EMC TEST REPORT

Project No.	LBE20220227	Issue No.	2		
	Name of organization	Samsung Electr	ronics Co., Ltd.		
Applicant	Address	(Maetan-dong) 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea			
	Date of receipt	April 28, 2022			
	Type of device	☐ Class B pers	eivers subject to Part 15 sonal computers and peripherals B digital devices and peripherals st Receiver		
	Equipment authorization	■ Certification □ Supplier's Declaration of Conformit			
	FCC ID	A3LSMR905			
EUT	Kind of product	Smart Wearable			
	Model No.	SM-R905U			
	Variant Model No.	Refer to clause 4.6			
	Manufacturer	AG TECH CO., LTD Lot G3, Que Vo Industrial Park(Expanded Area), Nam Ward, Bac Ninh City, Bac Ninh Province, Vietnam			
Applied Standards		47 CFR Part 15, Subpart B, Class B / ANSI C63.4-2014			
Test Period	Test Period		May 3, 2022 ~ May 9, 2022		
Issue date		June 15, 2022			
Took was alk . O a wall a d					

Test result : Complied

The equipment under test has found to be compliant with the applied standards. (Refer to the attached test result for more detail.)

Tested by : Seon-Tai Park

Reviewed by : Chang-Eun Park

C-E-Park

The test results in this report only apply to the tested sample. This report must not be reproduced, except in full, without written permission from Global CS center. * Not KOLAS report

Samsung Electronics Co., Ltd., Global CS Center (Maetan dong) 129, Samsung-ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do 16677, Korea

Table of Contents

1. Report Information	3
1.1 Revision history	3
2. Summary of test results	3
2.1 Emission	3
3. General Information	3
3.1 Test facility	3
4. Test Setup configuration	4
4.1 Test Peripherals	4
4.2 EUT operating mode	5
4.3 Details of Sampling	5
4.4 Used cable description	6
4.5 Test arrangement	7
4.6 EUT Description	10
4.7 EUT Frequencies	10
4.8 Test configuration and condition	11
4.9 Measurement uncertainty	11
5. Results of individual test	12
5.1 Conducted Emission	12
5.2 Radiated Emission	16

Smart Wearable: SM-R905U

1. Report Information

1.1 Revision history

No.	Date of Issue	Revised detailed information
Issue 0	May 9, 2022	There are no revisions and this version is basic test report.
Issue 1	May 11, 2022	Deleted variant model.
Issue 2	June 15, 2022	Added variant model.

X Remark

Compliance with Part 15B requirements for the receiver part of the licensed transmitter (equipment code CXX) is covered by other test report.

2. Summary of test results

2.1 Emission

The EUT has been tested according to the following specifications:

Applied	Test type	Applied standard	Result
•	Conducted Emission (Mains port)	47 CFR Part 15 Subpart B /	Complied
	Radiated Emission	ANSI C63.4-2014 (Class B)	Complied

3. General Information

3.1 Test facility

The Global CS Center is located on Samsung Electronics Co., Ltd. at (Maetan-dong) 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea.

All testing are performed in Semi-anechoic chambers conforming to the site attenuation characteristics defined by ANSI C63.4, CISPR 32, CISPR 16-1-4 and Shielded rooms. And all antennas are properly calibrated using ANSI C63.5:2017.

The Global CS Center is an ISO/IEC 17025 accredited testing laboratory by the National Radio Research Agency with designation No. KR0004. for EMC testing.

Smart Wearable: SM-R905U

4. Test Setup configuration

4.1 Test Peripherals

The cables used for these peripherals are either permanently attached by the peripheral manufacturer or coupled with an assigned cable as defined below.

The following is a listing of the EUT and peripherals utilized during the performance of EMC test:

Description	Model No.	Serial No.	Manufacturer / Trademark	FCC ID	
Smart Wearable	SM-R905U	-	SAMSUNG	A3LSMR905	
Battery	EB-BR900ABY	-	ALT	-	
Wireless Charger	EP-OR900	RFT2204185RTC	RF TECH	A3LEPOR900	
Laptop Computer	Latitude5580	1WYRYM2	Dell	DoC	
Laptop Computer	Laptop Computer Latitude5580		D3HRYM2 Dell		
Laptop AC Adapter	· ·		5DEA Dell		
Laptop AC Adapter	LA65NM130	5B3C	Dell	DoC	
•		CN57BA5903634AD V8JJCD4371	SAMSUNG	DoC	
Mouse	SMH-210UB	TAKGA05788Z	SAMSUNG	DoC	
Router	Router DIR-806A		D-Link	DoC	
Router	DIR-806A	RF0F1D8011504	D-Link	DoC	
Travel Adapter EP-TA800		R37N9AQ96V8SE3	SoluM	-	

Smart Wearable: SM-R905U

4.2 EUT operating mode

To achieve compliance applied standard specification including CXX, and JAB requirement, the following mode(s) were made during compliance testing:

4.2.1 Conducted Emission

No.	Operating mode
1	Wireless charging (w/TA) + Cellular receiver (LTE FDD26 Center Frequency)
2	Audio playback from internal memory + Wireless charging (w/TA)
3	Wireless charging (w/USB port of labtop computer)

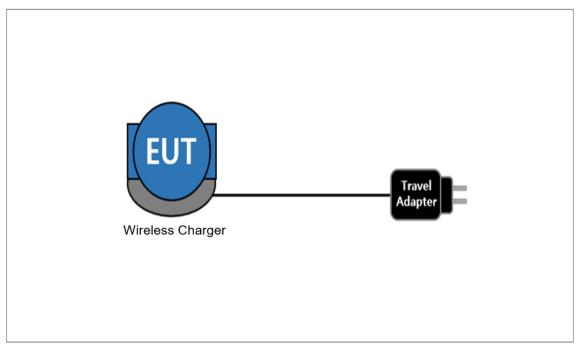
4.2.2 Radiated Emission

No.	Operating mode
1	Wireless charging (w/TA)
2	Audio playback from internal memory
3	Wireless charging (w/USB port of labtop computer)

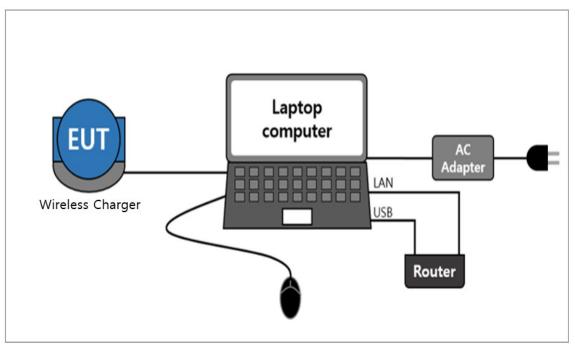
4.3 Details of Sampling

Customer selected, single unit.

Smart Wearable: SM-R905U

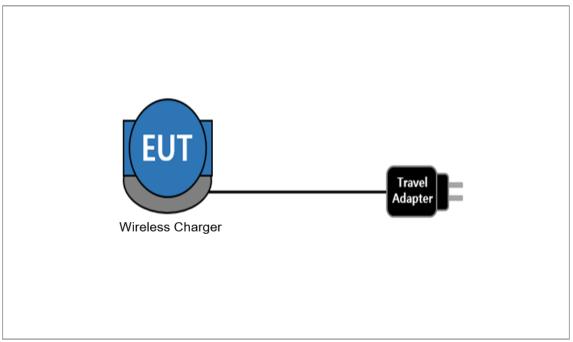

4.4 Used cable description

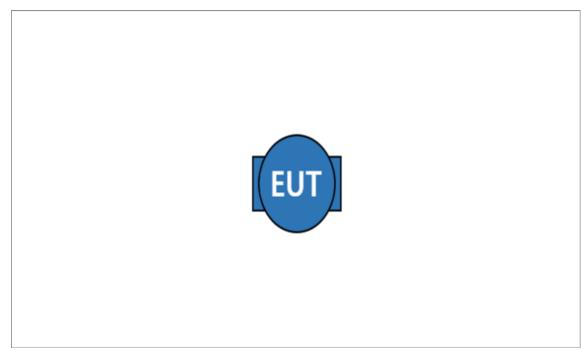
The EUT is configured, installed, arranged and operated in a manner consistent with typical applications. Interface cables/loads/devices are connected to at least one of each type of interface port of the EUT, and where practical, each cable shall be terminated in a device typical of actual usage. The type(s) of interconnecting cables to be used and the interface port (of the EUT) to which these were connected:


Connected cable	e Length Shielded [m] [Y/N]		Note
Wireless Charger Cable	0.8	Y	For Wireless Charger
Power	1.8	N	From Laptop Computer to AC Adapter
Power	1.5	N	For Laptop AC Adapter
LAN	1.5	N	From Laptop Computer to Router
USB	0.8	Y	From Laptop Computer to Router for DC Power
USB	1.8	Y	From Laptop Computer to Mouse

4.5 Test arrangement

4.5.1 Conducted Emission


[Mode 1 – 2]


[Mode 3]

Smart Wearable: SM-R905U

4.5.2 Radiated Emission

[Mode 1]

[Mode 2]

Smart Wearable: SM-R905U

[Mode 3]

Smart Wearable: SM-R905U

4.6 EUT Description

The EUT is a watch type smart wearable which can operate on WCDMA FDD 2/4/5, LTE FDD 2/4/5/12/13/25/26/66/71, and incorporates a Bluetooth, Wi-Fi (802.11 b/g/n/a), Audio, GNSS, NFC and Wireless Charging.

4.6.1 The variant models

- SM-R905F

4.7 EUT Frequencies

The highest frequencies (Generated and used)	Frequency [MHz]	
Wi-Fi	5 825	

Smart Wearable: SM-R905U

4.8 Test configuration and condition

The system was configured for testing in a typical fashion that a customer would normally use. Cables were attached to each of the available I/O Ports. Where applicable, peripherals were attached to the I/O cables.

The EUT was investigated in three orientations and the worst case orientation is reported.

RX mode(850MHz) testing was performed with the LTE FDD26 RX Test mode at center frequency. All licensed communication (850MHz) RX mode, GSM/WCDMA/LTE, test results are not significantly different.

The audio(1kHz sound) were repetitively played.

The EUT was charged with wireless charger connected to travel adapter or USB port of laptop computer.

Power source for the EUT operating was supplied by CVCF made by the Pacific Corp.

- Test Voltage : AC 120 V, 60 Hz

4.9 Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: (According to CISPR 16-4-2 and UKAS M3003)

Test	type	Measurement uncertainty (C.L. approximately 95 %, <i>k</i> = 2)	
Conducted Emission	AC Mains	2.83 dB	
Radiated Emission	Horizontal	4.62 dB	
(Below 1 GHz)	Vertical	5.79 dB	
Radiated Emission	Horizontal	4.99 dB	
(Above 1 GHz)	Vertical	4.99 dB	

^{*} Remark

1) The values for uncertainty of conducted and radiated emissions are less than the Corresponding values of Ucispr given in CISPR 16-4-2. Therefore no adjustment of measurement results is necessary when comparing them with the relevant limits.

Smart Wearable: SM-R905U

5. Results of individual test

5.1 Conducted Emission

The EUT is connected to a LISN via travel adapter. If the EUT is connected to the Laptop Computer USB port, the Laptop AC adapter is connected to a LISN.

Both conducted lines are measured in Quasi-Peak and CISPR-Average mode, including the worst-case data points for each tested configuration. The EUT measured in accordance with the methods described in standards.

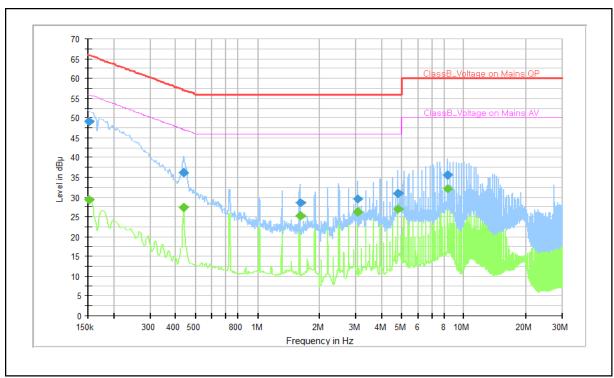
Limits for Conducted emission at the mains ports of Class B

Frequency range Limits	Resolution Bandwidth	Limits [dB(μV)]		
[MHz]	[kHz]	Quasi-peak	Average	
0.15 to 0.50	9	66 to 56	56 to 46	
0.50 to 5	9	56	46	
5 to 30	9	60	50	

NOTE 1 The lower limit shall apply at the transition frequency.

NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.1.1 Test instrumentation


EMC		Model name	Manufacturer	Serial No.	Next Calibration	
No.	Test Instrument				Date	Interval (Month)
E5I-006	LTE Communicator	CMW500	R&S	132728	2023-04-12	12
E5I-127	Two-Line V-Network	ENV216	R&S	102061	2023-01-17	12
E5I-016	EMI Test Receiver	ESU8	R&S	100482	2022-06-03	12
-	Test software	EMC32	R&S	Ver 10.60.20	-	-

5.1.2 Temperature and humidity condition

Test date	2022-05-09	Test engineer	Seon-Tai Park			
	Ambient temperature	(23.2 ± 0.5) °C	Limit (15.0 to 35.0) °C			
Climate condition	Humidity	(41.5 ± 0.5) % R.H.	Limit (25.0 to 75.0) % R.H.			
	Atmospheric pressure	(101.3 ± 0.5) kPa	Limit (86.0 to 106.0) kPa			
Test place	Shield Room (SR8)					

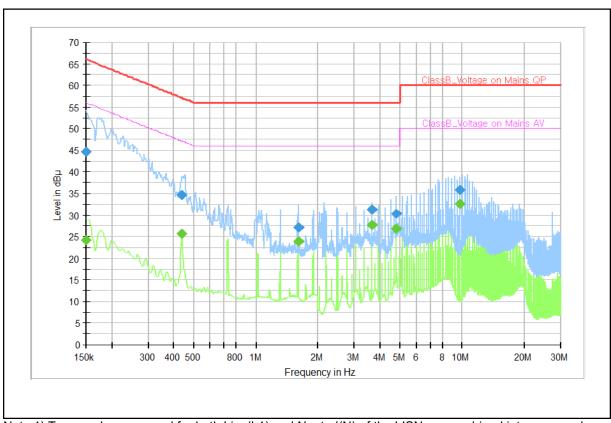
5.1.3 Test Results

□ Operating Mode 1: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.

QP / CAV final measurement results table:

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.152	49.0		65.9	16.9	N	10.0
0.152		29.4	55.9	26.5	N	10.0
0.438	36.1		57.1	21.0	L1	10.2
0.438		27.4	47.1	19.7	L1	10.2
1.606		25.1	46.0	20.9	N	9.9
1.606	28.6		56.0	27.4	N	9.9
3.062		26.2	46.0	19.8	N	10.0
3.062	29.6		56.0	26.4	N	10.0
4.812		27.1	46.0	18.9	N	10.0
4.812	31.0		56.0	25.0	N	10.0
8.313		32.1	50.0	17.9	N	10.2
8.313	35.7		60.0	24.3	N	10.2


Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss)

Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

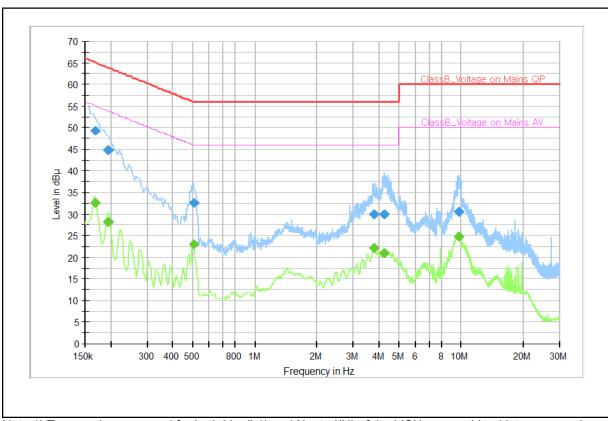
OD = Outsi Pook (CAV) = CISDR Average Corr. = Correction Footor

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 2: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.

QP / CAV final measurement results table:


Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.150	44.6		66.0	21.4	N	9.9
0.150		24.3	56.0	31.7	N	9.9
0.438	34.6		57.1	22.5	L1	10.2
0.438		25.6	47.1	21.5	L1	10.2
1.606		23.8	46.0	22.2	N	9.9
1.606	27.1		56.0	28.9	N	9.9
3.649		27.7	46.0	18.3	N	10.0
3.649	31.2		56.0	24.8	N	10.0
4.814		26.7	46.0	19.3	N	10.0
4.814	30.4		56.0	25.6	N	10.0
9.776		32.7	50.0	17.3	N	10.3
9.776	35.8		60.0	24.2	N	10.3

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss)

Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 3: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.

QP / CAV final measurement results table:

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.168		32.6	55.1	22.5	L1	10.1
0.168	49.3		65.1	15.8	L1	10.1
0.195		28.1	53.8	25.7	L1	10.0
0.195	44.9		63.8	19.0	L1	10.0
0.503		23.0	46.0	23.0	L1	10.0
0.503	32.7		56.0	23.3	L1	10.0
3.804	29.9		56.0	26.1	N	9.8
3.804		22.2	46.0	23.8	N	9.8
4.236	29.9		56.0	26.1	N	9.8
4.236		20.9	46.0	25.1	N	9.8
9.713		24.9	50.0	25.1	L1	9.9
9.713	30.4		60.0	29.6	L1	9.9

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss)

Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

Smart Wearable: SM-R905U

5.2 Radiated Emission

The following data lists the significant emission frequencies, measured levels, correction factors (for antenna and cables), orientation of table, polarization and height of antenna, the corrected reading, the limit, and the amount of margin.

Peak measurements were made over the changeable frequency range 30 MHz to 1 GHz at a measurement distance of 3 m for the following antenna and turntable arrangements:

Antenna Height [cm]	Antenna Polarization	Resolution Bandwidth [kHz]	Video Bandwidth [kHz]	Turntable position [degrees]
100 ~ 400	Horizontal, Vertical	120	300	Continuous

Measurements within 6 dB of the limit were then maximized by adjusting turntable position.

Final measurements were made using quasi-peak detector.

Peak/CISPR-Average measurements were made over the changeable frequency range 1 GHz to 40 GHz or 5th harmonics of the highest frequency generated or used in the device or on which the device operates or tunes at a measurement distance of 3 m for the following antenna and turntable arrangements. The measurements above 1 GHz were performed with the bore-sighting antenna aimed at the EUT.

Antenna Height [cm]	Antenna Polarization	Resolution Bandwidth [MHz]	Video Bandwidth [MHz]	Turntable position [degrees]
100 ~ 400	Horizontal, Vertical	1	3	Continuous

Measurements within 6 dB of the limit were then maximized by adjusting turntable position.

Final measurements were made using peak and CISPR-average detectors.

Limits for Radiated emission of Class B at a measuring distance of 3 m and 10 m

Frequency range Limits	Field Strength						
[MHz]	3 m [μV/m]	3 m [dB(μV/m)]	10 m [dB(μV/m)]				
30 to 88	100	40.0	29.5				
88 to 216	150	43.5	33.0				
216 to 960	200	46.0	35.5				
Above 960	500	54.0	43.5				

Note) Distance correction fomula from D1(3m) to D2(10m)

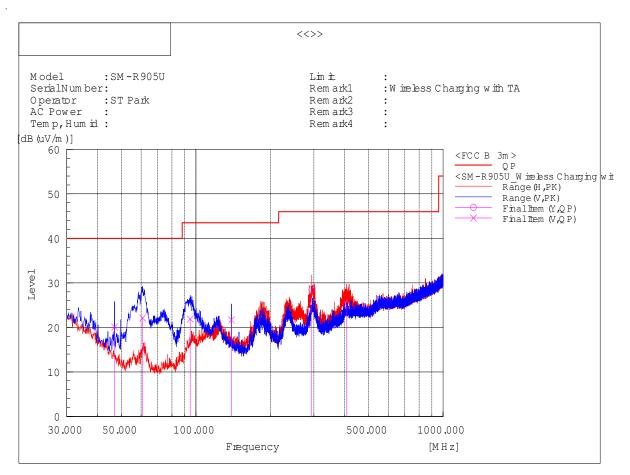
: Limit at D2 = Limit at D1 + 20Log(D1/D2)

Results checked manually; and points close to the limit line were re-measured.

Smart Wearable: SM-R905U

5.2.1 Test instrumentation

EMC		Model			Next Calibration		
No.	Test Instrument	name	Manufacturer	Serial No.	Date	Interval (Month)	
E5I-021	EMI Test Receiver	ESU40	R&S	100376	2023-01-28	12	
E5I-020	EMI Test Receiver	ESU40	R&S	100375	2022-09-23	12	
E5I-072	BiLog Antenna	CBL6112D	TESEQ	36009	2022-05-15	24	
E5I-223	6 dB Fixed Attenuator	8491B-006	Agilent	58359	2022-05-15	24	
E5I-075	Preamplifier	310N	SONOMA	332018	2022-05-26	12	
E5I-035	Horn Antenna	HF907	R&S	100506	2022-09-28	12	
E5I-039	Signal Conditioning Unit	SCU-18	R&S	10211	2023-04-18	12	
E5I-243	WideBand Horn Antenna	QMS-00880	STEATITE	25187	2022-11-17	12	
E5I-042	Signal Conditioning Unit	SCU-40A	R&S	10004	2022-09-10	12	
-	Test software	EP7RE	TOYO	Ver 8.0.20	-	-	
-	Test software	EMC32	R&S	Ver 9.25.00	-	-	


5.2.1 Temperature and humidity condition

Test date	2022-05-03 ~ 2022-05-04	Test engineer	Seon-Tai Park		
	Ambient temperature	(22.7 ± 0.5) °C	Limit (15.0 to 35.0) °C		
Climate condition	Humidity	(40.5 ± 0.5) % R.H.	Limit (25.0 to 75.0) % R.H.		
	Atmospheric pressure	Limit (86.0 to 106.0) kPa			
Test place	Semi-Anechoic Chamber (SAC5)				

5.2.3 Test Results

□ Operating Mode 1

- Frequencies below 1 GHz

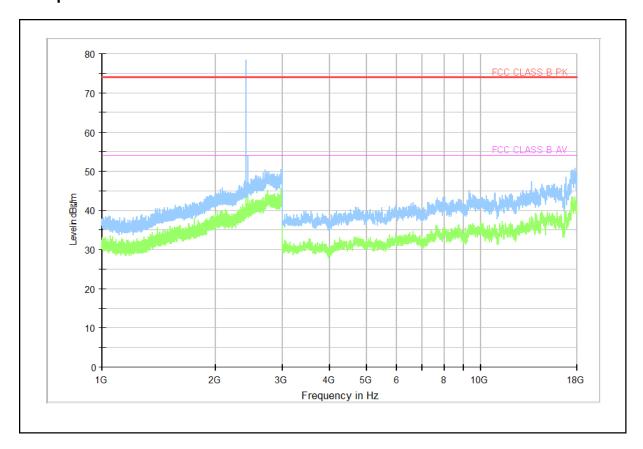
Final Result

No.	Frequency	(P)	Reading OP	c.f	Result OP	Limit OP	Margin QP	Height	Angle
	[MHz]		[dB (uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	46.854	V	35.7	-15.6	20.1	40.0	19.9	100	95
2	60.798	V	40.7	-18.6	22.1	40.0	17.9	200	25
3	94.748	V	36.8	-14.9	21.9	43.5	21.6	100	303
4	139.125	V	34.4	-12.7	21.7	43.5	21.8	100	332
5	294.325	Н	38.7	-10.2	28.5	46.0	17.5	100	98
6	407.815	Η	31.7	-6.6	25.1	46.0	20.9	100	325

Note1) Receiving antenna polarization : Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters

Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)


Margin (QP) = Limit - Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

This report must not be reproduced, except in full, without written permission from Global CS Center.

Smart Wearable: SM-R905U

- Frequencies above 1 GHz

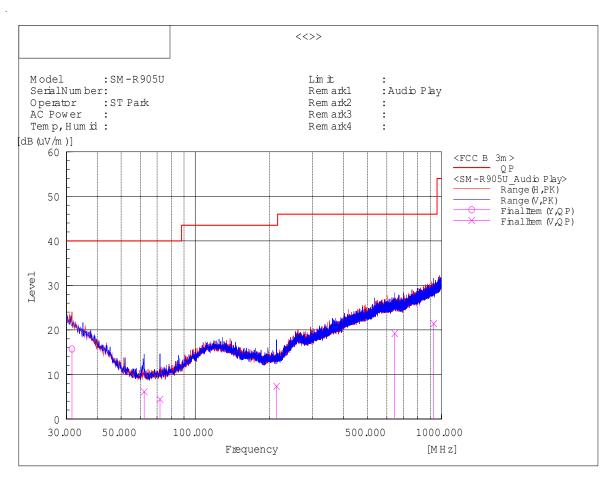
Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Receiving antenna polarization: Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters

Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain)

Margin (PK and/or CAV) = Limit – Level (PK and/or CAV)


PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

Note 3) Radiated emissions (Tx / Rx frequency) from the transceiver shall be ignored.

- Data transmission in the 2.4 GHz ISM band (Bluetooth/Wi-Fi)
- : Operating frequencies (2 400 ~ 2 483.5) MHz

□ Operating Mode 2

- Frequencies below 1 GHz

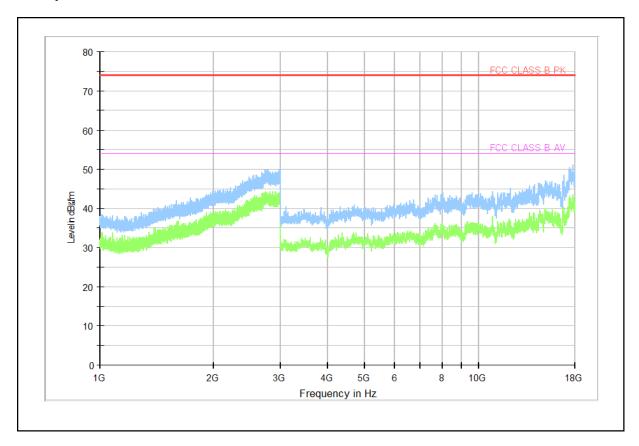
Final Result

No.	Frequency	(P)	Reading OP	c.f	Result OP	Limit OP	Margin QP	Height	Angle
	[MHz]		[dB (uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	31.576	Н	22.9	-7.2	15.7	40.0	24.3	200	122
2	62.010	V	24.6	-18.5	6.1	40.0	33.9	100	119
3	71.952	V	22.5	-18.1	4.4	40.0	35.6	200	272
4	213.815	V	21.8	-14.5	7.3	43.5	36.2	100	288
5	646.435	V	22.1	-2.9	19.2	46.0	26.8	400	245
6	929.311	V	21.0	0.4	21.4	46.0	24.6	100	321

Note1) Receiving antenna polarization : Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters

Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)


Margin (QP) = Limit – Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

This report must not be reproduced, except in full, without written permission from Global CS Center.

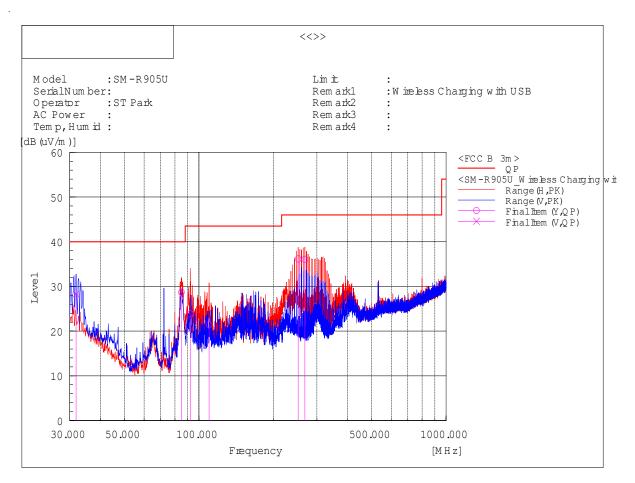
Smart Wearable: SM-R905U

- Frequencies above 1 GHz

Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Receiving antenna polarization : Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters


Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain)

Margin (PK and/or CAV) = Limit – Level (PK and/or CAV)

PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 3

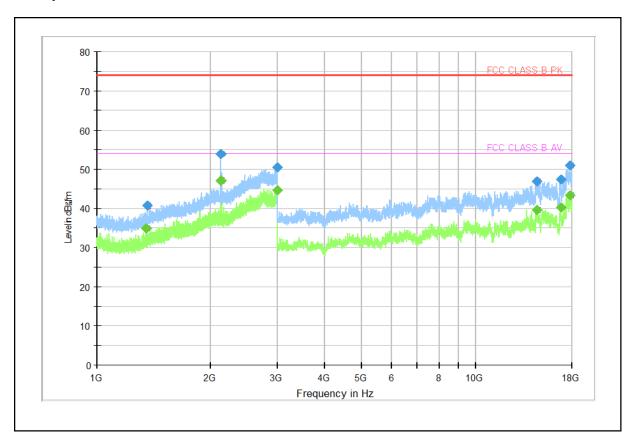
- Frequencies below 1 GHz

Final Result

No.	Frequency	(P)	Reading QP	c.f	Result QP	Limit QP	Margin QP	Height	Angle
	[MHz]		[dB (uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	31.819	V	35.7	-7.3	28.4	40.0	11.6	100	0
2	84.926	Η	45.4	-16.7	28.7	40.0	11.3	200	277
3	92.201	Η	39.3	-15.4	23.9	43.5	19.6	400	263
4	109.904	Η	33.7	-12.3	21.4	43.5	22.1	400	174
5	251.888	Η	46.7	-10.6	36.1	46.0	9.9	100	285
6	268.256	Н	46.3	-10.3	36.0	46.0	10.0	100	289

Note1) Receiving antenna polarization: Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters


Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)

Margin (QP) = Limit – Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

This report must not be reproduced, except in full, without written permission from Global CS Center.

- Frequencies above 1 GHz

Frequency (MHz)	PK (dBμV/m)	CAV (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1 349.000		34.80	54.00	19.20	101.0	Н	13.00	8.50
1 357.600	40.73		74.00	33.27	101.3	V	288.00	8.62
2 128.400		47.17	54.00	6.83	104.5	V	142.00	13.81
2 129.200	53.80		74.00	20.20	105.1	V	142.00	13.81
2 992.800		44.69	54.00	9.31	100.0	V	1.00	18.14
2 994.200	50.45		74.00	23.55	100.8	Н	91.00	18.16
14 503.500	46.98		74.00	27.02	107.6	Н	314.00	30.15
14 509.500		39.65	54.00	14.35	106.2	V	297.00	30.15
16 795.500	47.45		74.00	26.55	102.1	V	0.00	34.63
16 812.000		40.23	54.00	13.77	102.8	Н	349.00	34.37
17 785.500		43.41	54.00	10.59	106.0	Н	215.00	38.15
17 788.500	50.86		74.00	23.14	105.7	V	311.00	38.21

Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Receiving antenna polarization: Horizontal, Vertical

Test Distance: 3 m, Antenna Height: 1 to 4 meters

Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain)

Margin (PK and/or CAV) = Limit – Level (PK and/or CAV)

PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

This report must not be reproduced, except in full, without written permission from Global CS Center.