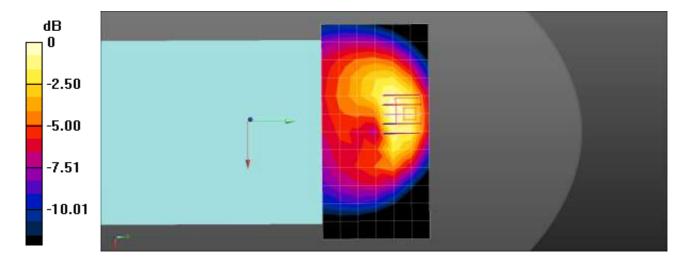


Appendix B. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	21.1 °C
Liquid Temperature:	21.0 °C
Test Date:	02/02/2024
Plot No.:	B1

Communication System: UID 0, GSM850 GPRS 4TX (0); Frequency: 836.6 MHz;Duty Cycle: 1:2.07491 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.939 S/m; ϵ_r = 40.977; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(9.17, 9.37, 9.66) @ 836.6 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

GSM850 4Tx Body Rear 190ch/Area Scan (13x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.811 W/kg

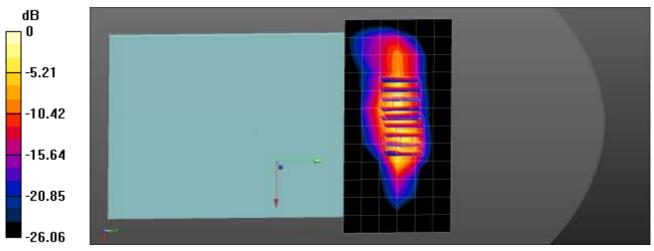
GSM850 4Tx Body Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.960 W/kg SAR(1 g) = 0.684 W/kg; SAR(10 g) = 0.450 W/kg Maximum value of SAR (measured) = 0.871 W/kg

 $^{0 \}text{ dB} = 0.871 \text{ W/kg} = -0.60 \text{ dBW/kg}$

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	21.3 °C
Liquid Temperature:	21.2 °C
Test Date:	02/03/2024
Plot No.:	B2

Communication System: UID 0, GSM1900 3TX (0); Frequency: 1850.2 MHz;Duty Cycle: 1:2.77013 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.391 S/m; ϵ_r = 39.151; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.94, 8.33, 8.49) @ 1850.2 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

GSM1900 3Tx Body Rear 512ch/Area Scan (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.686 W/kg GSM1900 3Tx Body Rear 512ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

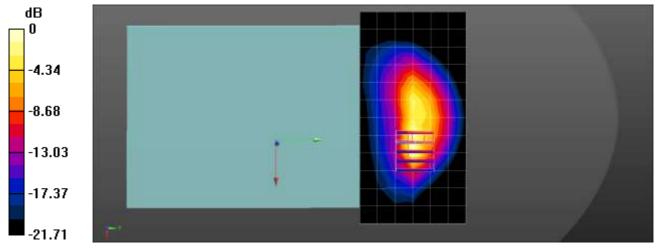
Reference Value = 5.869 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.393 W/kg; SAR(10 g) = 0.153 W/kg Maximum value of SAR (measured) = 0.877 W/kg GSM1900 3Tx Body Rear 512ch/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.869 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.51 W/kg SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.196 W/kg Maximum value of SAR (measured) = 1.05 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	22.0 °C
Liquid Temperature:	21.9 °C
Test Date:	01/25/2024
Plot No.:	B3

Communication System: UID 0, WCDMA850 (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.943 S/m; ϵ_r = 40.746; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7681; ConvF(9.17, 9.37, 9.66) @ 836.6 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 5 Body Rear 4183ch/Area Scan (13x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.73 W/kg

UMTS Band 5 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.898 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 2.25 W/kg SAR(1 g) = 0.714 W/kg; SAR(10 g) = 0.314 W/kg

Maximum value of SAR (measured) = 1.57 W/kg

0 dB = 1.57 W/kg = 1.96 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	21.8 °C
Liquid Temperature:	21.7 °C
Test Date:	01/24/2024
Plot No.:	B4

Communication System: UID 0, WCDMA IV (0); Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; σ = 1.337 S/m; ϵ_r = 41.288; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(8.29, 8.71, 8.9) @ 1732.4 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 4 Body Top 1412ch/Area Scan (6x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.810 W/kg

UMTS Band 4 Body Top 1412ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.95 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.644 W/kg; SAR(10 g) = 0.385 W/kg

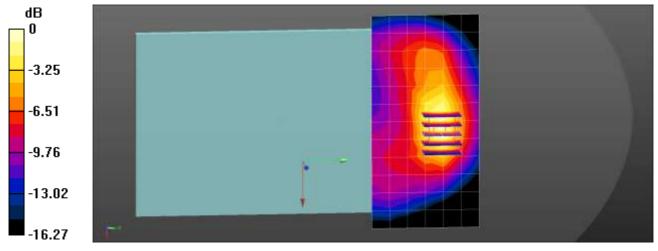
Maximum value of SAR (measured) = 0.893 W/kg

0 dB = 0.893 W/kg = -0.49 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	20.3 °C
Liquid Temperature:	20.2 °C
Test Date:	02/06/2024
Plot No.:	B5

Communication System: UID 0, WCDMA1900 (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.398 S/m; ϵ_r = 38.832; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7681; ConvF(7.94, 8.33, 8.49) @ 1880 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 2 Body Rear 9400ch/Area Scan (13x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.783 W/kg

UMTS Band 2 Body Rear 9400ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.480 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.354 W/kg

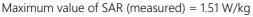
Maximum value of SAR (measured) = 0.881 W/kg

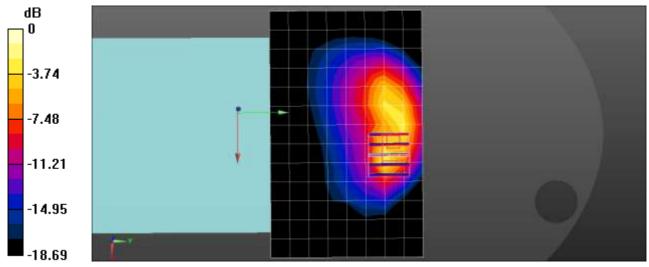
0 dB = 0.881 W/kg = -0.55 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	21.8 °C
Liquid Temperature:	21.7 °C
Test Date:	01/25/2024
Plot No.:	B6

Communication System: UID 0, LTE Band12 (0); Frequency: 707.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.865 S/m; ϵ_r = 43.747; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7309; ConvF(10.04, 9.23, 10.32) @ 707.5 MHz; Calibrated: 2023-06-19 ٠
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


LTE Band 12 Body Rear QPSK 10MHz 1RB 0offset 23095ch/Area Scan (14x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.880 W/kg

LTE Band 12 Body Rear QPSK 10MHz 1RB 0offset 23095ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.30 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 2.26 W/kg SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.349 W/kg

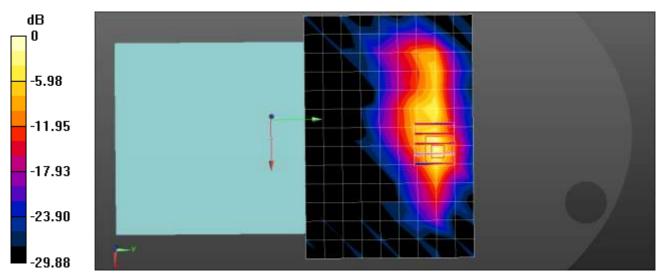
0 dB = 1.51 W/kg = 1.79 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	19.9 °C
Liquid Temperature:	19.8 °C
Test Date:	02/02/2024
Plot No.:	Β7

Communication System: UID 0, LTE Band 25 (0); Frequency: 1905 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1905 MHz; σ = 1.418 S/m; ϵ_r = 38.929; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7309; ConvF(8.19, 7.47, 8.43) @ 1905 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


LTE Band 25 Body Rear QPSK 20MHz 1RB 99offset 26590ch/Area Scan (14x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.40 W/kg

LTE Band 25 Body Rear QPSK 20MHz 1RB 99offset 26590ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.43 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.21 W/kg

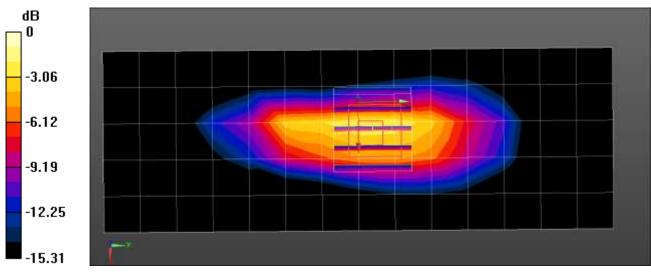
SAR(1 g) = 0.786 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 1.67 W/kg

0 dB = 1.67 W/kg = 2.23 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	19.7 °C
Liquid Temperature:	19.6 °C
Test Date:	01/29/2024
Plot No.:	B8

Communication System: UID 0, LTE Band 26 (0); Frequency: 831.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 831.5 MHz; σ = 0.899 S/m; ϵ_r = 40.735; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7309; ConvF(9.82, 8.7, 9.76) @ 831.5 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

LTE Band 26 Body Top QPSK 15MHz 75RB 0offset 26865ch/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.939 W/kg

LTE Band 26 Body Top QPSK 15MHz 75RB 0offset 26865ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 42.45 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 0.885 W/kg; SAR(10 g) = 0.461 W/kg Maximum value of SAR (measured) = 1.48 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

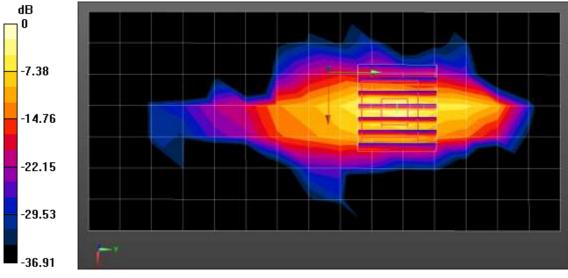
Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	21.7 °C
Liquid Temperature:	21.6 °C
Test Date:	01/24/2024
Plot No.:	B9

Communication System: UID 0, LTE Band 41 (FCC) (0); Frequency: 2549.5 MHz;Duty Cycle: 1:1.58052 Medium parameters used: f = 2550 MHz; σ = 1.928 S/m; ϵ_r = 39.327; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3968; ConvF(7.93, 7.2, 6.94) @ 2549.5 MHz; Calibrated: 2023-09-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn868; Calibrated: 2023-09-20
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 Bx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 41 Body Top QPSK 20MHz 50RB 0offset 40185ch/Area Scan (8x16x1): Measurement grid:


dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.888 W/kg

LTE Band 41 Body Top QPSK 20MHz 50RB 0offset 40185ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 0.546 W/kg; SAR(10 g) = 0.174 W/kg

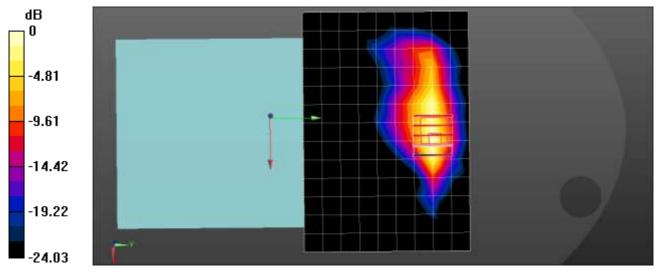
Maximum value of SAR (measured) = 1.44 W/kg

HCT CO., LTD
Tablet
20.3 °C
20.2 °C
01/30/2024
B10

Communication System: UID 0, LTE Band66 (0); Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1745 MHz; σ = 1.347 S/m; ϵ_r = 41.364; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7309; ConvF(8.36, 7.55, 8.61) @ 1745 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


LTE Band 66 Body Rear QPSK 20MHz 1RB 99offset 132322ch/Area Scan (14x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.23 W/kg

LTE Band 66 Body Rear QPSK 20MHz 1RB 99offset 132322ch/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.77 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.621 W/kg; SAR(10 g) = 0.284 W/kg

Maximum value of SAR (measured) = 1.24 W/kg

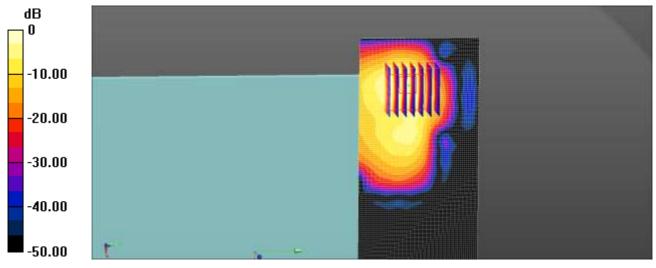
0 dB = 1.24 W/kg = 0.93 dBW/kg

F-TP22-03 (Rev. 05)

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	22.3 ℃
Liquid Temperature:	22.2 °C
Test Date:	01/23/2024
Plot No.:	B11

Communication System: UID 0, 2450MHz FCC (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.816 S/m; ϵ_r = 38.39; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7681; ConvF(7.46, 7.89, 8.02) @ 2412 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.13 (7474)

802.11b Body Rear 1Mbps 1ch/Area Scan (171x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.863 W/kg

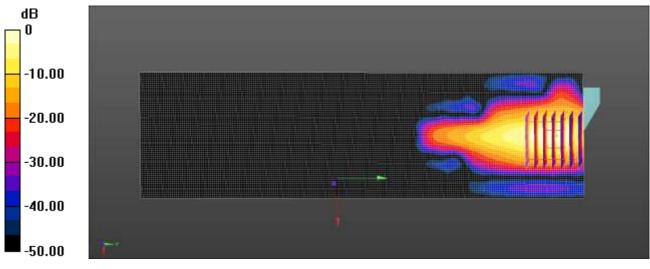
802.11b Body Rear 1Mbps 1ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.158 W/kg Maximum value of SAR (measured) = 0.769 W/kg

0 dB = 0.863 W/kg = -0.64 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	22.3 °C
Liquid Temperature:	22.2 ℃
Test Date:	01/23/2024
Plot No.:	B12


Communication System: UID 0, 2450MHz FCC (0); Frequency: 2442 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2442 MHz; σ = 1.851 S/m; ϵ_r = 38.264; ρ = 1000 kg/m³ Phantom section: Flat Section

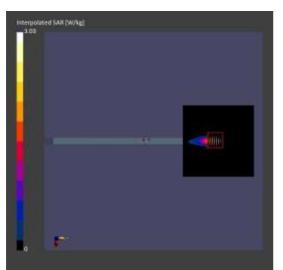
DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.46, 7.89, 8.02) @ 2442 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.13 (7474)

802.11n Body Left MCS8 6ch/Area Scan (61x211x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.27 W/kg

802.11n Body Left MCS8 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.169 W/kg Maximum value of SAR (measured) = 1.07 W/kg

⁰ dB = 1.27 W/kg = 1.02 dBW/kg

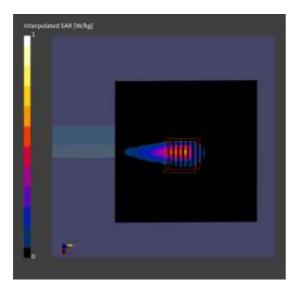


Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	20.2 °C
Liquid Temperature:	20.1 °C
Test Date:	02/14/2024
Plot No.:	B13

Measurement Report for Device, EDGE LEFT, U-NII-2C, U-NII-3, IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps), Channel 140 (5700.0 MHz)

Exposure Conditions

Exposure co	nancionis						
Phantom Section, TSL	Position, Test Distance [mm]	t Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE LEFT, 0.00	U-NII- 2C, U- NII-3	WLAN, 10062- CAD	5700.0, 140	4.88	5.27	36.3
Hardware Se	tup						
Phantom			Probe, C	alibration Date	D	AE, Calibration D	Date
ELI V4.0 (200	deg probe tilt)	- xxxx	,	- SN3768, 2023-0		AE4 Sn1750, 202	
(
Scans Setup							
			Are	ea Scan	Zoom	n Scan	
Grid Extents	[mm]		100).0 x 100.0	22.0 >	< 22.0 x 22.0	
Grid Steps [r	mm]		10.0	0 x 10.0	2.6 x	2.6 x 1.2	
Sensor Surfa	ace [mm]		3.0		1.4		
Measuremer	nt Results						
				Area Scan		Zoom Scan	
psSAR1g [W	/Kg]			0.459		0.466	
psSAR10g [V	V/Kg]			0.114		0.102	
Power Drift	[dB]			-0.18		-0.13	



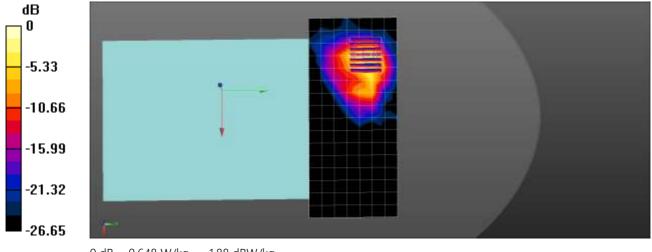
Test Laboratory:	HCT CO., LTD
EUT Type:	Tablet
Ambient Temperature:	22.7 °C
Liquid Temperature:	22.6 °C
Test Date:	02/15/2024
Plot No.:	B14

Measurement Report for Device, EDGE RIGHT, U-NII-3 Standalone, IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle), Channel 151 (5755.0 MHz)

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	EDGE RIGHT, 0.00	U-NII-3 Standalone	WLAN, 10599- AAC	5755.0, 151	4.88	5.31	35.9
Hardware Se	tup						
Phantom		Р	robe, Calibr	ation Date	DAE, (Calibration Date	
ELI V4.0 (200	deg probe tilt)	- xxxx E	x3DV4 - SN	3768, 2023-07-18	DAE4	Sn1750, 2023-09	1-19
Scans Setup							
			Area Sc	an	Zoom Sca	in	
Grid Extents	[mm]		100.0 x	100.0	22.0 x 22.	0 x 22.0	
Grid Steps [r	mm]		10.0 x 10	0.0	3.4 x 3.4 >	: 1.4	
Sensor Surfa	ace [mm]		3.0		1.4		
Measuremer	nt Results						
			Ar	ea Scan	Zoo	m Scan	
psSAR1g [W,	/Kg]		0.3	381	0.41	5	
psSAR10g [V	V/Kg]		0.2	101	0.09	7	
Power Drift			-0	.18	0.17		

HCT CO., LTD
Tablet
21.0 °C
20.9 °C
02/08/2024
B15

Communication System: UID 10670 - AAA, Bluetooth Low Energy; Frequency: 2440 MHz;Duty Cycle: 1:1.65653 Medium parameters used: f = 2440 MHz; σ = 1.832 S/m; ϵ_r = 37.657; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.46, 7.89, 8.02) @ 2440 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bluetooth Body Rear LE 125K 255 19ch/Area Scan (17x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.493 W/kg

Bluetooth Body Rear LE 125K 255 19ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.924 W/kg SAR(1 g) = 0.312 W/kg; SAR(10 g) = 0.118 W/kg Maximum value of SAR (measured) = 0.648 W/kg

0 dB = 0.648 W/kg = -1.88 dBW/kg

Appendix C. – Dipole Verification Plots

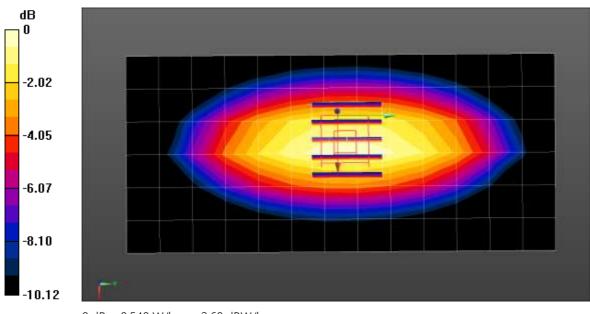
■ Verification Data (750 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.7 °C
Test Date:	01/25/2024

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1014

Communication System: UID 0, CW (0); Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.911 S/m; ϵ_r = 43.132; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7309; ConvF(10.04, 9.23, 10.32) @ 750 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

750MHz Head Verification/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.517 W/kg

750MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.15 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.279 W/kg Maximum value of SAR (measured) = 0.540 W/kg

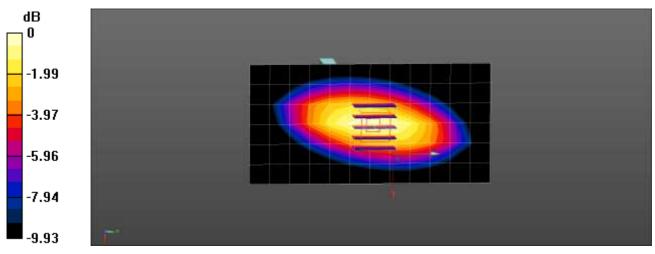
0 dB = 0.540 W/kg = -2.68 dBW/kg

■ Verification Data (835 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.0 °C
Test Date:	02/02/2024

DUT: D835V2 - SN4d165; Type: D835V2; Serial: SN4d165

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.937 S/m; ϵ_r = 40.98; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(9.17, 9.37, 9.66) @ 835 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835MHz Head Verification/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.636 W/kg

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.82 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.684 W/kg SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.337 W/kg

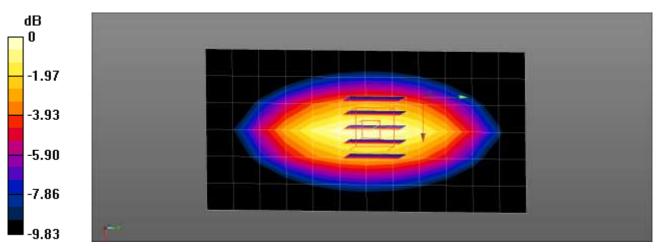
Maximum value of SAR (measured) = 0.641 W/kg

0 dB = 0.641 W/kg = -1.93 dBW/kg

■ Verification Data (835 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.9 °C
Test Date:	01/25/2024

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d165


Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.941 S/m; ϵ_r = 40.749; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(9.17, 9.37, 9.66) @ 835 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835MHz Head Verification/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.590 W/kg

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.41 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.629 W/kg SAR(1 g) = 0.468 W/kg; SAR(10 g) = 0.315 W/kg Maximum value of SAR (measured) = 0.589 W/kg

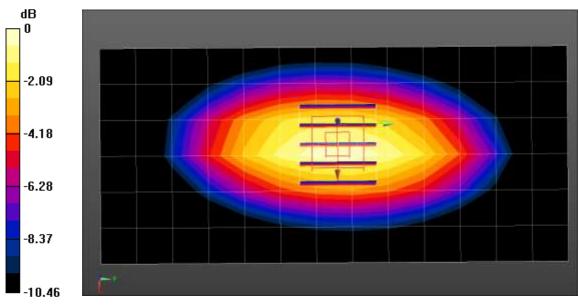
■ Verification Data (835 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.6 °C
Test Date:	01/29/2024

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d165

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.935 S/m; ϵ_r = 40.693; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7309; ConvF(9.82, 8.7, 9.76) @ 835 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

835MHz Head Verification/Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.635 W/kg

835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.09 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.749 W/kg

SAR(1 g) = 0.504 W/kg; SAR(10 g) = 0.335 W/kg Maximum value of SAR (measured) = 0.669 W/kg

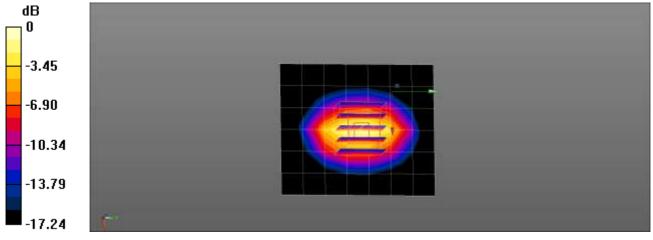
0 dB = 0.669 W/kg = -1.75 dBW/kg

■ Verification Data (1 800 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.7 °C
Test Date:	01/24/2024

DUT: D1800V2 - SN2d015; Type: D1800V2; Serial: SN2d015

Communication System: UID 0, CW (0); Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.408 S/m; ϵ_r = 40.987; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(8.29, 8.71, 8.9) @ 1800 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1800MHz Head Verification/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.73 W/kg

1800MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.55 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.40 W/kg SAR(1 g) = 1.92 W/kg; SAR(10 g) = 1.02 W/kg Maximum value of SAR (measured) = 2.92 W/kg

Maximum value of SAR (measured) = 2.92 W/kg

0 dB = 2.92 W/kg = 4.65 dBW/kg

■ Verification Data (1 800 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	20.2 °C
Test Date:	01/30/2024

DUT: D1800V2 - SN2d015; Type: D1800V2; Serial: SN2d015

Communication System: UID 0, CW (0); Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.406 S/m; ϵ_r = 41.115; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7309; ConvF(8.36, 7.55, 8.61) @ 1800 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

1800MHz Head Verification/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.78 W/kg

1800MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 46.36 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 1.99 W/kg; SAR(10 g) = 1.05 W/kg

Maximum value of SAR (measured) = 2.98 W/kg

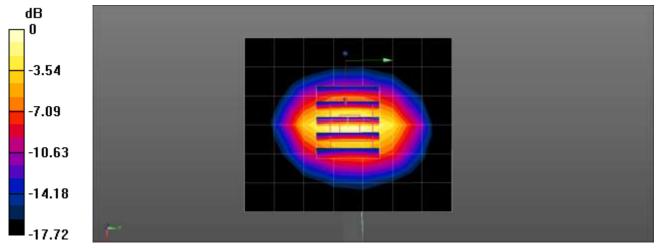
0 dB = 2.98 W/kg = 4.74 dBW/kg

■ Verification Data (1 900 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.2 °C
Test Date:	02/03/2024

DUT: D1900V2 - SN5d032; Type: D1900V2; Serial: SN5d032


Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.436 S/m; ϵ_r = 38.93; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.94, 8.33, 8.49) @ 1900 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900MHz Head Verification/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.95 W/kg

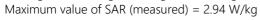
1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.47 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.08 W/kg

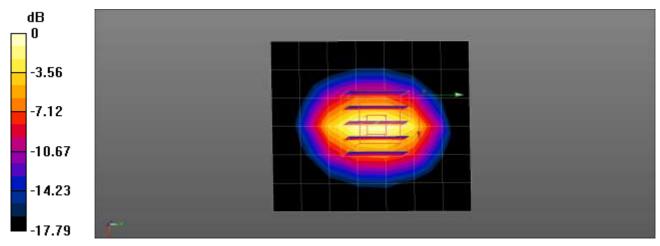
0 dB = 3.13 W/kg = 4.96 dBW/kg

■ Verification Data (1 900 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	20.2 °C
Test Date:	02/06/2024

DUT: D1900V2 - SN5d032; Type: D1900V2; Serial: SN5d032


Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.416 S/m; ϵ_r = 38.735; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.94, 8.33, 8.49) @ 1900 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900MHz Head Verification/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.82 W/kg

1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.26 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 1.93 W/kg; SAR(10 g) = 1.02 W/kg

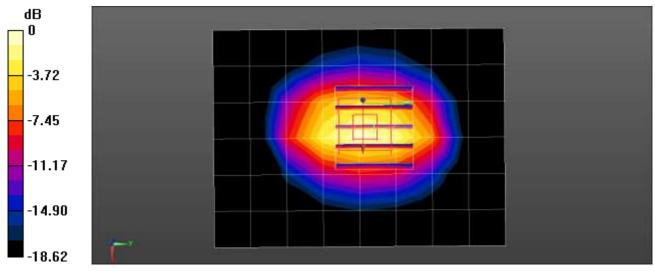
0 dB = 2.94 W/kg = 4.68 dBW/kg

■ Verification Data (1 900 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.8 °C
Test Date:	02/02/2024

DUT: D1900V2 - SN5d032; Type: D1900V2; Serial: SN5d032

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.413 S/m; ϵ_r = 38.952; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7309; ConvF(8.19, 7.47, 8.43) @ 1900 MHz; Calibrated: 2023-06-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1464; Calibrated: 2023-06-16
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

1900MHz Head Verification/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.69 W/kg

1900MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.61 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2 W/kg; SAR(10 g) = 1.05 W/kg

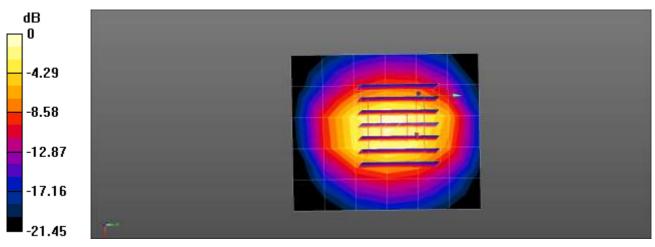
Maximum value of SAR (measured) = 3.00 W/kg

0 dB = 3.00 W/kg = 4.77 dBW/kg

■ Verification Data (2 450 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	22.2 °C
Test Date:	01/23/2024

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:1049


Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 38.233; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7681; ConvF(7.46, 7.89, 8.02) @ 2450 MHz; Calibrated: 2023-11-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2023-04-25
- Phantom: ELI v5.0_2014_03_05; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450MHz Head Verification/Area Scan (6x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.78 W/kg

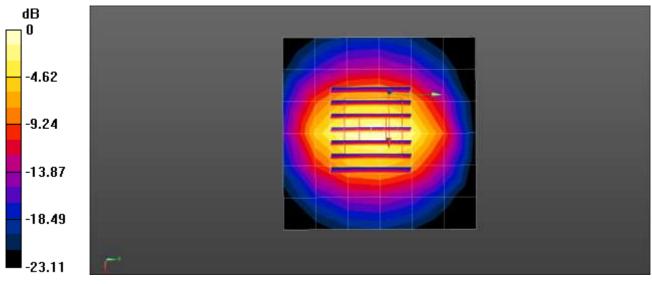
2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.92 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 5.52 W/kg SAR(1 g) = 2.78 W/kg; SAR(10 g) = 1.31 W/kg Maximum value of SAR (measured) = 4.55 W/kg

0 dB = 4.55 W/kg = 6.58 dBW/kg

■ Verification Data (2 450 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	18.9 °C
Test Date:	01/31/2024

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:1049


Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.843 S/m; ϵ_r = 37.621; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3968; ConvF(7.98, 7.3, 7.04) @ 2450 MHz; Calibrated: 2023-09-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn868; Calibrated: 2023-09-20
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 Bx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 4.31 W/kg

2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.38 W/kg SAR(1 g) = 2.61 W/kg; SAR(10 g) = 1.2 W/kg Maximum value of SAR (measured) = 4.38 W/kg

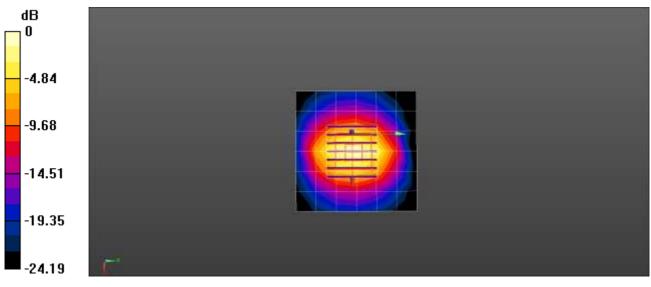
0 dB = 4.38 W/kg = 6.41 dBW/kg

■ Verification Data (2 600 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	21.6 °C
Test Date:	01/24/2024

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2; Serial: D2600V2 - SN:1106

Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.976 S/m; ϵ_r = 39.095; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

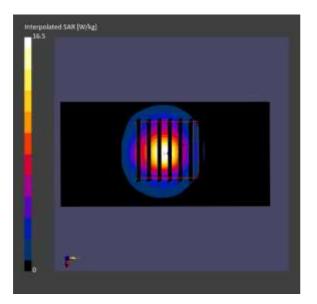
- Probe: EX3DV4 SN3968; ConvF(7.93, 7.2, 6.94) @ 2600 MHz; Calibrated: 9/27/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn868; Calibrated: 9/20/2023
- Phantom: ELI V4.0 (20deg probe tilt); Type: QD OVA 001 Bx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 4.60 W/kg

2600MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.10 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.81 W/kg

SAR(1 g) = 2.71 W/kg; SAR(10 g) = 1.19 W/kg Maximum value of SAR (measured) = 4.67 W/kg

0 dB = 4.67 W/kg = 6.69 dBW/kg

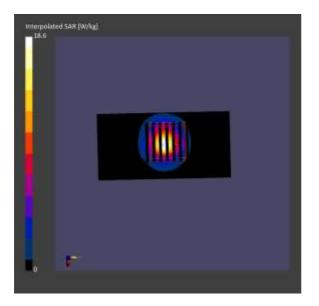


■ Verification Data (5 250 MHz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.7 °C
Test Date:	02/13/2024
Measurement Report fo	r Device, , , CW, Channel 0 (5250.0 MHz)

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	1		CW, 0	5250.0, 0	5.37	4.72	37.0
Hardware Se	tup						
Phantom			Pro	be, Calibration Da	ate	DAE, Calibratio	on Date
ELI V4.0 (20	deg probe tilt)	- xxxx	EX3	3DV4 - SN3768, 2	023-07-18	DAE4 Sn1750,	2023-09-19
Scans Setup							
			,	Area Scan	Zoom Sca	an	
Grid Extents	[mm]		4	40.0 x 80.0	22.0 x 22.	0 x 22.0	
Grid Steps [mm]			10.0 x 10.0	4.0 x 4.0 x	< 1.4	
Sensor Surfa	ace [mm]		3	3.0	1.4		
Measuremer	nt Results						
			A	Area Scan	Zoom S	can	
psSAR1g [W	/Kg]		3	.75	4.02		
psSAR10g [V	V/Kg]		1	.05	1.11		
Power Drift	[dB]		0	0.02	0.01		



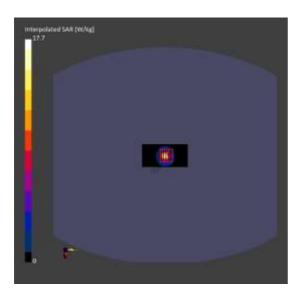
■ Verification Data (5 600 MHz Head)

Test Laboratory:	HCT CO., LTD				
Input Power	0.05 W				
Liquid Temp:	20.1 °C				
Test Date:	02/14/2024				
Measurement Report for Device, , , CW, Channel 0 (5600.0 MHz)					

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	1		CW, 0	5600.0, 0	4.81	5.04	36.4
Hardware Se	tup						
Phantom			Prob	e, Calibration Dat	e	DAE, Calibration	Date
ELI V4.0 (200	deg probe tilt)	- xxxx	EX3D	DV4 - SN3768, 20	23-07-18	DAE4 Sn1750, 20	023-09-19
Scans Setup				Area Scan	Zoom So		
Grid Extents	[mm]			40.0 x 80.0	22.0 x 22	2.0 x 22.0	
Grid Steps [r	mm]			10.0 x 10.0	4.0 x 4.0	x 1.4	
Sensor Surfa	ace [mm]			3.0	1.4		
Measuremer	nt Results						
			A	Area Scan	Zoom So	can	
psSAR1g [W	/Kg]		3	.83	4.18		
psSAR10g [V	V/Kg]		1	.07	1.15		
Power Drift	[dB]		C	0.01	-0.00		

The report shall not be (partly) reproduced except in full without approval of the laboratory.



■ Verification Data (5 750 MHz Head)

Test Laboratory:	HCT CO., LTD				
Input Power	0.05 W				
Liquid Temp:	22.6 ℃				
Test Date:	02/15/2024				
Measurement Report for Device, , , CW, Channel 0 (5750.0 MHz)					

Exposure Conditions

Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
1		CW, 0	5750.0, 0	4.88	5.31	35.9
tup						
		Prot	pe, Calibration Da	te	DAE, Calibration	n Date
deg probe tilt)	- xxxx	EX3	DV4 - SN3768, 20	23-07-18	DAE4 Sn1750, 2	023-09-19
			Area Scan	Zoom So	an	
[mm]			40.0 x 80.0	22.0 x 22	2.0 x 22.0	
nm]			10.0 x 10.0	4.0 x 4.0	x 1.4	
ice [mm]			3.0	1.4		
t Results						
		A	Area Scan	Zoom So	can	
/Kg]		3	3.61	3.88		
V/Kg]		C).988	1.07		
[dB]		C	0.01	0.02		
	Distance [mm] , tup deg probe tilt) [mm] mm] ace [mm] ace [mm] at Results /Kg]	[mm] , tup deg probe tilt) - xxxx [mm] mm] ice [mm] ice [mm] it Results /Kg] V/Kg]	Distance Band Group, [mm] CW, 0 tup Prob deg probe tilt) - xxxx EX3 [mm] EX3 mm] EX3 free [mm] Ex3 fr	Distance Band Group, [mm] [MHz], Channel Number , CW, 0 5750.0, 0 tup Probe, Calibration Da deg probe tilt) - xxxx EX3DV4 - SN3768, 20 Area Scan [mm] 40.0 x 80.0 10.0 x 10.0 ace [mm] 3.0 Area Scan (Kg] 3.61 V/Kg] 0.988	Distance Band Group, [MHz], Channel Factor [mm] CW, 0 5750.0, 0 4.88 tup Probe, Calibration Date deg probe tilt) - xxxx EX3DV4 - SN3768, 2023-07-18 Area Scan Zoom Sc [mm] 40.0 x 80.0 22.0 x 22 mm] 10.0 x 10.0 4.0 x 4.0 ace [mm] 3.0 1.4 t Results Area Scan Zoom Sc [MHz] Area Scan Zoom Sc [MHz] Channel Factor	DistanceBandGroup, UID[MHz], Channel NumberConversion FactorConductivity [S/m](mm]CW, 05750.0, 04.885.31tupProbe, Calibration DateDAE, Calibration DAE, Calibration DAE4 Sn1750, 2deg probe tilt) - xxxxEX3DV4 - SN3768, 2023-07-18DAE4 Sn1750, 2Area ScanZoom Scan[mm]40.0 x 80.022.0 x 22.0 x 22.0 x 22.0mm]10.0 x 10.04.0 x 4.0 x 1.4ace [mm]3.01.4Area ScanZoom Scant ResultsArea ScanZoom Scan/Kg]3.613.88/Kg]0.9881.07

Appendix D. – SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Ingredients	Frequency (\\track{Wz})										
(% by weight)	750		835		1 900		2 450 – 2 700		3500 - 5 800		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	41.1	51.7	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66	
Salt (NaCl)	1.4	0.9	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0	
Sugar	57.0	47.2	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0	
HEC	0.2	0	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0	
Bactericide	0.2	0.1	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67	
DGBE	0.0	0.0	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0	
Diethylene glycol hexyl ether	-	-	-	-	-	-	-	-	-	-	

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose				
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose				
DGBE:	99 % Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy) ethanol]						
Triton X-100(ultra-pure):	Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl) phenyl] ether						

Composition of the Tissue Equivalent Matter

Appendix E. – SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue - equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR			Probe				Dielectric I	Parameters	CW Validation			Modula	Modulation Validation		
System No.	Probe	Probe Type	Calib	pration pint	Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR	
9	7309	EX3DV4	Head	750	1014	2023-07-29	41.7	0.90	PASS	PASS	PASS	N/A	N/A	N/A	
17	7681	EX3DV4	Head	835	4d165	2023-12-22	41.5	0.89	PASS	PASS	PASS	GMSK	PASS	N/A	
17	7681	EX3DV4	Head	835	4d165	2023-12-22	41.6	0.91	PASS	PASS	PASS	N/A	N/A	N/A	
9	7309	EX3DV4	Head	835	4d165	2023-07-29	41.6	0.91	PASS	PASS	PASS	N/A	N/A	N/A	
17	7681	EX3DV4	Head	1750	2d015	2023-12-22	40.1	1.41	PASS	PASS	PASS	N/A	N/A	N/A	
9	7309	EX3DV4	Head	1750	2d015	2023-07-29	40.1	1.41	PASS	PASS	PASS	N/A	N/A	N/A	
17	7681	EX3DV4	Head	1900	5d032	2023-12-22	40.1	1.41	PASS	PASS	PASS	GMSK	PASS	N/A	
17	7681	EX3DV4	Head	1900	5d032	2023-12-22	40.1	1.41	PASS	PASS	PASS	N/A	N/A	N/A	
9	7309	EX3DV4	Head	1900	5d032	2024-02-23	40.1	1.41	PASS	PASS	PASS	N/A	N/A	N/A	
17	7681	EX3DV4	Head	2450	1049	2023-12-22	39.3	1.84	PASS	PASS	PASS	OFDM	N/A	PASS	
4	3968	EX3DV4	Head	2600	1106	2023-10-20	40.2	1.41	PASS	PASS	PASS	TDD	PASS	N/A	
22	3768	EX3DV4	Head	5250	1317	2023-08-30	35.7	4.66	PASS	PASS	PASS	OFDM	N/A	PASS	
22	3768	EX3DV4	Head	5600	1317	2023-08-30	35.5	5.01	PASS	PASS	PASS	OFDM	N/A	PASS	
22	3768	EX3DV4	Head	5750	1317	2023-08-30	35.4	5.17	PASS	PASS	PASS	OFDM	N/A	PASS	

SAR System Validation Summary 1g

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.