KCTL KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR20-SRF0133-A
 Page (1) of (76)
 NC

1. Client

- Name : Samsung Electronics Co., Ltd.
- Address : 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
- Date of Receipt : 2020-04-03

2. Use of Report : Certification
3. Name of Product and Model : Smart Wearable / SM-R855U
4. Manufacturer and Country of Origin: Samsung Electronics Co., Ltd. / Vietnam
5. FCC ID
6. IC Certificate No.

649E-SMR855
7. Date of Test

2020-04-14 to 2020-05-25
8. Location of Test

Permanent Testing Lab \square On Site Testing (Address: Address of testing location)
9. Test method used : FCC Part 15 Subpart C, 15.247

RSS-247 Issue 2 February 2017
RSS-Gen Issue 5 March 2019
10. Test Results : Refer to the test result in the test report

2020-05-25

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

KCTL KCTL InC.	Report No.: 65, Sinwon-ro, Yeongtong-gu, KR20-SRF0133-A Suwon-si, Gyeongi-do, 16677, Korea TEL: $82-31-285-0894$ FAX: $82-505-299-8311$ www.kctl.co.kr
Page (2) of (76)	

REPORT REVISION HISTORY

Date	Revision	Page No
$2020-05-24$	Originally issued	-
$2020-05-25$	Updated	$5,22,26,27,28,34$

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR20-SRF0133 is superseded by the report No. KR20-SRF0133-A

General remarks for test reports

[^0]
CONTENTS

1. General information 4
2. Device information 4
2.1. Accessory information 5
2.2. Model Information 5
2.3. Frequency/channel operations 6
2.4. Duty Cycle Factor 7
3. Antenna requirement 8
4. Summary of tests 9
5. Measurement uncertainty 10
6. Measurement results explanation example 11
7. Test results 12
7.1. Maximum peak output power 12
7.2. Peak Power Spectral Density 16
7.3. 6 dB Bandwidth(DTS Channel Bandwidth) 21
7.4. Spurious Emission, Band Edge and Restricted bands 29
7.5. Conducted Spurious Emission 67
7.6. AC Conducted emission 74
8. Measurement equipment 76

KCTL KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311	Report No.: KR20-SRF0133-A Page (4) of (76)	

1. General information

Client	$:$ Samsung Electronics Co., Ltd.
Address	$:$129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Manufacturer
Rep. of Korea	
Address	$:$Samsung Electronics Co., Ltd. Laboratory
129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677,	
Address	$:$ KCTL Inc.
Accreditations	$:$
	65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
	FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	Industry Canada Registration No. : 8035A

KOLAS No.: KT231

2. Device information

Equipment under test	Smart Wearable
Model	SM-R855U
Derivative model	SM-R855F
Modulation technique	Bluetooth(BDR/EDR)_GFSK, m/4DQPSK, 8DPSK Bluetooth(BLE)_GFSK WIFI(802.11b/g/n20)_DSSS, OFDM LTE_QPSK, 16QAM
Number of channels	Bluetooth(BDR/EDR)_79 ch Bluetooth(BLE)_40 ch WIFI(802.11b/g/n20)_13 ch
Power source	DC 3.85 V
Antenna specification	LTE/WCDMA_PIFA (Housing metal) Antenna WIFI/Bluetooth(BDR/EDR/BLE)_LDS Antenna
Antenna gain	WIFI/Bluetooth(BDR/EDR/BLE) : -6.34 dBi

KCTL KCTL Inc.	Report No.: 65, Sinwon-ro, Yeongtong-gu, KR20-SRF0133-A Suwon-si, Gyeonggi-do, 16677, Korea TEL: $82-31-285-0894$ FAX: $82-505-299-8311$ www.kctl.co.kr
Page (5) of (76)	

Frequency range	Bluetooth(BDR/EDR/BLE)_2 402 NHz ~ 2480 NHz WIFI(802.11b/g/n20)_2 412 MHz ~ 2472 MHz LTE Band 2_1 850.7 MHz ~ 1909.3 MHz LTE Band 4_1 710.7 MHz ~ 1754.3 MHz LTE Band 5_824.7 MHz ~ 848.3 MHz LTE Band 12_699.7 MHz ~ 715.3 MHz LTE Band 13_779.5 MHz $\sim 784.5 \mathrm{MHz}$ LTE Band 25_1 850.7 MHz ~ 1914.3 MHz LTE Band 26_824.7 MHz $\sim 848.3 \mathrm{MHz}, 814.7 \mathrm{MHz} \sim 823.3 \mathrm{MHz}$ LTE Band 66_1 710.7 MHz ~ 1779.3 NHz LTE Band 71_665.5 MHz ~688.0 MHz WCDMA 850_826.4 MHz ~ 846.6 MHz WCDMA 1700_1 712.4 MHz ~ 1752.6 MHz WCDMA 1900_1 852.4 NHZ ~ 1907.6 NHZ
Software version	SM-R855U_R855U.001, SM-R855F_R855F. 001
Hardware version	REV1.0
Test device serial No.	Conducted(R3AN300BVQH) Radiated(R3AN300B2AP, R3AN300AZXW, R3AN301WD1E)
Operation temperature	$-30{ }^{\circ} \mathrm{C} \sim 50{ }^{\circ} \mathrm{C}$

2.1. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source	FCC ID \& IC
Wireless charger	Samsung Electronics Co., Ltd.	EP-OR825	-	DC $5.0 \mathrm{~V}, 1.0 \mathrm{~A}$	A3LEPOR825 / 649E-EPOR825

2.2. Model Information

The difference between basic model (SM-R855U) and derivative model (SM-R855F) is:
H/W is identical with the basic model and software is as follows.
a. RF Supported Band is Different.
(R855U: 3G (B2, B4, B5), 4G (B2, B4, B5, B12, B13, B25, B26, B66, B71))
(R855F: 3G (B1, B2, B4, B5, B8), 4G (B1, B2, B3, B4, B5, B7, B8, B12, B13, B20, B25, B28, B66))

- In EUR R855F : 3G (B1, B5, B8), 4G(B1, B3, B5, B7, B8, B20, B28)
b. All other protocol part is same.
c. All other features of Volte, SUPL is same.
d. In USA \& Canada, 4G (B7) disabled by MCC code.

Because device doesn't support B7 roaming in USA \& Canada.

2.3. Frequency/channel operations

This device contains the following capabilities:
2.4GHz WIFI(802.11b/g/n(HT20)), Bluetooth(BDR/EDR/BLE), LTE Band 2, LTE Band 4, LTE Band 5, LTE Band 12, LTE Band 13, LTE Band 25, LTE Band 26, LTE Band 66, LTE Band 71, WCDMA 850, WCDMA 1700, WCDMA 1900

Ch.	Frequency (MHZ)
01	2412
\vdots	\vdots
06	2437
\vdots	\vdots
11	2462
12	2467
13	2472

Table 2.3.1. 802.11b/g/n HT20 mode

2.4. Duty Cycle Factor

Test mode	Period (ms)	On time (ms)	Duty cycle		Duty Cycle Factor
802.11 b	8.7391	8.6087	0.9851	98.51	0.07
802.11 g	1.5362	1.4058	0.9151	91.51	0.39
$802.11 \mathrm{n} _$HT20	1.4521	1.3304	0.9162	91.62	0.38

Notes.

1. Duty cycle (Linear) $=$ Ton time / Period
2. $\operatorname{DCF}($ Duty cycle factor) $=10 \log (1 /$ duty cycle $)$

KCTL KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR20-SRF0133-A Page (8) of (76)	

3. Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Requirement of RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.
For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).
When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

- The transmitter has permanently attached LDS Antenna (internal antenna) on board.
- The E.U.T Complies with the requirement of §15.203, §15.247.

KCTL KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR20-SRF0133-A Page (9) of (76)	

Notes:

1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
2. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz . Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that \mathbf{X} orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in \mathbf{X} orientation
4. All the radiated tests have been performed two modes (with charger and without charger) and the with charger is the worst case mode.
5. The worst-case data rate were:
802.11b mode : 1 Mbps
802.11 g mode : 6 Mbps
802.11n HT20 mode : MCS0
6. The test procedure(s) in this report were performed in accordance as following.

- ANSI C63.10-2013
- KDB 558074 D01 V05r02

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.
All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicated a 95% level of confidence. The measurement data shown herein meets of exceeds the $U_{\text {CISPR }}$ measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (土)	
Conducted RF power	1.3 dB	
Conducted spurious emissions	1.3 dB	
Radiated spurious emissions	$9 \mathrm{kHz} \sim 30 \mathrm{NHz}:$	2.3 dB
	$30 \mathrm{MHz} \sim 300 \mathrm{NHz}$	5.4 dB
	$300 \mathrm{NHz} \sim 1000 \mathrm{NHz}$	5.5 dB
	Above 1 CHz	6.7 dB
Conducted emissions	$9 \mathrm{kHz} \sim 150 \mathrm{kHz}$	3.7 dB
	$150 \mathrm{kHz} \sim 30 \mathrm{NHz}$	3.3 dB

This test report shall not be reproduced, except in full, without the written approval

Measurement results explanation example

Frequency (MHZ)	Factor(dB)	Frequency (MHZ)	Factor(dB)
30	9.29	9000	12.34
50	9.36	10000	12.61
100	9.43	11000	12.79
200	9.55	12000	12.81
300	9.64	13000	12.85
400	9.73	14000	12.99
500	9.80	15000	13.10
600	9.85	16000	13.52
700	9.89	17000	13.55
800	9.94	18000	13.74
900	10.03	19000	13.77
1000	10.05	20000	13.82
2000	10.12	21000	14.14
3000	10.74	22000	14.44
4000	11.06	23000	14.64
5000	11.33	24000	14.71
6000	11.55	25000	15.01
7000	12.16	26000	15.06
8000	12.26	26500	15.10

Note :

Offset $(\mathrm{dB})=$ RF cable loss $(\mathrm{dB})+$ Attenuator (dB)

KCTL KCTL Inc.	Report No.:
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea KR20-SRF0133-A TEL: $81-285-0894 \quad$ FAX: 82-505-299-8311 www.kctl.co.kr	Page (12) of (76)

7. Test results
 7.1. Maximum peak output power

Test setup

Limit

FCC
According to §15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2 400-2 483.5 MHz, and 5 725-5 850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to $\S 15.247(b)(4)$ The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs $(b)(1),(b)(2)$, and $(b)(3)$ of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

IC

According to RSS-2475.4(d), For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W . The e.i.r.p. shall not exceed 4 W , except as provided in section 5.4(e).

Test procedure

ANSI C63.10-Section 11.9
Used test method is section 11.9.1.3 and 11.9.2.3.1

KCTL KCTL Inc. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR20-SRF0133-A Page (13) of (76)	

Test settings

General

Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance).

When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100% duty cycle; however a small reduction in duty cycle (to no lower than 98%) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

If continuous transmission (or at least 98% duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration.

11.9.1. Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

11.9.1.1. RBW \geq DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:
a) Set the RBW \geq DTS bandwidth.
b) Set VBW $\geq[3 \times R B W]$.
c) Set span $\geq[3 \times$ RBW $]$.
d) Sweep time = auto couple.
e) Detector $=$ peak.
f) Trace mode = max hold.
g) Allow trace to fully stabilize.
h) Use peak marker function to determine the peak amplitude level.

11.9.1.3. PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

KCTL KCTL Inc.	Report No.:
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea KR20-SRF0133-A TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kct.co.kr	Page (14) of (76)

11.9.2.3.1. Measurement using a power meter (PM)

Method AVGPM is a measurement using an RF average power meter, as follows:
a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:

1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
d) Adjust the measurement in dBm by adding $[10 \log (1 / \mathrm{D})]$, where D is the duty cycle

Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

Test results

Test mode	Frequency (MZ)	Conducted output power (dBm)		Conducted Power Limit (dBm)	Ant. Gain (dBi)	Max. E.I.R.P.(dB m)		Max. E.I.R.P. Limit (dBm)
		Peak	Average			Peak	Average	
802.11b	2412	20.20	17.12	30	-6.34	13.86	10.78	36.02
	2437	20.05	16.84			13.71	10.50	
	2462	20.54	17.61			14.20	11.27	
	2467	13.68	10.38			7.34	4.04	
	2472	10.99	7.80			4.65	1.46	
802.11 g	2412	25.03	15.55	30	-6.34	18.69	9.21	36.02
	2437	25.26	15.34			18.92	9.00	
	2462	24.81	15.85			18.47	9.51	
	2467	21.85	11.43			15.51	5.09	
	2472	19.06	8.83			12.72	2.49	
$\begin{gathered} 802.11 \mathrm{n} \\ \text { HT20 } \end{gathered}$	2412	24.43	14.46	30	-6.34	18.09	8.12	36.02
	2437	25.06	14.24			18.72	7.90	
	2462	24.24	14.79			17.90	8.45	
	2467	21.04	11.20			14.70	4.86	
	2472	18.21	8.60			11.87	2.26	

Notes:

1. Measured output power(Average) $=$ reading value of average power + D.C.F
2. E.I.R.P. Calculation: E.I.R.P. $(\mathrm{dB} \mathrm{m})=$ Conducted output power (dB m) + Antenna gain (dB i)

| KCTL KCTL Inc. | Report No.: |
| :---: | :---: | :---: |
| 65, Sinwon-ro, Yeongtong-gu,
 Suwon-si, Gyeonggi-do, 16677, Korea
 KR20-SRF0133-A | |
| TEL: 82-31-285-0894 FAX: 82-505-299-8311 | |
| www.kctl.co.kr | Page (16) of (76) |

7.2. Peak Power Spectral Density

Test setup

Limit

According to $\S 15.247$ (e) and RSS-247(5.2), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test procedure

ANSI C63.10-Section 11.10.2

Test settings

Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

1) Set analyzer center frequency to DTS channel center frequency.
2) Set the span to 1.5 times the DTS bandwidth.
3) Set the RBW to: $3 \mathrm{kHz} \leq \mathrm{RBW} \leq 100 \mathrm{kHz}$.
4) Set the VBW $\geq 3 \times R B W$.
5) Detector $=$ peak.
6) Sweep time = auto couple.
7) Trace mode = max hold.
8) Allow trace to fully stabilize.
9) Use the peak marker function to determine the maximum amplitude level within the RBW.
10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

KCTL KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
Report No.:
KR20-SRF0133-A
Page (17) of (76)

Test results

Test mode	Frequency(MIZ)	Result(dBm/ 3klz)	Limit(dBm/ 3ktz)
802.11b	2412	-3.20	8.00
	2437	-3.93	
	2462	-4.58	
	2467	-9.77	
	2472	-14.91	
	2412	-9.33	
	2437	-9.08	
802.11 g	2462	-9.05	
	2467	-13.52	
	2472	-15.05	
802.11n HT20	2412	-10.04	
	2437	-9.45	
	2462	-9.96	
	2467	-12.51	
	2472	-15.48	

Report No.: KR20-SRF0133-A

Page (18) of (76)

Report No.: KR20-SRF0133-A

Page (19) of (76)

Report No.:
KR20-SRF0133-A
Page (20) of (76)

[^0]: Nothing significant to report.

