TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311

Report No.:
KR21-SRF0195-C
Page (1) of (28)

1. Client

- Name : Samsung Electronics Co., Ltd.
- Address : 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
- Date of Receipt: 2021-08-19

2. Use of Report : Class II Permissive change
3. Name of Product / Model : Smart Wearable / SM-R870
4. Manufacturer / Country of Origin: Samsung Electronics Co., Ltd. / Vietnam
5. FCC ID
: A3LSMR870
6. Date of Test : 2021-08-30 to 2021-09-06
7. Location of Test

■ Permanent Testing Lab $\quad \square$ On Site Testing (Address:65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea)
8. Test method used FCC Part 15 Subpart C, 15.247
9. Test Result : Refer to the test result in the test report

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guar antee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

KCTL Inc. 65, Sinwon-ro, Yeonctang-.gu TEL: 82-31-285-0894 FAX: 82-505-299-831 www.kctl.co.kr	Report No. KR21-SRF0195-C Page (2) of (28)	

REPORT REVISION HISTORY

Date	Revision	Page No
$2021-09-08$	Originally issued	-
$2021-09-10$	Updated	1,12
$2021-09-17$	Removed the IC information and $2021-09-18$	Added output power section 6.1

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR21-SRF0195-B is superseded by the report No. KR21-SRF0195-C.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests (may be required by the product standard or client)
 \square Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:
 Procedure number, issue date and title:
 Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

KCTL_ Inc.			
65, Sinwon-ro, Yeongtong-gu,			
Suwon-si, Gyeonggi-do, 16677, Korea			
TEL: $82-31-285-0894 \quad$ FAX: 82-505-299-8311			
www.kctl.co.kr			KR21-SRF0195-C
:---:			
Page (3) of (28)			

CONTENTS

1. General information 4
2. Device information 4
2.1. Frequency/channel operations 5
2.2. Duty Cycle Correction Factor 6
3. Antenna requirement 6
4. Summary of tests 7
5. Measurement uncertainty 8
6. Test results 9
6.1. Maximum peak output power 9
6.2. Radiated spurious emissions \& band edge 11
7. Measurement equipment 28

1. General information

Client
Address

Manufacturer
Address
Laboratory
Address
Accreditations
: Samsung Electronics Co., Ltd.
: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
: Samsung Electronics Co., Ltd.
129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
: KCTL Inc.
: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
CAB Identifier: KR0040
ISED Number: 8035A
KOLAS No.: KT231
2. Device information

Equipment under test
Model
Modulation technique

Number of channels

Power source
Antenna specification
Antenna gain

	UNII-1 $\quad:-9.20 \mathrm{dBi}$
	UNII-2A : -7.30 dBi
	UNII-2C $:-8.10 \mathrm{dBi}$
	UNII-3 : 7.60 dBi
Frequency range	Bluetooth(BDR/EDR/BLE)_2 402 MHz ~ 2480 MHz
	2412 MHz ~ 2472 MHz (802.11b/g/n_HT20)
	UNII-1: $5180 \mathrm{MHz} \sim 5240 \mathrm{MHz}$ (802.11a/n_HT20)
	UNII-2A: $5260 \mathrm{MHz} \sim 5320 \mathrm{MHz}$ (802.11a/n_HT20)
	UNII-2C: $5500 \mathrm{MHz} \sim 5720$ MHz (802.11a/n_HT20)
	UNII-3: 5745 MHz ~ 5825 MHz (802.11a/n_HT20)
Software version	R870.001
Hardware version	REV1.0
Test device serial No.	Conducted(R3AR404E2ZD, R3AR404E31X, 410005cfe4884893) Radiated(R3AR404E46L, R3AR404E4YE, R3AR404E4QH, R3AR404E2CK)
Operation temperature	$-30{ }^{\circ} \mathrm{C} \sim 50{ }^{\circ} \mathrm{C}$

2.1. Frequency/channel operations

This device contains the following capabilities:
WiFi (802.11a/b/g/n), Bluetooth (BDR/EDR/BLE)

Ch.	Frequency (MIZ)
00	2402
\vdots	\vdots
39	2441
\vdots	\vdots
78	2480

Table 2.1.1. Bluetooth(BDR/EDR) mode
15.247 Requirements for Bluetooth transmitter:

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

1) This system is hopping pseudo-randomly.
2) Each frequency is used equally on the average by each transmitter.
3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
4) The receiver shifts frequencies in synchronization with the transmitted signals.
$-15.247(\mathrm{~g})$: The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

- $15.247(\mathrm{~h})$: The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

2.2. Duty Cycle Correction Factor

Test mode	Period (ms)	On time (ms)	Reduced VBW (Hz)
GFSK	1.2256	0.3820	2617.80
8DPSK	1.2504	0.3872	2582.64

3. Antenna requirement

Requirement of FCC part section 15.203:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached LDS Antenna (Internal antenna) on board.

4. Summary of tests

FCC Part section(s)	Parameter	Test Condition	Test results
$15.247(\mathrm{~b})(1),(4)$	Maximum peak output power	Conducted	Pass
$15.205(\mathrm{a})$,	Spurious emission	Radiated	Pass
$15.209(\mathrm{a})$	Band-edge, restricted band		

Notes:

1. For this C2PC report regarding SM-R870, as documented in the C2PC letter that the change does not affect RF characteristics therefore, only radiated spurious emission test was done. All the rest tests were documented in the original filing approved in 06/15/2021 under SM-R870.
2. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
3. According to exploratory test no any obvious emission were detected from 9 kilz to 30 MHz . Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
4. All the radiated tests have been performed two modes (with charger and without charger) and the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z .

	with charger	without charger		
	X-axis	X-axis	Y-axis	Z-axis
				$\sqrt{ }$
Spurious				$\sqrt{ }$

5. The worst-case data rate were: BDR Packet type DH-1

EDR Packet type 3DH-1
6. The test procedure(s) in this report were performed in accordance as following.

- ANSI C63.10-2013
- KDB 558074 D01 v05r02

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.
All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicated a 95% level of confidence. The measurement data shown herein meets of exceeds the $U_{\text {CISPR }}$ measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (土)	
Conducted RF Power	0.9 dB	
Radiated spurious emissions	$9 \mathrm{NHz} \sim 30 \mathrm{MHz}$	2.3 dB
	$30 \mathrm{NHz} \sim 1000 \mathrm{NHz}$	2.2 dB
	$1000 \mathrm{MHz} \sim 18000 \mathrm{MHz}$	5.6 dB
	Above 18000 HHz	5.7 dB

6. Test results
6.1. Maximum peak output power

Test setup

Limit

According to $\S 15.247(a)(1)$, Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 HHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

According to $\S 15.247(\mathrm{~b})(1)$, for frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 MHz band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 NHzz band: 0.125 watts.

According to $\S 15.247(b)(4)$ The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

Test procedure

ANSI C63.10-2013-Section 7.8.5

Test settings

The test follows ANSI C63.10-2013 - Section 7.8.5. Using the power sensor instead of a spectrum analyzer.

Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

Report No.: KR21-SRF0195-C Page (10) of (28)

Test results

Frequency(MHz)	Data rate (Mbps)	Measured output power(dBm)		Limit (dBm)
		Peak	Average	
2441	1	16.08	15.30	
2480	1	16.22	15.56	
2402	2	15.40	14.89	
2441	2	11.23	8.25	20.97
2480	2	10.85	8.56	
2402	3	11.89	8.56	
2441	3	11.72	8.34	
2480	3	10.97	7.61	

Report No.: KR21-SRF0195-C
Page (11) of (28)

6.2. Radiated spurious emissions \& band edge

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 klyz to 30 NHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 CHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

www.kctl.co.kr

Limit

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength $(\mu \mathrm{V} / \mathbf{m})$	Measurement distance (\mathbf{m})
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHzz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	$100^{* *}$	3
$88-216$	$150^{* *}$	3
$216-960$	$200^{* *}$	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 $\mathbb{N L z}, 76-88 \mathrm{MHz}, 174-216 \mathrm{NHz}$ or $470-806$ MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$0.009-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
$0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-156.525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	25	$2690-2900$	$22.01-23.12$
$8.41425-8.41475$	$156.7-156.9$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$162.0125-167.17$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$167.72-173.2$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$240-285$	$3600-4400$	Above 38.6
$13.36-13.41$	$322-335.4$		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1000 WHz , compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz , compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = as specified in table
3. VBW $\geq(3 \times$ RBW $)$
4. Detector $=$ peak
5. Sweep time = auto
6. Trace mode = max hold
7. Allow sweeps to continue until the trace stabilizes

Table. RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 NHz	100 kHz to 120 kHz
$>1000 \mathrm{MHz}$	1 MHz

Average field strength measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW $=1 \mathrm{MHz}$
3. $\mathrm{VBW}=1 / \mathrm{T} \geq 1 \mathrm{~Hz}$
4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
5. Detector = peak
6. Sweep time = auto
7. Trace mode = max hold
8. Trace was allowed to run for at least 50 times(1/duty cycle) traces

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 WHz for Peak detection and frequency above 1 GHz . The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $3 \mathrm{kHz}(\geq 1 / \mathrm{T}$) for Average detection (AV) at frequency above 1 GHz.
2. $f<30 \mathrm{MHz}$, extrapolation factor of $40 \mathrm{~dB} /$ decade of distance. $\mathrm{F}_{\mathrm{d}}=40 \log \left(\mathrm{D}_{\mathrm{m}} / \mathrm{D}_{\mathrm{s}}\right)$
$f \geq 30 \mathrm{MHz}$, extrapolation factor of $20 \mathrm{~dB} /$ decade of distance. $\mathrm{F}_{\mathrm{d}}=20 \log \left(\mathrm{D}_{\mathrm{m}} / \mathrm{D}_{\mathrm{s}}\right)$
Where:
$\mathrm{F}_{\mathrm{d}}=$ Distance factor in dB
$\mathrm{D}_{\mathrm{m}}=$ Measurement distance in meters
$\mathrm{D}_{\mathrm{s}}=$ Specification distance in meters
3. Factors $(d B)=$ Antenna factor $(d B / m)+$ Cable loss $(d B)+$ or Amp. gain $(d B)+$ or $F_{d}(d B)$
4. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
5. Average test would be performed if the peak result were greater than the average limit.
6. 7) means restricted band.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR21-SRF0195-C Page (15) of (28)

Test results (Below 30 M Hz) - Worst case: GFSK 2441 M Hz

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	Distance Factor	DCCF	Result	Limit	Margin
(MIL)	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{V}))$	(dB)	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	$(\mathrm{dB}(\mu / \mathrm{m}))$	(dB)

No spurious emissions were detected within 20 dB of the limit.

Report No.: KR21-SRF0195-C
Page (16) of (28)

Test results (Below 1000 MIz) - Worst case: GFSK 2441 MIz

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
$(\mathrm{M} \mathrm{H})$	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{N}))$	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{N} / \mathrm{m}))$	$(\mathrm{dB}(\mu \mathrm{N} / \mathrm{m}))$	(dB)
Quasi peak data								
47.82	H	25.50	14.87	-29.94	-	10.43	40.00	29.57
173.32	V	26.10	15.30	-27.44	-	13.96	43.50	29.54
183.87	H	25.20	14.80	-27.29	-	12.71	43.50	30.79
191.87	V	28.30	14.89	-27.26	-	15.93	43.50	27.57
199.51	V	27.90	15.20	-27.17	-	15.93	43.50	27.57
345.86	V	24.10	20.13	-25.23	-	19.00	46.00	27.00

Report No.: KR21-SRF0195-C Page (17) of (28)

Test results (Above 1000 MHz)

GFSK_Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{V}))$	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	$(\mathrm{dB}(\mu \mathrm{N} / \mathrm{m}))$	(dB)
Peak data								
$2355.59^{1)}$	H	44.08	31.94	-27.27	-	48.75	74.00	25.25
$4820.41^{1)}$	V	61.22	33.79	-53.11	-	41.90	74.00	32.10
7164.42	H	60.28	35.30	-50.73	-	44.85	74.00	29.15
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

Report No.: KR21-SRF0195-C Page (18) of (28)

GFSK_Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
$($ (MIZ $)$	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{V}))$	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	(dB)
Peak data								
$4885.66^{1)}$	V	60.75	33.83	-53.16	-	41.42	74.00	32.58
7187.98	H	61.12	35.30	-50.68	-	45.74	74.00	28.26
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

Horizontal/Vertical for $1 \mathrm{CHz} \sim 3.5 \mathrm{CHz}$						
Horizontal/Vertical for 3.5 GHz $\sim 18 \mathrm{CHz}$						

GFSK_Highest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	(V/H)	$(\mathrm{dB}(\mu \mathrm{V})$)	(dB)	(dB)	(dB)	($\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$)	($\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$)	(dB)
Peak data								
$2486.85{ }^{1)}$	H	43.04	32.18	-28.34	-	46.88	74.00	27.12
$4975.83{ }^{1)}$	H	60.88	33.89	-52.31	-	42.46	74.00	31.54
$7409.56{ }^{1}$	H	59.47	35.30	-50.24	-	44.53	74.00	29.47
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

Report No.: KR21-SRF0195-C
Page (21) of (28)

8DPSK_Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(NHL)	(V/H)	($\mathrm{dB}(\mu \mathrm{V})$)	(dB)	(dB)	(dB)	($\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}$))	($\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$)	(dB)
Peak data								
$2337.69^{1)}$	H	44.49	31.91	-27.27	-	49.13	74.00	24.87
$4826.75{ }^{1)}$	V	61.25	33.80	-53.11	-	41.94	74.00	32.06
7193.88	V	60.27	35.30	-50.67	-	44.90	74.00	29.10
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

Report No.: KR21-SRF0195-C Page (23) of (28)

8DPSK_Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{V}))$	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	(dB)
Peak data								
$4872.52^{1)}$	H	60.60	33.82	-53.15	-	41.27	74.00	32.73
$7301.27^{1)}$	V	59.91	35.30	-50.46	-	44.75	74.00	29.25
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

8DPSK_Highest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	$(\mathrm{V} / \mathrm{H})$	$(\mathrm{dB}(\mu \mathrm{V}))$	(dB)	(dB)	(dB)	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	$(\mathrm{dB}(\mu \mathrm{V} / \mathrm{m}))$	(dB)
Peak data								
$2486.71^{1)}$	H	43.95	32.18	-28.33	-	47.80	74.00	26.20
$4986.70^{1)}$	H	61.11	33.89	-52.18	-	42.82	74.00	31.18
$7421.80^{1)}$	V	59.55	35.30	-50.22	-	44.63	74.00	29.37
Average Data								
No spurious emissions were detected within 20 dB of the limit.								

Report No.: KR21-SRF0195-C Page (26) of (28)

Test results (Above 18 CHz) - Worst case: 8DPSK 2402 MHz

Note: The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311

Report No.: KR21-SRF0195-C
Page (28) of (28)

7. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R\&S	FSV30	100732	22.01.20
Signal Generator	R\&S	SMB100A	176206	22.01.20
Vector Signal Generator	R\&S	SMBV100A	257566	22.07 .09
Bluetooth Tester	TESCOM	TC-3000C	3000C000270	22.07.28
Power Divider	Aeroflex/ Weinschel, Inc	1580-1	PE430	22.07.29
DC Power Supply	Agilent	E3632A	MY40000265	22.05 .10
Spectrum Analyzer	R\&S	FSV40	100989	21.12 .23
High pass Filter	WT	WT-A1698-HS	WT160411001	22.05.10
EMI TEST RECEIVER	R\&S	ESCI7	100732	22.03 .05
Bi-Log Antenna	TESEQ	CBL 6112D	55545	23.01.14
Attenuator	KEYSIGHT	8491B-6dB	MY39271060	21.12.24
Power Sensor	R\&S	NRP-Z81	$\begin{gathered} \text { 1137.9009.02- } \\ 106223-\mathrm{bB} \end{gathered}$	22.05.11
ISOLATION TRANSFORMER	ONETECH CO., LTD	OT-IT500VA	OTR1-16026	22.04.02
Amplifier	SONOMA INSTRUMENT	310 N	284608	22.08.19
COAXIAL FIXED ATTENUATOR	Agilent	8491B-003	2708A18758	22.04.23
Horn antenna	ETS.lindgren	3117	00155787	21.10 .28
Horn antenna	ETS.lindgren	3116	00086632	22.01.29
Attenuator	API Inmet	40AH2W-10	12	22.05.11
Broadband Pre-Amplifier	SCHWARZBECK	BBV9718	216	22.07.27
AMPLIFIER	L-3 Narda-MITEQ	$\begin{gathered} \text { AMF-7D-01001800 } \\ -22-10 \mathrm{P} \\ \hline \end{gathered}$	2003683	22.08.19
AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	22.01.21
LOOP Antenna	R\&S	HFH2-Z2	100355	22.08.21
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table	Innco Systems	DT2000	79	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	DT2000	79	-

End of test report

