

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

PART 22 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

5/30 - 7/31/2023 **Test Report Issue Date:** 8/4/2023 **Test Site/Location:** Element Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2304260063-04.A3L

FCC ID:

A3LSMS711B

Applicant Name:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SM-S711B/DS SM-S711B Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22 ANSI C63.26-2015, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 1 of 65
			\/3.0.1/4/2022

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROI	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	CRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAM	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	
	7.2	Occupied Bandwidth	11
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	
	7.4	Band Edge Emissions at Antenna Terminal	
	7.5	Radiated Power (ERP)	
	7.6	Radiated Spurious Emissions Measurements	
	7.7	Frequency Stability / Temperature Variation	60
8.0	CON	CLUSION	65

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 2 01 05
			V3 0 1/4/2022

PART 22 MEASUREMENT REPORT

				EF	RP	EI	RP	Fuchasian
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Max. Power [W]	Max. Power [dBm]	Emission Designator
GSM/GPRS	N/A	GMSK	824.2 - 848.8	0.710	28.52	1.166	30.67	241KGXW
EDGE	N/A	8-PSK	824.2 - 848.8	0.120	20.81	0.197	22.96	252KG7W
VCDMA	N/A	Spread Spectrum	826.4 - 846.6	0.087	19.41	0.143	21.56	4M19F9W
	15MHz (Band	QPSK	831.5 - 841.5	0.067	18.28	0.110	20.43	13M6G7D
	26 only)	16QAM	831.5 - 841.5	0.047	16.70	0.077	18.85	13M6W7D
	40.141	QPSK	829.0 - 844.0	0.066	18.20	0.108	20.35	9M04G7D
	10 MHz	16QAM	829.0 - 844.0	0.044	16.44	0.072	18.59	9M05W7D
LTE Band 26/5	E MILI-	QPSK	826.5 - 846.5	0.070	18.43	0.114	20.58	4M55G7D
LIE Band 26/5	5 MHz	16QAM	826.5 - 846.5	0.048	16.79	0.078	18.94	4M57W7D
	3 MHz	QPSK	825.5 - 847.5	0.066	18.21	0.109	20.36	2M73G7D
	3 MITZ	16QAM	825.5 - 847.5	0.045	16.52	0.074	18.67	2M73W7D
	1.4 MHz	QPSK	824.7 - 848.3	0.066	18.19	0.108	20.34	1M11G7D
		16QAM	824.7 - 848.3	0.044	16.39	0.071	18.54	1M10W7D
		π/2 BPSK	834.0 - 839.0	0.076	18.78	0.124	20.93	18M0G7D
	20 MHz	QPSK	834.0 - 839.0	0.072	18.59	0.119	20.74	19M1G7D
		16QAM	834.0 - 839.0	0.059	17.69	0.096	19.84	19M1W7D
		π/2 BPSK	831.5 - 841.5	0.075	18.75	0.123	20.90	13M6G7D
	15 MHz	QPSK	831.5 - 841.5	0.071	18.54	0.117	20.69	14M2G7D
NR Band n5		16QAM	831.5 - 841.5	0.057	17.54	0.093	19.69	14M2W7D
INK Danu no		π/2 BPSK	829.0 - 844.0	0.074	18.67	0.121	20.82	9M04G7D
	10 MHz	QPSK	829.0 - 844.0	0.069	18.41	0.114	20.56	9M34G7D
		16QAM	829.0 - 844.0	0.054	17.34	0.089	19.49	9M36W7D
		π/2 BPSK	826.5 - 846.5	0.075	18.77	0.123	20.92	4M53G7D
	5 MHz	QPSK	826.5 - 846.5	0.071	18.48	0.116	20.63	4M55G7D
		16QAM	826.5 - 846.5	0.054	17.29	0.088	19.44	4M59W7D

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	:: EUT Type:	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 3 of 65
			\/3.0.1/4/2022

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element Laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element Lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 4 of 65
			V3 0 1/4/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMS711B**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22.

Test Device Serial No.: 0168M, 0073M, 1056M, 0874M, 1050M, 0974M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer.

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version S711BXXU_0627_0900_devFull installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	1/2023 Portable Handset	
			1/2 0 1/4/2022

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \, [dBm]}$ – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 6 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 6 of 65
<u></u>	•		V3.0 1/4/2022

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 7 of 65
	*	·	V3 0 1/4/2022

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	CalDate	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	AP2-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-002
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	LTX1	Licensed Transmitter Cable Set	1/12/2023	Annual	1/12/2024	LTX1
-	LTX2	Licensed Transmitter Cable Set	1/12/2023	Annual	1/12/2024	LTX2
-	LT X3	Licensed Transmitter Cable Set	1/12/2023	Annual	1/12/2024	LTX3
-	LT X4	Licensed Transmitter Cable Set	1/12/2023	Annual	1/12/2024	LTX4
-	LT X5	Licensed Transmitter Cable Set	1/12/2023	Annual	1/12/2024	LTX5
Anritsu	MT8821C	Radio Communication Analyzer		N/A		620152694
EMCO	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
EMCO	3116	Horn Antenna (18-40GHz)	7/20/2021	Biennial	8/30/2023	9203-2178
Keysight Technologies	N9030A	PXA Signal Analyzer (3Hz-26.5GHz)	9/6/2022	Annual	9/6/2023	MY54490576
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		112347
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Test Antenna	9/28/2022	Biennial	9/28/2024	101058
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/29/2022	Annual	8/29/2023	100342
Rohde & Schwarz	ESW44	EMI Test Receiver (2Hz-44GHz)	3/1/2023	Annual	3/1/2024	101716
Rohde & Schwarz	VULB9162	Bi-Log Antenna	2/21/2023	Biennial	2/21/2025	00301
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	8/30/2022	Biennial	8/30/2024	A051107

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	ates: EUT Type:	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 8 of 65
			V3.0 1/4/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

6.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

 $\begin{array}{l} \text{GSM BW} = 250 \text{ kHz} \\ \text{G} = \text{Phase Modulation} \\ \text{X} = \text{Cases not otherwise covered} \\ \text{W} = \text{Combination (Audio/Data)} \end{array}$

EDGE Emission Designator

Emission Designator = 250KG7W EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz

F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 8M62G7D LTE BW = 8.62 MHz G = Phase Modulation

G = Phase Modulation7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 9 of 65	
			\/3.0.1/4/2022	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMS711B
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	GSM/GPRS/WCDMA/NR/LTE

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power	2.1046(a), 2.1046(c)	N/A	PASS	See RF Exposure Report
CTED	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.2
CONDUCTED	Conducted Band Edge / Spurious Emissions	2.1051, 22.917(a)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Sections 7.3, 7.4
В С	Frequency Stability	2.1055, 22.355	The carrier frequency of the transmitter must be maintained within the 2.5ppm	PASS	Section 7.7
RADIATED	Effective Radiated Power / Equivalent Isotropic Radiated Power	22.913(a)(5)	< 7 Watts max. ERP	PASS	Section 7.5
RADI	Radiated Spurious Emissions	2.1053, 22.917(a)	> 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.6

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.0.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 10 of 65
	•		V3.0 1/4/2022

7.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset		
	-		V3.0 1/4/2022	

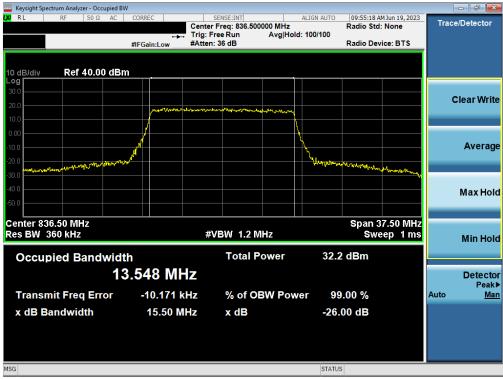

Mode	Bandwidth	Modulation	OBW [MHz]
GSM-Cell		GMSK	0.241
GSM-Cell Edge	N/A	8-PSK	0.252
WCDMA-Cell		Spread Spectrum	4.19
	15MHz	QPSK	13.55
		16QAM	13.56
	10MHz	QPSK	9.04
	TOIVITIZ	16QAM	9.05
LTE-B26-5	5 MHz	QPSK	4.55
LTE-D20-5	5 1011 12	16QAM	4.57
	3 MHz	QPSK	2.73
		16QAM	2.73
	1.4 MHz	QPSK	1.11
	1.4 1/11/2	16QAM	1.10
		π/2 BPSK	17.99
	20 MHz	QPSK	19.11
		16QAM	19.08
		π/2 BPSK	13.56
	15 MHz	QPSK	14.17
NR-n5		16QAM	14.22
NK-115		π/2 BPSK	9.04
	10 MHz	QPSK	9.34
		16QAM	9.36
		π/2 BPSK	4.53
	5 MHz	QPSK	4.55
		16QAM	4.59

Table 7-2. Occupied Bandwidth Test Results

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 12 01 85
			\/3.0.1/4/2022

LTE Band 26/5

Plot 7-1. Occupied Bandwidth Plot (LTE Band 26 - 15MHz QPSK - Full RB)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 26 - 15MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 13 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 13 01 05
			V3.0 1/4/2022

Plot 7-3. Occupied Bandwidth Plot (LTE Band 26/5 - 10MHz QPSK - Full RB)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 26/5 - 10MHz 16-QAM - Full RB)

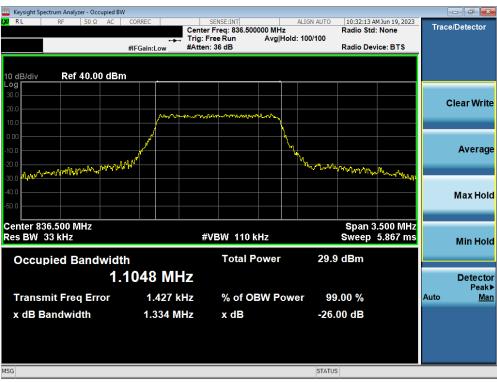
FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates: EUT Type:		Page 14 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 14 01 65
			V3 0 1/4/2022

Plot 7-5. Occupied Bandwidth Plot (LTE Band 26/5 - 5MHz QPSK - Full RB)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 26/5 - 5MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates: EUT Type:		Page 15 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 15 01 05
			\/3.0.1/4/2022

Plot 7-7. Occupied Bandwidth Plot (LTE Band 26/5 - 3MHz QPSK - Full RB)


Plot 7-8. Occupied Bandwidth Plot (LTE Band 26/5 - 3MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 16 of 65
			\/3.0.1/4/2022

Plot 7-9. Occupied Bandwidth Plot (LTE Band 26/5 - 1.4MHz QPSK - Full RB)

Plot 7-10. Occupied Bandwidth Plot (LTE Band 26/5 - 1.4MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 17 of 65
			V3 0 1/4/2022

NR Band n5

🔤 Keysight Spectrum Analyzer - C	ccupied BW									
LX/ RL RF 50	Ω AC	CORREC		NSE:INT		ALIGN AUTO		M Jun 19, 2023	Trace	e/Detector
				eq: 836.500 Run	AvalHc	d:>100/100	Radio Std	: None		
	;	#IFGain:Low	#Atten: 3				Radio Dev	ice: BTS		
10 dB/div Ref 40.	00 dBm									
30.0										
20.0									0	Clear Write
		man	Mart and Dar	- transway w	mulay					
10.0		/			h					
0.00										
-10.0		-/				<u> </u>				Average
-20.0	MILLAN	√				Mathylenion				
-30.0 MMM Margh Margh Margh	∼-¦Ni dΩe 0 - • •					and a start of the second	marken a			
-40.0							4			
								Anolyka (************************************		Max Hold
-50.0										
Center 836.50 MHz							Snan 4	0.00 MHz		
Res BW 470 kHz			#VE	SW 1.5 M	Hz			eep 1 ms		
								sob i ilio		Min Hold
Occupied Ban	dwidth			Total P	ower	32	.6 dBm			
	17.	992 MI	ПΖ							Detector Peak►
Transmit Freq E	ror	-565.45	kHz	% of OE		ver 0	9.00 %		Auto	Man
x dB Bandwidth		19.38 N	IHZ	x dB		-20	5.00 dB			
MSG						STAT	บร			
						UIA				

Plot 7-11. Occupied Bandwidth Plot (NR Band n5 - 20MHz π/2 BPSK - Full RB)

Plot 7-12. Occupied Bandwidth Plot (NR Band n5 - 20MHz QPSK - Full RB)

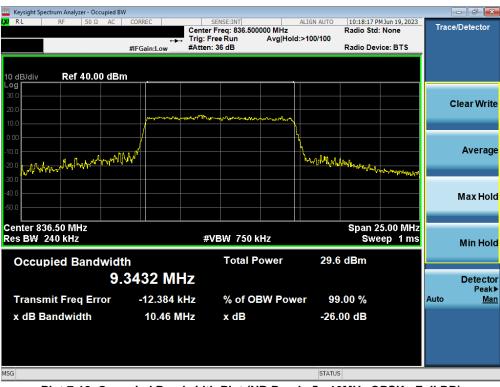
FCC ID: A3LSMS711B		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage to 0105
			V3.0 1/4/2022

Plot 7-13. Occupied Bandwidth Plot (NR Band n5 - 20MHz 16-QAM - Full RB)

Plot 7-14. Occupied Bandwidth Plot (NR Band n5 - 15MHz π/2 BPSK - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 19 01 05
			\/3.0.1/4/2022

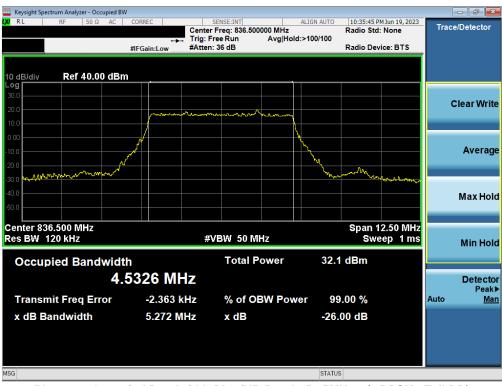
Plot 7-15. Occupied Bandwidth Plot (NR Band n5 - 15MHz QPSK - Full RB)


Plot 7-16. Occupied Bandwidth Plot (NR Band n5 - 15MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 20 of 65
			V3.0 1/4/2022

Keysight Spectrum Analyzer -									
RL RF 5	0Ω AC	CORREC	SENSE:IN	T 36.500000 MHz	ALIGN AUTO	10:17:44 P Radio Std	M Jun 19, 2023	Trace	Detector
		↔ #IFGain:Low			old: 100/100	Radio Stu			
).00 dBn	۱							
- 09 30.0 20.0			An View Jon War Agrication					с	lear Write
10.0			- Ind the second second	and the filter	\				
10.0		1							Average
20.0 30.0 mathallandar	en alenander				Unneper	would have have	manhar		-
40.0									Max Hold
Center 836.50 MHz Res BW 240 kHz			#VBW	750 kHz			5.00 MHz ep 1 ms		Min Hold
Occupied Bar	ndwidt	h	То	tal Power	32.	1 dBm			
	9.	0366 MI	Ηz						Detecto
Transmit Freq E	Error	-201.19 I	kHz %	of OBW Po	wer 9	9.00 %		Auto	Mar
x dB Bandwidth	ı	10.05 N	lHz xd	В	-26	.00 dB			
SG					STATU	JS			

Plot 7-17. Occupied Bandwidth Plot (NR Band n5 - 10MHz π/2 BPSK - Full RB)


Plot 7-18. Occupied Bandwidth Plot (NR Band n5 - 10MHz QPSK - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 21 01 05
			V3 0 1/4/2022

Plot 7-19. Occupied Bandwidth Plot (NR Band n5 - 10MHz 16-QAM - Full RB)

Plot 7-20. Occupied Bandwidth Plot (NR Band n5 - 5MHz π/2 BPSK - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	raye 22 01 00
			\/3.0.1/4/2022

Plot 7-21. Occupied Bandwidth Plot (NR Band n5 - 5MHz QPSK - Full RB)

Plot 7-22. Occupied Bandwidth Plot (NR Band n5 - 5MHz 16-QAM - Full RB)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 23 01 05
		-	\/3.0.1/4/2022

GPRS Cell

Plot 7-23. Occupied Bandwidth Plot (GPRS, Ch. 190)

Plot 7-24. Occupied Bandwidth Plot (EDGE, Ch. 190)

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 24 01 05
			V3.0 1/4/2022

WCDMA Cell

🚾 Keysight Spectrum Analyzer - Occupied BW						×
K RL RF 50Ω DC	CORREC	SENSE:INT nter Freg: 836.60000		05:58:26 PM Jun 26, 2023 Radio Std: None	Trace/Detecto	or
	Tri	g: Free Run	Avg Hold: 100/100	Radio Stu. None		
	#IFGain:Low #A	tten: 36 dB		Radio Device: BTS	_	
10 dB/div Ref 40.00 dBm	1					
Log 30.0						
					Clear Wi	rite
20.0	mond	www.man.ghthetweener	v.,			
10.0						
0.00						
-10.0					Avera	age
-20.0			- h			
	mm		"hunderworm	man war how how have a		
-40.0 North Marine C				a a margane with the	Max H	olo
-50.0					ind a fi	010
Center 836.600 MHz		4) (BW) 646 LU		Span 15.00 MHz		
Res BW 150 kHz		#VBW 910 kH	Z	Sweep 1 ms	Min H	olo
Occupied Bandwidt	h	Total Po	wer 31.	5 dBm		
					-	
4.7	1867 MHz				Detec	
Transmit Freq Error	9.010 kHz	% of OB	V Power 9	9.00 %		Mar
x dB Bandwidth	4.801 MHz	x dB	26	.00 dB		
	4.001 10112	хив	-20	.00 aB		
MSG			STATU	JS		

Plot 7-25. Occupied Bandwidth Plot (WCDMA, Ch. 4183)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 25 01 05
			V3 0 1/4/2022

V3.0 1/4/2022 Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

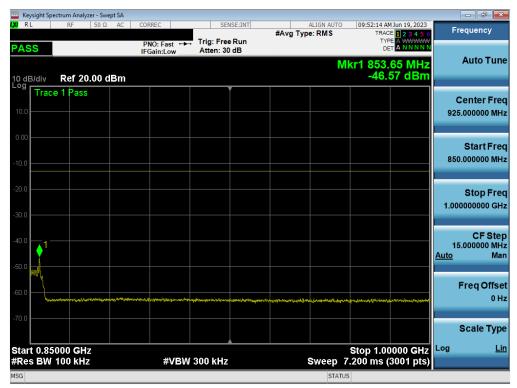
Test Notes

- Per Part 22, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 20 01 05	
			V3.0 1/4/2022	

Mode	Bandwidth	Channel	Range [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]
		Low	30.0 - 823.0	-36.45	-13.0	-23.45
		Low	849.0 - 1000.0	-56.02	-13.0	-43.02
		Low	1000.0 - 10000.0	-29.46	-13.0	-16.46
		Mid	30.0 - 824.0	-54.79	-13.0	-41.79
GSM-Cell	250kHz	Mid	849.0 - 1000.0	-55.90	-13.0	-42.90
		Mid 1000.0 - 10000.0 - 29.25 - 1	-13.0	-16.25		
		High	30.0 - 824.0	-54.01	-13.0	-41.01
		High	850.0 - 1000.0	-37.93	-13.0	-24.93
	5MHz 10MHz	High	1000.0 - 10000.0	-29.03	-13.0	-16.02
		Low	30.0 - 823.0	-31.35	-13.0	-18.35
		Low	849.0 - 1000.0	-63.35	-13.0	-50.35
		Low	1000.0 - 10000.0	-47.05	-13.0	-34.05
		Mid	30.0 - 824.0	-55.50	-13.0	-42.50
WCDMA-Cell	5MHz	Mid	849.0 - 1000.0	-56.11	-13.0	-43.11
		Mid	1000.0 - 10000.0	-46.96	-13.0	-33.96
		High	30.0 - 824.0	-62.61	-13.0	-49.61
		High	850.0 - 1000.0	-33.93	-13.0	-20.93
		High	1000.0 - 10000.0	-47.11	-13.0	-34.11
		Low	30.0 - 823.0	-46.21	-13.0	-33.21
		Low	849.0 - 1000.0	-53.82	-13.0	-40.82
		Low	1000.0 - 10000.0	-45.28	-13.0	-32.28
		Mid	30.0 - 824.0	-50.27	-13.0	-37.27
LTE-B26-5	10MHz	Mid	849.0 - 1000.0	-50.23	-13.0	-37.23
		Mid	1000.0 - 10000.0	-45.47	-13.0	-32.47
		High	30.0 - 824.0	-54.41	-13.0	-41.41
		High	850.0 - 1000.0	-46.57	-13.0	3.0 -32.28 3.0 -37.27 3.0 -37.23 3.0 -32.47 3.0 -41.41 3.0 -33.57
		High	1000.0 - 10000.0	-45.15	-13.0	-32.15
		Low	30.0 - 824.0	-45.07	-13.0	-32.07
		Low	849.0 - 1000.0	-51.10	-13.0	-38.10
		Low	1000.0 - 10000.0	-45.21	-13.0	-32.21
		Mid	30.0 - 824.0	-45.22	-13.0	-32.22
NR-n5	20MHz	Mid	849.0 - 1000.0	-46.80	-13.0	-33.79
		Mid	1000.0 - 10000.0	-45.32	-13.0	-32.32
		High	30.0 - 824.0	-50.06	-13.0	.0 -33.21 .0 -40.82 .0 -32.28 .0 -37.27 .0 -37.23 .0 -37.23 .0 -32.47 .0 -32.15 .0 -32.15 .0 -32.07 .0 -32.21 .0 -32.22 .0 -32.22 .0 -32.32 .0 -32.32 .0 -37.06 .0 -34.05
		High	849.0 - 1000.0	-47.05	-13.0	-34.05
		High	1000.0 - 10000.0 monic Emissions T	-45.33	-13.0	-32.33

Table 7-3. Spurious and Harmonic Emissions Test Results


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Faye 21 01 05		
			V/2 0 1/4/2022		

LTE Band 26/5

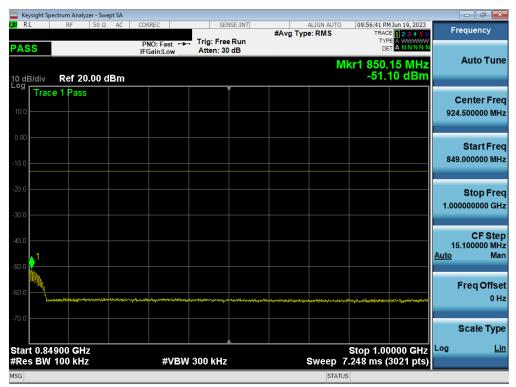
	ectrum Analy												
CIRL	RF	50 Ω	AC	CORREC		S	ENSE:INT	#A.v.a. T.	ALIGN AUTO ype: RMS		MJun 19, 2023	F	requency
PASS				PNO: F IFGain:	ast ↔ Low	Trig: Fr Atten: 3		#Avg 1	ype. Rivis	TY			
I0 dB/div	Ref 20	.00 dl	Bm						Ν	/kr1 823 -54.	.30 MHz 41 dBm		Auto Tune
-og Trac	e 1 Pass												Center Fred 7.000000 MH:
10.00												3	Start Free 0.000000 MH
20.0 30.0												82	Stop Free 4.000000 MH
40.0											1	7 <u>Auto</u>	CF Stej 9.400000 MH Ma
50.0			4 Jacober 184					u fere fan skin ster sere par					Freq Offse 0 H
70.0													Scale Type
Start 30.0 #Res BW		,			#VBW	300 kH:	2		Sweep_3	8 Stop 8.11 ms (1	24.0 MHz	Log	Lir
ISG									STAT		- pro/		

Plot 7-27. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - High Channel)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	raye 20 01 05	
			V3.0 1/4/2022	

	pectrum Analyzer - Swep					
L <mark>XI</mark> RL	RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUT	0 09:52:28 AM Jun 19, 2023 TRACE 1 2 3 4 5 6	Frequency
PASS		PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	0 /1		
10 dB/div Log	Ref 0.00 dB	m		Ν	/kr1 6.927 5 GHz -45.146 dBm	Auto Tune
-10.0	ce 1 Pass					Center Freq 5.500000000 GHz
-20.0						Start Freq 1.000000000 GHz
-40.0						Stop Freq 10.000000000 GHz
-60.0						CF Step 900.000000 MHz <u>Auto</u> Man
-80.0						Freq Offset 0 Hz
-90.0						Scale Type
Start 1.0		#\/D\/	/ 3.0 MHz	Curron	Stop 10.000 GHz	Log <u>Lin</u>
	1.0 MHz	#VBV	7 3.0 MHZ		15.60 ms (18001 pts)	
MSG				STA	TUS	

Plot 7-28. Conducted Spurious Plot (LTE Band 26/5 - 10MHz QPSK - 1 RB - High Channel)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 29 01 05		
			\/3.0.1///2022		

NR Band n5

	ectrum Analy												- P
RL	RF	50 Ω	AC	CORREC		SEI	ISE:INT	#0 T	ALIGN AUTO		M Jun 19, 2023	F	requency
ASS				PNO: F IFGain:I	ast ↔ Low	Trig: Free Atten: 30		#Avg Typ	De: RIVIS	T) E	CE 1 2 3 4 5 6 (PE A WWWWW ET A NNNNN		
dB/div	Ref 20	.00 di	Bm						N		.25 MHz)71 dBm		Auto Tu
^g Trac	e 1 Pass												Center Fr
).0													7.000000 N
00													Start F
												30	0.000000 N
.0													Stop F
												824	4.000000 I
.0											+1 <mark>/</mark>	79	CF S 9.400000 M
											I Y	<u>Auto</u>	ľ
1.0											/		
													Freq Off 0
							and the state of the		a a second de la second		ek, messi kendi kembéné. A		
).0													Scale Ty
													-
art 30.0 Pes BM	0 MHz 100 kHz	,			#\/B)A(300 kHz		c	ween '	Stop 3 38 11 ms (324.0 MHz 15881 pts)	Log	
	TOO MIL					000-1112			STAT		rooor pto)		

Plot 7-29. Conducted Spurious Plot (NR Band n5 - 20.0MHz - 1 RB - Low Channel)

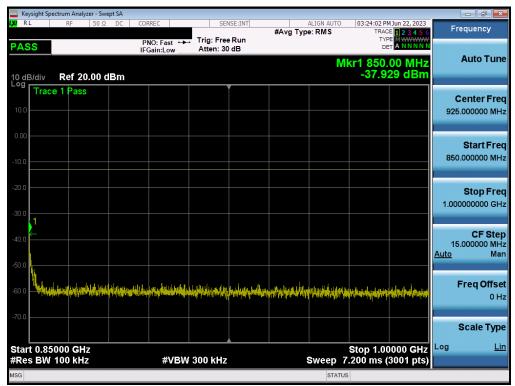
Plot 7-30. Conducted Spurious Plot (NR Band n5 - 20.0MHz - 1 RB - Low Channel)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 30 of 65	
			V3.0 1/4/2022	

	pectrum Analyzer - Swe										
LXI RL	RF 50 Ω	AC CC	IRREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		1 Jun 19, 2023	Fre	equency
PASS		F	NO: Fast ↔ Gain:Low	Trig: Free #Atten: 3				TYP			
10 dB/div Log	Ref 0.00 di	Зm					Μ	kr1 6.896 -45.2	3 5 GHz 13 dBm		Auto Tune
Trac	e 1 Pass									с	enter Freq
-10.0										5.500	000000 GHz
-20.0											Start Freq
-30.0											000000 GHz
-40.0											Oton Erog
		and the second second	_	and the second s						10.000	Stop Freq 000000 GHz
-50.0											05.044
-60.0										900. <u>Auto</u>	CF Step 000000 MHz Man
-70.0										Auto	Width
-80.0										F	req Offset 0 Hz
-90.0											0 HZ
										5	Scale Type
Start 1.0								Stop 10.	000 0112	Log	Lin
#Res BW	1.0 MHz		#VBW	/ 3.0 MHz		S	weep 1	5.60 ms (1	8001 pts)		
MSG							STATU	JS			

Plot 7-31. Conducted Spurious Plot (NR Band n5 - 20.0MHz - 1 RB - Low Channel)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage ST 01 05		
			V/3 0 1/4/2022		


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

GSM/GPRS Cell

dB/div Ref 20.00 dBm -54.008 dBm	o Tune er Freq
ASS IFGain:Low Atten: 30 dB DET ANNNNN IFGain:Low Atten: 30 dB Mkr1 474.15 MHz -54.008 dBm 9 Trace 1 Pass	er Freq
dB/div Ref 20.00 dBm -54.008 dBm	er Freq
^g Trace 1 Pass	
Center Pass Center	
	00 1411-
Sta	rt Freq
	00 MHz
	p Freq
824.0000	.00 MHz
	F Step
79.4000	000 MHz
	Man
	Offset
Notified for a structure of the explority of a second se	0 TH2
	е Туре
	Lin
tart 30.0 MHz Stop 824.0 MHz L ^{og} Res BW 100 kHz #VBW 300 kHz Sweep 38.11 ms (15881 pts)	
g status	

Plot 7-32. Conducted Spurious Plot (GPRS Ch. 251)

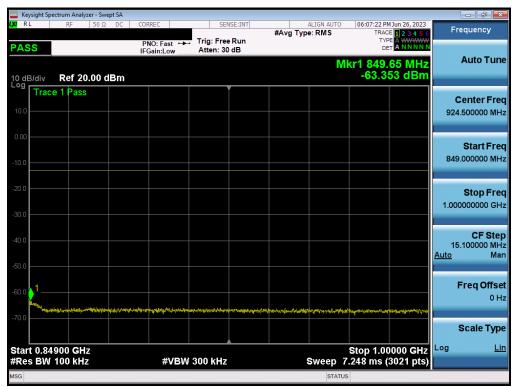
Plot 7-33. Conducted Spurious Plot (GPRS Ch. 251)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 65			
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 32 01 65			
			V3.0 1/4/2022			

	ectrum Analyze		SA									
K <mark>I</mark> RL	RF	50 Ω [DC 0	CORREC		SEN	ISE:INT	#Avg Typ	ALIGN AUT		RACE 1 2 3 4 5 6	Frequency
PASS				PNO: Fa IFGain:L	ast ↔ .ow	Trig: Free #Atten: 4						
I0 dB/div	Ref 20.	.00 dB	m						l	Mkr1 4.(-29)35 0 GHz .025 dBm	Auto Tune
^{-og} Trac	e 1 Pass					,						Center Free
10.0												5.500000000 GH
0.00												Start Fre
10.0												1.000000000 GH
20.0												Stop Fre
30.0						المالية ال				other balls North	den ben in hein met ei	10.00000000 GH
المعدية ا	and the burning of	and design	ng Halenson La Maria Maria		la alla andi Sall'haar ta				a state a state Na state a state		agene agentication ingene La 1996 estate l'étateur au	CF Ste
40.0 	Charles (Charles and Charles a	لىدور قدينارسى										900.000000 MH <u>Auto</u> Ma
50.0												Freq Offse
60.0												0 H
70.0												Scale Typ
Start 1.00	0 GHz									Stop	10.000 GHz	
Res BW				#	¢VB₩	3.0 MHz		s	weep		(18001 pts)	
SG										ATUS	· · · ·	

Plot 7-34. Conducted Spurious Plot (GPRS Ch. 251)

FCC ID: A3LSMS711B		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 33 of 65	
			\/3.0.1/4/2022	


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

WCDMA Cell

🤤 Keysight Spectrum Analyzer - Swept SA	4				
LXI RL RF 50Ω DO	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	06:06:48 PM Jun 26, 2023 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 30 dB	- //	DET A NNNN	
10 dB/div Ref 20.00 dBn	n		М	kr1 822.85 MHz -31.353 dBm	Auto Tune
Trace 1 Pass		Ĭ			Center Freq
10.0					426.500000 MHz
0.00					Start Freq
-10.0					30.000000 MHz
-20.0					
				1,	Stop Fred 823.000000 MH;
-30.0					
-40.0					CF Step 79.300000 MH
-50.0					<u>Auto</u> Mar
-60.0					Freq Offset
		والمتحد والمحدومة وا	فالغرافين ومخطوبا والمعادية والمعادية والمعادية والمعادية	and the design of the design of the set of t	0 Hz
-70.0	and a second database the address of the second database and the second database	all a resonant data and a ten and a second and a second and	interenza, mai interesta di terrenza di la terrenza di un stato di la stato di una della di una della di una d Interesta di una di u		Scale Type
Start 30.0 MHz				0100 020.0 191112	Log <u>Lin</u>
#Res BW 100 kHz	#VBW	300 kHz	Sweep 38	3.06 ms (15861 pts)	
MSG			STATU	5	

Plot 7-35. Conducted Spurious Plot (WCDMA Ch. 4132)

Plot 7-36. Conducted Spurious Plot (WCDMA Ch. 4132)

FCC ID: A3LSMS711B		Approved by: Technical Manager		
Test Report S/N:	Test Dates: EUT Type:		Page 34 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 34 01 05	
			V3.0 1/4/2022	

Plot 7-37. Conducted Spurious Plot (WCDMA Ch. 4132)

FCC ID: A3LSMS711B		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 55 01 05	
			\/3.0.1/4/2022	

7.4 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + 10 log₁₀(P_[Watts]), where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 36 of 65		
	· · ·	· · ·	V3.0 1/4/2022		

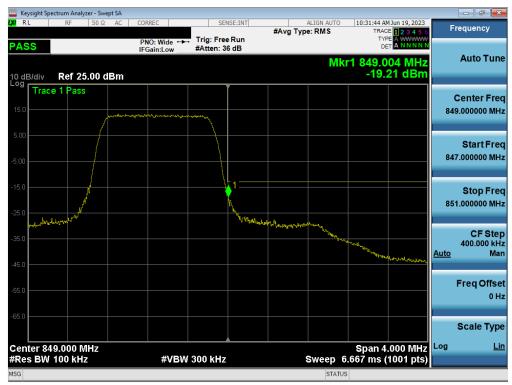
Test Notes

- Per 22.917(b), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 37 01 05
5	•	-	V3.0 1/4/2022

Mode	Bandwidth	Channel	Test Case	Level [dBm]	Limit [dBm]	Margin [dB]
	25064	Low	Band Edge	-15.38	-13	-2.38
GSM-Cell	250kHz	High	Band Edge	-16.49	-13	-3.49
WCDMA-Cell	5MHz	Low	Band Edge	-19.30	-13	-6.30
	JIVITIZ	High	Band Edge	-20.38	-13	-7.38
	15 MHz	Low	Band Edge	-28.04	-13	-15.04
		High	Band Edge	-31.94	-13	-18.94
	10 MHz	Low	Band Edge	-27.58	-13	-14.58
		High	Band Edge	-29.84	-13	-16.84
LTE-B26-5	5 MHz	Low	Band Edge	-20.70	-13	-7.70
LIE-B20-5		High	Band Edge	-21.64	-13	-8.64
		Low	Band Edge	-17.82	-13	-4.82
	3 MHz	High	Band Edge	-18.38	-13	-5.38
	1.4 MHz	Low	Band Edge	-17.11	-13	-4.11
	1.4 IVIHZ	High	Band Edge	-19.22	-13	-6.22
	00 1411-	Low	Band Edge	-28.61	-13	-15.61
	20 MHz	High	Band Edge	-31.74	-13	-18.74
		Low	Band Edge	-28.32	-13	-15.32
	15 MHz	High	Band Edge	-31.26	-13	-18.26
NR-n5		Low	Band Edge	-28.31	-13	-15.31
	10 MHz	High	Band Edge	-28.82	-13	-15.82
		Low	Band Edge	-22.34	-13	-9.34
	5 MHz	High	Band Edge	-25.30	-13	-12.30

Table 7-4. Band Edge Emission Test Results


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	023 Portable Handset	
			V3 0 1/4/2022

LTE Band 26/5

Plot 7-38. Lower Band Edge Plot (LTE Band 26/5 - 1.4MHz QPSK - Full RB)

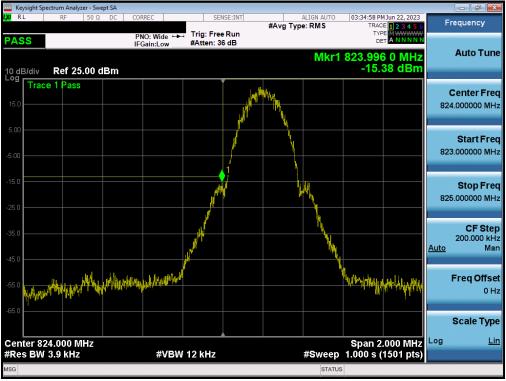


Plot 7-39. Upper Band Edge Plot (LTE Band 26/5 - 1.4MHz QPSK - Full RB)

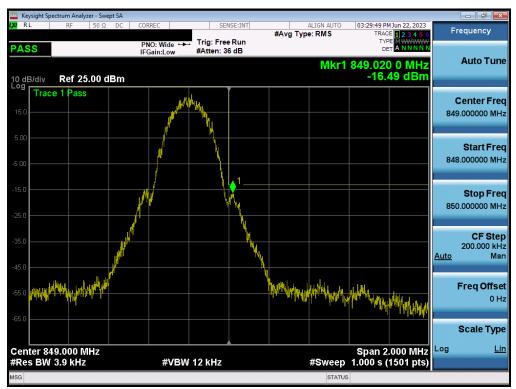
FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 39 01 05
			V3.0 1/4/2022

NR Band n5

Plot 7-40. Lower Band Edge Plot (NR Band n5 - 5.0MHz - Full RB)



Plot 7-41. Upper Band Edge Plot (NR Band n5 – 5.0MHz - Full RB)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	est Dates: EUT Type:		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 40 of 65	
			V3.0 1/4/2022	

GSM/GPRS Cell

Plot 7-42. Lower Band Edge Plot (GPRS Cell - Ch. 128)

Plot 7-43. Upper Band Edge Plot (GPRS Cell – Ch. 251)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 41 01 05	
			V3.0 1/4/2022	

WCDMA Cell

Plot 7-44. Lower Band Edge Plot (WCDMA Cell - Ch. 4132)

Plot 7-45. Upper Band Edge Plot (WCDMA Cell – Ch. 4233)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 42 01 05
			V3.0 1/4/2022

7.5 Radiated Power (ERP)

Test Overview

Effective Radiated Power (ERP) measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.2.4.4

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration.
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 43 01 65
			V3.0 1/4/2022

The EUT and measurement equipment were set up as shown in the diagram below.

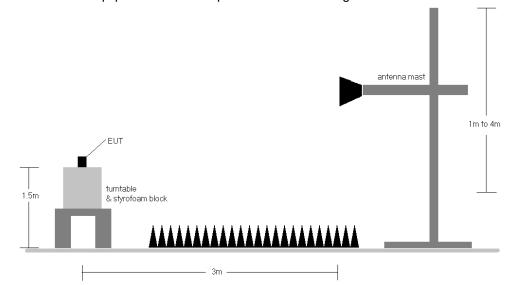


Figure 7-4. Radiated Test Setup < 1GHz

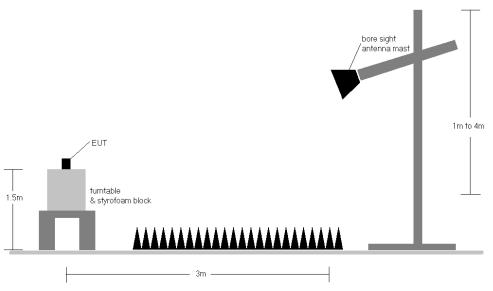


Figure 7-5. Radiated Test Setup > 1GHz

Test Notes

- 1) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest powers are reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC) and HSDPA capabilities. The EUT was tested under all configurations and the highest powers are reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1".

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 44 01 05
			V/3 0 1/4/2022

- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 4) This unit was tested with its standard battery.
- 5) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023 Portable Handset		Fage 40 01 05	
			V3 0 1/4/2022	

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
15MHz	QPSK	831.5	V	143	271	1.25	1 / 74	18.82	17.92	0.062	38.45	-20.53	20.07	0.102	40.61	-20.54
(Band 26	QPSK	836.5	V	139	279	1.35	1 / 37	18.96	18.16	0.066	38.45	-20.29	20.31	0.107	40.61	-20.29
only)	QPSK	841.5	V	140	272	1.46	1/0	18.97	18.28	0.067	38.45	-20.17	20.43	0.110	40.61	-20.18
oniy)	16-QAM	841.5	V	140	272	1.46	1/0	17.39	16.70	0.047	38.45	-21.75	18.85	0.077	40.61	-21.76
	QPSK	829.0	V	143	271	1.20	1/0	18.96	18.00	0.063	38.45	-20.45	20.15	0.104	40.61	-20.45
10 MHz	QPSK	836.5	V	139	279	1.35	1/0	18.86	18.06	0.064	38.45	-20.39	20.21	0.105	40.61	-20.40
10 1012	QPSK	844.0	V	140	272	1.51	1/0	18.84	18.20	0.066	38.45	-20.25	20.35	0.108	40.61	-20.26
	16-QAM	844.0	V	140	272	1.51	1 / 49	17.08	16.44	0.044	38.45	-22.01	18.59	0.072	40.61	-22.02
	QPSK	826.5	V	143	271	1.14	1 / 12	19.08	18.07	0.064	38.45	-20.38	20.22	0.105	40.61	-20.38
5 MHz	QPSK	836.5	V	139	279	1.35	1 / 12	18.94	18.14	0.065	38.45	-20.31	20.29	0.107	40.61	-20.31
5 min 12	QPSK	846.5	V	140	272	1.56	1/0	19.02	18.43	0.070	38.45	-20.02	20.58	0.114	40.61	-20.03
	16-QAM	846.5	V	140	272	1.56	1 / 12	17.38	16.79	0.048	38.45	-21.66	18.94	0.078	40.61	-21.66
	QPSK	825.5	V	143	271	1.12	1 / 14	18.91	17.88	0.061	38.45	-20.57	20.03	0.101	40.61	-20.57
3 MHz	QPSK	836.5	V	139	279	1.35	1/0	18.85	18.05	0.064	38.45	-20.40	20.20	0.105	40.61	-20.41
3 11112	QPSK	847.5	V	140	272	1.58	1/0	18.77	18.21	0.066	38.45	-20.24	20.36	0.109	40.61	-20.25
	16-QAM	836.5	V	139	279	1.35	1/0	17.32	16.52	0.045	38.45	-21.93	18.67	0.074	40.61	-21.93
	QPSK	824.7	V	143	271	1.11	1/5	18.80	17.75	0.060	38.45	-20.70	19.90	0.098	40.61	-20.70
1.4 MHz	QPSK	836.5	V	139	279	1.35	1/3	18.70	17.90	0.062	38.45	-20.55	20.05	0.101	40.61	-20.55
1.4 10112	QPSK	848.3	V	140	272	1.60	1/3	18.74	18.19	0.066	38.45	-20.27	20.34	0.108	40.61	-20.27
	16-QAM	848.3	V	140	272	1.60	1/0	16.95	16.39	0.044	38.45	-22.06	18.54	0.071	40.61	-22.06
15MHz	QPSK (WCP)	841.5	V	127	306	1.35	1/0	13.58	12.78	0.019	38.45	-25.67	14.93	0.031	40.61	-25.67

Table 7-5. ERP Data (LTE Band 26/5)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	TT/2 BPSK	834.0	V	140	255	1.30	1 / 53	19.63	18.78	0.076	38.45	-19.67	20.93	0.124	40.61	-19.68
	TT/2 BPSK	836.5	V	136	259	1.35	1 / 53	19.29	18.49	0.071	38.45	-19.96	20.64	0.116	40.61	-19.96
	π/2 BPSK	839.0	V	137	225	1.41	1 / 53	19.30	18.56	0.072	38.45	-19.90	20.71	0.118	40.61	-19.90
20 MHz	QPSK	834.0	V	140	255	1.30	1 / 53	19.44	18.59	0.072	38.45	-19.86	20.74	0.119	40.61	-19.87
	QPSK	836.5	V	136	259	1.35	1 / 53	19.29	18.49	0.071	38.45	-19.96	20.64	0.116	40.61	-19.96
	QPSK	839.0	V	137	225	1.41	1 / 53	19.24	18.50	0.071	38.45	-19.96	20.65	0.116	40.61	-19.96
	16-QAM	834.0	V	140	255	1.30	1 / 53	18.54	17.69	0.059	38.45	-20.76	19.84	0.096	40.61	-20.77
	TT/2 BPSK	831.5	V	140	255	1.25	1 / 20	19.65	18.75	0.075	38.45	-19.70	20.90	0.123	40.61	-19.71
	π/2 BPSK	836.5	V	136	259	1.35	1 / 39	19.25	18.45	0.070	38.45	-20.00	20.60	0.115	40.61	-20.01
	π/2 BPSK	841.5	V	137	225	1.46	1 / 20	19.06	18.37	0.069	38.45	-20.08	20.52	0.113	40.61	-20.09
15 MHz	QPSK	831.5	V	140	255	1.25	1 / 20	19.44	18.54	0.071	38.45	-19.91	20.69	0.117	40.61	-19.92
	QPSK	836.5	V	136	259	1.35	1 / 20	19.26	18.46	0.070	38.45	-19.99	20.61	0.115	40.61	-20.00
	QPSK	841.5	V	137	225	1.46	1 / 20	19.07	18.38	0.069	38.45	-20.08	20.53	0.113	40.61	-20.08
	16-QAM	831.5	V	140	255	1.25	1 / 20	18.44	17.54	0.057	38.45	-20.91	19.69	0.093	40.61	-20.91
	π/2 BPSK	829.0	V	140	255	1.20	1 / 13	19.63	18.67	0.074	38.45	-19.78	20.82	0.121	40.61	-19.78
	π/2 BPSK	836.5	V	136	259	1.35	1 / 13	19.03	18.23	0.067	38.45	-20.22	20.38	0.109	40.61	-20.23
	π/2 BPSK	844.0	V	137	225	1.51	1 / 26	19.15	18.51	0.071	38.45	-19.94	20.66	0.116	40.61	-19.95
10 MHz	QPSK	829.0	V	140	255	1.20	1 / 38	19.36	18.41	0.069	38.45	-20.04	20.56	0.114	40.61	-20.05
	QPSK	836.5	V	136	259	1.35	1 / 13	19.14	18.35	0.068	38.45	-20.11	20.50	0.112	40.61	-20.11
	QPSK	844.0	V	137	225	1.51	1 / 26	18.96	18.32	0.068	38.45	-20.13	20.47	0.111	40.61	-20.14
	16-QAM	829.0	V	140	255	1.20	1 / 38	18.30	17.34	0.054	38.45	-21.11	19.49	0.089	40.61	-21.11
	π/2 BPSK	829.0	V	140	255	1.14	1 / 18	19.77	18.77	0.075	38.45	-19.69	20.92	0.123	40.61	-19.69
	π/2 BPSK	836.5	V	136	259	1.35	1 / 12	18.99	18.19	0.066	38.45	-20.26	20.34	0.108	40.61	-20.27
	π/2 BPSK	844.0	V	137	225	1.56	1/6	19.10	18.51	0.071	38.45	-19.94	20.66	0.117	40.61	-19.94
5 MHz	QPSK	829.0	V	140	255	1.14	1 / 18	19.42	18.42	0.069	38.45	-20.03	20.57	0.114	40.61	-20.04
	QPSK	836.5	V	136	259	1.35	1 / 12	19.28	18.48	0.071	38.45	-19.97	20.63	0.116	40.61	-19.97
	QPSK	844.0	V	137	225	1.56	1/6	18.76	18.17	0.066	38.45	-20.28	20.32	0.108	40.61	-20.29
	16-QAM	829.0	V	140	255	1.14	1 / 18	18.30	17.29	0.054	38.45	-21.16	19.44	0.088	40.61	-21.17
20 MHz	QPSK (CP-OFDM)	834.0	V	133	253	1.30	1 / 53	19.26	18.41	0.069	38.45	-20.04	20.56	0.114	40.61	-20.05
20 10112	QPSK (WCP)	834.0	V	133	296	1.30	1 / 53	14.87	14.02	0.025	38.45	-24.43	16.17	0.041	40.61	-24.44

Table 7-6. ERP Data (NR Band n5)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
824.20	GSM850	V	140.00	241.00	28.86	1.09	27.80	0.603	38.45	-10.65	29.95	0.990	40.61	-10.65
836.60	GSM850	V	140.00	266.00	29.31	1.36	28.52	0.710	38.45	-9.94	30.67	1.166	40.61	-9.94
848.80	GSM850	V	136.00	274.00	28.92	1.61	28.38	0.688	38.45	-10.07	30.53	1.129	40.61	-10.08
836.60	EDGE850	V	140.00	266.00	21.60	1.36	20.81	0.120	38.45	-17.65	22.96	0.197	40.61	-17.65
836.60	GSM850 (WCP)	V	126.00	308.00	24.42	1.36	23.63	0.230	38.45	-14.83	25.78	0.378	40.61	-14.83

Table 7-7. ERP Data (GPRS Cell)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
826.40	WCDMA850	V	145.00	277.00	19.12	1.14	18.11	0.065	38.45	-20.34	20.26	0.106	40.61	-20.35
836.60	WCDMA850	V	149.00	285.00	20.20	1.36	19.41	0.087	38.45	-19.05	21.56	0.143	40.61	-19.05
846.60	WCDMA850	V	138.00	279.00	19.24	1.56	18.65	0.073	38.45	-19.80	20.80	0.120	40.61	-19.80
836.60	WCDMA850 (WCP)	V	124.00	280.00	15.03	1.36	14.24	0.027	38.45	-24.22	16.39	0.044	40.61	-24.22

Table 7-8. ERP Data (WCDMA Cell)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	N: Test Dates: EUT Type:		Page 46 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	5/30 - 7/31/2023 Portable Handset			
			1/2 0 1/4/2022		

7.6 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 47 01 05
			\/3.0.1/4/2022

The EUT and measurement equipment were set up as shown in the diagram below.

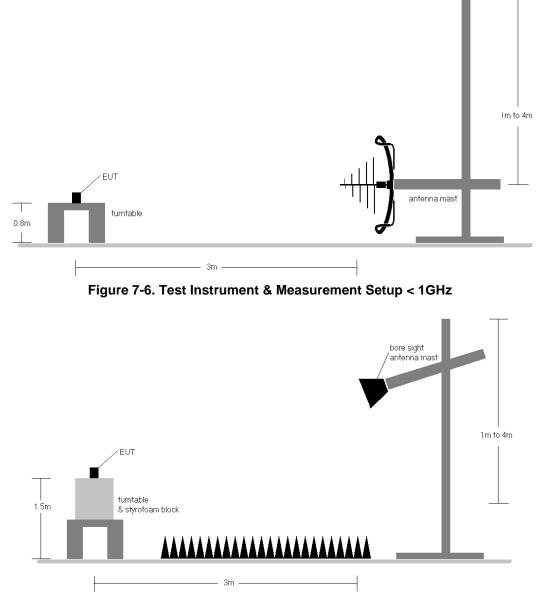
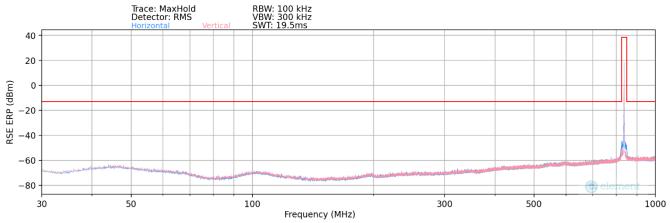


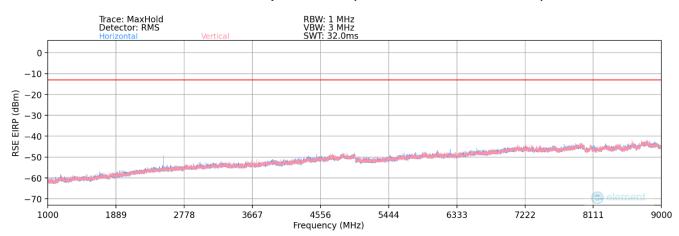
Figure 7-7. Test Instrument & Measurement Setup > 1GHz

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 48 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 48 of 65
			V3.0 1/4/2022

Test Notes


- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest powers are reported in GPRS mode while transmitting with one slot active.
- 3) This device employs UMTS technology with WCDMA (AMR/RMC) and HSDPA capabilities. The EUT was tested under all configurations and the highest powers are reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1".
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 5) This unit was tested with its standard battery.
- 6) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 7) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- 8) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.
- 10) Spurious emission in EN-DC Operating mode with Sub 6GHz NR carrier as well as an LTE carrier (anchor) has been checked and was found to not to be the worst case.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 49 01 05		
			\/3.0.1/4/2022		


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

LTE Band 26/5

Bandwidth (MHz):	z): 10								
Frequency (MHz):	836.5								
RB / Offset: 1 / 25									
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
503.22	Н	-	-	-85.80	-4.36	16.84	-78.42	-13.00	-65.42

Table 7-9. Radiated Spurious Data (LTE Band 26/5 – Below 1GHz)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 50 01 05		
			V3.0 1/4/2022		

Bandwidth (MHz):	10
Frequency (MHz):	829
RB / Offset:	1 / 25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1658.00	Н	135.00	187.00	-75.75	0.10	31.35	-63.90	-13.00	-50.90
2487.00	Н	105.00	43.00	-72.21	4.09	38.88	-56.37	-13.00	-43.37
3316.00	Н	-	-	-79.71	6.80	34.09	-61.17	-13.00	-48.17
4145.00	Н	-	-	-80.37	8.03	34.66	-60.60	-13.00	-47.60
4974.00	Н	-	-	-80.30	10.11	36.81	-58.45	-13.00	-45.45

Table 7-10. Radiated Spurious Data (LTE Band 26/5 – Low Channel)

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.00	Н	142.00	185.00	-75.12	0.40	32.28	-62.98	-13.00	-49.98
2509.50	Н	156.00	140.00	-70.04	4.08	41.04	-54.21	-13.00	-41.21
3346.00	Н	-	-	-79.84	6.58	33.74	-61.52	-13.00	-48.52
4182.50	Н	-	-	-80.41	8.03	34.62	-60.64	-13.00	-47.64
5019.00	Н	-	-	-80.62	10.53	36.91	-58.35	-13.00	-45.35

Table 7-11. Radiated Spurious Data (LTE Band 26/5 – Mid Channel)

Bandwidth (MHz):	10
Frequency (MHz):	844
RB / Offset:	1 / 25

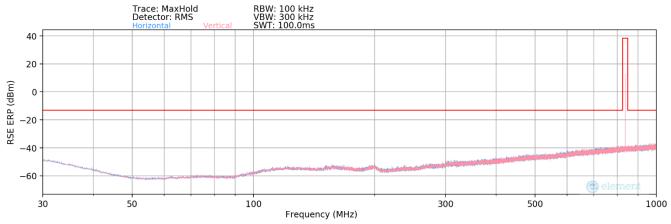
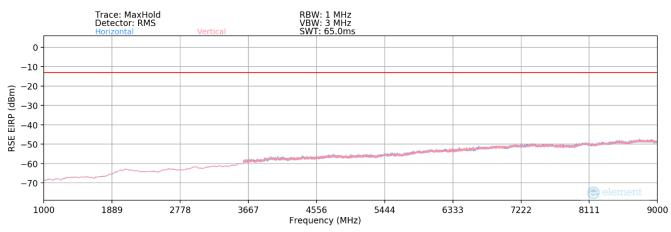

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1688.00	Н	184.00	8.00	-76.85	0.53	30.68	-64.58	-13.00	-51.58
2532.00	н	164.00	29.00	-71.68	4.41	39.73	-55.53	-13.00	-42.53
3376.00	Н	-	-	-79.63	6.31	33.68	-61.58	-13.00	-48.58
4220.00	Н	-	-	-80.47	8.16	34.69	-60.57	-13.00	-47.57
5064.00	Н	-	-	-80.46	10.40	36.94	-58.32	-13.00	-45.32

Table 7-12. Radiated Spurious Data (LTE Band 26/5 – High Channel)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo E1 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 51 of 65		
			V3 0 1/4/2022		

NR Band n5

Bandwidth (MHz):	20							
Frequency (MHz):		836.5						
RB / Offset:	1 / 53							
Mode:		Stand Alone						
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]
106.73	V	-	-	-83.23	18.98	42.75	-52.51	-13.00
196.79	V	-	-	-83.21	19.61	43.40	-51.85	-13.00
227.72	V	-	-	-83.28	18.47	42.19	-53.07	-13.00

Table 7-13. Radiated Spurious Data (NR Band n5 – Low Channel)

Margin [dB]

-39.51

-38.85

-40.07

FCC ID: A3LSMS711B		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 52 01 05
			V3.0 1/4/2022

Bandwidth (MHz):	20
Frequency (MHz):	834
RB / Offset:	1 / 53
Mode:	Stand Alone

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1668.00	V	166.00	338.00	-73.19	-7.20	26.61	-68.65	-13.00	-55.65
2502.00	V	-	-	-76.14	-4.19	26.67	-68.58	-13.00	-55.58
3336.00	V	-	-	-76.72	-1.27	29.01	-66.25	-13.00	-53.25
4170.00	V	-	-	-77.49	1.37	30.88	-64.38	-13.00	-51.38

Table 7-14. Radiated Spurious Data (NR Band n5 – Low Channel)

Bandwidth (MHz):	20
Frequency (MHz):	836.5
RB / Offset:	1 / 53
Mode:	Stand Alone

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.00	V	139.00	228.00	-73.22	-7.13	26.65	-68.61	-13.00	-55.61
2509.50	V	-	-	-76.20	-4.07	26.73	-68.53	-13.00	-55.53
3346.00	V	-	-	-76.35	-1.25	29.40	-65.86	-13.00	-52.86
4182.50	V	-	-	-77.19	1.39	31.20	-64.06	-13.00	-51.06

Table 7-15. Radiated Spurious Data (NR Band n5 – Mid Channel)

20
839
1 / 53
Stand Alone

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1678.00	V	159.00	336.00	-73.11	-7.07	26.82	-68.44	-13.00	-55.44
2517.00	V	-	-	-76.11	-3.93	26.96	-68.30	-13.00	-55.30
3356.00	V	-	-	-76.47	-1.22	29.31	-65.94	-13.00	-52.94
4195.00	V	-	-	-77.11	1.30	31.19	-64.07	-13.00	-51.07

Table 7-16. Radiated Spurious Data (NR Band n5 – High Channel)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 55 01 05		
			\/3.0.1/4/2022		

Case:	w/ Wireless Charging Pad
Bandwidth (MHz):	20
Frequency (MHz):	839
RB / Offset:	1 / 53
Mode:	Stand Alone

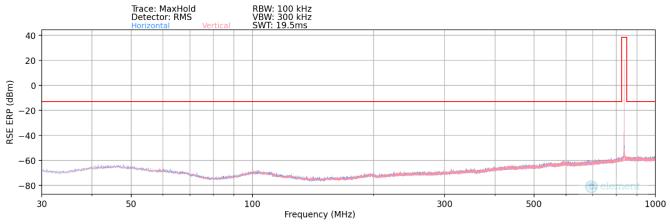
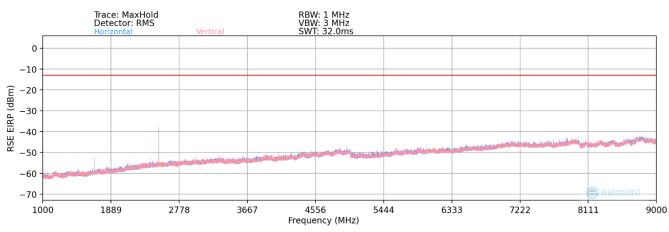

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1678.00	V	-	-	-75.74	-7.07	24.19	-71.07	-13.00	-58.07
2517.00	V	-	-	-76.02	-3.93	27.05	-68.21	-13.00	-55.21
3356.00	V	-	-	-76.34	-1.22	29.44	-65.81	-13.00	-52.81
4195.00	V	-	-	-77.05	1.30	31.25	-64.01	-13.00	-51.01

Table 7-17. Radiated Spurious Data with WCP (NR Band n5)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 54 01 05		
		· · · · ·	V3 0 1/4/2022		

GSM/GPRS Cell

Mode:	GPRS 1 Tx Slot								
Channel:	251								
Frequency (MHz):		848.8							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
334.88	Н	-	-	-68.13	-7.59	31.28	-63.98	-13.00	-50.98

Table 7-18. Radiated Spurious Data (GPRS Cell – Below 1GHz)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 55 01 65
	<u>.</u>	· · ·	V3.0 1/4/2022

Mode:	GPRS 1 Tx Slot
Channel:	128
Frequency (MHz):	824.2

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1648.40	Н	295.00	206.00	-64.33	-0.19	42.48	-52.78	-13.00	-39.78
2472.60	Н	108.00	326.00	-59.44	4.00	51.56	-43.70	-13.00	-30.70
3296.80	Н	-	-	-70.56	6.50	42.94	-52.32	-13.00	-39.32
4121.00	Н	-	-	-71.28	8.02	43.74	-51.51	-13.00	-38.51
4945.20	Н	-	-	-70.92	9.53	45.61	-49.65	-13.00	-36.65

Table 7-19. Radiated Spurious Data (GPRS Cell – Low Channel)

Mode:	GPRS 1 Tx Slot
Channel:	190
Frequency (MHz):	836.6

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.20	Н	132.00	213.00	-60.19	0.40	47.21	-48.05	-13.00	-35.05
2509.80	Н	157.00	220.00	-53.06	4.08	58.02	-37.23	-13.00	-24.23
3346.40	Н	-	-	-70.48	6.58	43.10	-52.16	-13.00	-39.16
4183.00	Н	102.00	20.00	-70.34	8.03	44.69	-50.57	-13.00	-37.57
5019.60	Н	-	-	-71.51	10.53	46.02	-49.24	-13.00	-36.24
5856.20	Н	-	-	-72.23	11.65	46.42	-48.84	-13.00	-35.84
6692.80	Н	-	-	-72.67	13.78	48.11	-47.15	-13.00	-34.15

Table 7-20. Radiated Spurious Data (GPRS Cell – Mid Channel)

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1697.60	Н	189.00	21.00	-64.78	0.64	42.86	-52.39	-13.00	-39.39
2546.40	Н	109.00	213.00	-53.01	4.21	58.20	-37.06	-13.00	-24.06
3395.20	Н	-	-	-70.76	6.24	42.48	-52.78	-13.00	-39.78
4244.00	Н	105.00	6.00	-69.97	8.44	45.47	-49.78	-13.00	-36.78
5092.80	Н	-	-	-71.37	10.11	45.74	-49.52	-13.00	-36.52
5941.60	Н	-	-	-72.33	12.18	46.85	-48.41	-13.00	-35.41
6790.40	Н	-	-	-73.28	14.39	48.11	-47.15	-13.00	-34.15

Table 7-21. Radiated Spurious Data (GPRS Cell – High Channel)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023 Portable Handset		Fage 50 01 05	
			V/2 0 1/4/2022	

Case:	w/ Wireless Charging Pad
Mode:	GPRS 1 Tx Slot
Channel:	251
Frequency (MHz):	848.8

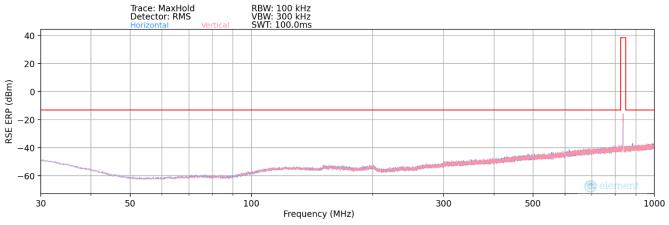
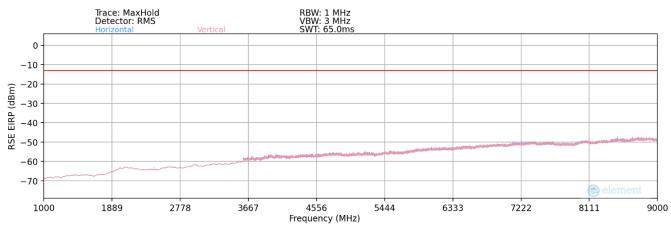

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
0.00	Н	181.00	34.00	-65.68	0.64	41.96	-53.29	-13.00	-40.29
0.00	Н	158.00	217.00	-54.01	4.21	57.20	-38.06	-13.00	-25.06
0.00	Н	-	-	-70.96	6.24	42.28	-52.98	-13.00	-39.98
0.00	Н	57.00	-30.00	-70.57	8.44	44.87	-50.38	-13.00	-37.38
0.00	Н	-	-	-71.07	10.11	46.04	-49.22	-13.00	-36.22
0.00	Н	-	-	-72.43	12.18	46.75	-48.51	-13.00	-35.51
6790.40	Н	-	-	-73.29	14.39	48.10	-47.16	-13.00	-34.16

Table 7-22. Radiated Spurious Data with WCP (GPRS Cell)


FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 57 01 05		
	•	-	V3.0 1/4/2022		

WCDMA Cell

Plot 7-53. Radiated Spurious Plot (WCDMA Cell)

Mode:		WCDMA RMC							
Channel:	4183								
Frequency (MHz):		836.6							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
440.00	Н	-	-	-85.26	24.85	46.59	-48.67	-13.00	-35.67
510.00	Н	-	-	-82.63	26.16	50.53	-44.72	-13.00	-31.72

Table 7-23. Radiated Spurious Data (WCDMA Cell – Below 1GHz)

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 65		
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 56 01 65		
			\/3.0.1/4/2022		

Mode:	WCDMA RMC
Channel:	4132
Frequency (MHz):	826.4

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1652.80	Н	-	-	-76.21	-7.37	23.42	-71.84	-13.00	-58.84
2479.20	Н	-	-	-77.43	-4.39	25.18	-70.07	-13.00	-57.07
3305.60	Н	-	-	-77.41	-1.12	28.47	-66.78	-13.00	-53.78

Table 7-24. Radiated Spurious Data (WCDMA Cell – Low Channel)

Mode:	WCDMA RMC
Channel:	4183
Frequency (MHz):	836.6

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.20	Н	-	-	-76.32	-7.13	23.55	-71.71	-13.00	-58.71
2509.80	Н	-	-	-77.48	-4.06	25.46	-69.80	-13.00	-56.80
3346.40	Н	-	-	-77.66	-1.25	28.09	-67.17	-13.00	-54.17

Table 7-25. Radiated Spurious Data (WCDMA Cell – Mid Channel)

Mode:	WCDMA RMC
Channel:	4233
Frequency (MHz):	846.6

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1693.20	н	-	-	-76.21	-6.86	23.93	-71.33	-13.00	-58.33
2539.80	Н	-	-	-77.46	-3.39	26.15	-69.10	-13.00	-56.10
3386.40	Н	-	-	-77.23	-1.15	28.62	-66.64	-13.00	-53.64

Table 7-26. Radiated Spurious Data (WCDMA Cell – High Channel)

FCC ID: A3LSMS711B		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 59 01 05
			V3 0 1/4/2022

7.7 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Procedure Used

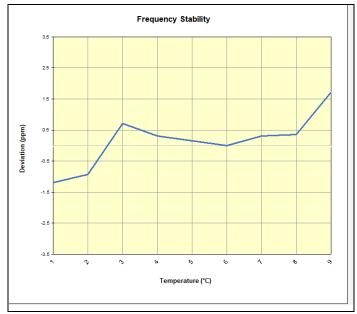
ANSI C63.26-2015 – Section 5.6

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

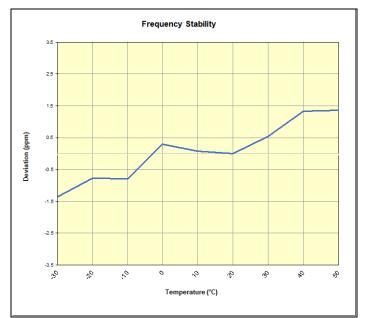
The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.


Test Notes

None

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Faye 00 01 05
			\/2.0.1/4/2022

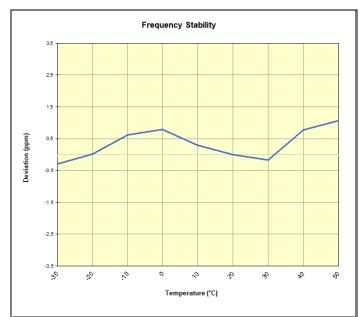
LTE Band 26/5						
	Operating F	requency (Hz):	836,500,000			
	Ref.	Voltage (VDC):	4.43			
		Deviation Limit:	± 0.00025%	or 2.5 ppm		
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)	
		- 30	836,586,882	-1,002	-0.0001198	
		- 20	836,587,111	-773	-0.0000924	
		- 10	836,588,482	598	0.0000715	
		0	836,588,144	260	0.0000311	
100 %	4.43	+ 10	836,588,017	133	0.0000159	
		+ 20 (Ref)	836,587,884	0	0.0000000	
		+ 30	836,588,147	263	0.0000314	
		+ 40	836,588,187	303	0.0000362	
		+ 50	836,589,327	1,443	0.0001725	
Battery Endpoint	3.27	+ 20	836,586,421	-1,463	-0.0001749	


Plot 7-54. LTE Band 26/5 Frequency Stability Chart

FCC ID: A3LSMS711B	PART 22 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 61 01 05
			\/2.0.1/4/2022

NR Band n5						
	Operating F	requency (Hz):	836,50	00,000]	
	Ref.	Voltage (VDC):	4.4	43		
		Deviation Limit:	± 0.00025%	or 2.5 ppm		
					-	
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)	
		- 30	836,544,483	-1,145	-0.0001369	
		- 20	836,544,981	-647	-0.0000773	
		- 10	836,544,971	-657	-0.0000785	
		0	836,545,873	245	0.0000293	
100 %	4.43	+ 10	836,545,697	69	0.000082	
		+ 20 (Ref)	836,545,628	0	0.0000000	
		+ 30	836,546,084	456	0.0000545	
		+ 40	836,546,742	1,114	0.0001332	
		+ 50	836,546,773	1,145	0.0001369	
Battery Endpoint	3.27	+ 20	836,546,326	698	0.0000834	

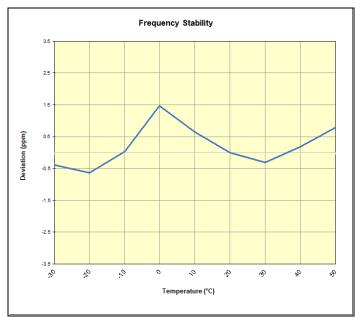
Table 7-28. NR Band n5 Frequency Stability Data


Plot 7-55. NR Band n5 Frequency Stability Chart

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 02 01 05
			V3 0 1/4/2022

GSM/GPRS Cellular						
	Operating F	requency (Hz):	836,600,000			
	Ref.	Voltage (VDC):	4.	43		
		Deviation Limit:	± 0.00025%	or 2.5 ppm		
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)	
		- 30	836,614,015	-241	-0.0000288	
		- 20	836,614,270	14	0.0000017	
		- 10	836,614,779	523	0.0000625	
		0	836,614,922	666	0.0000796	
100 %	4.43	+ 10	836,614,503	247	0.0000295	
		+ 20 (Ref)	836,614,256	0	0.0000000	
		+ 30	836,614,111	-145	-0.0000173	
		+ 40	836,614,903	647	0.0000773	
		+ 50	836,615,155	899	0.0001075	
Battery Endpoint	3.27	+ 20	836,615,258	1,002	0.0001198	

Table 7-29. GSM/GPRS Cell Frequency Stability Data


Plot 7-56. GSM/GPRS Cell Frequency Stability Chart

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 65 01 65
			\/3.0.1/4/2022

WCDMA Cellular						
	Operating F	requency (Hz):	836,600,000]	
	Ref.	Voltage (VDC):	4.	43	1	
		Deviation Limit:	± 0.00025%	o or 2.5 ppm		
					-	
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)	
		- 30	836,621,334	-321	-0.0000384	
		- 20	836,621,128	-527	-0.0000630	
		- 10	836,621,681	26	0.0000031	
		0	836,622,886	1,231	0.0001471	
100 %	4.43	+ 10	836,622,202	547	0.0000654	
		+ 20 (Ref)	836,621,655	0	0.0000000	
		+ 30	836,621,399	-256	-0.0000306	
		+ 40	836,621,814	159	0.0000190	
		+ 50	836,622,309	654	0.0000782	
Battery Endpoint	3.27	+ 20	836,621,408	-247	-0.0000295	

Table 7-30. WCDMA Cell Frequency Stability Data

Plot 7-57. WCDMA Cell Frequency Stability Chart

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 65
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Page 64 01 65
			\/3.0.1/4/2022

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMS711B** complies with all the requirements of Part 22 of the FCC rules.

FCC ID: A3LSMS711B		PART 22 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 65	
1M2304260063-04.A3L	5/30 - 7/31/2023	Portable Handset	Fage 05 01 05	
	-		V3.0 1/4/2022	