

TEST REPORT

KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr		KR22-S	ort No.: RF0088-C 1) of (59)	CTL		
1. Client	1. Client					
∘ Name		: Samsung Elect	ronics Co.,	Ltd.		
 Address 	S	: 129, Samsung-ro Rep. of Korea	o, Yeongtor	ig-gu, Suwon∙	si, Gyeonggi-do, 16677,	
∘ Date of	Receipt	2022-04-06				
2. Use of Rep	2. Use of Report : Certification					
3. Name of P	3. Name of Product / Model : Smart Wearable / SM-R905U					
4. Manufactu	irer / Cou	ntry of Origin : Sa	amsung Ele	ectronics Co.	, Ltd. / Vietnam	
5. FCC ID		: A3	BLSMR905			
6. Date of Te	st	: 2022-04-13 to 2	2022-05-26			
7. Location o	of Test	Permanent Test (Address:65, Sinw		□ On Site T	esting n-si, Gyeonggi-do, 16677, Korea)	
8. Test meth	od used					
9. Test Resu	lt	: Refer to the tes	t result in t	he test repor	t	
	Tested b	У		Technical M	anager	
Affirmation	Affirmation Name : Taeyoung Kim (Name : Seun	gyong Kim (Signature)	
	2022-06-16					
		KC	TL I	nc.		
As a test result of the sample which was submitted from the client, this report does not guar antee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (2) of (59)

KCTL

REPORT REVISION HISTORY

Date	Revision	Page No
2022-05-31	Originally issued	-
2022-06-02	Updated	1, 4, 5, 6, 18
2022-06-07	Updated	18
2022-06-16	Removed typo error (model)	1

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR22-SRF0088-B is superseded by the report No. KR22-SRF0088-C.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests (may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (3) of (59)

KCTL

CONTENTS

1.	General information	4
2.	Device information	4
2.1	1. Accessory information	6
2.2	2. Frequency/channel operations	6
3.	Maximum ERP/EIRP power	7
4.	Summary of tests	8
4.1	1. Worst case orientation	8
5.	Measurement uncertainty	9
6.	Measurement results explanation example	10
7.	Test results	11
7.1	1. Conducted output power	11
7.2	2. 99% Occupied Bandwidth & 26 dB Bandwidth	16
7.3	3. Spurious Emissions at Antenna Terminal	31
7.4	4. Band Edge Emissions at Antenna Terminal	36
7.5	5. Frequency stability	48
7.6		
7.7	7. Radiated Spurious Emissions	55
8.	Measurement equipment	59

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (4) of (59)

1. General information

Client	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Manufacturer	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Factory	AG TECH CO.,LTD
Address	: Lot G3, Que Vo Industrial Park(Expanded Area), Nam son Ward, Bac Ninh Province, Vietnam
Laboratory	: KCTL Inc.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	CAB Identifier: KR0040
	ISED Number: 8035A
	KOLAS No.: KT231

2. Device information

Equipment under test	: Smart Wearable
Model	: SM-R905U
Modulation technique	: Bluetooth(BDR/EDR)_GFSK, π/4DQPSK, 8DPSK
	Bluetooth(BLE)_GFSK
	WIFI(802.11a/b/g/n)_DSSS, OFDM
	LTE_QPSK, 16QAM
	WCDMA_QPSK
Number of channels	: Bluetooth(BDR/EDR)_79 ch / Bluetooth(BLE)_40 ch
	802.11b/g/n_HT20:13 ch
	UNII-1: 4 ch (20 ^ℍ ℤ)
	UNII-2A: 4 ch (20    ₩₂)
	UNII-2C: 12 ch (20 Mz)
	UNII-3: 5 ch (20 ^{MHz})
Power source	: DC 3.88 V
Antenna specification	: LTE/WCDMA_PIFA (Housing metal) Antenna
	WIFI/Bluetooth(BDR/EDR/BLE)_LDS Antenna
Antenna gain	: WIFI/Bluetooth(BDR/EDR/BLE) : -8.80 dBi
	UNII-1 :-8.70 dBi
	UNII-2A : -8.90 dBi
	UNII-2C : -7.60 dBi
	UNII-3 : -6.50 dBi

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (5) of (59)

Frequency range	 Bluetooth(BDR/EDR/BLE)_2 402 Mt ~ 2 480 Mt 2 412 Mt ~ 2 472 Mt (802.11b/g/n_HT20) UNII-1: 5 180 Mt ~ 5 240 Mt (802.11a/n_HT20) UNII-2A: 5 260 Mt ~ 5 320 Mt (802.11a/n_HT20) UNII-2C: 5 500 Mt ~ 5 720 Mt (802.11a/n_HT20) UNII-3: 5 745 Mt ~ 5 825 Mt (802.11a/n_HT20) LTE Band 2_1 850.7 Mt ~ 1 909.3 Mt LTE Band 4_1 710.7 Mt ~ 1 754.3 Mt LTE Band 5_824.7 Mt ~ 848.3 Mt LTE Band 12_699.7 Mt ~ 715.3 Mt LTE Band 13_779.5 Mt ~ 784.5 Mt LTE Band 25_1 850.7 Mt ~ 1 914.3 Mt LTE Band 26_824.7 Mt ~ 848.3 Mt & 814.7 Mt ~ 823.3 Mt LTE Band 66_1 710.7 Mt ~ 1 779.3 Mt LTE Band 66_1 710.7 Mt ~ 1 779.3 Mt WCDMA 850_826.4 Mt ~ 846.6 Mt WCDMA 1700_1 712.4 Mt ~ 1 752.6 Mt
	WCDMA 1900_1 712.4 Mz ~ 1 907.6 Mz
Software version	: SM-R905U_R905U.001, SM-R905F_R905F.001
	: REV1.0
Test device serial No.	: Conducted(R3AT401DJ6K) Radiated(R3AT501ET9E, R3AT501ETVE)
Operation temperature	: -30 °C ~ 50 °C

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR22-SRF0088-C Page (6) of (59)

KCTL

2.1. Accessory information

Equipment Manufacturer		Model	Serial No.	Power source	FCC ID & IC	
Wireless Charger	Samsung Electronics Co., Ltd.	EP-OR900	-	5.0 V, 2.0 A	FCC ID : A3LEPOR900 IC ID : 649E-EPOR900	

2.2. Frequency/channel operations

This device contains the following capabilities:

WiFi (802.11a/b/g/n), Bluetooth (BDR/EDR/BLE), LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 12, LTE Band 13, LTE Band 25, LTE Band 26, LTE Band 66, LTE Band 71, WCDMA 850, WCDMA 1700, WCDMA 1900

		LTE Band 26			
Ch.	Frequency (₩b)		Ch.	Frequency (畑)	
26697	814.7		26705	8 <mark>15.5</mark>	
26783	823.3		26775	8 <mark>22.5</mark>	

Table 2.1.1. 1.4M BW

Table 2.1.2. 3M BW

Frequency Ch. (MHz) 26740 819.0

Table 2.1.4. 10M BW

Frequency Ch. (M₽z) 26715 816.5 26765 821.5

Table 2.1.3. 5M BW

Ch.	F <mark>requen</mark> cy (朏)	
26765	821.5	

Table 2.1.5. 15M BW

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (7) of (59)

KCTL

3. Maximum ERP/EIRP power

LTE Band 26 (Part 90) (FCC Model: SM-R905U)

Mada		Emission	Conducted		
Mode	Tx frequency (MHz)	designator	Max. power (dBm)	Max. power (W)	
	814.7 ~ 823.3	1M11G7D	22.52	0.179	
·	014.7 ~ 023.3	1M11W7D	21.58	0.144	
	815.5 ~ 822.5	2M72G7D	22.06	0.161	
	015.5 ~ 022.5	2M72W7D	21.56	0.143	
LTE Band 26	816.5 ~ 821.5	4M56G7D	22.27	0.169	
LTE Dallu 20	010.5 ~ 021.5	4M55W7D	21.26	0.134	
	819.0	9M04G7D	22.09	0.162	
	819.0	8M97W7D	21.32	0.136	
	821.5	13M5G7D	22.02	0.159	
		13M5W <mark>7D</mark>	21.45	0.140	
		1M09G7D	22.54	0.179	
		1M10W7D	<mark>21</mark> .13	0.130	
		2M72G7D	21.96	0.157	
	824.0	2M71W7D	21.18	0.131	
Straddle channel		4M53G7D	22.16	0.164	
		4M53W7D	21.02	0.126	
		9M02 <mark>G7D</mark>	22.14	0.164	
		8M99 <mark>W7D</mark>	21.27	0.134	
		13M5G7D	22.16	0.164	
		13M5W7D	21.42	0.139	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (8) of (59)

KCTL

4. Summary of tests

FCC Part section(s)	Parameter	Test Limit	Test Condition	Test results
2.1046 90.635	Conducted Output Power	< 100 Watts		Pass
2.1049	Occupied Bandwidth & 26 dB Bandwidth	N/A	Conducted	Pass
0 4054	Band Edge Emissions at Antenna Terminal	 <43 + 10Log₁₀(P) dB, <50 + 10Log₁₀(P) dB at Band 		Pass
2.1051 90.691(a)	Spurious Emissions at Antenna Terminal	Edge and for all out-of-band emissions within 37.5kHz of Block Edge		Pass
2.1055 90.213	Frequency stability	< 2.5 ppm		Pass
22.913(a)(5)	Effective Radiated Power	< 7 Watts max. ERP	Dediated	Pass
2.1053 90.691(a)	Radiated Spurious Emissions	<43 + 10Log₁₀(P) dB	Radiated	Pass

Notes:

- 1. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.26-2015
 - ANSI/TIA-603-E-2016
 - KDB 971168 D01 v03r01

4.1. Worst case orientation

- 1. All modes of operation were investigated and the worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations in the test data.
- 2. All final radiated testing was performed with the EUT in worst case orientation.
- 3. All the radiated tests have been performed four modes (with strap (with charger / without charger) and without strap (with charger / without charger)) and the mode with strap (with charger) is the worst case mode.
- 4. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **X** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **X** orientation.

Test condition	LTE Band	Modulation	Bandwidth (∰z)	RB size	RB offset
Radiated		QPSK	1.4	1	0, 3, 5
Conducted	B26 (Part90)	QPSK, 16QAM	1.4, 3, 5,	1	0, 5, 14, 24, 49, 74
Conducted			10, 15	Full	0

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (9) of (59)

KCTL

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (\pm)			
Conducted RF power	0.9 dB			
Conducted spurious emissions	1.1 dB			
	Below 1 000 Mtz	4.3 dB		
Radiated spurious emissions	1 000 MHz ~ 18 000 MHz	3.8 dB		
	Above 1 8000 Mb	5.9 dB		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (10) of (59)

🛟 eurofins

6. Measurement results explanation example

Frequency (Mb)	Factor(dB)	Frequency (Mb)	Factor(dB)
30	5.98	11 000	6.98
50	6.13	12 000	6.98
100	6.16	13 000	6.99
200	6.22	14 000	7.01
300	6.25	15 000	7.02
400	6.29	16 000	7.02
500	6.30	17 000	7.04
600	6.33	18 000	7.07
700	6.34	19 000	7.07
800	6.36	20 000	7.19
900	6.38	21 000	7.34
1 000	6.39	<mark>2</mark> 2 000	7.37
2 000	6.50	2 <mark>3</mark> 000	7.57
3 000	6.67	2 <mark>4 000</mark>	7.81
4 000	6.76	25 000	8.08
5 000	6.81	26 000	8.26
6 000	6.84	26 500	8.30
7 000	6.89	27 000	8.77
8 000	6.90	28 000	9.15
9 000	6.94	29 000	9.16
10 000	6.96	30 000	10.02

Note.

Offset(dB) = RF cable loss(dB) + Divider (dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (11) of (59)

7. Test results 7.1. Conducted output power Test setup

Test procedure

971168 D01 v03r01 – Section 5.2 ANSI C63.26-2015 – Section 5.2.4.2 CFR 47, - Section §2.1046

Test settings

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurement be performed only over durations of active transmissions at maximum output power level applies. Thus, an average power meter can always be used to perform the measurement when the EUT can be configured to transmit continuously.

If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98%), then the following options can be implemented to facilitate measurement of the average power with an average power meter:

- a) A gated average power meter can be used to perform the measurement if the gating parameters can be adjusted such that the power is measured only during active transmission bursts at maximum output power levels.
- b) A conventional average power meter with no signal gating capability can also be used if the measured burst duty cycle is constant (i.e., duty cycle variations are less than or equal to ± 2%) by performing the measurement over the on/off burst cycles and then correcting (increasing) the measured level by a factor equal to [10log (1/duty cycle)]. See 5.2.4.3.4 for guidance with respect to measuring the transmitter duty cycle.

See item r) of 4.1 for more information regarding power meter functional requirements and limitations, and consult the instrumentation-specific application literature for proper set-up and use.

Notes:

Offset(dB) = RF cable loss(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (12) of (59)

	D e se els sei el tele					Ма	ximum pov	ver
Test	Bandwidth	Test mode	RB	RB	MPR		equency (M	
Band	(MHz)		size	offset		Low	Middle	High
			1	0	0	21.88	-	22.35
			1	3	0	21.84	_	22.28
			1	5	0	21.82	-	22.26
		QPSK	3	0	0	22.33	-	22.47
			3	1	0	22.32	-	22.08
			3	3	0	22.30	-	22.52
			6	0	1	21.40	-	21.03
	1.4		1	0	1	21.35	-	21.16
			1	3	1	21.58	-	21.08
			1	5	1	21.56	-	21.08
		16QAM	3	0	1	21.46	-	21.14
		•	3	1	1	21.40	-	21.10
			3	3	1	21.46	-	21.09
			6	0	2	20.46	-	20.16
		QPSK	1	0	0	21.94	-	22.06
			1	8	0	21.90	-	21.98
			1	14	0	21.80	-	21.87
			8	0	1	21.41	-	21.02
			8	4	1	21.40	-	21.06
			8	7	1	21.31	-	21.08
LTE			15	0	1	21.35	-	21.05
Band 26	3		1	0	1	21.54	-	21.01
			1	8	1	21.56	-	21.02
			1	14	1	21.11	-	21.01
		16QAM	8	0	2	20.50	-	20.08
			8	4	2	20.45	-	20.30
			8	7	2	20.49	-	20.18
			15	0	2	20.34	-	20.29
			1	0	0	21.89	-	22.19
			1	12	0	22.27	-	22.20
			1	24	0	22.27	-	22.24
		QPSK	12	0	1	21.34	-	21.20
			12	7	1	21.31	-	21.08
			12	13	1	21.23	-	21.01
	E		25	0	1	21.30	-	21.11
	5		1	0	1	21.16	-	21.00
			1	12	1	21.26	-	20.99
			1	24	1	21.13	-	21.02
		16QAM	12	0	2	20.33	-	20.13
			12	7	2	20.30	-	20.03
			12	13	2	20.30	-	20.16
			25	0	2	20.32	-	20.21

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (13) of (59)

	D ava alvusi al tila		RB			Ма	ximum pov	/er
Test Band	Bandwidth	Test mode		RB offset	MPR	Fi	requency (M	Ł)
Dallu	(MHz)	mode	size	onset		Low	Middle	High
			1	0	0	-	22.09	-
			1	25	0	-	22.03	-
			1	49	0	-	21.98	-
		QPSK	25	0	1	-	21.27	-
			25	12	1	-	21.22	-
			25	25	1	-	21.20	-
	10		50	0	1	-	21.22	-
	10	16QAM	1	0	1	-	21.32	-
			1	25	1	-	21.28	-
			1	49	1	-	21.30	-
			25	0	2	-	20.20	-
			25	12	2	-	20.19	-
			25	25	2	-	20.13	-
LTE			50	0	2	-	20.27	-
Band 26			1	0	0	-	22.02	-
			1	36	0	-	21.92	-
		QPSK	1	74	0	-	21.74	-
			36	0	1	-	21.23	-
			36	18	1	-	21.16	-
			36	37	1	-	21.11	-
	15		75	0	1	-	21.17	-
	15		1	0	1	-	21.45	-
			1	36	1	-	21.33	-
			1	74	1	-	21.28	-
		16QAM	36	0	2	-	20.19	-
			36	18	2	-	20.20	-
			36	37	2	-	20.14	-
			75	0	2	-	20.15	-

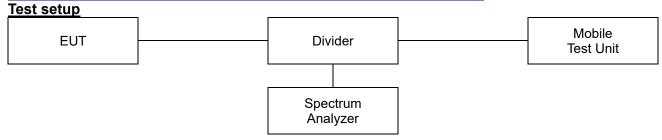
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (14) of (59)

KCTL

Straddle channel

Test Band	Bandwidth (쌘)	Test mode	RB size	RB offset	MPR	Maximum power
			1	0	0	22.21
			1	3	0	22.21
			1	5	0	22.17
		QPSK	3	0	0	22.46
			3	1	0	22.39
			3	3	0	22.54
	1.4		6	0	1	21.03
	1.4		1	0	1	20.91
			1	3	1	21.13
			1	5	1	20.94
		16QAM	3	0	1	20.96
			3	1	1	20.90
			3	3	1	21.04
			6	0	2	20.22
		QPSK	1	0	0	21.92
	3		1	8	0	21.96
			1	14	0	21.93
			8	0	1	21.05
			8	4	1	21.18
			8	7	1	21.12
LTE			15	0	1	21.14
Band 26	3		1	0	1	21.18
			1	8	1	21.06
			1	14	1	21.09
		16QAM	8	0	2	20.27
			8	4	2	20.04
			8	7	2	20.36
			15	0	2	20.15
			1	0	0	22.12
			1	12	0	22.16
			1	24	0	22.11
		QPSK	12	0	1	21.03
			12	7	1	21.10
			12	13	1	21.01
	E		25	0	1	21.15
	5		1	0	1	21.02
			1	12	1	20.99
			1	24	1	21.01
		16QAM	12	0	2	20.00
			12	7	2	20.10
			12	13	2	20.09
			25	0	2	20.04

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (15) of (59)



Test Band	Bandwidth (∰z)	Test mode	RB size	RB offset	MPR	Maximum power
			1	0	0	22.14
			1	25	0	21.95
			1	49	0	22.02
		QPSK	25	0	1	21.05
			25	12	1	21.07
			25	25	1	21.01
LTE	10		50	0	1	21.05
Band 26	10		1	0	1	21.27
			1	25	1	21.09
		16QAM	1	49	1	21.07
			25	0	2	20.13
			25	12	2	20.04
			25	25	2	20.12
			50	0	2	20.14
		QPSK	1	0	0	22.16
			1	36	0	21.98
			1	74	0	21.90
			36	0	1	21.00
			36	18	1	21.03
			36	37	1	20.90
LTE	45		75	0	1	20.88
Band 26	15		1	0	1	21.42
			1	36	1	21.32
			1	74	1	21.21
		16QAM	36	0	2	20.05
			36	18	2	20.08
			36	37	2	19.99
			75	0	2	20.11

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (16) of (59)

7.2. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>Limit</u>

According to §2.1049, the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Test procedure

971168 D01 v03r01 – Section 4.2 and 4.3 ANSI C63.26-2015 – Section 5.4.3 and 5.4.4

<u>Test settings</u>

◆ 26dB Bandwidth

- c) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement.
- d) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW.
- e) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
- d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "−X dB" requirement, i.e., if the requirement calls for measuring the −26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level.
- e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold.
- f) Determine the reference value by either of the following:
 - Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
 - 2) Set the EUT to transmit an unmodulated carrier. Set the spectrum analyzer marker to the level of the carrier.
- g) Determine the "-X dB amplitude" as equal to (Reference Value X). Alternatively, this calculation can be performed on the spectrum analyzer using the delta-marker measurement function.
- h) If the reference value was determined using an unmodulated carrier, turn the EUT modulation on, then either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise the trace from step f) shall be used for step i).

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> 🔅 eurofins

- i) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB amplitude" determined in step f). If a marker is below this "-X dB amplitude" value it should be as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- j) The spectral envelope can cross the "-X dB amplitude" at multiple points. The lowest or highest frequency shall be selected as the frequencies that are the farthest away from the center frequency at which the spectral envelope crosses the "-X dB amplitude."
- j) The OBW shall be reported by providing plot(s) of the measuring instrument display, to include markers depicting the relevant frequency and amplitude information (e.g., marker table). The frequency and amplitude axis and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

• 99% Occupied Bandwidth

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient).
- b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.
- c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

Notes:

1. The EUT was setup to maximum output power as its lowest and highest channel with all bandwidth, Modulation.

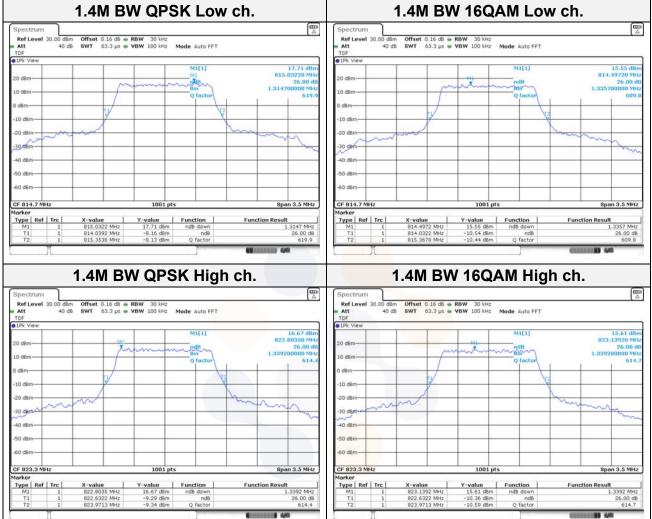
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (18) of (59)

KCTL

Test Band	Bandwidth (∰z)	Frequency (畑)	Test mode	26dB bandwidth (Mz)	99 % bandwidth (₩z)
		0447	QPSK	1.31	1.10
	4.4	814.7	16QAM	1.34	1.10
	1.4	823.3	QPSK	1.34	1.10
		023.3	16QAM	1.34	1.10
		04 <i>E E</i>	QPSK	3.11	2.71
	3	815.5	16QAM	3.09	2.70
		822.5	QPSK	3.14	2.72
LTE			16QAM	3.10	2.70
Band 26	5	816.5	QPSK	5.42	4.53
			16QAM	5.46	4.55
		821.5	QPSK	5.45	4.53
			1 <mark>6QAM</mark>	5.32	4.52
	10	810.0	QPSK	10.14	8.99
	10	819.0	16QAM	10.09	9.09
	15	821.5	QPSK	14.99	13.49
	10	021.0	16QAM	15.06	13.49

Straddle channel

Test Band	Bandwidth (₩z)	Frequency (쌘)	Test mode	26dB bandwidth (M±)	99 % bandwidth (₩z)
	1.4	824	QPSK	1.32	1.09
	1.4	024	16QAM	1.34	1.10
	3	824	QPSK	3.12	2.71
	3	824	16QAM	3.07	2.70
LTE	5	824	QPSK	5.31	4.52
Band 26			16QAM	5.37	4.53
	10	824	QPSK	10.14	8.99
			16QAM	10.29	8.97
	4.5	00.4	QPSK	14.99	13.49
	15	824	16QAM	15.06	13.45

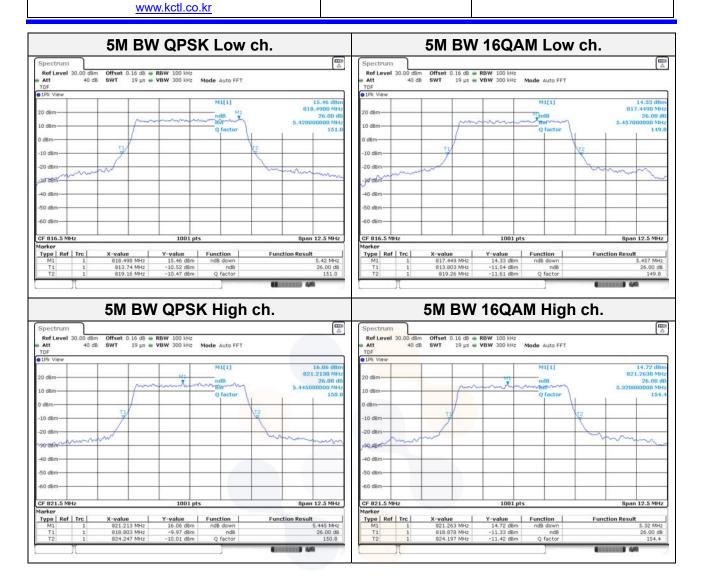

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (19) of (59)

KCTL

26dB Bandwidth

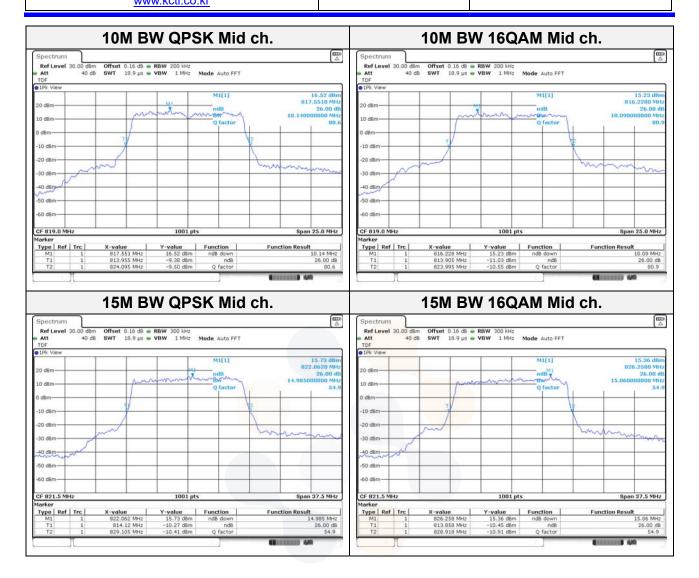
Test mode: LTE Band 26

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (20) of (59)

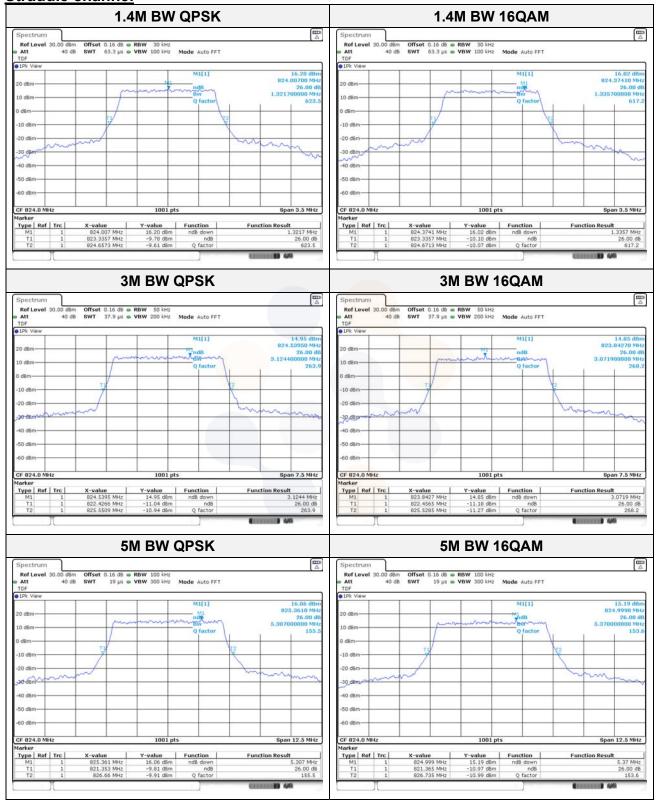

KCTL

3M BW 16QAM Low ch. 3M BW QPSK Low ch. Spectrum Spectrum Ref Level 30.00 Att Offset 0.16 dB
 RBW 50 kHz
SWT 37.9 µs
 VBW 200 kHz Ref Level 30.00 Att Offset 0.16 dB
 RBW 50 kHz
SWT 37.9 µs
 VBW 200 kHz 40 dB 40 dB Mode Auto FFT Mode Auto FFT TDF 1Pk Vie 1Pk Vie M1[1] M1[1] 815. 815.94210 0 dBe 10 dB 20 dBr m 30 dBr nieb O O dB 50 dem 50 de 0 dB CF 815.5 N 7.5 MHz CF 815.5 100 7.5 MHz 100 Function Result 3.1094 MHz 26.00 dB 262.4 Function Result 3.0869 MHz 26.00 dB 264.3 Marker Type Ref Trc Marker Type Ref Trc Y-value 14.86 dBm -11.33 dBm -11.27 dBm Function ndB down X-value 815.9421 MHz 813.9416 MHz 817.0509 MHz X-value 815.987 MHz 813.9565 MHz 817.0435 MHz Y-value 14.44 dBr Function ndB down ndB Q factor -11.71 dBm -11.61 dBm ndB Q factor 3M BW QPSK High ch. 3M BW 16QAM High ch. Spectru
 Ref Level
 30.00 dBm
 Offset
 0.16 dB
 RBW
 50 kHz

 Att
 40 dB
 SWT
 37.9 µs
 VBW 200 kHz
 Ref Level 30.00 dBm Att 40 dB Offset 0.16 dB
 RBW 50 kHz
 SWT 37.9 µs
 VBW 200 kHz
 Mode Auto FFT Mode Auto FFT TDF IPk V M1[1] M1[1] 14.66 0 14.58 822.17780 822.5 X . 10 dBm Ab 01 262 265 in dee 20 dBr A AD HER 30 9 10.40 10 49 50 dBn 50 di CF 822.5 M CF 822.5 MH n 7.5 MHz n 7.5 MHz 1001 1001 pt Function Result 3.1019 MHz Function Result 3.1394 MHz Y-value 14 66 dBm X-value R22.3801 MHz X-value 822.1778 MHz 820.9491 MHz 824.0509 MHz Y-value 14.58 dBr Function Type Ref Trc Function ndB down Type Ref Trc ndB Q factor ndB Q factor T1 T2 820.9416 MHz 824.0809 MHz 11.36 dBm 11.19 dBm 26.00 dB 262.0 T1 T2 11.20 dBm 11.35 dBm 26.00 dB 265.1 10 440


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR22-SRF0088-C Page (21) of (59)

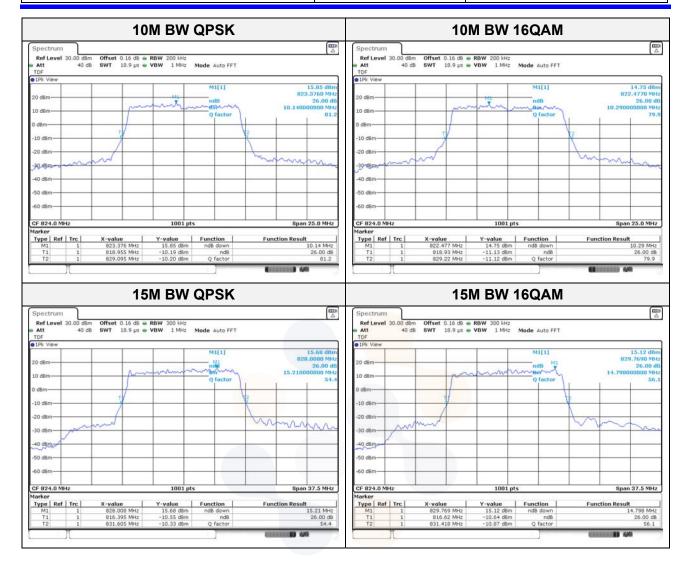
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (22) of (59)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (23) of (59)

KCTL

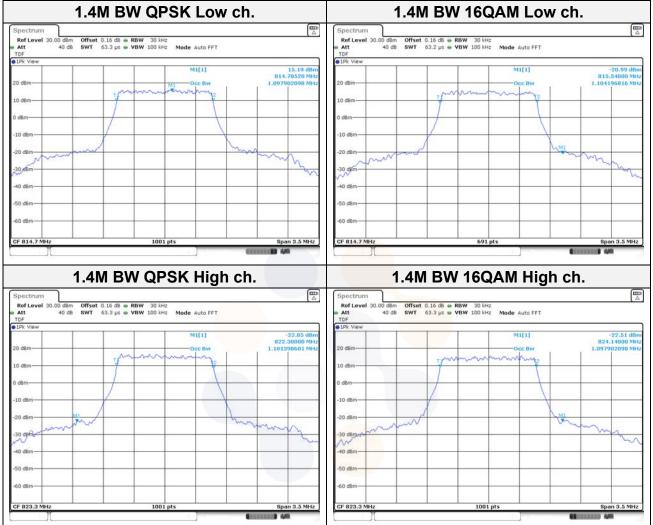
Straddle channel



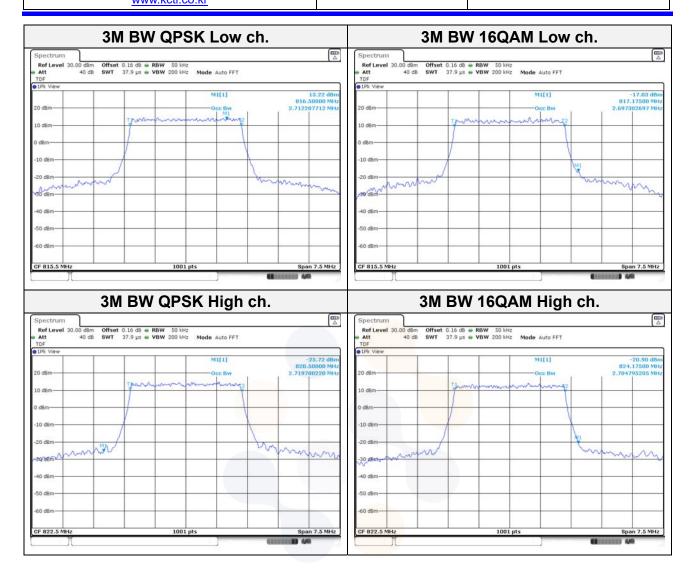
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

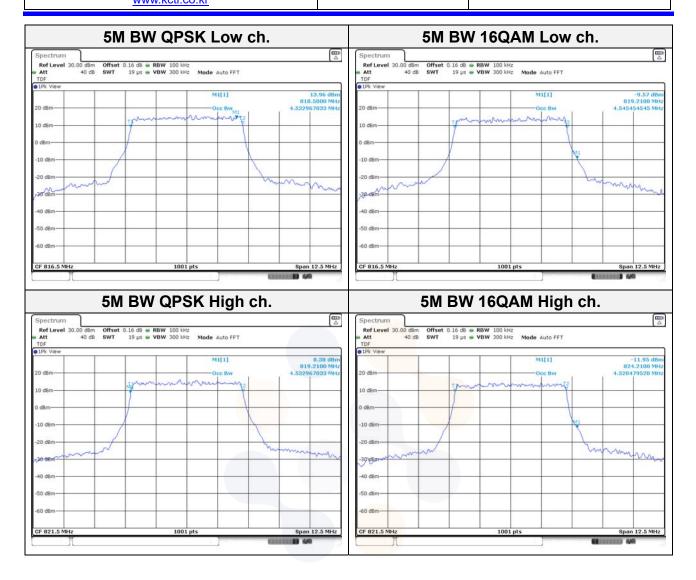
Report No.: KR22-SRF0088-C Page (24) of (59)

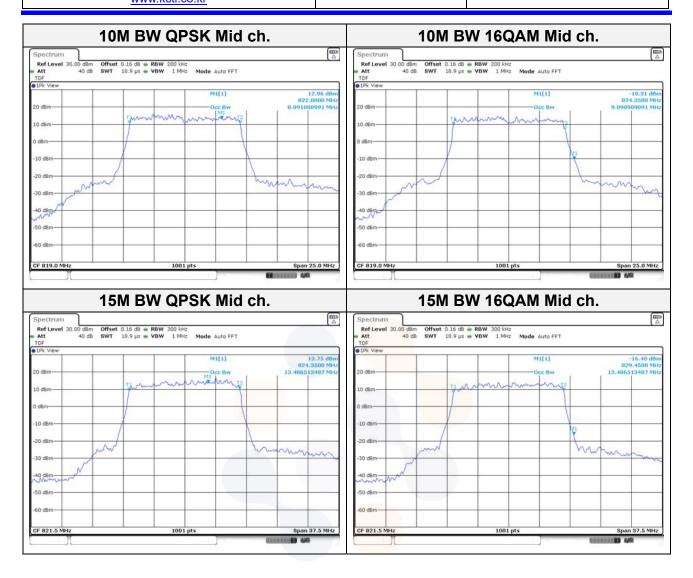

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (25) of (59)

KCTL

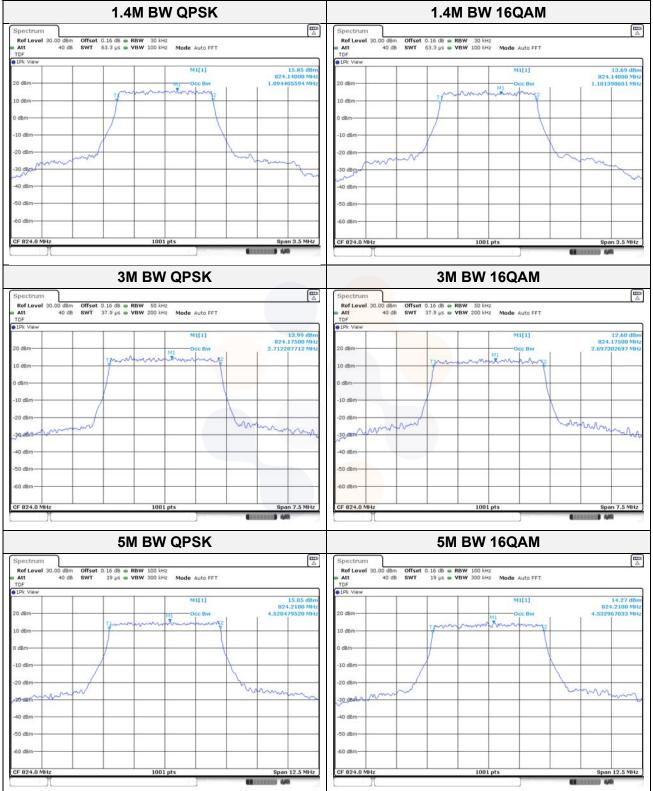

99% Occupied Bandwidth

Test mode: LTE Band 26

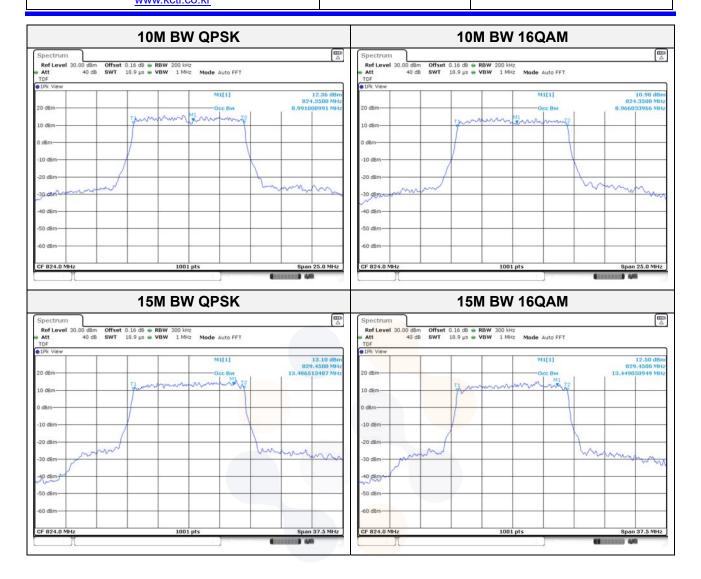

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (26) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (27) of (59)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (28) of (59)

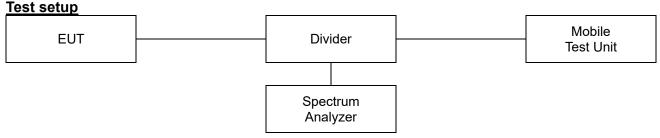


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (29) of (59)


KCTL

Straddle channel

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (30) of (59)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (31) of (59)

7.3. Spurious Emissions at Antenna Terminal

<u>Limit</u>

According to §90.691(a), Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kl_2 , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz where f is greater than 12.5 kl_2 .

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + $10Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Test procedure

971168 D01 v03r01 - Section 6 ANSI 63.26-2015 – Section 5.7

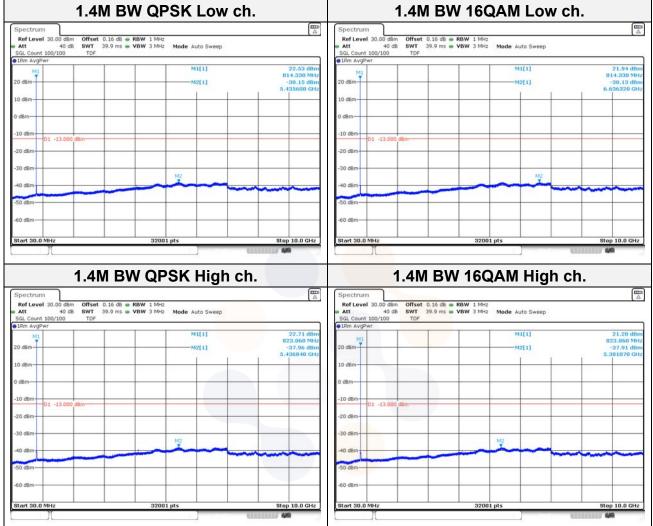
Test settings

- 1) Start frequency was set to 30 Mb and stop frequency was set to at least 10th the fundamental frequency.
- 2) Detector = RMS
- 3) Sweep time = auto couple.
- 4) Trace mode = trace average
- 5) Allow trace to fully stabilize.
- 6) Please see test notes below RBW and VBW settings.

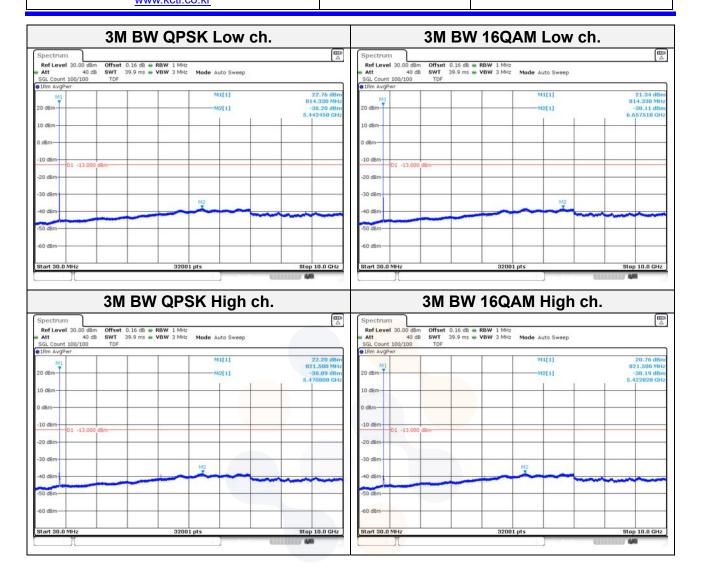
Notes:

1. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz.

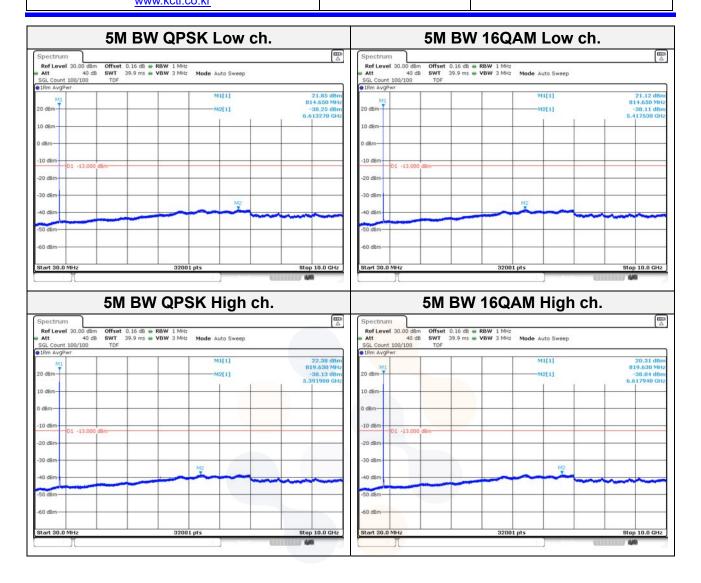
The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

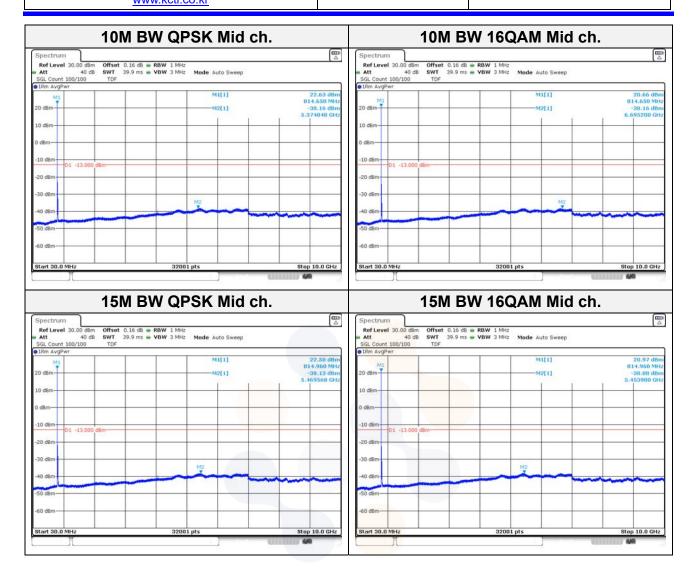

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (32) of (59)

KCTL

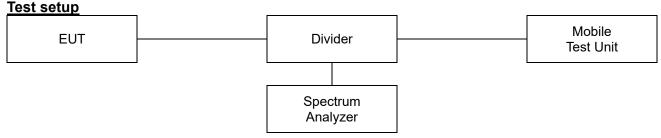

<u>Test results</u>

Test mode: LTE Band 26


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (33) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (34) of (59)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (35) of (59)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (36) of (59)

7.4. Band Edge Emissions at Antenna Terminal

<u>Limit</u>

According to §90.691(a), Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kl_2 , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz where f is greater than 12.5 kl_2 .

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + $10Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Test procedure

971168 D01 v03r01 - Section 6 ANSI C63.26-2015 - Section 5.7

Test settings

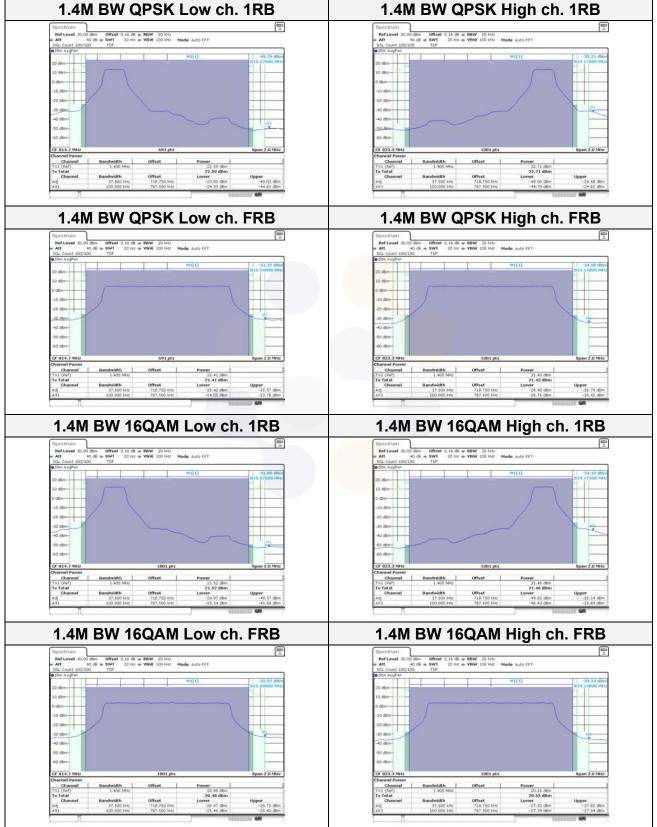
- 1) Start frequency was set to 30 Mb and stop frequency was set to at least 10th the fundamental frequency.
- 2) Span was set large enough so as to capture all out of band emissions near the band edge.
- 3) Set the RBW > 1% of the emission bandwidth.
- 4) Set the VBW \geq 3 x RBW.
- 5) Set the number of sweep points $\ge 2 \times \text{Span/RBW}$
- 6) Detector = RMS
- 7) Trace mode = trace average
- 8) Sweep time should be auto for peak detection. For RMS detection the sweep time should be set as follows:
 - a) If the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) x (symbol period) (e.g., by a factor of 10 x symbol period x number of points) Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols.
 - b) If the device cannot transmit continuously (duty cycle < 98%), a gated sweep shall be used when possible (i.e., gate triggered such that the analyzer only

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr 🛟 eurofins

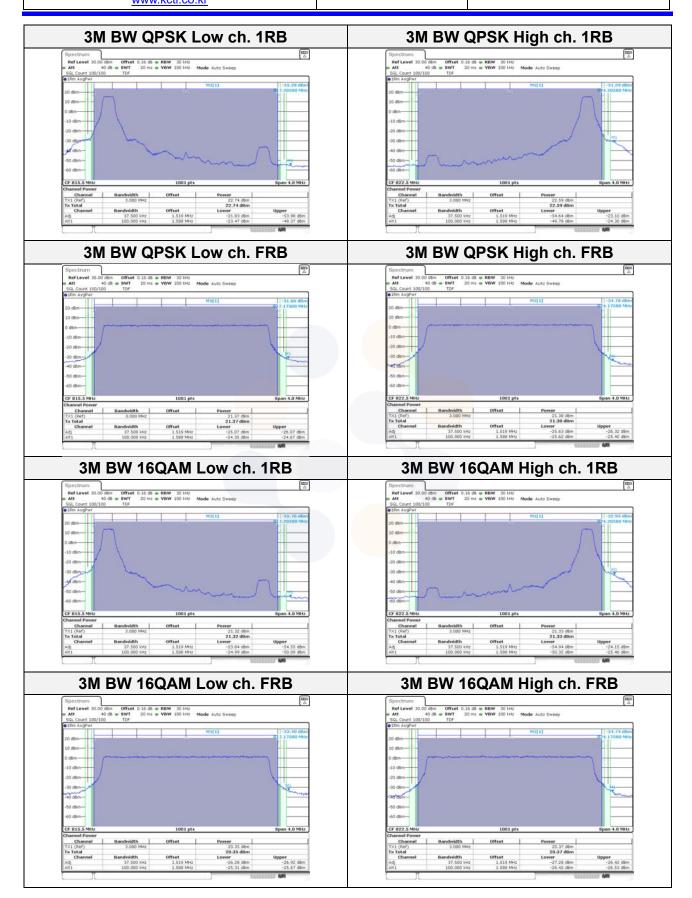
sweeps when the device is transmitting at full power), set the sweep time > (number of points in sweep) x (symbol period) but the sweep time shall always be maintained at a value that is less than or equal to the minimum transmission time

- c) If the device cannot be configured to transmit continuously (duty cycle > 98%), and a free-running sweep must be used, set the sweep time so that the averaging is performed over multiple on/off cycles by setting the sweep time > (number of points in sweep) × (transmitter period) (i.e., the transmit on-time + the off-time). The spectrum analyzer readings shall subsequently be corrected by [10 log (1/duty cycle)]. This assumes that the transmission period and duty cycle is relatively constant (duty cycle variation ≤ ±2%).
- d) If the device cannot be configured to transmit continuously and a free-running sweep must be used, and if the transmissions exhibit a non-constant duty cycle (duty cycle variations > ±2%), set the sweep time so that the averaging is performed over the on-period by setting the sweep time > (symbol period) × (number of points), while also maintaining the sweep time < (transmitter on-time). The trace mode shall be set to max hold, since not every display point will be averaged only over just the on-time. Thus, multiple sweeps (e.g., 100) in maximum hold art necessary to ensure that the maximum power is measured.
- 9) Allow trace to fully stabilize.

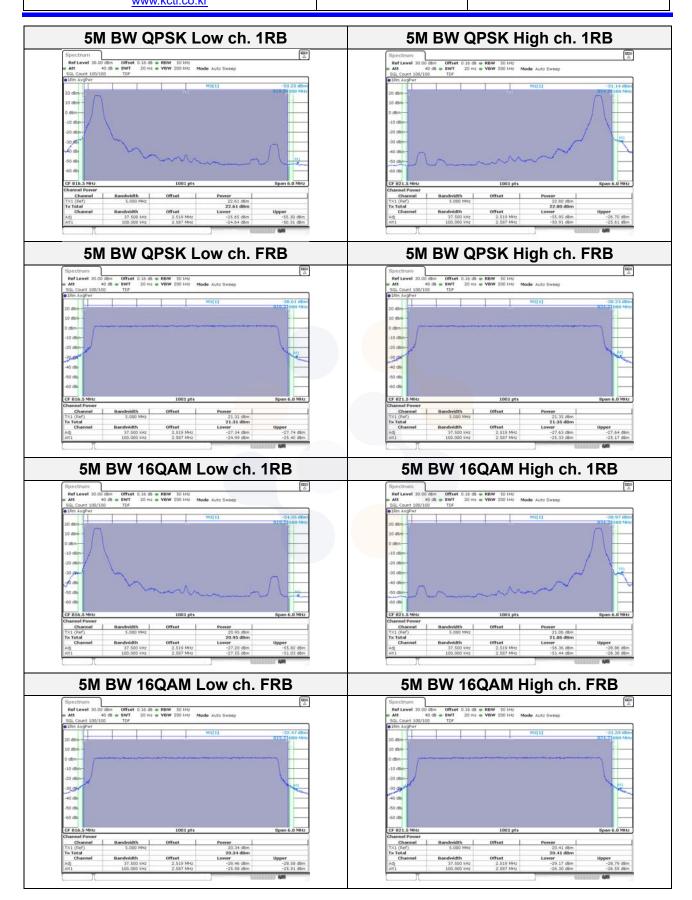
Notes:

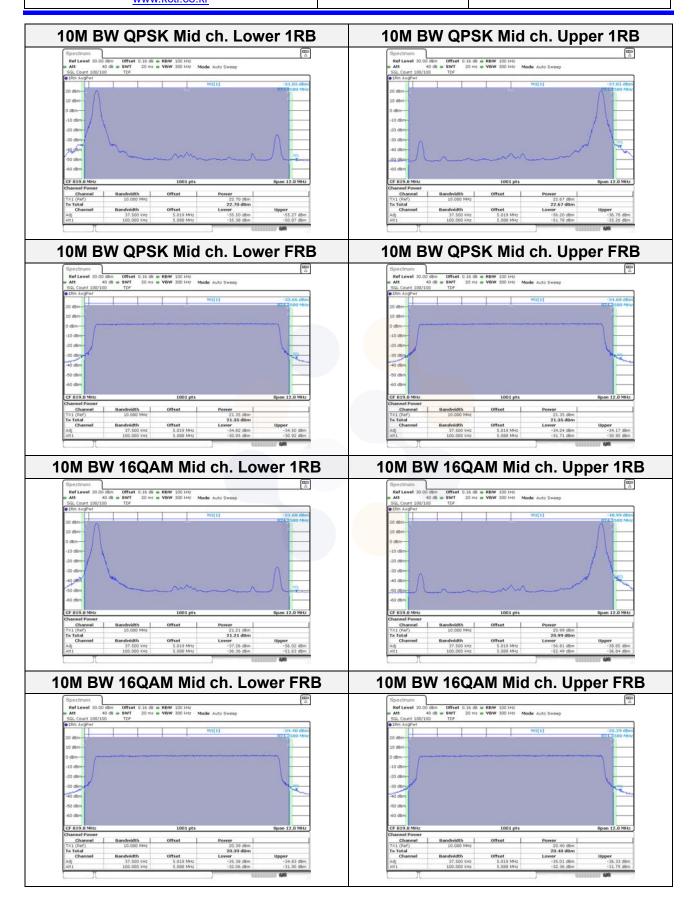

- 1. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 Mb or greater. however in the 1 Mb bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- 2. The EUT was setup to maximum output power as its lowest and highest channel with all bandwidth, modulation and RB configurations.

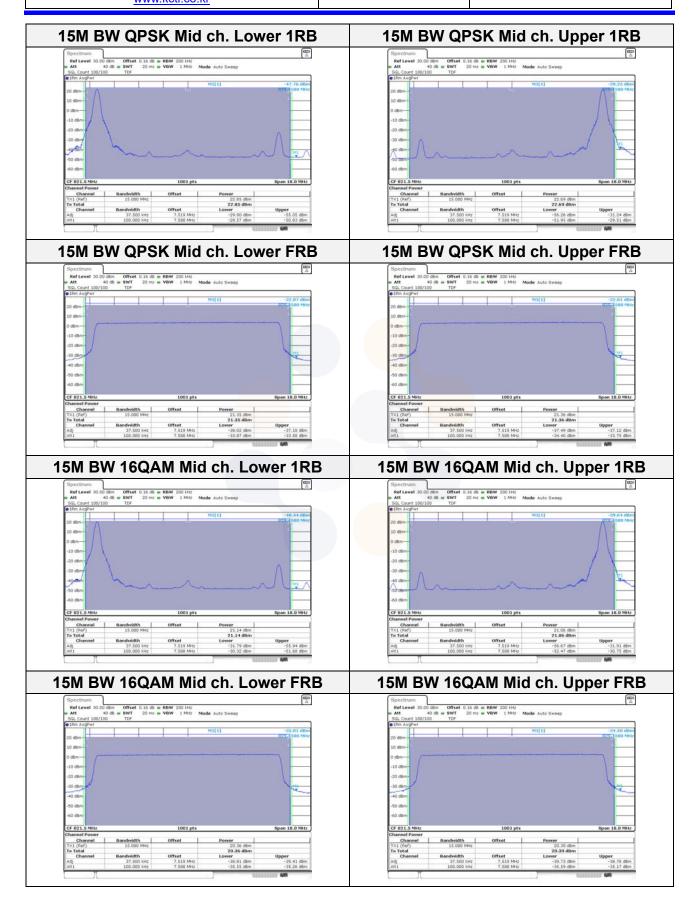
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (38) of (59)


KCTL

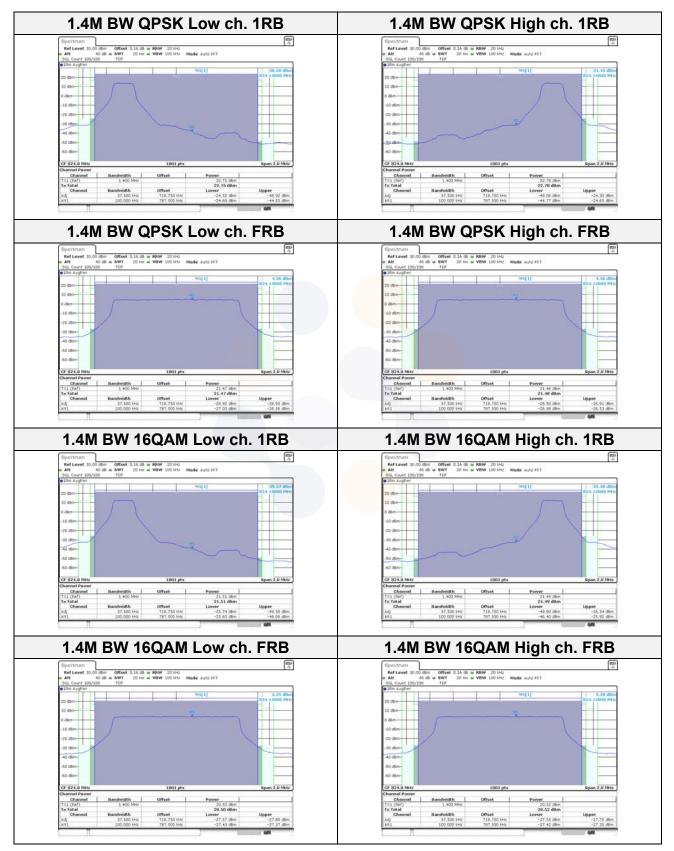
<u>Test results</u> Test mode: LTE Band 26


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (39) of (59)

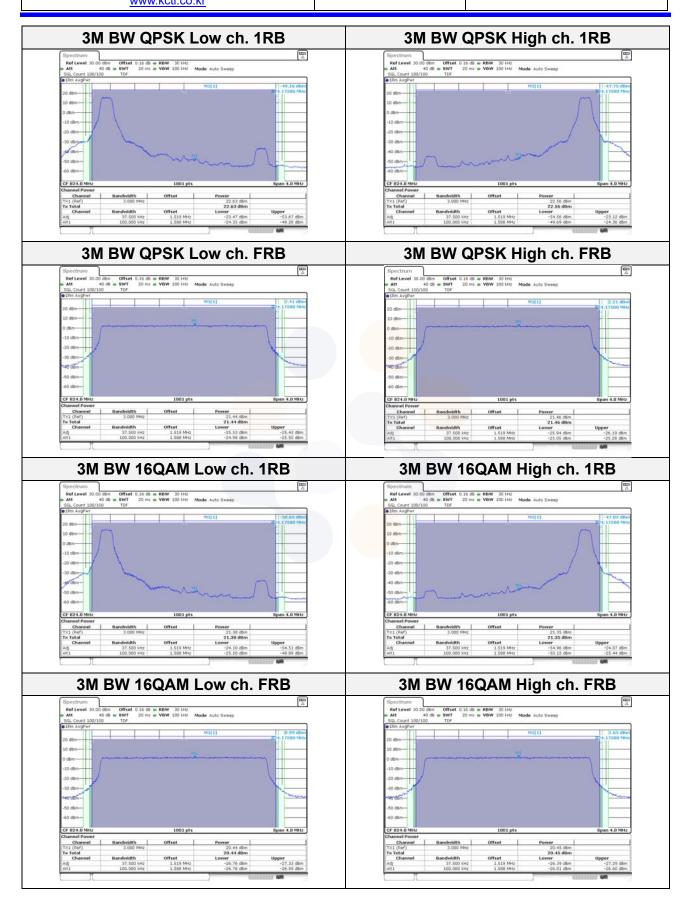

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (40) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (41) of (59)

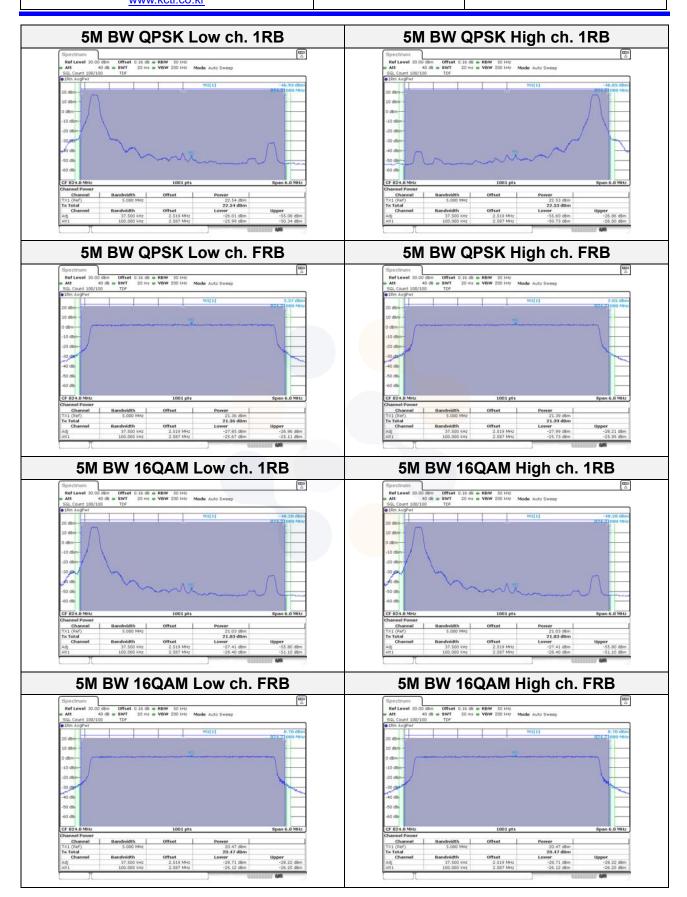
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (42) of (59)

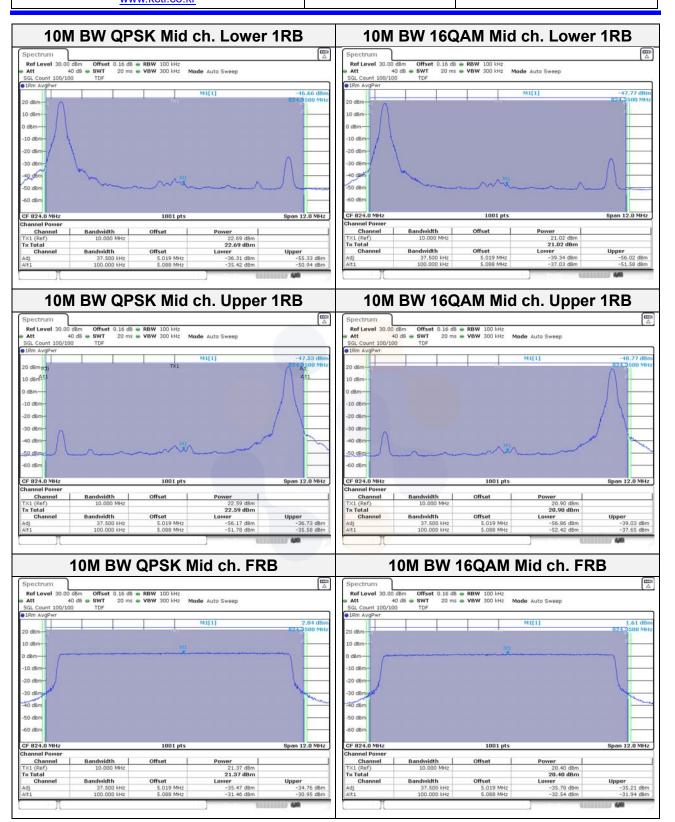


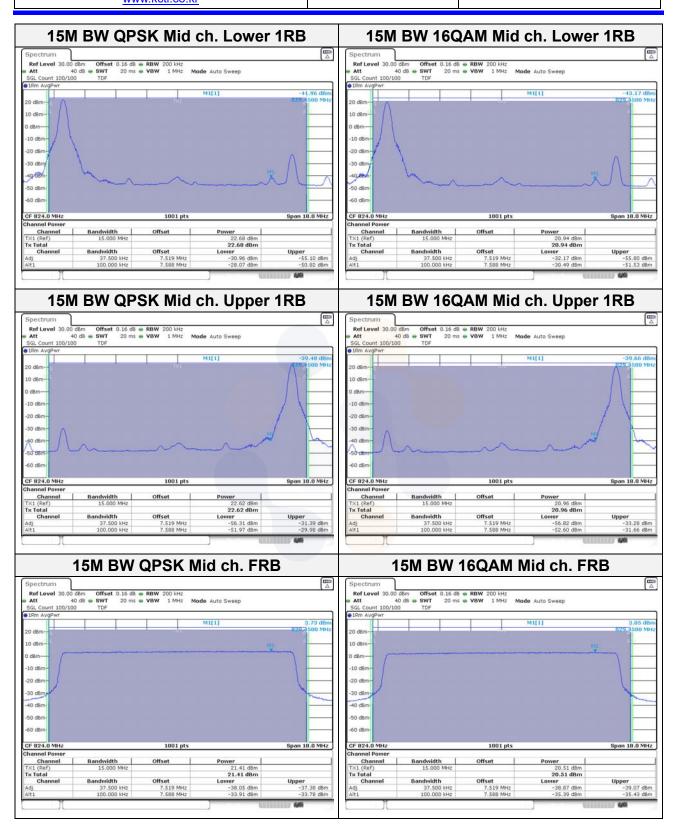
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (43) of (59)


KCTL

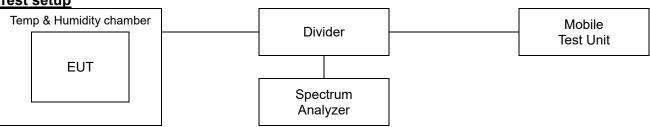
Straddle channel


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (44) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (45) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (46) of (59)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (47) of (59)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea FAX: 82-505-299-8311 TEL: 82-31-285-0894 www.kctl.co.kr

Report No.: KR22-SRF0088-C Page (48) of (59)

7.5. Frequency stability

Limit

According to §2.1055(a),

The frequency stability shall be measured with variation of ambient temperature as follows:

- 1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- 2) From -20° to + 50° centigrade for equipment to be licensed for use in the maritime services under part 80 of this chapter, except for class A, B, and S emergency position indicating radiobeacons (EPIRBS), and equipment to be licensed for use above 952 Mb at operational fixed stations in all services, stations in the local television transmission service and point-to-point microwave radio service under part 21 of this chapter, equipment licensed for use aboard aircraft in the aviation services under part 87 of this chapter, and equipment authorized for use in the family radio service under part 95 of this chapter.
- 3) From 0° to + 50° centigrade for equipment to be licensed for use in the radio broadcast Services under part 73 of this chapter.

According to §2.1055(d),

The frequency stability shall be measured with variation of primary supply Voltage as follows:

- 1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- 2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating and point which shall be specified by the manufacturer.
- 3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

According to §90.213

For mobile devices operating in the 809 to 824 Mb band at a power level 2 Watts or less, the limit specified in Table is ± 2.5 ppm.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (49) of (59)

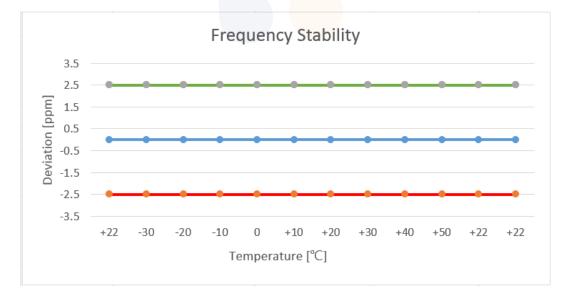
Test procedure

ANSI 63.26-2015 – Section 5.6

Test settings

- The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference)
- 2) The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each Temperature level.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (50) of (59)

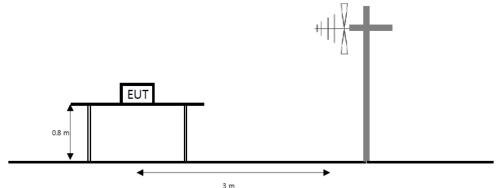


KCTL

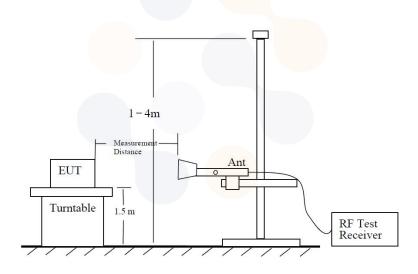
Test results

Test mode	:	LTE Band 26
Frequency (Hz)	:	<u>823 300 000</u>
Channel	:	<u>26783</u>
Deviation limit(FCC)	:	<u>±0.00025% or 2.5ppm</u>

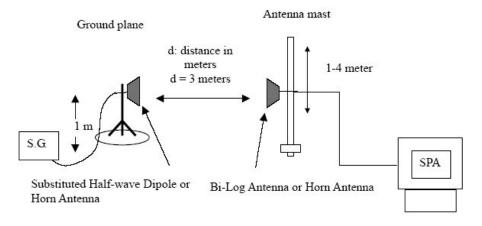
Voltage	Power	Temp.	Frequency	Frequency	Devi	ation
(%)	(%) (V)		(Hz)	error (Hz)	(ppm)	(%)
		+22(Ref)	823,300,001	1.16	0.0	0.000000
		-30	823,300,001	1.25	0.0	0.000000
		-20	823,300,001	1.34	0.0	0.000000
		-10	823,300,002	1.55	0.0	0.000000
100%	100% 3.88	0	823,300,002	1.81	0.0	0.000000
100 /0	5.00	+10	823,300,001	1.20	0.0	0.000000
		+20	823,300,001	<mark>1.11</mark>	0.0	0.000000
		+30	823,300,001	1.49	0.0	0.000000
		+40	823,300,002	1.88	0.0	0.000000
		+50	823,300,002	1.95	0.0	0.000000
115%	4.46	+22(Ref)	823,300,001	1.26	0.0	0.000000
End point	3.40	+22(Ref)	823,300,000	-0.16	0.0	0.000000



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (51) of (59)



7.6. Radiated Power (ERP/EIRP) Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

The diagram below shows the test setup for substituted method.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (52) of (59)

<u>Limit</u>

According to §90.635(b), the maximum output power of the transmitter for mobile stations is 100 watts(20 dBw).

Test procedure

971168 D01 v03r01 - Section 5.2 and 5.8 ANSI 63.26-2015 – Section 5.2 ANSI/TIA-603-E-2016 - Section 2.2.17

Test settings

- 1) RBW = 1 % to 5 % of the OBW.
- 2) VBW \geq 3 × RBW.
- 3) SPAN = $2 \times \text{to } 3 \times \text{the OBW}$.
- 4) Number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5) Sweep time :
 - 1) Auto couple, or
 - 2) ≥ [10 × (number of points in sweep) × (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.
- 6) Detector = RMS
- 7) If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8) If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full -power transmissions).
- 9) Trace mode = trace averaging (RMS) over 100 sweeps.
- 10) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- 11) Allow trace to fully stabilize.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

Notes:

- 1. On a test site, the EUT shall be placed at 80 cm or 1.5 m height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to Correspond to the fundamental frequency of the transmitter.
- 3. The turntable is rotated through 360°, and the receiving antenna scans in order to determine the Level of the maximized emission.
- 4. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 5. The maximum signal level detected by the measuring receiver shall be noted.
- 6. The EUT was replaced by half-wave dipole (1 ^{GHz} below) or horn antenna (1 ^{GHz} above) connected to a signal generator.

The power is calculated by the following formula;

Pd(dBm) = Pg(dBm) – Cable loss (dB) + Antenna gain (dB)

- Note. Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.
- 7. The test antenna shall be raised and lowered through the specified range of height to ensure that The maximum signal is received.
- 8. The input signal to the substitution antenna shall be adjusted to the level that produces a level Detected by the measuring corrected for the change of input attenuator setting of the measuring Receiver.
- 9. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for Any change of input attenuator setting of the measuring receiver.
- 10. The measurement shall be repeated with the test antenna and the substitution antenna Orientated for horizontal polarization.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR22-SRF0088-C Page (54) of (59)

Test results

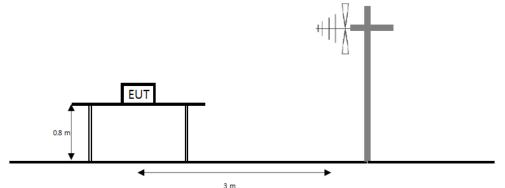
Test mode: LTE Band 26

Bandwidth	Modulation	Frequency Pol.		Antenna Gain	C.L	Substitute Level	EF	RP
		[MHz]	[V/H]	[dBd]	[dB]	[dBm]	[dB m]	[W]
	QPSK	814.7	Н	-2.29	4.99	20.01	12.73	0.019
1.4 M	QFOR	823.3	Н	-2.12	5.01	20.07	12.94	0.020
1.4 10	16QAM	814.7	Н	-2.29	4.99	18.98	11.70	0.015
	TOQAM	823.3	Н	-2.12	5.01	18.42	11.29	0.013
	QPSK	815.5	Н	-2.32	4.96	19.41	12.13	0.016
3 M	QFSK	822.5	Н	-2.20	5.00	20.22	13.02	0.020
5 101	16QAM	815.5	Н	-2.32	4.96	18.23	10.95	0.012
		822.5	Н	-2.20	5.00	18.85	11.65	0.015
	QPSK	816.5	Н	-2.35	4.97	19.73	12.41	0.017
5 M	QPSK	821.5	Н	-2.30	4.98	20.09	12.81	0.019
5 M	160414	816.5	Н	- <mark>2.35</mark>	4.97	18.59	11.27	0.013
	16QAM	821.5	Н	- <mark>2.30</mark>	4.98	18.92	11.64	0.015
10 M	QPSK	819.0	Н	-2.42	4.98	19.99	12.59	0.018
10 M	16QAM	819.0	Н	-2.42	4.98	18.97	11.57	0.014
15 M	QPSK	821 <mark>.5</mark>	Н	-2.30	<mark>4.98</mark>	20.12	12.84	0.019
15 M	16QAM	821.5	Н	-2.30	4.98	19.15	11.87	0.015

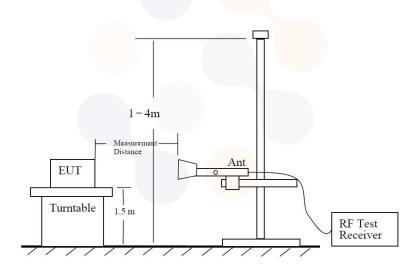
Straddle channel

Bandwidth	Modulation	Frequency	Pol.	Antenna Gain	C.L	Substitute Level	EF	RP
		[MHz]	[V/H]	[dBd]	[dB]	[dB m]	[dB m]	[W]
1.4 M	QPSK		Н	-2.05	5.02	20.62	13.55	0.023
1.4 10	16QAM		Н	-2.05	5.02	19.06	11.99	0.016
3 M	QPSK		Н	-2.05	5.02	20.48	13.41	0.022
3 101	16QAM	824	Н	-2.05	5.02	19.10	12.03	0.016
5 M	QPSK		Н	-2.05	5.02	20.41	13.34	0.022
5 101	16QAM		Н	-2.05	5.02	19.12	12.05	0.016
10 M	QPSK		Н	-2.05	5.02	20.45	13.38	0.022
	16QAM		Н	-2.05	5.02	19.34	12.27	0.017
45.14	QPSK		Н	-2.05	5.02	20.41	13.34	0.022
15 M	16QAM		Н	-2.05	5.02	19.43	12.36	0.017

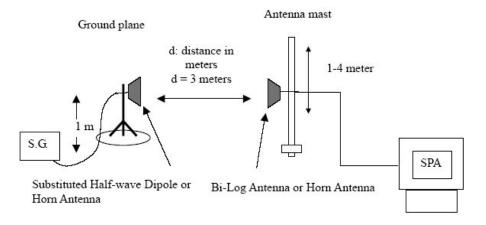
Note.


1. E.R.P & E.I.R.P(dBm) = Substitute Level(dB) + Antenna gain(dBi&dBd) - C.L(Cable loss) (dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (55) of (59)



7.7. Radiated Spurious Emissions Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

The diagram below shows the test setup for substituted method.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

<u>Limit</u>

According to §90.691(a), Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 $\text{Log}_{10}(f/6.1)$ decibels or 50 + 10 $\text{Log}_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + $10Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

Test procedure

971168 D01 v03r01 - Section 6.2 ANSI 63.26-2015 – Section 5.5 ANSI/TIA-603-E-2016 - Section 2.2.12

Test settings

- 1) RBW = 1 kHz for below 1 GHz and 1 MHz for above 1 GHz.
- 2) VBW \geq 3 × RBW.
- 3) Detector = RMS
- 4) Trace mode = Max hold
- 5) Sweep time = Auto couple
- 6) Number of sweep points ≥ 2 × span / RBW
- 7) Allow trace to fully stabilize.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

KCTL

Notes:

- 1. On a test site, the EUT shall be placed at 80 cm or 1.5 m height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The turntable is rotated through 360°, and the receiving antenna scans in order to determine the level of the maximized emission.
- 4. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 5. The maximum signal level detected by the measuring receiver shall be noted.
- 6. The EUT was replaced by half-wave dipole (1 ^{GHz} below) or horn antenna (1 ^{GHz} above) connected to a signal generator.
- 7. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 8. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring corrected for the change of input attenuator setting of the measuring receiver.
- 9. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 10. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR22-SRF0088-C Page (58) of (59)

KCTL

Test results (Above 1 000 Mb)

<u>Test mode</u>	: <u>LTE Band 26</u>
Frequency(Mb)	: <u>814.7</u>
<u>Channel</u>	: <u>26697</u>
Bandwidth(Mb)	: <u>1.4</u>

Mode	Frequency	Pol.	Antenna Gain	Cable loss	Substitute Level	Level	Limit	Margin
	[MHz]	[V/H]	[dBi]	[dB]	[dBm]	[dBm]	[dBm]	[dB]
	1 630.60	Н	5.99	7.23	-56.66	-57.90	-13.00	44.90
ODEK	2 445.41	Н	6.08	8.84	-55.94	-58.70	-13.00	45.70
QPSK	3 260.63	V	7.63	10.47	-55.16	-58.00	-13.00	45.00
	4 075.85	Н	8.85	11.68	-53.77	-56.60	-13.00	43.60

<u>Test mode</u>

: LTE Band 26

Frequency(ML) : 823.3

: <u>823.3</u> : <u>26783</u>

<u>Channel</u>

Bandwidth(Mb) : <u>1.4</u>

Mode	Frequency	Pol.	Antenna Gain	Cable loss	Substitute Level	Level	Limit	Margin
	[MHz]	[V/H]	[dBi]	[dB]	[dBm]	[dBm]	[dBm]	[dB]
	1 647.42	Н	5.95	7.26	-55.59	-56.90	-13.00	43.90
QPSK	2 471.26	Н	6.14	8.89	-51.75	-54.50	-13.00	41.50
QPSK	3 295.09	Н	7.73	10.54	<mark>-5</mark> 2.59	-55.40	-13.00	42.40
	4 118.52	Н	8.83	11.93	-48.20	-51.30	-13.00	38.30

Test mode : LTE Band 26

Frequency(Mb) : 824

<u>Channel</u> : <u>26790</u>

Bandwidth(Mtz) : <u>1.4</u>

Mode	Frequency	Pol.	Antenna Gain	Cable loss	Substitute Level	Level	Limit	Margin
	[MHz]	[V/H]	[dBi]	[dB]	[dBm]	[dBm]	[dBm]	[dB]
	1 648.24	Н	5.94	7.26	-55.58	-56.90	-13.00	43.90
QPSK	2 472.49	Н	6.14	8.89	-53.35	-56.10	-13.00	43.10
QPSK	3 296.73	Н	7.73	10.55	-54.98	-57.80	-13.00	44.80
	4 120.57	Н	8.83	11.93	-47.70	-50.80	-13.00	37.80

Note.

1. E.R.P & E.I.R.P(dB m) = Substitute Level(dB) + Antenna gain(dB i&dB d) - C.L(Cable loss) (dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SRF0088-C Page (59) of (59)

KCTL

8. Measurement equipment										
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date						
Biconical VHF-UHF Broadband Antenna	SCHWARZBECK	VUBA9117	275	24.03.30						
Bilog Antenna	ETS.LINDGREN	3143B	00228420	23.09.28						
Horn Antenna	ETS.LINDGREN	3117	161225	23.05.04*						
Horn Antenna	ETS.LINDGREN	3117	00227509	22.09.27						
Horn Antenna	ETS.lindgren	3116	00086632	23.01.25						
Horn Antenna	ETS.lindgren	3116	00086635	23.05.04*						
High Pass Filter	Wainwright Instruments GmbH	WHKX10-900-1000- 15000-40SS	11	22.08.20						
High Pass Filter	Wainwright Instruments GmbH	WHKX12-2805-3000- 18000-40SS	32	22.08.20						
Broadband Amplifier	SONOMA INSTRUMENT	315	300314	23.01.19						
Amplifier	LTC MICROWAVE	LLA01185522Q-B	139	22.07.19						
Amplifier	L-3 Narda-MITEQ	JS44-18004000-33- 8P	2000996	23.01.21						
Spectrum Analyzer	AGILENT	N9040B	MY57010132	22.12.31						
Widebnad Radio Communication Tester	R <mark>&</mark> S	CMW500	141780	23.03.28						
Spectrum Analyzer	R&S	FSV40-N	101462	23.01.06						
Power Divider	AGILENT	11636B	54456	22.12.22						
Vector Signal Generator	R&S	SMBV100A	257566	22.07.09						
Signal Generator	R&S	SMB100A	176206	23.01.19						
Antenna Stand	innco systems GmbH	AS1 <mark>500-EP</mark> -10kg	N/A	N/A						
Antenna Stand	innco systems GmbH	AS1 <mark>500-E</mark> P-10kg	N/A	N/A						
Turn Device	innco systems GmbH	DE3700-RH	N/A	N/A						

* Tests related to this equipment were progressed after the calibration was completed.

End of test report