

TEST REPORT

KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr		Report No.: KR21-SRF0093-A Page (1) of (51)	KCTL			
1. Client						
∘ Name	: Samsung Electr	onics Co., Ltd.				
 Address : 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea 						
∘ Date of I	Receipt : 2021-04-13					
2. Use of Rep	ort : Certification					
3. Name of Pr	roduct / Model : Sm	nart Wearable / SM-R87	5U (Alt. SM-R875F)			
4. Manufactur	r er / Country of Origin : Sa	msung Electronics Co.	, Ltd. / Vietnam			
5. FCC ID (Mo	del) : A3	LSMR875 (SM-R875U	, SM-R875F)			
6. IC Certifica	te No. (Model) : 64	9E-SMR875 (SM-R875	5F)			
7. Date of Tes	t : 2021-04-28 to 2	021-06-03				
8. Location of	f Test : ■ Permanent Testi		esting n-si, Gyeonggi-do, 16677, Korea)			
9. Test metho	d used : FCC Part 15 Su	bpart C, 15.247 2 February 2017				
10. Test Resu	It : Refer to the test	t result in the test repor	ť			
	Tested by	Technical M	anager			
Affirmation	Name : Sunghyun Yoon (S	ignature) Name : Seur	ngyong Kim			
2021-06-11						
KCTL Inc.						
As a test result of the sample which was submitted from the client, this report does not guar antee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (2) of (51)

REPORT REVISION HISTORY

Date	Revision	Page No
2021-06-08	Originally issued	-
2021-06-11	Updated	1

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR21-SRF0093 is superseded by the report No. KR21-SRF0093-A.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests (may be required by the product standard or client)

☐ Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (3) of (51)

CONTENTS

1.	General information	4
2.	Device information	4
2.1	I. Frequency/channel operations	6
2.2	2. Duty Cycle Correction Factor	7
3.	Antenna requirement	8
4.	Summary of tests	9
5.	Measurement uncertainty	10
6.	Measurement results explanation example	11
7.	Test results	12
7.1	I. Maximum peak output power	12
7.2	2. Carrier frequency separation	14
7.3	3. 20dB channel bandwidth & 99% Bandwidth	17
7.4	I. Number of hopping channels	21
7.5	5. Time of occupancy(Dwell time)	23
7.6	8. Radiated spurious emissions & band edge	27
7.7	7. Conducted Spurious Emission	46
7.8	B. AC Conducted emission	49
8.	Measurement equipment	51

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

1. General information

Client	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Manufacturer	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Laboratory	: KCTL Inc.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	CAB Identifier: KR0040
	ISED Number: 8035A
	KOLAS No.: KT231

2. Device information

Equipment under test	:	: Smart Wearable				
Model	:	SM-R875U				
Derivative model	:	SM-R875F				
Modulation technique	:	Bluetooth(BDR/EDR)_GFSK, π/4DQPSK, 8DPSK				
		Bluetooth(BLE)_GFSK				
		WIFI(802.11a/b/g/n)_DSSS, OFDM				
		LTE_QPSK, 16QAM				
		WCDMA_QPSK				
Number of channels	:	Bluetooth(BDR/EDR)_79 ch / Bluetooth(BLE)_40 ch				
		802.11b/g/n_HT20:13 ch				
		UNII-1: 4 ch (20 배z)				
		UNII-2A: 4 ch (20 MHz)				
		UNII-2C: 12 ch (20 ^{Mlz})				
		UNII-3: 5 ch (20 배z)				
Power source	:	DC 3.88 V				
Antenna specification	:	LTE/WCDMA_PIFA (Housing metal) Antenna				
		WIFI/Bluetooth(BDR/EDR/BLE)_LDS Antenna				
Antenna gain	:	WIFI/Bluetooth(BDR/EDR/BLE)7.70 dBi				
		UNII-1 : -9.20 dBi				
		UNII-2A : -7.30 dBi				
		UNII-2C : -8.10 dBi				
		UNII-3 : -7.60 dBi				
Frequency range	:	Bluetooth(BDR/EDR/BLE)_2 402 Mtz ~ 2 480 Mtz				
		2 412 ^{Ml} z ~2 472 ^{Ml} z (802.11b/g/n_HT20)				
		UNII-1: 5 180 배₂ ~ 5 240 배₂ (802.11a/n_HT20)				

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (5) of (51)

	UNII-2A: $5\ 260\ \text{Mz} \sim 5\ 320\ \text{Mz}$ ($802.11a/n_HT20$) UNII-2C: $5\ 500\ \text{Mz} \sim 5\ 720\ \text{Mz}$ ($802.11a/n_HT20$) UNII-3: $5\ 745\ \text{Mz} \sim 5\ 825\ \text{Mz}$ ($802.11a/n_HT20$) LTE Band 2_1 850.7\ \text{Mz} \sim 1\ 909.3\ \text{Mz} LTE Band 4_1 710.7\ \text{Mz} \sim 1\ 754.3\ \text{Mz} LTE Band 5_824.7\ \text{Mz} \sim 848.3\ \text{Mz} LTE Band 12_699.7\ \text{Mz} \sim 715.3\ \text{Mz} LTE Band 13_779.5\ \text{Mz} \sim 784.5\ \text{Mz} LTE Band 26_824.7\ \text{Mz} \sim 848.3\ \text{Mz}
	WCDMA 1700_1 712.4 MHz ~ 1 752.6 MHz
	WCDMA 1900_1 852.4 Mz ~ 1 907.6 Mz
Software version	: SM-R875U_R875U.001, SM-R875F_R875F.001
Hardware version	: REV1.0
Test device serial No.	: Conducted(R3AR400B9VP) Radiated(R3AR301CBDN,R3AR301CBGP,R3AR301CBFD)
Operation temperature	: -30 °C ~ 50 °C

Note.

- 1. Due to marketing purpose, derivative model SM-R875F will be filed for ISED approval and the test reports remain valid for Model SM-R875F ISED submission.
- 2. The product equality letter includes detailed information about the differences between basic and derivative model.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (6) of (51)

2.1. Frequency/channel operations

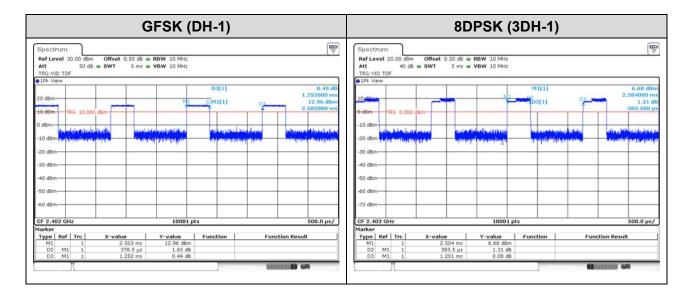
This device contains the following capabilities:

WiFi (802.11a/b/g/n), Bluetooth (BDR/EDR/BLE), LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 12, LTE Band 13, LTE Band 25, LTE Band 26, LTE Band 66, LTE Band 71, WCDMA 850, WCDMA 1700, WCDMA 1900

Ch.	Frequency (Mb)
00	2 402
39	2 441
78	2 480

Table 2.1.1. Bluetooth(BDR/EDR) mode

15.247 Requirements for Bluetooth transmitter:


- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - 1) This system is hopping pseudo-randomly.
 - 2) Each frequency is used equally on the average by each transmitter.
 - 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
 - 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (7) of (51)

2.2. Duty Cycle Correction Factor

Test mode	Period (^{ms})	On time (^{ms})	Reduced VBW (^{Hz})
GFSK	1.252 0	0.378 5	2 642.008
8DPSK	1.251 0	0.383 5	2 607.562

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

3. Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Requirement of RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

- The transmitter has permanently attached LDS Antenna (Internal antenna) on board.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (9) of (51)

Summar	y of tests			
FCC Part section(s)	IC Rule reference	Parameter	Test Condition	Test results
15.247(b)(1), (4)	RSS-247, (5.4)(b)	Maximum peak output power		Pass
15.247(a)(1)	RSS-247, (5.1)(b)	Carrier frequency separation		Pass
15.247(a)(1)	RSS-247, (5.1)(b)	20dB channel bandwidth	-	Pass
-	RSS-Gen (6.7)	Occupied bandwidth	Conducted	Pass
15.247(a)(iii) 15.247(b)(1)	RSS-247, (5.1)(d)	Number of hopping channel		Pass
15.247(a) (iii)	RSS-247, (5.1)(d)	Time of occupancy(dwell time)		Pass
15.207(a)	RSS-Gen(8.8)	AC Conducted Emissions		Pass
15.247(d)	RSS-247(5.5)	Conducted Spurious Emissions		Pass
15.205(a), RSS-Gen		Spurious emission	Radiated	Pass
15.209(a)	(8.9), (8.10)	Band-edge, restricted band	Raulated	Pass

Notes:

1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

- 2. According to exploratory test no any obvious emission were detected from 9 kl to 30 Ml. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. All the radiated tests have been performed two modes (with charger and without charger) and the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z.

	with charger			without charger		
	X-axis	Y-axis	Z-axis	X-axis	Y-axis	Z-axis
Band-edge	\checkmark					
Spurious					\checkmark	

4. The worst-case data rate were: BDR Packet type DH-1

EDR Packet type 3DH-1

- 5. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)			
Conducted RF power		0.9 dB		
Conducted spurious emissions	1.6 dB			
	9 kHz ~ 30 MHz:	2.3 dB		
Radiated spurious emissions	30 MHz ~ 1 000 MHz	2.2 dB		
Radiated spurious emissions	1 000 MHz ~ 18 000 MHz	5.6 dB		
	Above 18 000 Mb	5.7 dB		
Conducted emissions	9 kHz ~ 150 kHz	3.7 dB		
	150 kHz ~ 30 MHz	3.3 dB		

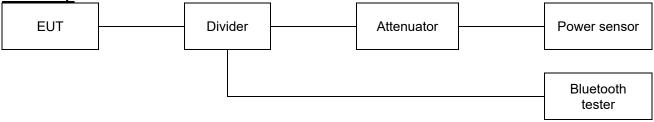
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

6. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (Mb)	Factor(dB)	Frequency (Mb)	Factor(dB)
30	16.09	9 000	18.22
50	16.19	10 000	18.34
100	16.46	11 000	18.53
200	16.52	12 000	18.62
300	16.59	13 000	18.78
400	16.70	14 000	19.49
500	16.87	15 000	19.81
600	16.95	16 000	19.71
700	17.00	17 000	19.94
800	17.06	18 000	19.99
900	17.08	19 000	19.57
1 000	17.07	20 000	20.08
2 000	17.51	21 000	20.47
3 000	17.73	22 000	21.20
4 000	18.35	23 000	21.63
5 000	18.95	24 000	21.74
6 000	19.32	25 000	21.83
7 000	18.10	26 000	21.94
8 000	18.17	26 500	22.10


Note.

Offset(dB) = RF cable loss(dB) + Power Divider(dB) + Attenuator (dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (12) of (51)

7. Test results 7.1. Maximum peak output power Test setup

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC

According to RSS-247(5.4)(b), for FHSs operating in the band 2400-2483.5 Mb, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels.

The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

Test procedure

ANSI C63.10-2013 - Section 7.8.5

Test settings

The test follows ANSI C63.10-2013 – Section 7.8.5. Using the power sensor instead of a spectrum analyzer.

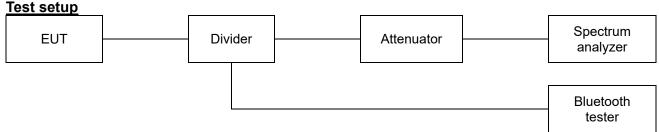
Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0093-A Page (13) of (51)

Test results

Frequency(Mb)	Data rate		ed output er(dBm)	Limit	(dBm) Gain (and for the second		-	Max e.i.r.p
Trequency(miz)	(Mbps)	Peak	Average	(dB m)			Average	Limit (dBm)
2 402	1	15.48	14.81			7.78	7.11	
2 441	1	15.78	15.15			8.08	7.45	
2 480	1	16.05	15.32			8.35	7.62	
2 402	2	10.86	7.81			3.16	0.11	
2 441	2	11.30	8.34	20.97	-7.70	3.60	0.64	36.02
2 480	2	10.68	7.68			2.98	-0.02	
2 402	3	11.04	7.74]		3.34	0.04	
2 441	3	11.56	8.28			3.86	0.58	
2 480	3	10.96	7.75			3.26	0.05	


Notes:

1. e.i.r.p. Calculation: e.i.r.p. (dB m) = Conducted output power (dB m) + Antenna gain (dB i)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (14) of (51)

7.2. Carrier frequency separation

<u>Limit</u>

According to \$15.247(a)(1) and RSS-247(5.1)(b), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test procedure

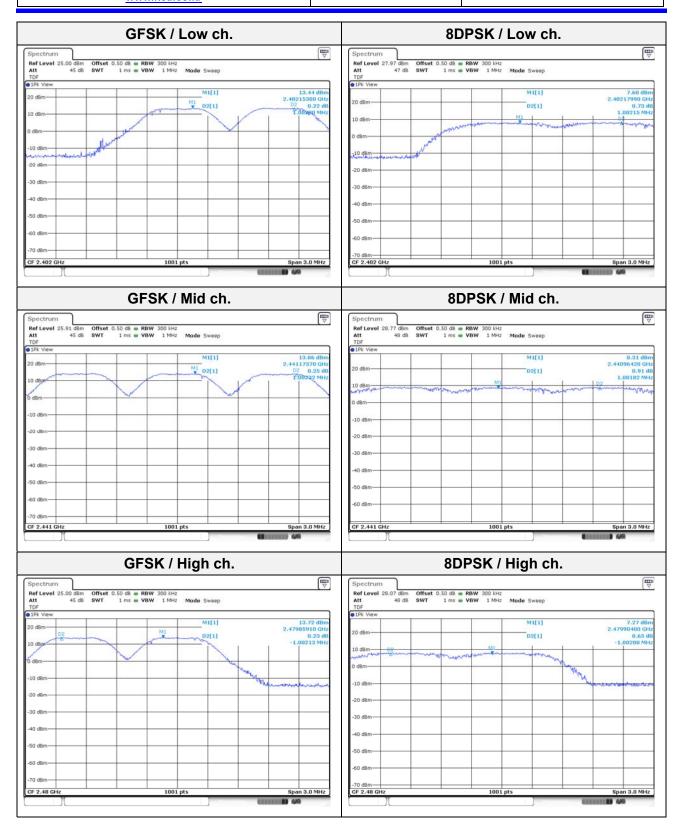
ANSI C63.10-2013 - Section 7.8.2

Test settings

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \ge RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent Channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

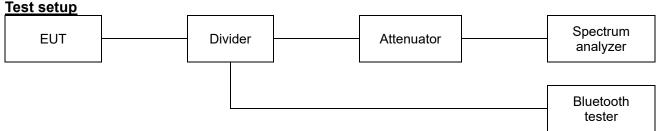
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (15) of (51)



Test results

Frequency(Mb)	Data rate(Mbps)	Carrier frequency separation(Mb)	Limit(册)
2 402	1	1.002	0.699
2 441	1	1.002	0.699
2 480	1	1.002	0.699
2 402	3	1.002	0.883
2 441	3	1.002	0.881
2 480	3	1.002	0.881

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (16) of (51)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (17) of (51)

7.3. 20dB channel bandwidth & 99% Bandwidth

<u>Limit</u>

According to §15.247(a)(1) and RSS-247(5.1)(b), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test procedure

ANSI C63.10-2013 - Section 6.9.2

Test settings

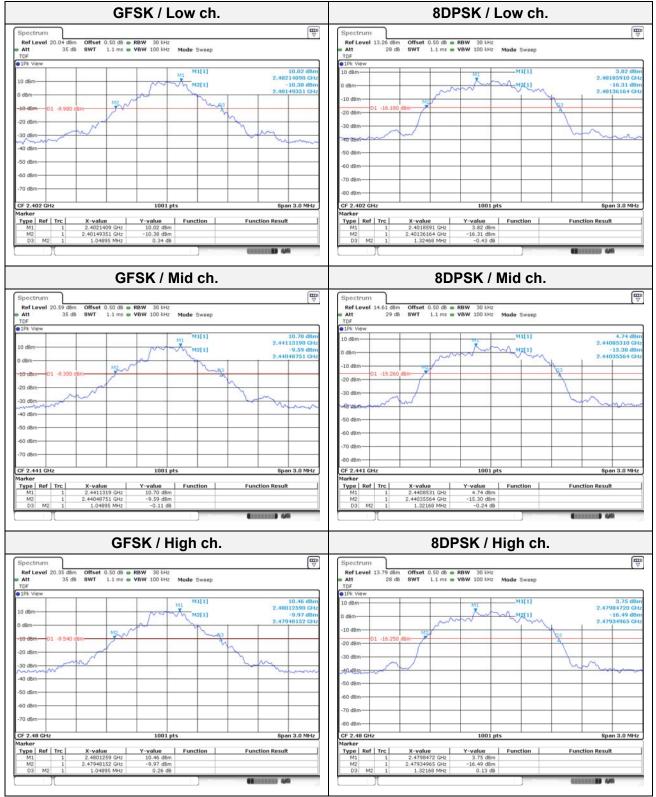
20dB channel bandwidth and Occupied bandwidth

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are $-6 \, dB$, $-20 \, dB$, and $-26 \, dB$, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by "-xx dB." The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the "-xx dB" bandwidth; other requirements might specify that the "-xx dB" bandwidth be entirely contained within the authorized or designated frequency band.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
- b) Span: Two times and five times the OBW.
- c) RBW = 1 % to 5 % of the OBW and VBW \ge 3 x RBW
- d) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Detector: peak
- g) Trace mode: max hold.
- h) Allow the trace to stabilize.
- i) Determine the "-xx dB down amplitude" using ((reference value) xx). Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- j) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- k) Place two markers, one at the lowest frequency and the other at the highest frequency of the

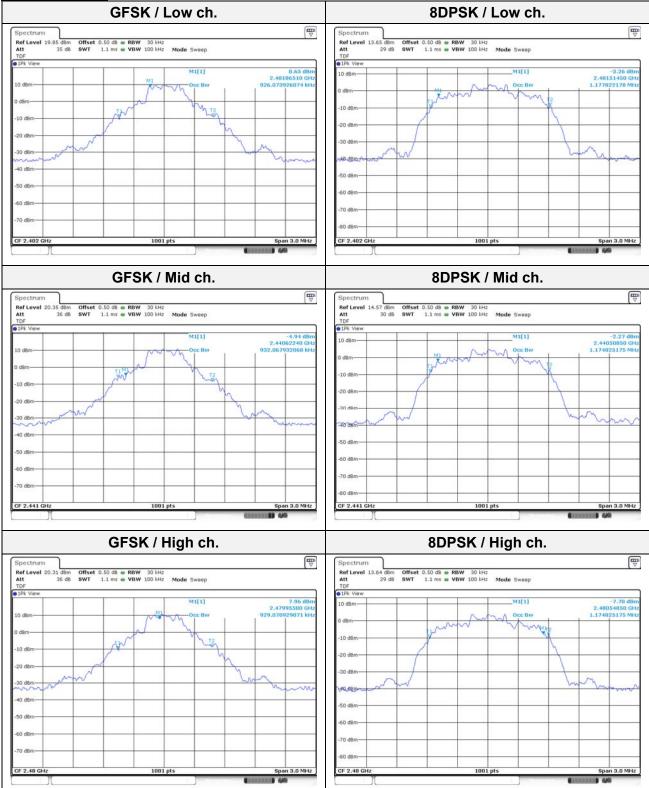
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0093-A Page (18) of (51)

envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

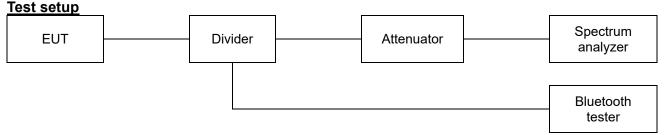

Test results

Frequency(Mb)	Data rate (Mbps)	20 dB Bandwidth (Mb)	99% Bandwidth (Mz)
2 402	1	1.049	0.926
2 441	1	1.049	0.932
2 480	1	1.049	0.929
2 402	3	1.325	1.178
2 441	3	1.322	1.175
2 480	3	1.322	1.175

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (19) of (51)


20dB bandwidth

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (20) of (51)


99% bandwidth

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

7.4. Number of hopping channels

<u>Limit</u>

According to \$15.247(a)(1)(iii) and RSS-247(5.1)(d), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels.

Test procedure

ANSI C63.10-2013 - Section 7.8.3

Test settings

- a)Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b)RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

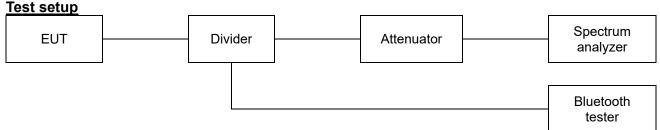
<u>Test results</u>

Mode	Number of hopping channel	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Notes:

In case of AFH mode, minimum number of hopping channels is 20.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (22) of (51)



GFSK	π/4DQPSK
pectrum ter Level 25.91 dBm Offset 0.50 dB ● RBW 300 l34z	Spectrum Ref Level 19.92 dBm Offset 0.50 dB @ RBW 300 kHz
Att 45 d8 SWT 1 ms • VBW 300 kHz Mode Sweep TDF IPF View	Att 39 dB SWT 1 ms • VBW 300 kHz Mode Sweep TDF • DR View
o dem ADDAWN ANALANA ANA	10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm -10 dBm 10 dBm -30 dBm 10 dBm -60 dBm 10 dBm
00 dBm	-70 d8m
8DPSK	
Offset 0.50 dB RBW 300 kHz Vote 40 dB SWT 1 ms VBW 300 kHz Vote 1 ms VBW 300 kHz Mode Sweep	
Jord Level 20.99 dBm Offset 0.50 dB E R5W 300 lHz 40 dB SWT 1 ms ¥ USW 300 lHz Mode 5weep 0F Jord Jord Jord Jord Jord 0F Jord	Disale
off Level 20.99 dBm Offset 0.50 dB @ 68bW 300 HHz 40 dB SWT 1 ms @ VBW 300 HHz PF How Ims @ VBW 300 HHz 0 dB SWT 1 ms @ VBW 300 HHz Mode Sweep Ims @ VBW 300 HHz Mode Sweep 0 dB Ims @ VBW 300 HHz Mode Sweep 0 dBm Ims @ VBW 300 HHz Ims @ VBW 300 HHz 0 dBm Ims @ VBW 300 HHz Ims @ VBW 300 HHz 0 dBm Ims @ VBW 300 HHz Ims @ VBW 300 Hz 0 dBm Ims @ VBW 300 Hz Ims @ VBW 300 Hz	Blank
tefLevel 20.99 dBm Offset 0.50 dB ⊕ RBW 300 HH: tt 40 dB SWT 1 mS ⊕ VBW 300 HH: Mode Sweep OF	Blank

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (23) of (51)

7.5. Time of occupancy(Dwell time)

<u>Limit</u>

According to \$15.247(a)(1)(iii) and RSS-247(5.1)(d), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test procedure

ANSI C63.10-2013 - Section 7.8.4

Test settings

- a) Span: Zero span, centered on a hopping channel.
- b) RBW \leq channel spacing and >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.
- f) Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

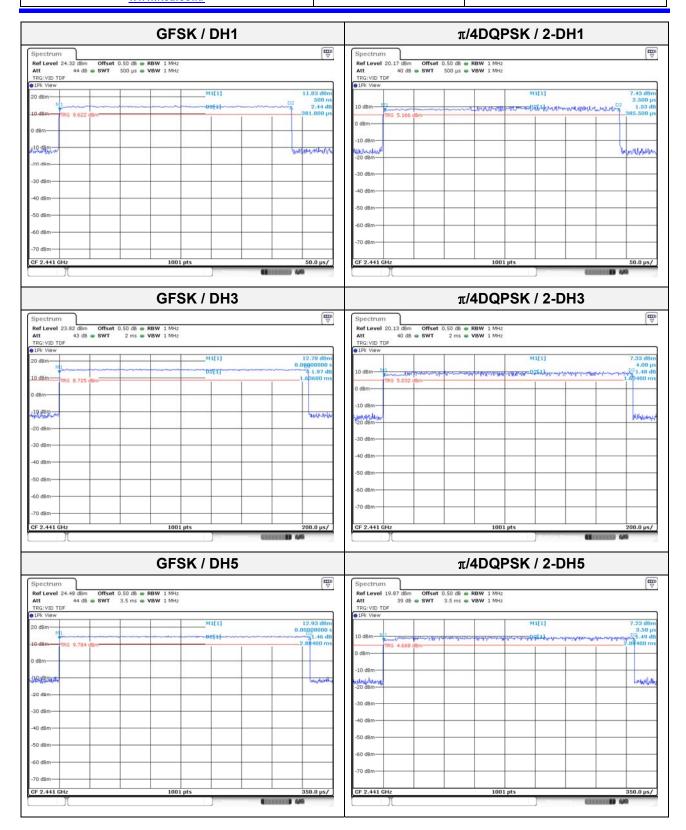
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (24) of (51)

<u>Test results</u>

- Non-AFH

Modulation	Frequency (₩₺)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)
DH1		0.381	800.000		0.122	
DH3		1.636	400.000		0.262	
DH5		2.884	266.667		0.308	
2-DH1		0.386	800.000		0.123	
2-DH3	2 441	1.634	400.000	79	0.261	0.400
2-DH5		2.884	266.667		0.308	
3-DH1		0.383	800.000		0.123	
3-DH3		1.628	400.000		0.260	
3-DH5		2.881	266.667]	0.307	

- AFH


Modulation	Frequency (₩z)	Pulse Width (ms)	Hopping rate (hop/s)	Number of Channels	Result (s)	Limit (s)
DH1		0.381	400.000		0.061	
DH3		1.636	200.000		0.131	
DH5		2.884	133.333		0.154	
2-DH1		0.386	400.000		0.062	
2-DH3	2 441	1.634	200.000	20	0.131	0.400
2-DH5		2.884	133.333		0.154	
3-DH1		0.383	400.000		0.061	
3-DH3		1.628	200.000		0.130	
3-DH5		2.881	133.333		0.154	

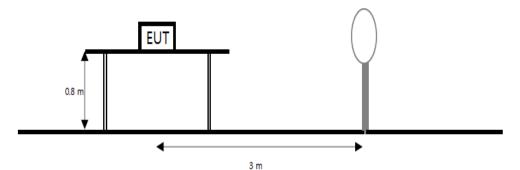
Notes:

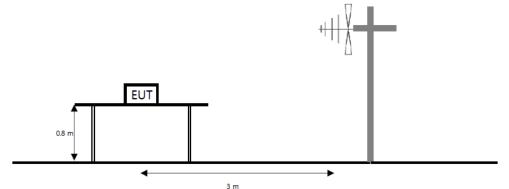
- 1. Non-AFH
- Period Time: 0.4 sec x 79 channels = 31.6 sec
- Result (s)= (Hopping rate (hop/s/slot) / 79 channels) x 31.6 sec x Pulse width (ms)
- 2. AFH
- Period Time: 0.4 sec x 20 channels = 8 sec
- Result (s)= (Hopping rate (hop/s/slot) / 20 channels) x 8 sec x Pulse width (ms)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (25) of (51)

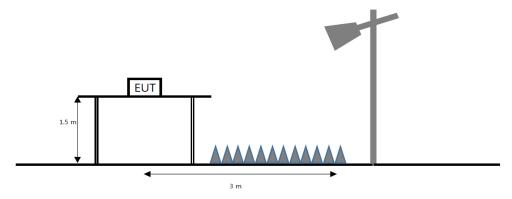
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (26) of (51)

	8DPSK	/ 3-DH1			8DPS	SK / 3-DH	3
	0.50 dB e RBW 1 MHz 500 μs e VBW 1 MHz			Spectrum Ref Level 20.89 dBm C Att 40 dB 5 TRG:VID TDF	Dffset 0.50 dB ⊕ RBW 1 MHz SWT 2 ms ⊕ VBW 1 MHz		(
1Pk View				1Pk View			
		M1[1]	8.18 dBm			M1[1]	7.96 d
0 dBm	white we are the second second	marthumm	4.500 µs 1.35 dB	10 dBm M1	automation and and days	R2(1)	10.00 021.51 1.62800
TRG 5.981 d8m		10-41 Por 00 0 0 0 0 0 0	383.000 µs	TRG 5.686 dBm		and a second sec	1.62800
d8m-				0 d8m			
				-10 dBm-			
0 dBm			hadweetend				e te c
0 dBm			radiantification	20 dBm	-		Witten
0 dBm				-30 dBm			
) dBm-				-40 dBm-			
0 dBm				-50 dBm			
0 dBm				-60 dBm-			
0 dBm				-70 dBm-			
0.0011						1 1	
			50.0 µs/	CF 2.441 GHz	100	1 pts	200.0 µ:
F 2.441 GHz		/ 3-DH5		GF 2.441 GHz	100	1 pts	
F 2.441 GHz				CF 2.441 GHz	100	1 pts	
F 2.441 GHz	8DPSK	/ 3-DH5	(T)	CF 2.441 GHz	100	1 pts	
F 2.441 GHz pectrum lef Level 20.43 dbm Offset tt 40 d8 ⊕ SWT RC/UD T0F	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 CHz	100	1 pts	
Pectrum pectrum bit Level 20.43 dbm Offset tt 40 db SWT RG:VID TDF PF View D dbm United Provided To Construct PF View	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 CHz	100	1 pts	
F 2.441 GHz Pectrum of Level 20.43 dbm Offset tt RG:VID TDF FK View TRG 5.627 dbm	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 GHz	100	l pts	
F 2.441 GHz Pectrum of Level 20.43 dbm Offset tt RG:VID TDF FK View TRG 5.627 dbm	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 GHz	100	1 pts	
Pectrum ef Level 20.43 dBm Offset tt 40 dB @ SWT BC:VID TOF Pk View I dBm I Francisco Converts dBm I Francisco Converts TRG 5.627 Bm	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 GHz	100	1 pts	
Pectrum et Level 20.43 dBm Offset tt 40 dB = SWT BC:VID TDF Pk View TRG 5.627 Bm TRG 5.627 Bm 0 dBm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz	100	1 pts	
Pectrum et Level 20.43 dBm Offset tt 40 dB = SWT BC:VID TDF Pk View TRG 5.627 Bm TRG 5.627 Bm 0 dBm	8DPSK	/ 3-DH5	₩₩₩₩₩ ₩₩ 7.61 dBm	CF 2.441 CHz			
2.441 GHz pectrum off.cevl 20.43 dBm IdBm IdBm TRG 5.627 dBm odBm ABm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz	Bla		
2.441 GHz pectrum off.cevl 20.43 dBm IdBm IdBm TRG 5.627 dBm odBm ABm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
F 2.441 GHz pectrum teft Level 20.43 dBm db dB arrow db dB arrow db dB arrow db dB arrow db dBm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
F 2.441 GHz pectrum of Level 20.43 dBm Offset R6: VID TDF DRM DRO TOF TRO 5.627 dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
2.441 GHz pectrum of Level 20.43 dbm Offset RC:VID TOF Pk View IdBm 1 IdBm 1 IdBm 1 OdBm 0 0 dBm 0	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
F 2.441 GHz pectrum of Level 20.43 dBm MBM	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
F 2.441 GHz pectrum get_twell 20.43 dBm of B with the second	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
F 2.441 GHz pectrum of Level 20.43 dBm of Barborn And And And And And And And And And An	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			
5pectrum Spectrum Set Level 20.43 dBm Offset Att 40 dB SWT FRG-VID TDF JPK View TRG 5,627 dBm dBm 10 dBm	8DPSK	/ 3-DH5	7.61 dBm 7.61 dBm 7.01 µ5 00 µ5	CF 2.441 GHz			


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (27) of (51)


7.6. Radiated spurious emissions & band edge

<u>Test setup</u>


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

<u>Limit</u>

FCC

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (μ /m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mz, 76-88 Mz, 174-216 Mz or 470-806 Mz. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

IC

According to RSS-247(5.5), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen(8.9), Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency(胍)	Field strength (μλ/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 5- General field strength limits at frequencies above 30 Mb

Table 6- General field strength limits at frequencies below 30 Mb

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance(m)
9-490 kHz ¹⁾	6.37/F (F in k⊞z)	300
490 – 1705 kHz	63.7/F (F in ktz)	30
1.705 - 30 Miz	0.08	30

Note 1: The emission limits for the ranges 9-90 ^{kHz} and 110-490 ^{kHz} are based on measurements employing a linear average detector.

According to RSS-Gen(8.10), Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (30) of (51)

Table 7- Restricted frequency bands*

L
MHz
0.090 - 0.110
0.495 - 0.505
2.1735 - 2.1905
3.020 - 3.026
4.125 - 4.128
4.17725 - 4.17775
4.20725 - 4.20775
5.677 - 5.683
6.215 - 6.218
6.26775 - 6.26825
6.31175 - 6.31225
8.291 - 8.294
8.362 - 8.366
8.37625 - 8.38675
8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41
16.42 - 16.423
16.69475 - 16.69525
16.80425 - 16.80475
25.5 - 25.67
37.5 - 38.25
73 - 74.6
74.8 - 75.2
108 - 138

MHz
149.9 - 150.05
156.52475 - 156.52525
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 1626.5
1645.5 - 1646.5
1660 - 1710
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 - 3358
3500 - 4400
4500 - 5150
5350 - 5460
7250 - 7750
8025 - 8500

GHz
9.0 - 9.2
9.3 - 9.5
10.6 - 12.7
13.25 - 13.4
14.47 - 14.5
15.35 - 16.2
17.7 - 21.4
22.01 - 23.12
23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
Above 38.6

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (31) of (51)

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Table. RBW as a function of frequency							
Frequency	RBW						
9 kHz to 150 kHz	200 Hz to 300 Hz						
0.15 Mt to 30 Mt	9 kHz to 10 kHz						
30 MHz to 1 000 MHz	100 kHz to 120 kHz						
> 1 000 MHz	1 MHz						

Table. RBW as a function of frequency

Average field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1 MHz
- 3. VBW = 1/T ≥ 1 Hz
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times(1/duty cycle) traces

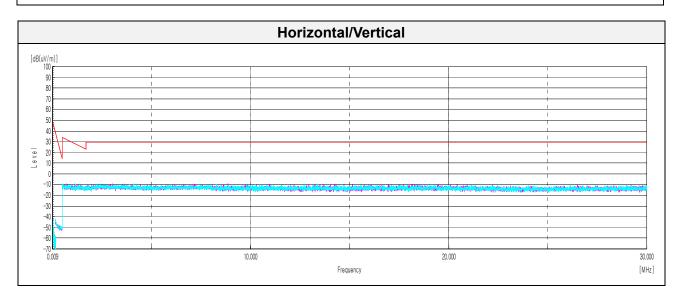
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

Notes:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 M₂ for Peak detection and frequency above 1 G½. The resolution bandwidth of test receiver/spectrum analyzer is 1 M₂ and the video bandwidth is 3 k½(≥1/T) for Average detection (AV) at frequency above 1 G½.
- 2. f < 30 Mb, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/D_s)$ $f \ge 30$ Mb, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/D_s)$ Where:

 F_d = Distance factor in dB

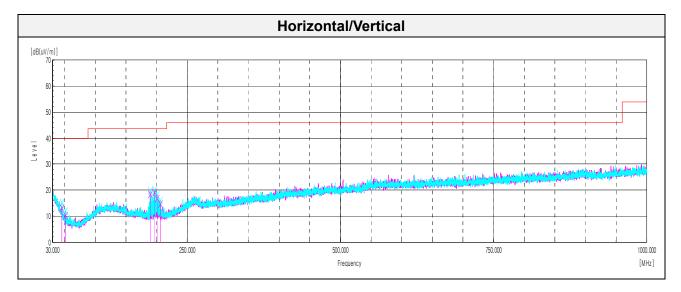
D_m= Measurement distance in meters


- D_s= Specification distance in meters
- 3. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$
- 4. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 5. Average test would be performed if the peak result were greater than the average limit.
- 6. ¹⁾ means restricted band.
- 7. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω. For example, the measurement frequency X kt resulted in a level of Y dBµN/m, which is equivalent to Y 51.5 = Z dBµA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (33) of (51)

Test results (Below 30 ₩) – Worst case: GFSK 2 480 ₩

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	Distance Factor	DCCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(<i>µ</i> V/ m))	(dB)
No spurious emissions were detected within 20 dB of the limit.									

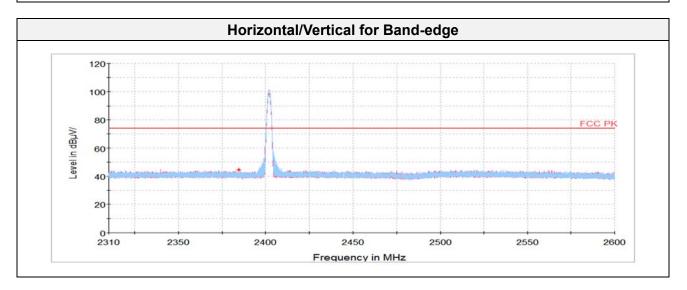


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (34) of (51)

Test results (Below 1 000 №) - Worst case: GFSK 2 480 №

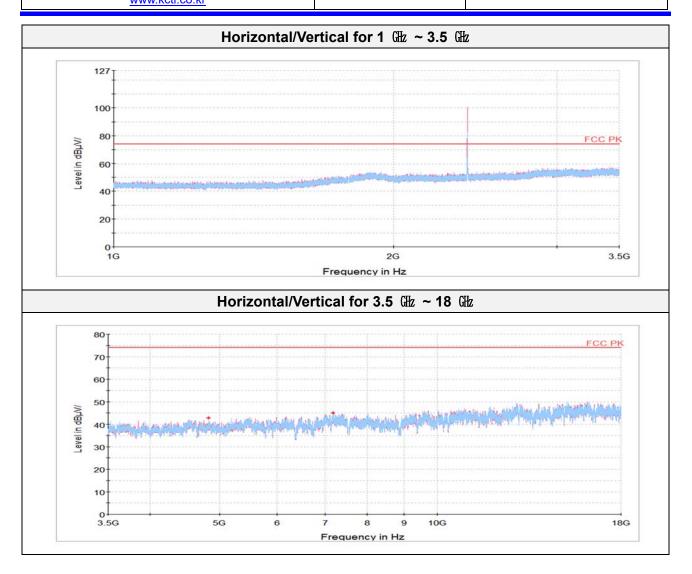
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(#V))	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(<i>µ</i> V/ m))	(dB)		
	Quasi peak data									
45.16	V	27.10	18.30	-30.10	-	15.30	40.00	24.70		
50.98	V	26.50	18.40	-29.95	-	14.95	40.00	25.05		
189.20	V	30.90	16.18	-27.86	-	19.22	43.50	24.28		
196.48	V	31.30	15.55	-27.74	-	19.11	43.50	24.39		
200.60	V	28.80	15.51	-27.70	-	16.61	43.50	26.89		
205.93	V	26.40	15.58	-27.66	-	14.32	43.50	29.18		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (35) of (51)



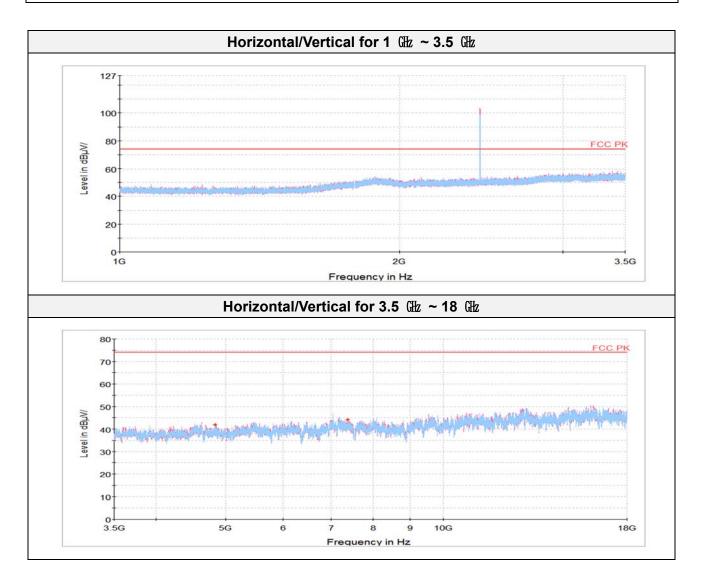
Test results (Above 1 000 Mb)

GFSK_Lowest Channel


Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(<i>µ</i> N/ m))	(dB(<i>µ</i> N/ m))	(dB)		
	Peak data									
2 384.63 ¹⁾	V	40.19	31.99	-27.91	-	44.27	74.00	29.73		
4 826.30 ¹⁾	Н	62.20	33.80	-53.23	-	42.77	74.00	31.23		
7 189.80	V	60.53	35.30	-50.79	-	45.04	74.00	28.96		
Average Data										

No spurious emissions were detected within 20 $\,\mathrm{dB}\,$ of the limit.

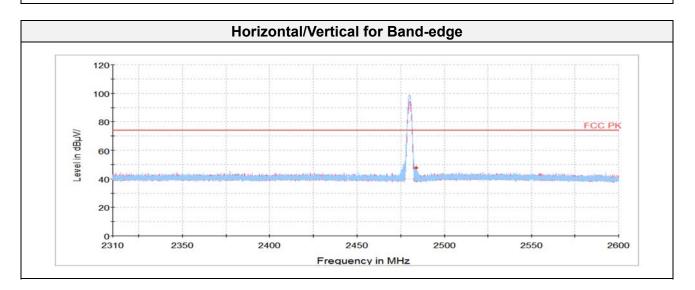
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (36) of (51)



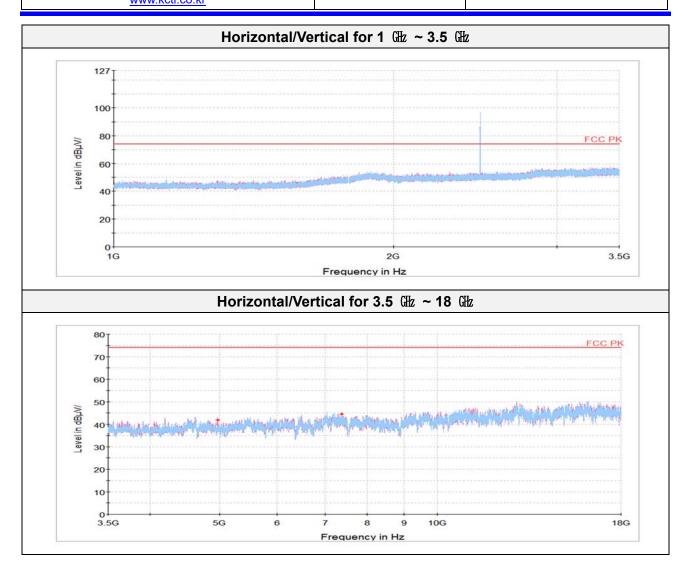
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (37) of (51)

GFSK_Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> V/ m))	(dB)	
Peak data									
4 837.17 ¹⁾	V	61.24	33.80	-53.21	-	41.83	74.00	32.17	
7 386.91 ¹⁾	V	59.51	35.30	-50.75	-	44.06	74.00	29.94	
Average Data									
	No spurious emissions were detected within 20 dB of the limit.								

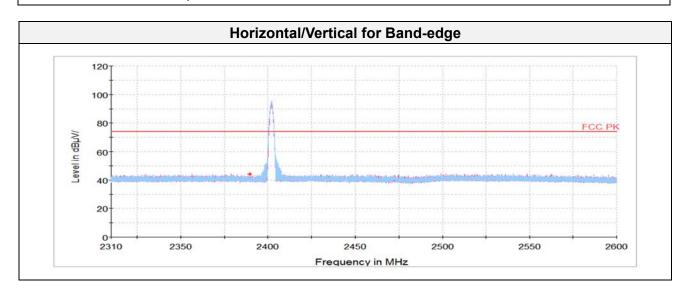


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (38) of (51)

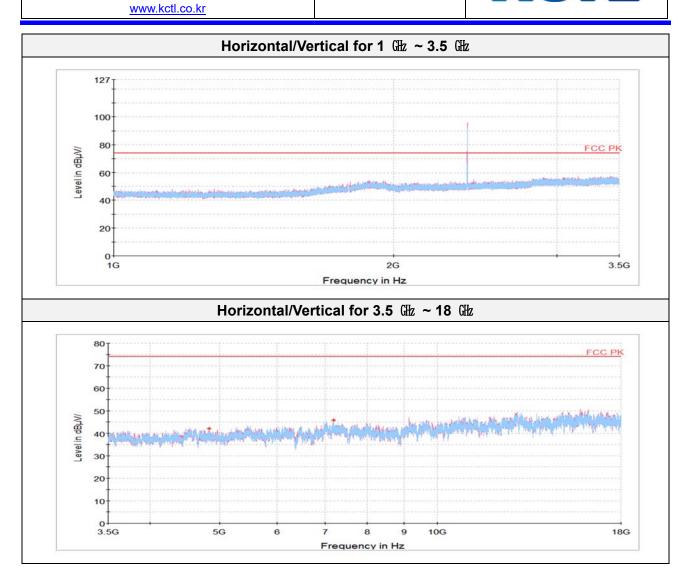

GFSK_Highest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(#V/m))	(dB(<i>µ</i> V/ m))	(dB)		
Peak data										
2 483.69 ¹⁾	Н	43.44	32.17	-27.95	-	47.66	74.00	26.34		
4 970.84 ¹⁾	V	61.42	33.88	-53.43	-	41.87	74.00	32.13		
7 388.72 ¹⁾	V	59.88	35.30	-50.75	-	44.43	74.00	29.57		
Average Data										
	No spurious emissions were detected within 20 dB of the limit.									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (39) of (51)

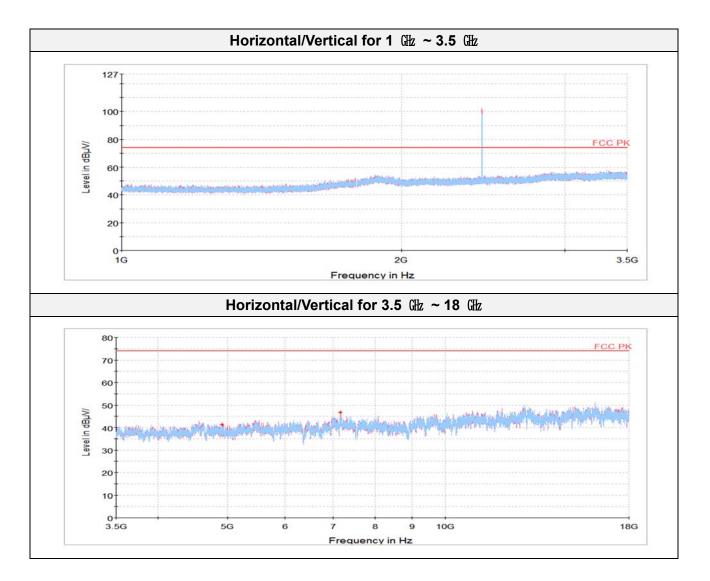


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (40) of (51)


8DPSK_Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(µN/m))	(dB(<i>µ</i> V/ m))	(dB)		
Peak data										
2 389.58 ¹⁾	V	40.03	32.00	-27.88	-	44.15	74.00	29.85		
4 831.73 ¹⁾	V	61.55	33.80	-53.22	-	42.13	74.00	31.87		
7 192.52	Н	61.33	35.30	-50.79	-	45.84	74.00	28.16		
Average Data										
	No spurious emissions were detected within 20 dB of the limit.									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR21-SRF0093-A Page (41) of (51)

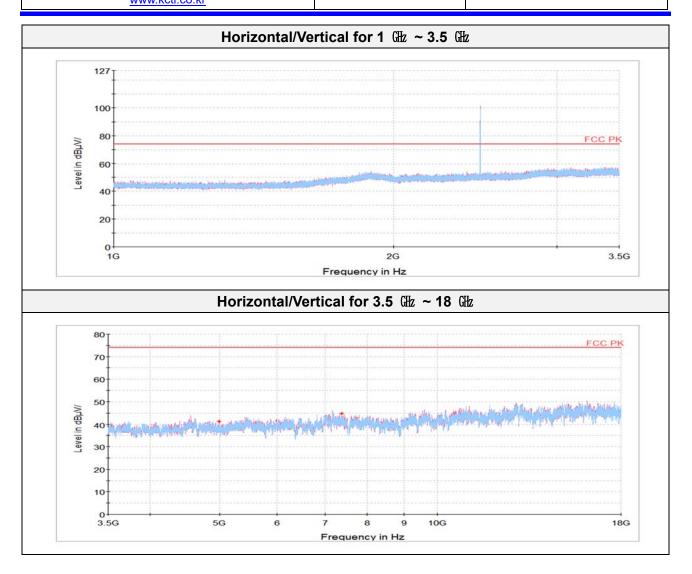


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (42) of (51)

8DPSK_Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(<i>µ</i> N/ m))	(dB)	
Peak data									
4 916.92 ¹⁾	Н	60.63	33.85	-53.19	-	41.29	74.00	32.71	
7 178.02	V	62.13	35.30	-50.79	-	46.64	74.00	27.36	
Average Data									
	No spurious emissions were detected within 20 dB of the limit.								

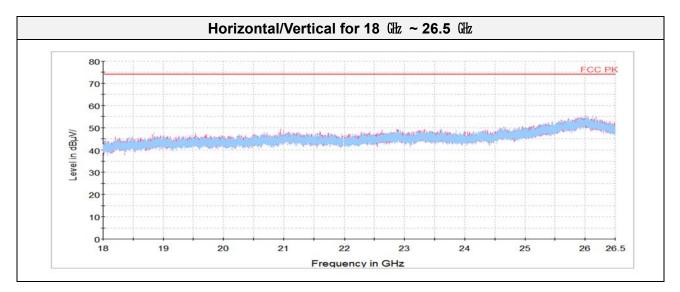
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (43) of (51)


8DPSK_Highest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(µN))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(µV/m))	(dB)		
Peak data										
2 483.60 ¹⁾	Н	43.02	32.17	-27.95	-	47.24	74.00	26.76		
4 988.52 ¹⁾	V	60.88	33.89	-53.51	-	41.26	74.00	32.74		
7 390.53 ¹⁾	Н	60.14	35.30	-50.75	-	44.69	74.00	29.31		
Average Data										
	No spurious emissions were detected within 20 dB of the limit.									

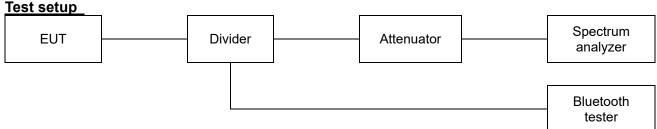
Horizontal/Vertical for Band-edge 120 100 80 FCC PK Level in dBµV/ 60 40 20 0 2310 2350 2400 2450 2500 2550 2600 Frequency in MHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (44) of (51)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (45) of (51)

Test results (Above 18 ⓓ) – Worst case: GFSK 2 480 ₩



<u>Note:</u> The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (46) of (51)

7.7. Conducted Spurious Emission

<u>Limit</u>

According to §15.247(d) and RSS-247(5.5), In any 100 kt bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operation, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kt bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation specified in §15.209(a) is not required. In addition, radiated emission limits specified in §15.209(a) (see §15.205(c)). Limit : 20 dBc

Test procedure

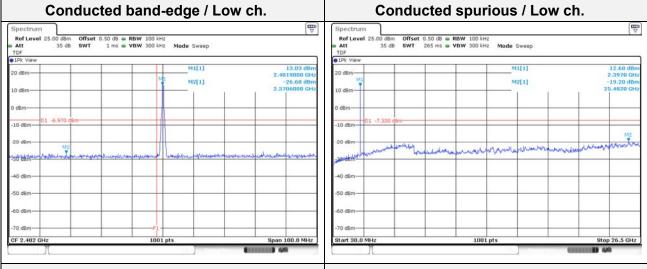
ANSI C63.10-2013 - Section 6.10.4, 7.8.8

Test settings

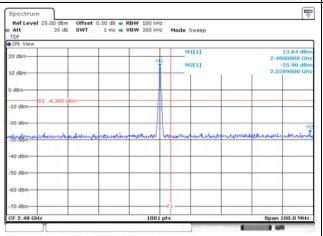
Band-edge

- 1) Span : Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level : As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log(OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred)
- 4) Sweep time = Coupled
- 5) RBW : 100 kHz
- 6) VBW : 300 kHz
- 7) Detector : Peak
- 8) Trace : Max hold

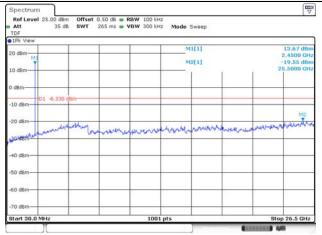
Spurious emissions


- 1) Span: 30 MHz to 10 times the operating frequency in GHz
- 2) RBW: 100 kHz
- 3) VBW : 300 kHz
- 4) Sweep time : Coupled
- 5) Detector : Peak

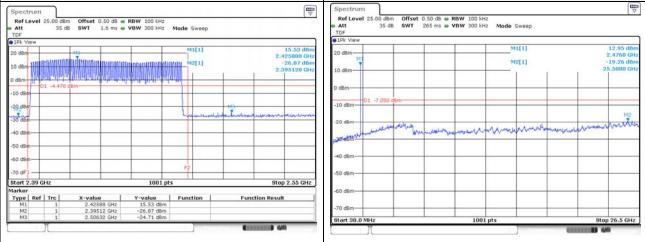
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (47) of (51)



Test results

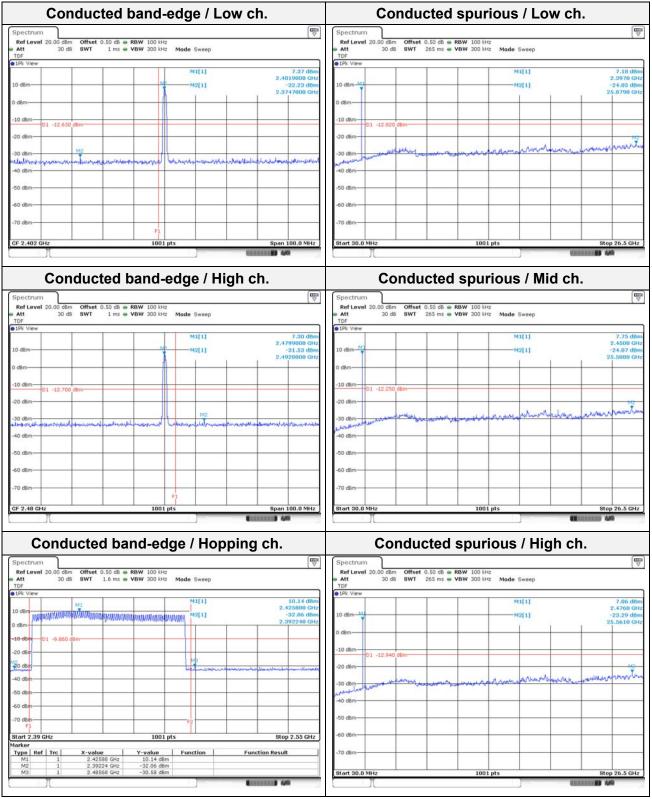

GFSK

Conducted band-edge / High ch.

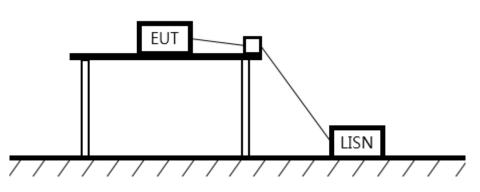


Conducted spurious / Mid ch.

Conducted band-edge / Hopping ch.


Conducted spurious / High ch.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (48) of (51)


8DPSK

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

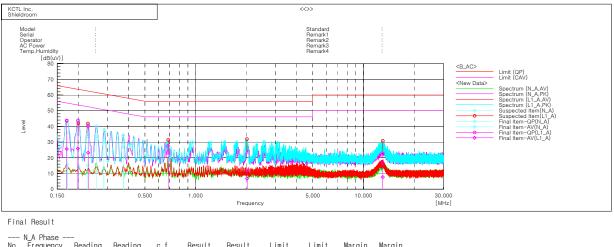
7.8. AC Conducted emission Test setup

<u>Limit</u>

According to 15.207(a) and RSS-Gen(8.8), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Erequency of Emission (Mb)	Conducted limit (dBµV/m)				
Frequency of Emission (Mb)	Quasi-peak	Average			
0.15 – 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

Measurement procedure


- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu$ H LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kliz or to quasi-peak and average within a bandwidth of 9 kliz. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (50) of (51)

<u>Test results</u>

Worst case: GFSK 2 480 Mb

	N_A Phase -				-					
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	CAV		QP	CAV	QP .	AV	QP	CAV
	[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
1	0.17296	26.0	5.5	10.2	36.2	15.7	64.8	54.8	28.6	39.1
2	0.20093	24.9	4.0	10.0	34.9	14.0	63.6	53.6	28.7	39.6
3	0.22853	23.9	5.4	9.8	33.7	15.2	62.5	52.5	28.8	37.3
4	0.25847	22.3	1.1	9.8	32.1	10.9	61.5	51.5	29.4	40.6
5	0.28459	20.9	2.8	9.8	30.7	12.6	60.7	50.7	30.0	38.1
6	0.37201	18.1	0.2	9.9	28.0	10.1	58.5	48.5	30.5	38.4
	L1_A Phase									
No.			Reading	c.f	Resul t	Result	Limit	Limit	Margin	Margin
		Reading		c.f					Margin OP	Margin CAV
		Reading QP	Reading CAV [dB(uV)]	c.f [dB]	Result QP [dB(uV)]	Result CAV [dB(uV)]	Limit QP [dB(uV)]	AV	QP	CAV
	Frequency	Reading	CAV		QP	CAV	QP			
No.	Frequency [MHz] 0.17122	Reading QP [dB(uV)] 33.5	CAV [dB(uV)] 15.4	[dB] 10.2	QP [dB(uV)] 43.7	CAV [dB(uV)] 25.6	QP [dB(uV)] 64.9	AV [dB(uV)] 54.9	QP [dB] 21.2	CAŬ [dB] 29.3
	Frequency [MHz] 0.17122 0.19944	Reading QP [dB(uV)] 33.5 33.7	CAV [dB(uV)] 15.4 15.8	[dB] 10.2 10.1	QP [dB(uV)] 43.7 43.8	CAV [dB(uV)] 25.6 25.9	QP [dB(uV)] 64.9 63.6	AV [dB(uV)] 54.9 53.6	QP [dB] 21.2 19.8	CAV [dB] 29.3 27.7
No. 1 2 3	Frequency [MHz] 0.17122 0.19944 0.22906	Reading QP [dB(uV)] 33.5 33.7 30.5	CAV [dB(uV)] 15.4 15.8 13.4	[dB] 10.2 10.1 9.8	QP [dB(uV)] 43.7 43.8 40.3	CAV [dB(uV)] 25.6 25.9 23.2	QP [dB(uV)] 64.9 63.6 62.5	AV [dB(uV)] 54.9 53.6 52.5	QP [dB] 21.2 19.8 22.2	CAV [dB] 29.3 27.7 29.3
No. 1 2 3 4	Frequency [MHz] 0.17122 0.19944 0.22906 0.68605	Reading QP [dB(uV)] 33.5 33.7 30.5 17.6	CAV [dB(uV)] 15.4 15.8 13.4 13.1	[dB] 10.2 10.1 9.8 9.9	QP [dB(uV)] 43.7 43.8 40.3 27.5	CAV [dB(uV)] 25.6 25.9 23.2 23.0	QP [dB(uV)] 64.9 63.6 62.5 56.0	AV [dB(uV)] 54.9 53.6 52.5 46.0	QP [dB] 21.2 19.8 22.2 28.5	CAV [dB] 29.3 27.7 29.3 23.0
No. 1 2 3	Frequency [MHz] 0.17122 0.19944 0.22906	Reading QP [dB(uV)] 33.5 33.7 30.5	CAV [dB(uV)] 15.4 15.8 13.4	[dB] 10.2 10.1 9.8	QP [dB(uV)] 43.7 43.8 40.3	CAV [dB(uV)] 25.6 25.9 23.2	QP [dB(uV)] 64.9 63.6 62.5	AV [dB(uV)] 54.9 53.6 52.5	QP [dB] 21.2 19.8 22.2	CAV [dB] 29.3 27.7 29.3

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0093-A Page (51) of (51)

8. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSV30	100807	21.07.29
Attenuator	API Inmet	40AH2W-10	16	22.05.11*
Signal Generator	R&S	SMB100A	176206	22.01.20
Vector Signal Generator	R&S	SMBV100A	257566	21.07.13
Bluetooth Tester	TESCOM	TC-3000C	3000C000270	21.07.28
Power Divider	Agilent	11636B	54456	21.12.31
Power Sensor	R&S	NRP-Z81	1137.9009.02- 106223-bB	22.05.11*
Attenuator	R&S	DNF Dämpfungsglied 10 ^{dB} in N-50 Ohm	31211	22.05.11*
DC Power Supply	Agilent	E3632A	MY40008800	21.07.28
Spectrum Analyzer	R&S	FSV40	100989	21.12.23
EMI TEST RECEIVER	R&S	ESCI3	101408	21.08.20
Bi-Log Antenna	TESEQ	CBL 6112D	55545	22.04.24
Attenuator	KEYSIGHT	8491B-6dB	MY39271060	21.12.24
Spectrum Analyzer	R&S	ESCI7	100732	22.03.05
ISOLATION TRANSFORMER	ONETECH CO., LTD	OT-IT500VA	OTR1-16026	22.04.02
Amplifier	SONOMA INSTRUMENT	310N	284608	21.08.20
COAXIAL FIXED ATTENUATOR	Agilent	8491B-003	2708A18758	22.04.23
Directional Bridge	AGILENT	86205A	MY31400127	22.01.20
Horn antenna	ETS.lindgren	3117	00155787	21.10.28
Horn antenna	ETS.lindgren	3116	00086632	22.01.29
Attenuator	API Inmet	40AH2W-10	12	22.05.11*
Broadband Pre-Amplifier	SCHWARZBECK	BBV9718	216	21.07.28
AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800 -22-10P	2003683	21.08.28
AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	22.01.21
LOOP Antenna	R&S	HFH2-Z2	100355	22.08.21
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table	Innco Systems	DT2000	79	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	DT2000	79	-
High pass Filter	WT	WT-A1698-HS	WT160411001	22.05.10*
TWO-LINE V - NETWORK	R&S	ENV216	101358	21.09.29
EMI TEST RECEIVER	R&S	ESCI	100001	21.08.20

* Tests related to this equipment were progressed after the calibration was completed.

End of test report