

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (1) of (68)

1. Client

Name

: Samsung Electronics Co., Ltd.

· Address

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677,

Rep. of Korea

Date of Receipt

: 2019-10-18

2. Use of Report

: Class II Permissive Change

3. Name of Product and Model

: Smart Wearable

Model Number

: SM-R835F

Manufacturer and Country of Origin: Samsung Electronics Co., Ltd. / Korea

4. FCC ID Number

: A3LSMR835

5. Date of Test

: 2019-12-05

6. Test Standards

: IEEE 1528-2013, ANSI/IEEE C95.1, KDB Publication

7. Test Results

: Refer to the test result in the test report

Tested by

Technical Manager

Affirmation

Name: Kyounghoo Min

(Signature) Name :

Name: Gyuhyun Shim

2019-12-06

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (2) of (68)

Report revision history

Date	Revision	Page No
2019-12-05	Initial report	-
2019-12-06	- Section15. Add simultaneous Transmission	28

Note: The Report No. KR19-SPF0033 is superseded by the report No. KR19-SPF0033-A

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (3) of (68)

CONTENTS

1.	General information	4
2.	Device information	5
3.	Report Overview	6
4.	Test Lab Declaration or Comments	6
5.	Applicant Declaration or Comments	6
6.	SAR Test Methods and Procedures	7
7.	Measurement Uncertainty	7
8.	Specific Absorption Rate	8
9.	The SAR Measurement System	10
10.	System Verification	14
11.	SAR Measurement Procedures	16
12.	FCC SAR GENERAL MEASUREMENT PROCEDURES	17
13.	RF Average Conducted Output Power	22
14.	SAR Test Results	
15.	Simultaneous Transmission	28
16.	SAR Measurement Variability	29
17.	Test Equipment Information	30
18.	Test System Verification Results	31
19.	Test Results	32
Appe	endixes List	34
Appe	endix A. Calibration certificate	35
Appe	endix B. SAR Tissue Specification	63
Appe	Appendix C. Antenna Location & Distance	
Appe	ppendix D. EUT Photo	
Appe	endix E. Test Photo	68
Fnd (of test report	68

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (4) of (68)

General information

Client : Samsung Electronics Co., Ltd.

Address : 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea

Manufacturer : Samsung Electronics Co., Ltd.

Address : 94-1, Imsu-dong, Gumi-si, Gyengsangbuk-do, 730-722, Republic of Korea

Contact Person : JaehyeonKwon / j0518.kwon@samsung.com

Laboratory : KCTL Inc.

Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132

VCCI Registration No.: R-3327, G-198, C-3706, T-1849

Industry Canada Registration No.: 8035A

KOLAS No.: KT231

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (5) of (68)

2. Device information

2.1 Basic description

Product Name		Smart Wearable
Product Model Number		SM-R835F
Product Manufacturer		Samsung Electronics Co., Ltd
Product Serial	Radiation	R3AM90016DP
Number	Conduction	R3AM90016CN
Mode of Operation		LTE Band 2
Tx Freq. Range		LTE Band 2: 1 850.7 MHz ~ 1 909.3 MHz

2.2 Summary of SAR Test Results

		Highest Reported	
Band	Equipment Class	1g SAR (W/kg)	10g SAR (W/kg)
		Next to Mouth	Extremity
LTE Band 2	Licensed	0.18	0.81
Simultaneous SAR per l	KDB 690783 D01v01r03	0.28	0.97

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (6) of (68)

3. Report Overview

This report details the results of testing carried out on the samples listed in section 2, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of KCTL Inc. Wireless lab or testing done by KCTL Inc. Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by KCTL Inc. Wireless lab.

4. Test Lab Declaration or Comments

None

5. Applicant Declaration or Comments

None

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR19-SPF0033-A Page (7) of (68)

www.kctl.co.kr

6. SAR Test Methods and Procedures

The tests documented in this report were performed in accordance with IEEE 1528-2013 and the following published KDB procedures:

- 447498 D01 General RF Exposure Guidance v06
- 865664 D01 SAR measurement 100 Mb to 6 Gb v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D05 SAR for LTE Devices v02r05
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)

7. Measurement Uncertainty

Per KDB 865664 D01 SAR measurement 100 Mz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Standard 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5 W/kg and highest measured 10-g SAR is less 3.75 W/kg. Therefore, the measurement uncertainty table is not required in this report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (8) of (68)

Specific Absorption Rate

8.1 Introduction

The SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational / controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

8.3 SAR Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 ©E," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements

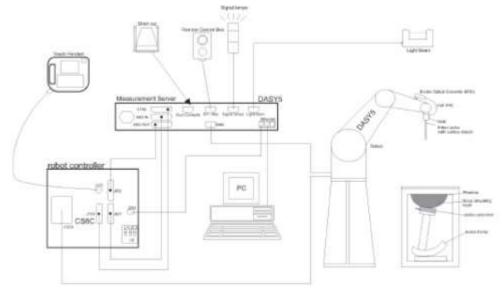
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (9) of (68)

(NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 Hz. Portable devices that transmit at frequencies above 6 Hz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 Hz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.


Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR ¹⁾ (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR ²⁾ (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR 3) (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

- 1) The spatial Peak value of the SAR averaged over any 1g gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2) The spatial Average value of the SAR averaged over the whole body.
- 3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (10) of (68)

. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software.
 An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy
 of the probe positioning.
- A computer running Windows XP or Windows 7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (11) of (68)

9.1 Data Acquisition Electronics

Type	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Calibration	ISO/IEC 17025 calibration (Annual)	11111
Measurement Mange	-100 - +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)	
Input Offset Voltage	< 5 μV (with auto zero)	
Input Resistance	200 Mohm	
Input Bias Current	< 50 fA	

9.2 Isotropic E-field Probe

Туре	EX3DV4		
Construction	Symmetrical design with triangular core. Built-in	100	
	shielding against static charges. PEEK enclosure	<u> </u>	
	material(resistant to organic solvents)		
Calibration	ISO/IEC 17025 calibration (Annual)		
Frequency	10 MHz to 6 GHz		
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in TSL (rotation around probe axis)		
	± 0.5 dB in TSL (rotation normal to probe axis)		
Dynamic Range	10 μW/g to > 100 mW/g		
	Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)		
Dimensions	Overall lengith: 337 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole centers: 1 mm		

Туре	ES3DV3	
Construction	Symmetrical design with triangular core. Built-in	~
	shielding against static charges. PEEK enclosure	
	material(resistant to organic solvents)	
Calibration	ISO/IEC 17025 calibration (Annual)	
Frequency	10 MHz to 4 GHz	
	Linearity: ± 0.2 dB (30 MHz to 4 GHz)	
Directivity	± 0.3 dB in TSL (rotation around probe axis)	
	± 0.5 dB in TSL (rotation normal to probe axis)	No.
Dynamic Range	10 μW/g to > 100 mW/g	
	Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)	
Dimensions	Overall lengith: 337 mm (Tip: 20 mm)	
	Tip diameter: 3.9 mm (Body: 12 mm)	
	Typical distance from probe tip to dipole centers: 2 m	m

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (12) of (68)

9.3 System Validation Dipoles

Туре	Dipole Antenna	
Construction	Symmetrical dipole with λ/4 balun. Enables measurement	
	of feed point impedance with network analyzers (NWA)	
	Matched for use near flat phantoms filled with tissue	
	simulating liquids	
Calibration	ISO/IEC 17025 calibration (Biennial)	
Frequency	300 MHz to 6 GHz	100
Return Loss	> 20 dB at specified validation position	
Power	>100 W (f <1 GHz); >40 W (f >1 GHz)	
Capability		
		(6)
		40

9.4 Phantom

Туре	Twin SAM
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body-mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Material	Vinyl ester, fiberglass reinforced (VE-GF)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions	Length: 1000 mm
	Width: 500 mm
	Height: adjustable feet
Filling Volume	approx. 25 liters

Туре	ELI	
Construction	The ELI phantom is used for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids by teaching three points with the robet.	
Material	Vinyl ester, fiberglass reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm / Minor axis: 400 mm	
Filling Volume	approx. 300 liters	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (13) of (68)

9.5 Device Holder for Transmitters

Construction	In combination with the Twin SAM or ELI phantoms, the Mounting Device for Hand-held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to Standard or other specifications. The device holder can be locked for positioning at different phantom sections	
Type	MD4HHTV5	MD4LAPV5
Photo		
Material	Polyoxymethylene(POM)	Polyoxymethylene(POM), PET-G, Foam

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894

KR19-SPF0033-A FAX: 82-505-299-8311 Page (14) of (68) www.kctl.co.kr

System Verification

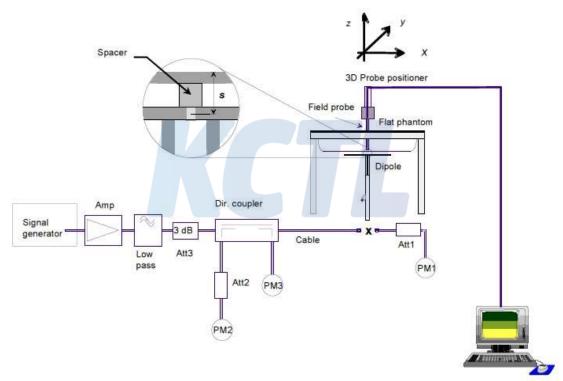
10.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the SPEAG Model DAK3.5 Dielectric Probe in conjunction with Agilent E5071B Network Analyzer (300 kHz – 8 500 Mb). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C.

Report No.:

Freq. (MHz)	Limit/N	Measured	Permittivity (ρ)	Conductivity (σ)	Temp. (°C)
1 900.0	Recomm	ended Limit	40.00 ± 5 % (38.00 ~ 42.00)	1.40 ± 5 % (1.33 ~ 1.47)	22 ± 2
	Measured	2019-12-05	39.93	1.41	20.52

<Table 1.Measurement result of Tissue electric parameters>



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (15) of (68)

10.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phant om. A SAR measurement was performed to see if the measured SAR was within \pm 1 0% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the Table 2. During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) °C, the relative humidity was in the range(50 \pm 20)% and the liquid depth Above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the re sults are within acceptable tolerance of the reference values.

Verification Kit	Probe S/N	Frequency (Mt/z)	Tissue Type	Limit/Measured (Normalized to 1 W)			
			Recommended Limit 1g (Normalized)		39.80 ± 10 % (35.82 ~ 43.78)		
D1900V2	EX3DV4	4 000 0	1101	Measured	2019-12-05	39.72	
SN: 5d160	SN: 7540	1 900.0	HSL	Recommended Limit 10g	_	20.80 ± 10 %	
				(Nor	malized)	(18.72 ~ 22.88)	
				Measured	2019-12-05	20.12	

<Table 2. System Verification Result>

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (16) of (68)

11. SAR Measurement Procedures

11.1 SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan & Zoom Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot and Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing1 g and 10 g of simulated tissue. If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. Area Scan & Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04.

			≤ 3 GHz	> 3 GHz	
Maximum distance from c	losest measu	rement point	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm } 0.5 \text{ mm}$	
(geometric center of probe	sensors) to p	ohantom surface	3 11111 ± 1 111111	½· ⊘· In(∠) mm 0.5 mm	
Maximum probe angle fro	m probe axis	to phantom	30° ± 1°	20° ± 1°	
surface normal at the meas	surement loca	ation	30 ± 1	20 ± 1	
			≤ 2 GHz: ≤ 15 mm	$3-4$ GHz: ≤ 12 mm	
			$2 - 3$ GHz: $\leq 12 \text{ mm}$	$4-6$ GHz: ≤ 10 mm	
			When the x or y dimension	of the test device, in the	
Maximum area scan spatia	ıl resolution:	ΔxArea, ΔyArea	measurement plane orientat	ion, is smaller than the	
			above, the measurement res		
			corresponding x or y dimension of the test device with		
			at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: ΔxZoom, ΔyZoom			≤ 2 GHz: ≤ 8 mm	$3-4$ GHz: ≤ 5 mm*	
Waximum zoom scan spac	iai resolution	. AXZ00III, AyZ00III	$2-3$ GHz: ≤ 5 mm*	$4-6$ GHz: ≤ 4 mm*	
				$3-4$ GHz: ≤ 4 mm	
	un	iform grid: ΔzZoom(n)	≤ 5 mm	$4-5$ GHz: ≤ 3 mm	
Maximum zoom				$5-6$ GHz: ≤ 2 mm	
scan spatial		Δz Zoom(1): between		$3-4$ GHz: ≤ 3 mm	
resolution, normal to	graded	1st two points closest	≤ 4 mm	$4-5$ GHz: ≤ 2.5 mm	
phantom surface	graded grid	to phantom surface		$5-6$ GHz: ≤ 2 mm	
	grid	ΔzZoom(n>1): between subsequent points	$\leq 1.5 \cdot \Delta z Zoom(n-1) mm$		
M::				$3-4$ GHz: ≥ 28 mm	
Minimum zoom scan volume		x, y, z	≥ 30 mm	$4-5$ GHz: ≥ 25 mm	
scan volume		•		$5-6$ GHz: ≥ 22 mm	
Notes X is the monetration	J 41 1 -	no ways at normal incidence to	4 4: IDDD	C44 1500 2012 f d-4-:1-	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (17) of (68)

12. FCC SAR GENERAL MEASUREMENT PROCEDURES

12.1 SAR Measurement Conditions for UMTS

12.1.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

12.1.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

12.1.3 Body SAR measurements

SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

12.1.4 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel.6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2kbps RMC configured in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (18) of (68)

12.1.5 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

12.1.6 SAR Measurements with Rel. 8 DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable

12.2 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r05 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluation SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

12.2.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

12.2.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

12.2.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (19) of (68)

12.2.4 Required RB Size and RB offsets for SAR testing

According to FCC KDB 941225 D05v02r05

- 1. Per sec 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - a. The required channel and offset combination with the highest maximum output power is required for SAR.
 - b. When the reported SAR is ≤ 0.8 W/Kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - c. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel
- 2. Per Sec 4.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Sec 4.2.1.
- 3. Per Sec. 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- 4. Per Sec. 4.2.4 and 4.3, SAR test for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sec. 4.2.1 through 4.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/Kg.</p>

12.3 WLAN Measured Procedures

12.3.1 General Device Setup

The normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 – 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

12.3.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (20) of (68)

12.3.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at $5.60 - 5.65 \, \text{GHz}$ in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency point requirements.

12.3.4 2.4 @ SAR Test Requirement

SAR is measured for 2.4 6Hz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following.

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel; i.e., all channels require testing.
- 2.4 6Hz 802.11g/n OFDM are additionally evaluated for SAR if highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 6Hz band, the Initial Test Configuration Procedures should be followed.

12.3.5 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 6Hz and 5 6Hz band, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel band width, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (21) of (68)

12.3.6 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 6Hz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

12.3.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (22) of (68)

13. RF Average Conducted Output Power

13.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. Test highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

13.2 Maximum Tune-up power

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Band	Mode		Output Power (dBm)		
Band	Mode	Target	Max. Allowed	SAR Test	
LTE	Band 2	22.00	23.00	Yes	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

Report No.:

13.3 LTE Average Conducted Output Power

13.3.1 LTE Band 2

				Ma	aximum Pow	er er	
Band width	Modulation	RB Size	RB offset	18 700	18 900	19 100	MPR
				1 860.0 Mb	1 880.0 Mb	1 900.0 Mb	
		1	0	21.87	21.89	22.00	0
		1	49	21.88	21.98	21.99	0
		1	99	21.91	21.93	21.93	0
	QPSK	50	0	20.67	20.87	20.90	1
		50	24	20.68	20.89	20.88	1
		50	50	20.71	20.89	20.87	1
20 MII-		100	0	20.67	20.86	20.87	1
20 MHz		1	0	20.84	20.56	20.38	1
		1	49	20.95	20.64	20.29	1
		1	99	20.67	20.59	20.31	1
	16QAM	50	0	19.74	19.89	19.87	2
		50	24	19.75	19.88	19.85	2
		50	50	19.72	19.91	19.88	2
		100	0	19.72	19.90	19.89	2

				Ma	aximum Pow	ver er	
Band width	Modulation	RB Size	RB offset	18 675	18 900	19 125	MPR
				1 857.5 Mb	1 880.0 Mb	1 902.5 MHz	
		1	0	21.76	21.95	21.83	0
		1	36	21.78	22.00	21.79	0
		1	74	21.79	21.95	21.81	0
	QPSK	36	0	20.74	20.97	20.60	1
		36	18	20.74	20.93	20.64	1
		36	37	20.71	20.94	20.61	1
4.5 Mile		75	0	20.73	20.94	20.56	1
15 MHz		1	0	20.51	21.04	20.55	1
		1	36	20.49	21.06	20.45	1
		1	74	20.55	21.00	20.44	1
	16QAM	36	0	19.73	19.93	19.55	2
		36	18	19.73	19.86	19.54	2
		36	37	19.78	19.91	19.56	2
		75	0	19.75	19.92	19.54	2

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR19-SPF0033-A Page (24) of (68)

www.kctl.co.kr

				Ma	aximum Pow	er	
Band width	Modulation	RB Size	RB offset	18 650	18 900	19 150	MPR
				1 855.0 Mb	1 880.0 Mb	1 905.0 Mb	
		1	0	21.98	21.91	21.61	0
		1	25	21.97	21.96	21.69	0
		1	49	21.95	21.97	21.64	0
	QPSK	25	0	20.76	20.22	20.53	1
		25	12	20.71	20.90	20.53	1
		25	25	20.73	20.89	20.51	1
40 MII-		50	0	20.75	20.87	20.50	1
10 MHz		1	0	20.71	20.73	20.58	1
		1	25	20.70	20.87	20.49	1
		1	49	20.42	20.87	20.39	1
	16QAM	25	0	19.84	19.88	19.54	2
		25	12	19.81	19.90	19.51	2
		25	25	19.80	19.93	19.50	2
		50	0	19.78	19.87	19.48	2

				Ma	aximum Pow	/er	
Band width	Modulation	RB Size	RB offset	18 625	18 900	19 175	MPR
				1 852.5 Mb	1 880.0 Mb	1 907.5 Mb	
		1	0	21.85	21.97	21.65	0
		1	12	21.89	21.96	21.63	0
		1	24	21.86	21.96	21.59	0
	QPSK	12	0	20.74	20.94	20.50	1
		12	7	20.81	20.95	20.50	1
		12	13	20.71	20.96	20.54	1
C 101-		25	0	20.78	20.87	20.49	1
5 MHz		1	0	20.93	21.25	20.49	1
		1	12	20.97	21.13	20.51	1
		1	24	20.93	21.22	20.46	1
	16QAM	12	0	19.71	19.84	19.52	2
		12	7	19.72	19.83	19.51	2
		12	13	19.75	19.89	19.52	2
		25	0	19.84	19.84	19.51	2

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR19-SPF0033-A Page (25) of (68)

www.kctl.co.kr

				Ma	aximum Pow	er	
Band width	Modulation	RB Size	RB offset	18 615	18 900	19 185	MPR
				1 851.5 ₩	1 880.0 Mb	1 908.5 Mb	
		1	0	21.96	21.99	21.78	0
		1	8	21.96	21.91	21.80	0
		1	14	21.91	21.98	21.79	0
	QPSK	8	0	20.82	20.97	20.59	1
		8	4	20.84	20.98	20.58	1
		8	7	20.83	20.97	20.58	1
O MIL		15	0	20.74	20.92	20.54	1
3 MHz		1	0	20.64	20.86	20.39	1
		1	8	20.45	20.94	20.49	1
		1	14	20.42	20.84	20.67	1
	16QAM	8	0	19.80	20.14	19.44	2
		8	4	19.86	20.06	19.38	2
		8	7	19.86	19.96	19.38	2
		15	0	19.84	19.90	19.51	2

				Ma	aximum Pow	ver er	
Band width	Modulation	RB Size	RB offset	18 607	18 900	19 193	MPR
				1850.7 Mb	1880.0 Mb	1909.3 ₩₺	
		1	0	21.92	21.95	21.85	0
		1	3	21.93	21.95	21.90	0
		1	5	21.97	21.93	21.82	0
	QPSK	3	0	22.00	21.99	21.72	0
		3	1	22.00	21.93	21.71	0
		3	3	21.93	21.93	21.74	0
4 4 101-		6	0	20.81	21.00	20.56	1
1.4 MHz		1	0	20.96	20.88	20.72	1
		1	3	20.91	21.10	20.71	1
		1	5	20.95	20.85	20.70	1
	16QAM	3	0	20.83	20.80	20.55	1
		3	1	20.76	20.78	20.43	1
		3	3	20.70	20.82	20.54	1
		6	0	19.88	20.08	19.53	2

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (26) of (68)

14. SAR Test Results

14.1 LTE Band 2 SAR Test Results

Next to N	Next to Mouth										
EUT Position	Mode	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dB m)	Max. Tune- up Power (dB m)	Power Scaling Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.		
Front	QPSK 20M 1RB 0 offset	10	1 900.0	22.00	23.00	1.259	0.144	0.181	#1		
Front	QPSK 20M 50RB 0 offset	10	1 900.0	20.90	22.00	1.288	0.113	0.146			
Extremit	У										
EUT Position	Mode	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dB m)	Max. Tune- up Power (dB m)	Power Scaling Factor	Measured 10 g SAR (W/kg)	Scaled 10 g SAR (W/kg)	Plot No.		
Rear	QPSK 20M 1RB 0 offset	0	1 900.0	22.00	23.00	1.259	0.641	0.807	#2		
Rear	QPSK 20M 50RB 0 offset	0	1 900.0	20.90	22.00	1.288	0.471	0.607			

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (27) of (68)

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.

LTE Notes:

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- 1. Justification Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- 4. Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- 5. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- 6. For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (28) of (68)

15. Simultaneous Transmission

15.1 Simultaneous Transmission Configurations

RF Exposure Condition	No	Scenario	Operation
Next to Mouth	1	LTE + WLAN 2.4 GHz	Yes
Next to Mouth	2	LTE + Bluetooth	Yes
Extremity	1	LTE + WLAN 2.4 Hz	Yes
LAUGITILY	2	LTE + Bluetooth	Yes

Notes

- It does not to transmit simultaneously the Bluetooth and WLAN.
- It is to use the Bluetooth and WLAN same antenna path.

15.2 Simultaneous Transmission Analysis

Position		LTE 2	WLAN 2.4 GHz	Bluetooth	Sumn	nation
		[1]	[2]	[3]	[1+2]	[1+3]
Next to Mouth (1 g)	Front	0.181	*0.103	*0.087	0.284	0.268
Extremity (10 g)	Rear	0.807	*0.167	*0.144	0.974	0.951

Notes

- *The WLAN and Bluetooth SAR result are referenced in the original report. (Report No. KR19-SPF0031)
- Simultaneous transmission SAR test exclusion considerations Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. Per KDB Publication 447498 D01v06.
- When the sum of SAR1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR1g 1.6 W/kg), the SPLSR procedures is not required. When the sum of SAR1g is greater than the SAR limit (SAR1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (29) of (68)

SAR Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once
- 3) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Band	Frequency (Mt)	EUT Position	Separation Distance (mm)	Measured 1 g SAR (W/kg)	Repeated 1g SAR (W/kg)	Ratio
N/A						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-831

recongiong-gu, gi-do, 16677, Korea KR19-SPF0033-A FAX: 82-505-299-8311 Page (30) of (68)

Report No.:

www.kctl.co.kr

17. Test Equipment Information

Test Platform	SPEAG DASY5 System					
Version	DASY52: 52.10.1.1476 / SEMCAD: 14.6.11 (7439)					
Location	KCTL Inc, 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea					
Manufacture	SPEAG	SPEAG				
	Hard	ware Reference				
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration		
Shield Room	-	8F - #3	N/A	N/A		
DASY6 Robot	TX90XL speag	F/18/0004968/A/001	N/A	N/A		
Phantom	Twin SAM Phantom	1974	N/A	N/A		
Mounting Device	Mounting Device	None	N/A	N/A		
DAE	DAE4	666	2019-01-25	2020-01-25		
Probe	EX3DV4	7540	2019-07-22	2020-07-22		
ESG Vector Signal Generator	E4438C	MY42080845	2019-03-04	2020-03-04		
Dual Power Meter	EPM-442A	GB37480680	2019-06-20	2020-06-20		
Power Sensor	8481H	2703A11902	2019-06-26	2020-06-26		
Power Sensor	8481H	3318A18090	2019-06-21	2020-06-21		
Attenuator	8491A	21552	2019-07-01	2020-07-01		
Attenuator	8491A	35560	2019-07-01	2020-07-01		
Attenuator	8491A	35934	2019-07-01	2020-07-01		
Power Amplifier	AMP2027	10010	2019-07-17	2020-07-17		
Dual Directional Coupler	778D-012	50136	2019-06-21	2020-06-21		
Low Pass Filter	VLF-3000+	31831	2019-07-01	2020-07-01		
Dipole Validation Kits	D1900V2	5d160	2018-04-25	2020-04-25		
Network Analyzer	E5071B	MY42403524	2019-01-04	2020-01-04		
Dielectric Assessment Kit	DAK-3.5	1078	2019-05-22	2020-05-22		
Humidity/Temp.	MHB-382SD	46307	2019-04-10	2020-04-10		
Spectrum Analyzer	FSP7	100289	2019-01-04	2020-01-04		
Wideband Radio Communication Tester	CMW500	137524	2019-07-17	2020-07-17		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (31) of (68)

18. Test System Verification Results

Date: 12/5/2019

Test Laboratory: KCTL Inc.

File Name: 1900 MHz Verification Input Power 250 mW 2019-12-05.da52:0

DUT: Dipole 1900 MHz D1900V2, Type: D1900V2, Serial: D1900V2 - SN:5d160

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.406$ S/m; $\varepsilon_r = 39.931$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7540;ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 7/22/2019

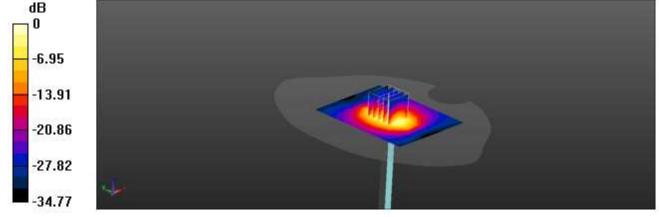
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn666; Calibrated: 1/25/2019

• Phantom: Back_Left_Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

Measurement SW: DASY52, Version 52.10 (2);

System Performance Check (without Area Scan)/1900 MHz Verification Input Power 250 mW 2019-12-05/Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.0 W/kg


System Performance Check (without Area Scan)/1900 MHz Verification Input Power 250 mW 2019-12-05/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 106.4 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 19.4 W/kg

SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.03 W/kg

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (32) of (68)

19. Test Results

#1

Date: 12/5/2019

Test Laboratory: KCTL Inc.

File Name: 1.LTE Band 2 QPSK 20 MHz.da53:0

DUT: SM-R835F, Type: Smart Wearable, Serial: R3AM90016DP

Communication System: UID 0, LTE Band 2 (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.406 \text{ S/m}$; $\epsilon_r = 39.931$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7540;ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 7/22/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn666; Calibrated: 1/25/2019

• Phantom: Back_Left_Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

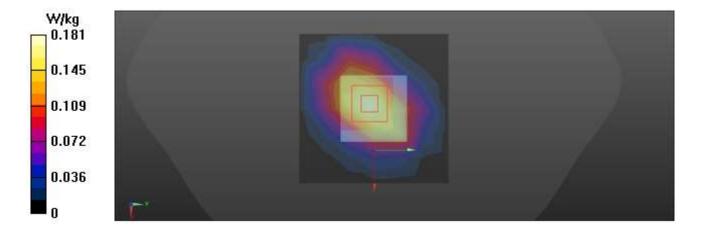
• Measurement SW: DASY52, Version 52.10 (2);

Configuration/LTE Band 2_QPSK_20 MHz_1RB_0 Offset_CH19100_Front_10 mm/Area Scan

(7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.181 W/kg

Configuration/LTE Band 2_QPSK_20 MHz_1RB_0 Offset_CH19100_Front_10 mm/Zoom


Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.73 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.188 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SPF0033-A Page (33) of (68)

#2

Date: 12/5/2019

Test Laboratory: KCTL Inc.

File Name: 1.LTE Band 2_QPSK_20 MHz.da53:0

DUT: SM-R835F, Type: Smart Wearable, Serial: R3AM90016DP

Communication System: UID 0, LTE Band 2 (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.406 \text{ S/m}$; $\epsilon_r = 39.931$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7540;ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 7/22/2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn666; Calibrated: 1/25/2019

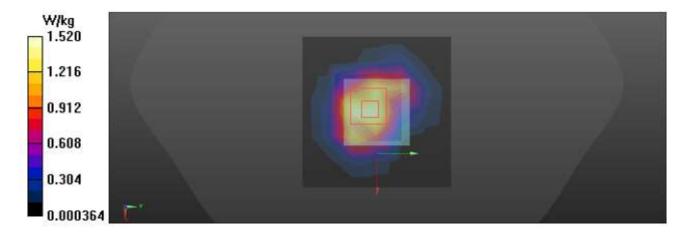
Phantom: Back_Left_Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• Measurement SW: DASY52, Version 52.10 (2);

Configuration/LTE Band 2_QPSK_20 MHz_1RB_0 Offset_CH19100_Rear_0 mm/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.52 W/kg

Configuration/LTE Band 2_QPSK_20 MHz_1RB_0 Offset_CH19100_Rear_0 mm/Zoom Scan


(6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.68 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.641 W/kg

Maximum value of SAR (measured) = 1.64 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (34) of (68)

Appendixes List

	A.1 Probe Calibration certificate (EX3DV4_7540)
Appendix A	A.2 Dipole Calibration certificate (D1900V2_5d160)
	A.3 Justification for Extended SAR Dipole Calibrations
Appendix B	SAR Tissue Specification
Appendix C	Antenna Location & Distance
Appendix D	EUT Photo
Appendix E	Test Setup Photo

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (35) of (68)

Appendix A. Calibration certificate
Appendix A.1 Probe Calibration certificate(EX3DV4_7540)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client.

KCTL (Dymstec)

Certificate No: EX3-7540 Jul19

CALIBRATION CERTIFICATE Object EX3DV4 - SN:7540 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed isboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Call Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20	
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20	
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20	
Reference 20 dB Attenuator	SN: 55277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20	
DAE4	SN: 660	19-Dec-18 (No. DAE4-860_Dec18)	Dec-19	
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E44198	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
RF generator HP 8848C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check; Oct-19	

	Name	Function	Signature
Calibrated by:	Lef Klyaner	Laboratory Technician	Sef The
Approved by:	Katja Pokovic	Technical Manager	All .
This calibration certificate	shall not be reproduced except in ful	I without written approval of the laboratory	Issued: July 22, 2019

Certificate No: EX3-7540_Jul19

Page 1 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (36) of (68)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zunch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques," June 2013.
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- i) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7540_Jul19 Page 2 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (37) of (68)

EX3DV4 - SN:7540

July 22, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7540

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.57	0.59	0.58	± 10.1 %
DCP (mV) ^e	99.6	96.2	100.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ⁶ (k=2)		
0	CW	X	0.00	0:00	1.00	0.00	175.8	±2.5%	±4.7%		
		Y	0.00	0.00	1.00	and the same of	177.5				
		Z	0.00	0.00	1.00	S	156.8				
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	90.08	21.24	10.00	60.0	±3.5%	±9.6%		
AAA		Y	15.00	87.90	19.83	1000000	60.0	CONTRACTOR OF	1 200000000		
		2	15.00	90.43	21.64	L	60.0				
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	92.40	21,40	6.99	80.0	±1.8%	±9.6 %		
AAA	THE PERSON NAMED AND PARTY OF THE PARTY OF T	Y	15.00	89.48	19.34	D791190.5	80.0	THIN WAS	-00.000		
10000		Z.	15.00	90.80	20.80	1	80.0				
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	97.58	22.59	3.98	95.0	±1.1%	±9.6 %		
AAA		Y	15.00	90.61	18.26	Berne	95.0	2000000	-53000		
		Z	15.00	93.62	20.88		95.0				
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	105.64	25:01	2.22	120.0	±1.2%	± 9.6 %		
AAA	2 2	Y	15.00	88.11	15.57	1 3	120.0			= = 1	
		Z	15.00	103.95	24.52		120.0				
10387-	QPSK Waveform, 1 MHz	X	0.84	63.68	10.57	0.00	150.0	±2.9%	±9.6%		
AAA		Y	0.55	60.00	7.06		150.0				
o modernia	AND THE RESERVE OF THE PARTY OF	Z	0.86	63.49	10.92		150.0				
10388-	QPSK Waveform, 10 MHz	X	2.43	69.64	16.66	0.00	150.0	±1.1%	±9.6%		
AAA	To the comment of the second and the second	Y.	2.11	67.49	15.31	J. C.	150.0				
		Z	2.36	68.83	16.22		150.0				
10396-	64-QAM Waveform, 100 kHz.	X	3.20	72.01	19.49	3.01	150.0	±0.7%	±9.6%		
AAA	SECUSION CONTRACTOR STATE OF THE SECURIOR SECURI	Y	2.71	68.78	18.05	100000	150.0	202240 20144 0	peschist		
		Z	3.63	73.64	20.26		150.0				
10399-	64-QAM Waveform, 40 MHz.	X	3.64	67.83	16.24	0.00	150.0	±2.0%	±9.6%		
AAA	RESIDENCE OF CONTROL OF STREET, STREET	Y	3.46	66.95	15.66	150.0					
W-1440		Z	3.57	67.38	15.98		150.0				
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.79	65,41	15.52	0.00	150.0	±3.9 %	±9.6 %		
AAA		Y	4.85	65.72	15.63	CONTRACT.	150.0		E-minica)		
		Z	4.93	65.70	15.62		150.0				

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7540_Jul19

The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (38) of (68)

July 22, 2019

EX3DV4-- SN:7540

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7540

Sensor Model Parameters

	C1 fF	C2 fF	ν-1	T1 ms.V ⁻²	T2 ms.V⁻⁺	T3 ms	T4 V-2	T5 V-1	Т6
X	46.8	350.79	35.86	17,18	0.24	5.10	1.24	0.29	1.01
Y	42.0	324.92	37.73	12.00	0.34	5.10	0.00	0.50	1.01
Z	50.9	381.10	35.74	20.49	0.31	5.10	1.70	0.30	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	31.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensar Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1,4 mm

Certificate No: EX3-7540_Jul19

Page 4 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (39) of (68)

EX3DV4-- SN:7540

July 22, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7540

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁰ (mm)	Unc (k=2)
750	41.9	0.89	9.97	9.97	9.97	0.55	0.80	± 12.0 %
900	41.5	0.97	9.43	9,43	9.43	0.43	0.90	± 12.0 9
1750	40.1	1.37	8.48	8.48	8.48	0.32	0.86	± 12.0 9
1900	40.0	1.40	8.13	8.13	8.13	0.26	0.86	± 12.0 %
2300	39.5	1.67	7.88	7.88	7.88	0.33	0.90	± 12.0 9
2450	39.2	1.80	7.46	7.46	7.46	0.27	0.90	± 12.0 %
2600	39.0	1.96	7.27	7,27	7.27	0.29	0.90	± 12.0 9
5200	36,0	4.66	5.40	5.40	5.40	0.40	1.80	± 13.1 9
5300	35.9	4:76	5.15	5.15	5.15	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.79	4.79	4.79	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.70	4.70	4.70	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page Z), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at celibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (x and x) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and x) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

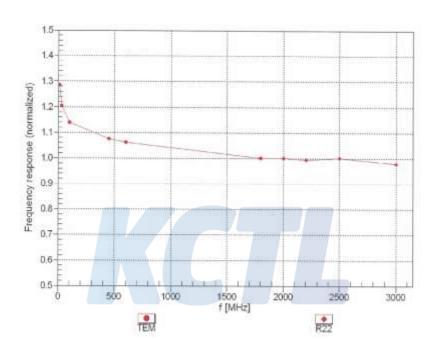
**Appla/Depth are determined during calibration. SPEAG womants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dismeter from the boundary.

Certificate No: EX3-7540_Jul19

Page 5 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR19-SPF0033-A Page (40) of (68)

EX3DV4- SN:7540

July 22, 2019

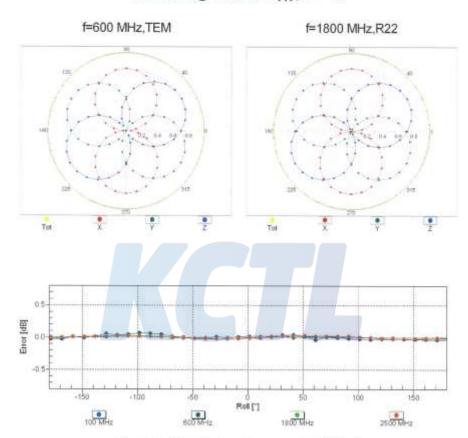
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7540_Jul19

Page 6 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (41) of (68)

EX3DV4—SN:7540 July 22, 2019

Receiving Pattern (6), 9 = 0°

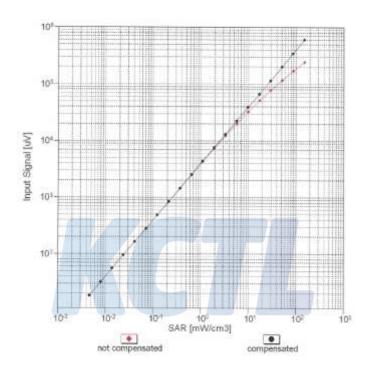
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

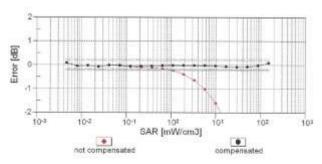
Certificate No: EX3-7540_Jul19

Page 7 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR19-SPF0033-A Page (42) of (68)



EX3DV4-SN:7540

July 22, 2019

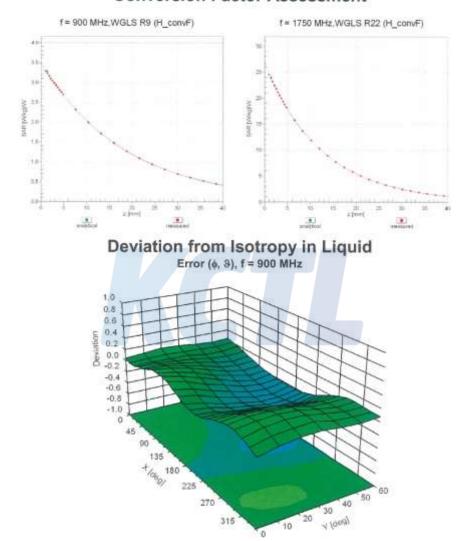
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

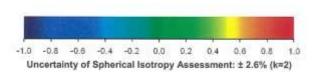
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7540_Jul19

Page 8 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr


Report No.: KR19-SPF0033-A Page (43) of (68)

EX3DV4-SN:7540 July 22, 2019

Conversion Factor Assessment

Certificate No: EX3-7540_Jul19

Page 9 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (44) of (68)

EX3DV4- SN:7540 July 22, 2019

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ⁶ (k=2)
0		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (B-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (B-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FD0 (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6 %
10073	CAB	IEEE 802.11g WiF1 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.94	
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 16 Mbps)	WLAN	10.30	# 9.6 %
10075	CAB				±9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	JEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5,67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TD0	9.97	±9.6 %
10105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6 %

Certificate No: EX3-7540_Jul19 Page 10 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (45) of (68)

EX3DV4- SN:7540 July 22, 2019

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FOD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 84-QAM)	LTE-FDD	6.62	±9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 84-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6%
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 18-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6,60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9,28	±9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6%
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6%
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6%
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6%
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5,73	±9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6%
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6%
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

Certificate No: EX3-7540_Jul19 Page 11 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (46) of (68)

EX3DV4-SN:7540

July 22, 2019

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.65
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.08	± 9.6.9
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
0224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TOD	10.26	±9.69
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TOD	9.22	±9.6 9
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.63
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 18-QAM)	LTE-TOD	9.48	± 9.6 %
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TOD	10.25	±9.63
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)		9.21	
10234	CAF		LTE-TOD		±9.6 %
		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.69
10236	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 9
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6.9
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 9
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TOD	10.25	±9.69
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.69
10241	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 9
10244	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 3
10245	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
0246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 °
0247	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
0248	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.69
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 °
0250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 9
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz. 64-QAM)	LTE-TOD	10.17	±9.63
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TOD	9.24	±9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 °
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TOO	9.20	± 9.6 3
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TOD	9.96	± 9.6 9
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TOD	10.08	
10258	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)		9.34	±9.6 %
10259	CAC		LTE-TDD		± 9.6 °
		LTE-TDD (SC-FDMA, 100% RB, 3 MHz. 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz. 64-QAM)	LTE-TDD	9.98	±9.6 °
10260	CAC		LTE-TDD		± 9.6 °
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TOD	9.24	± 9.6 °
10262	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TOD	9.83	±9.6 °
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TOD	10.16	± 9.6 °
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 °
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 °
0266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 °
0267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TOD	9.30	± 9.6 °
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TOD	10.06	± 9.6
0269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 °
0270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 °
0274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8:10)	WCDMA	4.87	± 9.6
0275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6
0277	CAA	PHS (QPSK)	PHS	11.81	±9.6
0278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6
0279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SQ55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
1 (0.00)	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.63
10202	AAB	CDMA2000, RC3, SO32, Pull Rate		3.50	
10292			CDMA2000		± 9.6 °
10293		CDMARROOD DC4 CO2 418th D-4- OC4			
10293 10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6 °
0293		CDMA2000, RC1, S03, 1/8th Rate 25 fr. LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD LTE-FDD	5.81 5.72	±9.6 ° ±9.6 °

Certificate No: EX3-7540_Jul19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (47) of (68)

EX3DV4- SN:7540 July 22, 2019

10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6%
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6 %
10303	AAA:	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.6 %
10304	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WiMAX	15.24	±9.6 %
15000	09.9%	symbols)	VVIIII-SA	19569	1 0 0 10
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WIMAX	14.58	±9.6 %
10310	AAA	8ymbols) IEEE 802,16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WIMAX	14.57	2655.72
10010	1001	symbols)	WINDYA	14.07	± 9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 % ±9.6 %
10317	AAC	IEEE 802.118 WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN		THE RESERVOIS MADE
10352	AAA	Pulse Waveform (200Hz, 10%)	term depotency and allowy to	8.36	±9.6 %
10353	AAA		Generic	10.00	±9.6 %
10354	AAA	Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%)	Generic	6,99	± 9.6 %
			Generic	3,98	±9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	ediorio irrigio magaza	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6%
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6%
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802 11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	B.37	±9.6%
10401	AAD	IEEE 802 11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TOD	7.82	±9.6%
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6%
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6%
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6%
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6%
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6%
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6%
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6%
	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6%
10447			LILT DU		
1.00		LTF-FDD (OFDMA 10 MHz F-TM 3.1 Clippin 44%)	1.TE-EDD	7.53	A G G BY
10447 10448 10449	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.53	±9.6 % ±9.6 %

Certificate No: EX3-7540_Jul19 Page 13 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (48) of (68)

EX3DV4-- SN:7540

July 22, 2019

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA.	7,59	± 9.6 %
10456	AAB	IEEE 802,11ac WIFI (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA.	2.39	±9.6%
10461	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
	20010000	Subframe=2,3,4,7,8,9)	8130.000	1.000	16,314-16
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	± 9.6 %
	1000	Subframe=2,3,4,7,8,9)	212100	1000	1000
10463	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	±9.6%
	1000000	Subframe=2,3,4,7,8,9)	212.700	0.00	#: e.v. o
10464	AAB	LTE-TD0 (SC-FDMA, 1 RB, 3 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
- 1000	100	Subframe=2,3,4,7,8,9)	530 752	232	diam'r.
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6%
	1000000	Subframe=2,3,4,7,8,9)	616.188	61,500	+.HW.N
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)	LIL-100	0.01	2 0.0 /0
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10.101	1,000	Subframe=2,3,4,7,8,9)	616-100	1.06	4.0.0 %
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6 %
10400	- Production	Subframe=2,3,4,7,8,9)	ETE-TOD	0,32	1 3.0 W
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	±9.6 %
10400	PA-CE	Subframe=2,3,4,7,8,9)	CIE-IDO	0.56	13.0 %
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TOD	7.82	±9.6 %
10470	PARE	Subframe=2,3,4,7,8,9)	LIE-IDO	1.62	2 3.0 %
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL	LTC TOO	0.00	- 0.00
10471	MAE	Cubraman 2 2 4 7 8 00	LTE-TDD	8.32	± 9.6 %
10472	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL	Later Step 1	2.00	
10472	MAE		LTE-TDD	8,57	± 9.6 %
10473	AAE	Subframe=2,3,4,7,8,9)	722 200	~ ~ ~	- 0.00
104/3	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TOD	7.82	± 9.6 %
40474	LANE	Subframe=2,3,4,7,8,9)			
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL	LTE-TOD	8,32	±9.6 %
10.195		Subframe=2,3,4,7,8,9)	0.00000	T. Issain	11. 21-24-07
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TOD	8,57	± 9.6 %
The States		Subframe=2,3,4,7,8,9)			
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL	LTE-TOD	8.32	±9.6 %
10.000	-	Subframe=2,3,4,7,8,9)	CORP. NO.	10000000	-3.516.5
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TOD	8.57	±9.6 %
		Subframe=2,3,4,7,8,9)			
10479	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
	59.5 m/c	Subframe=2,3,4,7,8,9)	- 12 ALDARS 1	0.32000	-5250
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TOD	8.18	± 9.6 %
	-	Subframe=2,3,4,7,8,9)			
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
	- 2021-0	Subframe=2.3,4,7,8,9)			
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL	LTE-TOD	7.71	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10483	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.39	± 9.6 %
	1000	Subframe=2,3,4,7,8,9)			1000
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8:47	± 9.6 %
		Subframe=2,3,4,7,8,9)	15000,040,050		
10485	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LTE-TOD	7.59	± 9.6 %
		Subframe=2,3,4,7,8,9)			1000
10486	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL	LTE-TOO	8.38	±9.6 %
	2000000	Subframe=2,3,4,7,8,9)	100000000000		acoute to
10487	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	± 9.6 %
		Subframe=2,3,4,7,8,9)			1
10488	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TOO	7.70	± 9.6 %
11628.760	2000	Subframe=2,3,4,7,8,9)	87.50, 138.50	100000	224
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
		Subframe=2,3,4,7,8,9)	112-100	0.01	2.0.0 3
		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10490	AA-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.09	2 2.0 %
10490	AAE		0.100.0-076.0		
10490	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %

Certificate No: EX3-7540_Jul19

Page 14 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (49) of (68)

EX3DV4- SN:7540

July 22, 2019

10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% R8, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe 2.3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,5,9)	LTE-TDD	8.54	± 9.6 %
10497	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2.3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe 2.3.4.7.8.9)	LTE-TDD	8.40	± 9.6 9
10499	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3,4,7,8,9)	LTE-TDD	8,68	± 9.6 %
10500	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2.3.4,7.8.9)	LTE-TDD	7.67	± 9.6 %
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2.3.4,7.8.9)	LTE-TDD	8.52	± 9.6 %
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2.3.4,7.8.9)	LTE-TDD	7,72	± 9.6 %
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TOD	8.31	±9.6 %
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 9
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe (2,3,4,7,8,9)	LTE-TDD	7.74	±9.69
10507	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TOO	8.36	± 9.6 9
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.69
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOO	7.99	± 9.6.9
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDO	8.49	±9.69
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 9
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.69
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.42	± 9.6 9
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8,45	±9.69
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1,58	± 9.6 9
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6 9
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 9
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.69
10519	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 9
10520	BAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 9
0521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 9
0522	BAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.63
0523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 9
0524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.69
0525	AAB	IEEE 802.11sc WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.65
10526	AAB	IEEE 802.11ac WIFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.63
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.65
10528	AAB	IEEE 802.11ac WIFI (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.65
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.63
10531	AAB	IEEE 802.11ac WIFI (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.69
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.69
10533	AAB	IEEE 802.11ac WiFl (20MHz, MCS8, 99pc duty cycle)	WLAN	8.38	± 9.6 9
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6 %

Certificate No: EX3-7540_Jul19

Page 15 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (50) of (68)

EX3DV4- SN:7540 July 22, 2019

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	± 9.6 3
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.69
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.69
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.69
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.69
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.69
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.69
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 9
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 9
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 98pc duty cycle)	WLAN	8.35	± 9.6 5
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	± 9.6 °
10548	AAB	IEEE 802.11ac WIFI (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.65
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 5
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)		8,48	
10555	AAC		WLAN		±9.65
0556	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.47	± 9.6 5
10557	AAC		WLAN	8.50	±9.6
0558	AAC	IEEE 802 11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	± 9.6
0560	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	± 9.6
	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6
10561	-	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 °
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6
0563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6
10564	AAA	IEEE 602.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
0565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.61
10566	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	± 9.6 °
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8,00	± 9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	± 9.6 °
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
0570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	± 9.6
0571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6
0572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6
0573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
0574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1,98	±9.6
0575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty	WLAN	8.59	± 9.6
0576	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty	WLAN	8.60	±9.6
0577	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	± 9.6
0578	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8,49	± 9.6
0579	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty	WLAN	8.36	± 9.6
0580	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	±9.6
0581	AAA	cycle) IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	±9.6
0582	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	± 9.6
0583	AAB	cycle)	ALEXEST !	8.59	12,000
	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN		±9.61
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9,6
0584			140 535	6.44	
0584 0585 0586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6

Certificate No: EX3-7540_Jul19 Page 16 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (51) of (68)

EX3DV4- SN:7540 July 22, 2019

10588	AA8	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6%
0589	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	19.6%
0590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6 %
10591	AAB	(EEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6 %
0592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6 %
0593	BAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6%
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6%
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6%
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6%
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6%
10600	AAB	IEEE 802,11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.69
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6%
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.69
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.69
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 9
10609	AAB	IEEE 802.11ac WIFI (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.69
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.69
10612	AAB	IEEE 802 11sc WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 9
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.77 8.94	±9.69
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 9
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 9
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.69
0617	AAB	IEEE 802 11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	± 9.6 9
10618	AAB	(EEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	± 9.6 9
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN.	8.86	± 9.6 9
10620	AAB	IEEE 802.11ac WIFI (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 9
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.69
10622	AAB	IEEE 802.11sc WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	± 9.6 9
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6.9
10624	AAB	IEEE 802.11ac WiFI (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	± 9.6.5
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.95	± 9.6 9
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.69
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 9
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.69
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6 9
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6.9
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.69
10632	AAB	IEEE 802.11ac WiFI (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10833	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	# 9.6 9
10834	AAB	IEEE 802.11ac WIFI (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.69
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.69
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.69
10637	AAC	IEEE 802,11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 9
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6 9
0639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6 °
0640	AAC	IEEE 802.11ac WIFI (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6 9
0641	AAC	IEEE 802.11ac WIFI (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6 9
0642	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.06	±9.69
0643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.69
0644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	± 9.6 %
10845	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.63
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TOD	11.96	±9.69
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.69
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 9
	AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.69
10652 10653	AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.69

Certificate No: EX3-7540_Jul19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (52) of (68)

EX3DV4-SN:7540

July 22, 2019

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9.09	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.65
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	± 9.6 %
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	# 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)	WLAN	8,42	±9.6%
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	± 9.6 9
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.69
10687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	± 9.6 9
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	± 9.6 9
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)	WLAN	8.57	± 9.6 9
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802,11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6 %
10698	AAA	IEEE 802,11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10699	AAA.	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	± 9.6 9
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.63
10701	AAA	IEEE 802,11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.69
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.58	±9.69
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.69
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.69
10707	AAA.				±9.63
		IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.69
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.69
10710	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.69
10711		IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.29	± 9.6 9
	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.63
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.69
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WEAN	8.26	± 9.6 °
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802,11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.63
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6 9
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.69
0719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	± 9.6 %
0720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	± 9.6.9
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.69
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	± 9,6 9
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 9
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6.9
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.69
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.69
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc duty cycle)	WLAN	8.66	± 9.6 °

Certificate No: EX3-7540_Jul19

Page 18 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (53) of (68)

EX3DV4- SN:7540 July 22, 2019

10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6%
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6%
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6%
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6%
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6%
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6%
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6%
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)	WLAN	8.43	± 9.6 %
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	± 9.6 %
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6%
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	WLAN	8.93	± 9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10755	AAA	IEEE 802,11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.64	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10757	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6%
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6 %
10759	AAA	IEEE 802,11ax (160MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6 %
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)	WLAN	8.58	± 9.6 %
10762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802,11ax (160MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN.	8.54	± 9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	WLAN	8.51	± 9.6 %

^{II} Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7540_Jul19

Page 19 of 19

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (54) of (68)

Appendix A.2 Dipole Calibration certificate(D1900V2_5d160)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client KCTL (Dymstec)

Certificate No: D1900V2-5d160 April 8

	CERTIFICAT		
Object	D1900V2 - SN:5	d160	
Calibration procedure(s)	QA CAL-05.v10 Calibration process	edure for dipole validation kits ab	ove 700 MHz
Calibration date:	April 25, 2018		
The measurements and the unco	etainties with confidence p	fional standards, which realize the physical ω probability are given on the following pages as any facility: environment temperature (22 \pm 3):	nd are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
ALCOHOL DE CONTRACTOR DE LA CONTRACTOR D	SN: 104778	04-Apr-18 (No. 217-02672/02673)	
Power meter NRP	OTAL TOTTER	day the street at a Charle Street and the street	
	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power sensor NRP-Z91	200 25 N 25 N		Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
Power sensor NRP-Z95 Power sensor NRP-Z95 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19
Power sensor NRP-Z95 Power sensor NRP-Z95 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dect7)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-16
Power sensor NRP-Z95 Power sensor NRP-Z95 Reference 20 dB Attenuator Typs-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-16 Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec+7) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-16 Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec+7) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. EX3-7349 Dec+7) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec+7) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. EX3-7349 Dec+7) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Doc-16 Oct-18 Scheduled Check In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7348 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	Apr-19 Apr-19 Apr-19 Apr-19 Doc-16 Oct-18 Scheduled Check In house check: Oct-18

Certificate No: D1900V2-5d160_Apr18

Page 1 of 8

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (55) of (68)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d160_Apr18 Page 2 of 8

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (56) of (68)

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	53.3	1.52 mho/m
(22.0 ± 0.2) "C	55.3 ± 6 %	1.47 mho/m ± 6 %
< 0.5 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 53.3 (22.0 ± 0.2) °C 55.3 ± 6 %

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (57) of (68)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1 Ω + 5.6 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 6.6 jΩ				
Return Loss	- 22.9 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	December 20, 2011				

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (58) of (68)

DASY5 Validation Report for Head TSL

Date: 25.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d160

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

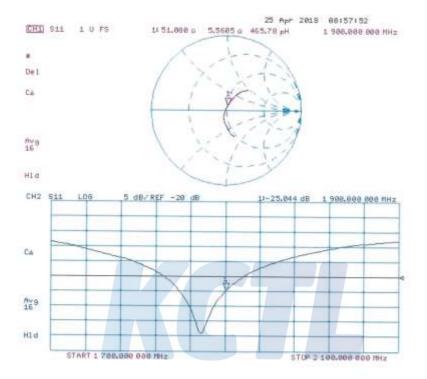
- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.1 W/kgMaximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (59) of (68)

Impedance Measurement Plot for Head TSL

DSTV DOLIGHTON HIS SEMPLONG HIS SOCIETY OF THE SOCI

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (60) of (68)

DASY5 Validation Report for Body TSL

Date: 25.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d160

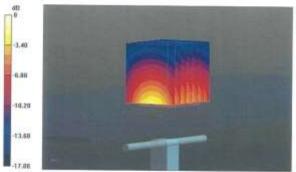
Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

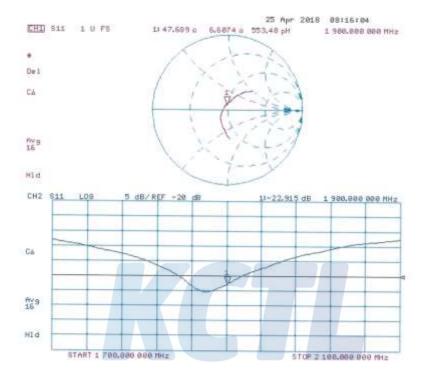
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.0 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.24 W/kgMaximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (61) of (68)

Impedance Measurement Plot for Body TSL

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (62) of (68)

Appendix A.3 Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements


KDB 865664 D01v01r04 requirements

a) return loss: < - 20 dB, within 20 % of previous measurement

b) impedance : within 5 $\boldsymbol{\Omega}$ from previous measurement.

1900 MHz

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	ΔΩ	
D1900V2 SN 5d160 Head	Hood	2018.04.25	-25.0	8.7	51.1	0.6	
	пеац	2019.05.27	-22.8	0.7	51.7		

< Figure 1. Measurement result of Head Return Loss>

< Figure 2. Measurement result of Head Impedance>

c) Extrapolated peak SAR: within 15% of that reported in the calibration data

1900 MHz

Dipole Antenna	Head/Body	Date of Measurement	Extrapolated peak SAR (W/kg)	Δ %
D1900V2		2018.04.25	72.0	7.78
SN 5d160	Head	2019-12-05	77.6	1.10

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SPF0033-A Page (63) of (68)

Appendix B. SAR Tissue Specification

The brain mixtures consist of a viscous gel using hydrox-ethl cellullose(HEC) gelling agent and saline solution. Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric

constant (permittivity) and conductivity of the desired tissue.

Frequency (Mb)	750 ~ 835		1 750		1 900		2 450		5 200 ~ 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredient	% by weight									
Water	40.29	51.97	53.00	68.00	55.00	70.50	72.00	73.00	65.52	80.00
Salt (NaCl)	1.38	0.93	0.40	0.20	0.35	0.30	0.10	0.10	0	0
Sugar	57.90	47.00	0	0	0	0	0	0	0	0
HEC	0.24	0	0	0	0	0	0	0	0	0
Bactericide	0.19	0.10	0	0	0	0	0	0	0	0
Triton X-100	0	0	0	0	0	0	20.00	0	17.24	0
DGBE	0	0	46.60	31.80	44.65	29.20	0	26.90	0	0
Diethylene glycol hexyl ether	0	0	0	0	0	0	7.90	0	17.24	0
Polysorbate (Tween) 80	0	0	0	0	0	0	0	0	0	20.00

Tissue parameter target by C. Gabriel and G. Harts grove.

Salt: 99 % Pure Sodium Chloride Sucrose: 98 % Pure Sucrose Water: De-ionized, 16 M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra-pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethybutyl)phenyl] ether