EMC TEST REPORT				
Project No.	LBE20191328	Issue No. 0		
	Name of organization	Samsung Electronics Co., Ltd.		
Applicant	Address	(Maetan-dong) 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Republic of Korea		
	Date of application	November 11, 2019		
-	Type of device	 All other Receivers subject to part15 Class B Personal Computers and peripherals Other Class B digital devices and peripherals FM Broadcast Receiver 		
	Equipment authorization	Certification Dupplier's Declaration of Conformity		
	FCC ID	A3LSMR835		
EUT	Kind of product	Smart Wearable		
EUT	Model No.	SM-R835F		
	Variant Model No.	Refer to clause 4.6		
	Manufacturer	SAMSUNG ELECTRONICS CO., LTD 94-1, Imsu-dong, Gumi-si, Gyengsangbuk-do, 730-722,Republic of Korea		
	Manufacturer	SAMSUNG ELECTRONICS VIETNAM CO., LTD Yenphong 1 - I.P Yentrung Commune, Yenphong Dist., Bac Ninh Province, Vietnam		
Applied Sta	ndards	47 CFR Part 15, Subpart B, Class B / ANSI C63.4-2014		
Test Period	1	November 11, 2019 ~ November 12, 2019		
Issue date		November 12, 2019		
Test result : Complied The equipment under test has found to be compliant with the applied standards. (Refer to the attached test result for more detail.)				
	: Eun-Kyung Oh	Reviewed by : Sung-Wook Choi		
	in this report only apply to the permission from Global CS Ce	e tested sample. This report must not be reproduced, except in full, inter.		
(Maetan-c		r of Samsung Electronics Co., Ltd. gtong-gu, Suwon-si, Gyeonggi-do, 16677, Republic of Korea		

Table of contents

1.	Report Information	
	1.1 Revision history	3
	1.2 Equipment code CXX	3
2.	Summary of test results	
	2.1 Emission	3
3.	General Information	
	3.1 Test facility	3
4.	Test Configuration	
	4.1 Test Peripherals	4
	4.2 EUT operating mode	5
	4.3 Details of Sampling	5
	4.4 Used cable description	6
	4.5 Test arrangement	7
	4.6 EUT Description	9
	4.7 EUT Frequencies	9
	4.8 Test configuration and condition	10
	4.9 Measurement uncertainty	10
_	Deput of individual tooto	

5. Result of individual tests

5.1 Conducted disturbance	11
5.2 Radiated disturbance	15

-2/22-

1. Report Information

1.1 Revision history

No.	Date of Issue	Revised detailed information
Issue 0	November 12, 2019	There are no revisions and this version is basic test report.

1.2 Equipment code CXX

	Remark
Compliance with Part 15 B requirements for the CXX) is covered by other test report.	receiver part of the licensed transmitter (equipment code

2. Summary of test results

2.1 Emission

The EUT has been tested according to the following specifications:

Applied	Test type	Applied standard	Result
	Conducted Disturbance (Mains port)	47 CFR Part 15 Subpart B / ANSI C63.4-2014	Complied
	Radiated Disturbance	(Class B)	Complied

3. General Information

3.1 Test facility

The Global CS Center is located on Samsung Electronics Co., Ltd. at (Maetan-dong) 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Republic of Korea. All testing are performed in Semi-anechoic chambers conforming to the site attenuation characteristics defined by ANSI C63.4, CISPR 32, CISPR 16-1-4 and Shielded rooms. And all antennas are properly calibrated using ANSI C63.5:2017.

The Global CS Center is an ISO/IEC 17025:2005 accredited testing laboratory by the National Radio Research Agency with designation No. KR0004. for EMC testing.

4. Test Setup configuration

4.1 Test Peripherals

The cables used for these peripherals are either permanently attached by the peripheral manufacturer or coupled with an assigned cable as defined below.

The following is a listing of the EUT and peripherals utilized during the performance of EMC test:

Mark	Description	Model No.	Serial No.	Manufacturer / Trademark	FCC ID
A	Smart Wearable	SM-R835F	-	SAMSUNG	A3LSMR835
В	Battery	EB-BR830ABY	-	SAMSUNG	-
С	Wireless Charger	EP-OR825	-	SAMSUNG	-
D	Travel Adapter	EP-TA200	R37M6KA04M1DK3	SAMSUNG	-
_	Laptop		1CHRYM2	Dell	DoC
E	Computer		D3HRYM2	Dell	DoC
_	Laptop		5D77	Dell	DoC
F	AC Adapter	LA65NM130	5B3C	Dell	DoC
G	Mouse	AA-SM7PCPB	CN57BA5903634ADV 8JJCD4371	SAMSUNG	DoC
	Wedge	SNJ-B138	Z5F8353	SAMSUNG	DoC
	Router	Router DIR-806A	RF0F1D5000688	D-Link	DoC
H			RF0F1D8011504	D-Link	DoC
I	OTG Gender	EE-UG970	-	SAMSUNG	DOC

4.2 EUT operating mode

To achieve compliance applied standard specification including CXX and JAB requirement, the following mode(s) were made during compliance testing:

4.2.1 Conducted Emission

No.	Operating mode	
1	Cellular receiver(LTE FDD B5 Center Frequency) + Wireless Charging (w/TA)	
2	Audio playback from internal memory data + Wireless Charging (w/TA)	
3	Wireless Charging (w/USB port of Laptop Computer)	

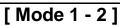
4.2.2 Radiated Emission

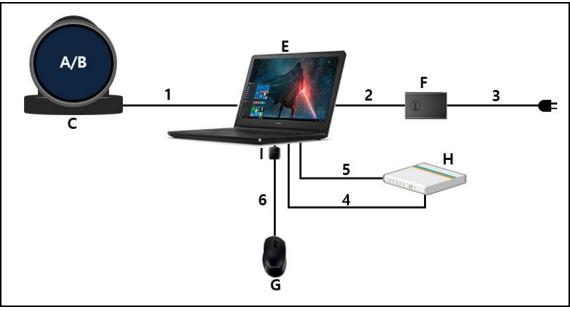
No.	Operating mode	
1	Wireless Charging (w/TA)	
2	Audio playback from internal memory data	
3	Wireless Charging (w/USB port of Laptop Computer)	

4.3 Details of Sampling

Customer selected, single unit.

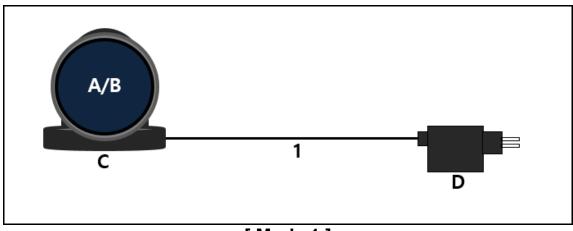
4.4 Used cable description


The EUT is configured, installed, arranged and operated in a manner consistent with typical applications. Interface cables/loads/devices are connected to at least one of each type of interface port of the EUT, and where practical, each cable shall be terminated in a device typical of actual usage. The type(s) of interconnecting cables to be used and the interface port (of the EUT) to which these were connected:

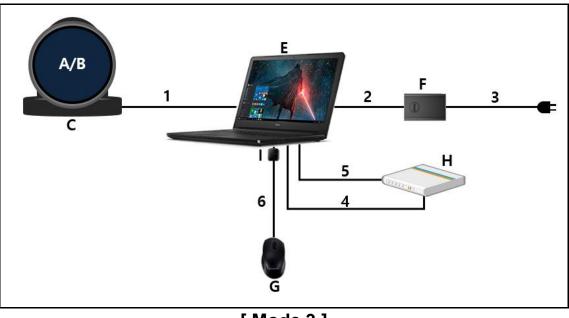

No.	Connected cable	Length [m]	Shielded [Y/N]	Note
1	Wireless Charger Cable	0.8	N	For Wireless Charger
2	Power	1.8	N	For Laptop Computer to Laptop AC Adapter
3	Power	1.5	N	For Laptop AC Adapter
4	LAN	1.5	N	From Laptop Computer to Router
5	USB	0.8	N	From Laptop Computer to Router for DC Power
6	USB	1.8	N	From OTG Gender to Mouse

4.5 Test arrangement

4.5.1 Conducted Emission



[Mode 3]


4.5.2 Radiated Emission

[Mode 1]

[Mode 2]

[Mode 3]

-8/22-

4.6 EUT Description

The EUT is a Watch type Smart Wearable which can operate on WCDMA FDD1/5/8, LTE FDD1/3/5/7/8/20 bands and Incorporates a Bluetooth, Wi-Fi, GNSS, NFC, Wireless Charging and Audio.

4.6.1 The variant models - None

4.7 EUT Frequencies

The highest frequencies (Generated and used)	Frequency [MHz]	
Bluetooth	2 480	

4.8 Test configuration and condition

The system was configured for testing in a typical fashion that a customer would normally use. Cables were attached to each of the available I/O Ports. Where applicable, peripherals were attached to the I/O cables.

The EUT was investigated in three orientations and the worst case orientation is reported.

The EUT was charged with Wireless Charger connected to Travel Adapter and USB port of Laptop Computer.

Cellular RX mode testing was performed with the LTE FDD5 RX Test mode at center frequency. All licensed communication Cellular RX mode, WCDMA/LTE, test results are not significantly different.

The audio were repetitively played 1 kHz sound.

Power source for the EUT operating was supplied by CVCF made by the Pacific Corp.

- Test Voltage : AC 120 V, 60 Hz

4.9 Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: (According to CISPR 16-4-2 and UKAS M3003)

4.9.1 Emission

Test type	Measurement uncertainty (C.L. 95 %, k = 2)	
Conducted disturbance	AC Mains	2.83 dB
Radiated Disturbance	Horizontal	4.99 dB
(Below 1 GHz)	Vertical	4.90 dB
Radiated Disturbance	Horizontal	5.13 dB
(Above 1 GHz)	Vertical	5.12 dB

5. Results of individual test

5.1 Conducted disturbance

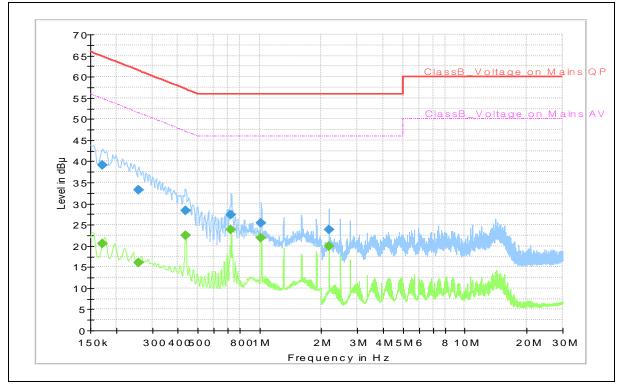
The EUT is connected to a LISN via travel adapter. If the EUT is connected to the Laptop Computer USB port, the Laptop AC adapter is connected to a LISN.

Both conducted lines are measured in Quasi-Peak and CISPR-Average mode, including the worst-case data points for each tested configuration. The EUT measured in accordance with the methods described in standards.

Limits for conducted disturbance at the mains ports of Class B ITE

Frequency range Limits	Resolution Bandwidth	Limits [dB(µV)]				
[MHz]	[kHz]	Quasi-peak	Average			
0,15 to 0,50	9	66 to 56	56 to 46			
0,50 to 5	9	56	46			
5 to 30	9	60	50			
NOTE 1 The lower limit shall apply at the transition frequency.						
NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.						

5.1.1 Test instrumentation


					Calibra	ation
EMC No.	Test Instrument	Model name	Manufacturer	Serial No.	Date	Interval (Month)
E5I-171	LTE Communicator	CMW500	R&S	154667	2019-08-06	12
E5I-017	EMI Test Receiver	ESU8	R&S	100483	2019-01-16	12
E5I-127	Two-Line V-Network	ENV216	R&S	102061	2019-08-01	12
-	Test software	EMC32	R&S	Ver 9.26.01	-	-

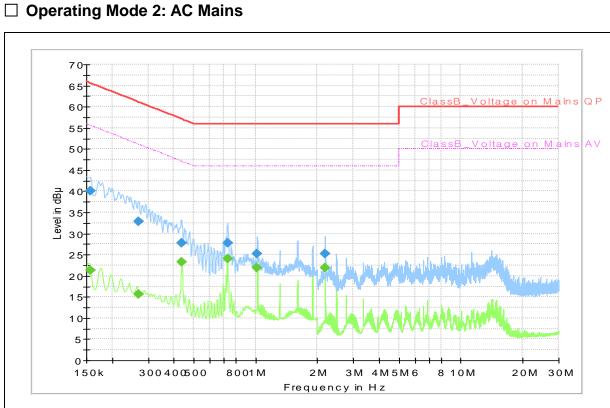
5.1.2 Temperature and humidity condition

Test date	2019-11-12 Test engineer		Eun-Kyung Oh	
	Ambient temperature	(22.1 ~ 22.3) °C	Limit (15.0 to 35.0) ℃	
Climate condition	Relative humidity	(43.6 ~ 43.8) % R.H.	Limit (25.0 to 75.0) % R.H.	
	Atmospheric pressure (100.5 ~ 100.7) kPa Limit (86.0 to 106.0			
Test place	Shield Room (SR8)			

5.1.3 Test results

Operating Mode 1: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.

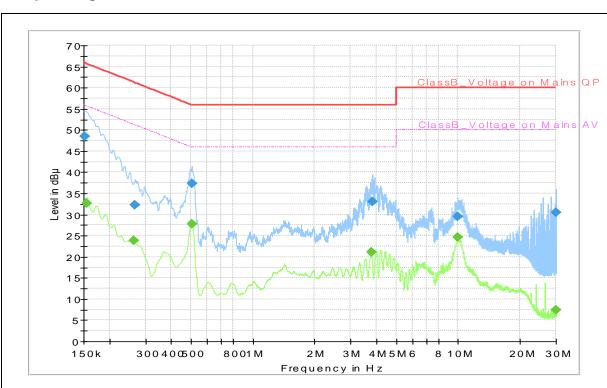

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.173		20.5	54.8	34.3	Ν	10.3
0.173	39.1		64.8	25.7	Ν	10.3
0.258		16.0	51.5	35.5	Ν	9.9
0.258	33.2		61.5	28.3	N	9.9
0.436		22.5	47.1	24.6	Ν	10.2
0.436	28.3		57.1	28.8	Ν	10.2
0.728		23.9	46.0	22.1	Ν	10.1
0.728	27.4		56.0	28.6	Ν	10.1
1.019		22.0	46.0	24.0	Ν	10.0
1.019	25.4		56.0	30.6	Ν	10.0
2.184		20.0	46.0	26.0	Ν	9.9
2.184	23.8		56.0	32.2	Ν	9.9

$\cap P$	/ CAV/ final	measurement	roculte table.
U I		Incasulentein	icoulio lavic.

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

-12/22-


Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one gra	aph.

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.157		21.3	55.6	34.3	L1	10.0
0.157	40.0		65.6	25.6	L1	10.0
0.269		15.5	51.1	35.6	N	9.9
0.269	32.8		61.1	28.3	N	9.9
0.438		23.2	47.1	23.9	N	10.2
0.438	27.8		57.1	29.3	N	10.2
0.731		24.0	46.0	22.0	N	10.1
0.731	27.7		56.0	28.3	N	10.1
1.021		21.9	46.0	24.1	N	10.0
1.021	25.3		56.0	30.7	N	10.0
2.189		21.8	46.0	24.2	N	9.9
2.189	25.3		56.0	30.7	N	9.9

QP / CAV final r	measurement results table:
------------------	----------------------------

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit - Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 3: AC Mains

Noto 1) Two graphs measured for both	Livo(11) and	Noutrol(NI) of the L	ISN are combined into one graph.

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.152	48.5		65.9	17.4	N	9.9
0.155		32.6	55.8	23.2	N	9.9
0.263		23.9	51.4	27.5	L1	9.8
0.267	32.2		61.2	29.0	L1	9.8
0.503		27.8	46.0	18.2	L1	10.1
0.506	37.4		56.0	18.6	L1	10.1
3.777		21.2	46.0	24.8	N	9.8
3.845	33.1		56.0	22.9	N	9.8
9.944	29.4		60.0	30.6	L1	9.8
9.971		24.7	50.0	25.3	L1	9.8
29.983		7.5	50.0	42.5	N	10.0
29.983	30.4		60.0	29.6	N	10.0

QP / CAV final mea	surement results table:
--------------------	-------------------------

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

5.2 Radiated disturbance

The following data lists the significant emission frequencies, measured levels, correction factors (for antenna and cables), orientation of table, polarization and height of antenna, the corrected reading, the limit, and the amount of margin.

Peak measurements were made over the changeable frequency range 30 MHz to 1 GHz at a measurement distance of 10 m for the following antenna and turntable arrangements:

Antenna Height [cm]	Antenna Polarisation	Resolution Bandwidth [kHz]	Video Bandwidth [kHz]	Turntable position [degrees]
100 ~ 400	Horizontal, Vertical	120	300	Continuous

Measurements within 6 dB of the limit were then maximized by adjusting turntable position. Final measurements were made using quasi-peak detector.

Peak/CISPR-Average measurements were made over the changeable frequency range 1 GHz to 40 GHz or 5th harmonics of the highest frequency generated or used in the device or on which the device operate or tunes at a measurement distance of 3 m for the following antenna and turntable arrangements. The measurements above 1 GHz were performed with the bore-sighting antenna aimed at the EUT.

Antenna Height [cm]	Antenna Polarisation	Resolution Bandwidth [MHz]	Video Bandwidth [MHz]	Turntable position	
100 ~ 400	Horizontal, Vertical	1	3	Continuous	

Measurements within 6 dB of the limit were then maximized by adjusting turntable position. Final measurements were made using peak and CISPR-average detectors.

Limits for radiated disturbance of Class B ITE at a measuring distance of 3 m and 10 m

Frequency range Limits	Field Strength				
[MHz]	3 m [µV/m]	3 m [dB(µV/m)]	10 m [dB(µV/m)]		
30 to 88	100	40.0	29.5		
88 to 216	150	43.5	33.0		
216 to 960	200	46.0	35.5		
Above 960	500	54.0	43.5		

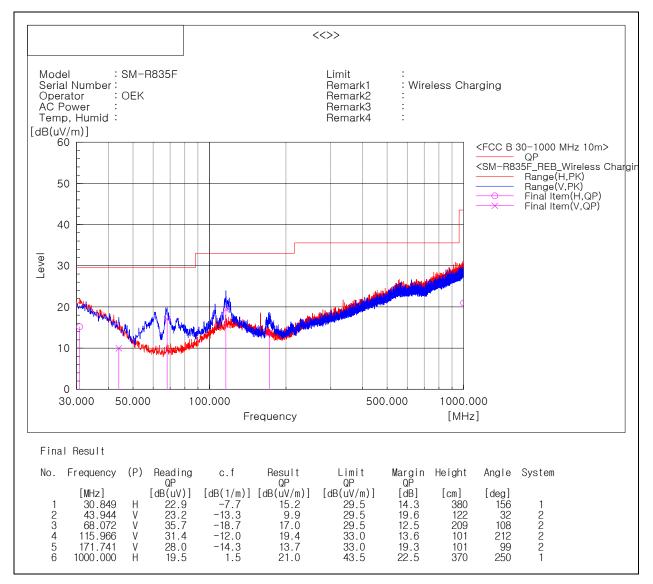
Note) Distance correction fomula from $D_1(3m)$ to $D_2(10m)$

: Limit at D_2 = Limit at D_1 + 20Log(D_1/D_2)

Results checked manually; and points close to the limit line were re-measured.

5.2.1 Test instrumentation

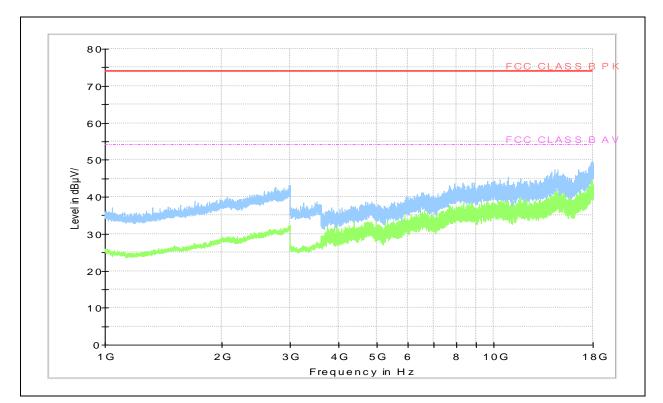
EMC No.	Test Instrument	Model name			Calibration	
			Manufacturer	Serial No.	Date	Interval (Month)
E5I-016	EMI Test Receiver	ESU8	R&S	100482	2019-05-29	12
E5I-021	EMI Test Receiver	ESU40	R&S	100376	2019-01-30	12
E5I-149	Horn Antenna	HF907	R&S	102525	2018-06-15	24
E5I-039	Signal Conditioning Unit	SCU-18	R&S	10211	2019-01-23	12
E5I-120	BiLog Antenna	CBL6112D	TESEQ	36997	2018-04-23	24
E5I-072	BiLog Antenna	CBL6112D	TESEQ	36009	2018-04-23	24
E5I-073	Preamplifier	310N	SONOMA	332016	2019-05-09	12
E5I-074	Preamplifier	310N	SONOMA	332017	2019-05-09	12
-	Test software	EP7RE	ΤΟΥΟ	Ver 5.8.2	-	-
-	Test software	EMC32	R&S	Ver 9.25.00	-	-


5.2.2 Temperature and humidity condition

Test date	2019-11-11	Test engineer	Eun-Kyung Oh	
Climate condition	Ambient temperature	(21.7 ~ 21.9) °C	Limit (15.0 to 35.0) $^{\circ}\!$	
	Relative humidity	Relative humidity (44.1 ~ 44.3) % R.H.		
	Atmospheric pressure	(101.8 ~ 102.0) kPa	Limit (86.0 to 106.0) kPa	
Test place	Semi-Anechoic Chamber (SAC4)			

5.2.3 Test results

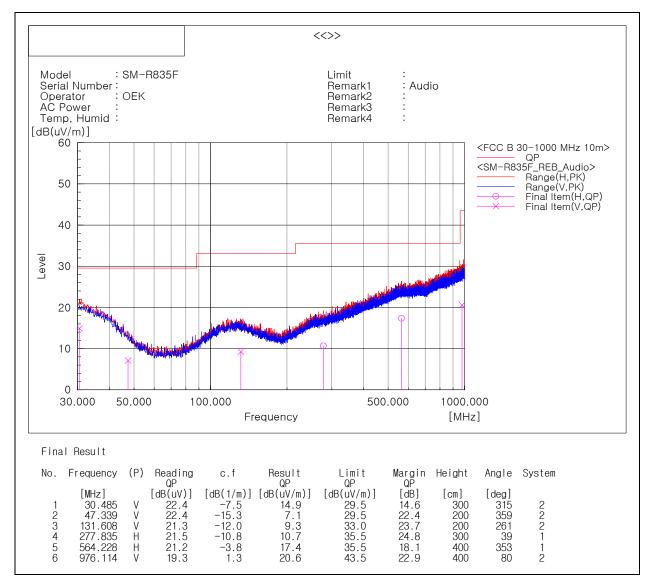
□ Operating Mode 1


- Frequencies below 1 GHz

Note1) Receiving antenna polarization : Horizontal, Vertical Test Distance : 10 m, Antenna Height : 1 to 4 meters Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain) Margin (QP) = Limit – Level (QP) QP = Quasi-Peak, c.f = Correction Factor

Project No. : LBE20191328

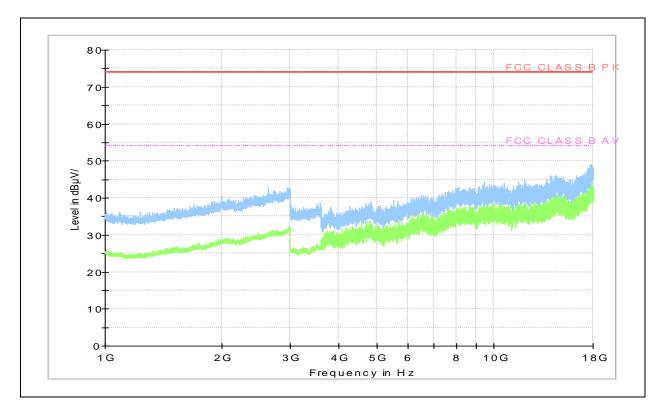
Smart Wearable : SM-R835F



- Frequencies above 1 GHz

Note 1) Receiving antenna polarization : Horizontal, Vertical Test Distance : 3 m, Antenna Height : 1 to 4 meters Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV) PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

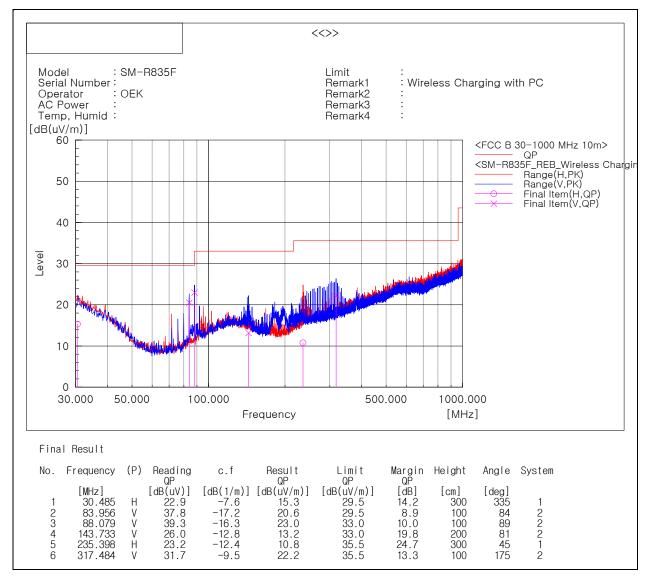
□ Operating Mode 2


- Frequencies below 1 GHz

Note1) Receiving antenna polarization : Horizontal, Vertical Test Distance : 10 m, Antenna Height : 1 to 4 meters Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain) Margin (QP) = Limit – Level (QP) QP = Quasi-Peak, c.f = Correction Factor

Project No. : LBE20191328

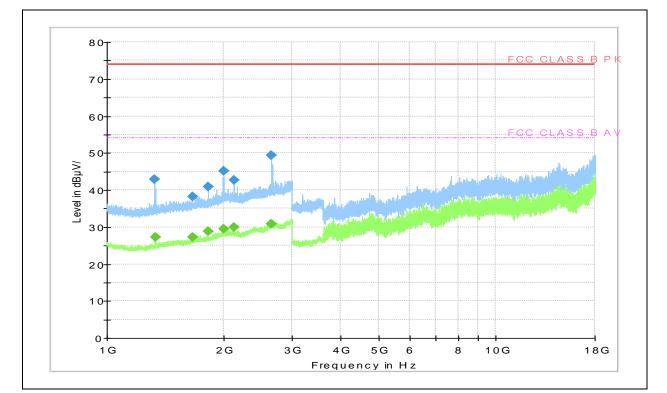
Smart Wearable : SM-R835F



- Frequencies above 1 GHz

Note 1) Receiving antenna polarization : Horizontal, Vertical Test Distance : 3 m, Antenna Height : 1 to 4 meters Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV) PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 3


- Frequencies below 1 GHz

Note1) Receiving antenna polarization : Horizontal, Vertical Test Distance : 10 m, Antenna Height : 1 to 4 meters Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain) Margin (QP) = Limit – Level (QP) QP = Quasi-Peak, c.f = Correction Factor

Project No. : LBE20191328

Smart Wearable : SM-R835F

- Frequencies above 1 GHz

Frequency (MHz)	PK (dBµV/m)	CAV (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1 329.200	42.8		74.0	31.2	121.0	V	19.0	8.3
1 332.400		27.4	54.0	26.6	185.0	V	336.0	8.3
1 663.600	38.3		74.0	35.7	132.0	V	174.0	10.5
1 665.600		27.3	54.0	26.7	198.0	V	348.0	10.5
1 826.800	40.9		74.0	33.1	264.0	V	16.0	11.4
1 826.800		28.8	54.0	25.2	227.0	V	127.0	11.4
1 995.600	45.2		74.0	28.8	276.0	V	256.0	13.0
1 995.600		29.5	54.0	24.5	165.0	V	114.0	13.0
2 125.200	42.6		74.0	31.4	148.0	Н	169.0	12.9
2 128.400		29.9	54.0	24.1	179.0	Н	331.0	12.9
2 654.400	49.3		74.0	24.7	237.0	V	273.0	15.1
2 654.800		30.8	54.0	23.2	143.0	V	81.0	15.1

Note 1) Receiving antenna polarization : Horizontal, Vertical

Test Distance : 3 m, Antenna Height : 1 to 4 meters

Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV) PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor