

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF

TEL:+82 31 330-1700 FAX:+83

FAX:+82 31 322 2332

FCC and IC SAR EVALUATION REPORT FOR CERTIFICATION

Applicant:

129, Samsung-ro, Yeongtong-gu,

Suwon-si, Gyeonggi-do,16677,

Korea

Attn.: JunTaek Oh

Dates of Issue : July 1, 2020

Test Report No.: NK-20-R-143-1

Test Site: Nemko Korea Co., Ltd.

FCC IC

Brand Name

Contact Person

A3LSMR180L 649E-SMR180L

Samsung

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Mr. JunTaek Oh

Telephone No.: +82-10-3311-0003

Applied Standard: FCC 47 CFR Part 2(2.1093) and IC RSS-102 Issue 5

Classification: FCC Part 15 Spread Spectrum Transmitter (DSS)

Digital Transmission System (DTS)

EUT Type: Bluetooth Headset

This form is only for use by Nemko Korea, or by others according to special agreement with Nemko Korea.

The report may be reproduced in full. Partial reproduction may only be made with the written content of Nemko Korea. This report apply only to the sample(s) tested. It is the manufacturer's responsibility to assure the additional production units of this product manufactured with identical electrical and mechanical components. The manufacturer is responsible to the Competent Authorities in Europe for any modifications made to the product which results in non-compliance to the relevant regulation

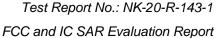
Tested By: Wonjae Song

Engineer

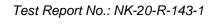
Reviewed By: Seungyong Shin

Technical Manager

Samsung Electronics Co., Ltd.


Page 1 of 76

FCC ID: A3LSMR180L / IC: 649E-SMR180L


TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Operating Environment	7
	3.1.2 Table of test power setting	7
	3.1.3 Table of test channel	7
	3.1.4 Antenna TX mode information	8
	3.1.5 Additional Information Related to Testing	8
	3.2 Support Equipment	8
	3.3 Maximum Target power among production Units	8
	3.4 SAR Testing EUT Configuration	8
	3.5 SAR Test Consideration	9
	3.6 Bluetooth duty cycle plot	10
	3.7 EUT Information	11
	3.8 Description of change	12
	3.9 Modifications	12
4.	Guidance Applied	13
5.	Description of Test Equipment	14
	5.1 SAR Measurement Setup	14
	5.2 E-field Probe	15
	5.3 SAM Phantom	16
	5.4 Simulation Mixture Characterization	17
	5.5 Device Holder for Transmitters	18
6.	SAR Measurement Procedure	19
7.	Limits for Specific Absorption rate(SAR)	20

8. 21 **Measurement Uncertainty** 9. 22 **Output Power Measurement** 9.1 Measurement procedure for Output Power 22 9.2 Conducted RF Output Power (Unit: dBm) 23 10. 24 **System Verification** 10.1 Tissue Verification 24 10.2 Test System Verification 25 10.3 System Verification Test Setup 26 11. **SAR Measurement Results** 27 12. **Test Equipment** 29 13. 30 Conclusion Appendix A. Plots of SAR Results 31 **Appendix B. Plots of System Verification** 46 Appendix C. Calibration Report of the Probe 51 Appendix D. Calibration Report of the Dipole Antenna 61

FCC and IC SAR Evaluation Report

1. SCOPE

Measurement and determination of electromagnetic field intended to be used at a position near the human body with radio frequency device at distance up to and including 200mm from a human body for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 2 and IC RSS-102 Issue5.

Responsible Party: Samsung Electronics Co., Ltd.

Contact Person: JunTaek Oh

Manufacturer: Samsung Electronics Co., Ltd.

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677,

Korea

FCC ID A3LSMR180L

• IC: 649E-SMR180L

• Model: SM-R180

HVIN SM-R180L

Brand Name: Samsung

EUT Type: Bluetooth Headset

Classification: Part 15 Spread Spectrum Transmitter (DSS)

Digital Transmission System (DTS)

Applied Standard: FCC 47 CFR Part 2(2.1093) and IC RSS-102 Issue 5

Test Procedure(s): IEEE 1528-2013, FCC guidance of 447498 D01

General RF exposure Guidance v06

Dates of Test: Apr 02, 2020 ~ June 20, 2020

Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from Samsung Electronics Co., Ltd. FCC ID: A3LSMR180L and IC: 649E-SMR180L.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

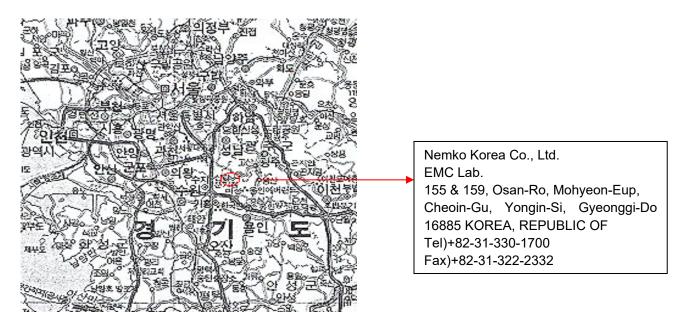


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

2.2 Accreditation and listing

	Accreditation type				
F©	CAB Accreditation for DOC				
KOLAS DE PROTOS DE LA COMPANSIONE DEL COMPANSIONE DE LA COMPANSION	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. KT155			
Industry Canada	Canada IC Registered site	Site No. 2040E			
[V@I]	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118			
IECEE SCHEME	EMC CBTL	-			
E	KCC(RRL)Designated Lab.	Registration No. KR0026			

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the transceiver which is the Bluetooth 5.0 module supporting BDR/EDR/LE mode. The Mobile phone was used to control the EUT to transmit the wanted TX channel by the testing program (BudsOdin2.0) which manufacturer supported. The Mobile phone was removed after controlling the EUT to transmit the wanted signal. The EUT was tested at the lowest channel, middle channel and the highest channel with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Operating Environment

Parameters	Recording during test	Accepted deviation
Ambient temperature	(20.6 ~ 21.7) ℃	(18 ~ 25) ℃
Relative Humidity	(46 ~ 54) %	(30 ~ 70) %

3.1.2 Table of test power setting

Frequency	Mode	Power setting Level
	GFSK	Max
2402 MHz ~ 2480 MHz	02 MHz ~ 2480 MHz π/4DQPSK	
	8DPSK	Max
2402 MHz ~ 2480 MHz	LE 1M	Default
2402 WINZ ~ 2400 WINZ	LE 2M	Default

3.1.3 Table of test channels

Frequency band	Mode	Test Channel (CH)	Frequency (MHz)
		0	2402
2.4 GHz	GFSK, π/4DQPSK, 8DPSK	39	2441
		78	2480
		0	2402
2.4 GHz	LE 1M, LE 2M	19	2440
		39	2480

3.1.4 Antenna TX mode information

Frequency band	Mode	Antenna TX mode	Support MIMO
2.4 GHz	GFSK, π/4DQPSK, 8DPSK	■ 1TX, □ 2TX	□ Yes, ■ No
2.4 GHz	LE 1M, 2M	■ 1TX, □ 2TX	□ Yes, ■ No

3.1.5 Additional Information Related to Testing

SAR testing was performed all EUT orientations with a device-to-phantom separation distance of 0 mm, according to KDB 447498 requirements.

3.2 Support Equipment

Equipment	Manufacturer	Model Name	Serial Number
Mobile phone	Samsung	SM-G960N	R39K30EN92F

3.3. Maximum Target power among production units

Tune up tolerance is specified in operation description page 2.

Mode	Minimum power (dBm)	Maximum power(dBm)
GFSK	10	12.5
π/4DQPSK	5.5	8
8DPSK	5.5	8
LE 1M	10	12.5
LE 2M	10	12.5

3.4 SAR testing EUT configuration

Device	Band/Mode	Device edge for SAR Testing					
Туре	Dand/Mode	Front	Back	Left edge	Right edge	Тор	Bottom
Headset	Bluetooth	Yes	Yes	Yes	Yes	Yes	Yes

3.5 SAR Test consideration

Per FCC KDB 447498 D01v06, The SAR exclusion threshold for distance < 50mm is defined by the following equation.

$$\frac{(max.power\ of\ channel,including\ tune-up\ tolerance,mW)}{(min.test\ separation\ distance,mm)} \times \sqrt{f(GHz)} \leq 3.0 \quad \{1\ g\ SAR\}$$

$$\frac{(\textit{max.power of channel,including tune-up tolerance,mW})}{(\textit{min.test separation distance,mm})} \times \sqrt{f(\textit{GHz})} \leq 7.5 \quad \{10 \text{ g SAR}\}$$

		Maximum	Maximum			FCC SAR exclusion			IC SAR exclusion	
Mode	Frequency	Conducted power	tune up Power	E.I.R.P *)	Separation	≤ 3.0	≤ 7.5	FCC SAR	IC Limit	IC SAR
	[GHz]	[mW]	[mW]	[mW]	[mm]	1-g SAR	10-g SAR	Test	[mW]	Test
GFSK	2.402	13.23	17.78	4.37	5	5.5	N/A	Yes	≤ 4.26	Yes
4DQPSK	2.402	4.85	6.31	2.94	5	2.0	N/A	No	≤ 4.26	Yes
8DPSK	2.402	4.87	6.31	3.24	5	2.0	N/A	No	≤ 4.26	Yes
LE 1M	2.402	11.98	17.78	2.58	5	5.5	N/A	Yes	≤ 4.26	Yes
LE 2M	2.440	11.80	17.78	2.61	5	5.6	N/A	Yes	≤ 4.05	Yes

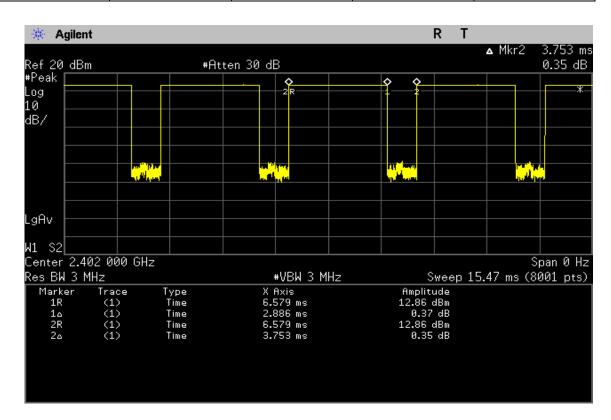
^{*)} E.I.R.P = [Maximum conducted power] + [Ant gain(-6.90 dBi)]

In case of FCC, Bluetooth 4DQPSK, 8DPSK SAR test was not required.

Per RSS-102 issue 5, The maximum tune up power was applied to testing, because maximum tune up power was higher than E.I.R.P.

IC SAR Limit was calculated using linear interpolation and below table.

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation	At separation	At separation	At separation		
	distance of	distance of	distance of	distance of	distance of		
	≤ 5 mm	10 mm	15 mm	20 mm	25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		


For IC exclusion, SAR test was required for all modes.

3.6 Bluetooth duty cycle plot

Per October 2016 TCB Workshop Notes, When call box and Bluetooth protocol are used, time-domain plots are required to identify duty factor supporting the test setup and results.

Mode	Packet	On time (ms)	On-Off time (ms)	Duty cycle (%)
BDR(GFSK)	DH5	2.886	3.753	76.90

3.7 EUT Information

The EUT is the Samsung Electronics Co., Ltd. Bluetooth Headset FCC ID: A3LSMR180L, IC: 649E-SMR180L.

Specifications:

Specifications:	,
EUT Type	Bluetooth Headset
Model Name	SM-R180
Brand Name	Samsung
Frequency of Operation	2402 MHz ~ 2480 MHz
Average Output Power (Conducted)	GFSK: 11.22 dBm π/4 DQPSK: 6.86 dBm 8DPSK: 6.88 dBm LE 1M: 10.79 dBm LE 2M: 10.72 dBm
Highest Reported SAR	0.769 W/kg
FCC Classification	FCC Part 15 Spread Spectrum Transmitter (DSS) Digital Transmission System (DTS)
Channel Number	DSS: 79 ch DTS: 40 ch
Modulation	GFSK, π/4 DQPSK, 8DPSK
Antenna Gain	-6.90 dBi (peak)
Power	3.7 Vdc
Dimensions (L x W x H)	About 15 cm x 26 cm X 14 cm
Weight	About 5 g
HVIN (Hardware Version Identification Number)	SM-R180L
FVIN (Firmware Version Identification Number)	R180.001
Remarks	-

3.8 Description of change

No Comment

3.9 Modifications

No Comment

4. GUIDANCE APPLIED

The Specific Absorption Rate(SAR)testing specification, method, and procedure for this device is in Accordance with the following standards:

- FCC 47 CFR Part 2(2.1093)
- RSS-102 Issue 5
- IEEE 1528-2013
- FCC KDB Publication 447498 D01 v06
- FCC KDB Publication 865664 D01 v01r04
- FCC KDB Publication 865664 D02 v01r02
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)
- October 2016 TCB Workshop Notes (Bluetooth Duty Factor)

5. DESCRIPTION OF TEST EQUIPMENT

5.1 SAR Measurement Setup

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. Which is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Stäubli), robot controller, measurement server, H/P computer, nearfield probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 5.1).

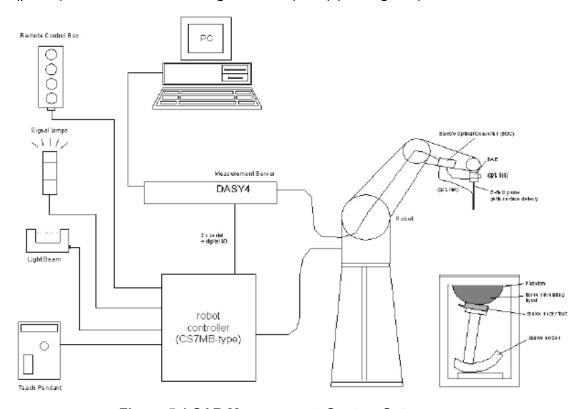


Figure 5.1 SAR Measurement System Setup

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control is used to drive the robot motors. The PC consists of the H/P computer with Windows XP system and SAR Measurement Software DASY4, LCD monitor, mouse and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A Data Acquisition Electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. Is connected to the Electro-Optical Coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the measurement server.

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.2 E-field Probe

The SAR measurement were conducted with the dosimetric probe designed in the classical triangular configuration (see Fig.5.3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates.

The probe is equipped with an optical multi-fiber line ending at the front of the probe tip (see Fig.5.4). It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface.

Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a System maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero.

The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting (see Fig.5.2).

The approach is stopped at reaching the maximum.

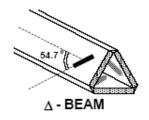


Figure 5.3 Triangular Probe Configuration

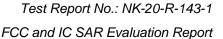


Figure 5.2 DAE System

Samsung Electronics Co., Ltd.

Page 15 of 76

Probe Specifications

Manufacturer : SPEAG model name: EX3DV4 Serial number : 3947

Probe spec : refer to the Appendix C Probe calibration : July 24, 2019

5.3 SAM Phantom

The SAM Twin Phantom V4.0C is constructed of a fiberglass shell Integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users.

It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

(See Figure 5.5)

Figure 5.5 SAM Twin Phantom

Phantom Specification

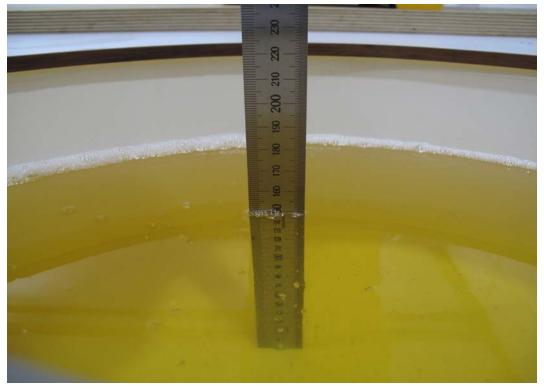
Construction: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2013.

It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness: 2 ± 0.2 mm Filling Volume: Approx. 25 liters

Dimensions: Height; 830 mm; Length: 1000 mm; Width: 500 mm



5.4 Simulating Mixture Characterization

The dielectric properties of the liquid material used in the phantom shall be those listed in Table 5.1. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Table 5.1 Composition of the Head Tissue Equivalent Matter

INODEDIENTO	SIMULATING TISSUE				
INGREDIENTS	2450 MHz Head				
De-ionised water	56.23 %				
Oxyethylated Sorbitan Mono Laurate	43.67 %				
Ethyldihydro	0.1 %				
Sum	100 %				

2 GHz (Head) Tissue Simulating Liquid, Depth: 150 mm

5.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (see Fig. 5.6) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the Complex anatomical and geometrical structure of the hand that may produce infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 5.6 Device Holder

6. SAR MEASUREMENT PROCEDURE

EUT at the maximum power level is placed by a non metallic device holder in the above described positions at a shell phantom of a human being.

The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturized field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density p of the tissue in the SEMCAD software.

The software is able to determine the averaged SAR values (averaging region 1g or 10g) for compliance testing. The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the sharp of a cube. The measurement times takes about 20 minutes.

The following steps are used for each test position:

STEP 1

Establish a call with the maximum output power with a base station simulator.

The connection between the mobile phone and the base station simulator is established via air interface.

STEP 2

Measurement of the local E-Field value at a fixed location (P1).

This value serves as a reference value for calculating a possible power drift.

STEP 3

Measurement of the SAR distribution with a grid spacing of 15mm × 15mm and a constant distance to the inner surface of the phantom.

Since the sensors can not directly measure at the inner surface of the phantom.

Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With this values the area of the maximum SAR is calculated by a interpolation scheme (combination of a least-square fitted function and a weighted average method). Additional peaks within 3dB of the maximum SAR are searched.

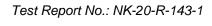
STEP 4

Around this points, a cube of 30mm×30mm×30mm is assessed by measuring 5×5×5 points. With these data, the peak spatial-average SAR value can be calculated with the SEMCAD software.

STEP 5

The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].

STEP 6


Repetition of the E-Field measurement at the fixed location(P1) and repetition of the whole procedure if the two results differ by more than ±0.223dB.

7. LIMITS FOR SPECIFIC ABSORPTION RATE (SAR)

	SAR (W/kg)					
HUMAN EXPOSURE	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment				
Spatial Peak SAR (Brain)	1.6	8.0				
Spatial Average SAR (Whole Body)	0.08	0.4				
Spatial Peak SAR (Hands, Wrists, Feet and Ankles)	4.0	20.0				

- 1. This limits accord to SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6
- 2. The Spatial Peak value of the SAR averaged over any 1g of tissue and over the appropriate averaging time.
- 3. The Spatial average value of the SAR averaged over the whole body.
- 4. The Spatial Peak value of the SAR averaged over any 10g of tissue and over the appropriate averaging time.

FCC and IC SAR Evaluation Report

8. MEASUREMENT UNCERTAINTY

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz clause 2.8.2, SAR measurement uncertainty analysis is required in SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR and \geq 3.75 W/kg for 10-g SAR. The expanded SAR measurement uncertainty must be \leq 30 %, for confidence interval of k = 2.

For this device, the highest measured 1-g SAR is less 1.5 W/kg and 10-g SAR is less 3.75 W/kg. Therefore, the measurement uncertainty table is not required in this report.

9. OUTPUT POWER MEASUREMENT

9.1 Measurement procedure for Output Power

EUTs average output power was measured at low, middle, high channels with a Spectrum Analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

Power measurement Test Setup

9.2 Conducted RF Output Power (Unit: dBm)

Mode	Measured Frequency (MHz)	Measured Output Power (dBm)
	2402	11.22
GFSK	2441	10.69
	2480	10.35
	2402	6.86
4QDPSK	2441	6.24
	2480	5.85
	2402	6.88
8DPSK	2441	6.24
	2480	5.83
	2402	10.79
LE 1M	2440	10.78
	2480	10.65
	2402	10.67
LE 2M	2440	10.72
	2480	10.59

10. SYSTEM VERIFICATION

10.1 Tissue Verification

For the measurement of the following parameters the DAK-3.5 was used, representing the openended slim form probe measurement procedure. The measured values should be within ±5% of the recommended values given by IEEE 1528-2013.

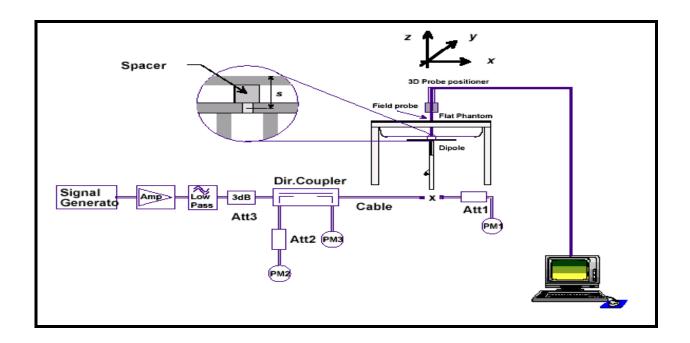
Table 12.1 Measured Tissue Parameters

	Table 12.1 Measured Tissue Farainteters										
Date	Liquid Type	Liquid Temp. (℃)	Frequency (MHz)	Measured relative Permittivity (ε)	Measured Conductivity (S/m)	Target relative Permittivity (ε)	Target Conductivity (S/m)	Permittivity Error (%)	Conductivity Error (%)		
			2402	38.110	1.738	39.285	1.757	-2.991	-1.081		
April 09.2020	2G /Head	21.60	2450	38.160	1.788	39.200	1.800	-2.653	-0.667		
			2480	37.980	1.806	39.162	1.833	-3.018	-1.473		
			2402	38.630	1.728	39.285	1.757	-1.667	-1.651		
June 14.2020	2G /Head	21.40	2450	38.160	1.788	39.200	1.800	-2.653	-0.667		
					2480	38.030	1.833	39.162	1.833	-2.891	0.000
			2402	38.260	1.775	39.285	1.757	-2.609	1.024		
June 15.2020	2G /Head	20.70	2450	38.270	1.825	39.200	1.800	-2.372	1.389		
				2480	38.280	1.833	39.162	1.833	-2.252	0.000	
			2402	38.480	1.756	39.285	1.757	-2.049	-0.057		
June 19.2020	2G /Head	21.30	2450	38.320	1.816	39.200	1.800	-2.245	0.889		
			2480	38.330	1.830	39.162	1.833	-2.125	-0.164		
			2402	39.260	1.751	39.285	1.757	-0.064	-0.341		
June 20.2020	2G /Head	21.30	2450	38.925	1.823	39.200	1.800	-0.714	1.278		
			2480	39.940	1.838	39.162	1.833	1.987	0.273		

10.2 Test System Verification

A complete 1 g and/or 10 g averaged SAR measurement is performed using a standard source. The input power of the standard source is adjusted to produce a 1 g and/or 10 g averaged SAR value falling in the range of 0,4 W/kg to 10 W/kg. The 1 g and/or 10 g averaged SAR is measured at frequencies in Table 12.2 within the range to be used in compliance tests. The results are normalized to 1 W forward input power and compared with the reference SAR value. Refer to Appendix B for each plot.

Table 12.2 System Verification Results


Date	Liquid Temperature (°C)	Measured Frequency (MHz)	Targeted 1 g SAR (W/kg)	Measured 1 g SAR (W/kg)	Normalized 1 g SAR (W/kg)	Deviation (%)	Verification Kit	Plot No.
Apr 09.2020	21.60	2450	52.40	13.30	53.20	1.53	D2450V2 SN: 983	#V01
June 14.2020	21.40	2450	51.80	13.50	54.00	4.25	D2450V2 SN: 774	#V02
June 15.2020	20.70	2450	51.80	13.30	53.20	2.70	D2450V2 SN: 774	#V03
June 19.2020	21.30	2450	51.80	13.30	53.20	2.70	D2450V2 SN: 774	#V04
June 20.2020	21.30	2450	51.80	13.10	52.40	1.16	D2450V2 SN: 774	#V05

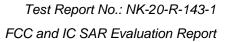
10.3 System Verification Test Setup

The system verification is verified to the ±10% of the specifications at each frequency band by using the system validation kit.

- 1. Perform internal calibration of each equipment.
- 2. Cabling the system, using the verification kit equipment.
- 3. The input level is set to be about 250 mW from the signal generator to the dipole antenna.
- 4. Dipole antenna was located below the phantom.
- 5. System verification was performed and 1g / 10g SAR was measured.
- 6. The results were normalized to 1 W input power.
- 7. Check if the 1 W normalized value was within ±10% of the target value.

11. SAR MEASUREMENT RESULTS

1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

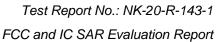

Scaling Factor = Maximum Tune-up limit power (mW) / EUT RF Power (mW),

Where tune-up limit is the maximum rated power among all production units.

Reported SAR (W/kg) = Scaling Factor * Measured SAR (W/kg)

2. Tune-up limit power is refer to page 8.

Measi Freque		Mode	Test	Average Power	Maximum Tune-Up	Scaling	EUT	Measured SAR 1g	Reported	Plot
MHz	СН	Wode	distance	(mW)	Limit pwr (mW)	Factor	Configuration	(W/kg)	SAR 1g (W/kg)	No.
							Front	0.037	0.056	
							Back	0.313	0.475	#S01
2441	39			11.71		1.52	Left	0.073	0.111	
2441	39	GFSK	0 mm	11.71	17.78	1.52	Right	0.126	0.191	
		GFSK	Ollilli		17.70		Тор	0.048	0.073	
							Bottom	0.027	0.041	
2402	0			13.23		1.34	Back	0.383	0.515	#S02
2480	78			10.83		1.64	Back	0.215	0.353	#S03
				4.21	6.31		Front	0.011	0.016	
			QPSK 0 mm			1.50	Back	0.341	0.511	#S04
2441	39						Left	0.012	0.018	
2441	39	4DQPSK					Right	0.011	0.016	
		4DQI SIX					Тор	0.016	0.024	
				4.85			Bottom	0.009	0.013	
2402	0					1.30	Back	0.367	0.477	#S05
2480	78			3.84		1.64	Back	0.202	0.332	#S06
							Front	0.006	0.009	
							Back	0.257	0.385	#S07
2441	39			4.21		1.50	Left	0.020	0.030	
2441	8DPSK	DPSK 0 mm	4.21	6.31	1.50	Right	0.033	0.049		
		טטרטת (UIIIII		0.51		Тор	0.013	0.019	
							Bottom	0.007	0.010	
2402	0			4.87		1.30	Back	0.373	0.483	#S08
2480	78			3.83		1.65	Back	0.205	0.338	#S09



Meas Frequ		Mode	Test	Average Power	Maximum Tune-Up	Scaling	EUT	Measured SAR 1g	Reported	Plot	
MHz	СН	Wode	distance	(mW)	Limit pwr (mW)	Factor	Configuration	(W/kg)	SAR 1g (W/kg)	No.	
							Front	0.020	0.030		
							Back	0.429	0.638	#S10	
2440	19			11.95		1.49	Left	0.061	0.091		
2440	19	LE 1M	0 mm	11.95	17.78	1.49	Right	0.065	0.097		
		LE IIVI	O min		17.76	-	Тор	0.029	0.043		
							Bottom	0.015	0.022		
2402	0			11.98		1.48	Back	0.518	0.769	#S11	
2480	39			11.60		1.53	Back	0.302	0.463	#S12	
				11.80		1.51	Front	0.006	0.009		
							Back	0.192	0.289	#S13	
2440	19						Left	0.029	0.044		
2440		LE 2M	0 mm	11.00	17.78	1.51	Right	0.034	0.051		
		LE ZIVI	U IIIII		17.70		Тор	0.017	0.026		
							Bottom	0.009	0.014		
2402	0			11.67		1.52	Back	0.245	0.373	#S14	
2480	39				11.45		1.55	Back	0.160	0.248	#S15

12. TEST EQUIPMENTS

Description	Model	Serial No.	Data of next Calibration
Shield Room	NKRFS1	20020415	N/A
Staubli Robot Unit	RX60L	F05/51E1A1/A/01	N/A
Electro-Optical Converter	EOC3	398	N/A
SAM Twin Phantom V4.0C	TP-1358	SM 000 T02 DA	N/A
Device Holder	DH2005	SD HAC H01CA	N/A
Dielectric Probe Kit	85070E	MY44300121	N/A
Data Acquisition Electronics	DAE4	672	2020.09.18
E-Field Probe	EX3DV4	3947	2020.07.24
Validation Dipole Antenna	D2450V2	983	2021.03.22
Validation Dipole Antenna	D2450V2	774	2022.04.20
Digital thermometer	DTM3000	3187	2020.10.25
Power Amplifier	5800842	-	2021.01.14
Network Analyzer	8753E	JP38161044	2020.10.11
Dual Directional Coupler	11692D	1212A02175	2020.07.11
PSA Series Spectrum Analyzer	E4440A	MY44022567	2020.10.10
PSA Series Spectrum Analyzer	E4440A	MY44303257	2020.10.10
Power Meter	NRVS	835360/002	2021.01.13
Power Sensor	NRV-Z5	833722/006	2021.01.13
Power Meter	437B	2912U01687	2020.10.11
Power Sensor	8481A	3318A83210	2020.10.11
Power Meter	ML2437A	97310060	2020.07.11
Power Sensor	MA2474A	181289	2020.07.11
Signal Generator	SMB100A	175861	2020.10.10
Vector Signal Generator	SMBV100A	257152	2020.07.11
Dielectric Field probe	DAK 3.5	1128	2020.08.20
10 dB Attenuator	8491B	57773	2020.10.10
10 dB Attenuator	56-10	58765	2020.10.10
10 dB Attenuator	40A2W-10	1912	2021.04.03

13. CONCLUSION

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada,, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. The results and statements relate only to the item(s) tested.

APPENDIX A. PLOTS OF SAR RESULTS

#S01

Date/Time: 2020-04-09 PM 3:36:00

Test Laboratory: Nemko Korea File Name: GFSK Back gap 0mm position 2441 .da4

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: SAMSUNG Electronics

Communication System: Bluetooth Frequency: 2441 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2441 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

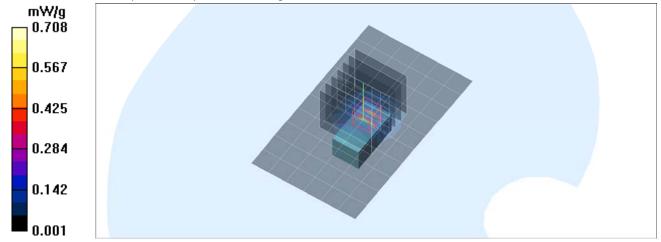
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.538 mW/g


SM-R180 Left Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.4 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.313 mW/g

Maximum value of SAR (measured) = 0.708 mW/g

FCC ID: A3LSMR180L / IC:649E-SMR180L

Date/Time: 2020-04-09 PM 7:54:08

Test Laboratory: Nemko Korea File Name: GFSK Back gap 0mm position 2402 .da4

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: SAMSUNG Electronics

Communication System: Bluetooth Frequency: 2402 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2402 MHz; $\sigma = 1.74 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

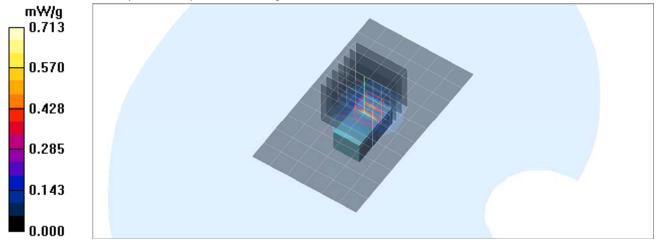
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.713 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.7 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 0.383 mW/g

Maximum value of SAR (measured) = 0.927 mW/g

Date/Time: 2020-04-09 PM 8:12:39

Test Laboratory: Nemko Korea File Name: GFSK Back gap 0mm position 2480 .da4

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: SAMSUNG Electronics

Communication System: Bluetooth Frequency: 2480 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2480 MHz; $\sigma = 1.81 \text{ mho/m}$; $\epsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

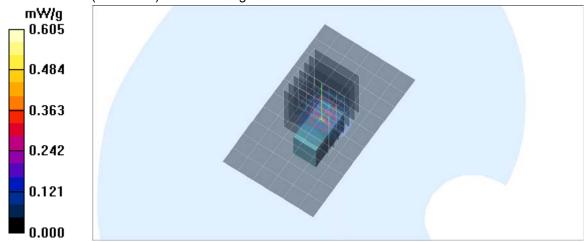
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.409 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.1 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.215 mW/g

Maximum value of SAR (measured) = 0.605 mW/g

#S04

Date/Time: 2020-06-14 PM 1:42:29

Test Laboratory: Nemko Korea File Name: <u>4DQPSK Back gap 0mm position_2441_.da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: S/N Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2441 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2441 MHz; σ = 1.77 mho/m; ε_r = 38.2; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

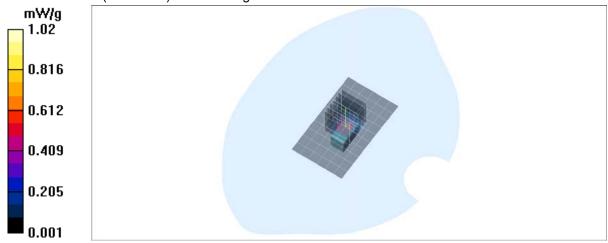
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.09 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.341 mW/g

Maximum value of SAR (measured) = 1.02 mW/g

#S05

Date/Time: 2020-06-14 PM 7:26:34

Test Laboratory: Nemko Korea File Name: <u>4DQPSK Back gap 0mm position_2402_.da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2402 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2402 MHz; σ = 1.73 mho/m; ε_r = 38.6; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

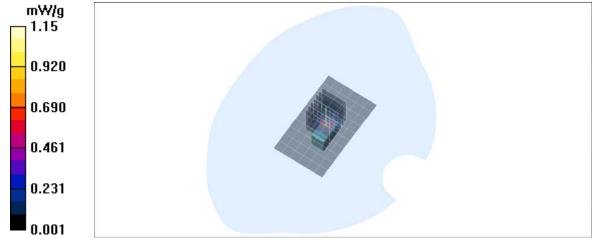
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.15 mW/g


SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.3 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 2.37 W/kg

SAR(1 g) = 0.367 mW/g

#S06

Date/Time: 2020-06-14 PM 7:44:38

Test Laboratory: Nemko Korea File Name: <u>4DQPSK Back gap 0mm position_2480_.da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2480 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2480 MHz; σ = 1.83 mho/m; ε_r = 38; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.589 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.202 mW/g

Maximum value of SAR (measured) = 0.636 mW/g

Date/Time: 2020-06-15 PM 2:01:06

Test Laboratory: Nemko Korea File Name: <u>8DPSK Back gap 0mm position_2441_.da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2441 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2441 MHz; σ = 1.82 mho/m; ε_r = 38.2; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

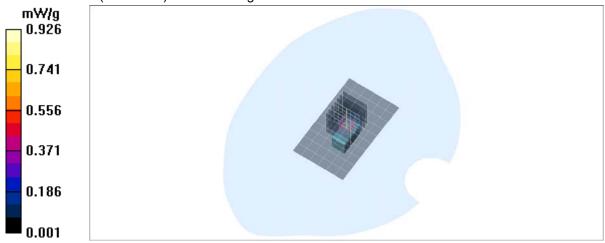
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.836 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.2 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.257 mW/g

Maximum value of SAR (measured) = 0.926 mW/g

Date/Time: 2020-06-15 PM 2:26:10

Test Laboratory: Nemko Korea File Name: <u>8DPSK Back gap 0mm position 2402 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2402 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2402 MHz; σ = 1.77 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

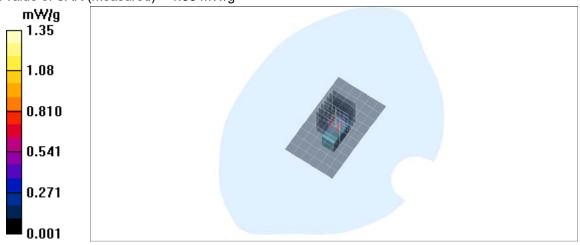
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Front side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.33 mW/g

SM-R180 Left_Front side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.7 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 0.373 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

Date/Time: 2020-06-15 PM 3:00:52

Test Laboratory: Nemko Korea File Name: <u>8DPSK Back gap 0mm position_2480_.da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2480 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2480 MHz; σ = 1.83 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

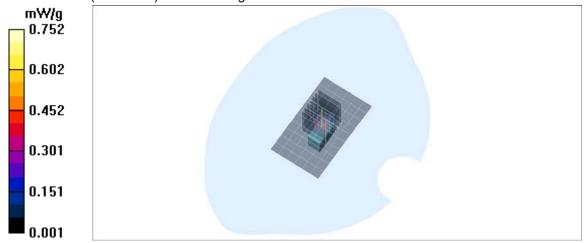
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.697 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.205 mW/g

Maximum value of SAR (measured) = 0.752 mW/g

Date/Time: 2020-06-19 PM 1:58:46

Test Laboratory: Nemko Korea File Name: <u>BLE1M Back gap 0mm position 2440 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2440 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2440 MHz; σ = 1.81 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

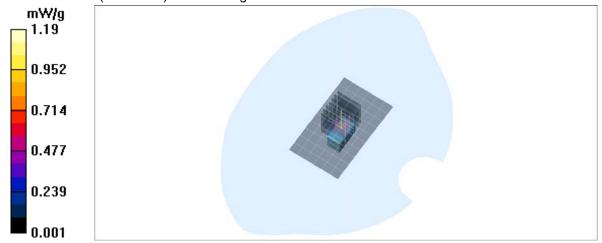
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.25 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.5 V/m; Power Drift = 0.100 dB

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 0.429 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

Date/Time: 2020-06-19 PM 6:01:11

Test Laboratory: Nemko Korea File Name: <u>BLE1M Back gap 0mm position 2402 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2402 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2402 MHz; σ = 1.76 mho/m; ε_r = 38.5; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

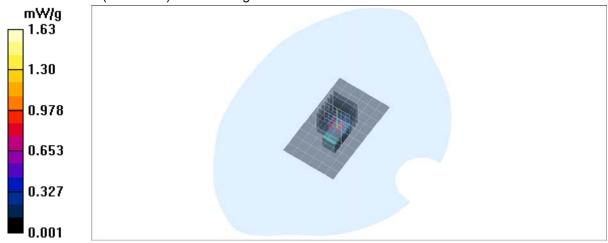
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.76 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.3 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 0.518 mW/g

Maximum value of SAR (measured) = 1.63 mW/g

Date/Time: 2020-06-19 PM 6:25:00

Test Laboratory: Nemko Korea File Name: <u>BLE1M Back gap 0mm position 2480 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2480 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2480 MHz; σ = 1.83 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

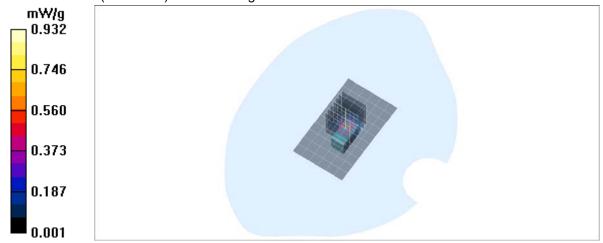
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.954 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.302 mW/g

Maximum value of SAR (measured) = 0.932 mW/g

Date/Time: 2020-06-19 PM 8:54:02

Test Laboratory: Nemko Korea File Name: <u>BLE2M Back gap 0mm position 2440 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2440 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2440 MHz; σ = 1.81 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

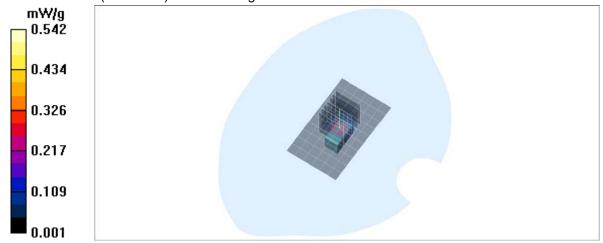
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.608 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.192 mW/g

Maximum value of SAR (measured) = 0.542 mW/g

Date/Time: 2020-06-20 PM 5:35:13

Test Laboratory: Nemko Korea File Name: <u>BLE2M Back gap 0mm position 2402 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2402 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2402 MHz; σ = 1.75 mho/m; ε_r = 39.3; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

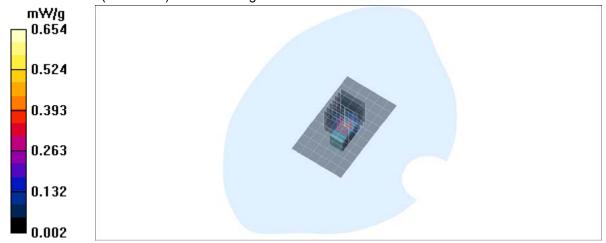
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.769 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.4 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.654 mW/g

Date/Time: 2020-06-20 PM 6:15:07

Test Laboratory: Nemko Korea File Name: <u>BLE2M Back gap 0mm position 2480 .da4</u>

DUT: SM-R180 Type: Bluetooth Headset Serial: N/A Applicant: Samsung Electronics

Communication System: Bluetooth Frequency: 2480 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2480 MHz; σ = 1.84 mho/m; ε_r = 38.9; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

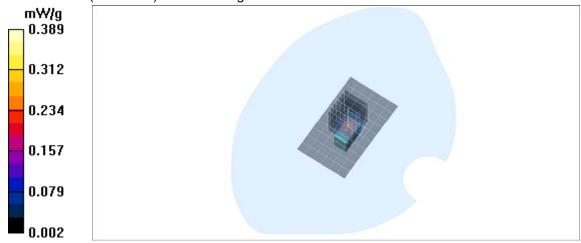
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

SM-R180 Left_Back side Gap 0mm Position/Area Scan (7x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.458 mW/g

SM-R180 Left_Back side Gap 0mm Position/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 0.926 W/kg

SAR(1 g) = 0.160 mW/g

Maximum value of SAR (measured) = 0.389 mW/g

APPENDIX B. PLOTS OF SYSTEM Verification

#V01

Date/Time: 2020-04-09 AM 11:28:05

Test Laboratory: Nemko Korea File Name: System Verification for 2.45GHz 2020-04-09.da4

DUT: Dipole 2450 MHz Type: D2450V2 Serial: D2450V2 - SN:983

Communication System: CW (2.4G) Frequency: 2450 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

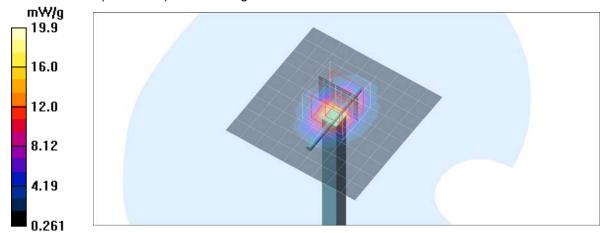
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2.4GHz System Verification/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.6 mW/g

2.4GHz System Verification/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 107.0 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 19.9 mW/g

Date/Time: 2020-06-14 PM 12:52:03

Test Laboratory: Nemko Korea File Name: <u>System Verification for 2.45GHz_2020-06-14.da4</u>

Communication System: CW (2.4G) Frequency: 2450 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2450 MHz; $\sigma = 1.79 \text{ mho/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

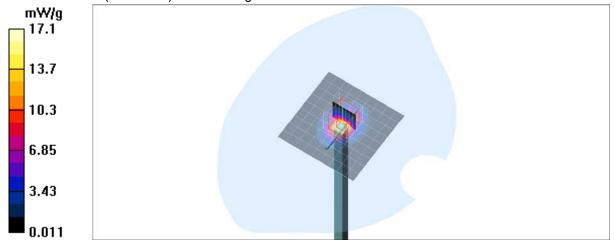
Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2.4GHz System Verification/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 17.1 mW/g

2.4GHz System Verification/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 107.8 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.25 mW/g

Maximum value of SAR (measured) = 19.8 mW/g

Date/Time: 2020-06-15 AM 11:33:54

Test Laboratory: Nemko Korea File Name: System Verification for 2.45GHz 2020-06-15.da4

Communication System: CW (2.4G) Frequency: 2450 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

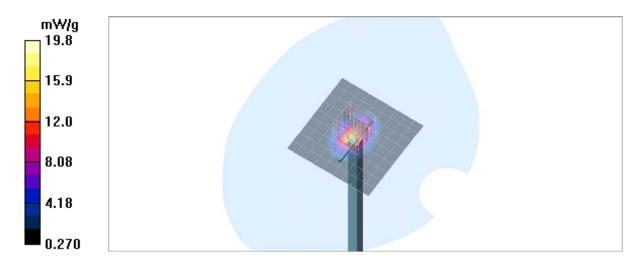
DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2.4GHz System Verification/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.4 mW/g


2.4GHz System Verification/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 107.4 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 19.8 mW/g

Date/Time: 2020-06-19 AM 11:20:04

Test Laboratory: Nemko Korea File Name: System Verification for 2.45GHz 2020-06-19.da4

Communication System: CW (2.4G) Frequency: 2450 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

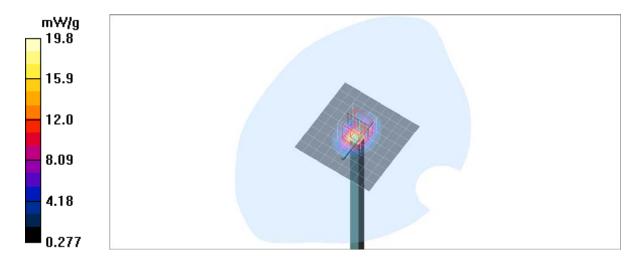
DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2.4GHz System Verification/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.2 mW/g


2.4GHz System Verification/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 107.8 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.09 mW/g Maximum value of SAR (measured) = 19.8 mW/g

Date/Time: 2020-06-20 PM 2:13:49

Test Laboratory: Nemko Korea File Name: System Verification for 2.45GHz 2020-06-20.da4

Communication System: CW (2.4G) Frequency: 2450 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

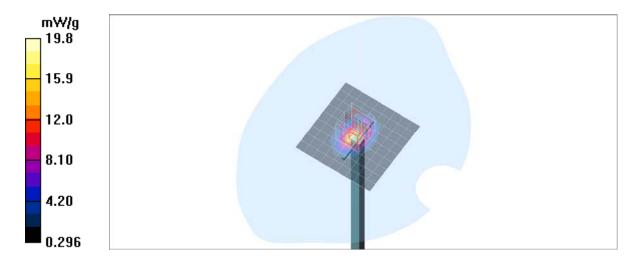
DASY4 Configuration:

Probe: EX3DV4 - SN3947; ConvF(7.7, 7.7, 7.7); Calibrated: 2019-07-24

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2019-09-18 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2.4GHz System Verification/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 18.0 mW/g


2.4GHz System Verification/Zoom Scan (8x8x13)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 104.1 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g Maximum value of SAR (measured) = 19.8 mW/g

FCC and IC SAR Evaluation Report

APPENDIX C. CALIBRATION REPORT OF THE PROBE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Nemko Korea (Dymstec)

Certificate No: EX3-3947 Jul19

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3947

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

July 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check; Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sof Tiller
Approved by:	Katja Pokovic	Technical Manager	All My
		Il without written approval of the laboratory	Issued: July 24, 2019

Certificate No: EX3-3947_Jul19

Page 1 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3947_Jul19

Page 2 of 10

EX3DV4 - SN:3947

July 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3947

Basic Calibration Parameters

279	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.46	0.34	0.56	± 10.1 %
DCP (mV) ⁸	100.2	103.7	100.5	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	133.2	±3.3 %	±4.7 %
		Y	0.0	0.0	1.0		149.8		
		Z	0.0	0.0	1.0		149.8		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:3947

July 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3947

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-19.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

July 24, 2019 EX3DV4-SN:3947

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3947

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	39.2	1.80	7.70	7.70	7.70	0.42	0.90	± 12.0 %
5200	36.0	4.66	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.14	5.14	5.14	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.71	4.71	4.71	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.64	4.64	4.64	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.75	4.75	4.75	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be releaxed to ± 10% if liquid compensation formula is applied to parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of

Certificate No: EX3-3947_Jul19 Page 5 of 10

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:3947 July 24, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3947

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	52.7	1.95	7.59	7.59	7.59	0.38	0.95	± 12.0 %
5200	49.0	5.30	4.72	4.72	4.72	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.55	4.55	4.55	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.95	3.95	3.95	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.50	1.90	± 13.1 %

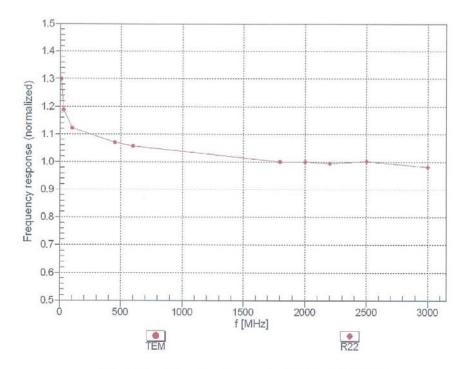
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (s and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-3947_Jul19

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.


Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

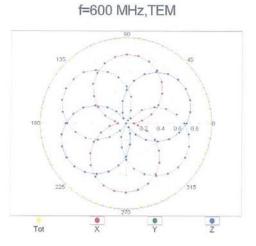
EX3DV4-SN:3947

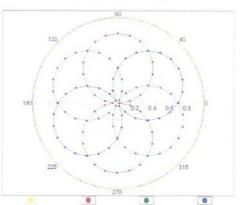
July 24, 2019

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

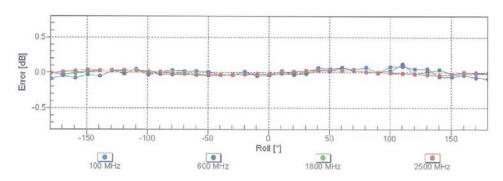
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3947_Jul19


Page 7 of 10



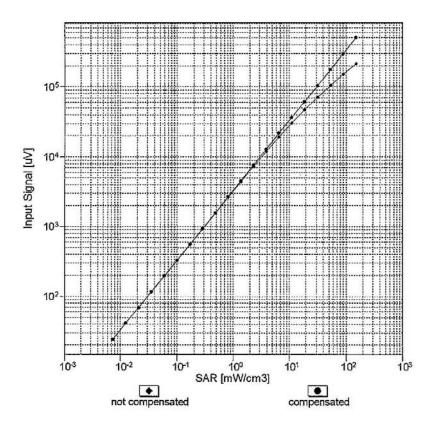
EX3DV4- SN:3947 July 24, 2019

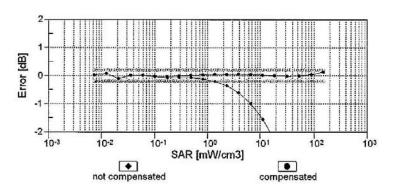

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3947_Jul19

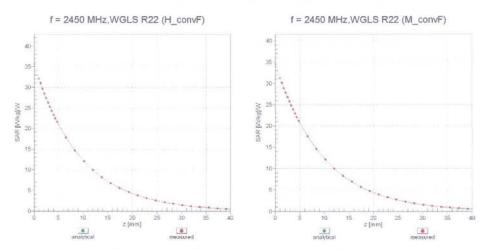

Page 8 of 10



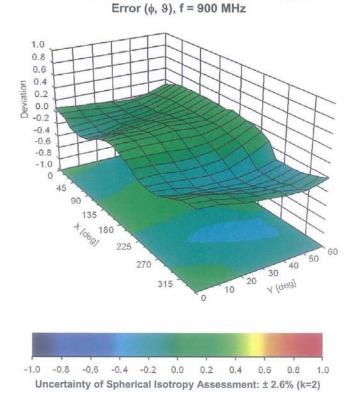
EX3DV4-SN:3947

July 24, 2019

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)



EX3DV4- SN:3947 July 24, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3947_Jul19 Page 10 of 10

APPENDIX D. CALIBRATION REPORT OF THE DIPOLE ANTENNA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

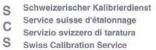
Client Nemko (Dymstec)

Certificate No: D2450V2-774_Apr20

Object	D2450V2 - SN:77	74	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	April 20, 2020		
		onal standards, which realize the physical un robability are given on the following pages ar	
			revised - Telepone Revise - Victoria (Victoria)
All calibrations have been conduct	led in the closed laborator	ry facility: environment temperature (22 ± 3)°(C and humidity < 70%.
Calibration Equipment used (M&TI	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
ower sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
ower sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
eference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
ype-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
DAE4			
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	ID # SN: GB39512475	Check Date (in house) 30-Oct-14 (in house check Feb-19)	
Secondary Standards Power meter E4419B	-		In house check: Oct-20
Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20 In house check: Oct-20
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: GB39512475 SN: US37292783	30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB39512475 SN: US37292783 SN: MY41092317	30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by:	SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	In house check: Oct-20

Certificate No: D2450V2-774_Apr20

Page 1 of 8



Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-774 Apr20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	141/2 0 HB

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0,2) °C	38.6 ± 6 %	- 1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

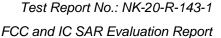
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	W
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	**
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		


SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-774_Apr20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 4.8 jΩ	
Return Loss	- 24.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.4 \Omega + 6.7 j\Omega$		
Return Loss	- 23.6 dB		

General Antenna Parameters and Design

The state of the s	
Electrical Delay (one direction)	1.152 ns
Electrical Delay (one direction)	1.152 f

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-774_Apr20

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 20.04.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:774

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.4 V/m; Power Drift = 0.08 dB

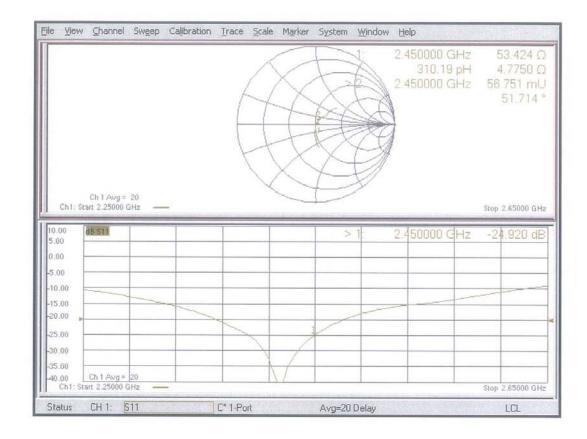
Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.7%

Maximum value of SAR (measured) = 21.4 W/kg


0 dB = 21.4 W/kg = 13.30 dBW/kg

Certificate No: D2450V2-774_Apr20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-774_Apr20

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 20.04.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:774

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.02, 8.02, 8.02) @ 2450 MHz; Calibrated: 31.12.2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.12.2019

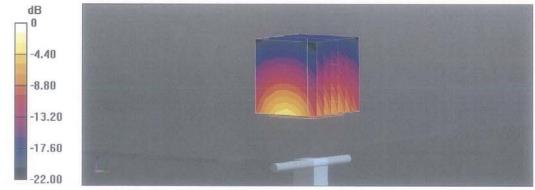
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.9 V/m; Power Drift = 0.02 dB

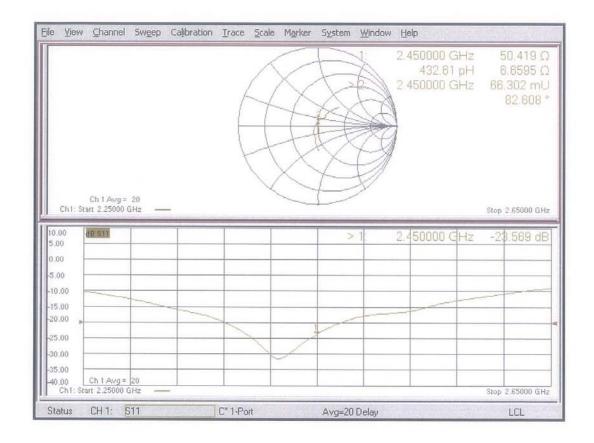

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6 W/kg

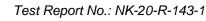
Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 53%

Maximum value of SAR (measured) = 20.6 W/kg



0 dB = 20.6 W/kg = 13.14 dBW/kg


Certificate No: D2450V2-774_Apr20 Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-774_Apr20 Page 8 of 8

FCC and IC SAR Evaluation Report

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client BV Korea (Dymstec)

Accreditation No.: SCS 0108

Certificate No: D2450V2-983_Mar19

CALIBRATION CERTIFICATE

Object D2450V2 - SN:983

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: March 22, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	Mor
			VS
Approved by:	Katja Pokovic	Technical Manager	el us

Issued: March 22, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-983_Mar19

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-983_Mar19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		(44)(4)

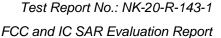
SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.


	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-983_Mar19 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.2 Ω + 1.4 jΩ	
Return Loss	- 25.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.2 jΩ	
Return Loss	- 27.5 dB	

General Antenna Parameters and Design

	4
Electrical Delay (one direction)	1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

- 100 No. 100	200000000000000000000000000000000000000
Manufactured by	SPEAG

Certificate No: D2450V2-983_Mar19

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

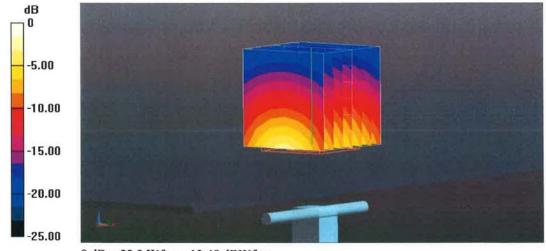
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:983

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

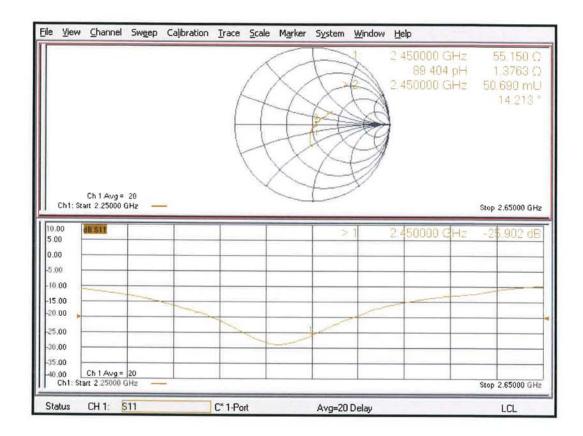

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.18 W/kgMaximum value of SAR (measured) = 22.3 W/kg



0 dB = 22.3 W/kg = 13.48 dBW/kg

Certificate No: D2450V2-983_Mar19 Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-983_Mar19

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:983

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ S/m}$; $\varepsilon_r = 51.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

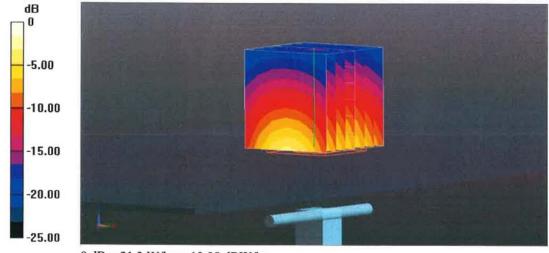
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.09, 8.09, 8.09) @ 2450 MHz; Calibrated: 31.12.2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018


Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

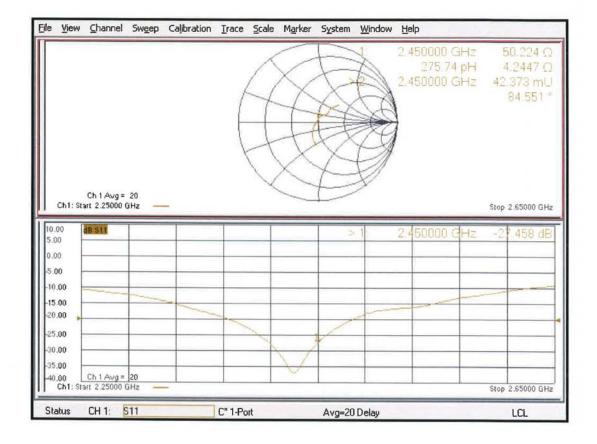
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 25.8 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg


Certificate No: D2450V2-983_Mar19

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-983_Mar19

Page 8 of 8