

Page: 1

of

54

Report Number: F690501-RF-RTL004316

TEST REPORT				
	of			
	CC Part 15 Subpart C §15.247 -247 Issue 2 and RSS-Gen Issue 5			
IC (FCC ID: A3LSMR400NR Certification: 649E-SMR400NR			
Equipment Under Test :	Bluetooth Headset			
Model Name :	SM-R400N			
Variant Model Name(s) :	-			
FCC Applicant :	Samsung Electronics Co Ltd			
IC Applicant :	SAMSUNG ELECTRONICS CO. LTD.			
Manufacturer :	Samsung Electronics Co., Ltd.			
Date of Receipt :	2023.07.19			
Date of Test(s) :	2023.07.20 ~ 2023.08.10			
Date of Issue :	2023.08.10			
	the EUT complied with the standards specified above. sure KOLAS accreditation.			
 The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. The data marked % in this report was provided by the customer and may affect the validity of the test results. We are responsible for all the information of this test report except for the data(%) provided by the customer 				
Tested by: 2	Technical Manager:			
Da	ave Kim Jinhyoung Cho			
SGS Korea Co., Ltd. Gunpo Laboratory				

Report Number:	F690501-RF-RTL004316	Page:	2	of	54

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions	10
3. 20 dB Bandwidth & 99 % Bandwidth	31
4. Maximum Peak Conducted Output Power	40
5. Carrier Frequency Separation	42
6. Number of Hopping Frequencies	44
7. Time of Occupancy(Dwell Time)	46
8. Antenna Requirement	54

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

- Phone No. : +82 31 688 0901
- Fax No. : +82 31 688 0921

1.2. Details of Applicant

FCC Applicant	:	Samsung Electronics Co Ltd
FCC Address	:	19 Chapin Rd., Building D, Pine Brook, New Jersey, United States, 07058
IC Applicant	:	SAMSUNG ELECTRONICS CO. LTD.
IC Address	:	129 Samsung-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16677, Korea (Republic Of)
Contact Person	:	Chun, Jenni
Phone No.	:	+1 973 808 6361

1.3. Details of Manufacturer

Company	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Republic of Korea

1.4. Description of EUT

Kind of Product	Bluetooth Headset
Model Name	SM-R400N
Serial Number	Conducted: R3AW600PCZF Radiated: R3AW600PCZE
Power Supply	DC 3.7 V
Frequency Range	2 402 Młz ~ 2 480 Młz (Bluetooth)
Modulation Technique GFSK, π/4DQPSK, 8DPSK	
Number of Channels	79 channels (Bluetooth)
Antenna Type	LDS PIFA Antenna
Antenna Gain [*]	-5.25 dB i
H/W Version	REV1.0
S/W Version	R400N.001
FVIN	N/A

1.5. Information about the FHSS characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.5.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.5.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.5.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mtz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.5.5. Equipment Description

15.247(a) (1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: F690501-RF-RTL004316

54

1.6. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMA100B	106887	Oct. 13, 2022	Annual	Oct. 13, 2023
Spectrum Analyzer	R&S	FSV30	103210	Dec. 07, 2022	Annual	Dec. 07, 2023
Spectrum Analyzer	Agilent	N9020A	MY53421758	Aug. 26, 2022	Annual	Aug. 26, 2023
Bluetooth Tester	TESCOM	TC-3000C	3000C000560	Sep. 14, 2022	Annual	Sep. 14, 2023
Directional Coupler	KRYTAR	152613	122660	Jul. 13, 2023	Annual	Jul. 13, 2024
BRIDGE COUPLER	MARKI MICROWAVE INC	CBR16-0012	1542	May 16, 2023	Annual	May 16, 2024
High Pass Filter	Wainwright Instrument GmbH	WHKX3.0/18G-10SS	21	Jun. 01, 2023	Annual	Jun. 01, 2024
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 02, 2023	Annual	Jun. 02, 2024
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 09, 2023	Annual	Feb. 09, 2024
Power Sensor	R&S	NRP-Z81	100669	May 16, 2023	Annual	May 16, 2024
DC Power Supply	R&S	HMP2020	019922876	Apr. 27, 2023	Annual	Apr. 27, 2024
Preamplifier	H.P.	8447F	2944A03909	Aug. 04, 2023	Annual	Aug. 04, 2024
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 15, 2023	Annual	Jun. 15, 2024
Pre Amplifier	TESTEK	TK-PA1840H	130016	Jan. 11, 2023	Annual	Jan. 11, 2024
Loop Antenna	Schwarzbeck Mess- Elektronik	FMZB 1519	1519-039	Aug. 23, 2021	Biennial	Aug. 23, 2023
Bilog Antenna	Schwarzbeck Mess- Elektronik	VULB 9163	01126	Feb. 09, 2023	Annual	Feb. 09, 2024
Horn Antenna	R&S	HF906	100326	Feb. 28, 2023	Annual	Feb. 28, 2024
Horn Antenna	Schwarzbeck Mess- Elektronik	BBHA 9170	9170-540	Nov. 30, 2022	Annual	Nov. 30, 2023
EMI Test Receiver	R&S	ESU26	100109	Jan. 18, 2023	Annual	Jan. 18, 2024
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000- 4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	MWX221-NMSNMS (4 m)	J1023142	Apr. 04, 2023	Semi- Annual	Oct. 04, 2023
Coaxial Cable	Qualwave Inc.	QA500-18-NN-10 (10 m)	22200114	Apr. 04, 2023	Semi- Annual	Oct. 04, 2023
Coaxial Cable	RADIALL	TESTPRO 3	182287	Apr. 14, 2023	Semi- Annual	Oct. 14, 2023
Coaxial Cable	RADIALL	TESTPRO 3	182288	Apr. 14, 2023	Semi- Annual	Oct. 14, 2023
Coaxial Cable	RADIALL	TESTPRO 3	182291	Apr. 14, 2023	Semi- Annual	Oct. 14, 2023

Note;

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date

Report Number: F690501-RF-RTL004316

1.7. Declaration by the Manufacturer

- Adaptive Frequency Hopping is supported and use at least 20 channels.

1.8. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STA	APPLIED STANDARD: FCC Part15 Subpart C, IC RSS-247 Issue 2 and RSS-Gen Issue 5				
Section in FCC Section in IC		Test Item(s)	Result		
15.205(a) 15.209 15.247(d)	RSS-247 Issue 2 5.5 RSS-Gen Issue 5 8.9	Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	Complied		
15.247(a)(1)	RSS-247 Issue 2 5.1(b) RSS-Gen Issue 5 6.7	20 dB Bandwidth and 99 % Bandwidth	Complied		
15.247(a)(1) 15.247(b)(1)	RSS-247 Issue 2 5.1(b) 5.4(b)	Maximum Peak Conducted Output Power	Complied		
15.247(a)(1)	RSS-247 Issue 2 5.1(b)	Carrier Frequency Separation	Complied		
15.247(a)(1)(iii)	RSS-247 Issue 2 5.1(d)	Number of Hopping Frequencies	Complied		
15.247(a)(1)(iii)	RSS-247 Issue 2 5.1(d)	Time of Occupancy (Dwell Time)	Complied		
15.207	RSS-Gen Issue 5 8.8	AC Power Line Conducted Emission	N/A ¹⁾		

Note;

1) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

1.9. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

1.10. Sample Calculation

Where relevant, the following sample calculation is provided:

1.10.1. Conducted Test

Offset value (dB) = Directional coupler (dB) + Cable loss (dB)

1.10.2. Radiation Test

Field strength level (dBµN/m) = Measured level (dBµN) + Antenna factor (dB/m) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

1.11. Information of software for test

- Using the software of BudsOdin2.0 to testing of EUT.

1.12. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty		
Maximum Peak Conducted Output Power		0.33 dB	
99 & Bnadwidth		6.89 kHz	
20 dB Bandwidth		6.79 kHz	
Conducted Spurious Emission		0.87 dB	
Time of Occupancy	0.02 ms		
Redicted Emission 0 He to 20 Me	Н	3.40 dB	
Radiated Emission, 9 kt/z to 30 Mt/z	V	3.40 dB	
Dedicted Emission holey 1 (1)	Н	4.50 dB	
Radiated Emission, below 1 Glz	V	5.10 dB	
Padiated Emission above 1 Mr	Н	3.70 dB	
Radiated Emission, above 1 Głz	V	3.90 dB	

All measurement uncertainty values are shown with a coverage factor k = 2 to indicate a 95 % level of confidence.

1.13. Test Report Revision

Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL004316	2023.08.10	Initial

Report Number: F690501-RF-RTL004316

1.14. Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

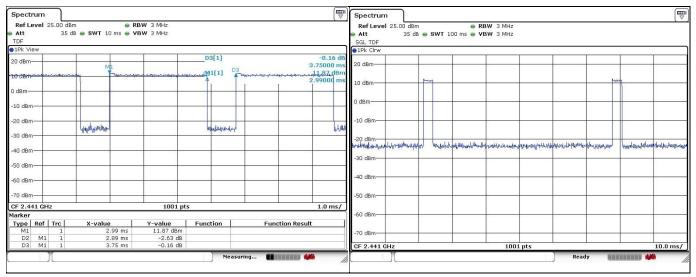
Mode	Data Rate (Mbps)	Channel	Frequency (쌘)	RF Peak Output Power (dB m)
		Low	2 402	11.34
GFSK	1	Middle	2 441	12.21
		High	2 480	<u>12.36</u>
	2	Low	2 402	11.28
π/4DQPSK		Middle	2 441	12.14
		High	2 480	<u>12.36</u>
	3	Low	2 402	12.30
8DPSK		Middle	2 441	12.22
		High	2 480	<u>12.44</u>

Note;

1. For transmitter radiated spurious emissions, conducted spurious emission, carrier frequency separation and number of hopping frequencies, GFSK / DH1 and 8DPSK / 3DH1 are tested as worst condition.

2. For 20 $\,\rm dB\,$ bandwidth, 99 % bandwidth and maximum peak conducted output power, GFSK / DH1, π /4DQPSK / 2DH1 and 8DPSK / 3DH1 are tested as worst condition.

3. For Time of Occupancy, GFSK / DH1, DH3, DH5 and 8DPSK / 3DH1, 3DH3, 3DH5 are tested as worst condition.



1.15. Duty Cycle Correction Factor of EUT

According to KDB 558074 D01 15.247 Meas Guidance v05r02, 9, as a "duty cycle correction factor", pulse averaging with 20 log (worst case dwell time / 100 ms) has to be used for average result.

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time 3DH5 packet is observed;

the period to have 3DH5 packet completing one hopping sequence is 2.89 $ms \times 20$ channels = 57.80 ms

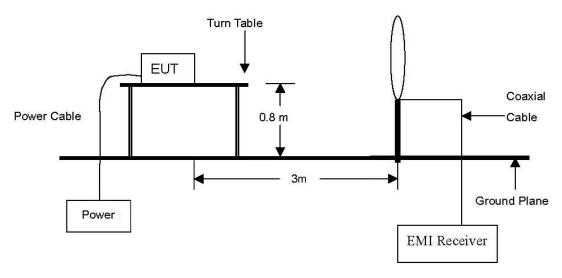
There cannot be 2 complete hopping sequences within 100 ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.80 ms] = 2 hops

Thus, the maximum possible ON time:

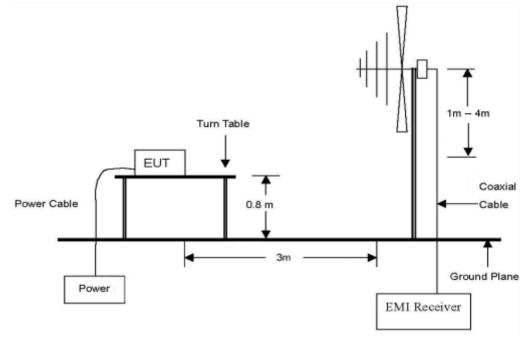
2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time:

20 x log (5.78 ms/100 ms) = -24.76 dB

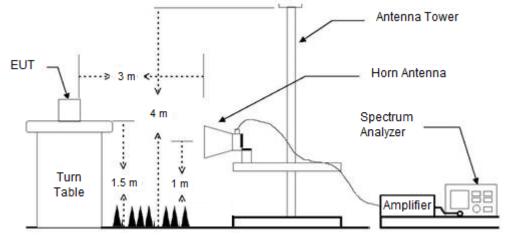


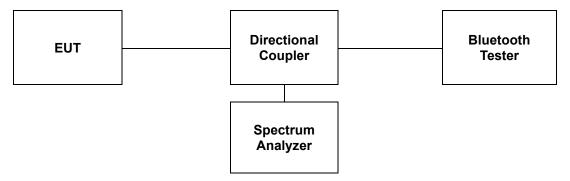
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions


2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz$


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz.



Report Number: F690501-RF-RTL004316

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gl_2 to the 10th harmonic of the highest fundamental frequency or 40 Gl_2 , whichever is lower.

2.1.2. Conducted Spurious Emissions

2.2. Limit

2.2.1. FCC

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (雕)	Field Strength (<i>μ</i> ∛/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kliz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Report Number: F690501-RF-RTL004316

2.2.2. IC

According to RSS-247 Issue 2, 5.5, in any 100 k bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 k bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen Issue 5, 8.9, except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency (Mz)	Field Strength (<i>µ</i> V/m at 3 m)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 5 – General Field Strength Limits at frequencies above 30 Mz

Table 6 – General Field Strength Limits at frequencies below 30 Mb

Frequency	Magnetic Field Strength (H-Field) (μλ/m)	Measurement Distance (meters)
9-490 kHz ¹	6.37/F (F in klz)	300
490-1 705 kHz	63.7/F (F in k批)	30
1.705-30 Mz	0.08	30

Note¹: The emission limits for the ranges 9-90 klz and 110-490 klz are based on measurements employing a linear average detector.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013 and only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. For measurements below 1 GHz resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.
- 6. For measurements Above 1 GHz resolution bandwidth is set to 1 MHz, the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

2.3.3. Definition of EUT Axis.

The radiation test of the EUT was investigated in three orthogonal orientations X, Y, and Z described in the test setup photo. All radiated testing of EUT was performed with worst case axis.

2.3.3. Test Procedures for Conducted Spurious Emissions

2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. RBW \geq 100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold

2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. RBW = 1 Mz VBW = 3 Mz Sweep = auto Detector function = peak Trace = max hold

2.3.3.3. TDF function

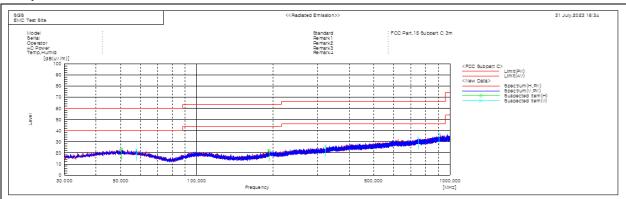
- For plots showing conducted spurious emissions from 9 k to 25 G, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

Report Number: F690501-RF-RTL004316

2.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb


The frequency spectrum from 9 klz to 1 000 Mz was investigated. All reading values are peak values.

Radi	Radiated Emissions			Correctio	n Factors	Total Limit		it
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol. AF (dB/m)				Limit (dBµV/m)	Margin (dB)
50.41	30.90	Peak	н	19.64	-27.32	23.22	40.00	16.78
57.81	31.20	Peak	V	18.82	-27.21	22.81	40.00	17.19
322.29	32.10	Peak	V	19.51	-25.36	26.25	46.00	19.75
751.76	32.10	Peak	V	26.70	-25.38	33.42	46.00	12.58
907.20	33.60	Peak	V	27.90	-24.68	<u>36.82</u>	46.00	9.18

Remark;

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Test from 30 Mz to 1 000 Mz was performed using the software of EP5RE(V5.3.70) from TOYO.
- 3. Reported spurious emissions are in **EDR / 3DH1 / High channel** as worst case among other modes.
- Radiated spurious emission measurement as below.
 (Actual = Reading + AF + AMP + CL)
- 5. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak values.

Operating Mode: GFSK

A. Low Channel (2 402 Mb)

Radia	ated Emissic	ons	Ant.	Corr	ection Fa	actors	Total	Limit	
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	26.47	Peak	V	28.04	5.99	-	60.50	74.00	13.50
*2 310.00	-	Average	V	-	-	-24.76	35.74	54.00	18.26
*2 338.43	27.18	Peak	V	28.15	6.28	-	61.61	74.00	12.39
*2 338.43	-	Average	V	-	-	-24.76	36.85	54.00	17.15
*2 390.00	26.55	Peak	V	28.28	6.21	-	61.04	74.00	12.96
*2 390.00	-	Average	V	-	-	-24.76	36.28	54.00	17.72

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (朏)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (2 441 Mb)

Radiated Emissions			Ant.	Correction Factors			Total	Lim	it
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*7 322.52	43.98	Peak	V	36.15	-34.65	-	45.48	74.00	28.52
Above 7 400.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004316

C. High Channel (2 480 Mb)

Radia	ated Emissic	ons	Ant.	Corr	ection Fa	actors	Total	Limit	
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	26.90	Peak	V	28.27	6.40	-	61.57	74.00	12.43
*2 483.50	-	Average	V	-	-	-24.76	36.81	54.00	17.19
*2 491.40	28.00	Peak	V	28.28	6.30	-	62.58	74.00	11.42
*2 491.40	-	Average	V	-	-	-24.76	<u>37.82</u>	54.00	16.18
*2 500.00	26.28	Peak	V	28.30	6.19	-	60.77	74.00	13.23
*2 500.00	-	Average	V	-	-	-24.76	36.01	54.00	17.99

Radiated Emissions		Ant.	Corr	ection Fact	ors	Total	Limit		
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*7 440.16	45.58	Peak	V	36.20	-34.10	-	47.68	74.00	26.32
Above 7 500.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004316

54

Operating Mode: 8DPSK

Radia	ated Emissic	ons	Ant.	Cor	rection Fac	tors	Total	Limit	
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	25.74	Peak	V	28.04	5.99	-	59.77	74.00	14.23
*2 310.00	-	Average	V	-	-	-24.76	35.01	54.00	18.99
*2 323.42	27.26	Peak	V	28.09	6.08	-	61.43	74.00	12.57
*2 323.42	-	Average	V	-	-	-24.76	36.67	54.00	17.33
*2 390.00	25.38	Peak	V	28.28	6.21	-	59.87	74.00	14.13
*2 390.00	-	Average	V	-	-	-24.76	35.11	54.00	18.89

Radiated Emissions			Ant.	t. Correction Factors			Total	Limit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (2 441 Mz)

Radiated Emissions		Ant.	Correction Factors		Total	Limit			
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*7 323.57	43.32	Peak	V	36.15	-34.67	-	44.80	74.00	29.20
Above 7 400.00	Not detected	-	-	-	-	-	-	-	-

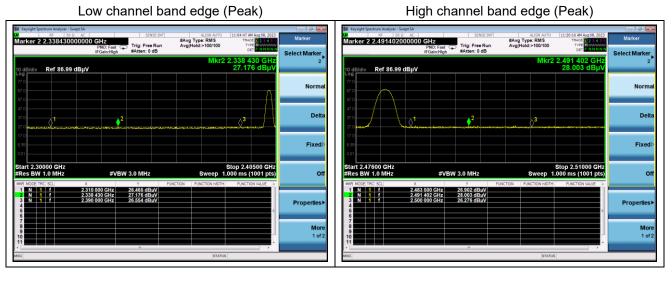
Report Number: F690501-RF-RTL004316

C. High Channel (2 480 Mb)

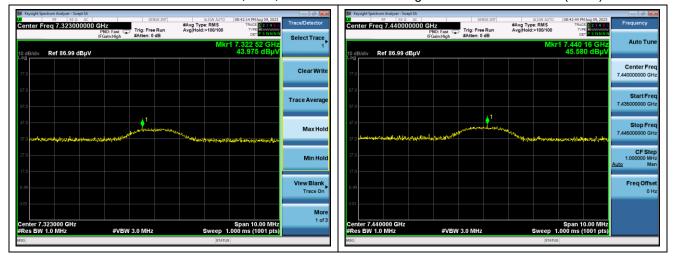
Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 483.50	27.03	Peak	V	28.27	6.40	-	61.70	74.00	12.30
*2 483.50	-	Average	V	-	-	-24.76	36.94	54.00	17.06
*2 487.22	28.34	Peak	V	28.27	6.35	-	62.96	74.00	11.04
*2 487.22	-	Average	V	-	-	-24.76	38.20	54.00	15.80
*2 500.00	26.05	Peak	V	28.30	6.19	-	60.54	74.00	13.46
*2 500.00	-	Average	V	-	-	-24.76	35.78	54.00	18.22

Radiated Emissions		Ant.	Corr	ection Fact	ors	Total	Lim	it	
Frequency (胍)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*7 440.17	45.08	Peak	V	36.20	-34.10	-	47.18	74.00	26.82
Above 7 500.00	Not detected	-	-	-	-	-	-	-	-

Remark;

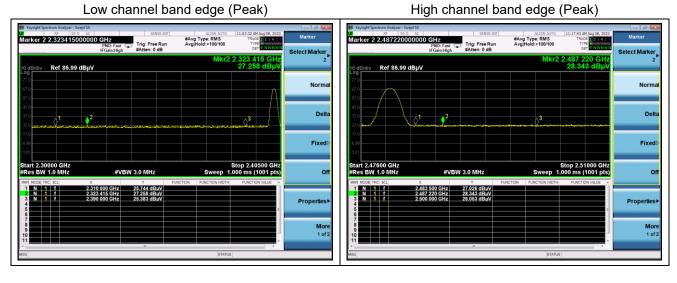

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.
- 7. AF = Antenna Factor, CL = Cable Loss, DF = Duty Correction Factor.

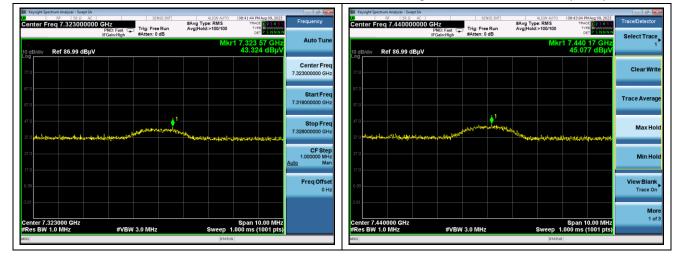
Report Number: F690501-RF-RTL004316


- Test plots

Mode: GFSK

Middle channel 3rd Harmonic (Peak)

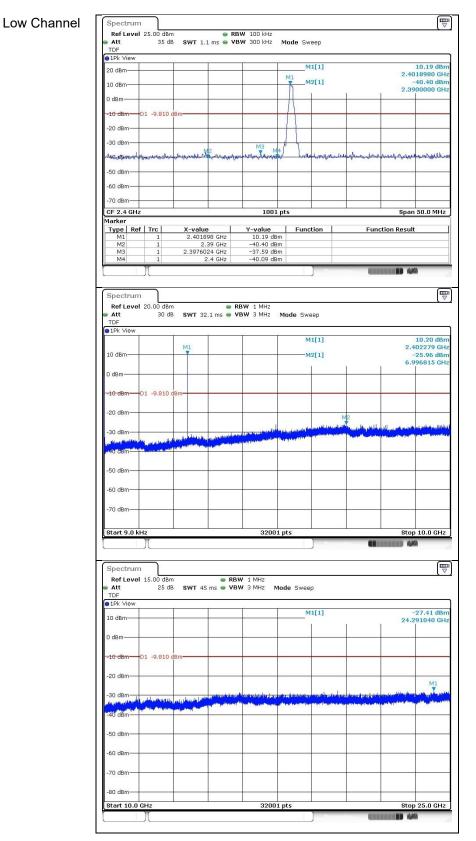

High channel 3rd Harmonic (Peak)


Report Number: F690501-RF-RTL004316

Mode: 8DPSK

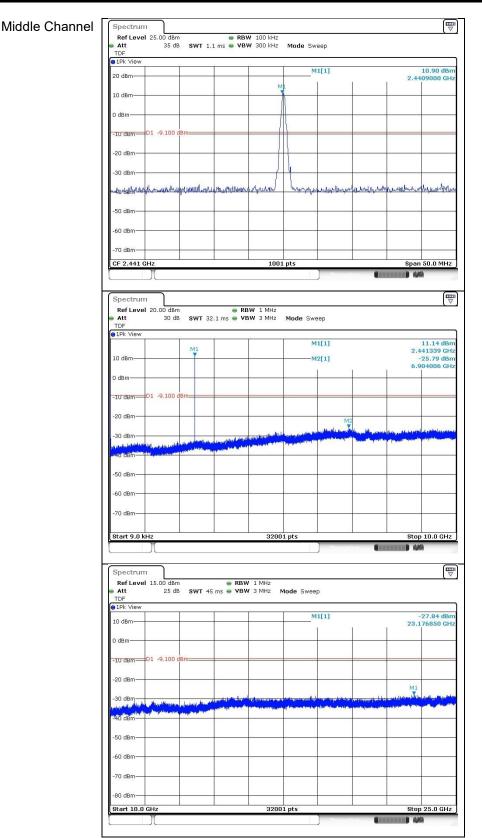
Middle channel 3rd Harmonic (Peak)

High channel 3rd Harmonic (Peak)



Report Number: F690501-RF-RTL004316

2.4.3. Plot of Conducted Spurious Emissions

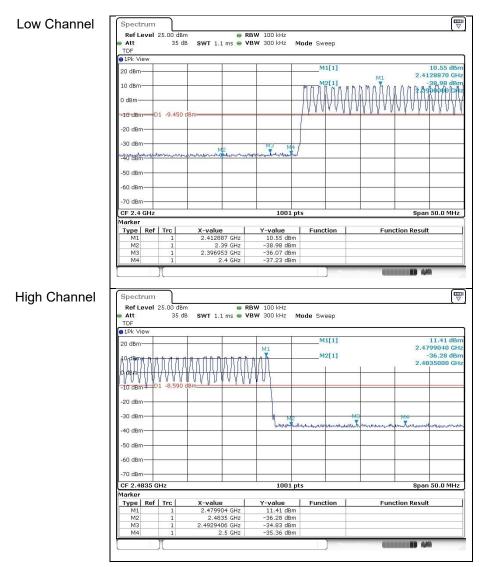

Mode: GFSK_hopping function turned off

Report Number: F690501-RF-RTL004316



Report Number: F690501-RF-RTL004316

Page:	25	of	54
-------	----	----	----



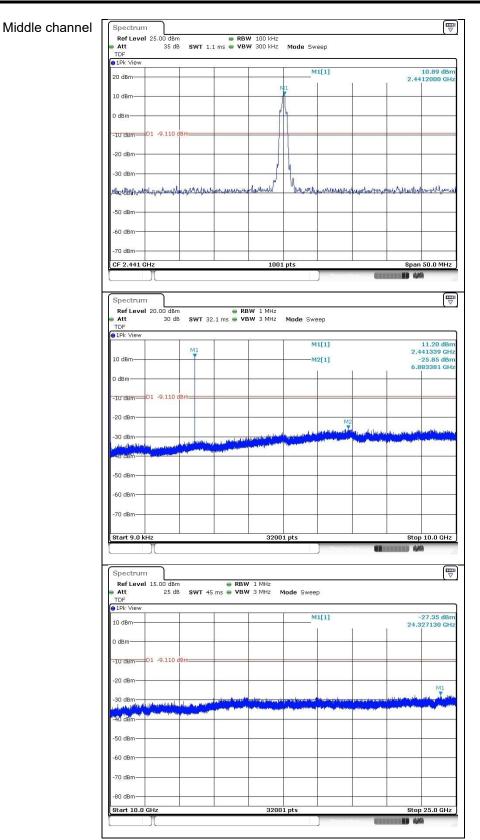
Report Number: F690501-RF-RTL004316

Mode: GFSK_hopping function turned on

Band edge compliance

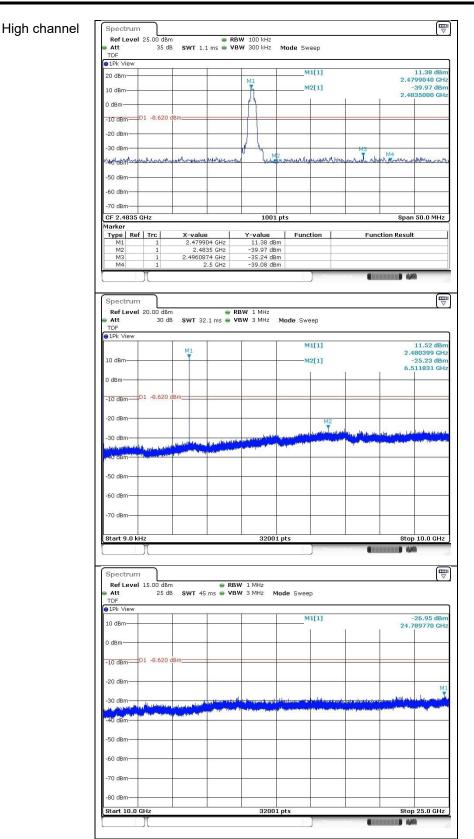
Report Number: F690501-RF-RTL004316

Mode: 8DPSK_hopping function turned off


Low channel

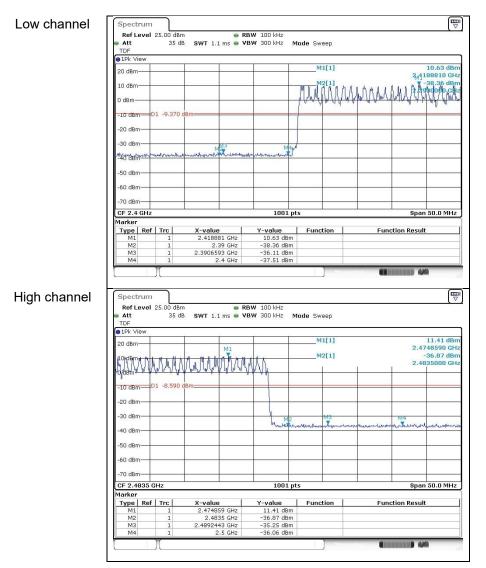
Spectrum Ref Level 25.00	dBm 🖷 🖡	RBW 100 kHz			
	5 dB SWT 1.1 ms 🖷 🕅		weep		
1Pk View	06 80	10 10			
20 dBm			M1[1]		9.75 dBn 2.4018980 GH
10 dBm		M1 The	M2[1]		-40.10 dBm 2.3900000 GHa
0 dBm		<u>/1</u>	1 1		2.3900000 GHz
-10 dBm D1 -10	.250 dBm	/ \			
-20 dBm					
-30 dBm					
40 dem	M2	M3	والمراجع المراجع	And the second second	man and a second
	1.000 Reported and Real Office Office Office	waldon Press	Manuf 1000000	a Marinder, Gable arte	AND
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.4 GHz Narker	× 0	1001 pts			Span 50.0 MHz
Type Ref Trc	X-value		ction	Function F	Result
M1 1 M2 1	2.401898 GHz 2.39 GHz	9.75 dBm -40.10 dBm			
M3 1 M4 1	2.3953047 GHz 2.4 GHz	-36.79 dBm -40.89 dBm			
)(Measuri		10 494
					1
Spectrum					[□
Ref Level 20.00		RBW 1 MHz			
TDF	0 dB SWT 32.1 ms 🖷	VBW 3 MHz Mode Sw	veep		
1Pk View			M1[1]		10.25 dBm
10 40-	M1				2.401959 GH
10 dBm		P	M2[1]		-25.59 dBm 6.244652 GH
0 dBm					
10 dBm 01 -10	050 40-0				
10 0000 01 -10	.250 dBm				
-20 dBm			M2		
-30 dBm		bert builded to an authority	and Just state the	Henry Merchenson Marthagen	والمعرا ومدانتك ومشرو والماسي ومنا
a surger and the second second	A STATE OF THE OWNER		all of the second se	Constant of Constant of Constant of Constant	the same which are the of the sector former
740 dBm					
-50 dBm					
-60 dBm					
-70 dBm			_		
Start 9.0 kHz		32001 pts			Stop 10.0 GHz
			Measuri	I. CARRENT	B 449
					Ē
Spectrum Ref Level 15.00	-10-m	BW 1 MHz			Ē
Att 2	5 dB SWT 45 ms 🖷 V		ер		
TDF 1Pk View					
10 dBm-		P	M1[1]		-27.31 dBm
10 0.0.11			8	1	24.772430 GHz
0 dBm		+ +			
	.250 dBm				
10 d8m-10 -10					
		+ +			M1
			at and the state of the state	an in a sea such a latitude	Libert and and and the start
-20 dBm	the second straighter the	attend alls day, which is the last			
-20 dBm		a di tanàna dia 400 manya dia 400 manana amin'ny kaodim-paositra dia 400 manya manana dia mangana dia mangana m	and the second	and the particular second	
-20 dBm		a dila landi a dia dara parte dilang aka bahasih M ¹⁸ yang managkan ngapan nga bahasih		and the start of t	
-20 dBm -30 dBm -30 dBm -40 dBm		ar stille and an element of a post of a first post of a first post of a post of a post of a post of a post of a Market a post of a post			
-20 dBm					
-20 dBm					
-20 dBm					
-20 dBm					
-20 dBm		32001 pts			Stop 25.0 GHz

Report Number: F690501-RF-RTL004316


Page:	28	of	54
-------	----	----	----

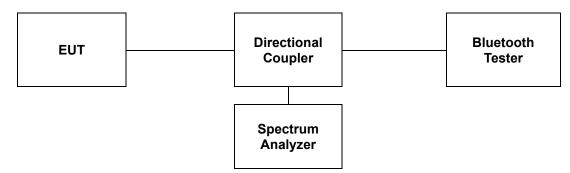
Report Number: F690501-RF-RTL004316

Page:	29	of	54
-------	----	----	----



Report Number: F690501-RF-RTL004316

Mode: 8DPSK_hopping function turned on


Band edge compliance

3. 20 dB Bandwidth and 99 % Bandwidth

3.1. Test Setup

3.2. Limit

Limit: Not Applicable

3.3. Test Procedure

3.3.1. 20 dB **Bandwidth**

The test follows ANSI C63.10-2013.

The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency.

Use the following spectrum analyzer setting:

- 1. Span = approximately 2 to 5 times the 20 dB bandwidth.
- 2. RBW \geq 1 % to 5 % of the 20 dB bandwidth.
- 3. VBW \ge 3 x RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace = max hold

The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 dB bandwidth of the emission.

3.3.2. 99 % Bandwidth

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied / $x \, dB$ bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

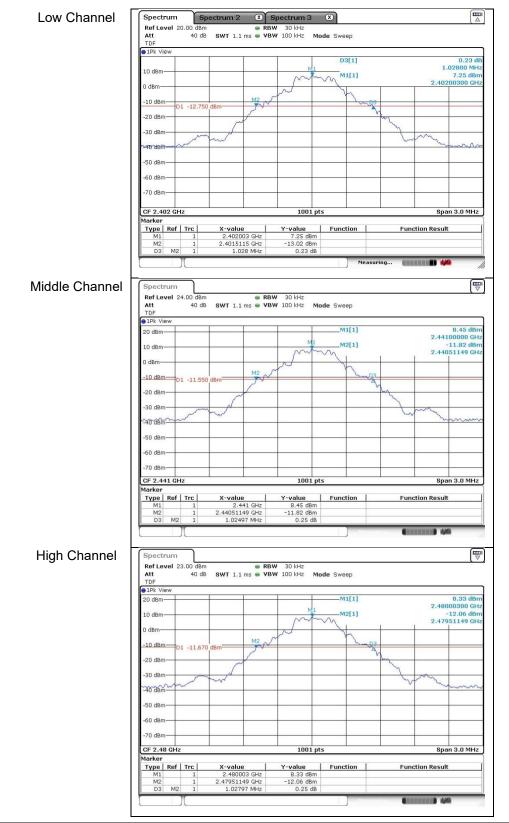
For the 99 % emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99 % emission bandwidth).

Report Number: F690501-RF-RTL004316

3.4. Test Results

Ambient temperature: (23 ± 1) °CRelative humidity: 47 % R.H.

Mode	Data Rate (Mbps)	Channel	Frequency (₩z)	20 dB Bandwidth (₩z)	99 % Bandwidth (쌘)
		Low	2 402	1.028	0.845
GFSK	1	Middle	2 441	1.025	0.869
		High	2 480	1.028	0.872
	2	Low	2 402	1.226	1.124
π/4DQPSK		Middle	2 441	1.229	1.124
		High	2 480	1.232	1.127
		Low	2 402	1.220	1.094
8DPSK	3	Middle	2 441	1.220	1.094
		High	2 480	1.220	1.097



Report Number: F690501-RF-RTL004316

- Test plots

20 dB Bandwidth

Mode: GFSK

