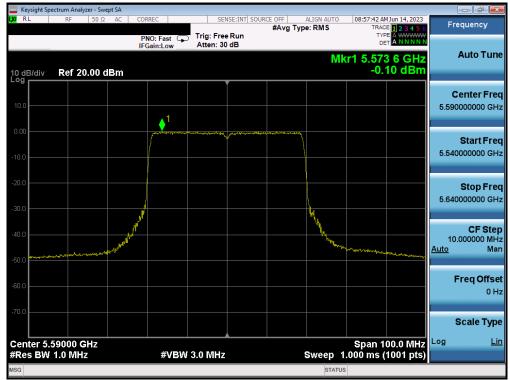



Plot 7-96. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 54)

| FCC ID: A3LSMS711U  |                | Approved by:<br>Technical Manager |                  |  |
|---------------------|----------------|-----------------------------------|------------------|--|
| Test Report S/N:    | Test Dates:    | EUT Type:                         | Page 84 of 157   |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset                  |                  |  |
| © 2023 ELEMENT      | ·              |                                   | V 9.0 02/01/2019 |  |






Plot 7-97. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 2A) - Ch. 58)



Plot 7-98. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 120)

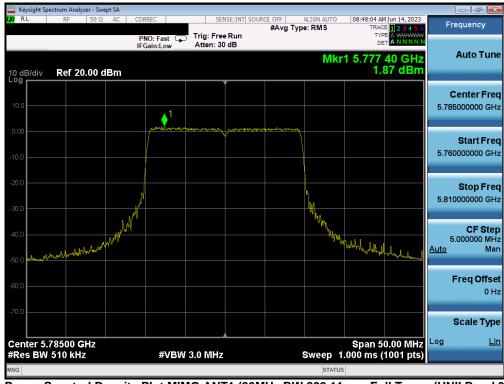
| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 95 of 157   |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 85 of 157   |  |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |  |





Plot 7-99. Power Spectral Density Plot MIMO ANT1 (40MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 118)




Plot 7-100. Power Spectral Density Plot MIMO ANT1 (80MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 122)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          |                  |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 86 of 157   |  |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |  |



|                  | oectrum Analyzer - Swept      |          |                                                                                                                  |                         |              |                       |                      |                      |                                              | - 6 -                                       |
|------------------|-------------------------------|----------|------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-----------------------|----------------------|----------------------|----------------------------------------------|---------------------------------------------|
| I,XI RL          | RF 50 Ω                       | AC CORR  |                                                                                                                  |                         | ISE:INT SOUR | CE OFF<br>#Avg Typ    | ALIGN AUTO<br>e: RMS | TRAC                 | 1 Jun 14, 2023<br>E 1 2 3 4 5 6<br>E A WWWWW | Frequency                                   |
| 10 dB/div<br>Log | Ref 20.00 dB                  | IFGa     | D: Fast 😱<br>ain:Low                                                                                             | Trig: Free<br>Atten: 30 |              |                       | M                    | <sup>DE</sup>        | ANNNN                                        | Auto Tune                                   |
| 10.0             |                               |          |                                                                                                                  |                         |              |                       |                      |                      |                                              | Center Freq<br>5.570000000 GHz              |
| -10.0            |                               | م<br>ا   | , and a second | A.,                     | 1            | and the second second |                      |                      |                                              | Start Freq<br>5.370000000 GHz               |
| -20.0            |                               |          |                                                                                                                  |                         |              |                       |                      |                      |                                              | <b>Stop Freq</b><br>5.770000000 GHz         |
| -40.0<br>-50.0   | Margan and a strategy and and | arrow of |                                                                                                                  |                         |              |                       | Lunar                | unungang             | -Waymol chapelo                              | CF Step<br>40.000000 MHz<br><u>Auto</u> Man |
| -60.0            |                               |          |                                                                                                                  |                         |              |                       |                      |                      |                                              | Freq Offset<br>0 Hz                         |
|                  | 5700 GHz<br>1.0 MHz           |          | #VBW                                                                                                             | 3.0 MHz                 |              |                       | Sweep 7              | Span 4<br>1.000 ms ( | 00.0 MHz<br>1001 pts)                        | Scale Type<br>Log <u>Lin</u>                |
| MSG              |                               |          |                                                                                                                  |                         |              |                       | STATU                | s                    |                                              |                                             |

Plot 7-101. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11ax - Full Tones (UNII Band 2C) - Ch. 114)



Plot 7-102. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11ax - Full Tones (UNII Band 3) - Ch. 157)

| FCC ID: A3LSMS711U  |                | MEASUREMENT REPORT |                  |  |  |
|---------------------|----------------|--------------------|------------------|--|--|
| Test Report S/N:    | Test Dates:    | EUT Type:          | Daga 07 of 157   |  |  |
| 1M2304260060-18.A3L | 5/24-7/31/2023 | Portable Handset   | Page 87 of 157   |  |  |
| © 2023 ELEMENT      |                |                    | V 9.0 02/01/2019 |  |  |