

## FCC 47 CFR § 2.1093 IEEE Std 1528-2013

## SAR EVALUATION REPORT

FOR

DTS/UNII a/b/g/n/ac Tablet + BT/BLE and ANT+

MODEL NUMBER: SM-P610

FCC ID: A3LSMP610

REPORT NUMBER: 4789354110-S1V2

**ISSUE DATE: 3/23/2020** 

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433



**Testing Laboratory** 

TL-637

### **Revision History**

| Rev. | Date      | Revisions                                 | Revised By    |
|------|-----------|-------------------------------------------|---------------|
| V1   | 3/18/2020 | Initial Issue                             | -             |
| V2   | 3/23/2020 | Revised Sec.6.3 & 6.4<br>Revised Sec.12.1 | JeongYeon Won |
|      |           |                                           |               |

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 2 of 47

### **Table of Contents**

| 1. At | testation of Test Results                                          | 5  |
|-------|--------------------------------------------------------------------|----|
| 1.1.  | The Highest Reported SAR for RF exposure conditions for each bands | 6  |
| 2. Te | st Specification, Methods and Procedures                           | 7  |
| 3. Fa | cilities and Accreditation                                         | 7  |
| 4. SA | AR Measurement System & Test Equipment                             | 8  |
| 4.1.  | SAR Measurement System                                             | 8  |
| 4.2.  | SAR Scan Procedures                                                | 9  |
| 4.3.  | Test Equipment                                                     | 11 |
| 5. Me | easurement Uncertainty                                             | 11 |
| 5.1   | DECISION RULE                                                      | 12 |
| 6. De | vice Under Test (DUT) Information                                  | 12 |
|       | DUT Description                                                    |    |
| 6.2.  | Wireless Technologies                                              | 13 |
| 6.3.  | Nominal and Maximum Output Power                                   | 14 |
| 6.4.  | Proximity sensor feature                                           | 16 |
| 6.    | 4.1 Proximity Sensor Triggering Distance (KDB 616217 §6.2)         | 17 |
| 6.    | 4.2 Proximity Sensor Coverage (KDB 616217 §6.3)                    | 22 |
| 6.    | 4.3 Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)       | 22 |
| 6.    | 4.4 Resulting test positions for SAR measurements                  | 23 |
| 7. RF | Exposure Conditions (Test Configurations)                          | 24 |
| 7.1   | Standalone SAR Test Exclusion Considerations                       | 24 |
| 7.2   | Required Test Configurations                                       | 26 |
| 8     | Dielectric Property Measurements & System Check                    | 27 |
| 8.1   | Dielectric Property Measurements                                   | 27 |
| 8.2   | System Check                                                       | 30 |
| 9     | Conducted Output Power Measurements                                | 32 |
| 9.1   | Wi-Fi 2.4GHz (DTS Band)                                            | 32 |
| 9.2   | Wi-Fi 5GHz (U-NII Bands)                                           | 33 |
| 9.3   | Bluetooth                                                          | 36 |
| 10 N  | leasured and Reported (Scaled) SAR Results                         | 37 |
| 10.1  | Wi-Fi (DTS Band)                                                   | 38 |
| 10.2  | P Bluetooth                                                        | 38 |
| 10.3  | 3 Wi-Fi (U-NII Band)                                               | 39 |

Page 3 of 47

| 11  | SAR Measurement Variability                                | 42 |
|-----|------------------------------------------------------------|----|
| 12  | Simultaneous Transmission SAR Analysis                     |    |
|     | Sum of the SAR for Wi-Fi & BT                              |    |
|     | 9354110-S1V2 FCC Report SAR_App A_Photos & Ant. Locations  |    |
| 478 | 9354110-S1V2 FCC Report SAR_App B_Highest SAR Test Plots   | 47 |
| 478 | 9354110-S1V2 FCC Report SAR_App C_System Check Plots       | 47 |
| 478 | 9354110-S1V2 FCC Report SAR_App D_SAR Tissue Ingredients   | 47 |
| 478 | 9354110-S1V2 FCC Report SAR_App E_Probe Cal. Certificates  | 47 |
| 478 | 9354110-S1V2 FCC Report SAR_App F_Dipole Cal. Certificates | 47 |

Page 4 of 47

# 1. Attestation of Test Results

| Applicant Name                                | SAMSUNG ELECTRONIC       |                              |         |  |  |
|-----------------------------------------------|--------------------------|------------------------------|---------|--|--|
| ••                                            |                          | SAMSUNG ELECTRONICS CO.,LTD. |         |  |  |
| FCC ID                                        | A3LSMP610                |                              |         |  |  |
| Model Name                                    | SM-P610                  |                              |         |  |  |
| Applicable Standards                          | FCC 47 CFR § 2.1093      |                              |         |  |  |
|                                               | Published RF exposure KI | OB procedures                |         |  |  |
|                                               | IEEE Std 1528-2013       |                              |         |  |  |
| SAR Limits (W/Kg)                             | ·                        |                              |         |  |  |
| Exposure Category                             | Pea                      | k spatial-average(1g of tis  | sue)    |  |  |
| General population /<br>Uncontrolled exposure |                          | 1.6                          |         |  |  |
|                                               | The Highest Reported     | SAR (W/kg)                   |         |  |  |
| Equipment Class                               |                          |                              |         |  |  |
| RF Exposure Conditions                        | DTS                      | U-NII                        | DSS(BT) |  |  |
| Standalone                                    | 0.91                     | 0.58                         | 0.32    |  |  |
| Simultaneous TX                               | 1.48                     | 1.48 0.98 0.80               |         |  |  |
| Date Tested                                   | 3/4/2020 to 3/11/2020    | 3/4/2020 to 3/11/2020        |         |  |  |
| Test Results                                  | Pass                     |                              |         |  |  |

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

| Approved & Released By:         | Prepared By:                    |
|---------------------------------|---------------------------------|
| The                             | 76.80                           |
| Justin Park                     | JeongYeon Won                   |
| Operations Leader               | Laboratory Technician           |
| UL Korea, Ltd. Suwon Laboratory | UL Korea, Ltd. Suwon Laboratory |

# 1.1. The Highest Reported SAR for RF exposure conditions for each bands

|           |             | The Highest Reported SAR (W/kg) 1g of tissue |  |
|-----------|-------------|----------------------------------------------|--|
| Equipment | Band        |                                              |  |
| Class     | Ballu       | Standalone<br>Exposure                       |  |
|           |             | condition                                    |  |
| DTS       | 2.4GHz WLAN | 0.911                                        |  |
| UNII      | 5GHz WLAN   | 0.579                                        |  |
| DSS       | Bluetooth   | 0.320                                        |  |

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

# 2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- 616217 D04 SAR for laptop and tablets v01r02
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02

In addition to the above, the following information was used:

- o TCB workshop October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> April, 2019 Page 19, RF Exposure Procedures (Tissue Simulating Liquids (TSL))

Additional Guidance: KDB inquiry

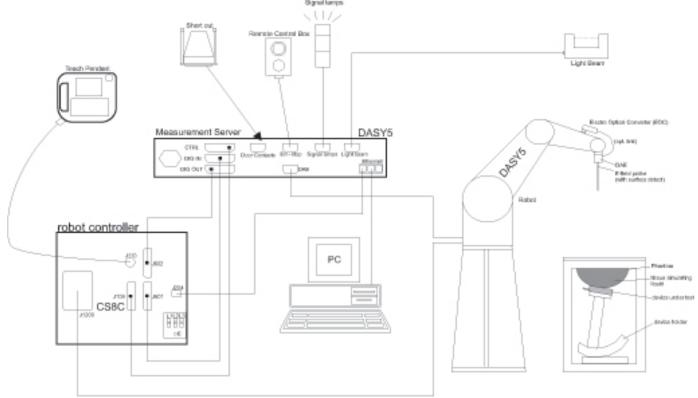
 Additional SAR test of corner side – KDB guidance to identify that SAR test when sensor and antenna is located near corner side.

# 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

| Suwon      |
|------------|
| SAR 3 Room |
| SAR 4 Room |
| SAR 5 Room |

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.


The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

Page 7 of 47

# 4. SAR Measurement System & Test Equipment

## 4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 8 of 47

## 4.2. SAR Scan Procedures

#### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

#### Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                           | $\leq$ 3 GHz                                                                                                                                                     | > 3 GHz                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                             | $^{1/2}\cdot\delta\cdot\ln(2)\pm0.5~mm$                                                                               |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location                 | $30^{\circ} \pm 1^{\circ}$                                                                                                                                       | $20^\circ\pm1^\circ$                                                                                                  |
|                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 - 3 GHz: $\leq$ 12 mm                                                                                                            | $\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$ |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension o<br>measurement plane orientation<br>the measurement resolution r<br>x or y dimension of the test of<br>measurement point on the test | on, is smaller than the above,<br>must be $\leq$ the corresponding<br>levice with at least one                        |

Page 9 of 47

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

|                                                                             |                                                                                                                                                                                                                                                     |                                                                             | $\leq$ 3 GHz                                                                    | > 3 GHz                                                                                                           |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |                                                                                                                                                                                                                                                     | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$ | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$ |                                                                                                                   |
|                                                                             | uniform grid: $\Delta z_{Zoom}(n)$                                                                                                                                                                                                                  |                                                                             | $\leq 5 \text{ mm}$                                                             | $3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$ |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface    | $\begin{array}{c} \Delta z_{Zoom}(1): \text{ between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \end{array}$ $\begin{array}{c} \Delta z_{Zoom}(n > 1): \\ \text{between subsequent} \\ \text{points} \end{array}$ | 1st two points closest                                                      | $\leq$ 4 mm                                                                     | $3 - 4$ GHz: $\leq 3$ mm<br>$4 - 5$ GHz: $\leq 2.5$ mm<br>$5 - 6$ GHz: $\leq 2$ mm                                |
|                                                                             |                                                                                                                                                                                                                                                     | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                                       |                                                                                 |                                                                                                                   |
| Minimum zoom scan<br>volume                                                 | x, y, z                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                       | $\geq$ 30 mm                                                                    | $3 - 4$ GHz: $\geq 28$ mm<br>$4 - 5$ GHz: $\geq 25$ mm<br>$5 - 6$ GHz: $\geq 22$ mm                               |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

<sup>\*</sup> When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is  $\leq 1.4 \text{ W/kg}$ ,  $\leq 8 \text{ mm}$ ,  $\leq 7 \text{ mm}$  and  $\leq 5 \text{ mm}$  zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

#### Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 10 of 47

## 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

|--|

| Name of Equipment                   | Manufacturer | Type/Model            | Serial No.    | Cal. Due Date |
|-------------------------------------|--------------|-----------------------|---------------|---------------|
| Netw ork Analyzer                   | Agilent      | E5071C                | MY 46522054   | 8-7-2020      |
| Dielectric Assessment Kit           | SPEAG        | DAK-3.5               | 1196          | 6-18-2020     |
| Shorting block                      | SPEAG        | DAK-3.5 Short         | SM DAK 200 BA | N/A           |
| Thermometer                         | LKM          | DTM3000               | 3424          | 8-9-2020      |
| <u>System Check</u>                 | ·            |                       |               |               |
| Name of Equipment                   | Manufacturer | Type/Model            | Serial No.    | Cal. Due Date |
| MXG Analog Signal Generator         | Agilent      | N5181A                | MY 50145882   | 8-6-2020      |
| Pow er Sensor                       | Agilent      | U2000A                | MY 54260010   | 8-9-2020      |
| Pow er Sensor                       | Agilent      | U2000A                | MY 54260007   | 8-9-2020      |
| Pow er Amplifier                    | EXODUS       | 1410025-AMP2027-10003 | 10003         | 8-8-2020      |
| Directional Coupler                 | Agilent      | 778D                  | MY 52180432   | 8-7-2020      |
| Low Pass Filter                     | FILTRON      | L14012FL              | 1410003S      | 8-7-2020      |
| Low Pass Filter                     | MICROLAB     | LA-60N                | 03942         | 8-7-2020      |
| Attenuator                          | Agilent      | 8491B/003             | MY 39269292   | 8-7-2020      |
| Attenuator                          | Agilent      | 8491B/010             | MY 39269315   | 8-7-2020      |
| Attenuator                          | Agilent      | 8491B/020             | MY 39269298   | 8-7-2020      |
| E-Field Probe (SAR3)                | SPEAG        | EX3DV4                | 7314          | 8-29-2020     |
| E-Field Probe (SAR4)                | SPEAG        | EX3DV4                | 7545          | 9-23-2020     |
| E-Field Probe (SAR5)                | SPEAG        | EX3DV4                | 3871          | 8-29-2020     |
| Data Acquisition Electronics (SAR3) | SPEAG        | DAE4                  | 1468          | 9-20-2020     |
| Data Acquisition Electronics (SAR4) | SPEAG        | DAE4                  | 1591          | 9-11-2020     |
| Data Acquisition Electronics (SAR5) | SPEAG        | DAE4                  | 1343          | 8-27-2020     |
| System Validation Dipole            | SPEAG        | D2450V2               | 960           | 3-20-2020     |
| System Validation Dipole            | SPEAG        | D2450V2               | 939           | 7-25-2021     |
| System Validation Dipole            | SPEAG        | D5GHzV2               | 1184          | 8-20-2020     |
| Thermometer (SAR3)                  | Lutron       | MHB-382SD             | AH.50213      | 8-8-2020      |
| Thermometer (SAR4),(SAR5)           | Lutron       | MHB-382SD             | AJ.45903      | 5-17-2020     |
| Others                              |              |                       |               |               |
| Name of Equipment                   | Manufacturer | Type/Model            | Serial No.    | Cal. Due Date |
| Wireless Connectivity Tester        | R&S          | CMW270                | 100982        | 8-5-2020      |
|                                     |              |                       |               |               |

#### Note(s):

Bluetooth Tester

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations D2450(SN : 960), D5GHz(SN : 1184))

TESCOM

# 5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

TC-3000C

3000C000546

8-7-2020

Page 11 of 47

# **5.1 DECISION RULE**

Decision rule for statement(s) of conformity is based on Procedure 1, Clause 4.4.2 in IEC Guide 115:2007.

# 6. Device Under Test (DUT) Information

## 6.1. DUT Description

| Device Dimension        | Refer to Append  | Refer to Appendix A.                                                   |                 |  |  |  |  |  |  |  |  |
|-------------------------|------------------|------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| Back Cover              | I The Back Co    | ver is not removable.                                                  |                 |  |  |  |  |  |  |  |  |
| Battery Options         | ⊠ The recharge   | ☑ The rechargeable battery is not user accessible.                     |                 |  |  |  |  |  |  |  |  |
| Wi-Fi Direct            | Wi-Fi Direct ena | Ni-Fi Direct enabled devices transfer data directly between each other |                 |  |  |  |  |  |  |  |  |
|                         | 🛛 Wi-Fi Direct ( | ⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)                                         |                 |  |  |  |  |  |  |  |  |
|                         | 🛛 Wi-Fi Direct ( | ⊠ Wi-Fi Direct (Wi-Fi 5 GHz : Ch.36 – Ch.48, Ch.149 – Ch.165))         |                 |  |  |  |  |  |  |  |  |
| Test Sample Information | No.              | No. S/N Notes                                                          |                 |  |  |  |  |  |  |  |  |
|                         | 1                | R52N10VEFZX                                                            | Wi-Fi Conducted |  |  |  |  |  |  |  |  |
|                         | 2                | R52N10VDTBB                                                            | Wi-Fi Conducted |  |  |  |  |  |  |  |  |
|                         | 3                | R52N10VDXDW                                                            | Wi-Fi Conducted |  |  |  |  |  |  |  |  |
|                         | 4                | R52N10VEH7P                                                            | SAR             |  |  |  |  |  |  |  |  |
|                         | 5                | 5 R52N10VEH5H SAR                                                      |                 |  |  |  |  |  |  |  |  |
|                         | 4                | R52N10VEFVW                                                            | SAR             |  |  |  |  |  |  |  |  |

# 6.2. Wireless Technologies

| Wireless<br>technologies | Frequency bands | Operating mode                                                                                          | Duty Cycle used for SAR testing                                                                            |
|--------------------------|-----------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Wi-Fi                    | 2.4 GHz         | 802.11b<br>802.11g<br>802.11n (HT20)                                                                    | 99.3% (802.11b)<br>96.5% (802.11g)<br>96.3% (802.11n 20MHz BW)                                             |
|                          | 5 GHz           | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT80) | 96.5% (802.11a)<br>97.9% (802.11n,ac 20MHz BW)<br>95.8% (802.11n,ac 40MHz BW)<br>92.8% (802.11ac 80MHz BW) |
|                          |                 | ort bands 5.60 ~ 5.65 GHz? 🛛 Yes 🗆 No                                                                   |                                                                                                            |
| Bluetooth                | 2.4 GHz         | ort Band gap channel(s)? ⊠ Yes □ No<br>Version 5.0 LE                                                   | 76.7% (DH5)                                                                                                |

#### Notes:

The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 76.7% 1. and was considered and used for SAR Testing. Duty cycle for Wi-Fi is referenced from the DTS and UNII report.

2.

## 6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

### WLAN SISO mode

| RF Air interface | Mode                             | Max. RF Outpu | ıt Pow er (dBm) | Reduced. RF Output Pow er (dBm)<br>-Proximity sensor back-off- |                   |  |  |  |
|------------------|----------------------------------|---------------|-----------------|----------------------------------------------------------------|-------------------|--|--|--|
|                  |                                  | Wi-Fi Ant.1   | Wi-Fi Ant.2     | Wi-Fi Ant.1                                                    | Wi-Fi Ant.2       |  |  |  |
| WiFi 2.4 GHz     | 802.11b                          | 17.0          | 18.0            | 13.5                                                           | 13.5              |  |  |  |
| (Ch.1)           | 802.11g                          | 16.0          | 15.0            | 13.5                                                           | 13.5              |  |  |  |
| (Un. I)          | 802.11n HT20                     | 16.0          | 15.0            | 13.5                                                           | 13.5              |  |  |  |
| WiFi 2.4 GHz     | 802.11b                          | 19.0          | 18.0            | 13.5                                                           | 13.5              |  |  |  |
| (Ch.2~11)        | 802.11g                          | 16.0          | 15.0            | 13.5                                                           | 13.5              |  |  |  |
| (01.2~11)        | 802.11n HT20                     | 16.0          | 15.0            | 13.5                                                           | 13.5              |  |  |  |
| WiFi 2.4 GHz     | 802.11b                          | 16.0          | 18.0            | 13.5                                                           | 13.5              |  |  |  |
| (Ch.12)          | 802.11g                          | 11.0          | 15.0            | 11.0                                                           | 13.5              |  |  |  |
| (01.12)          | 802.11n HT20                     | 12.0          | 15.0            | 12.0                                                           | 13.5              |  |  |  |
| WiFi 2.4 GHz     | 802.11b                          | 13.0          | 15.0            | 13.0                                                           | 13.5              |  |  |  |
| (Ch.13)          | 802.11g                          | 8.0           | 11.0            | 8.0                                                            | 11.0              |  |  |  |
| (01110)          | 802.11n HT20                     | 6.0           | 10.0            | 6.0                                                            | 10.0              |  |  |  |
|                  | 802.11a                          | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
| WiFi 5 GHz       | 802.11n HT20                     | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11n HT40                     | 10.5          | 9.5             | 9.0                                                            | 9.0               |  |  |  |
| (UNII-1)         | 802.11ac VHT20                   | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT40                   | 10.5          | 9.5             | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT80                   | 10.5          | 9.0             | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11a                          | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
| WiFi 5 GHz       | 802.11n HT20                     | 13.0          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11n HT40                     | 10.5          | 9.5             | 9.0                                                            | 9.0               |  |  |  |
| (UNII-2A)        | 802.11ac VHT20                   | 13.0          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT40<br>802.11ac VHT80 | <u> </u>      | 9.5<br>9.0      | 9.0<br>9.0                                                     | <u>9.0</u><br>9.0 |  |  |  |
|                  | 802.11ac VH180<br>802.11a        | 13.0          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11a<br>802.11n HT20          | 11.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
| WiFi 5 GHz       |                                  | 9.5           | 9.5             | 9.0                                                            | 9.0               |  |  |  |
| (UNII-2C)        | 802.11n HT40<br>802.11ac VHT20   | <u> </u>      | 9.5             | 9.0                                                            | 9.0               |  |  |  |
| (0141-20)        | 802.11ac VHT20                   | 9.5           | 9.5             | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT80                   | <u> </u>      | 9.0             | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VI1160                  | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11n HT20                     | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
| WiFi 5 GHz       | 802.11n HT40                     | 14.5          | 9.5             | 9.0                                                            | 9.0               |  |  |  |
| (UNII-3)         | 802.11ac VHT20                   | 14.5          | 13.0            | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT40                   | 10.5          | 9.5             | 9.0                                                            | 9.0               |  |  |  |
|                  | 802.11ac VHT80                   | 10.5          | 9.0             | 9.0                                                            | 9.0               |  |  |  |
| Bl               | uetooth                          | 9.0           |                 | 0.0                                                            | 010               |  |  |  |
|                  | ooth-EDR                         | 5.0           |                 |                                                                |                   |  |  |  |
|                  | th-LE_1Mbps                      | 4.5           |                 |                                                                |                   |  |  |  |
|                  | h-LE 2Mbps                       | 4.5           |                 |                                                                |                   |  |  |  |

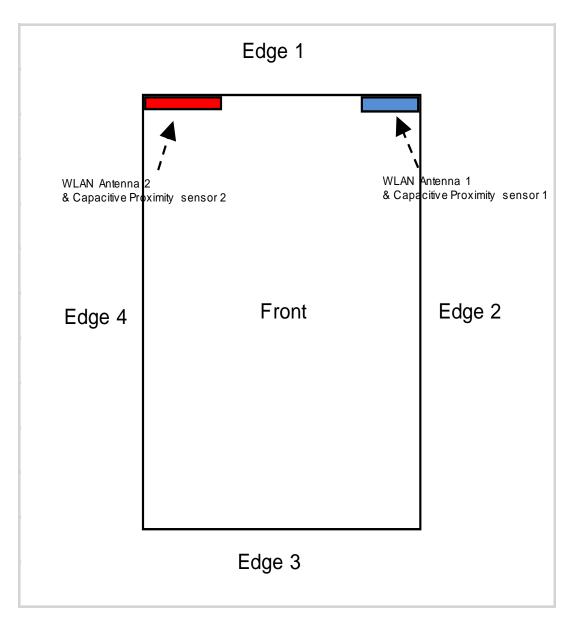
#### Notes:

1. WLAN bands has support to power reduction during triggering proximity sensor. So the Proximity sensor were verified according to KDB 616217 D04. Please refer to section 6.6.

| WLAN | MIMO | mode |
|------|------|------|

| RF Air interface       | Mode           |             | Max RF Output pow er (dBn | ı                             | Reduced RF Output pow er (dBm)<br>-Proximity sensor back-off- |             |                               |  |  |  |
|------------------------|----------------|-------------|---------------------------|-------------------------------|---------------------------------------------------------------|-------------|-------------------------------|--|--|--|
|                        |                | Wi-Fi Ant.1 | Wi-Fi Ant.2               | Wi-Fi MIMO<br>(Ant 1 + Ant 2) | Wi-Fi Ant.1                                                   | Wi-Fi Ant.2 | Wi-Fi MIMO<br>(Ant 1 + Ant 2) |  |  |  |
| WiFi 2.4 GHz           | 802.11g        | 14.0        | 14.0                      | 17.0                          | 13.5                                                          | 13.5        | 16.5                          |  |  |  |
| (Ch.1~11)              | 802.11n HT20   | 14.0        | 14.0                      | 17.0                          | 13.5                                                          | 13.5        | 16.5                          |  |  |  |
| WiFi 2.4 GHz           | 802.11g        | 11.5        | 11.5                      | 14.5                          | 11.5                                                          | 11.5        | 14.5                          |  |  |  |
| (Ch.12)                | 802.11n HT20   | 11.0        | 11.0                      | 14.0                          | 11.0                                                          | 11.0        | 14.0                          |  |  |  |
| WiFi 2.4 GHz           | 802.11g        | 6.0         | 6.0                       | 9.0                           | 6.0                                                           | 6.0         | 9.0                           |  |  |  |
| (Ch.13)                | 802.11n HT20   | 4.0         | 4.0                       | 7.0                           | 4.0                                                           | 4.0         | 7.0                           |  |  |  |
|                        | 802.11a        | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| Ē                      | 802.11n HT20   | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| WiFi 5 GHz<br>(UNII-1) | 802.11n HT40   | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 8.0         | 11.0                          |  |  |  |
|                        | 802.11ac VHT20 | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT40 | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 8.0         | 11.0                          |  |  |  |
|                        | 802.11ac VHT80 | 6.5         | 6.5                       | 9.5                           | 6.5                                                           | 6.5         | 9.5                           |  |  |  |
|                        | 802.11a        | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| Ē                      | 802.11n HT20   | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| WiFi 5 GHz             | 802.11n HT40   | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 8.0         | 11.0                          |  |  |  |
| (UNII-2A)              | 802.11ac VHT20 | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| ` ´                    | 802.11ac VHT40 | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT80 | 7.0         | 7.0                       | 10.0                          | 7.0                                                           | 7.0         | 10.0                          |  |  |  |
|                        | 802.11a        | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11n HT20   | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| WiFi 5 GHz             | 802.11n HT40   | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 8.0         | 11.0                          |  |  |  |
| (UNII-2C)              | 802.11ac VHT20 | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT40 | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT80 | 7.0         | 7.0                       | 10.0                          | 7.0                                                           | 7.0         | 10.0                          |  |  |  |
|                        | 802.11a        | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11n HT20   | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
| WiFi 5 GHz             | 802.11n HT40   | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 8.0         | 11.0                          |  |  |  |
| (UNII-3)               | 802.11ac VHT20 | 12.0        | 12.0                      | 15.0                          | 9.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT40 | 8.0         | 8.0                       | 11.0                          | 8.0                                                           | 9.0         | 12.0                          |  |  |  |
|                        | 802.11ac VHT80 | 7.0         | 7.0                       | 10.0                          | 7.0                                                           | 7.0         | 10.0                          |  |  |  |

#### Notes:


WLAN bands has support to power reduction during triggering proximity sensor. So the Proximity sensor were verified according to KDB 1. 616217 D04. Please refer to section 6.6. Each antennas has the different target power for SISO and MIMO mode, but Each antennas of MIMO mode has same or

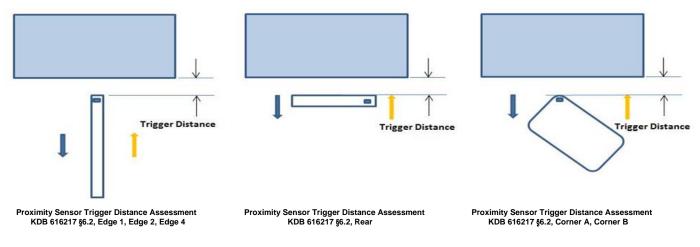
2. lower for maximum output power than SISO mode.

Page 15 of 47

## 6.4. Proximity sensor feature

The DUT has three proximity sensors to reduce the output power. The position of the sensors and antenna are as shown in the graphic.




Page 16 of 47

## 6.4.1 Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Rear, Edge 1, Edge 2, Edge 4, Corner A (Side of between Edge 1 and Edge 2), Corner B (Side of between Edge 1 and Edge 4) of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

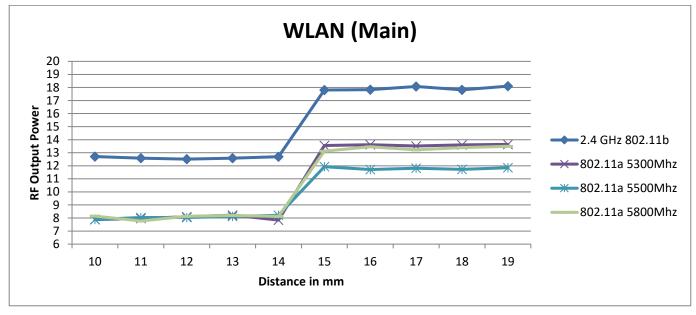


#### LEGEND

- Direction of DUT travel for determination of power reduction triggering point
- Direction of DUT travel for determination of full power resumption triggering point

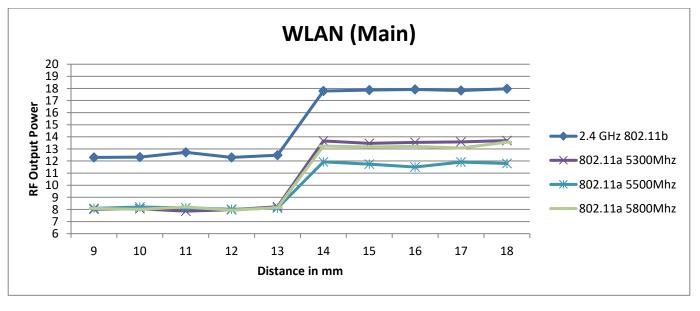
#### Summary of Trigger Distances

|         | Tissue                | Trigger distance -<br>Rear  |                           | Trigger distance –<br>Edge 1 |                           |                             | Trigger distance –<br>Edge 2 |                             | istance –<br>ge 4         | Trigger d<br>Corr           | istance –<br>ier A        |                             | istance –<br>Ier B        |
|---------|-----------------------|-----------------------------|---------------------------|------------------------------|---------------------------|-----------------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Antenna | simulating<br>liquid  | Moving<br>toward<br>phantom | Moving<br>from<br>phantom | Moving<br>toward<br>phantom  | Moving<br>from<br>phantom | Moving<br>toward<br>phantom | Moving<br>from<br>phantom    | Moving<br>toward<br>phantom | Moving<br>from<br>phantom | Moving<br>toward<br>phantom | Moving<br>from<br>phantom | Moving<br>toward<br>phantom | Moving<br>from<br>phantom |
|         | 2450<br>Head<br>Ant 1 | 14 mm                       | 14 mm                     | 13 mm                        | 13 mm                     | 8 mm                        | 8 mm                         | N/A                         | N/A                       | 9 mm                        | 9 mm                      | N/A                         | N/A                       |
| WLAN    | 2450<br>Head<br>Ant 2 | 14 mm                       | 14 mm                     | 13 mm                        | 13 mm                     | N/A                         | N/A                          | 7 mm                        | 7 mm                      | N/A                         | N/A                       | 8 mm                        | 8 mm                      |
| Ant.    | 5000<br>Head<br>Ant 1 | 14 mm                       | 14 mm                     | 13 mm                        | 13 mm                     | 8 mm                        | 8 mm                         | N/A                         | N/A                       | 9 mm                        | 9 mm                      | N/A                         | N/A                       |
|         | 5000<br>Head<br>Ant 2 | 14 mm                       | 14 mm                     | 13 mm                        | 13 mm                     | N/A                         | N/A                          | 7 mm                        | 7 mm                      | N/A                         | N/A                       | 8 mm                        | 8 mm                      |


Page 17 of 47

UL Korea, Ltd. Suwon Laboratory

### Proximity Sensor Triggering Distance Measurement Results


### WLAN 2.4GHz and 5GHz

|         |                 |      | Distanc | e to DUT v | /s. Output | Power in d | Bm   |      |      |      |      |
|---------|-----------------|------|---------|------------|------------|------------|------|------|------|------|------|
| Antenna | Distance        | 10   | 11      | 12         | 13         | 14         | 15   | 16   | 17   | 18   | 19   |
|         | 2.4 GHz 802.11b | 12.7 | 12.6    | 12.5       | 12.6       | 12.7       | 17.8 | 17.8 | 18.1 | 17.8 | 18.1 |
| Ant 1   | 802.11a 5300Mhz | 7.9  | 8.0     | 8.1        | 8.2        | 7.8        | 13.6 | 13.6 | 13.5 | 13.6 | 13.6 |
| Anti    | 802.11a 5500Mhz | 7.9  | 8.0     | 8.0        | 8.1        | 8.2        | 11.9 | 11.7 | 11.8 | 11.7 | 11.9 |
| -       | 802.11a 5800Mhz | 8.2  | 7.8     | 8.1        | 8.2        | 8.1        | 13.1 | 13.5 | 13.2 | 13.4 | 13.5 |



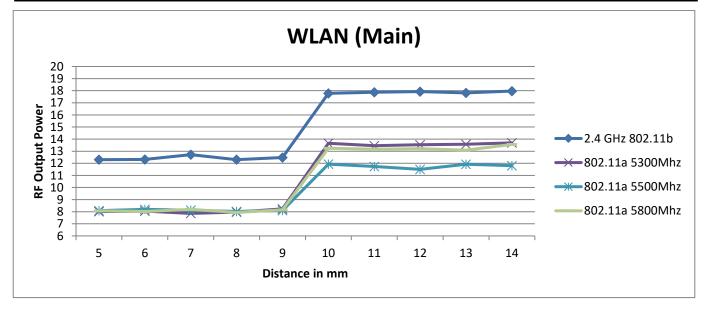
Edge 1, DUT Moving Toward (Trigger) and Away (Release) from the Phantom

|         | Distance to DUT vs. Output Power in dBm                                                                                                    |      |      |      |      |      |      |      |      |      |      |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|--|--|--|
| Antenna | Antenna         Distance (mm)         9         10         11         12         13         14         15         16         17         18 |      |      |      |      |      |      |      |      |      |      |  |  |  |
|         | 2.4 GHz 802.11b                                                                                                                            | 12.3 | 12.3 | 12.7 | 12.3 | 12.5 | 17.8 | 17.9 | 17.9 | 17.8 | 18.0 |  |  |  |
| Ant 1   | 802.11a 5300Mhz                                                                                                                            | 8.0  | 8.1  | 7.9  | 8.0  | 8.2  | 13.7 | 13.5 | 13.5 | 13.6 | 13.7 |  |  |  |
| AIIU    | 802.11a 5500Mhz                                                                                                                            | 8.1  | 8.2  | 8.1  | 8.0  | 8.1  | 11.9 | 11.7 | 11.5 | 11.9 | 11.8 |  |  |  |
|         | 802.11a 5800Mhz                                                                                                                            | 8.1  | 8.0  | 8.2  | 7.9  | 8.2  | 13.2 | 13.2 | 13.2 | 13.1 | 13.6 |  |  |  |



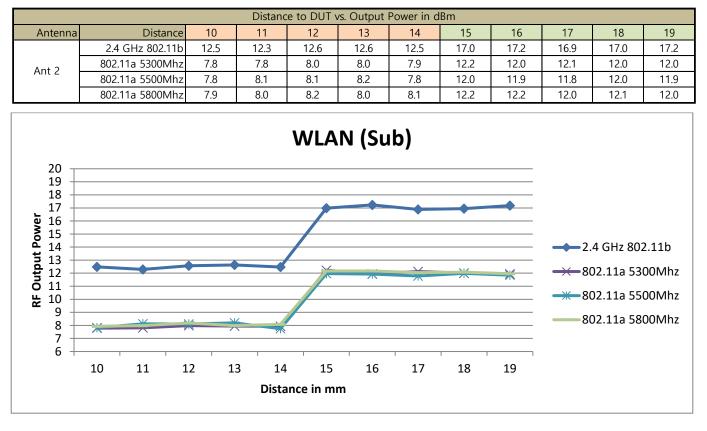
Page 18 of 47

Doc. No.: 1.0(03)


This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

|                                                                                                     |                 |      | Distanc | e to DUT               | vs. Output | Power in d | Bm                |      |      |                                                  |                |
|-----------------------------------------------------------------------------------------------------|-----------------|------|---------|------------------------|------------|------------|-------------------|------|------|--------------------------------------------------|----------------|
| Antenna                                                                                             | Distance (mm)   | 4    | 5       | 6                      | 7          | 8          | 9                 | 10   | 11   | 12                                               | 13             |
|                                                                                                     | 2.4 GHz 802.11b | 12.3 | 12.4    | 12.6                   | 12.4       | 12.4       | 18.1              | 18.1 | 18.2 | 17.8                                             | 17.8           |
| Ant 1                                                                                               | 802.11a 5300Mhz | 7.9  | 8.2     | 7.9                    | 8.1        | 8.2        | 13.5              | 13.3 | 13.3 | 13.6                                             | 13.4           |
|                                                                                                     | 802.11a 5500Mhz | 7.8  | 7.8     | 8.2                    | 7.9        | 8.2        | 11.9              | 11.5 | 11.9 | 11.8                                             | 12.2           |
|                                                                                                     | 802.11a 5800Mhz | 7.8  | 7.9     | 7.9                    | 8.0        | 8.1        | 13.0              | 13.0 | 13.2 | 13.2                                             | 13.7           |
| 20<br>19<br>18<br>17<br>16<br>15<br>14<br>14<br>11<br>11<br>10<br>10<br>10<br>8<br>7<br>6<br>7<br>6 |                 |      | 8       | WLAI<br>9<br>ance in m | N (Ma      | ain)       | ×<br>×<br>×<br>12 | 13   |      | 4 GHz 80.<br>02.11a 53<br>02.11a 55<br>02.11a 58 | 00Mhz<br>00Mhz |

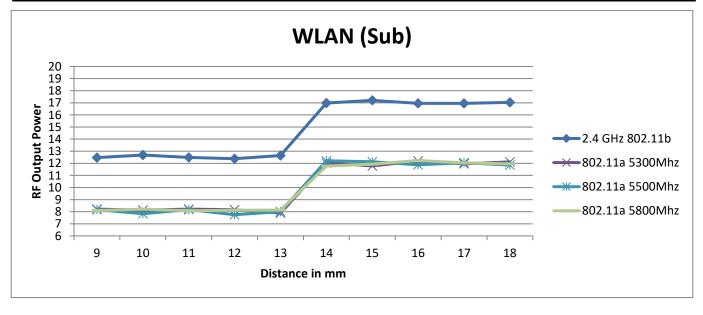
## Edge 2, DUT Moving Toward (Trigger) and Away (Release) from the Phantom


### Corner A, DUT Moving Toward (Trigger) and Away (Release) from the Phantom

|         |                 |      | Distanc | e to DUT v | /s. Output | Power in d | Bm   |      |      |      |      |
|---------|-----------------|------|---------|------------|------------|------------|------|------|------|------|------|
| Antenna | Distance (mm)   | 5    | 6       | 7          | 8          | 9          | 10   | 11   | 12   | 13   | 14   |
|         | 2.4 GHz 802.11b | 12.4 | 12.7    | 12.3       | 12.5       | 12.3       | 18.2 | 18.1 | 18.1 | 18.0 | 18.1 |
| Ant 1   | 802.11a 5300Mhz | 8.1  | 8.2     | 8.0        | 8.0        | 8.1        | 13.5 | 13.4 | 13.5 | 13.3 | 13.4 |
| Anti    | 802.11a 5500Mhz | 7.8  | 7.9     | 8.2        | 7.8        | 8.0        | 12.0 | 12.2 | 12.2 | 11.9 | 12.0 |
|         | 802.11a 5800Mhz | 8.1  | 7.8     | 8.2        | 8.1        | 8.1        | 13.7 | 13.5 | 13.7 | 13.4 | 13.4 |



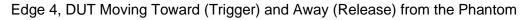
Page 19 of 47

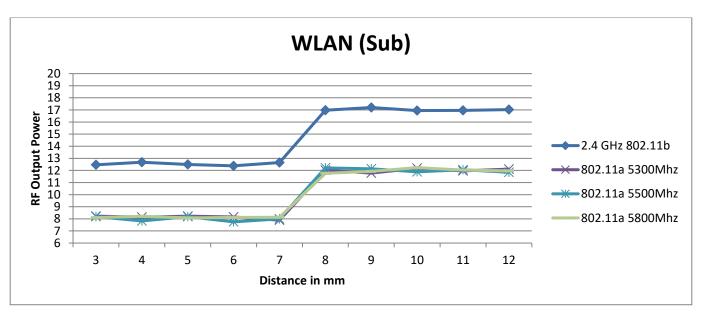

UL Korea, Ltd. Suwon Laboratory Doc. No.: 1.0(03) This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.



### Rear, DUT Moving Toward (Trigger) and Away (Release) from the Phantom

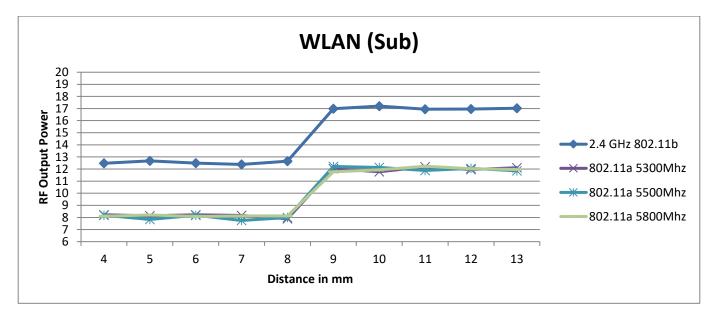
Edge 1, DUT Moving Toward (Trigger) and Away (Release) from the Phantom


|                                                                                                                                            | Distance to DUT vs. Output Power in dBm |      |      |      |      |      |      |      |      |      |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|--|--|--|--|
| Antenna         Distance (mm)         9         10         11         12         13         14         15         16         17         18 |                                         |      |      |      |      |      |      |      |      |      |      |  |  |  |  |
|                                                                                                                                            | 2.4 GHz 802.11b                         | 12.5 | 12.7 | 12.5 | 12.4 | 12.7 | 17.0 | 17.2 | 17.0 | 17.0 | 17.0 |  |  |  |  |
| Ant 2                                                                                                                                      | 802.11a 5300Mhz                         | 8.2  | 8.1  | 8.2  | 8.2  | 7.9  | 12.0 | 11.8 | 12.2 | 12.0 | 12.1 |  |  |  |  |
| Ant 2                                                                                                                                      | 802.11a 5500Mhz                         | 8.2  | 7.8  | 8.2  | 7.8  | 8.0  | 12.2 | 12.1 | 11.9 | 12.1 | 11.9 |  |  |  |  |
|                                                                                                                                            | 802.11a 5800Mhz                         | 8.1  | 8.2  | 8.1  | 8.1  | 8.1  | 11.8 | 11.9 | 12.2 | 12.0 | 12.0 |  |  |  |  |




Page 20 of 47

UL Korea, Ltd. Suwon Laboratory Doc. No.: 1.0(03) This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.


|         | Distance to DUT vs. Output Power in dBm |                                                                                                                     |      |      |      |      |      |      |      |      |      |  |  |
|---------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|--|--|
| Antenna | Distance (mm)                           | Distance (mm)         3         4         5         6         7         8         9         10         11         1 |      |      |      |      |      |      |      |      |      |  |  |
|         | 2.4 GHz 802.11b                         | 12.6                                                                                                                | 12.4 | 12.5 | 12.6 | 12.6 | 17.1 | 17.1 | 16.8 | 17.2 | 16.8 |  |  |
| Ant 2   | 802.11a 5300Mhz                         | 7.9                                                                                                                 | 7.8  | 8.1  | 8.1  | 8.2  | 12.0 | 12.0 | 12.2 | 12.1 | 12.0 |  |  |
| Ant 2   | 802.11a 5500Mhz                         | 7.8                                                                                                                 | 8.3  | 8.1  | 8.0  | 8.1  | 12.2 | 11.8 | 12.1 | 11.9 | 12.0 |  |  |
|         | 802.11a 5800Mhz                         | 8.1                                                                                                                 | 8.0  | 7.9  | 8.2  | 7.8  | 12.1 | 11.9 | 12.2 | 12.1 | 11.9 |  |  |





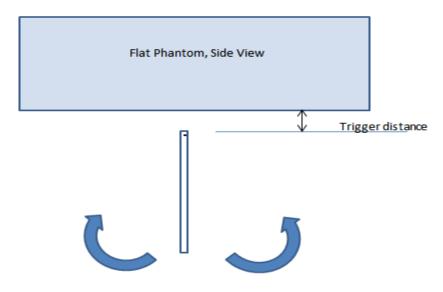
### Corner B, DUT Moving Toward (Trigger) and Away (Release) from the Phantom

|         | Distance to DUT vs. Output Power in dBm |      |      |      |      |      |      |      |      |      |      |  |
|---------|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|--|
| Antenna | Distance (mm)                           | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   |  |
|         | 2.4 GHz 802.11b                         | 12.4 | 12.5 | 12.6 | 12.7 | 12.5 | 16.9 | 17.1 | 17.2 | 17.2 | 17.2 |  |
| Ant 2   | 802.11a 5300Mhz                         | 8.0  | 7.8  | 8.1  | 7.9  | 8.2  | 11.9 | 11.8 | 11.9 | 11.9 | 12.0 |  |
| Ant 2   | 802.11a 5500Mhz                         | 8.1  | 8.2  | 8.1  | 8.2  | 8.1  | 12.0 | 11.9 | 11.8 | 12.1 | 12.0 |  |
|         | 802.11a 5800Mhz                         | 8.2  | 8.2  | 8.2  | 7.9  | 8.1  | 11.8 | 11.8 | 12.1 | 11.8 | 11.9 |  |



Page 21 of 47

UL Korea, Ltd. Suwon Laboratory Doc. No.: 1.0(03) This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.


## 6.4.2 Proximity Sensor Coverage (KDB 616217 §6.3)

As there is no spatial offset between the antenna and the proximity sensor element, proximity sensor coverage did not need to be assessed.

## 6.4.3 Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 1, Edge 2, Edge 4 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 1, Edge 2, Edge 4 for angles up to  $+/-45^{\circ}$ . If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to  $+/-45^{\circ}$ .



Proximity sensor tilt angle assessment (Edge 1, Edge 2, Edge 4) KDB 616217 §6.4

| Band | Band<br>(MHz)<br>Minimum trigger<br>distance measured<br>according to KDB<br>616217 §6.2 | Minimum<br>distance at which                     |      |      |      | Po   | ower re | eductio | on stat | us  |     |     |     |
|------|------------------------------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|---------|---------|---------|-----|-----|-----|-----|
|      |                                                                                          | power reduction<br>was maintained<br>over +/-45° | -45° | -40° | -30° | -20° | -10°    | 0°      | 10°     | 20° | 30° | 40° | 45° |
| 2450 | 13 mm                                                                                    | 13 mm                                            | On   | On   | On   | On   | On      | On      | On      | On  | On  | On  | On  |
| 5000 | 13 mm                                                                                    | 13 mm                                            | On   | On   | On   | On   | On      | On      | On      | On  | On  | On  | On  |

### Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Edge 2)

| Band  | Band<br>(MHz)<br>Minimum trigger<br>distance measured<br>according to KDB<br>616217 §6.2 | Minimum<br>distance at which                     |      |      |      |      |      |    |     |     |     |     |     |  |  |  |
|-------|------------------------------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|------|----|-----|-----|-----|-----|-----|--|--|--|
| (MHz) |                                                                                          | power reduction<br>was maintained<br>over +/-45° | -45° | -40° | -30° | -20° | -10° | 0° | 10° | 20° | 30° | 40° | 45° |  |  |  |
| 2450  | 8 mm                                                                                     | 8 mm                                             | On   | On   | On   | On   | On   | On | On  | On  | On  | On  | On  |  |  |  |
| 5000  | 8 mm                                                                                     | 8 mm                                             | On   | On   | On   | On   | On   | On | On  | On  | On  | On  | On  |  |  |  |

## Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Edge 4)

| Band | Band<br>(MHz)<br>Minimum trigger<br>distance measured<br>according to KDB<br>616217 §6.2 | Minimum<br>distance at which                     |      |      |      | Po   | ower re | eductio | on stat | us  |     |     |     |
|------|------------------------------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|---------|---------|---------|-----|-----|-----|-----|
|      |                                                                                          | power reduction<br>was maintained<br>over +/-45° | -45° | -40° | -30° | -20° | -10°    | 0°      | 10°     | 20° | 30° | 40° | 45° |
| 2450 | 7 mm                                                                                     | 7 mm                                             | On   | On   | On   | On   | On      | On      | On      | On  | On  | On  | On  |
| 5000 | 7 mm                                                                                     | 7 mm                                             | On   | On   | On   | On   | On      | On      | On      | On  | On  | On  | On  |

# 6.4.4 Resulting test positions for SAR measurements

| Wireless<br>technologies | Position | §6.6.1<br>Triggering<br>Distance | §6.6.2<br>Coverage | §6.6.3<br>Tilt Angle | Worst case<br>distance for SAR |
|--------------------------|----------|----------------------------------|--------------------|----------------------|--------------------------------|
|                          | Rear     | 14 mm                            | N/A                | N/A                  | 13 mm                          |
|                          | Edge 1   | 13 mm                            | N/A                | 13 mm                | 12 mm                          |
| WLAN                     | Edge 2   | 8 mm                             | N/A                | 8 mm                 | 7 mm                           |
| VVLAIN                   | Edge 4   | 7 mm                             | N/A                | 7 mm                 | 6 mm                           |
|                          | Corner A | 9 mm                             | N/A                | N/A                  | 8 mm                           |
|                          | Corner B | 8 mm                             | N/A                | N/A                  | 7 mm                           |

# 7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

## 7.1 Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied in conjunction with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

## SAR Test Exclusion Calculations for WLAN

Antennas < 50mm to adjacent edges

| SISO M        | ax        |        |       |      |        |            |            |          |       |                            |                   |                   |            |                   |       |  |  |
|---------------|-----------|--------|-------|------|--------|------------|------------|----------|-------|----------------------------|-------------------|-------------------|------------|-------------------|-------|--|--|
| Тх            | Frequency | Output | Power |      | Sep    | aration Di | stances (r | nm)      |       |                            | Ca                | lculated Th       | reshold Va | lue               |       |  |  |
| Interface     | (MHz)     | dBm    | mW    | Rear | Edge 1 | Edge 2     | Edge 3     | Edge 4   | Front | Rear                       | Edge 1            | Edge 2            | Edge 3     | Edge 4            | Front |  |  |
|               |           |        |       |      |        |            | Wi-Fi A    | ntenna 1 |       |                            |                   |                   |            |                   |       |  |  |
| Wi-Fi 2.4 GHz | 2462      | 19.00  | 79    | 0    | 0      | 0          | 242        | 110      |       | 24.8<br>-MEASURE-          | 24.8<br>-MEASURE- | 24.8<br>-MEASURE- | > 50 mm    | > 50 mm           |       |  |  |
| Wi-Fi 5.3 GHz | 5320      | 14.50  | 28    | 0    | 0      | 0          | 242        | 110      |       | 12.9<br>-MEASURE-          | 12.9<br>-MEASURE- | 12.9<br>-MEASURE- | > 50 mm    | > 50 mm           |       |  |  |
| Wi-Fi 5.5 GHz | 5700      | 13.00  | 20    | 0    | 0      | 0          | 242        | 110      |       | 9.5<br>-MEASURE-           | 9.5<br>-MEASURE-  | 9.5<br>-MEASURE-  | > 50 mm    | > 50 mm           |       |  |  |
| Wi-Fi 5.8 GHz | 5825      | 14.50  | 28    | 0    | 0      | 0          | 242        | 110      |       | 13.5<br>-MEASURE-          | 13.5<br>-MEASURE- | 13.5<br>-MEASURE- | > 50 mm    | > 50 mm           |       |  |  |
| Bluetooth     | 2480      | 9.00   | 8     | 0    | 0      | 0          | 242        | 110      |       | 2.5<br>-EXEMPT-            | 2.5<br>-EXEMPT-   | 2.5<br>-EXEMPT-   | > 50 mm    | > 50 mm           |       |  |  |
|               |           | -      | -     |      |        |            | Wi-Fi A    | ntenna 2 |       |                            |                   |                   |            |                   |       |  |  |
| Wi-Fi 2.4 GHz | 2462      | 18.00  | 63    | 0    | 0      | 110        | 242        | 0        |       | 19.8<br>-MEASURE-          | 19.8<br>-MEASURE- | > 50 mm           | > 50 mm    | 19.8<br>-MEASURE- |       |  |  |
| Wi-Fi 5.3 GHz | 5320      | 13.00  | 20    | 0    | 0      | 110        | 242        | 0        |       | 9.2<br>-MEASURE-           | 9.2<br>-MEASURE-  | > 50 mm           | > 50 mm    | 9.2<br>-MEASURE-  |       |  |  |
| Wi-Fi 5.5 GHz | 5700      | 13.00  | 20    | 0    | 0      | 110        | 242        | 0        |       | 9.5<br>-MEASURE-           | 9.5<br>-MEASURE-  | > 50 mm           | > 50 mm    | 9.5<br>-MEASURE-  |       |  |  |
| Wi-Fi 5.8 GHz | 5825      | 13.00  | 20    | 0    | 0      | 110        | 242        | 0        |       | 9.7<br>-MEASURE-           | 9.7<br>-MEASURE-  | > 50 mm           | > 50 mm    | 9.7<br>-MEASURE-  |       |  |  |
| SISO R        | educe     |        |       |      |        |            |            |          |       |                            |                   |                   |            |                   |       |  |  |
| Тх            | Frequency | Output | Power |      | Sep    | aration Di | stances (n | nm)      |       | Calculated Threshold Value |                   |                   |            |                   |       |  |  |
| Interface     | (MHz)     | dBm    | mW    | Rear | Edge 1 | Edge 2     | Edge 3     | Edge 4   | Front | Rear                       | Edge 1            | Edge 2            | Edge 3     | Edge 4            | Front |  |  |
|               |           |        | I     | n    |        |            | Wi-Fi A    | ntenna 1 |       |                            |                   |                   |            |                   |       |  |  |
| Wi-Fi 2.4 GHz | 2462      | 13.50  | 22    | 0    | 0      | 0          |            | 110      |       | 6.9<br>-MEASURE-           | 6.9<br>-MEASURE-  | 6.9<br>-MEASURE-  |            | > 50 mm           |       |  |  |
| Wi-Fi 5.3 GHz | 5320      | 9.00   | 8     | 0    | 0      | 0          |            | 110      |       | 3.7<br>-MEASURE-           | 3.7<br>-MEASURE-  | 3.7<br>-MEASURE-  |            | > 50 mm           |       |  |  |
| Wi-Fi 5.5 GHz | 5700      | 9.00   | 8     | 0    | 0      | 0          |            | 110      |       | 3.8<br>-MEASURE-           | 3.8<br>-MEASURE-  | 3.8<br>-MEASURE-  |            | > 50 mm           |       |  |  |
| Wi-Fi 5.8 GHz | 5825      | 9.00   | 8     | 0    | 0      | 0          |            | 110      |       | 3.9<br>-MEASURE-           | 3.9<br>-MEASURE-  | 3.9<br>-MEASURE-  |            | > 50 mm           |       |  |  |
|               |           |        | r     |      |        |            | Wi-Fi A    | ntenna 2 |       |                            |                   |                   |            |                   |       |  |  |
| Wi-Fi 2.4 GHz | 2462      | 13.50  | 22    | 0    | 0      | 110        |            | 0        |       | 6.9<br>-MEASURE-           | 6.9<br>-MEASURE-  | > 50 mm           |            | 6.9<br>-MEASURE-  |       |  |  |
| Wi-Fi 5.3 GHz | 5320      | 9.00   | 8     | 0    | 0      | 110        |            | 0        |       | 3.7<br>-MEASURE-           | 3.7<br>-MEASURE-  | > 50 mm           |            | 3.7<br>-MEASURE-  |       |  |  |
| Wi-Fi 5.5 GHz | 5700      | 9.00   | 8     | 0    | 0      | 110        |            | 0        |       | 3.8<br>-MEASURE-           | 3.8<br>-MEASURE-  | > 50 mm           |            | 3.8<br>-MEASURE-  |       |  |  |
| Wi-Fi 5.8 GHz | 5825      | 9.00   | 8     | 0    | 0      | 110        |            | 0        |       | 3.9<br>-MEASURE-           | 3.9<br>-MEASURE-  | > 50 mm           |            | 3.9<br>-MEASURE-  |       |  |  |

#### Note(s):

1. According to KDB 447498, if the calculated threshold value is >3 then SAR testing is required.

2. For Standalone exposure condition, Bluetooth SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

٦

# Antennas > 50mm to adjacent edges

| ax        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency | Output                                                                                                                                                     | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aration Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stances (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ca                                                                                                                                                                                                                                                                  | Iculated Th                                                                                                                                                                                                                                                                                                                                 | reshold Va                                                                                                                                                                                                                                                                                                                                                              | lue                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (MHz)     | dBm                                                                                                                                                        | mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Edge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Edge 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Edge 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Edge 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Front                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Edge 1                                                                                                                                                                                                                                                              | Edge 2                                                                                                                                                                                                                                                                                                                                      | Edge 3                                                                                                                                                                                                                                                                                                                                                                  | Edge 4                                                                                                                                                                                                                | Front                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wi-Fi A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntenna 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2462      | 19.00                                                                                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     | 2015.6 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | 695.6 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5320      | 14.50                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     | 1985 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                     | 665 mW<br>-EXEMPT-                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5700      | 13.00                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     | 1982.8 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | 662.8 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5825      | 14.50                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     | 1982.2 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | 662.2 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2480      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     | 2015.3 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | 695.3 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wi-Fi A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntenna 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2462      | 18.00                                                                                                                                                      | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 695.6 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                        | 2015.6 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5320      | 13.00                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 665 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                          | 1985 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                     | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5700      | 13.00                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 662.8 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                        | 1982.8 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                                                   | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 662.2 mW                                                                                                                                                                                                                                                                                                                                    | 1982.2 mW                                                                                                                                                                                                                                                                                                                                                               | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| educe     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Frequency | Output                                                                                                                                                     | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aration Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stances (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ca                                                                                                                                                                                                                                                                  | Iculated Th                                                                                                                                                                                                                                                                                                                                 | reshold Va                                                                                                                                                                                                                                                                                                                                                              | lue                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (MHz)     | dBm                                                                                                                                                        | mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Edge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Edge 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Edge 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Edge 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Front                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Edge 1                                                                                                                                                                                                                                                              | Edge 2                                                                                                                                                                                                                                                                                                                                      | Edge 3                                                                                                                                                                                                                                                                                                                                                                  | Edge 4                                                                                                                                                                                                                | Front                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wi-Fi A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntenna 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2462      | 13.50                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | 695.6 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5320      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | 665 mW<br>-EXEMPT-                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5700      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | 662.8 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5825      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | < 50 mm                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         | 662.2 mW<br>-EXEMPT-                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wi-Fi A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntenna 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2462      | 13.50                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 695.6 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                         | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5320      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | 665 mW<br>-EXEMPT-                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | < 50 mm                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1         |                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | 662.8 mW                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5700      | 9.00                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 50 mm                                                                                                                                                                                                                                                             | -EXEMPT-                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | < 50 mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | Frequency<br>(MH2)<br>2462<br>5320<br>5700<br>5825<br>2480<br>2462<br>5320<br>5700<br>5825<br>ecluce<br>Frequency<br>(MH2)<br>2462<br>5320<br>5700<br>5825 | Output           (MHz)         Output           2462         19.00           5320         14.50           5700         13.00           5825         14.50           2462         18.00           5320         13.00           5320         13.00           5320         13.00           5700         13.00           5825         13.00           5700         13.00           5825         13.00           CHCCE         13.00           S462         13.50           5320         9.00           5700         9.00           5700         9.00           5700         9.00           5825         9.00 | Output Power           dBm         mW           2462         19.00         79           5320         14.50         28           5700         13.00         20           5825         14.50         28           2462         18.00         63           5320         13.00         20           5825         14.50         28           2462         18.00         63           5320         13.00         20           5700         13.00         20           5825         13.00         20           5825         13.00         20           5825         13.00         20           640000         20         20           5825         13.00         20           2462         13.50         22           5320         9.00         8           5700         9.00         8           5825         9.00         8           5825         9.00         8           5825         9.00         8 | Output Power         Rear           dBm         mW         Rear           2462         19.00         79         0           5320         14.50         28         0           5700         13.00         20         0           5825         14.50         28         0           2462         18.00         63         0           2480         9.00         8         0           2462         18.00         63         0           5320         13.00         20         0           5320         13.00         20         0           5825         13.00         20         0           5825         13.00         20         0           5825         13.00         20         0           CHUCE         MW         Rear           2462         13.50         22         0           5320         9.00         8         0           5320         9.00         8         0           5700         9.00         8         0           5825         9.00         8         0           5825         9.00         8 | Output Power<br>(MHz)         Output Power<br>dBm         Rear         Edge 1           2462         19.00         79         0         0           5320         14.50         28         0         0           5320         14.50         28         0         0           5700         13.00         20         0         0           5825         14.50         28         0         0           2462         18.00         63         0         0           5320         13.00         20         0         0           5320         13.00         20         0         0           5320         13.00         20         0         0           5825         13.00         20         0         0           5825         13.00         20         0         0           Coutput Power         Sep           (MHz)         dBm         mW         Rear         Edge 1           2462         13.50         22         0         0           5320         9.00         8         0         0           5320         9.00         8         0         0 | Output Power<br>(MHz)         Output Power<br>dBm         Rear         Edge 1         Edge 2           2462         19.00         79         0         0         0           5320         14.50         28         0         0         0           5320         14.50         28         0         0         0           5700         13.00         20         0         0         0           5825         14.50         28         0         0         0           2462         18.00         63         0         0         0           2462         18.00         63         0         0         110           5320         13.00         20         0         0         110           5700         13.00         20         0         0         110           5825         13.00         20         0         0         110           5825         13.00         20         0         0         110           5825         13.00         20         0         0         0           2462         13.50         22         0         0         0           5320 <td< td=""><td>Output Power<br/>(MHz)         Output Power<br/>dBm         Rear         Edge 1         Edge 2         Edge 3           2462         19.00         79         0         0         0         242           5320         14.50         28         0         0         0         242           5700         13.00         20         0         0         0         242           5825         14.50         28         0         0         0         242           5825         14.50         28         0         0         242         242           5825         14.50         28         0         0         242         242           5826         14.50         28         0         0         242         242           5826         13.00         20         0         0         110         242           5320         13.00         20         0         0         110         242           5825         13.00         20         0         0         110         242           600         0         110         242         246         2462         13.50         22         0         0         0&lt;</td><td>Output Power<br/>(MHz)         Output Power         Separation Distances (m)           dBm         mW         Rear         Edge 1         Edge 2         Edge 3         Edge 4           2462         19.00         79         0         0         0         242         110           5320         14.50         28         0         0         0         242         110           5700         13.00         20         0         0         0         242         110           5825         14.50         28         0         0         0         242         110           5825         14.50         28         0         0         0         242         110           5825         14.50         28         0         0         242         110           5825         13.00         8         0         0         242         0           5825         13.00         20         0         0         110         242         0           5825         13.00         20         0         0         110         242         0           frequency<br/>(MHz)         Output Power         Rear         Edge 1         Edg</td><td>Output Power<br/>(MHz)         Output Power<br/>dBm         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front           2462         19.00         79         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         110         242         0         100           5825         13.00         20         0         0         110         242         0         100           5825         13.00         20         0         0         110         242         0         &lt;</td><td>Output Power<br/>(MHz)         Output Power<br/>dBm         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front         Rear           2462         19.00         79         0         0         0         242         110         &lt; 50 mm</td>           5320         14.50         28         0         0         0         242         110         &lt; 50 mm</td<> | Output Power<br>(MHz)         Output Power<br>dBm         Rear         Edge 1         Edge 2         Edge 3           2462         19.00         79         0         0         0         242           5320         14.50         28         0         0         0         242           5700         13.00         20         0         0         0         242           5825         14.50         28         0         0         0         242           5825         14.50         28         0         0         242         242           5825         14.50         28         0         0         242         242           5826         14.50         28         0         0         242         242           5826         13.00         20         0         0         110         242           5320         13.00         20         0         0         110         242           5825         13.00         20         0         0         110         242           600         0         110         242         246         2462         13.50         22         0         0         0< | Output Power<br>(MHz)         Output Power         Separation Distances (m)           dBm         mW         Rear         Edge 1         Edge 2         Edge 3         Edge 4           2462         19.00         79         0         0         0         242         110           5320         14.50         28         0         0         0         242         110           5700         13.00         20         0         0         0         242         110           5825         14.50         28         0         0         0         242         110           5825         14.50         28         0         0         0         242         110           5825         14.50         28         0         0         242         110           5825         13.00         8         0         0         242         0           5825         13.00         20         0         0         110         242         0           5825         13.00         20         0         0         110         242         0           frequency<br>(MHz)         Output Power         Rear         Edge 1         Edg | Output Power<br>(MHz)         Output Power<br>dBm         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front           2462         19.00         79         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5320         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         0         242         110         100           5825         14.50         28         0         0         110         242         0         100           5825         13.00         20         0         0         110         242         0         100           5825         13.00         20         0         0         110         242         0         < | Output Power<br>(MHz)         Output Power<br>dBm         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front         Rear           2462         19.00         79         0         0         0         242         110         < 50 mm | Frequency<br>(MHz)         Output Power         Separation Distances (mm)         Ca           dBm         mW         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front         Rear         Edge 1           2462         19.00         79         0         0         0         242         110         <50m | Frequency<br>(MHz)         Output Power         Separation Distances (mm)         Calculated Th           dBm         mW         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front         Rear         Edge 1         Edge 2           2462         19.00         79         0         0         0         242         110         < 50mm | Frequency<br>(MHz)         Output Power         Separation Distances (mm)         Calculated Threshold Values (mm)           2462         19.00         79         0         0         242         110         < 60mm | Frequency<br>(MHz)         Output Power         Separation Distances (mm)         Calculated Threshold Value           dBm         mW         Rear         Edge 1         Edge 2         Edge 3         Edge 4         Front         Rear         Edge 1         Edge 2         Edge 4         Front         Rear         Edge 1         Edge 4         < |

#### Note(s):

1. According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

2. For Standalone exposure condition, Bluetooth SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

# 7.2 Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1

| Test Configurations   | Pw r     | Rear | Edge 1     | Edge 2       | Edge 3        | Edge 4      | Corner A | Corner B |
|-----------------------|----------|------|------------|--------------|---------------|-------------|----------|----------|
| Test Configurations   | Back-off | Real | (Top Edge) | (Right Edge) | (Bottom Edge) | (Left Edge) | Note 2   | Note 3   |
| Wi-Fi 2.4 GHz (Ant 1) | OFF      | Yes  | Yes        | Yes          | No            | No          | Yes      | No       |
| WI-FI2.4 GHZ (Ant T)  | ON       | Yes  | Yes        | Yes          | No            | No          | Yes      | No       |
| Wi-Fi 5 GHz (Ant 1)   | OFF      | Yes  | Yes        | Yes          | No            | No          | Yes      | No       |
| WI-FIS GFZ (Ant T)    | ON       | Yes  | Yes        | Yes          | No            | No          | Yes      | No       |
|                       | OFF      | Yes  | Yes        | No           | No            | Yes         | No       | Yes      |
| Wi-Fi 2.4 GHz (Ant 2) | ON       | Yes  | Yes        | No           | No            | Yes         | No       | Yes      |
| Wi-Fi 5 GHz (Ant 2)   | OFF      | Yes  | Yes        | No           | No            | Yes         | No       | Yes      |
|                       | ON       | Yes  | Yes        | No           | No            | Yes         | No       | Yes      |
| Bluetooth             | OFF      | Yes  | Yes        | Yes          | No            | No          | No       | No       |

#### Note(s):

1. Yes = Testing is required. No = Testing is not required.

2. Corner A side is located between Edge 1 and Edge 2.

3. Corner B side is located between Edge 1 and Edge 4.

4. For Corner A and Corner B, Additional Corner side tests are evaluated for bands that support reduced power due to proximity sensor operation.

Page 26 of 47

# 8 Dielectric Property Measurements & System Check

## 8.1 Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within  $18^{\circ}$ C to  $25^{\circ}$ C and within  $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz) | He             | ead     |  |  |
|------------------------|----------------|---------|--|--|
| raiger requency (Minz) | ε <sub>r</sub> | σ (S/m) |  |  |
| 150                    | 52.3           | 0.76    |  |  |
| 300                    | 45.3           | 0.87    |  |  |
| 450                    | 43.5           | 0.87    |  |  |
| 835                    | 41.5           | 0.90    |  |  |
| 900                    | 41.5           | 0.97    |  |  |
| 915                    | 41.5           | 0.98    |  |  |
| 1450                   | 40.5           | 1.20    |  |  |
| 1610                   | 40.3           | 1.29    |  |  |
| 1800 – 2000            | 40.0           | 1.40    |  |  |
| 2450                   | 39.2           | 1.80    |  |  |
| 3000                   | 38.5           | 2.40    |  |  |
| 5000                   | 36.2           | 4.45    |  |  |
| 5100                   | 36.1           | 4.55    |  |  |
| 5200                   | 36.0           | 4.66    |  |  |
| 5300                   | 35.9           | 4.76    |  |  |
| 5400                   | 35.8           | 4.86    |  |  |
| 5500                   | 35.6           | 4.96    |  |  |
| 5600                   | 35.5           | 5.07    |  |  |
| 5700                   | 35.4           | 5.17    |  |  |
| 5800                   | 35.3           | 5.27    |  |  |

SAR test were performed in All RF exposure conditions using Head tissue according to TCB workshop note of April. 2019.

### IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Page 27 of 47

#### **Dielectric Property Measurements Results:**

#### SAR 3 Room

| Date     | Freq. (MHz) |    | Liq     | uid Parameters                             | Measured | Target | Delta (%) | Limit ±(%) |
|----------|-------------|----|---------|--------------------------------------------|----------|--------|-----------|------------|
|          | Head 5250   | e' | 35.9900 | Relative Permittivity (c <sub>r</sub> ):   | 35.99    | 35.93  | 0.16      | 5          |
|          | Head 5250   | e" | 15.5400 | Conductivity (o):                          | 4.54     | 4.70   | -3.53     | 5          |
|          | Head 5260   | e' | 35.9600 | Relative Permittivity ( $\varepsilon_r$ ): | 35.96    | 35.92  | 0.11      | 5          |
|          | Tieau 5200  | e" | 15.5500 | Conductivity (σ):                          | 4.55     | 4.71   | -3.49     | 5          |
| 3-4-2020 | Head 5600   | e' | 35.9300 | Relative Permittivity (c <sub>r</sub> ):   | 35.93    | 35.53  | 1.11      | 5          |
| 3-4-2020 | Head 5000   | e" | 16.0100 | Conductivity (o):                          | 4.99     | 5.06   | -1.48     | 5          |
|          | Head 5750   | e' | 35.7700 | Relative Permittivity ( $\varepsilon_r$ ): | 35.77    | 35.36  | 1.15      | 5          |
|          | Head 5750   | e" | 16.1700 | Conductivity (o):                          | 5.17     | 5.21   | -0.84     | 5          |
|          | Head 5825   | e' | 35.6600 | Relative Permittivity ( $\varepsilon_r$ ): | 35.66    | 35.30  | 1.02      | 5          |
|          | Head 3625   | e" | 16.1900 | Conductivity (σ):                          | 5.24     | 5.27   | -0.50     | 5          |
|          | Head 5250   | e' | 36.9300 | Relative Permittivity ( $\varepsilon_r$ ): | 36.93    | 35.93  | 2.77      | 5          |
|          | Head 5250   | e" | 16.0200 | Conductivity (σ):                          | 4.68     | 4.70   | -0.55     | 5          |
|          | Head 5260   | e' | 36.9000 | Relative Permittivity (c <sub>r</sub> ):   | 36.90    | 35.92  | 2.72      | 5          |
|          | Head 5200   | e" | 16.0300 | Conductivity (σ):                          | 4.69     | 4.71   | -0.51     | 5          |
| 3-9-2020 | Head 5600   | e' | 36.3200 | Relative Permittivity ( $\varepsilon_r$ ): | 36.32    | 35.53  | 2.21      | 5          |
| 3-9-2020 | Head 5600   | e" | 16.3200 | Conductivity (σ):                          | 5.08     | 5.06   | 0.42      | 5          |
|          | Head 5750   | e' | 36.0700 | Relative Permittivity (c <sub>r</sub> ):   | 36.07    | 35.36  | 2.00      | 5          |
|          | nead 5750   | e" | 16.4700 | Conductivity (σ):                          | 5.27     | 5.21   | 1.00      | 5          |
|          | Head 5825   | e' | 35.9400 | Relative Permittivity (c <sub>r</sub> ):   | 35.94    | 35.30  | 1.81      | 5          |
|          | neau 5625   | e" | 16.5300 | Conductivity (σ):                          | 5.35     | 5.27   | 1.59      | 5          |

#### SAR 4 Room

| Date     | Freq. (MHz) |    | Liq     | uid Parameters                             | Measured | Target | Delta (%) | Limit ±(%) |
|----------|-------------|----|---------|--------------------------------------------|----------|--------|-----------|------------|
|          | Head 2450   | e' | 38.3800 | Relative Permittivity ( $\varepsilon_r$ ): | 38.38    | 39.20  | -2.09     | 5          |
|          | Head 2450   | e" | 13.7300 | Conductivity ( $\sigma$ ):                 | 1.87     | 1.80   | 3.91      | 5          |
| 3-5-2020 | Head 2400   | e' | 38.4300 | Relative Permittivity ( $\varepsilon_r$ ): | 38.43    | 39.30  | -2.21     | 5          |
| 3-3-2020 | Head 2400   | e" | 13.7000 | Conductivity ( $\sigma$ ):                 | 1.83     | 1.75   | 4.37      | 5          |
|          | Head 2480   | e' | 38.3300 | Relative Permittivity ( $\varepsilon_r$ ): | 38.33    | 39.16  | -2.12     | 5          |
|          | Tieau 2400  | e" | 13.7400 | Conductivity ( $\sigma$ ):                 | 1.89     | 1.83   | 3.40      | 5          |
|          | Head 2450   | e' | 39.8400 | Relative Permittivity ( $\varepsilon_r$ ): | 39.84    | 39.20  | 1.63      | 5          |
|          | Tieau 2450  | e" | 12.9800 | Conductivity ( $\sigma$ ):                 | 1.77     | 1.80   | -1.76     | 5          |
| 3-9-2020 | Head 2400   | e' | 39.8900 | Relative Permittivity ( $\varepsilon_r$ ): | 39.89    | 39.30  | 1.51      | 5          |
| 3-9-2020 | Head 2400   | e" | 12.9600 | Conductivity ( $\sigma$ ):                 | 1.73     | 1.75   | -1.27     | 5          |
|          | Head 2480   | e' | 39.8100 | Relative Permittivity ( $\varepsilon_r$ ): | 39.81    | 39.16  | 1.65      | 5          |
|          | Head 2400   | e" | 13.0200 | Conductivity ( $\sigma$ ):                 | 1.80     | 1.83   | -2.02     | 5          |

| Date      | Freq. (MHz) |    | Liqu    | id Parameters                              | Measured | Target | Delta (%) | Limit ±(%) |
|-----------|-------------|----|---------|--------------------------------------------|----------|--------|-----------|------------|
|           | Head 5250   | e' | 36.5100 | Relative Permittivity ( $\varepsilon_r$ ): | 36.51    | 35.93  | 1.61      | 5          |
|           | Head 5250   | e" | 16.0700 | Conductivity (σ):                          | 4.69     | 4.70   | -0.23     | 5          |
|           | Head 5260   | e' | 36.4800 | Relative Permittivity ( $\varepsilon_r$ ): | 36.48    | 35.92  | 1.55      | 5          |
|           | Head 5200   | e" | 16.0700 | Conductivity ( $\sigma$ ):                 | 4.70     | 4.71   | -0.26     | 5          |
| 3-10-2020 | Head 5600   | e' | 35.9500 | Relative Permittivity ( $\varepsilon_r$ ): | 35.95    | 35.53  | 1.17      | 5          |
| 3-10-2020 | Head 5000   | e" | 16.2500 | Conductivity ( $\sigma$ ):                 | 5.06     | 5.06   | -0.01     | 5          |
|           | Head 5750   | e' | 35.7400 | Relative Permittivity ( $\varepsilon_r$ ): | 35.74    | 35.36  | 1.07      | 5          |
|           | Head 5750   | e" | 16.3300 | Conductivity ( $\sigma$ ):                 | 5.22     | 5.21   | 0.14      | 5          |
|           | Head 5825   | e' | 35.6200 | Relative Permittivity ( $\varepsilon_r$ ): | 35.62    | 35.30  | 0.91      | 5          |
|           | Tieau 3023  | e" | 16.3700 | Conductivity ( $\sigma$ ):                 | 5.30     | 5.27   | 0.61      | 5          |
|           | Head 5250   | e' | 35.5200 | Relative Permittivity ( $\varepsilon_r$ ): | 35.52    | 35.93  | -1.15     | 5          |
|           | Tieau 5250  | e" | 15.6600 | Conductivity (o):                          | 4.57     | 4.70   | -2.78     | 5          |
|           | Head 5260   | e' | 35.5000 | Relative Permittivity ( $\varepsilon_r$ ): | 35.50    | 35.92  | -1.17     | 5          |
|           | Head 5200   | e" | 15.6700 | Conductivity (o):                          | 4.58     | 4.71   | -2.74     | 5          |
| 3-11-2020 | Head 5600   | e' | 34.9900 | Relative Permittivity ( $\varepsilon_r$ ): | 34.99    | 35.53  | -1.53     | 5          |
| 5-11-2020 | Tieau 5000  | e" | 15.7900 | Conductivity ( $\sigma$ ):                 | 4.92     | 5.06   | -2.84     | 5          |
|           | Head 5750   | e' | 34.7600 | Relative Permittivity ( $\varepsilon_r$ ): | 34.76    | 35.36  | -1.70     | 5          |
|           | riead 5750  | e" | 15.8600 | Conductivity (o):                          | 5.07     | 5.21   | -2.74     | 5          |
|           | Head 5825   | e' | 34.6600 | Relative Permittivity ( $\varepsilon_r$ ): | 34.66    | 35.30  | -1.81     | 5          |
|           | neau pozp   | e" | 15.8900 | Conductivity (σ):                          | 5.15     | 5.27   | -2.34     | 5          |

### UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 29 of 47

## 8.2 System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

#### System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

### **Reference Target SAR Values**

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

| System Dipole  | Serial No. | Cal. Date | Freq. (MHz)   | Target SAR | Values (W/kg) |
|----------------|------------|-----------|---------------|------------|---------------|
| Oystern Dipole | Genariuo.  | Gal. Date | 1169. (10112) | 1g/10g     | Head          |
| D2450V2        | 960        | 3-20-2018 | 2450          | 1g         | 53.60         |
| D2450V2        | 900        | 3-20-2016 | 2450          | 10g        | 25.10         |
| D2450\/2       | 939        | 7-25-2019 | 2450          | 1g         | 53.20         |
| D2450V2        | 939        | 7-25-2019 | 2450          | 10g        | 25.10         |
|                |            |           | 5250          | 1g         | 81.10         |
|                |            |           | 5250          | 10g        | 23.40         |
| D5GHzV2        | 1184       | 8-21-2018 | 5600          | 1g         | 85.00         |
| DOGHZVZ        | 1104       | 0-21-2010 | 5000          | 10g        | 24.40         |
|                |            |           | 5750          | 1g         | 82.60         |
|                |            |           | 5750          | 10g        | 23.70         |

#### Note(s):

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations D2450(SN : 960), D5GHz(SN : 1184))

### **System Check Results**

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

#### SAR 3 Room

|             | System  | Dipole   | τo             |     | Measured | d Results           | Townst                 | Dalta          | Dist        |
|-------------|---------|----------|----------------|-----|----------|---------------------|------------------------|----------------|-------------|
| Date Tested | Туре    | Serial # | T.S.<br>Liquid | -   |          | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Plot<br>No. |
| 3-4-2020    | D5GHzV2 | 1184     | Head           | 1g  | 8.45     | 84.50               | 82.60                  | 2.30           |             |
| 3-4-2020    | (5750)  | 1104     | Tieau          | 10g | 2.39     | 23.90               | 23.70                  | 0.84           |             |
| 3-9-2020    | D5GHzV2 | 1184     | Head           | 1g  | 7.71     | 77.10               | 81.10                  | -4.93          | 1, 2        |
| 3-9-2020    | (5250)  | 1104     | Tieau          | 10g | 2.16     | 21.60               | 23.40                  | -7.69          | 1, 2        |
| 3-9-2020    | D5GHzV2 | 1184     | Head           | 1g  | 8.52     | 85.20               | 85.00                  | 0.24           |             |
| 3-9-2020    | (5600)  | 1104     | Tieau          | 10g | 2.36     | 23.60               | 24.40                  | -3.28          |             |
| 3-9-2020    | D5GHzV2 | 1184     | Head           | 1g  | 8.41     | 84.10               | 82.60                  | 1.82           |             |
| 3-9-2020    | (5750)  | 1104     | rieau          | 10g | 2.36     | 23.60               | 23.70                  | -0.42          |             |

#### SAR 4 Room

|             | System  | System Dipole |                | то  |                        | Measured Results    |                        | Dalka          | Dist        |
|-------------|---------|---------------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------|
| Date Tested | Туре    | Serial #      | T.S.<br>Liquid |     | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Plot<br>No. |
| 3-5-2020    | D2450V2 | 960           | Head           | 1g  | 5.53                   | 55.30               | 53.60                  | 3.17           | 3, 4        |
| 3-3-2020    | D2430V2 | 900           | Tieau          | 10g | 2.58                   | 25.80               | 25.10                  | 2.79           | 3, 4        |
| 3-9-2020    | D2450V2 | 939           | Head           | 1g  | 5.07                   | 50.70               | 53.20                  | -4.70          | 5, 6        |
| 5-9-2020    | D2430V2 | 939           | rieau          | 10g | 2.37                   | 23.70               | 25.10                  | -5.58          | 5, 6        |

#### SAR 5 Room

|             | System  | Dipole   | те     | T.S. |                        | d Results           | Torget                 | Dalta          | Plot |
|-------------|---------|----------|--------|------|------------------------|---------------------|------------------------|----------------|------|
| Date Tested | Туре    | Serial # | Liquid |      | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | No.  |
| 3-10-2020   | D5GHzV2 | 1184     | Head   | 1g   | 8.29                   | 82.90               | 82.60                  | 0.36           |      |
| 3-10-2020   | (5750)  | 1104     | Tieau  | 10g  | 2.36                   | 23.60               | 23.70                  | -0.42          |      |
| 3-11-2020   | D5GHzV2 | 1184     | Head   | 1g   | 8.06                   | 80.60               | 81.10                  | -0.62          |      |
| 5-11-2020   | (5250)  | 1104     | Tiead  | 10g  | 2.30                   | 23.00               | 23.40                  | -1.71          |      |
| 3-11-2020   | D5GHzV2 | 1184     | Head   | 1g   | 8.22                   | 82.20               | 85.00                  | -3.29          | 7, 8 |
| 3-11-2020   | (5600)  | 1104     | rieau  | 10g  | 2.33                   | 23.30               | 24.40                  | -4.51          | 7,0  |

## 9 Conducted Output Power Measurements

# 9.1 Wi-Fi 2.4GHz (DTS Band)

### Measured Results

| Deved         |         |           |      | E              |                  | Max Pwr.                   |                      |                  | Reduction Pwr.             |                     |
|---------------|---------|-----------|------|----------------|------------------|----------------------------|----------------------|------------------|----------------------------|---------------------|
| Band<br>(GHz) | Mode    | Data Rate | Ch # | Freq.<br>(MHz) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SAR Test<br>(Yes/No) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SARTest<br>(Yes/No) |
|               |         |           | 1    | 2412           | 16.5             | 17.0                       | No                   | 13.3             | 13.5                       |                     |
|               |         |           | 6    | 2437           | 18.3             | 19.0                       | Yes                  | 13.3             | 13.5                       |                     |
|               | 802.11b | 1 Mbps    | 11   | 2462           | 18.0             | 19.0                       | 163                  | 13.5             | 13.5                       | Yes                 |
|               |         |           | 12   | 2467           | Not Require      | 16.0                       | No                   | 13.0             | 13.5                       |                     |
|               |         |           | 13   | 2472           | Not Require      | 13.0                       | INU                  | Not Require      | 13.0                       |                     |
|               |         |           | 1    | 2412           |                  | 16.0                       |                      | 13.0             | 13.5                       |                     |
| 2.4           |         |           | 6    | 2437           |                  | 16.0                       |                      | 13.1             | 13.5                       |                     |
| SISO          | 802.11g | 6 Mbps    | 11   | 2462           | Not Require      | 16.0                       | No                   | 13.3             | 13.5                       | No                  |
| Ant 1         |         |           | 12   | 2467           |                  | 11.0                       |                      | Not Require      | 11.0                       |                     |
|               |         |           | 13   | 2472           |                  | 8.0                        |                      | Not Require      | 8.0                        |                     |
|               |         |           | 1    | 2412           |                  | 16.0                       |                      | 12.9             | 13.5                       |                     |
|               | 802.11n |           | 6    | 2437           |                  | 16.0                       |                      | 13.1             | 13.5                       |                     |
|               | (HT20)  | 6.5 Mbps  | 11   | 2462           | Not Require      | 16.0                       | No                   | 13.2             | 13.5                       | No                  |
|               | (11120) |           | 12   | 2467           |                  | 12.0                       |                      | Not Require      | 12.0                       |                     |
|               |         |           | 13   | 2472           |                  | 6.0                        |                      | Not Require      | 6.0                        |                     |
|               |         |           | 1    | 2412           | 17.3             | 18.0                       |                      | 13.3             | 13.5                       |                     |
|               |         |           | 6    | 2437           | 16.9             | 18.0                       |                      | 13.1             | 13.5                       |                     |
|               | 802.11b | 1 Mbps    | 11   | 2462           | 17.4             | 18.0                       | Yes                  | 13.4             | 13.5                       | Yes                 |
|               |         |           | 12   | 2467           | 17.1             | 18.0                       |                      | 13.3             | 13.5                       |                     |
|               |         |           | 13   | 2472           | Not Require      | 15.0                       |                      | 13.0             | 13.5                       |                     |
|               |         |           | 1    | 2412           |                  | 15.0                       |                      | 13.4             | 13.5                       |                     |
| 2.4           |         |           | 6    | 2437           |                  | 15.0                       |                      | 13.1             | 13.5                       |                     |
| SISO          | 802.11g | 6 Mbps    | 11   | 2462           | Not Require      | 15.0                       | No                   | 13.6             | 13.5                       | No                  |
| Ant 2         |         |           | 12   | 2467           |                  | 15.0                       |                      | 13.4             | 13.5                       |                     |
|               |         |           | 13   | 2472           |                  | 11.0                       |                      | Not Require      | 11.0                       |                     |
|               |         |           | 1    | 2412           |                  | 15.0                       |                      | 13.0             | 13.5                       |                     |
|               | 802.11n |           | 6    | 2437           |                  | 15.0                       |                      | 12.9             | 13.5                       |                     |
|               | (HT20)  | 6 Mbps    | 11   | 2462           | Not Require      | 15.0                       | No                   | 13.3             | 13.5                       | No                  |
|               | (11120) |           | 12   | 2467           |                  | 15.0                       |                      | 13.4             | 13.5                       |                     |
|               |         |           | 13   | 2472           |                  | 10.0                       |                      | Not Require      | 10.0                       |                     |

#### Note(s):

1. SAR is not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 1.2 W/kg.

2. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11n/g mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

3. MIMO DTS SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

# 9.2 Wi-Fi 5GHz (U-NII Bands)

## Measured Results

|         | a Result      | Ĭ                   |           |      |                |                  | Max Pwr.                   |                      |                  | Reduction Pwr.             |                      |
|---------|---------------|---------------------|-----------|------|----------------|------------------|----------------------------|----------------------|------------------|----------------------------|----------------------|
| Antenna | Band<br>(GHz) | Mode                | Data Rate | Ch # | Freq.<br>(MHz) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SAR Test<br>(Yes/No) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SAR Test<br>(Yes/No) |
|         |               |                     |           | 52   | 5260.0         | 13.3             |                            |                      | Not Required     |                            | (                    |
|         |               | 000.44              |           | 56   | 5280.0         | 13.7             |                            | N.                   | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps    | 60   | 5300.0         | 13.5             | 14.5                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 64   | 5320.0         | 13.6             |                            |                      | Not Required     |                            |                      |
|         |               |                     |           | 52   | 5260.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11n             |           | 56   | 5280.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (HT20)              | 6.5 Mbps  | 60   | 5300.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 64   | 5320.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | 5.3           | 802.11n             |           | 54   | 5270.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | (UNII 2A)     | (HT40)              | 13.5 Mbps | 62   | 5310.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 52   | 5260.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            |           | 56   | 5280.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (VHT20)             | 6.5 Mbps  | 60   | 5300.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 64   | 5320.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 000.44              |           | 54   | 5270.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac<br>(VHT40) | 13.5 Mbps | 62   | 5310.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               | 802.11ac            |           | -    | -              | -                | -                          |                      |                  |                            |                      |
|         |               | (VHT80)             | 29.3 Mbps | 58   | 5290.0         | Not Required     | 10.5                       | No                   | 9.3              | 9.0                        | Yes                  |
|         |               |                     |           | 100  | 5500.0         | 12.9             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps    | 120  | 5600.0         | 12.6             | 13.0                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               | 002.11a             | o mops    | 124  | 5620.0         | 12.7             | 13.0                       | 165                  | Not Required     | 9.0                        | NO                   |
|         |               |                     |           | 144  | 5720.0         | 12.8             |                            |                      | Not Required     |                            |                      |
|         |               |                     |           | 100  | 5500.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11n             |           | 120  | 5600.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (HT20)              | 6.5 Mbps  | 124  | 5620.0         | Not Required     | 11.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 144  | 5720.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |           | 102  | 5510.0         | Not Required     |                            |                      | Not Required     |                            |                      |
| SISO    |               | 802.11n             |           | 118  | 5590.0         | Not Required     |                            |                      | Not Required     |                            |                      |
| Ant.1   |               | (HT40)              | 13.5 Mbps | 126  | 5630.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
|         | 5.5           |                     |           | 142  | 5710.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | (U-NII 2C)    |                     |           | 100  | 5500.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            |           | 120  | 5600.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (VHT20)             | 6.5 Mbps  | 124  | 5620.0         | Not Required     | 11.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 144  | 5720.0         | Not Required     | -                          |                      | Not Required     |                            |                      |
|         |               |                     |           | 102  | 5510.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802 1100            |           | 118  | 5590.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac<br>(VHT40) | 13.5 Mbps | 126  | 5630.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 142  | 5710.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |           | 192  | 5530.0         | Not Required     |                            |                      | 9.1              |                            |                      |
|         |               | 802.11ac            | 29.3 Mbps | 100  | 5610.0         | Not Required     | 10.0                       | No                   | 9.1              | 9.0                        | Yes                  |
|         |               | (VHT80)             | 29.3 Mbps |      | -              |                  | 10.0                       | INO                  |                  | 9.0                        | 165                  |
|         |               |                     |           | 138  | 5690.0         | Not Required     |                            |                      | 9.5              |                            |                      |
|         |               |                     |           | 149  | 5745.0         | 13.3             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps    | 157  | 5785.0         | 13.2             | 14.5                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 165  | 5825.0         | 12.9             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11n             |           | 149  | 5745.0         | Not Required     | [                          |                      | Not Required     |                            |                      |
|         |               | (HT20)              | 6.5 Mbps  | 157  | 5785.0         | Not Required     | 14.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 165  | 5825.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | 5.8           | 802.11n             | 13.5 Mbps | 151  | 5755.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         | (U-NII 3)     | (HT40)              |           | 159  | 5795.0         | Not Required     |                            |                      | Not Required     |                            | -                    |
|         |               | 902 1100            |           | 149  | 5745.0         | Not Required     | [                          |                      | Not Required     |                            |                      |
|         |               | 802.11ac<br>(VHT20) | 6.5 Mbps  | 157  | 5785.0         | Not Required     | 14.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |           | 165  | 5825.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            | 13.5 Meno | 151  | 5755.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               | (VHT40)             | 13.5 Mbps | 159  | 5795.0         | Not Required     | 10.5                       | UNI                  | Not Required     | 9.0                        | NU                   |
|         |               | 802.11ac<br>(VHT80) | 29.3 Mbps | 155  | 5775.0         | Not Required     | 10.5                       | No                   | 9.2              | 9.0                        | Yes                  |

Page 33 of 47

#### Report No.: 4789354110-S1V2

|         | Dend          |                     |            |      | Free           |                  | Max Pwr.                   |                      |                  | Reduction Pwr.             |                      |
|---------|---------------|---------------------|------------|------|----------------|------------------|----------------------------|----------------------|------------------|----------------------------|----------------------|
| Antenna | Band<br>(GHz) | Mode                | Data Rate  | Ch # | Freq.<br>(MHz) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SAR Test<br>(Yes/No) | Avg Pwr<br>(dBm) | Max Output<br>Pow er (dBm) | SAR Test<br>(Yes/No) |
|         |               |                     |            | 52   | 5260.0         | 12.5             |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 56   | 5280.0         | 12.6             | 40.0                       |                      | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps     | 60   | 5300.0         | 12.6             | 13.0                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 64   | 5320.0         | 12.6             |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 52   | 5260.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11n             |            | 56   | 5280.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (HT20)              | 6.5 Mbps   | 60   | 5300.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 64   | 5320.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | 5.3           | 802.11n             |            | 54   | 5270.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | (UNII 2A)     | (HT40)              | 13.5 Mbps  | 62   | 5310.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 52   | 5260.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            |            | 56   | 5280.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (VHT20)             | 6.5 Mbps   | 60   | 5300.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 64   | 5320.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            |            | 54   | 5270.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | (VHT40)             | 13.5 Mbps  | 62   | 5310.0         | Not Required     | 10.5                       | No                   | Not Required     | 9.0                        | No                   |
|         |               | 802.11ac            | 29.3 Mbps  | 58   | 5290.0         | Not Required     | 10.5                       | No                   | 8.1              | 9.0                        | Yes                  |
|         |               | (VHT80)             | 20.0 10000 |      |                | -                | 10.0                       | 110                  |                  | 5.0                        | 103                  |
|         |               |                     |            | 100  | 5500.0         | 12.4             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps     | 120  | 5600.0         | 12.7             | 13.0                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 124  | 5620.0         | 12.5             |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 144  | 5720.0         | 12.2             |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 100  | 5500.0         | Not Required     |                            |                      | Not Required     | [                          |                      |
|         |               | 802.11n             | 6.5 Mbps   | 120  | 5600.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               | (HT20)              |            | 124  | 5620.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 144  | 5720.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 102  | 5510.0         | Not Required     |                            |                      | Not Required     | [                          |                      |
| SISO    |               | 802.11n             | 13.5 Mbps  | 118  | 5590.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
| Ant.2   | 5.5           | (HT40)              |            | 126  | 5630.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | (U-NII 2C)    |                     |            | 142  | 5710.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 100  | 5500.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            | 6.5 Mbps   | 120  | 5600.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               | (VHT20)             |            | 124  | 5620.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 144  | 5720.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 102  | 5510.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            | 13.5 Mbps  | 118  | 5590.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
|         |               | (VHT40)             |            | 126  | 5630.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               |                     |            | 142  | 5710.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            |            | 106  | 5530.0         | Not Required     |                            |                      | 8.4              |                            |                      |
|         |               | (VHT80)             | 29.3 Mbps  | 122  | 5610.0         | Not Required     | 9.0                        | No                   | 8.7              | 9.0                        | Yes                  |
|         |               |                     |            | 138  | 5690.0         | Not Required     |                            |                      | 8.4              |                            |                      |
|         |               |                     |            | 149  | 5745.0         | 12.6             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11a             | 6 Mbps     | 157  | 5785.0         | 12.1             | 13.0                       | Yes                  | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 165  | 5825.0         | 12.4             |                            |                      | Not Required     |                            |                      |
|         |               | 802.11m             |            | 149  | 5745.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11n<br>(HT20)   | 6.5 Mbps   | 157  | 5785.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 165  | 5825.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         | 5.8           | 802.11n             | 13.5 Mbps  | 151  | 5755.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
|         | (U-NII 3)     | (HT40)              | 10.0 10000 | 159  | 5795.0         | Not Required     | 0.0                        | 110                  | Not Required     | 5.0                        | 140                  |
|         |               | 800.14              |            | 149  | 5745.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac<br>(VHT20) | 6.5 Mbps   | 157  | 5785.0         | Not Required     | 13.0                       | No                   | Not Required     | 9.0                        | No                   |
|         |               |                     |            | 165  | 5825.0         | Not Required     |                            |                      | Not Required     |                            |                      |
|         |               | 802.11ac            | 13.5 Mbps  | 151  | 5755.0         | Not Required     | 9.5                        | No                   | Not Required     | 9.0                        | No                   |
|         |               | (VHT40)             | 10.0 mbps  | 159  | 5795.0         | Not Required     | 3.5                        | 110                  | Not Required     | 3.0                        | 1 NO                 |
|         |               | 802.11ac            | 29.3 Mbps  | 155  | 5775.0         | Not Required     | 9.0                        | No                   | 8.7              | 9.0                        | Yes                  |
|         |               | (VHT80)             | <u> </u>   | l    | l              | I                | I                          | L                    | I                | I                          | L                    |

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

#### Note(s):

- 1. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power
- 2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.
- 3. When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest <u>reported</u> SAR for UNII band 2A is
  - $\circ$   $\leq$  1.2 W/kg, SAR is not required for UNII band I
  - > 1.2 W/kg, both bands should be tested independently for SAR.
- 4. MIMO UNII SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

## 9.3 Bluetooth

## Average Power Measured Results

| Band  |                |            | Free           | Maximun Avera | ge Power (dBm)   |  |
|-------|----------------|------------|----------------|---------------|------------------|--|
| (GHz) | Mode           | Ch #       | Freq.<br>(MHz) | Meas. Pwr     | Tune-up<br>Limit |  |
|       |                | 0          | 2402           | 7.2           |                  |  |
|       | GFSK           | 39         | 2441           | 7.8           | 9.0              |  |
|       |                | 78         | 2480           | 6.7           |                  |  |
|       | EDP            | 0          | 2402           | 3.8           |                  |  |
|       | EDR,<br>8-DPSK | 39         | 2441           | 4.5           | 5.0              |  |
| 2.4   | 0-01 01        | 78         | 2480           | 3.2           |                  |  |
| 2.4   |                | 0          | 2402           | 2.0           |                  |  |
|       | LE,<br>GFSK-1M | LE, 39 244 |                | 2.8           | 4.5              |  |
|       |                | 78         | 2480           | 1.1           |                  |  |
|       | 15             | 0          | 2402           | 1.8           |                  |  |
|       | LE,<br>GFSK-2M | 19         | 2440           | 2.5           | 4.5              |  |
|       |                | 39         | 2480           | 0.9           |                  |  |

#### Note(s):

 $\sim - \sim$ 

SAR test is evaluated at GFSK mode in Bluetooth

### **Duty Factor Measured Results**

| Mode | Туре | T on<br>(ms) | Period<br>(ms) | Duty Cycle | Crest Factor<br>(1/duty cycle) |
|------|------|--------------|----------------|------------|--------------------------------|
| GFSK | DH5  | 2.878        | 3.750          | 76.7%      | 1.30                           |

# **Duty Cycle plots**

| FSK      |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|----------|----------------|-----------------|----------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------|
|          | ectrum A<br>RF | nalyzer - Swept |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| RL       | RF             | 50 Ω            |                      | NO: Fast Gain:Low                                 | NSE:INT<br>Trig: RF Burst<br>Atten: 40 dB | ALIGN AUTO<br>#Avg Ty<br>Avg Holo                                                                         | pe: RMS<br>d:>100/100 | 07:27:28 PM Mar 06, 20<br>TRACE 1 2 3 4<br>TYPE MWWW<br>DET P N N N |
| ) dB/div | Ref            | 30.00 dE        | 3m                   |                                                   |                                           |                                                                                                           |                       | ΔMkr2 2.878 m<br>-0.049 d                                           |
|          |                |                 |                      | 4                                                 |                                           | 2Δ1                                                                                                       | 244                   |                                                                     |
|          |                |                 |                      | 0                                                 |                                           |                                                                                                           |                       |                                                                     |
| .0       |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| 10       |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| .0       |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| .0       |                |                 |                      |                                                   |                                           | here a first state of the second se |                       | <b>\</b> ^                                                          |
| 0        |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| 0        |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| .0       |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
| s BW 1   |                | 00000 GH<br>2   | IZ                   | #VBW                                              | 50 MHz                                    |                                                                                                           | Swee                  | Span 0 I<br>p 11.00 ms (20001 p                                     |
| R MODE T | RC SCL         |                 | х                    | Y                                                 | FUNCTION                                  | FUNCTION WIDTH                                                                                            |                       | FUNCTION VALUE                                                      |
| Ν<br>Δ1  | 1 t<br>1 t     | (Δ)             | 3.753 ms<br>2.878 ms | 11.191 d<br>(Δ) -0.049                            | Bm                                        |                                                                                                           |                       |                                                                     |
| Δ1 1     | t              | (Δ)<br>(Δ)      | 3.750 ms             | <ul> <li>(Δ) -0.049</li> <li>(Δ) 0.027</li> </ul> | dB                                        |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   |                                           |                                                                                                           |                       |                                                                     |
|          |                |                 |                      |                                                   | m                                         |                                                                                                           |                       | •                                                                   |
|          |                |                 |                      |                                                   |                                           | STATUS                                                                                                    |                       |                                                                     |

Page 36 of 47

# 10 Measured and Reported (Scaled) SAR Results

#### SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN= Measured SAR \*Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR \* Tune-up scaling factor \* Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

#### KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\leq 0.8$  W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is  $\leq 100$  MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

#### KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
  - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
  - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
  - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

# 10.1 Wi-Fi (DTS Band)

| Frequency              |             | RF Exposure  | PWR      | Dist.    |               |        | Freq.  | Area Scan          | Duty      | Power            | (dBm) | 1-g SAF | R (W/kg) |       | Plot |      |       |       |   |  |
|------------------------|-------------|--------------|----------|----------|---------------|--------|--------|--------------------|-----------|------------------|-------|---------|----------|-------|------|------|-------|-------|---|--|
| Band                   | Mode        | Conditions   | Back-off | (mm)     | Test Position | Ch #.  | (MHz)  | Max. SAR<br>(W/kg) | Cycle (%) | Tune-up<br>limit | Meas. | Meas.   | Scaled   | Note  | No.  |      |       |       |   |  |
|                        |             |              |          | 13       | Rear          | 6      | 2437.0 | 0.165              | 99.3%     | 19.0             | 18.3  |         |          |       |      |      |       |       |   |  |
|                        |             |              | Off      | 12       | Edge 1        | 6      | 2437.0 | 0.233              | 99.3%     | 19.0             | 18.3  | 0.184   | 0.217    | 2     |      |      |       |       |   |  |
| 2.4GHz<br>SISO 802.11b |             | Oli          | 7        | Edge 2   | 6             | 2437.0 | 0.626  | 99.3%              | 19.0      | 18.3             | 0.456 | 0.538   |          |       |      |      |       |       |   |  |
|                        |             |              | 8        | Corner A | 6             | 2437.0 | 0.160  | 99.3%              | 19.0      | 18.3             |       |         |          |       |      |      |       |       |   |  |
|                        | Standalone  |              |          | Rear     | 1             | 2412.0 | 1.272  | 99.3%              | 13.5      | 13.3             | 0.827 | 0.870   |          |       |      |      |       |       |   |  |
| Ant 1                  | SISO 1 Mbps | Stariualurie | On       |          | itedi         | 11     | 2462.0 | 1.276              | 99.3%     | 13.5             | 13.5  | 0.837   | 0.850    |       |      |      |       |       |   |  |
| , i                    |             |              |          | 0        | Edge 1        | 11     | 2462.0 | 0.500              | 99.3%     | 13.5             | 13.5  | 0.441   | 0.448    | 3     |      |      |       |       |   |  |
|                        |             |              |          |          | Edge 2        | 1      | 2412.0 | 0.932              | 99.3%     | 13.5             | 13.3  | 0.866   | 0.911    |       | 1    |      |       |       |   |  |
|                        |             |              |          |          | Luge 2        | 11     | 2462.0 | 0.877              | 99.3%     | 13.5             | 13.5  | 0.800   | 0.813    |       |      |      |       |       |   |  |
|                        |             |              |          |          | Corner A      | 11     | 2462.0 | 0.456              | 99.3%     | 13.5             | 13.5  |         |          |       |      |      |       |       |   |  |
|                        |             |              |          |          | 13            | Rear   | 11     | 2462.0             | 0.089     | 99.3%            | 18.0  | 17.4    |          |       |      |      |       |       |   |  |
|                        |             |              | Off      | 12       | Edge 1        | 11     | 2462.0 | 0.027              | 99.3%     | 18.0             | 17.4  |         |          |       |      |      |       |       |   |  |
| 0.4011                 |             |              | Off      | UI       | UIT           | Οπ .   | Off    | Off                | 6         | Edge 4           | 11    | 2462.0  | 0.252    | 99.3% | 18.0 | 17.4 | 0.192 | 0.224 | 1 |  |
| 2.4GHz<br>SISO         | 802.11b     | Standalone   |          |          |               |        |        |                    | 7         | Corner B         | 11    | 2462.0  | 0.064    | 99.3% | 18.0 | 17.4 |       |       |   |  |
| Ant 2                  | 1 Mbps      | Otariudione  |          |          | Rear          | 11     | 2462.0 | 0.934              | 99.3%     | 13.5             | 13.4  | 0.599   | 0.614    |       |      |      |       |       |   |  |
|                        |             |              | On       | 0        | Edge 1        | 11     | 2462.0 | 0.184              | 99.3%     | 13.5             | 13.4  |         |          |       |      |      |       |       |   |  |
|                        |             |              | On       | 0        | Edge 4        | 11     | 2462.0 | 0.591              | 99.3%     | 13.5             | 13.4  | 0.498   | 0.511    | 2     |      |      |       |       |   |  |
|                        |             |              |          |          | Corner B      | 11     | 2462.0 | 0.089              | 99.3%     | 13.5             | 13.4  |         |          |       |      |      |       |       |   |  |

#### Note(s):

1. Highest <u>reported</u> SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

- Highest <u>reported</u> SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest <u>reported</u> SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was <u>reported</u>.
- 3. Testing for a second channel was required because the <u>reported</u> SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).

4. SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

## 10.2 Bluetooth

| Frequency |      | RF Exposure<br>Conditions | PWR<br>Back-off | Dist.<br>(mm) | Lest Position |       | Freq.<br>(MHz) | Duty<br>Cycle (%) | Power (dBm)      |       | 1-g SAR (W/kg) |        | Plot |
|-----------|------|---------------------------|-----------------|---------------|---------------|-------|----------------|-------------------|------------------|-------|----------------|--------|------|
| Band      | Mode |                           |                 |               |               | Ch #. |                |                   | Tune-up<br>limit | Meas. | Meas.          | Scaled | No.  |
|           |      |                           |                 | 0             | Rear          | 39    | 2441.0         | 76.7%             | 9.0              | 7.8   | 0.162          | 0.279  |      |
| 2.4GHz    | GFSK | Standalone                | N/A             | 0             | Edge 1        | 39    | 2441.0         | 76.7%             | 9.0              | 7.8   | 0.077          | 0.132  |      |
|           |      |                           |                 | 0             | Edge 2        | 39    | 2441.0         | 76.7%             | 9.0              | 7.8   | 0.186          | 0.320  | 2    |

#### Note(s):

Bluetooth SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

# 10.3 Wi-Fi (U-NII Band)

| Frequency     |              | RF Exposure | PWR      | Dist.  |               |        | Freq.  | Area Scan          | Duty      | Power            | (dBm) | 1-g SAI | R (W/kg) |      | Plot |
|---------------|--------------|-------------|----------|--------|---------------|--------|--------|--------------------|-----------|------------------|-------|---------|----------|------|------|
| Band          | Mode         | Conditions  | Back-off | (mm)   | Test Position | Ch #.  | (MHz)  | Max. SAR<br>(W/kg) | Cycle (%) | Tune-up<br>limit | Meas. | Meas.   | Scaled   | Note | No.  |
|               |              |             |          | 13     | Rear          | 56     | 5280.0 | 0.088              | 96.5%     | 14.5             | 13.7  |         |          |      |      |
| 802.11a       |              | Off         | 12       | Edge 1 | 56            | 5280.0 | 0.090  | 96.5%              | 14.5      | 13.7             |       |         |          |      |      |
| 5.3 GHz       | 6 Mbps       |             | Oli      | 7      | Edge 2        | 56     | 5280.0 | 0.623              | 96.5%     | 14.5             | 13.7  | 0.286   | 0.360    | 1    |      |
| U-NII 2A      |              | Standalone  |          | 8      | Corner A      | 56     | 5280.0 | 0.015              | 96.5%     | 14.5             | 13.7  |         |          |      |      |
| SISO<br>Ant 1 |              | Stanualone  |          | 0      | Rear          | 58     | 5290.0 | 0.608              | 92.8%     | 9.0              | 8.5   | 0.296   | 0.359    | 2    |      |
| /             | 802.11ac     |             | On       | 0      | Edge 1        | 58     | 5290.0 | 0.111              | 92.8%     | 9.0              | 8.5   |         |          |      |      |
|               | (VHT80) MCS0 |             | On       | 0      | Edge 2        | 58     | 5290.0 | 1.215              | 92.8%     | 9.0              | 8.5   | 0.477   | 0.579    |      | 3    |
|               |              |             |          | 0      | Corner A      | 58     | 5290.0 | 0.552              | 92.8%     | 9.0              | 8.5   |         |          |      |      |
|               |              |             |          | 13     | Rear          | 60     | 5300.0 | 0.020              | 96.5%     | 13.0             | 12.6  |         |          |      |      |
|               | 802.11a      |             | Off      | 12     | Edge 1        | 60     | 5300.0 | 0.039              | 96.5%     | 13.0             | 12.6  |         |          |      |      |
| 5.3 GHz       | 6 Mbps       |             | 011      | 6      | Edge 4        | 60     | 5300.0 | 0.143              | 96.5%     | 13.0             | 12.6  | 0.065   | 0.075    | 1    |      |
| U-NII 2A      |              | Standalone  |          | 7      | Corner B      | 60     | 5300.0 | 0.025              | 96.5%     | 13.0             | 12.6  |         |          |      |      |
| SISO<br>Ant 2 |              | Otandalone  |          | 0      | Rear          | 58     | 5290.0 | 0.200              | 92.8%     | 9.0              | 8.4   |         |          |      |      |
|               | 802.11ac     |             | On       | 0      | Edge 1        | 58     | 5290.0 | 0.154              | 92.8%     | 9.0              | 8.4   |         |          |      |      |
|               | (VHT80) MCS0 |             | On       | 0      | Edge 4        | 58     | 5290.0 | 0.552              | 92.8%     | 9.0              | 8.4   | 0.218   | 0.271    | 1    |      |
|               |              |             |          | 0      | Corner B      | 58     | 5290.0 | 0.051              | 92.8%     | 9.0              | 8.4   |         |          |      |      |

#### Note(s):

1. Highest <u>reported</u> SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

Highest <u>reported</u> SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest <u>reported</u> SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was <u>reported</u>.

3. Testing for a second channel was required because the <u>reported</u> SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).

Page 39 of 47

#### Report No.: 4789354110-S1V2

| Frequency     |                   | RF Exposure  | PWR      | Dist. |               |       | Freq.  | Area Scan          | Duty      | Power (dBm)      |       | 1-g SAR (W/kg) |        | Noto | Plot |
|---------------|-------------------|--------------|----------|-------|---------------|-------|--------|--------------------|-----------|------------------|-------|----------------|--------|------|------|
| Band          | Mode              | Conditions   | Back-off | (mm)  | Test Position | Ch #. | (MHz)  | Max. SAR<br>(W/kg) | Cycle (%) | Tune-up<br>limit | Meas. | Meas.          | Scaled | Note | No.  |
|               |                   |              |          | 13    | Rear          | 100   | 5500.0 | 0.096              | 96.5%     | 13.0             | 12.9  |                |        |      |      |
|               | 802.11a<br>6 Mbps |              | Off      | 12    | Edge 1        | 100   | 5500.0 | 0.080              | 96.5%     | 13.0             | 12.9  |                |        |      |      |
| 5.6 GHz       |                   |              |          | 7     | Edge 2        | 100   | 5500.0 | 0.739              | 96.5%     | 13.0             | 12.9  | 0.324          | 0.341  | 1    |      |
| U-NII 2C      |                   | Standalone   |          | 8     | Corner A      | 100   | 5500.0 | 0.321              | 96.5%     | 13.0             | 12.9  |                |        |      |      |
| SISO<br>Ant 1 |                   | Stariualorie |          | 0     | Rear          | 138   | 5690.0 | 1.049              | 92.8%     | 9.0              | 8.9   |                |        |      |      |
| /             | 802.11ac          |              | On       | 0     | Edge 1        | 138   | 5690.0 | 0.181              | 92.8%     | 9.0              | 8.9   |                |        |      |      |
|               | (VHT80) MCS0      | )            | OII      | 0     | Edge 2        | 138   | 5690.0 | 1.247              | 92.8%     | 9.0              | 8.9   | 0.481          | 0.530  |      | 4    |
|               |                   |              |          | 0     | Corner A      | 138   | 5690.0 | 1.074              | 92.8%     | 9.0              | 8.9   | 0.344          | 0.379  | 2    |      |
|               |                   |              |          | 13    | Rear          | 120   | 5600.0 | 0.019              | 96.5%     | 13.0             | 12.7  |                |        |      |      |
|               | 802.11a           |              | Off      | 12    | Edge 1        | 120   | 5600.0 | 0.064              | 96.5%     | 13.0             | 12.7  |                |        |      |      |
| 5.6 GHz       | 6 Mbps            |              | OII      | 6     | Edge 4        | 120   | 5600.0 | 0.241              | 96.5%     | 13.0             | 12.7  | 0.101          | 0.113  | 1    |      |
| U-NII 2C      |                   | Standalone   |          | 7     | Corner B      | 120   | 5600.0 | 0.074              | 96.5%     | 13.0             | 12.7  |                |        |      |      |
| SISO<br>Ant 2 |                   | otaridatorie |          | 0     | Rear          | 106   | 5530.0 | 0.336              | 92.8%     | 9.0              | 8.8   |                |        |      |      |
|               | 802.11ac          |              | On       | 0     | Edge 1        | 106   | 5530.0 | 0.253              | 92.8%     | 9.0              | 8.8   |                |        |      |      |
|               | (VHT80) MCS0      |              | On       | 0     | Edge 4        | 106   | 5530.0 | 1.117              | 92.8%     | 9.0              | 8.8   | 0.336          | 0.378  | 1    |      |
|               |                   |              |          | 0     | Corner B      | 106   | 5530.0 | 0.210              | 92.8%     | 9.0              | 8.8   |                |        |      |      |

#### Note(s):

1. Highest <u>reported</u> SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

Highest <u>reported</u> SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest <u>reported</u> SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was <u>reported</u>.

Testing for a second channel was required because the <u>reported</u> SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).

Page 40 of 47

#### Report No.: 4789354110-S1V2

| Frequency          |                                         | RF Exposure | PWR      | Dist. |               |       | Freq.  | Area Scan          | Duty      | Power            | (dBm) | 1-g SAR (W/kg) |        | Note | Plot |
|--------------------|-----------------------------------------|-------------|----------|-------|---------------|-------|--------|--------------------|-----------|------------------|-------|----------------|--------|------|------|
| Band               | Mode                                    | Conditions  | Back-off | (mm)  | Test Position | Ch #. | (MHz)  | Max. SAR<br>(W/kg) | Cycle (%) | Tune-up<br>limit | Meas. | Meas.          | Scaled | Note | No.  |
|                    |                                         |             |          | 13    | Rear          | 149   | 5745.0 | 0.090              | 96.5%     | 14.5             | 13.3  |                |        |      |      |
|                    | 802.11a<br>6 Mbps<br>5.8 GHz<br>U-NII 3 |             | Off      | 12    | Edge 1        | 149   | 5745.0 | 0.069              | 96.5%     | 14.5             | 13.3  |                |        |      |      |
| 5 0 011-           |                                         |             | Off      | 7     | Edge 2        | 149   | 5745.0 | 0.512              | 96.5%     | 14.5             | 13.3  | 0.273          | 0.375  | 1    |      |
|                    |                                         | Standalone  |          | 8     | Corner A      | 149   | 5745.0 | 0.239              | 96.5%     | 14.5             | 13.3  |                |        |      |      |
| SISO<br>Ant 1      |                                         | Stariualone |          | 0     | Rear          | 155   | 5775.0 | 0.617              | 92.8%     | 9.0              | 8.6   | 0.221          | 0.259  | 2    |      |
| 7.11.1             | 802.11ac                                |             | On       | 0     | Edge 1        | 155   | 5775.0 | 0.139              | 92.8%     | 9.0              | 8.6   |                |        |      |      |
|                    | (VHT80) MCS0                            |             | On       | 0     | Edge 2        | 155   | 5775.0 | 0.958              | 92.8%     | 9.0              | 8.6   | 0.440          | 0.515  |      | 5    |
|                    |                                         |             |          | 0     | Corner A      | 155   | 5775.0 | 0.553              | 92.8%     | 9.0              | 8.6   |                |        |      |      |
|                    |                                         |             |          | 13    | Rear          | 149   | 5745.0 | 0.033              | 96.5%     | 13.0             | 12.6  |                |        |      |      |
|                    | 802.11a                                 |             | Off      | 12    | Edge 1        | 149   | 5745.0 | 0.025              | 96.5%     | 13.0             | 12.6  |                |        |      |      |
|                    | 6 Mbps                                  |             | Oli      | 6     | Edge 4        | 149   | 5745.0 | 0.231              | 96.5%     | 13.0             | 12.6  | 0.081          | 0.092  | 1    |      |
| 5.8 GHz<br>U-NII 3 |                                         | Standalone  |          | 7     | Corner B      | 149   | 5745.0 | 0.100              | 96.5%     | 13.0             | 12.6  |                |        |      |      |
| SISO<br>Ant 2      | SISO                                    | Standalone  |          | 0     | Rear          | 155   | 5775.0 | 0.298              | 92.8%     | 9.0              | 8.5   |                |        |      |      |
| , L                | 802.11ac                                |             | On       | 0     | Edge 1        | 155   | 5775.0 | 0.098              | 92.8%     | 9.0              | 8.5   |                |        |      |      |
|                    | (VHT80) MCS0                            | )           | On       | 0     | Edge 4        | 155   | 5775.0 | 0.573              | 92.8%     | 9.0              | 8.5   | 0.213          | 0.260  | 1    |      |
|                    |                                         |             |          | 0     | Corner B      | 155   | 5775.0 | 0.366              | 92.8%     | 9.0              | 8.5   |                |        |      |      |

#### Note(s):

1. Highest <u>reported</u> SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

Highest <u>reported</u> SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest <u>reported</u> SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was <u>reported</u>.

3. Testing for a second channel was required because the <u>reported</u> SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).

Page 41 of 47

# **11 SAR Measurement Variability**

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is  $\geq$  0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

| Frequency     |                   |                        | Tost Position | Repeated        | Highest                | First<br>Repeated         |                                     |  |
|---------------|-------------------|------------------------|---------------|-----------------|------------------------|---------------------------|-------------------------------------|--|
| Band<br>(MHz) | Air Interface     | RF Exposure Conditions | Test Position | SAR<br>(Yes/No) | Measured<br>SAR (W/kg) | Measured<br>SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio |  |
| 2400          | Wi-Fi 802.11b/g/n | Standalone             | Edge 2        | Yes             | 0.866                  | 0.863                     | 1.00                                |  |
| 2400          | Bluetooth         | Standalone             | Edge 2        | No              | 0.186                  | N/A                       | N/A                                 |  |
| 5300          | Wi-Fi 802.11a/n   | Standalone             | Edge 2        | No              | 0.477                  | N/A                       | N/A                                 |  |
| 5500          | Wi-Fi 802.11a/n   | Standalone             | Edge 2        | No              | 0.481                  | N/A                       | N/A                                 |  |
| 5800          | Wi-Fi 802.11a/n   | Standalone             | Edge 2        | No              | 0.440                  | N/A                       | N/A                                 |  |

#### Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

Page 42 of 47

# 12 Simultaneous Transmission SAR Analysis

### Simultaneous Transmission Condition

| RF Exposure Condition | ltem |             |   |             |
|-----------------------|------|-------------|---|-------------|
|                       | 1    | DTS_Ant.1   | + | DTS_Ant.2   |
| Standalone            | 2    | U-NII_Ant.1 | + | U-NII_Ant.2 |
|                       | 3    | U-NII_Ant.2 | + | BT          |
| Netee                 |      |             |   |             |

Notes:

- 1. Only U-NII Ant.2 Radio can transmit simultaneously with Bluetooth Radio.
- 2. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 3. DTS and UNII Radio can operating both SISO and MIMO modes.

## Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

## Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

## SAR to Peak Location Ratio (SPLSR)

KDB 447498 D01 General RF Exposure Guidance explains how to calculate the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

### SPLSR = (SAR1 + SAR2)1.5/Ri

Where:

**SAR**<sup>1</sup> is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

**SAR**<sup>2</sup> is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

*Ri* is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of

## $[(x_1-x_2)_2 + (y_1-y_2)_2 + (z_1-z_2)_2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)_{1.5}/Ri \leq 0.04$$

When an individual antenna transmits at on two bands simultaneously, the sum of the highest *reported* SAR for the frequency bands should be used to determine **SAR**<sub>1</sub>.or **SAR**<sub>2</sub>. When SPLSR is necessary, the smallest distance between the peak SAR locations for the antenna pair with respect to the peaks from each antenna should be used. The antennas in all antenna pairs that do not qualify for simultaneous transmission SAR test exclusion must be tested for SAR compliance, according to the enlarged zoom scan and volume scan post-processing procedures in KDB Publication 865664 D01

The antennas for the unlicensed transmitters are closely situated. As a result, the associated SAR hotspots are also closely situated. Some of the sum of SAR calculations yielded results over 1.6 W/kg. The SPSLR calculations for these situations were performed by treating the unlicensed SAR values as a single transmitter. The most

Page 43 of 47

conservative distance between all the unlicensed hotspots to the licensed hotspot was used for the value of *d* in the SPSLR calculation.

### Simultaneous transmission SAR measurement

When simultaneous transmission SAR measurements are required in different frequency bands not covered by a single probe calibration point then separate tests for each frequency band are performed. The tests are performed using enlarged zoom scans which are processed, by means of superposition, using the DASY5 volume scan postprocessing procedures to determine the 1-g SAR for the aggregate SAR distribution.

The spatial resolution used for all enlarged zoom scans is the same as used for the most stringent zoom scans. I.E. the scan parameters required for the highest frequency assessed are used for all enlarged zoom scans. The scans cover the complete area of the device to ensure all transmitting antennas and radiating structures are assessed.

DASY5 provides the ability to perform Multiband Evaluations according to the latest standards using the Volume Scan job as well as appropriate routines for the Post-processing.

In order to extract and process measurements within different frequency bands, the SEMCAD X Post-processor performs the combination and subsequent superposition of these measurement data via DASY5= Combined MultiBand Averaged SAR.

Combined Multi Band Averaged SAR allows - in addition to the data extraction - an evaluation of the 1 g, 10 g and/or arbitrary averaged mass SAR.

Power Scaling Factor is used to allow the volume scans to be scaled by a value other than "1", this is important when the results need to be scaled to different maximum power levels. The Power Scaling Factor is applied to each individual point of the scan. When power scaling is used in multi-band combinations the scaling factor is applied to each individual point of the first scan, the second factor is then applied to each individual point of the second scan and so on. The scans are then combined.

## Estimated SAR for Simultaneous Transmission SAR Analysis

#### **Considerations for SAR estimation**

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
  - When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
  - When the separation distance from the antenna to an adjacent edge is > 5 mm but  $\leq$  50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
  - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg
- Please refer to <u>Estimated SAR Tables</u> to see which test positions are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test positions.

### Estimated SAR for WLAN

|                           |           |        |       |      |        |               | SISO        | Max     |       |            |           |             |             |           |       |
|---------------------------|-----------|--------|-------|------|--------|---------------|-------------|---------|-------|------------|-----------|-------------|-------------|-----------|-------|
| Tx Frequency Output Power |           |        | Power |      | Se     | eparation Dis | stances (mr | n)      |       |            | Esti      | mated 1-g S | AR Value (V | //kg)     |       |
| Interface                 | (MHz)     | dBm    | mW    | Rear | Edge 1 | Edge 2        | Edge 3      | Edge 4  | Front | Rear       | Edge 1    | Edge 2      | Edge 3      | Edge 4    | Front |
|                           |           |        |       | r    |        | r             | Wi-Fi An    | tenna 1 |       | 11         |           |             |             |           |       |
| Wi-Fi 2.4 GHz             | 2462      | 19.00  | 79    | 0    | 0      | 0             | 242         | 110     |       | -MEA SURE- | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Wi-Fi 5.3 GHz             | 5320      | 14.50  | 28    | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Wi-Fi 5.5 GHz             | 5700      | 13.00  | 20    | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Ni-Fi 5.8 GHz             | 5825      | 14.50  | 28    | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Bluetooth                 | 2480      | 9.00   | 8     | 0    | 0      | 0             | 242         | 110     |       | 0.336      | 0.336     | 0.336       | 0.400       | 0.400     |       |
|                           |           |        |       |      |        |               | Wi-Fi An    | tenna 2 |       |            |           |             |             |           |       |
| Wi-Fi 2.4 GHz             | 2462      | 18.00  | 63    | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.3 GHz             | 5320      | 13.00  | 20    | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.5 GHz             | 5700      | 13.00  | 20    | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.8 GHz             | 5825      | 13.00  | 20    | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
|                           |           |        |       |      |        |               | siso r      | educe   |       |            |           |             |             |           |       |
|                           | Frequency | Output | Power |      | Se     | eparation Dis |             |         |       |            | Esti      | mated 1-g S | AR Value (V | //kg)     |       |
| Interface                 | (MHz)     | dBm    | mW    | Rear | Edge 1 | Edge 2        | Edge 3      | Edge 4  | Front | Rear       | Edge 1    | Edge 2      | Edge 3      | Edge 4    | Front |
|                           |           |        |       |      | 1      |               | Wi-Fi An    | tenna 1 |       |            |           |             |             |           |       |
| Wi-Fi 2.4 GHz             | 2462      | 13.50  | 22    | 0    | 0      | 0             | 242         | 110     |       | -MEA SURE- | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Wi-Fi 5.3 GHz             | 5320      | 9.00   | 8     | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Wi-Fi 5.5 GHz             | 5700      | 9.00   | 8     | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
| Wi-Fi 5.8 GHz             | 5825      | 9.00   | 8     | 0    | 0      | 0             | 242         | 110     |       | -MEASURE-  | -MEASURE- | -MEASURE-   | 0.400       | 0.400     |       |
|                           |           |        |       |      |        |               | Wi-Fi An    | tenna 2 |       |            |           |             |             |           |       |
| Wi-Fi 2.4 GHz             | 2462      | 13.50  | 22    | 0    | 0      | 110           | 242         | 0       |       | -MEA SURE- | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.3 GHz             | 5320      | 9.00   | 8     | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.5 GHz             | 5700      | 9.00   | 8     | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
| Wi-Fi 5.8 GHz             | 5825      | 9.00   | 8     | 0    | 0      | 110           | 242         | 0       |       | -MEASURE-  | -MEASURE- | 0.400       | 0.400       | -MEASURE- |       |
|                           | •         |        |       |      |        |               |             |         |       |            |           |             |             |           |       |

#### Note(s):

Bluetooth SAR test were additionally evaluated for determining simultaneous transmission SAR test exclusion.

## 12.1 Sum of the SAR for Wi-Fi & BT

|               |           | Stan      | dalone SAR (V | V/kg)       |       | ∑1-g SAR (W/kg)       |                           |                  |  |  |  |
|---------------|-----------|-----------|---------------|-------------|-------|-----------------------|---------------------------|------------------|--|--|--|
| Test Position | DTS Ant 1 | DTS Ant 2 | U-NII Ant 1   | U-NII Ant 2 | BT    | DTS Ant 1 + DTS Ant 2 | U-NII Ant 1 + U-NII Ant 2 | BT + U-NII Ant 2 |  |  |  |
|               | 1         | 2         | 3             | 4           | 5     | 1+2                   | 3+4                       | 4+5              |  |  |  |
| Rear          | 0.870     | 0.614     | 0.359         | 0.378       | 0.279 | 1.484                 | 0.737                     | 0.657            |  |  |  |
| Edge 1        | 0.448     | 0.614     | 0.579         | 0.378       | 0.132 | 1.062                 | 0.957                     | 0.510            |  |  |  |
| Edge 2        | 0.911     | 0.400     | 0.579         | 0.400       | 0.320 | 1.311                 | 0.979                     | 0.720            |  |  |  |
| Edge 3        | 0.400     | 0.400     | 0.400         | 0.400       | 0.400 | 0.800                 | 0.800                     | 0.800            |  |  |  |
| Edge 4        | 0.400     | 0.511     | 0.400         | 0.378       | 0.400 | 0.911                 | 0.778                     | 0.778            |  |  |  |

#### **Conclusion:**

1. Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is ≤ 0.04 for all circumstances that require SPLSR calculation.

2. MIMO measurements were not taken into test because the sum of the simultaneous transmission of SISO in each position was less than or equal to 1.6W/kg.

## **Appendixes**

Refer to separated files for the following appendixes.

4789354110-S1V2 FCC Report SAR\_App A\_Photos & Ant. Locations

4789354110-S1V2 FCC Report SAR\_App B\_Highest SAR Test Plots

4789354110-S1V2 FCC Report SAR\_App C\_System Check Plots

4789354110-S1V2 FCC Report SAR\_App D\_SAR Tissue Ingredients

4789354110-S1V2 FCC Report SAR\_App E\_Probe Cal. Certificates

4789354110-S1V2 FCC Report SAR\_App F\_Dipole Cal. Certificates

**END OF REPORT** 

Page 47 of 47