PCTEST ENGINEERING LABORATORY, INC.

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 02/03/19 - 02/21/19 Test Site/Location: PCTEST Lab, Morgan Hill, CA, USA Document Serial No.: 1M1901170008-01-R2.A3L

FCC ID: A3LSMP205

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Tablet
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: SM-P205

Equipment	Band & Mode	Tx Frequency	SAR			
Class			1g Head (W/kg)	1g Body (W/kg)		
PCB	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.77	0.99		
PCB	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.14	1.14		
PCB	UMTS 850	826.40 - 846.60 MHz	0.98	0.38		
PCB	UMTS 1750	1712.4 - 1752.6 MHz	0.15	1.14		
PCB	UMTS 1900	1852.4 - 1907.6 MHz	0.23	1.26		
PCB	LTE Band 12	699.7 - 715.3 MHz	0.76	0.66		
PCB	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A		
PCB	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.84	0.52		
PCB	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.12	1.03		
PCB	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A		
PCB	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.30	1.28		
PCB	LTE Band 41	2498.5 - 2687.5 MHz	0.22	0.83		
DTS	2.4 GHz WLAN	2412 - 2472 MHz	1.02	0.91		
NII	U-NII-1	5180 - 5240 MHz	N/A	1.15		
NII	U-NII-2A	5260 - 5320 MHz	0.21	1.35		
NII	U-NII-2C	5500 - 5720 MHz	0.49	1.21		
NII	U-NII-3	5745 - 5825 MHz	0.31	0.88		
DSS/DTS	Bluetooth	2402 - 2480 MHz	N/A	N/A		
Simultaneou	Simultaneous SAR per KDB 690783 D01v01r03: 1.46 1.59					

Note: This revised Test Report (S/N: 1M1901170008-01-R2.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 4 600
	1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 1 of 92
201	9 PCTEST Engineering Laboratory Inc.		<u>. </u>	REV 21 3 M

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	11
3	INTROD	UCTION	12
4	DOSIME	TRIC ASSESSMENT	13
5	DEFINIT	ION OF REFERENCE POINTS	14
6	TEST C	ONFIGURATION POSITIONS	15
7	RF EXP	DSURE LIMITS	16
8	FCC ME	ASUREMENT PROCEDURES	17
9	RF CON	DUCTED POWERS	23
10	SYSTEM	I VERIFICATION	53
11	SAR DA	TA SUMMARY	56
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	70
13	SAR ME	ASUREMENT VARIABILITY	86
14	EQUIPM	ENT LIST	88
15	MEASUI	REMENT UNCERTAINTIES	89
16	CONCL	JSION	90
17	REFERE	NCES	91
APPEI	NDIX A:	SAR TEST PLOTS	
APPE	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPE	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPE	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEI	NDIX E:	SAR SYSTEM VALIDATION	
APPE	NDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEI	NDIX G:	POWER REDUCTION VERIFICATION	
APPE	NDIX H:	DOWNLINK LTE CA RF CONDUCTED POWERS	

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 2 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 2 of 92

1 DEVICE UNDER TEST

1.1 Device Overview

		1
Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
LTE Band 41	Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Data	2412 - 2472 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C	Data	5500 - 5720 MHz
U-NII-3	Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for some 2G/3G/4G operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 3 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 3 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

Maximum Output Power 1.3.1

Made / Dand		Voice (dBm)	Burst Average GMSK (dBm)		Burst Average 8-PSK (dBm)					
ivioue / Ballu	Mode / Band		1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
			Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	CSNA/CRRS/FRCF 0F0 Maximum		34.0	32.0	31.0	30.0	27.5	25.5	24.0	23.5
G3IVI/GPR3/EDGE 830	Nominal	33.0	33.0	31.0	30.0	29.0	26.5	24.5	23.0	22.5
GSM/GPRS/EDGE 1900	Maximum	30.5	30.5	27.0	26.0	25.0	26.5	24.5	23.0	22.0
GSIMI/GPRS/EDGE 1900	Nominal	29.5	29.5	26.0	25.0	24.0	25.5	23.5	22.0	21.0

		Мо	dulated A	verage (dB	sm)
Mode / Band	Modo / Rand			3GPP	3GPP
Wiode / Baria		3GPP WCDMA	3GPP HSDPA	HSUPA	DC-
				HOUFA	HSDPA
UMTS Band 5 (850 MHz)	Maximum	25.0	24.0	24.0	24.0
Olviris Ballu's (630 lviriz)	Nominal	24.0	23.0	23.0	23.0
UMTS Band 4 (1750 MHz)	Maximum	24.5	23.5	23.5	23.5
UIVITS Ballu 4 (1750 IVITZ)	Nominal	23.5	22.5	22.5	22.5
LIMTS Pand 2 (1000 MHz)	Maximum	24.5	23.5	23.5	23.5
UMTS Band 2 (1900 MHz)	Nominal	23.5	22.5	22.5	22.5

Mode / Band	Modulated Average (dBm)	
LTE Band 12	Maximum	25.0
LTL Dallu 12	Nominal	24.0
LTE Band 17	Maximum	25.0
LIE Ballu 17	Nominal	24.0
LTC D = = -1.5 (C-11)	Maximum	25.0
LTE Band 5 (Cell)	Nominal	24.0
LTE Dand CC (AVVC)	Maximum	25.0
LTE Band 66 (AWS)	Nominal	24.0
LTC Dand 4 (AVA/C)	Maximum	25.0
LTE Band 4 (AWS)	Nominal	24.0
LTE Dand 2 (DCC)	Maximum	24.7
LTE Band 2 (PCS)	Nominal	23.7
LTC Dand 41	Maximum	23.2
LTE Band 41	Nominal	22.2

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Done 4 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 4 of 92

Mode / Band	Modulated Average (dBm)			
	Ch. 1-10	Ch. 11	Ch. 12-13	
IEEE 003 11b /3 4 CU-\	Maximum	18.0	18.0	4.0
IEEE 802.11b (2.4 GHz)	Nominal	17.0	17.0	3.0
IEEE 802.11g (2.4 GHz)	Maximum	16.0	13.5	4.0
1EEE 802.11g (2.4 GH2)	Nominal	15.0	12.5	3.0
IEEE 802.11n (2.4 GHz)	Maximum	15.0	13.5	3.0
IEEE 802.1111 (2.4 GHZ)	Nominal	14.0	12.5	2.0

Mode / Band	Modulated Average (dBm)	
Bluetooth BDR	Maximum	7.0
Bidetootii BDN	Nominal	6.0
Bluetooth EDR	Maximum	5.0
Diuelootii EDK	Nominal	4.0
Bluetooth LE	Maximum	5.5
DiuelOOlii LE	Nominal	4.5

Mode / Band		Modulated Average (dBm)				
		20 MHz Bandwidth 40 MHz Bandwidth		80 MHz Bandwidth		
IEEE 903 112 /E CU-V	Maximum	12.0				
IEEE 802.11a (5 GHz)	Nominal	11.0				
IEEE 802.11n (5 GHz)	Maximum	12.0	12.0			
IEEE 802.11II (5 GHZ)	Nominal	11.0	11.0			
JEEE 902 1126 /E GUZ	Maximum	12.0	12.0	11.0		
IEEE 802.11ac (5 GHz)	Nominal	11.0	11.0	10.0		

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage F of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 5 of 92

Reduced Output Power 1.3.2

Note: For held-to-ear conditions, the reduced targets below apply only to GSM/GPRS/EDGE 1900, UMTS B2/4 and LTE B2/4/66/41 operations.

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
Ivioue / Ballo	l	1 TX Slot	1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
			Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	Maximum	25.0	25.0	23.5	22.5	21.5	25.0	22.5	21.1	19.0
GSM/GPRS/EDGE 850	Nominal	24.0	24.0	22.5	21.5	20.5	24.0	21.5	20.1	18.0
GSM/GPRS/EDGE 1900	Maximum	21.0	21.0	18.5	17.5	16.0	21.5	18.5	17.0	15.5
	Nominal	20.0	20.0	17.5	16.5	15.0	20.5	17.5	16.0	14.5

		Modulated Average (dBm)				
Mode / Band		3GPP	3GPP	3GPP	3GPP	
lineae, zana	WCDMA	HSDPA	HSUPA	DC-		
	WCDIVIA	HISDEA	IISUFA	HSDPA		
	Maximum	15.0	15.0	15.0	15.0	
UMTS Band 5 (850 MHz)	Nominal	14.0	14.0	14.0	14.0	
LIMITS Band 4 (1750 MHz)	Maximum	12.0	12.0	12.0	12.0	
UMTS Band 4 (1750 MHz)	Nominal	11.0	11.0	11.0	11.0	
UMTS Band 2 (1900 MHz)	Maximum	11.0	11.0	11.0	11.0	
	Nominal	10.0	10.0	10.0	10.0	

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg C of 02
1M1901170008-01-R2.A3L	2.A3L 02/03/19 - 02/21/19 Portable Tablet			Page 6 of 92

Mode / Band	I	Modulated Average (dBm)
LTE Band 12	Maximum	17.0
LIL Dallu 12	Nominal	16.0
LTE Band 17	Maximum	17.0
LIE Dallu 17	Nominal	16.0
LTE Band 5 (Cell)	Maximum	17.0
	Nominal	16.0
LTE Dand GG (ANG)	Maximum	11.0
LTE Band 66 (AWS)	Nominal	10.0
LTC Dand 4 (AVVC)	Maximum	11.0
LTE Band 4 (AWS)	Nominal	10.0
LTE Dand 2 (DCC)	Maximum	11.0
LTE Band 2 (PCS)	Nominal	10.0
LTE Band 41	Maximum	14.0
LIE Dallu 41	Nominal	13.0

	Modulated Average			
Mode / Band	(dBm)			
	Ch. 1-11 Ch. 12-1			
IEEE 802.11b (2.4 GHz)	Maximum	12.0	4.0	
IEEE 802.110 (2.4 GHZ)	Nominal	11.0	3.0	
IEEE 902 11a /2 / CU3	Maximum	12.0	4.0	
IEEE 802.11g (2.4 GHz)	Nominal	11.0	3.0	
JEEE 003 44% /3 4 CU-)	Maximum	12.0	3.0	
IEEE 802.11n (2.4 GHz)	Nominal	11.0	2.0	

Mode / Band		Modulated Average (dBm)				
20 MHz Bandwidth 40 MHz				80 MHz Bandwidth		
IEEE 003 112 /E CU-)	Maximum	8.5				
IEEE 802.11a (5 GHz)	Nominal	7.5				
IEEE 802.11n (5 GHz)	Maximum	8.5	8.5			
IEEE 802.11II (5 GHZ)	Nominal	7.5	7.5			
IEEE 802.11ac (5 GHz)	Maximum	8.5	8.5	8.5		
IEEE 802.11ac (5 GHZ)	Nominal	7.5	7.5	7.5		

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 7-400	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 7 of 92	

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the locations of the device antennas can be found in Appendix F. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

Table 1-1
Device Edges/Sides for SAR Testing

Device Euges/oldes for SAIN resting									
Mode	Back	Top	Bottom	Right	Left				
GPRS 850	Yes	Yes	No	Yes	Yes				
GPRS 1900	Yes	Yes	No	Yes	Yes				
UMTS 850	Yes	Yes	No	Yes	Yes				
UMTS 1750	Yes	Yes	No	No	Yes				
UMTS 1900	Yes	Yes	No	No	Yes				
LTE Band 12	Yes	Yes	No	Yes	Yes				
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes				
LTE Band 66 (AWS)	Yes	Yes	No	Yes	Yes				
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes				
LTE Band 41	Yes	Yes	No	No	Yes				
2.4 GHz WLAN	Yes	Yes	No	Yes	No				
5 GHz WLAN	Yes	Yes	No	Yes	No				

Note: Per FCC KDB 616217 D04v01, particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v05.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body	Notes
1	GSM + 2.4 GHz WI-FI	Yes	Yes	
2	GSM + 5 GHz WI-FI	Yes	Yes	
3	GSM + 2.4 GHz Bluetooth	Yes^	Yes	^BT Tethering applications are considered
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	
5	UMTS + 5 GHz WI-FI	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	^BT Tethering applications are considered
7	LTE + 2.4 GHz WI-FI	Yes*	Yes	*Pre-installed VOIP applications are considered
8	LTE + 5 GHz WI-FI	Yes*	Yes	*Pre-installed VOIP applications are considered
9	LTE + 2.4 GHz Bluetooth	Yes^*	Yes	^BT Tethering applications are considered. *Pre-installed VOIP applications are considered
10	GPRS/EDGE + 2.4 GHz WI-FI	N/A	Yes	
11	GPRS/EDGE + 5 GHz WI-FI	N/A	Yes	
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes	^BT Tethering applications are considered

1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 9 of 02
 1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 8 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Body scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. This device supports Bluetooth Tethering.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported head SAR for U-NII-2A is less than 1.2 W/kg, head SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6 and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(5/5)^* \sqrt{2.480}] = 1.6 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo O of OO
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 9 of 92
19 PCTEST Engineering Laboratory Inc	·	<u> </u>		REV 21 3 M

© 2019 PCTEST Engineering Laboratory, Inc.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix H.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 616217 D04v01r02 (Tablet)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 10 of 92

dditional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

	ı	TE Information					
FCC ID			A3LSMP205				
Form Factor			Portable Tablet				
Frequency Range of each LTE transmission band	 	I TF	Band 12 (699.7 - 715.3	MHz)			
requestoy rungo or odorrere transmission band			Band 17 (706.5 - 713.5				
		LTE Band 5 (Cell) (824.7 - 848.3 MHz)					
	LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)						
		LTE Band 4 (AWS) (1710.7 - 1754.3 MHz) LTE Band 2 (PCS) (1850.7 - 1909.3 MHz)					
			Band 41 (2498.5 - 2687.				
Channel Bandwidths			12: 1.4 MHz, 3 MHz, 5 N				
Chariner bandwidths			E Band 17: 5 MHz, 10 M				
			Cell): 1.4 MHz, 3 MHz,				
	1		.4 MHz, 3 MHz, 5 MHz,				
			4 MHz, 3 MHz, 5 MHz, 1				
			4 MHz, 3 MHz, 5 MHz, 1 41: 5 MHz, 10 MHz, 15 N		12		
Channel Numbers and Fraguencies (MHz)	Low				Lliab		
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid 707 5 (22005)	Mid-High	High		
LTE Band 12: 1.4 MHz		(23017)	707.5 (23095)		(23173)		
LTE Band 12: 3 MHz		(23025)	707.5 (23095) 707.5 (23095)		(23165)		
LTE Band 12: 5 MHz		701.5 (23035)			(23155)		
LTE Band 12: 10 MHz	704 (704 (23060)		711 (23130)		
LTE Band 17: 5 MHz	706.5	(23755)	710 (23790)	713.5	(23825)		
LTE Band 17: 10 MHz	709 (23780)	710 (23790)	711 (23800)		
LTE Band 5 (Cell): 1.4 MHz	824.7	(20407)	836.5 (20525)	848.3 (20643)			
LTE Band 5 (Cell): 3 MHz	825.5	(20415)	836.5 (20525)	847.5 (20635)			
LTE Band 5 (Cell): 5 MHz	826.5	(20425)	836.5 (20525)	846.5 (20625)			
LTE Band 5 (Cell): 10 MHz		20450)	836.5 (20525)	844 (20600)			
LTE Band 66 (AWS): 1.4 MHz	1710.7 (131979)		1745 (132322)	1779.3 (132665)			
LTE Band 66 (AWS): 3 MHz		1710.7 (131979)		1778.5 (132657)			
LTE Band 66 (AWS): 5 MHz			1745 (132322)	1777.5 (132647)			
LTE Band 66 (AWS): 10 MHz		(131997)	1745 (132322)				
, ,		132022)	1745 (132322)	1775 (132622)			
LTE Band 66 (AWS): 15 MHz		(132047)	1745 (132322)	1772.5 (132597) 1770 (132572)			
LTE Band 66 (AWS): 20 MHz		132072)	1745 (132322)				
LTE Band 4 (AWS): 1.4 MHz		(19957)	1732.5 (20175)		(20393)		
LTE Band 4 (AWS): 3 MHz		(19965)	1732.5 (20175)		(20385)		
LTE Band 4 (AWS): 5 MHz		(19975)	1732.5 (20175)		(20375)		
LTE Band 4 (AWS): 10 MHz	1715	(20000)	1732.5 (20175)	1750	(20350)		
LTE Band 4 (AWS): 15 MHz	1717.5	(20025)	1732.5 (20175)	1747.5	(20325)		
LTE Band 4 (AWS): 20 MHz	1720	(20050)	1732.5 (20175)	1745	(20300)		
LTE Band 2 (PCS): 1.4 MHz	1850.7	(18607)	1880 (18900)	1909.3	(19193)		
LTE Band 2 (PCS): 3 MHz	1851.5	(18615)	1880 (18900)	1908.5	(19185)		
LTE Band 2 (PCS): 5 MHz	1852.5	(18625)	1880 (18900)	1907.5	(19175)		
LTE Band 2 (PCS): 10 MHz		(18650)	1880 (18900)		(19150)		
LTE Band 2 (PCS): 15 MHz		(18675)	1880 (18900)		(19125)		
LTE Band 2 (PCS): 20 MHz		(18700)	1880 (18900)		(19100)		
LTE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
LTE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
LTE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
_TE Band 41: 13 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
JE Category	2000 (38130)	2043.3 (40103)	Category 6	2000.0 (41000)	2000 (41490)		
Modulations Supported in UL	 		QPSK, 16QAM				
TE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation			YES				
o be provided)	1						
A-MPR (Additional MPR) disabled for SAR Testing?			YES				
TE Carrier Aggregation Possible Combinations	The te	echnical description incl	ludes all the possible car	rrier aggregation comb	inations		
LTE Additional Information	This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. The following LTE Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, elCIC, WIFI Offloading, eMBMS, Cross-Carrier Scheduling Enhanced SC-FDMA.						

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 44 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 11 of 92

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 12 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 12 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

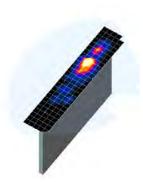


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			$\Delta z_{zoom}(n)$	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 42 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 13 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

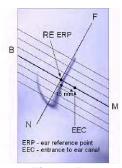


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

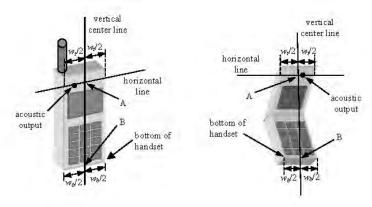


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 - 600
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 14 of 92

dditional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

6.3 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 45 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 15 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUN	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 16 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Fage 10 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 47 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 17 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurements with Rel 8 DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 18 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 16 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.5.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 19 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Fage 19 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do ao 20 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 20 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest

	FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	ment S/N: Test Dates: DUT Type:		Dogg 24 of 02
	1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 21 of 92
٦1	0 DCTEST Engineering Laboratory Inc.			DEV/ 21.2 M

© 2019 PCTEST Engineering Laboratory, Inc.

802.11 mode is considered for SAR measurements (See Section 8.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Daga 22 of 02	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 22 of 92	

GSM Conducted Powers 9.1

Table 9-1 Maximum Conducted Power

Maximum Conducted Power										
		N	laximum E	Burst-Aver	aged Out	put Power	•			
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	32.94	32.84	31.10	29.64	28.55	26.48	24.35	22.86	21.47
GSM 850	190	32.95	33.07	31.18	29.70	28.83	26.54	24.33	22.78	21.48
	251	32.92	32.85	31.13	29.77	28.03	26.44	24.36	22.72	21.25
	512	29.25	29.24	26.87	25.63	24.81	25.88	23.80	22.51	21.40
GSM 1900	661	28.90	28.87	26.41	25.31	24.40	25.46	23.24	21.74	20.78
	810	29.25	29.24	26.87	25.60	24.73	25.47	23.46	22.09	20.90

	Calculated Maximum Frame-Averaged Output Power									
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	23.91	23.81	25.08	25.38	25.54	17.45	18.33	18.60	18.46
GSM 850	190	23.92	24.04	25.16	25.44	25.82	17.51	18.31	18.52	18.47
	251	23.89	23.82	25.11	25.51	25.02	17.41	18.34	18.46	18.24
	512	20.22	20.21	20.85	21.37	21.80	16.85	17.78	18.25	18.39
GSM 1900	661	19.87	19.84	20.39	21.05	21.39	16.43	17.22	17.48	17.77
	810	20.22	20.21	20.85	21.34	21.72	16.44	17.44	17.83	17.89
GSM 850	Frame	23.97	23.97	24.98	25.74	25.99	17.47	18.48	18.74	19.49
GSM 1900	Avg.Targets:	20.47	20.47	19.98	20.74	20.99	16.47	17.48	17.74	17.99

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 23 of 92
10 DCTECT Engineering Laboratory Inc.				DEV/ 24.2 M

© 2019 PCTEST Engineering Laboratory, Inc.

Table 9-2 Reduced Conducted Power

	Maximum Burst-Averaged Output Power									
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	24.22	24.01	22.29	21.24	19.83	24.03	22.31	20.08	18.77
GSM 850	190	24.17	24.15	22.31	21.27	19.82	24.18	22.42	20.01	18.80
	251	24.20	23.99	22.29	21.17	19.83	24.25	22.40	19.71	18.51
	512	19.14	19.67	17.20	16.09	15.43	20.73	18.20	16.90	15.25
GSM 1900	661	19.18	19.18	16.75	15.87	14.97	20.17	17.67	16.20	14.71
	810	19.03	19.51	17.24	15.93	14.36	20.29	18.03	16.70	14.83

		Calcula	ted Maxim	num Frame	e-Average	d Output	Power			
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	15.19	14.98	16.27	16.98	16.82	15.00	16.29	15.82	15.76
GSM 850	190	15.14	15.12	16.29	17.01	16.81	15.15	16.40	15.75	15.79
	251	15.17	14.96	16.27	16.91	16.82	15.22	16.38	15.45	15.50
	512	10.11	10.64	11.18	11.83	12.42	11.70	12.18	12.64	12.24
GSM 1900	661	10.15	10.15	10.73	11.61	11.96	11.14	11.65	11.94	11.70
	810	10.00	10.48	11.22	11.67	11.35	11.26	12.01	12.44	11.82
			•	1		1		1		
GSM 850	Frame	14.97	14.97	16.48	17.24	17.49	14.97	15.48	15.84	14.99
GSM 1900	Avg.Targets:	10.97	10.97	11.48	12.24	11.99	11.47	11.48	11.74	11.49

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Fage 24 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 33 (Max 4 Tx uplink slots) **EDGE Multislot class:** 33 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1
Power Measurement Setup

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 25 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 25 of 92

9.2 UMTS Conducted Powers

Table 9-3
Maximum Conducted Power

	Maximali Conducted Fower											
3GPP Release	se Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	AW	S Band [d	IBm]	PCS Band [dBm]			3GPP MPR
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	23.73	23.72	23.85	23.15	23.27	22.99	23.63	23.20	23.14	-
99	WCDIVIA	12.2 kbps AMR	23.66	23.73	23.88	23.11	22.96	23.22	23.57	22.92	22.73	-
6		Subtest 1	23.22	23.37	23.55	23.03	22.93	23.21	23.43	22.81	22.64	0
6	HSDPA	Subtest 2	22.40	22.56	22.80	23.06	22.95	23.27	23.50	22.93	22.67	0
6	HODEA	Subtest 3	22.25	22.34	22.56	22.10	21.95	22.25	22.66	21.89	21.76	0.5
6		Subtest 4	21.22	21.36	21.56	22.09	21.97	22.28	22.65	21.59	21.75	0.5
6		Subtest 1	22.27	22.44	22.62	21.58	21.47	21.75	22.61	21.90	21.72	0
6		Subtest 2	20.35	20.49	20.60	19.11	19.00	19.32	20.31	19.67	19.47	2
6	HSUPA	Subtest 3	22.23	22.40	22.56	21.63	21.52	21.80	22.50	21.96	21.76	1
6		Subtest 4	20.29	20.45	20.57	19.02	19.02	19.34	20.28	19.66	19.46	2
6		Subtest 5	22.16	22.32	22.55	22.43	22.42	22.76	23.48	22.84	22.66	0
8		Subtest 1	23.23	23.48	23.35	23.05	22.93	23.19	23.40	22.82	22.67	0
8	DC HEDDA	Subtest 2	22.61	22.58	22.45	23.07	22.82	23.29	23.50	22.92	22.71	0
8	DC-HSDPA	Subtest 3	21.79	21.69	21.53	22.04	21.93	22.30	22.71	21.94	21.76	0.5
8		Subtest 4	21.08	21.30	21.18	22.07	22.03	22.28	22.73	21.93	21.78	0.5

Table 9-4
Reduced Conducted Power

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	AW	S Band [d	Bm]	PC	Band [di	Bm]	3GPP MPR [dB]
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	13.55	13.73	13.83	10.68	10.47	10.70	10.96	10.62	10.50	-
99	WCDIVIA	12.2 kbps AMR	13.56	13.62	13.78	10.54	10.45	10.80	10.96	10.61	10.39	-
6		Subtest 1	13.56	13.72	13.65	10.60	10.51	10.83	11.00	10.40	10.23	0
6	HSDPA	Subtest 2	13.61	13.74	13.89	10.68	10.60	10.87	10.94	10.39	10.24	0
6	HSDPA	Subtest 3	13.65	13.78	13.92	10.72	10.57	10.83	10.94	10.40	10.25	0.5
6		Subtest 4	13.64	13.80	13.90	10.73	10.62	10.89	11.00	10.46	10.28	0.5
6		Subtest 1	13.59	13.72	13.87	10.64	10.54	10.80	10.97	10.35	10.18	0
6		Subtest 2	13.63	13.76	13.94	10.81	10.57	10.87	11.00	10.39	10.25	2
6	HSUPA	Subtest 3	13.61	13.75	13.88	10.74	10.54	10.82	10.95	10.34	10.20	1
6		Subtest 4	13.57	13.73	13.89	10.77	10.54	10.84	10.96	10.41	10.24	2
6		Subtest 5	13.54	13.72	13.86	10.69	10.47	10.79	10.97	10.31	10.27	0
8		Subtest 1	13.56	13.66	13.84	10.67	10.53	10.84	10.92	10.44	10.29	0
8	DC-HSDPA	Subtest 2	13.66	13.73	13.89	10.68	10.61	10.86	10.96	10.41	10.26	0
8	DO-1 ISDEA	Subtest 3	13.63	13.77	13.91	10.69	10.58	10.82	11.00	10.38	10.28	0.5
8		Subtest 4	13.64	13.81	13.90	10.71	10.60	10.85	10.99	10.48	10.28	0.5

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Figure 9-2
Power Measurement Setup

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Daga 26 of 02	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 26 of 92	

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

Table 9-5
LTE Band 12 Maximum Conducted Powers - 10 MHz Bandwidth

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
			23095	MPR Allowed per	
Modulation	RB Size	RB Offset	(707.5 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	23.80		0
	1	25	23.81	0	0
	1	49	23.75		0
QPSK	25	0	22.67		1
	25	12	22.60	0-1	1
	25	25	22.59	0-1	1
	50	0	22.58		1
	1	0	22.72		1
	1	25	22.70	0-1	1
	1	49	22.73		1
16QAM	25	0	21.61		2
	25	12	21.53	0-2	2
	25	25	21.56] 0-2	2
	50	0	21.55		2

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-6
LTE Band 12 Maximum Conducted Powers - 5 MHz Bandwidth

		LILDO	ina iz waxiinun		Weis- 5 Williz D	andwidth	
				LTE Band 12			
	1	•		5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035	23095	23155	MPR Allowed per	MDD [4D]
Wodulation	ND Size	NB Oliset	(701.5 MHz)	(707.5 MHz)	(713.5 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	23.97	23.55	23.96		0
	1	12	23.94	23.53	24.02	0	0
	1	24	23.93	23.64	23.98		0
QPSK	12	0	22.76	22.66	22.97		1
	12	6	22.77	22.61	22.97	0-1	1
	12	13	22.74	22.60	22.98	0-1	1
	25	0	22.75	22.66	22.96		1
	1	0	23.07	22.35	22.73		1
	1	12	22.98	22.39	22.76	0-1	1
	1	24	23.03	22.37	22.74		1
16QAM	12	0	21.67	21.43	21.92		2
	12	6	21.61	21.47	21.90	0-2	2
	12	13	21.62	21.46	21.89	J-2	2
	25	0	21.57	21.51	21.92		2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 27 of 92	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		

© 2019 PCTEST Engineering Laboratory, Inc.

Table 9-7 LTE Band 12 Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 12						
	3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm						
	1	0	23.87	23.63	23.98		0			
	1	7	23.81	23.61	23.99	0	0			
	1	14	23.82	23.58	23.95		0			
QPSK	8	0	22.74	22.59	22.94		1			
	8	4	22.76	22.62	22.93	0-1	1			
	8	7	22.75	22.63	22.91] 0-1	1			
	15	0	22.73	22.57	22.91		1			
	1	0	22.73	22.38	22.58		1			
	1	7	22.74	22.43	22.56	0-1	1			
	1	14	22.65	22.38	22.49		1			
16QAM	8	0	21.65	21.54	21.85		2			
	8	4	21.59	21.52	21.86	0-2	2			
	8	7	21.63	21.52	21.82] 0-2	2			
	15	0	21.59	21.46	21.77		2			

Table 9-8 LTE Band 12 Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.81	23.75	23.90		0
	1	2	23.75	23.73	23.82		0
	1	5	23.71	23.76	23.85	1 , [0
QPSK	3	0	23.74	23.68	23.88	0	0
	3	2	23.78	23.65	23.92		0
	3	3	23.75	23.64	23.88	1	0
	6	0	22.77	22.57	22.83	0-1	1
	1	0	22.56	22.38	22.64		1
	1	2	22.45	22.45	22.61	1	1
	1	5	22.54	22.40	22.53	0-1	1
16QAM	3	0	22.66	22.54	22.82] "-1	1
	3	2	22.68	22.62	22.79		1
	3	3	22.72	22.58	22.87		1
	6	0	21.60	21.61	21.82	0-2	2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:	5 00 (00		
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 28 of 92		

Table 9-9 LTE Band 12 Reduced Conducted Powers - 10 MHz Bandwidth

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	oon [as]	
	1	0	16.72		0
	1	25	16.76	0	0
	1	49	16.70		0
QPSK	25	0	16.70		0
	25	12	16.64	0-1	0
	25	25	16.62	0-1	0
	50	0	16.67		0
	1	0	16.76		0
	1	25	16.75	0-1	0
	1	49	16.58		0
16QAM	25	0	16.63		0
	25	12	16.61	0-2	0
	25	25	16.56	0-2	0
	50	0	16.57		0

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-10 LTE Band 12 Reduced Conducted Powers - 5 MHz Bandwidth

	LTE Band 12									
				5 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm						
	1	0	16.91	16.63	16.94		0			
	1	12	16.86	16.61	16.97	0	0			
	1	24	16.84	16.63	16.96		0			
QPSK	12	0	16.91	16.82	16.95		0			
	12	6	16.91	16.78	16.94	0-1	0			
	12	13	16.89	16.80	16.93	0-1	0			
	25	0	16.92	16.78	16.95		0			
	1	0	16.75	16.80	16.99		0			
	1	12	16.67	16.74	16.99	0-1	0			
	1	24	16.68	16.73	16.98		0			
16QAM	12	0	16.95	16.75	16.97		0			
	12	6	16.89	16.76	16.98	0-2	0			
	12	13	16.89	16.74	16.97	J-2	0			
	25	0	16.88	16.81	16.89		0			

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 29 of 92

Table 9-11 LTE Band 12 Reduced Conducted Powers - 3 MHz Bandwidth

				LTE Band 12	WOIG 0 IIII IE B	anawiath.	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	16.84	16.66	16.94		0
	1	7	16.79	16.65	16.95	0	0
	1	14	16.76	16.65	16.91		0
QPSK	8	0	16.85	16.72	16.95	0-1	0
	8	4	16.87	16.67	16.92		0
	8	7	16.86	16.69	16.92		0
	15	0	16.88	16.71	16.91		0
	1	0	16.79	16.70	16.98		0
	1	7	16.75	16.63	16.93	0-1	0
	1	14	16.80	16.61	16.96		0
16QAM	8	0	16.83	16.82	16.89		0
	8	4	16.81	16.79	16.94	0-2	0
	8	7	16.81	16.77	16.89		0
	15	0	16.87	16.74	16.94		0

Table 9-12 LTE Band 12 Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	16.78	16.82	16.92		0
	1	2	16.80	16.79	16.87] [0
	1	5	16.81	16.83	16.88	0	0
QPSK	3	0	16.92	16.71	16.89		0
	3	2	16.93	16.70	16.91		0
	3	3	16.89	16.73	16.91		0
	6	0	16.88	16.72	16.85	0-1	0
	1	0	16.81	16.42	16.86		0
	1	2	16.79	16.41	16.77] [0
	1	5	16.86	16.44	16.79	0-1	0
16QAM	3	0	16.94	16.52	16.85]	0
	3	2	16.93	16.60	16.84		0
	3	3	16.92	16.65	16.87		0
	6	0	16.93	16.72	16.81	0-2	0

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 20 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 30 of 92

9.3.2 LTE Band 5 (Cell)

Table 9-13
LTE Band 5 (Cell) Maximum Conducted Powers - 10 MHz Bandwidth

			LTE Band 5 (Cell) 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20525 Offset (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	0011 [05]	
	1	0	24.10		0
	1	25	23.97	0	0
	1	49	23.99		0
QPSK	25	0	23.03		1
	25	12	23.02	0-1	1
	25	25	23.01	0-1	1
	50	0	23.02		1
	1	0	22.99		1
	1	25	23.01	0-1	1
	1	49	23.02		1
16QAM	25	0	21.86		2
	25	12	21.83	0-2	2
	25	25	21.79	0-2	2
	50	0	21.82		2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-14
LTE Band 5 (Cell) Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.17	23.87	24.14		0
	1	12	24.18	23.79	24.10	0	0
	1	24	24.20	23.78	24.07		0
QPSK	12	0	23.02	22.97	23.11		1
	12	6	23.04	22.96	23.07	0-1	1
	12	13	23.01	22.97	23.09] 0-1	1
	25	0	22.98	22.94	23.06		1
	1	0	23.31	22.86	22.87		1
	1	12	23.32	22.77	22.84	0-1	1
	1	24	23.29	22.82	22.81		1
16QAM	12	0	21.84	21.78	22.07		2
	12	6	21.83	21.75	22.01	0-2	2
	12	13	21.82	21.76	22.02	0-2	2
	25	0	21.85	21.75	21.98		2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 31 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

Table 9-15 LTF Band 5 (Cell) Maximum Conducted Powers - 3 MHz Bandwidth

		LIL Danc	i 5 (Ceii) Maxiiii	um Conducted	FOWEIS - 3 WII IZ	. Danuwium	
				LTE Band 5 (Cell)			
	I	_		3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]
	112 0.20	112 011001	(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.08	23.93	24.28		0
	1	7	24.09	23.94	24.22	0	0
	1	14	24.07	23.90	24.23		0
QPSK	8	0	23.05	22.98	23.14	0-1	1
	8	4	23.06	22.98	23.11		1
	8	7	23.06	22.99	23.09		1
	15	0	23.04	22.96	23.11		1
	1	0	23.12	22.72	22.97		1
	1	7	23.06	22.73	22.86	0-1	1
16QAM	1	14	23.04	22.72	22.83		1
	8	0	21.88	21.75	21.92		2
	8	4	21.86	21.76	21.92	0-2	2
	8	7	21.86	21.75	21.91		2
	15	0	21.83	21.77	22.04		2

Table 9-16 LTE Band 5 (Cell) Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 5 (Cell)			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Size RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.16	24.16	24.07		0
	1	2	24.12	24.11	24.02] [0
	1	5	24.16	24.13	24.01	0	0
QPSK	3	0	24.09	24.00	24.09		0
	3	2	24.07	24.02	24.10		0
	3	3	24.08	24.03	24.09		0
	6	0	23.07	22.92	23.07	0-1	1
	1	0	22.72	22.65	22.59		1
	1	2	22.66	22.58	22.57] [1
	1	5	22.65	22.64	22.64	0-1	1
16QAM	3	0	23.02	22.77	22.92	J 0-1	1
	3	2	22.98	22.82	22.88]	1
	3	3	22.97	22.78	22.87		1
	6	0	21.72	21.84	21.87	0-2	2

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 22 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 32 of 92

Table 9-17 LTE Band 5 (Cell) Reduced Conducted Powers - 10 MHz Bandwidth

			LTE Band 5 (Cell) 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	- 0011 [ub]	
	1	0	16.72		0
	1	25	16.70	0	0
	1	49	16.66		0
QPSK	25	0	16.70		0
	25	12	16.67	0-1	0
	25	25	16.64	0-1	0
	50	0	16.66		0
	1	0	16.57		0
	1	25	16.54	0-1	0
	1	49	16.47		0
16QAM	25	0	16.72		0
	25	12	16.67	0-2	0
	25	25	16.66	0-2	0
	50	0	16.66		0

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

> **Table 9-18** LTE Band 5 (Cell) Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	16.78	16.63	16.97		0
	1	12	16.76	16.57	16.94	0-1	0
	1	24	16.80	16.58	16.88		0
QPSK	12	0	16.78	16.75	16.89		0
	12	6	16.80	16.76	16.85		0
	12	13	16.77	16.73	16.83		0
	25	0	16.78	16.76	16.84		0
	1	0	16.81	16.57	16.87		0
	1	12	16.80	16.57	16.75	0-1	0
	1	24	16.75	16.52	16.76		0
16QAM	12	0	16.74	16.74	16.85		0
	12	6	16.75	16.73	16.86	0-2	0
	12	13	16.73	16.71	16.82	0-2	0
	25	0	16.77	16.77	16.87		0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 33 of 92

Table 9-19 LTE Band 5 (Cell) Reduced Conducted Powers - 3 MHz Bandwidth

		LIL Dail	a 5 (Ocii) itcauc	LTE Bond E (Coll)	OWCIS - 5 WITE	Danawiatii	
				LTE Band 5 (Cell)			
	1		1 Ob	3 MHz Bandwidth	Li'uh Ohannal	1	
Modulation			Low Channel	Mid Channel	High Channel		
	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]
		112 011001	(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	16.79	16.72	16.96		0
	1	7	16.80	16.73	16.92	0	0
	1	14	16.76	16.65	16.88		0
QPSK	8	0	16.80	16.73	16.88		0
	8	4	16.83	16.72	16.86	0-1	0
	8	7	16.81	16.71	16.84		0
	15	0	16.82	16.76	16.88		0
	1	0	16.81	16.68	16.71		0
	1	7	16.80	16.68	16.67	0-1	0
	1	14	16.83	16.65	16.62		0
16QAM	8	0	16.79	16.70	16.73		0
	8	4	16.84	16.69	16.69	0-2	0
	8	7	16.81	16.65	16.70] 0-2	0
	15	0	16.82	16.74	16.88] [0

Table 9-20 LTE Band 5 (Cell) Reduced Conducted Powers -1.4 MHz Bandwidth

			, , , , , , , , , , , , , , , , , , , ,	LTE Band 5 (Cell)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	16.76	16.88	16.91		0
	1	2	16.76	16.85	16.88		0
	1	5	16.76	16.89	16.87	0	0
QPSK	3	0	16.87	16.79	16.89		0
	3	2	16.89	16.78	16.87		0
	3	3	16.87	16.77	16.85		0
	6	0	16.82	16.75	16.89	0-1	0
	1	0	16.69	16.41	16.78		0
	1	2	16.66	16.37	16.81		0
	1	5	16.79	16.39	16.73] 01	0
16QAM	3	0	16.88	16.62	16.78	- 0-1	0
	3	2	16.90	16.63	16.79		0
	3	3	16.91	16.64	16.76		0
	6	0	16.84	16.78	16.75	0-2	0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 24 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 34 of 92

LTE Band 66 (AWS) 9.3.3

Table 9-21 LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

	<u> </u>	I L Dania oc	(AVVS) Waxiiii	um Conducted	OWEIS - ZU WII	iz Banawiatn	
				LTE Band 66 (AWS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.68	23.99	24.13		0
	1	50	23.63	24.00	24.32	0	0
QPSK	1	99	23.62	24.06	24.31		0
	50	0	22.71	22.91	23.23		1
	50	25	22.71	22.95	23.25	0-1	1
	50	50	22.69	22.97	23.28		1
	100	0	22.71	22.95	23.22		1
	1	0	22.81	22.78	23.14		1
	1	50	22.73	22.82	23.21	0-1	1
	1	99	22.71	22.90	23.29		1
16QAM	50	0	21.76	22.00	22.21		2
	50	25	21.73	21.96	22.25	0-2	2
	50	50	21.72	21.99	22.27	J 0-2	2
	100	0	21.78	21.98	22.30		2

Table 9-22 LTE Band 66 (AWS) Maximum Conducted Powers - 15 MHz Bandwidth

			(tito) iliaxiiii	LTE Bond CC (AWC)			
				LTE Band 66 (AWS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
					•		
Modulation	RB Size	RB Offset	132047	132322	132597	MPR Allowed per	MPR [dB]
			(1717.5 MHz)	(1745.0 MHz)	(1772.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	23.77	23.85	24.02		0
	1	36	23.71	23.86	24.09	0	0
	1	74	23.62	23.87	24.12		0
QPSK	36	0	22.69	22.77	22.99	0-1	1
	36	18	22.70	22.76	22.98		1
	36	37	22.65	22.78	23.00		1
	75	0	22.66	22.75	23.01		1
	1	0	22.77	22.56	22.94		1
	1	36	22.67	22.58	22.90	0-1	1
	1	74	22.65	22.57	22.95		1
16QAM	36	0	21.72	21.76	22.02		2
	36	18	21.68	21.76	22.04	0-2	2
	36	37	21.65	21.77	22.06	U-Z	2
	75	0	21.65	21.76	22.08		2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -4 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 35 of 92

Table 9-23 LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

		i L Dana ot	(AVVO) Maximi	um Conducted	OWCIS - 10 MII	z Banawiatn	
				LTE Band 66 (AWS)			
	1			10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022	132322	132622	MPR Allowed per	MPR [dB]
Wodulation	ND SIZE	KB Oliset	(1715.0 MHz)	(1745.0 MHz)	(1775.0 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	23.76	23.76	24.06		0
	1	25	23.67	23.77	24.07	0	0
	1	49	23.61	23.81	24.08		0
QPSK	25	0	22.67	22.72	22.99		1
	25	12	22.64	22.73	23.01	0-1	1
	25	25	22.64	22.71	23.01		1
	50	0	22.63	22.68	22.96		1
	1	0	22.50	22.51	22.91		1
	1	25	22.48	22.48	22.97	0-1	1
	1	49	22.41	22.50	23.00		1
16QAM	25	0	21.74	21.73	22.01		2
	25	12	21.74	21.73	22.05	0-2	2
	25	25	21.71	21.72	22.04	0-2	2
	50	0	21.67	21.77	22.08		2

Table 9-24 LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

LTE Band 66 (AWS) 5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm]			
	1	0	23.92	23.70	24.17		0	
	1	12	23.88	23.67	24.18	0	0	
	1	24	23.89	23.72	24.20		0	
QPSK	12	0	22.78	22.72	23.02	0-1	1	
	12	6	22.78	22.71	23.03		1	
	12	13	22.75	22.74	23.04		1	
	25	0	22.78	22.71	23.05		1	
	1	0	22.69	22.54	22.92		1	
	1	12	22.64	22.49	22.89	0-1	1	
	1	24	22.65	22.50	22.93		1	
16QAM	12	0	21.85	21.70	22.07		2	
	12	6	21.83	21.72	22.09	0-2	2	
	12	13	21.84	21.71	22.08	0-2	2	
	25	0	21.82	21.80	22.09		2	

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 26 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 36 of 92

Table 9-25 LTE Band 66 (AWS) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.81	23.79	24.12		0
	1	7	23.77	23.79	24.10	0	0
QPSK	1	14	23.76	23.80	24.12		0
	8	0	22.75	22.70	23.01	0-1	1
	8	4	22.73	22.71	23.00		1
	8	7	22.72	22.69	23.00		1
	15	0	22.76	22.74	23.02		1
	1	0	22.40	22.72	22.85		1
	1	7	22.32	22.72	22.84	0-1	1
	1	14	22.39	22.67	22.83		1
16QAM	8	0	21.68	21.74	22.04		2
	8	4	21.70	21.72	21.98	0-2	2
	8	7	21.72	21.73	22.01	0-2	2
	15	0	21.80	21.79	22.07		2

Table 9-26 LTE Band 66 (AWS) Maximum Conducted Powers -1.4 MHz Bandwidth

			()	LTE Band 66 (AWS)			
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.95	23.89	24.25		0
	1	2	23.90	23.88	24.22	0	0
QPSK	1	5	23.93	23.92	24.22		0
	3	0	23.78	23.79	24.07		0
	3	2	23.79	23.79	24.07		0
	3	3	23.77	23.79	24.06		0
	6	0	22.74	22.72	23.06	0-1	1
	1	0	22.44	22.48	22.85		1
	1	2	22.35	22.46	22.92		1
	1	5	22.43	22.41	22.97	0-1	1
16QAM	3	0	22.72	22.62	23.07	0-1	1
	3	2	22.73	22.62	23.06	-	1
	3	3	22.76	22.60	23.05		1
	6	0	21.75	21.77	22.12	0-2	2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 27 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 37 of 92

Table 9-27 LTF Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

	<u>L</u>	I E Danu o	6 (AWS) Reduc	ea Conauctea F	Powers - 20 Min.	z banawiatn	
				LTE Band 66 (AWS)			
	1			20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072	132322	132572	MPR Allowed per	MPR [dB]
Wodulation	ND Size	KB Oliset	(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	10.64	10.63	10.75		0
	1	50	10.55	10.68	10.84	0	0
	1	99	10.52	10.78	10.94		0
QPSK	50	0	10.63	10.61	10.86	0-1	0
	50	25	10.58	10.65	10.93		0
	50	50	10.52	10.70	10.96		0
	100	0	10.58	10.66	10.88		0
	1	0	10.77	10.88	10.89		0
	1	50	10.67	10.95	10.95	0-1	0
	1	99	10.62	11.00	11.00		0
16QAM	50	0	10.66	10.64	10.86		0
	50	25	10.60	10.70	10.89	0-2	0
	50	50	10.58	10.73	10.93	0-2	0
	100	0	10.62	10.78	10.99		0

Table 9-28 LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

				LTE Band 66 (AWS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	10.50	10.53	10.87		0
	1	36	10.45	10.59	10.89	0	0
	1	74	10.45	10.63	10.98	0-1	0
QPSK	36	0	10.58	10.71	10.99		0
	36	18	10.62	10.74	10.93		0
	36	37	10.57	10.74	10.98		0
	75	0	10.58	10.76	10.99		0
	1	0	10.52	10.81	11.00		0
	1	36	10.35	10.84	10.98	0-1	0
	1	74	10.50	10.90	10.99		0
16QAM	36	0	10.59	10.85	11.00		0
	36	18	10.63	10.84	10.99	0-2	0
	36	37	10.62	10.80	10.98		0
	75	0	10.64	10.83	10.96		0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Do ao 20 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 38 of 92

Table 9-29 LTF Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

		IL Dallu V	o (AWS) Reduc	ea Conauctea F	OWEIS - IO WILL	Z Danuwiutii	
				LTE Band 66 (AWS)			
		1	Low Channel	10 MHz Bandwidth Mid Channel	High Channal	1	
					High Channel		
Modulation	RB Size	RB Offset	132022	132322	132622	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1745.0 MHz)	(1775.0 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	10.53	10.50	10.87		0
	1	25	10.56	10.51	10.88	0	0
	1	49	10.47	10.54	10.92		0
QPSK	25	0	10.50	10.61	10.93	0-1	0
	25	12	10.57	10.62	10.91		0
	25	25	10.53	10.60	10.89	0-1	0
	50	0	10.53	10.61	10.92		0
·	1	0	10.48	10.75	10.98		0
	1	25	10.52	10.78	10.97	0-1	0
	1 49	49	10.40	10.77	11.00		0
16QAM	25	0	10.53	10.66	10.92		0
	25	12	10.61	10.62	10.97	0-2	0
	25	25	10.57	10.64	10.94	0-2	0
	50	0	10.57	10.66	10.99		0

Table 9-30 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	10.57	10.56	11.00		0
	1	12	10.53	10.57	10.97	0	0
	1	24	10.53	10.59	10.99	0-1	0
QPSK	12	0	10.61	10.62	10.95		0
	12	6	10.62	10.60	10.97		0
	12	13	10.61	10.63	10.95		0
	25	0	10.59	10.62	10.99		0
	1	0	10.83	10.89	10.89		0
	1	12	10.90	10.90	10.99	0-1	0
	1	24	10.84	10.93	10.98		0
16QAM	12	0	10.65	10.70	10.89		0
	12	6	10.62	10.67	10.91	0-2	0
	12	13	10.64	10.70	11.00	0-2	0
	25	0	10.65	10.66	10.94		0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 20 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 39 of 92

Table 9-31 LTF Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

		- I E Bana o	o (Allo) itcuu	LTE Band 66 (AWS)	I OWCIS - 5 IVII IZ	. Danawiath	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	10.64	10.71	10.97		0
	1	7	10.59	10.70	10.98	0	0
QPSK	1	14	10.62	10.69	10.95		0
	8	0	10.67	10.65	10.97		0
	8	4	10.65	10.67	10.95	0-1	0
	8	7	10.66	10.69	10.95		0
	15	0	10.64	10.66	10.99		0
	1	0	10.64	10.92	11.00		0
	1	7	10.62	10.94	10.99	0-1	0
	1	14	10.65	10.95	10.98		0
16QAM	8	0	10.66	10.77	10.89		0
	8	4	10.68	10.76	10.90	0-2	0
	8	7	10.62	10.80	10.95	0-2	0
	15	0	10.69	10.80	10.99		0

Table 9-32 LTE Band 66 (AWS) Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	10.56	10.77	11.00		0
	1	2	10.57	10.76	10.99	0	0
	1	5	10.57	10.78	10.98		0
QPSK	3	0	10.66	10.71	10.92		0
	3	2	10.67	10.71	10.95		0
	3	3	10.64	10.73	11.00		0
	6	0	10.69	10.72	10.96	0-1	0
	1	0	10.36	10.69	10.96		0
	1	2	10.40	10.70	10.87		0
	1	5	10.37	10.71	10.94	0-1	0
16QAM	3	0	10.65	10.64	10.93]	0
	3	2	10.63	10.61	10.93		0
	3	3	10.66	10.65	10.97		0
	6	0	10.71	10.83	11.00	0-2	0

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 40 of 92

LTE Band 2 (PCS) 9.3.4

Table 9-33 LTE Band 2 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

		. I L Dallu Z	(PCS) Waxiillu	m Conducted P	OWEIS - ZU MITA	z Bandwidth	
				LTE Band 2 (PCS)			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			• • • • • • • • • • • • • • • • • • • •	Conducted Power [dBm]		
	1	0	23.77	23.61	23.49		0
	1	50	23.84	23.30	23.75	0	0
	1	99	23.81	23.30	23.35		0
QPSK	50	0	22.92	22.33	22.38	0-1	1
	50	25	22.88	22.35	22.37		1
	50	50	22.90	22.36	22.30		1
	100	0	22.91	22.33	22.32		1
	1	0	22.93	22.41	22.53		1
	1	50	22.99	22.53	22.52	0-1	1
	1	99	23.00	22.51	22.34		1
16QAM	50	0	21.93	21.29	21.31		2
	50	25	21.97	21.31	21.34	0-2	2
	50	50	21.98	21.36	21.29	0-2	2
	100	0	21.98	21.37	21.30		2

Table 9-34 LTE Band 2 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

	_		(CC) maxima	LTE Band 2 (PCS)			
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
					·	I	
Modulation	RB Size	RB Offset	18675	18900	19125	MPR Allowed per	MPR [dB]
			(1857.5 MHz)	(1880.0 MHz)	(1902.5 MHz)	3GPP [dB]	• •
				Conducted Power [dBm]		
	1	0	23.85	23.22	23.54		0
	1	36	23.88	23.24	23.60	0	0
	1	74	23.87	23.26	23.38		0
QPSK	36	0	23.02	22.33	22.49	0-1	1
	36	18	23.07	22.30	22.51		1
	36	37	23.09	22.35	22.45		1
	75	0	23.01	22.36	22.42		1
	1	0	22.87	22.16	22.44		1
	1	36	22.89	22.20	22.21	0-1	1
	1	74	22.85	22.23	22.22		1
16QAM	36	0	22.08	21.27	21.50		2
	36	18	22.12	21.28	21.46	0-2	2
	36	37	22.14	21.30	21.41		2
	75	0	22.13	21.36	21.44]	2

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 600
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 41 of 92

Table 9-35 LTF Band 2 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

	<u>L</u>	I E Dallu Z	(PCS) Waximu	m Conducted P	owers - 10 Min	z Banuwium	
				LTE Band 2 (PCS)			
				10 MHz Bandwidth	1	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.91	23.27	23.51		0
	1	25	23.92	23.25	23.47	0	0
	1	49	23.93	23.28	23.38		0
QPSK	25	0	23.03	22.30	22.45	0-1	1
	25	12	23.07	22.33	22.45		1
	25	25	23.08	22.36	22.40		1
	50	0	23.07	22.36	22.49		1
	1	0	22.61	22.12	22.20		1
	1	25	22.62	22.13	22.22	0-1	1
	1	49	22.63	22.15	22.14		1
16QAM	25	0	22.09	21.27	21.42		2
	25	12	22.09	21.26	21.43	0-2	2
	25	25	22.10	21.28	21.36	0-2	2
	50	0	22.12	21.24	21.41		2

Table 9-36 LTE Band 2 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

	LTE Band 2 (PCS) 5 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm]				
	1	0	24.10	23.16	23.54		0		
	1	12	24.09	23.13	23.51	0	0		
	1	24	24.15	23.18	23.50		0		
QPSK	12	0	23.09	22.35	22.52	0-1	1		
	12	6	23.07	22.32	22.48		1		
	12	13	23.09	22.34	22.47		1		
	25	0	23.08	22.34	22.49		1		
	1	0	22.97	22.10	22.57		1		
	1	12	23.03	22.07	22.49	0-1	1		
	1	24	22.96	22.08	22.50		1		
16QAM	12	0	22.08	21.17	21.37		2		
	12	6	22.11	21.16	21.35	0-2	2		
	12	13	22.07	21.16	21.32		2		
	25	0	22.13	21.24	21.42		2		

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 42 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 42 of 92

Table 9-37 LTE Band 2 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

		LIE Danu	2 (PCS) Waxiiil	ım Conducted i	OWEIS - 3 MINZ	Bandwidth	
				LTE Band 2 (PCS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615	18900	19185	MPR Allowed per	MPR [dB]
	112 0.20	1.2 0001	(1851.5 MHz)	(1880.0 MHz)	(1908.5 MHz)	3GPP [dB]	[]
				Conducted Power [dBm]		
	1	0	23.98	23.26	23.41		0
	1	7	23.97	23.23	23.35	0	0
	1	14	23.99	23.25	23.32		0
QPSK	8	0	23.06	22.28	22.45		1
	8	4	23.04	22.27	22.42	0-1	1
	8	7	23.06	22.26	22.44		1
	15	0	23.07	22.29	22.46		1
	1	0	23.17	22.08	22.07		1
	1	7	23.13	22.07	22.08	0-1	1
16QAM	1	14	23.16	22.10	22.06		1
	8	0	22.09	21.23	21.36		2
	8	4	22.04	21.28	21.31	0-2	2
	8	7	22.04	21.28	21.34	0-2	2
	15	0	22.16	21.30	21.37		2

Table 9-38 LTE Band 2 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.01	23.43	23.40		0
	1	2	23.99	23.39	23.47	0	0
	1	5	24.02	23.39	23.48		0
QPSK	3	0	24.08	23.26	23.40		0
	3	2	24.08	23.24	23.36		0
	3	3	24.07	23.27	23.34		0
	6	0	23.04	22.29	22.42	0-1	1
	1	0	22.94	22.01	22.18		1
	1	2	22.94	22.03	22.25		1
	1	5	22.98	22.01	22.23	0-1	1
16QAM	3	0	23.04	22.21	22.36]	1
	3	2	23.04	22.22	22.32		1
	3	3	23.06	22.23	22.30		1
	6	0	22.15	21.26	21.30	0-2	2

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 42 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 43 of 92

Table 9-39 LTE Band 2 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

		LIE Danu A	2 (PCS) Reduce	ea Conauctea P	owers - 20 Minz	Danawiath	
				LTE Band 2 (PCS)			
				20 MHz Bandwidth	ı	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Size RB Offset	18700	18900	19100	MPR Allowed per	MPR [dB]
Modulation	NB 0120	112 011301	(1860.0 MHz)	(1880.0 MHz)	(1900.0 MHz)	3GPP [dB]	iiii k [uD]
				Conducted Power [dBm]		
	1	0	10.83	9.83	10.13		0
	1	50	10.94	9.92	10.10	0	0
	1	99	10.88	9.85	10.01		0
QPSK	50	0	10.67	9.93	10.12	0-1	0
	50	25	10.71	9.94	10.11		0
	50	50	10.72	9.95	9.94		0
	100	0	10.70	9.92	10.03		0
	1	0	10.99	10.18	10.18		0
	1	50	10.99	10.23	10.14	0-1	0
	1	99	11.00	10.25	10.01		0
16QAM	50	0	10.72	9.95	10.12		0
	50	25	10.76	9.97	10.10	0-2	0
	50	50	10.77	9.99	10.04	U-2	0
	100	0	10.78	10.03	10.11		0

Table 9-40 LTE Band 2 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

				LTE Band 2 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	10.83	10.10	10.28		0
	1	36	10.84	10.12	10.24	0	0
	1	74	10.89	10.15	10.15	0-1	0
QPSK	36	0	10.88	10.13	10.28		0
	36	18	10.87	10.16	10.26		0
	36	37	10.90	10.15	10.22	0-1	0
	75	0	10.89	10.16	10.22		0
	1	0	10.95	10.34	10.26		0
	1	36	10.99	10.36	10.17	0-1	0
	1	74	11.00	10.37	10.11		0
16QAM	36	0	10.94	10.26	10.31		0
	36	18	10.93	10.26	10.33	0-2	0
	36	37	10.97	10.25	10.30	0-2	0
	75	0	10.98	10.24	10.32		0

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 44 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 44 of 92

Table 9-41 LTE Band 2 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

	•		e (i oo) itcaacc	u Conducted F	OWCIS - 10 WILL	Danawiatii	
				LTE Band 2 (PCS)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650	18900 19150		MPR Allowed per	MPR [dB]
modulation	IND OILO	112 011001	(1855.0 MHz)	(1880.0 MHz)	(1905.0 MHz)	3GPP [dB]	iii ii (ub)
			O	Conducted Power [dBm]		
	1	0	10.82	10.22	10.20		0
	1	25	10.86	10.24	10.18	0	0
	1	49	10.87	10.18	10.14		0
QPSK	25	0	10.81	10.09	10.21		0
	25	12	10.79	10.10	10.20	0-1	0
	25	25	10.82	10.04	10.16		0
	50	0	10.81	10.01	10.19		0
	1	0	10.93	10.05	10.03		0
	1	25	11.00	10.02	9.99	0-1	0
	1	49	10.99	9.97	9.97		0
16QAM	25	0	10.86	10.05	10.18		0
	25	12	10.87	10.08	10.17	0-2	0
	25	25	10.87	10.10	10.16	0-2	0
	50	0	10.85	10.14	10.20		0

Table 9-42 LTE Band 2 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

			2 (1 00) Rodao	ed Conducted F	CHOIC CHILL		
				LTE Band 2 (PCS)			
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625	18900	19175	MPR Allowed per	MPR [dB]
Wodulation	KD SIZE	KB Oliset	(1852.5 MHz)	(1880.0 MHz)	(1907.5 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	10.90	10.08	10.16		0
	1	12	10.88	10.02	10.09	0	0
	1	24	10.93	9.99	10.11		0
QPSK	12	0	10.82	10.08	10.21		0
	12	6	10.82	10.05	10.21	0-1	0
	12	13	10.83	10.08	10.20		0
	25	0	10.80	10.10	10.22		0
	1	0	10.99	10.12	10.28		0
	1	12	10.98	10.07	10.24	0-1	0
	1	24	11.00	10.11	10.23		0
16QAM	12	0	10.83	10.22	10.27		0
	12	6	10.79	10.23	10.24	0-2	0
	12	13	10.81	10.24	10.29	0-2	0
	25	0	10.82	10.13	10.21		0

CC ID: A3LSMP205		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 45 -4 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 45 of 92

Table 9-43 LTE Band 2 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

		LIL Dallu	Z (PCS) Neduci	ea Conducted P	OWEIS - 3 MINZ	Bandwidth	
				LTE Band 2 (PCS)			
				3 MHz Bandwidth			
	RB Size		Low Channel	Mid Channel	High Channel		
Modulation		RB Offset	18615	18900	19185	MPR Allowed per	MPR [dB]
	112 0.20	1.2 0001	(1851.5 MHz)	(1880.0 MHz)	(1908.5 MHz)	3GPP [dB]	[]
				Conducted Power [dBm]		
	1	0	10.80	10.04	10.10		0
	1	7	10.78	10.03	10.01	0	0
	1	14	10.81	10.04	10.05		0
QPSK	8	0	10.78	9.99	10.10		0
	8	4	10.76	10.01	10.14	0-1	0
	8	7	10.77	10.00	10.13		0
	15	0	10.75	10.01	10.14		0
	1	0	10.98	10.17	10.22		0
	1	7	10.94	10.21	10.17	0-1	0
	1	14	10.99	10.26	10.19		0
16QAM	8	0	10.76	10.01	10.07		0
	8	4	10.79	9.99	10.07	0-2	0
	8	7	10.80	10.00	10.08	0-2	0
	15	0	10.84	10.05	10.13		0

Table 9-44 LTE Band 2 (PCS) Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18607 (1850.7 MHz)	Mid Channel 18900 (1880.0 MHz)	High Channel 19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	10.95	10.10	10.01		0
	1	2	10.94	10.13	10.02	1	0
	1	5	10.93	10.14	10.00	0	0
QPSK	3	0	10.78	10.01	10.10]	0
	3	2	10.74	10.00	10.06	1	0
	3	3	10.79	10.01	10.10		0
	6	0	10.83	10.05	10.13	0-1	0
	1	0	10.98	10.07	9.97		0
	1	2	10.99	10.08	10.00		0
	1	5	11.00	10.09	9.96	0-1	0
16QAM	3	0	10.86	10.11	10.15]	0
	3	2	10.89	10.12	10.17		0
	3	3	10.88	10.08	10.14		0
	6	0	10.94	10.07	10.12	0-2	0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 46 of 92

9.3.5 LTE Band 41

Table 9-45 LTE Band 41 Maximum Conducted Powers - 20 MHz Bandwidth

			Dana Ti Wi	uxiiiiuiii ooi	LTE Band 41		aaa	•••	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.03	23.03	23.04	22.49	22.43		0
	1	50	22.00	23.01	23.00	22.47	22.40	0	0
	1	99	22.06	22.93	22.99	22.32	22.31		0
QPSK	50	0	21.02	22.12	22.11	21.55	21.57		1
	50	25	21.03	22.01	22.06	21.58	21.48	0-1	1
	50	50	21.04	22.06	22.06	21.55	21.51	0-1	1
	100	0	21.02	22.03	22.09	21.55	21.54		1
	1	0	21.05	22.31	22.32	21.65	21.73		1
	1	50	21.27	22.17	22.14	21.63	21.79	0-1	1
	1	99	21.26	22.31	22.16	21.36	21.67		1
16QAM	50	0	20.04	21.12	21.15	20.64	20.50		2
	50	25	20.02	21.06	21.10	20.63	20.53	0-2	2
	50	50	20.12	21.05	21.05	20.53	20.49	0.2	2
	100	0	20.10	21.13	21.07	20.57	20.52		2

Table 9-46 LTE Band 41 Maximum Conducted Powers - 15 MHz Bandwidth

			Bana Trivi	uxiiiiuiii 00i		WCIS - IS WII	ie Ballawia	···	
					LTE Band 41				
				1	5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Sm]			
	1	0	22.12	22.86	22.74	22.23	22.27		0
	1	36	22.07	22.79	22.71	22.18	22.22	0	0
	1	74	22.09	22.75	22.67	22.19	22.17		0
QPSK	36	0	21.03	21.85	21.74	21.27	21.35		1
	36	18	21.05	21.80	21.76	21.26	21.30	0-1	1
	36	37	21.01	21.75	21.71	21.23	21.28	0-1	1
	75	0	21.03	21.79	21.73	21.27	21.31		1
	1	0	21.08	21.87	21.85	21.40	21.43		1
	1	36	21.04	21.80	21.72	21.32	21.40	0-1	1
	1	74	21.02	21.82	21.67	21.32	21.32		1
16QAM	36	0	20.05	20.82	20.72	20.24	20.30		2
	36	18	20.04	20.75	20.72	20.27	20.29	0-2	2
	36	37	20.02	20.72	20.73	20.24	20.26	0-2	2
	75	0	20.10	20.85	20.84	20.33	20.36		2

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 47 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 47 of 92

Table 9-47 LTE Band 41 Maximum Conducted Powers - 10 MHz Bandwidth

			Dulla Ti W	axiiiiuiii Coi	LTE Band 41	17013 10 1111	iz Banawia	<u> </u>	
				4	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
'				Co	nducted Power [dE	Bm]			
	1	0	22.13	22.86	22.81	22.25	22.26		0
	1	25	22.18	22.81	22.74	22.22	22.29	0	0
	1	49	22.11	22.76	22.76	22.19	22.23		0
QPSK	25	0	21.03	21.82	21.78	21.25	21.34		1
	25	12	21.02	21.79	21.76	21.26	21.32	0-1	1
	25	25	21.04	21.75	21.77	21.24	21.29	0-1	1
	50	0	21.01	21.80	21.75	21.27	21.37		1
	1	0	21.26	22.02	21.86	21.32	21.45		1
	1	25	21.19	21.90	21.84	21.30	21.40	0-1	1
	1	49	21.15	21.83	21.89	21.23	21.34		1
16QAM	25	0	20.14	20.87	20.84	20.38	20.40		2
	25	12	20.12	20.85	20.81	20.33	20.37	0-2	2
	25	25	20.12	20.82	20.80	20.31	20.34	0-2	2
	50	0	20.09	20.83	20.81	20.29	20.40		2

Table 9-48 LTE Band 41 Maximum Conducted Powers - 5 MHz Bandwidth

				axiiiiaiii 00	LTE Band 41		z Banawia	-	
					5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	22.30	23.03	23.19	22.40	22.77		0
	1	12	22.23	23.07	23.16	22.39	22.79	0	0
	1	24	22.21	23.05	23.10	22.35	22.78		0
QPSK	12	0	21.15	22.02	22.21	21.49	21.84		1
	12	6	21.16	22.01	22.17	21.46	21.83	0.1	1
	12	13	21.11	22.02	22.14	21.47	21.82	0-1	1
	25	0	21.14	22.02	22.15	21.46	21.84		1
	1	0	21.20	22.03	22.17	21.48	21.70		1
	1	12	21.23	22.02	22.12	21.44	21.72	0-1	1
	1	24	21.15	22.08	22.07	21.50	21.66		1
16QAM	12	0	20.19	21.10	21.15	20.48	20.81		2
	12	6	20.10	20.98	21.14	20.40	20.86	0-2	2
	12	13	20.11	20.99	21.11	20.43	20.78	0-2	2
	25	0	20.25	21.05	21.21	20.59	20.83] [2

	121.70728887		Quality Manager
Document S/N: Test Date:	s:	DUT Type:	Dogo 40 of 02
1M1901170008-01-R2.A3L 02/03/19 -	02/21/19	Portable Tablet	Page 48 of 92

Table 9-49 LTE Band 41 Reduced Conducted Powers - 20 MHz Bandwidth

			. Dana Ti it	caaoca oon		VEIS - ZU IVIII	z Barrawia			
				•	LTE Band 41					
		I	20 MHz Bandwidth					1		
				Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Co	nducted Power [dE	Bm]				
	1	0	12.04	13.01	12.90	12.47	12.42		0	
	1	50	12.00	12.90	12.87	12.40	12.35	0	0	
	1	99	12.02	12.80	12.90	12.33	12.30		0	
QPSK	50	0	12.01	13.00	13.01	12.47	12.37		0	
	50	25	12.00	12.95	13.00	12.48	12.40	0-1	0	
	50	50	12.02	12.92	12.90	12.43	12.30	0-1	0	
	100	0	12.01	12.96	12.97	12.45	12.38		0	
	1	0	12.32	13.25	12.99	12.41	12.80		0	
	1	50	12.17	13.15	12.97	12.50	12.64	0-1	0	
	1	99	12.25	13.14	13.16	12.72	12.58		0	
16QAM	50	0	12.04	13.06	13.07	12.62	12.56		0	
	50	25	12.01	13.08	13.05	12.54	12.48	0-2	0	
	50	50	12.02	13.03	13.03	12.50	12.46	0.2	0	
	100	0	12.03	13.11	13.10	12.51	12.43		0	

Table 9-50 LTE Band 41 Reduced Conducted Powers - 15 MHz Bandwidth

			- Bana Trik	educed Con		10.0 10.111.	_ Banawia		
				4	LTE Band 41				
				15 MHz Bandwidth					
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)			41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Co	nducted Power [dB	Sm]			
	1	0	12.09	13.01	12.91	12.35	12.39		0
	1	36	12.05	12.86	12.87	12.34	12.26	0	0
	1	74	12.06	12.80	12.94	12.32	12.26		0
QPSK	36	0	12.11	12.91	12.85	12.39	12.31		0
	36	18	12.04	12.99	12.90	12.35	12.34	0-1	0
	36	37	12.11	12.89	12.93	12.29	12.30	0-1	0
	75	0	12.08	12.94	12.89	12.39	12.29		0
	1	0	12.10	13.10	13.18	12.36	12.51		0
	1	36	12.14	13.08	13.12	12.45	12.46	0-1	0
	1	74	12.20	13.02	13.14	12.55	12.42		0
16QAM	36	0	12.17	13.04	12.97	12.40	12.43		0
	36	18	12.09	13.03	13.02	12.42	12.37	0-2	0
	36	37	12.16	12.93	12.94	12.41	12.33	0-2	0
	75	0	12.13	13.08	13.02	12.41	12.43		0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 02	
1M1901170008-01-R2.A3L	1170008-01-R2.A3L 02/03/19 - 02/21/19 Portable Tablet		Page 49 of 92	

Table 9-51 LTF Band 41 Reduced Conducted Powers - 10 MHz Bandwidth

			. Dana 41 K		LTE Band 41 0 MHz Bandwidth	vers - 10 Min	z Banawia	•••		
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)				41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Co	nducted Power [dE	Bm]				
	1	0	12.03	12.92	12.71	12.35	12.31		0	
	1	25	12.07	12.85	12.73	12.27	12.32	0	0	
	1	49	12.09	12.81	12.74	12.21	12.33		0	
QPSK	25	0	12.00	12.92	12.75	12.33	12.33		0	
	25	12	12.03	12.83	12.72	12.24	12.29	0-1	0	
	25	25	12.08	12.79	12.67	12.24	12.29	0-1	0	
	50	0	11.99	12.81	12.70	12.27	12.31		0	
	1	0	12.23	13.24	12.75	12.75	12.63		0	
	1	25	12.43	13.18	12.90	12.50	12.47	0-1	0	
	1	49	12.34	13.07	12.87	12.49	12.22		0	
16QAM	25	0	12.19	12.99	12.91	12.42	12.38		0	
	25	12	12.09	12.99	12.89	12.39	12.45	0-2	0	
	25	25	12.11	12.84	12.86	12.37	12.46	0-2	0	
	50	0	12.04	12.95	12.85	12.33	12.36		0	

Table 9-52 LTE Band 41 Reduced Conducted Powers - 5 MHz Bandwidth

				caacca ooi	LTE Band 41			•	
					MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	
			1						
	1	0	12.04	12.87	12.75	12.27	12.27		0
	1	12	12.08	12.88	12.73	12.29	12.26	0	0
	1	24	12.02	12.74	12.69	12.21	12.26		0
QPSK	12	0	12.05	12.82	12.68	12.29	12.30		0
	12	6	12.07	12.89	12.74	12.30	12.25	0-1	0
	12	13	12.04	12.87	12.75	12.24	12.19	0-1	0
	25	0	12.06	12.85	12.72	12.27	12.30		0
	1	0	12.04	13.20	12.93	12.49	12.58		0
	1	12	12.08	13.19	13.03	12.54	12.65	0-1	0
	1	24	12.03	13.16	12.96	12.26	12.77		0
16QAM	12	0	12.04	12.87	12.73	12.31	12.39		0
	12	6	12.08	12.85	12.77	12.35	12.43	0-2	0
	12	13	12.04	12.88	12.73	12.35	12.38	0-2	0
	25	0	12.05	13.04	12.88	12.44	12.39		0

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Daga 50 of 02	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 50 of 92	

WLAN Conducted Powers 9.4

Table 9-53 2.4 GHz WLAN Maximum Average RF Power

2.4GHz Conducted Power [dBm]							
		IEEE .	Transmission	Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n			
		Average	Average	Average			
2412	1	17.62	15.72	14.62			
2437	6	17.29	15.92	14.76			
2462	11	17.43	13.28	13.16			

Table 9-54 2.4 GHz WLAN Reduced Average RF Power

2.4GHz Conducted Power [dBm]							
	IEEE Transmission Mode						
Freq [MHz]	Channel	802.11b	802.11g	802.11n			
		Average	Average	Average			
2412	1	11.47	11.43	11.16			
2437	6	11.48	11.51	11.20			
2462	11	11.45	11.82	11.74			

Table 9-55 5 GHz WLAN Maximum Average RF Power

5GHz	5GHz (40MHz) Conducted Power [dBm]							
		IEEE Transm	nission Mode					
Freq [MHz]	Channel	802.11n	802.11ac					
		Average	Average					
5190	38	11.65	10.98					
5230	46	11.92	10.99					
5270	54	11.90	10.96					
5310	62	11.68	10.60					
5510	102	11.68	10.97					
5590	118	11.90	10.90					
5630	126	11.87	10.97					
5710	142	11.89	10.98					
5755	151	11.56	10.45					
5795	159	11.54	10.75					

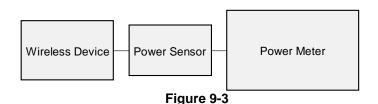

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 54 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 51 of 92

Table 9-56 5 GHz WLAN Reduced Average RF Power

5GHz (80MH	z) Conducted I	Power [dBm]
Freq [MHz]	Channel	IEEE Transmission Mode
rreq [winz]	Channel	802.11ac
		Average
5210	42	7.56
5290	58	7.70
5530	106	8.11
5610	122	8.28
5690	138	7.97
5775	155	7.95

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

Power Measurement Setup

Approved by: PCTEST FCC ID: A3LSMP205 **SAR EVALUATION REPORT** SAMSUNG Quality Manager DUT Type: Document S/N: **Test Dates:** Page 52 of 92 1M1901170008-01-R2.A3L 02/03/19 - 02/21/19 Portable Tablet REV 21.3 M

10.1 Tissue Verification

Table 10-1 Measured Head Tissue Properties

		IVIE	Sur c u r		sue Flop				
Calibrated for	Tianus Tuma	Tissue Temp	Measured	Measured	Measured	TARGET	TARGET	0/ -1	0/ -1
Tests Performed on:	Tissue Type	During Calibration (°C)	Frequency (MHz)	Conductivity, σ (S/m)	Dielectric Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev ε
renormed on.		(0)	700	0.881	42.799	0.889	42.201	-0.90%	1.42%
			710	0.884	42.782	0.890	42.201	-0.67%	1.50%
			710	0.887	42.782	0.890	42.149	-0.67%	1.55%
2/12/2019	750H	21.9	725	0.889		0.891	42.097	-0.45%	
					42.726				1.56%
			740	0.894	42.675	0.893	41.994	0.11%	1.62%
			755	0.899	42.627	0.894	41.916	0.56%	1.70%
2/3/2019	835H	40.4	820 835	0.867	42.078 42.018	0.899	41.578 41.500	-3.56%	1.20% 1.25%
2/3/2019	83511	18.4		0.873		0.900	41.500	-3.00% -4.15%	
			850 820	0.878 0.877	41.978 42.740	0.916 0.899	41.578	-4.15% -2.45%	1.15% 2.79%
2/12/2019	835H	20.5	835	0.883	42.740	0.999	41.500	-1.89%	2.79%
2/12/2019	03311	20.5	850	0.889	42.652	0.900	41.500	-2.95%	2.78%
			1710						
2/14/2019	1750H	20.9	1710	1.305 1.326	40.676 40.620	1.348 1.371	40.142	-3.19% -3.28%	1.33% 1.35%
2/14/2019	1750H	20.9							
			1790	1.350	40.553	1.394	40.016	-3.16%	1.34%
0/4.4/0040	400011	00.0	1850	1.390	40.474	1.400	40.000	-0.71%	1.18%
2/14/2019	1900H	20.9	1880	1.408	40.431	1.400	40.000	0.57%	1.08%
			1910	1.427	40.385	1.400	40.000	1.93%	0.96%
2/14/2010 1000H		1850	1.412	40.692	1.400	40.000	0.86%	1.73%	
2/14/2019	1900H	20.3	1880	1.432	40.622	1.400	40.000	2.29%	1.56%
			1910	1.448	40.570	1.400	40.000	3.43%	1.43%
			2400	1.826	40.043	1.756	39.289	3.99%	1.92%
2/11/2019	2400H	19.1	2450	1.865	39.927	1.800	39.200	3.61%	1.85%
			2500	1.905	39.865	1.855	39.136	2.70%	1.86%
			2400	1.751	38.688	1.756	39.289	-0.28%	-1.53%
2/21/2019	2400H	21.0	2450	1.791	38.599	1.800	39.200	-0.50%	-1.53%
			2500	1.828	38.527	1.855	39.136	-1.46%	-1.56%
			2400	1.794	39.900	1.756	39.289	2.16%	1.56%
	2400-2600H		2450	1.833	39.811	1.800	39.200	1.83%	1.56%
			2500	1.872	39.744	1.855	39.136	0.92%	1.55%
2/14/2019)-2600H 20.3	2550	1.912	39.651	1.909	39.073	0.16%	1.48%
			2600	1.958	39.585	1.964	39.009	-0.31%	1.48%
			2650	1.998	39.493	2.018	38.945	-0.99%	1.41%
			2700	2.047	39.395	2.073	38.882	-1.25%	1.32%
			5200	4.525	35.125	4.655	35.986	-2.79%	-2.39%
			5220	4.550	35.077	4.676	35.963	-2.69%	-2.46%
			5240	4.565	35.045	4.696	35.940	-2.79%	-2.49%
			5260	4.581	35.043	4.717	35.917	-2.88%	-2.43%
			5280	4.601	34.981	4.737	35.894	-2.87%	-2.54%
			5300	4.625	34.978	4.758	35.871	-2.80%	-2.49%
			5320	4.647	34.940	4.778	35.849	-2.74%	-2.54%
			5500	4.824	34.673	4.963	35.643	-2.80%	-2.72%
			5520	4.846	34.633	4.983	35.620	-2.75%	-2.77%
			5540	4.880	34.617	5.004	35.597	-2.48%	-2.75%
02/12/2019	5200H-5800H	18.3	5560	4.894	34.615	5.024	35.574	-2.59%	-2.70%
			5580	4.913	34.603	5.045	35.551	-2.62%	-2.67%
			5600	4.933	34.570	5.065	35.529	-2.61%	-2.70%
			5620	4.956	34.545	5.086	35.506	-2.56%	-2.71%
			5640	4.973	34.503	5.106	35.483	-2.60%	-2.76%
			5660	4.998	34.477	5.127	35.460	-2.52%	-2.77%
			5680	5.015	34.469	5.147	35.437	-2.56%	-2.73%
			5700	5.039	34.391	5.168	35.414	-2.50%	-2.89%
			5745	5.084	34.308	5.214	35.363	-2.49%	-2.98%
			5765	5.106	34.300	5.234	35.340	-2.45%	-2.94%

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 52 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 53 of 92

Table 10-2 Measured Body Tissue Properties

Calibrated Tests			Measur	Cu D	uy iio	Juc I I	Opcition	,,		
1700	Tests	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
1700				700	0.941	53.809	0.959	55.726	-1.88%	-3.44%
2010 2750 2750 19.9 720										
1740	2/11/2019	750B	19.9							
1756 0.980 0.53473 0.984 0.5512 0.4476 3.278										
20019 8588 19.7 858 0.990 5.026 0.0475 3.2295										
202019 65586 19.7 6550 0.980 63.400 0.970 55.200 1.079 3.2570										
1908 19.9 19.00	2/3/2019	835B	19.7							
211/2019 8358	202010	0335	13.7							
211/2019 8358 19.9 835 0.9931 53.442 0.970 55.200 2.97% 31.0% 81.0% 85.0 0.998 53.142 0.998 55.156 1.07% 3.20% 3.90% 3.90% 3.101 0.998 55.258 3.67% 3.90% 3.90% 3.90% 3.101 0.998 55.258 3.67% 3.90% 3.90% 3.90% 3.101 0.998 3.5286 3.67% 3.90%										
850 0.998 53.442 0.988 55.144 1.075	2/11/2010	02ED	40.0							
21902019 8358 20.6 858 1.009 1.53.047 0.0989 1.55.258 3.51% 3.20% 3.20% 2.20%	2/11/2019	633B	15.5							
218/2019 8388 20.5 835 10.09 53.097 0.970 55.200 4.02% 39.0% 880 1.015 52.997 0.988 55.146 2.77% 3.99% 28/2019 17508 20.7 1750 1.480 52.289 1.483 53.432 0.21% 2.37% 1770 1.180 52.221 1.483 53.432 0.21% 2.27% 1770 1.181 51.082 1.184 53.330 0.13% 2.10% 1770 1.181 51.081 1.488 53.432 0.13% 2.10% 1770 1.181 51.081 1.488 53.432 0.13% 2.10% 1790 1.181 51.081 1.488 53.432 0.47% 4.69% 1790 1.500 51.012 1.514 53.200 0.47% 4.69% 1790 1.500 51.012 1.514 53.200 0.47% 4.69% 1790 1.500 51.012 1.514 53.200 0.47% 4.69% 1790 1.500 50.041 1.500 53.300 2.37% 4.49% 1800 1.675 50.041 1.520 53.300 3.67% 4.69% 1800 1.675 50.040 1.520 53.300 3.67% 4.69% 1800 1.674 61.227 1.520 53.300 3.65% 4.67% 1800 1.574 61.227 1.520 53.300 3.65% 4.67% 1800 1.574 61.227 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 1800 1.500 50.123 1.520 53.300 3.65% 4.67% 180										
1750 1750 1.400 1.52997 0.988 55.164 2.798 2.978 2		2050	00.5							
282219 1750B	2/15/2019	835B	20.5							
1750B 1750B 20.7 1750										
2192019 17508 21.0 1790 1.1512 25.179 1.514 53.328 0.1795 21.557 1.0 1 1.657 1.512 1										
218/2019 1750B 21.0 1750 1.4807 \$1,086 1.483 \$53.57 0.471% 4.62% \$120 1750 1.481 \$15,040 1.488 \$53.57 0.471% 4.62% \$120 1750 1.509 \$10.00 1.509 \$10.00 1.500 \$5.00 1.516 \$5.00 1.516 \$5.00 1.516 \$5.00 1.516 \$5.00 1.516 \$5.00 1.500 \$5.00	2/6/2019	1750B	20.7							
1750B 1750B 21.0 1750										
2132019 1908				1710	1.457	51.066	1.463	53.537	-0.41%	-4.62%
1900	2/18/2019	1750B	21.0	1750	1.481	51.040	1.488	53.432	-0.47%	-4.48%
213/2019 19008 22.3 1880 1.575 50.684 1.520 53.300 3.6278 4.6278 1910				1790	1.509	51.012	1.514	53.326	-0.33%	-4.34%
1910				1850	1.556	50.941	1.520	53.300	2.37%	-4.43%
1910	2/13/2019	1900B	22.3	1880		50.871	1.520	53.300	3.62%	-4.56%
1900B 1900B 22.0			1							
1900			İ							
1910	2/19/2019	1900B	22.0							
2400										
2400 2400 22.3 2450 2.039 50.200 1.950 52.700 4.66% 4.76% 4.76%	-									
2500 2.085 50.128 2.021 52.636 3.22% 4.70% 2400 1.902 50.590 1.902 52.707 3.19% 4.15% 2450 2.010 50.433 1.950 52.700 3.05% 4.15% 2.500 2.055 50.447 2.021 52.636 1.68% 4.15% 2.500 2.055 50.447 2.021 52.636 1.68% 4.15% 2.650 2.002 2.055 50.447 2.021 52.636 1.68% 4.15% 2.650 2.002 2.055 50.447 2.021 52.636 1.68% 4.15% 2.650 2.002 52.573 3.05% 4.25% 4.25% 2.205 2.059 1.028% 4.25% 4.25% 2.050 2.055 50.447 2.234 52.458 1.204 4.25% 4.25% 2.205 2.205 50.147 2.234 52.458 1.204 4.25% 4.25% 2.205 2.205 50.097 2.205 50.097 2.205 52.305 52.302 2.17% 4.23% 2.205 50.097 2.205 50.007 2.	2/12/2010	24000	20.0							
2400	2/13/2019	2400B	22.3							
24500 2.010										
282019 2400-26008 21.6										
2400-26008				2450			1.950	52.700	3.08%	
2500				2500	2.055	50.447	2.021	52.636	1.68%	-4.16%
Page	2/5/2019	2400-2600B	21.6	2550	2.105	50.326	2.092	52.573	0.62%	-4.27%
1.00				2600	2.156	50.292	2.163	52.509	-0.32%	-4.22%
12700 2.255 50.097 2.305 52.382 2.17% 4.36% 5180 5.383 47.472 5.276 49.041 1.89% -3.25% 5200 5.399 47.432 5.299 49.014 1.89% -3.25% 5220 5.430 47.403 5.323 48.987 2.07% -2.28% 5240 5.463 47.351 5.346 48.900 2.19% -3.23% 5280 5.478 47.351 5.346 48.900 2.19% -3.23% 5280 5.515 47.284 5.393 48.901 2.26% -3.45% 5280 5.515 47.284 5.393 48.933 2.26% -3.45% 5220 5.581 47.191 5.416 48.679 2.26% -3.45% 5220 5.581 47.191 5.416 48.679 2.26% -3.45% 5220 5.581 47.191 5.416 48.679 2.26% -3.45% 5220 5.584 46.835 5.690 48.551 3.29% -3.65% 5500 5.893 46.733 5.696 48.553 3.29% -3.65% 5500 5.983 46.783 5.696 48.553 3.29% -3.65% 5500 5.984 46.670 5.720 48.526 3.41% -3.64% 5500 5.998 46.667 5.766 48.471 3.56% -3.75% 5600 5.998 46.667 5.766 48.471 3.77% -3.78% 5600 6.085 46.631 5.790 48.444 3.77% -3.78% 5600 6.085 46.591 5.893 48.333 4.17% 3.78% 5700 6.127 46.487 5.883 48.336 4.16% -3.83% 5765 6.207 46.353 5.990 48.275 4.26% 3.93% 5765 6.207 46.353 5.990 48.276 4.26% 3.93% 5765 6.207 46.592 5.333 48.907 1.72% -3.26% 5200 5.385 47.141 5.299 49.014 1.62% -3.28% 5200 5.385 47.141 5.299 49.014 1.62% -3.28% 5200 5.402 47.108 5.323 48.907 1.72% -3.26% 5200 5.536 46.692 5.333 48.907 1.72% -3.95% 5200 5.536 46.695 5.766 48.477 1.72% -3.26% 5200 5.385 47.141 5.299 49.014 1.62% -3.28% 5200 5.385 47.141 5.399 49.014 1.62% -3.28% 5200 5.385 47.141 5.399 49.014 1.62% -3.28% 5200 5.536 46.690 5.730 48.850 2.54% 4.26% 5200 5.536 46.695 5.730 48.850 2.54% 4.26% 5200 5.536 46.695 5.730 48.850 2.54% 4.26% 5200 5.5				2650	2.205	50.174	2.234	52.445	-1.30%	-4.33%
15180				2700	2.255			52.382	-2.17%	-4.36%
S200 S.399										
S220 S.430 47.403 S.323 48.987 2.01% -3.23%										
Company Comp										
S260 S.478 47.301 S.369 48.933 2.03% 3.34%										
C2/07/2019 C2/										
Colorizola Col										
Colorizonal										
D2/07/2019 S200B-S800B S2.1 S5500 S.8354 46.802 S.5673 48.503 3.19% -3.66%										
102/07/2019										
102/07/2019 5200B-5800B 22.1 5540 5.883 46.783 5.696 48.653 3.28% -3.65% 5.596 5.918 46.760 5.720 48.526 3.41% -3.64% 5.580 5.918 46.690 5.743 48.499 3.57% -3.73% 5.500 5.948 46.697 5.766 48.471 3.50% -3.72% 5.500 5.968 46.631 5.790 48.444 3.77% -3.73% 5.660 6.005 46.631 5.790 48.444 3.77% -3.78% 5.660 6.005 46.601 5.813 48.417 3.77% -3.78% 5.660 6.005 46.590 5.837 48.390 3.91% -3.72% 5.660 6.005 46.590 5.837 48.393 3.99% -3.72% 5.700 6.127 46.487 5.883 48.336 4.15% -3.83% 5.745 6.189 46.376 5.936 48.275 4.26% -3.93% 5.765 6.243 46.324 5.982 48.220 4.36% -3.93% 5.785 6.243 4.7168 5.276 49.041 1.27% -3.82% 5.200 5.385 47.141 5.299 49.014 1.27% -3.82% 5.220 5.402 47.108 5.232 49.987 1.49% -3.82% 5.220 5.402 47.108 5.232 49.987 1.49% -3.82% 5.220 5.402 47.047 5.369 48.933 1.51% -3.86% 5.220 5.402 47.047 5.369 48.933 1.51% -3.86% 5.220 5.402 47.047 5.369 48.933 1.51% -3.26% 5.200 5.509 46.575 5.650 48.607 1.79% -4.00% 5.500 5.509 46.575 5.550 48.607 2.00% -4.18% 5.500 5.509 46.575 5.550 48.607 2.00% -4.18% 5.500 5.509 46.575 5.550 48.607 2.00% -4.18% 5.500 5.501 46.509 5.503 48.501 5.734 48.90 2.79% -4.27% 5.500 5.509 46.519 5.606 48.553 2.55% -4.29% 5.500 5.509 46.519 5.606 48.533 2.55% -4.29% 5.500 5.600 5.933 46.399 5.766 48.471 2.99% -4.27% 5.500 5.500 46.406 5.720 45.506 2.74% -4.29% 5.500 5.600 5.933 46.399 5.766 48.471 2.99% -4.27% 5.500 5.600 5.933 46.399 5.766 48.471 2.99% -4.27% 5.500 5.600 5.933 46.399 5.766 48.471 2.99% -4.27% 5.500 5.600 5.933 46.399 5.766 48.471 2.99% -4.27% 5.500 5.600 5.600 5.600 5.600 5.600 5.600 5.600										
Section Sect				5520	5.854	46.802	5.673	48.580	3.19%	-3.66%
5560 5.915 46.760 5.720 48.526 3.41% -3.64% 5580 5.948 46.690 5.743 48.99 3.57% -3.73% 5600 5.968 46.667 5.766 48.471 3.50% -3.73% 5620 6.005 46.631 5.790 48.444 3.77% -3.75% 5660 6.005 46.631 5.990 48.444 3.77% -3.75% 5660 6.005 46.531 5.813 48.471 3.77% -3.75% 5680 6.005 46.531 5.860 48.336 41.57% -3.75% 5680 6.0092 46.531 5.860 48.336 41.57% -3.25% 5700 6.127 46.487 5.883 48.230 3.96% -3.79% 5745 6.189 46.376 5.936 48.275 4.26% -3.93% 5765 6.243 46.324 5.982 48.220 4.36% -3.93% 5785 6.243 46.324 5.982 48.220 4.36% -3.93% 5180 5.343 47.168 5.276 49.041 1.27% -3.82% 5220 5.432 47.108 5.232 49.987 1.48% -3.84% 5220 5.440 47.108 5.323 49.987 1.48% -3.84% 5220 5.440 47.108 5.323 49.987 1.48% -3.84% 5280 5.450 47.047 5.380 48.933 1.57% -3.30% 5280 5.450 47.047 5.380 48.933 1.57% -3.30% 5280 5.450 46.992 5.393 49.906 1.74% -4.00% 5280 5.590 46.992 5.393 49.906 1.74% -4.00% 5280 5.587 46.992 5.393 49.906 1.74% -4.00% 5280 5.590 46.591 5.596 48.691 1.72% -3.99% 5200 5.593 46.591 5.595 48.691 1.72% -3.99% 5200 5.596 46.591 5.596 48.553 2.55% -4.19% 5500 5.977 46.575 5.650 48.691 2.74% -4.24% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.962 46.219 5.883 48.303 3.05% -4.47% 5600 5.962 46.219 5.883 48.303 3.05% -4.47% 5600 5.962 46.219 5.883 48.303 3.05% -4.47% 56	02/07/2010	5200B-5900B	22.1	5540	5.883	46.783	5.696	48.553	3.28%	-3.65%
S600 S.968	02/01/2013	3200D-3000D	22.1	5560	5.915	46.760	5.720	48.526	3.41%	-3.64%
1.620				5580	5.948	46.690	5.743	48.499	3.57%	-3.73%
S640				5600	5.968	46.667	5.766	48.471	3.50%	-3.72%
Se640 6.032				5620	6.005	46.631	5.790	48.444	3.71%	-3.74%
Se60 6.085 48.590 5.837 48.390 3.91% -3.72%			1							
			1							
5700 6.127 46.437 5.883 48.336 4.15% -3.83% 5745 6.189 46.376 5.936 48.276 4.26% -3.93% 5765 6.207 46.353 5.959 48.248 4.16% -3.93% 5785 6.243 46.324 5.982 48.220 4.36% -3.93% 5180 5.343 47.168 5.276 49.041 1.27% -3.82% 5200 5.385 47.141 5.299 49.014 1.62% -3.82% 5220 5.402 47.108 5.323 49.987 1.49% -3.82% 5240 5.430 47.037 5.369 48.933 1.51% -3.86% 5260 5.450 47.047 5.369 48.933 1.51% -3.86% 5280 5.457 46.952 5.393 49.906 1.57% -4.20% 5280 5.467 46.927 5.369 48.879 1.72% -3.99% 5300 5.509 46.927 5.416 48.879 1.72% -3.99% 5300 5.509 46.927 5.565 48.607 2.00% -4.16% 5500 5.977 46.525 5.650 48.502 2.54% -4.24% 5500 5.933 46.399 5.766 48.520 2.74% -4.24% 5600 5.933 46.399 5.766 48.471 2.99% -4.27% 5600 5.933 46.399 5.766 48.471 2.99% -4.27% 5600 5.968 46.371 5.790 48.444 3.07% -4.27% 5600 5.982 46.301 5.813 48.493 2.79% -4.27% 5600 5.982 46.301 5.813 48.493 3.55% -4.49% 5600 5.982 46.301 5.813 48.493 3.55% -4.49% 5700 6.092 46.219 5.883 48.336 3.55% -4.49% 5765 6.174 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.115 5.959 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50% 5785			1							
5745 6.189 46.376 5.936 48.275 4.26% -3.93% 5765 6.207 46.353 5.959 40.248 4.16% -3.93% 5768 6.243 46.324 5.982 48.220 4.36% -3.93% 5180 5.343 47.168 5.276 49.041 1.27% -3.82% 5200 5.345 47.168 5.229 49.041 1.27% -3.82% 5220 5.402 47.108 5.323 48.967 1.48% -3.84% 5240 5.430 47.063 5.346 48.967 1.48% -3.84% 5280 5.450 47.047 5.369 48.933 1.57% -3.85% 5280 5.487 46.952 5.333 48.906 1.74% -4.00% 5300 5.509 46.927 5.416 48.879 1.72% -3.99% 5300 5.509 46.927 5.416 48.875 1.72% -3.99% 5500 5.737 46.575 5.650 48.607 2.60% -4.18% 5520 5.887 46.522 5.673 48.580 2.54% -4.24% 5520 5.887 46.522 5.673 48.580 2.55% -4.19% 5520 5.887 46.529 5.696 48.494 2.79% -4.24% 5520 5.887 46.459 5.696 48.494 2.79% -4.24% 5520 5.887 46.459 5.743 48.499 2.79% -4.27% 5620 5.983 46.399 5.766 48.471 2.90% -4.27% 5620 5.988 46.371 5.790 48.441 2.99% -4.27% 5620 5.982 46.301 5.813 48.417 2.99% -4.27% 5620 5.983 46.399 5.766 48.471 2.90% -4.27% 5620 5.982 46.301 5.813 48.417 2.99% -4.27% 5620 5.982 46.301 5.813 48.417 2.99% -4.27% 5620 5.982 46.301 5.813 48.417 2.99% -4.27% 5620 5.982 46.301 5.837 48.390 3.15% -4.42% 5620 5.982 46.219 5.883 48.336 3.05% -4.43% 5760 6.032 46.229 5.883 48.336 3.05% -4.43% 5765 6.174 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.599 48.220 3.84% -4.50% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5765 6.207 46.353 5.969 48.248 4.16% -3.93%			1							
5785 6.243			1							
180			1							
S200 S.385 47.141 S.299 49.014 1.62% -3.82%										
S220 S.402 47.108 S.323 48.987 1.48% -3.84%			1							
\$240			1							
1.5260 5.450 47,047 5.369 48,933 1.51% -3.85%			1							
1.6			1				5.346	48.960	1.57%	-3.90%
02/18/2019 5200B-5800B 21.6 5200			1	5260	5.450	47.047	5.369	48.933	1.51%	-3.85%
1.2 1.2			1	5280	5.487	46.952		48.906	1.74%	
02/18/2019 5200B-5800B 21.6 5320 5.536 48.908 5.439 48.851 1.78% -3.98% 5550 5.797 46.575 5.650 48.607 2.00% -4.18% -4.24% 5520 5.817 46.522 5.673 48.580 2.54% -4.24% -4.24% -4.25% -4.25% -4.25% -4.19% -4.25%			1		5.509					
02/18/2019 52008-58008 21.6 5500 5.797 46.575 5.650 48.607 2.60% -4.18% 5520 5.817 46.522 5.673 48.580 2.45% -4.29% 5520 5.817 46.512 5.696 48.553 2.45% -4.29% 5560 5.847 46.519 5.696 48.553 2.55% -4.19% 5560 5.877 46.466 5.720 48.526 2.74% -4.25% 5580 5.903 48.459 5.743 48.499 2.79% -4.21% 5620 5.903 48.459 5.743 48.499 2.79% -4.21% 5620 5.908 46.391 5.790 48.441 2.90% -4.27% 5620 5.908 46.391 5.790 48.441 2.90% -4.27% 5620 5.908 46.391 5.813 48.491 2.91% -4.23% 5620 5.908 46.391 5.813 48.491 2.91% -4.23% 5620 5.908 46.391 5.813 48.491 2.91% -4.37% 5620 5.908 46.391 5.813 48.491 2.91% -4.37% 5620 5.908 46.391 5.813 48.490 3.15% -4.42% 5680 6.039 46.228 5.860 48.363 3.55% -4.43% 5680 6.039 46.228 5.860 48.363 3.55% -4.43% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.559 48.248 3.61% -4.43% 5786 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
02/18/2019 5200B-5800B 21.6 5520 5.817 46.522 5.673 48.580 2.54% -4.24% 5540 5.841 46.519 5.696 48.553 2.55% -4.19% 5580 5.877 46.466 5.720 48.526 2.75% -4.25% 5680 5.933 46.459 5.743 48.499 2.79% -4.21% 5680 5.933 46.399 5.766 48.471 2.90% -4.27% 5620 5.988 46.391 5.790 48.444 3.07% -4.25% 5620 5.988 46.301 5.813 48.417 2.91% -4.37% 5680 5.021 46.249 5.837 48.390 3.15% -4.28% 5680 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.228 5.860 48.363 3.05% -4.43% 5700 6.032 46.219 5.883 48.336 3.55% -4.38% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.859 48.243 3.61% -4.43% 5765 6.174 46.110 5.859 48.243 3.61% -4.43% 5785 6.212 46.048 5.862 48.220 3.84% -4.50%			1		0.000		000			0.0070
02/18/2019 5200B-5800B 21.6 5560 5.877 46.466 5.720 48.523 2.55% -4.19% 5560 5.877 46.466 5.720 48.526 2.74% -4.27% 5600 5.933 46.399 5.743 48.499 2.79% -4.27% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5600 5.982 46.301 5.813 48.447 2.97% -4.28% 5660 6.021 46.249 5.837 48.390 3.15% -4.47% 5680 6.039 46.239 5.860 5.860 48.471 2.97% -4.37% 5680 5680 6.021 46.249 5.837 48.390 3.15% -4.47% 5700 6.032 46.219 5.883 48.336 3.55% -4.47% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.5599 48.248 3.676 4.43% 5765 6.174 46.110 5.5599 48.220 3.84% -4.43%	1		1							
5500B-5800B			1							
5580 5.903 46.459 5.743 48.499 2.79% -4.21% 5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5620 5.988 46.371 5.790 48.444 3.07% -4.28% 5640 5.982 46.301 5.813 48.417 2.91% -4.27% 5660 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.228 5.860 48.363 3.05% -4.47% 5680 6.039 46.228 5.860 48.363 3.05% -4.47% 5700 6.092 46.219 5.883 48.336 3.55% -4.38% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.859 48.275 3.69% -4.47% 5765 6.174 46.110 5.859 48.248 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%	02/18/2019	5200B-5800B	21.6							
5600 5.933 46.399 5.766 48.471 2.90% -4.27% 5620 5.968 46.371 5.790 48.444 3.07% -4.28% 5640 5.982 46.301 5.813 48.417 2.91% -4.37% 5680 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.249 5.860 48.363 3.05% -4.41% 5700 6.092 46.219 5.883 48.336 3.55% -4.39% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.599 48.243 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5620 5.968 46.371 5.790 48.444 3.07% -4.28% 5640 5.982 46.301 5.813 48.417 2.91% -4.37% 5660 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.228 5.860 48.363 3.05% -4.41% 5700 6.092 46.219 5.883 48.336 3.55% -4.33% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.959 48.248 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5640 5.982 46.301 5.813 48.417 2.91% -4.37% 5660 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.228 5.860 48.383 3.05% -4.41% 5700 6.092 46.219 5.883 48.336 3.55% -4.38% 5745 6.155 46.115 5.936 42.75 3.69% -4.47% 5765 6.174 46.110 5.859 48.243 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5860 6.021 46.249 5.837 48.390 3.15% -4.42% 5680 6.039 46.228 5.860 48.363 3.05% -4.41% 5700 6.092 46.219 5.883 48.368 3.56* -4.38% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.559 48.224 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5680 6.039 46.228 5.860 48.363 3.05% -4.41% 5700 6.092 46.219 5.883 48.336 3.55% -4.39% 5745 6.155 48.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.959 48.248 3.69% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1							
5700 6.092 46.219 5.883 48.336 3.55% -4.38% 5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.859 48.248 3.61% -4.43% 5785 6.212 46.048 5.962 48.220 3.84% -4.50%			1	5660						
5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.959 48.248 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1	5680	6.039	46.228		48.363	3.05%	-4.41%
5745 6.155 46.115 5.936 48.275 3.69% -4.47% 5765 6.174 46.110 5.959 48.248 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1	5700	6.092	46.219	5.883	48.336	3.55%	-4.38%
5765 6.174 46.110 5.959 48.248 3.61% -4.43% 5785 6.212 46.048 5.982 48.220 3.84% -4.50%	Ì		1							
5785 6.212 46.048 5.982 48.220 3.84% -4.50%			1		6.174	46.110				
0.00	Ì		1							
										-

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 54 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 54 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3 System Verification Results – 1g

	System verification Results – 1g											
						ystem Ve RGET & N						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
AM8	750	HEAD	02/12/2019	20.1	20.1	0.200	1097	7491	1.650	8.220	8.250	0.36%
AM2	835	HEAD	02/03/2019	21.0	18.4	0.200	4d180	7416	1.910	9.600	9.550	-0.52%
AM6	850	HEAD	02/12/2019	23.1	21.0	0.200	1010	3131	1.960	9.930	9.800	-1.31%
AM6	1750	HEAD	02/14/2019	21.9	21.4	0.100	1104	3131	3.470	36.400	34.700	-4.67%
AM6	1900	HEAD	02/14/2019	22.5	21.5	0.100	5d181	3131	3.770	39.500	37.700	-4.56%
AM8	1900	HEAD	02/14/2019	21.0	20.5	0.100	5d181	7491	4.020	39.500	40.200	1.77%
AM1	2450	HEAD	02/11/2019	19.4	19.1	0.100	750	3275	5.280	53.300	52.800	-0.94%
AM1	2450	HEAD	02/21/2019	22.1	21.0	0.100	750	3275	5.270	53.300	52.700	-1.13%
AM8	2600	HEAD	02/14/2019	23.1	21.0	0.100	1069	7491	5.630	56.900	56.300	-1.05%
AM2	5250	HEAD	02/12/2019	20.3	18.7	0.050	1123	7416	3.870	81.600	77.400	-5.15%
AM2	5600	HEAD	02/12/2019	20.3	18.7	0.050	1123	7416	4.140	85.100	82.800	-2.70%
AM2	5750	HEAD	02/12/2019	20.3	18.7	0.050	1123	7416	3.950	80.600	79.000	-1.99%
AM3	750	BODY	02/11/2019	20.7	20.0	0.200	1097	7420	1.800	8.560	9.000	5.14%
AM6	850	BODY	02/03/2019	20.6	19.7	0.200	1009	3131	1.960	9.880	9.800	-0.81%
АМЗ	850	BODY	02/11/2019	20.7	20.0	0.200	1010	7420	2.170	10.200	10.850	6.37%
АМЗ	850	BODY	02/15/2019	23.7	21.2	0.200	1010	7420	2.140	10.200	10.700	4.90%
AM6	1750	BODY	02/06/2019	21.2	20.7	0.100	1092	3131	3.900	36.400	39.000	7.14%
AM1	1750	BODY	02/18/2019	21.1	20.9	0.100	1092	3275	3.920	36.400	39.200	7.69%
AM1	1900	BODY	02/13/2019	21.2	20.9	0.100	5d180	3275	4.090	39.500	40.900	3.54%
AM3	1900	BODY	02/19/2019	21.2	20.2	0.100	5d026	7420	4.090	39.900	40.900	2.51%
AM1	2450	BODY	02/13/2019	21.2	20.9	0.100	945	3275	5.120	49.400	51.200	3.64%
AM1	2600	BODY	02/05/2019	19.6	19.7	0.100	1042	3275	5.140	55.100	51.400	-6.72%
AM2	5250	BODY	02/07/2019	23.1	20.7	0.050	1123	7416	3.610	74.000	72.200	-2.43%
AM2	5250	BODY	02/18/2019	22.1	20.1	0.050	1163	7416	3.680	77.700	73.600	-5.28%
AM2	5600	BODY	02/07/2019	23.1	20.7	0.050	1123	7416	3.990	77.600	79.800	2.84%
AM2	5600	BODY	02/18/2019	22.1	20.1	0.050	1163	7416	3.920	80.100	78.400	-2.12%
AM2	5750	BODY	02/07/2019	23.1	20.7	0.050	1123	7416	3.720	74.700	74.400	-0.40%
AM2	5750	BODY	02/18/2019	22.1	20.1	0.050	1163	7416	3.940	77.800	78.800	1.29%

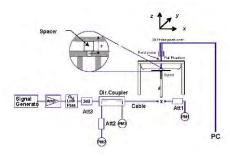


Figure 10-1
System Verification Setup Diagram

Figure 10-2
System Verification Setup Photo

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg FF of O2
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 55 of 92

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 GSM 850 Head SAR

					МЕ	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
824.20	128	GSM 850	GSM	34.0	32.94	-0.14	Right	Cheek	72582	1:8.3	0.471	1.276	0.601	
836.60	190	GSM 850	GSM	34.0	32.95	0.07	Right	Cheek	72582	1:8.3	0.566	1.274	0.721	
848.80	251	GSM 850	GSM	34.0	32.92	0.04	Right	Cheek	72582	1:8.3	0.599	1.282	0.768	A1
836.60	190	GSM 850	GSM	34.0	32.95	-0.05	Right	Tilt	72582	1:8.3	0.377	1.274	0.480	
836.60	190	GSM 850	GSM	34.0	32.95	0.05	Left	Cheek	72582	1:8.3	0.196	1.274	0.250	
836.60	190	GSM 850	GSM	34.0	-0.12	Left	Tilt	72582	1:8.3	0.170	1.274	0.217		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Substitution										Head V/kg (mW/g)			
	Uncontrolled Exposure/General Population									averag	ed over 1 gra	am		

Table 11-2 GSM 1900 Head SAR

	MEASUREMENT RESULTS													
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	21.0	19.18	0.01	Right	Cheek	71634	1:8.3	0.089	1.521	0.135	A2
1880.00	661	GSM 1900	GSM	21.0	19.18	0.02	Right	Tilt	71634	1:8.3	0.077	1.521	0.117	
1880.00	661	GSM 1900	GSM	21.0	19.18	0.12	Left	Cheek	71634	1:8.3	0.021	1.521	0.032	
1880.00	661	GSM 1900	GSM	21.0	19.18	0.13	Left Tilt 71634 1:8.3 0.019 1.521 0.029							
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak							Head 1.6 W/kg (mW/g)						
	Uncontrolled Exposure/General Population								,	averag	ed over 1 gra	am		

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 56 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Fage 56 01 92

Table 11-3 UMTS 850 Head SAR

	MEASUREMENT RESULTS													
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
826.40	4132	UMTS 850	RMC	25.0	23.73	0.02	Right	Cheek	72582	1:1	0.728	1.340	0.976	A3
836.60	4183	UMTS 850	RMC	25.0	23.72	-0.05	Right	Cheek	72582	1:1	0.660	1.343	0.886	
846.60	4233	UMTS 850	RMC	25.0	23.85	0.00	Right	Cheek	72582	1:1	0.637	1.303	0.830	
836.60	4183	UMTS 850	RMC	25.0	23.72	-0.06	Right	Tilt	72582	1:1	0.487	1.343	0.654	
836.60	4183	UMTS 850	RMC	25.0	23.72	0.03	Left	Cheek	72582	1:1	0.277	1.343	0.372	
836.60	4183	UMTS 850	RMC	25.0	23.72	0.05	5 Left Tilt 72582 1:1 0.229 1.343 0.308							
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head			
			Spatial Pe	ak						1.6 V	V/kg (mW/g))		
		Uncontrolled	Exposure/G	eneral Popul	lation					averag	ed over 1 gra	am		

Table 11-4 UMTS 1750 Head SAR

					ME	ASURE	EMENT RESULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	12.0	10.47	0.03	Right	Cheek	72814	1:1	0.108	1.422	0.154	A4
1732.40	1412	UMTS 1750	RMC	12.0	10.47	0.07	Right	Tilt	72814	1:1	0.088	1.422	0.125	
1732.40	1412	UMTS 1750	RMC	12.0	10.47	0.13	Left	Cheek	72814	1:1	0.042	1.422	0.060	
1732.40	1412	UMTS 1750	RMC	12.0	10.47	0.07	Left Tilt 72814 1:1 0.038 1.422 0.054							
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak							Head 1.6 W/kg (mW/g)						
	Uncontrolled Exposure/General Population									averag	ed over 1 gra	am		

Table 11-5 UMTS 1900 Head SAR

					МЕ	ASURE	EMENT RESULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.03	Right	Cheek	72814	1:1	0.206	1.091	0.225	A5
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.02	Right	Tilt	72814	1:1	0.167	1.091	0.182	
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.10	Left	Cheek	72814	1:1	0.052	1.091	0.057	
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.08	Left Tilt 72814 1:1 0.044 1.091 0.048						0.048	
		ANSI / IEE	E C95.1 1992						Head					
			Spatial Pe								V/kg (mW/g)			
	Uncontrolled Exposure/General Population									averag	ed over 1 gra	am		

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 57 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 57 of 92

Table 11-6 LTE Band 12 Head SAR

								MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	0.05	0	Right	Cheek	QPSK	1	25	72814	1:1	0.578	1.315	0.760	A6
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.10	1	Right	Cheek	QPSK	25	0	72814	1:1	0.426	1.358	0.579	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.05	0	Right	Tilt	QPSK	1	25	72814	1:1	0.448	1.315	0.589	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.07	1	Right	Tilt	QPSK	25	0	72814	1:1	0.326	1.358	0.443	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.03	0	Left	Cheek	QPSK	1	25	72814	1:1	0.250	1.315	0.329	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.15	1	Left	Cheek	QPSK	25	0	72814	1:1	0.179	1.358	0.243	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.03	0	Left	Tilt	QPSK	1	25	72814	1:1	0.205	1.315	0.270	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.17	1	Left	Tilt	QPSK	25	0	72814	1:1	0.140	1.358	0.190	
· ·			ANSI / IEEE (MIT					· ·			Head	38//>				
			Uncontrolled E	Spatial Pea xposure/Ge		ation								6 W/kg (m raged over					

Table 11-7 LTE Band 5 Head SAR

								MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	. 1		Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	-0.13	0	Right	Cheek	QPSK	1	0	23502	1:1	0.681	1.230	0.838	A7
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	-0.02	1	Right	Cheek	QPSK	25	0	23502	1:1	0.545	1.250	0.681	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.02	-0.02	1	Right	Cheek	QPSK	50	0	23502	1:1	0.547	1.253	0.685	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	0	Right	Tilt	QPSK	1	0	23502	1:1	0.468	1.230	0.576		
836.50									Right	Tilt	QPSK	25	0	23502	1:1	0.379	1.250	0.474	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	-0.01	0	Left	Cheek	QPSK	1	0	23502	1:1	0.261	1.230	0.321	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	-0.14	1	Left	Cheek	QPSK	25	0	23502	1:1	0.206	1.250	0.258	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	0.11	0	Left	Tilt	QPSK	1	0	23502	1:1	0.197	1.230	0.242	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	1	Left	Tilt	QPSK	25	0	23502	1:1	0.154	1.250	0.193		
			ANSI / IEEE (Spatial Pea	ak									Head 6 W/kg (m aged over					

Table 11-8 LTE Band 66 Head SAR

										• • • •	uu 0/ (
								MEAS	UREM	ENT RES	ULTS								
FF	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	ı
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	0.08	0	Right	Cheek	QPSK	1	99	72582	1:1	0.120	1.014	0.122	A8
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.96	0.10	0	Right	Cheek	QPSK	50	50	72582	1:1	0.113	1.009	0.114	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	0.01	0	Right	Tilt	QPSK	1	99	72582	1:1	0.106	1.014	0.107	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	0.05	0	Right	Tilt	QPSK	50	50	72582	1:1	0.099	1.009	0.100		
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	-0.01	0	Left	Cheek	QPSK	1	99	72582	1:1	0.042	1.014	0.043	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.96	0.05	0	Left	Cheek	QPSK	50	50	72582	1:1	0.041	1.009	0.041	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	0.09	0	Left	Tilt	QPSK	1	99	72582	1:1	0.039	1.014	0.040	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	0	Left	Tilt	QPSK	50	50	72582	1:1	0.036	1.009	0.036			
			ANSI / IEEE C	95.1 1992 -	SAFETY LIM	İT								Head		•		•	
				Spatial Pea	k								1.	6 W/kg (m	W/g)				
			Uncontrolled E	xposure/Ge	neral Popula	ition							ave	aged over	1 gram				

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 58 of 92

Table 11-9 LTE Band 2 Head SAR

									unu			•							
								MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	n.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	()		Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	-0.04	0	Right	Cheek	QPSK	1	50	72582	1:1	0.259	1.014	0.263	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	0.03	0	Right	Cheek	QPSK	50	50	72582	1:1	0.282	1.067	0.301	A9
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	0.01	0	Right	Tilt	QPSK	1	50	72582	1:1	0.246	1.014	0.249	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	0.01	0	Right	Tilt	QPSK	50	50	72582	1:1	0.266	1.067	0.284	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	0.11	0	Left	Cheek	QPSK	1	50	72582	1:1	0.077	1.014	0.078	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	0.06	0	Left	Cheek	QPSK	50	50	72582	1:1	0.083	1.067	0.089	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	0.09	0	Left	Tilt	QPSK	1	50	72582	1:1	0.071	1.014	0.072	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	0.04	0	Left	Tilt	QPSK	50	50	72582	1:1	0.076	1.067	0.081	
			ANSI / IEEE (C95.1 1992 - Spatial Pea		MIT							1	Head 6 W/kg (m	W/a)		•		
			Uncontrolled E	•		ation								aged over					

Table 11-10 LTE Band 41 Head SAR

								MEAS	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHZ]	Power [dBm]	Power (abm)	ргін (ав)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	0.04	0	Right	Cheek	QPSK	1	0	71634	1:1.58	0.177	1.256	0.222	A10
2593.00	40620	Mid	LTE Band 41	20	14.0	13.01	0.04	0	Right	Cheek	QPSK	50	0	71634	1:1.58	0.148	1.256	0.186	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	0.07	0	Right	Tilt	QPSK	1	0	71634	1:1.58	0.113	1.256	0.142		
2593.00	40620	Mid	LTE Band 41	20	14.0	-0.04	0	Right	Tilt	QPSK	50	0	71634	1:1.58	0.116	1.256	0.146		
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	0.15	0	Left	Cheek	QPSK	1	0	71634	1:1.58	0.049	1.256	0.062	
2593.00	40620	Mid	LTE Band 41	20	14.0	13.01	-0.04	0	Left	Cheek	QPSK	50	0	71634	1:1.58	0.050	1.256	0.063	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	0.10	0	Left	Tilt	QPSK	1	0	71634	1:1.58	0.042	1.256	0.053	
2593.00	40620	Mid	LTE Band 41	20	14.0	0	Left	Tilt	QPSK	50	0	71634	1:1.58	0.033	1.256	0.041			
			ANSI / IEEE	Spatial Pea	ık									Head 6 W/kg (m aged over	•				

Table 11-11 2.4 GHz WLAN Head SAR

							0		<u> </u>	Hout	. 0,	•						
							М	EASUR	EMENT	RESULT	rs							
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial	Data Rate (Mbps)	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	•		[Power [dBm]		[]			Number	((1.9	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	18.0	17.62	0.16	Right	Cheek	72814	1	99.8	0.301	0.256	1.091	1.002	0.280	
2412	1	802.11b	DSSS	22	18.0	17.62	-0.13	Right	Tilt	72814	1	99.8	0.218	0.176	1.091	1.002	0.192	
2412	1	802.11b	DSSS	22	0.02	Left	Cheek	72814	1	99.8	1.042	0.936	1.091	1.002	1.023	A11		
2437	6	802.11b	DSSS	22	18.0	17.29	0.17	Left	Cheek	72814	1	99.8	1.301	0.628	1.178	1.002	0.741	
2462	11	802.11b	DSSS	22	18.0	17.43	0.16	Left	Cheek	72814	1	99.8	1.208	0.711	1.140	1.002	0.812	
2412	1	802.11b	DSSS	22	18.0	17.62	0.13	Left	Tilt	72814	1	99.8	0.583	0.585	1.091	1.002	0.640	
2412	1	802.11b	DSSS	22	0.11	Left	Cheek	72814	1	99.8	1.112	0.828	1.091	1.002	0.905			
			Spa	1992 - SAFI tial Peak sure/General									Heat 1.6 W/kg averaged ov	(mW/g)				

Note: Blue entry represents variability measurement.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 50 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 59 of 92

Table 11-12 5 GHz WLAN Head SAR

							 			iioaa	O/ (I (<u> </u>						
							N	IEASUF	REMENT	RESUL	TS							
FREQUI	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot#
MHz	Ch.				Power [dBm]					Number			W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5270	54	802.11n	OFDM	40	12.0	11.90	0.20	Right	Cheek	71634	13.5	97.5	0.306	-	1.023	1.026	-	
5270	54	802.11n	OFDM	40	12.0	11.90	0.14	Right	Tilt	71634	13.5	97.5	0.414	0.200	1.023	1.026	0.210	
5270	54	802.11n	OFDM	40	12.0	11.90	0.16	Left	Cheek	71634	13.5	97.5	0.203	-	1.023	1.026	-	
5270	54	802.11n	OFDM	40	12.0	11.90	-0.17	Left	Tilt	71634	13.5	97.5	0.359	-	1.023	1.026	-	
5590								Right	Cheek	72814	13.5	97.5	0.507	-	1.023	1.026	-	
5590							0.12	Right	Tilt	72814	13.5	97.5	0.323	-	1.023	1.026	-	
5590	118	802.11n	OFDM	40	12.0	11.90	0.18	Left	Cheek	72814	13.5	97.5	1.088	0.463	1.023	1.026	0.486	A12
5590	118	802.11n	OFDM	40	12.0	11.90	-0.16	Left	Tilt	72814	13.5	97.5	0.970	0.441	1.023	1.026	0.463	
5755	151	802.11n	OFDM	40	12.0	11.56	0.18	Right	Cheek	72814	13.5	97.5	0.233	-	1.107	1.026		
5755	151	802.11n	OFDM	40	12.0	11.56	-0.10	Right	Tilt	72814	13.5	97.5	0.263	-	1.107	1.026		
5755	151	802.11n	-0.15	Left	Cheek	72814	13.5	97.5	0.615	0.270	1.107	1.026	0.307					
5755	151	802.11n	0.17	Left	Tilt	72814	13.5	97.5	0.530	-	1.107	1.026	-					
		ANSI /	IEEE C95.1	1992 - SAF	ETY LIMIT							•	Hea	ad	•	•	•	
		Uncontro	•	ial Peak ure/Genera	al Population								1.6 W/kg averaged ov	,				

11.2 Standalone Body SAR Data

Table 11-13 GPRS 850 Body SAR Data

					МЕ	ASURE	MENT I	RESULTS	;						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	# of GPRS	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dbili]	Driit [ub]		Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GPRS	30.0	28.83	0.01	19 mm	72582	4	1:2.076	back	0.264	1.309	0.346	
836.60	190	GSM 850	GPRS	30.0	28.83	-0.13	12 mm	72582	4	1:2.076	top	0.269	1.309	0.352	
836.60	190	GSM 850	GPRS	30.0	28.83	-0.12	0 mm	72582	4	1:2.076	right	0.102	1.309	0.134	
836.60	190	GSM 850	GPRS	30.0	28.83	0.01	7 mm	72582	4	1:2.076	left	0.061	1.309	0.080	
824.20	128	GSM 850	GPRS	21.5	19.83	-0.15	0 mm	71634	4	1:2.076	back	0.581	1.469	0.853	
836.60	190	GSM 850	GPRS	21.5	19.82	-0.02	0 mm	71634	4	1:2.076	back	0.674	1.472	0.992	A13
848.80	251	GSM 850	GPRS	21.5	19.83	-0.01	0 mm	71634	4	1:2.076	back	0.651	1.469	0.956	
836.60	190	GSM 850	GPRS	21.5	19.82	-0.05	0 mm	71634	4	1:2.076	top	0.299	1.472	0.440	
836.60	190	GSM 850	GPRS	21.5	19.82	-0.02	0 mm	71634	4	1:2.076	left	0.144	1.472	0.212	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT							В	ody			
			Spatial Peak								1.6 W/k	g (mW/g)			
		Uncontrolled	Exposure/Gene	eral Population	on					a	veraged o	over 1 gram			

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 60 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 60 of 92

Table 11-14 GPRS 1900 Body SAR Data

					GFING	1 1 9 0 0	Doug	JAK L	Jala						
					МЕ	ASURE	MENT I	RESULTS	;						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	# of GPRS	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GPRS	25.0	24.40	0.14	19 mm	71634	4	1:2.076	back	0.228	1.148	0.262	
1880.00	661	GSM 1900	GPRS	25.0	24.40	0.01	12 mm	71634	4	1:2.076	top	0.176	1.148	0.202	
1880.00	661	GSM 1900	GPRS	25.0	24.40	0.12	0 mm	71634	4	1:2.076	right	0.070	1.148	0.080	
1880.00	661	GSM 1900	GPRS	25.0	24.40	-0.01	7 mm	71634	4	1:2.076	left	0.098	1.148	0.113	
1850.20	512	GSM 1900	GPRS	17.5	16.09	0.03	0 mm	72582	3	1:2.76	back	0.714	1.384	0.988	
1880.00	661	GSM 1900	GPRS	17.5	15.87	0.11	0 mm	72582	3	1:2.76	back	0.782	1.455	1.138	A14
1909.80	810	GSM 1900	GPRS	17.5	15.93	0.02	0 mm	72582	3	1:2.76	back	0.757	1.435	1.086	
1880.00	661	GSM 1900	GPRS	17.5	15.87	0.10	0 mm	72582	3	1:2.76	top	0.193	1.455	0.281	
1880.00	661	GSM 1900	GPRS	17.5	15.87	0.01	0 mm	72582	3	1:2.76	left	0.044	1.455	0.064	
			C95.1 1992 - S Spatial Peak Exposure/Gene								1.6 W/k	ody g (mW/g) over 1 gram			

Table 11-15 UMTS 850 Body SAR Data

						UREME		ULTS						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	25.0	23.72	0.03	19 mm	71634	1:1	back	0.203	1.343	0.273	
836.60	4183	UMTS 850	RMC	25.0	23.72	-0.01	12 mm	71634	1:1	top	0.282	1.343	0.379	A15
836.60	4183	UMTS 850	RMC	25.0	23.72	0.13	0 mm	71634	1:1	right	0.079	1.343	0.106	
836.60	4183	UMTS 850	RMC	25.0	23.72	0.01	7 mm	71634	1:1	left	0.119	1.343	0.160	
836.60	4183	UMTS 850	RMC	15.0	13.73	0.14	0 mm	23502	1:1	back	0.235	1.340	0.315	
836.60	4183	UMTS 850	RMC	15.0	13.73	0.08	0 mm	23502	1:1	top	0.118	1.340	0.158	
836.60	4183	UMTS 850	0.02	0 mm	23502	1:1	left	0.071	1.340	0.095				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Body 1.6 W/kg (mW/g) averaged over 1 gram						

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 64 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 61 of 92

Table 11-16 UMTS 1750 Body SAR Data

					UNITS	7 30 0	Juy U	AIT Date	u							
					MEAS	UREME	NT RES	ULTS								
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #		
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)	Factor	(W/kg)			
1732.40	1412	UMTS 1750	RMC	24.5	23.27	0.00	19 mm	23494	1:1	back	0.399	1.327	0.529			
1732.40	1412	UMTS 1750	RMC	24.5	23.27	-0.04	12 mm	23494	1:1	top	0.442	1.327	0.587			
1732.40	1412	UMTS 1750	RMC	24.5	23.27	-0.02	0 mm	23494	1:1	right	0.269	1.327	0.357			
1732.40	1412	UMTS 1750	RMC	24.5	23.27	-0.03	7 mm	23494	1:1	left	0.268	1.327	0.356			
1712.40	1312	UMTS 1750	RMC	12.0	10.68	0.04	0 mm	23494	1:1	back	0.830	1.355	1.125			
1732.40	1412	UMTS 1750	RMC	12.0	10.47	0.04	0 mm	23494	1:1	back	0.794	1.422	1.129			
1752.60	1513	UMTS 1750	RMC	12.0	10.70	0.08	0 mm	23494	1:1	back	0.844	1.349	1.139	A16		
1732.40	1412	UMTS 1750	RMC	12.0	10.47	-0.04	0 mm	23494	1:1	top	0.177	1.422	0.252			
1732.40	1412	UMTS 1750	0.07	0 mm	23494	1:1	left	0.048	1.422	0.068						
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT			Body									
			Spatial Peak				1.6 W/kg (mW/g)									
		Uncontrolled					avera	ged over 1 gr	am							

Table 11-17 UMTS 1900 Body SAR Data

	MEASUREMENT RESULTS														
					MEAS	UREME	NT RES	ULTS							
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)	Factor	(W/kg)		
1880.00	9400	UMTS 1900	RMC	24.5	23.20	-0.03	19 mm	72582	1:1	back	0.482	1.349	0.650		
1880.00	9400	UMTS 1900	RMC	24.5	23.20	-0.01	12 mm	72582	1:1	top	0.571	1.349	0.770		
1880.00	9400	UMTS 1900	RMC	24.5	23.20	-0.02	0 mm	72582	1:1	right	0.200	1.349	0.270		
1880.00	9400	UMTS 1900	RMC	24.5	23.20	-0.01	7 mm	72582	1:1	left	0.246	1.349	0.332		
1852.40	9262	UMTS 1900	RMC	11.0	10.96	-0.08	0 mm	72582	1:1	back	0.920	1.009	0.928		
1880.00	9400	UMTS 1900	RMC	11.0	10.62	-0.03	0 mm	72582	1:1	back	1.110	1.091	1.211		
1907.60	9538	UMTS 1900	RMC	11.0	10.50	-0.06	0 mm	72582	1:1	back	1.120	1.122	1.257	A17	
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.01	0 mm	72582	1:1	top	0.275	1.091	0.300		
1880.00	9400	UMTS 1900	RMC	11.0	10.62	0.01	0 mm	72582	1:1	left	0.072	1.091	0.079		
1907.60	9538	UMTS 1900	RMC	11.0	10.50	0.01	0 mm	72582	1:1	back	1.110	1.122	1.245		
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT			Body								
			Spatial Peak				1.6 W/kg (mW/g)								
		Uncontrolled	Exposure/Gen	eral Populati	on					avera	ged over 1 gr	am			

Note: Blue entry represents variability measurement.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 62 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 62 of 92

Table 11-18 LTE Band 12 Body SAR

										Бойу	<u> </u>	<u> </u>							
								MEAS	JREMEN	T RESULT	s								
FRE	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power (abm)	Driit [db]		Number							(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.17	0	72814	QPSK	1	25	19 mm	back	1:1	0.183	1.315	0.241	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.16	1	72814	QPSK	25	0	19 mm	back	1:1	0.086	1.358	0.117	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	0.07	0	72814	QPSK	1	25	12 mm	top	1:1	0.098	1.315	0.129	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.11	1	72814	QPSK	25	0	12 mm	top	1:1	0.067	1.358	0.091	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.09	0	72814	QPSK	1	25	0 mm	right	1:1	0.048	1.315	0.063	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.07	1	72814	QPSK	25	0	0 mm	right	1:1	0.030	1.358	0.041	
707.50	23095	Mid	LTE Band 12	10	25.0	23.81	-0.01	0	72814	QPSK	1	25	7 mm	left	1:1	0.052	1.315	0.068	
707.50	23095	Mid	LTE Band 12	10	24.0	22.67	0.09	1	72814	QPSK	25	0	7 mm	left	1:1	0.034	1.358	0.046	
707.50	23095	Mid	LTE Band 12	10	17.0	16.76	0.04	0	71634	QPSK	1	25	0 mm	back	1:1	0.620	1.057	0.655	A18
707.50	23095	Mid	LTE Band 12	10	17.0	16.70	-0.03	0	71634	QPSK	25	0	0 mm	back	1:1	0.598	1.072	0.641	
707.50	23095	Mid	LTE Band 12	10	17.0	16.76	-0.05	0	71634	QPSK	1	25	0 mm	top	1:1	0.311	1.057	0.329	
707.50	23095	Mid	LTE Band 12	10	17.0	16.70	-0.05	0	71634	QPSK	25	0	0 mm	top	1:1	0.312	1.072	0.334	
707.50	23095	Mid	LTE Band 12	10	17.0	16.76	-0.04	0	71634	QPSK	1	25	0 mm	left	1:1	0.112	1.057	0.118	
707.50	7.50 23095 Mid LTE Band 12 10 17.0 16.70 -0.0							0	71634	QPSK	25	0	0 mm	left	1:1	0.105	1.072	0.113	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												average	d over 1	gram				

Table 11-19 LTF Band 5 (Cell) Body SAR

								Danu	3 (06	ii) Ro	ay S	<u> </u>							
								MEAS	UREMEN	T RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cl	١.		[2]	Power [dBm]	· ower [abin]	D.int [ab]		Number							(W/kg)	, aoto.	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	-0.03	0	71634	QPSK	1	0	19 mm	back	1:1	0.236	1.230	0.290	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	0.06	1	71634	QPSK	25	0	19 mm	back	1:1	0.150	1.250	0.188	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	0.03	0	71634	QPSK	1	0	12 mm	top	1:1	0.261	1.230	0.321	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	-0.10	1	71634	QPSK	25	0	12 mm	top	1:1	0.155	1.250	0.194	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	0.06	0	71634	QPSK	1	0	0 mm	right	1:1	0.078	1.230	0.096	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	-0.12	1	71634	QPSK	25	0	0 mm	right	1:1	0.061	1.250	0.076	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.10	0.09	0	71634	QPSK	1	0	7 mm	left	1:1	0.118	1.230	0.145	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.03	-0.11	1	71634	QPSK	25	0	7 mm	left	1:1	0.091	1.250	0.114	
836.50	20525	Mid	LTE Band 5 (Cell)	10	17.0	16.72	0.10	0	23502	QPSK	1	0	0 mm	back	1:1	0.487	1.067	0.520	A19
836.50	20525	Mid	LTE Band 5 (Cell)	10	17.0	16.70	0.05	0	23502	QPSK	25	0	0 mm	back	1:1	0.472	1.072	0.506	
836.50	20525	Mid	LTE Band 5 (Cell)	10	17.0	16.72	0.12	0	23502	QPSK	1	0	0 mm	top	1:1	0.230	1.067	0.245	
836.50	20525	Mid	LTE Band 5 (Cell)	10	17.0	16.70	0.02	0	23502	QPSK	25	0	0 mm	top	1:1	0.226	1.072	0.242	
836.50	20525	Mid	LTE Band 5 (Cell)	10	17.0	16.72	0.10	0	23502	QPSK	1	0	0 mm	left	1:1	0.142	1.067	0.152	
836.50	50 20525 Mid LTE Band 5 (Cell) 10 17.0 16.70 0.00						0.04	0	23502	QPSK	25	0	0 mm	left	1:1	0.141	1.072	0.151	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												averaged	d over 1	gram				

			Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 63 of 92
PCTEST Engineering Laboratory, Inc.			REV 21.3 M 02/15/2019

Table 11-20 LTE Band 66 (AWS) Body SAR

						_			-	RESULTS									
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				.,			(W/kg)	Factor	(W/kg)	
1770.00	132572	High	LTE Band 66 (AWS)	20	25.0	24.32	-0.04	0	23494	QPSK	1	50	19 mm	back	1:1	0.452	1.169	0.528	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.28	0.05	1	23494	QPSK	50	50	19 mm	back	1:1	0.341	1.180	0.402	
1770.00	132572	High	LTE Band 66 (AWS)	20	25.0	24.32	0.06	0	23494	QPSK	1	50	12 mm	top	1:1	0.511	1.169	0.597	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.28	0.01	1	23494	QPSK	50	50	12 mm	top	1:1	0.386	1.180	0.455	
1770.00	132572	High	LTE Band 66 (AWS)	20	25.0	24.32	-0.12	0	23494	QPSK	1	50	0 mm	right	1:1	0.294	1.169	0.344	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.28	0.01	1	23494	QPSK	50	50	0 mm	right	1:1	0.237	1.180	0.280	
1770.00	132572	High	LTE Band 66 (AWS)	20	25.0	24.32	0.01	0	23494	QPSK	1	50	7 mm	left	1:1	0.239	1.169	0.279	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.0	23.28	-0.01	1	23494	QPSK	50	50	7 mm	left	1:1	0.200	1.180	0.236	
1720.00	132072	Low	LTE Band 66 (AWS)	20	11.0	10.64	-0.16	0	72582	QPSK	1	0	0 mm	back	1:1	0.798	1.086	0.867	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	11.0	10.78	-0.15	0	72582	QPSK	1	99	0 mm	back	1:1	0.828	1.052	0.871	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	-0.19	0	72582	QPSK	1	99	0 mm	back	1:1	0.970	1.014	0.984	
1720.00	132072	Low	LTE Band 66 (AWS)	20	11.0	10.63	-0.16	0	72582	QPSK	50	0	0 mm	back	1:1	0.774	1.089	0.843	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	11.0	10.70	-0.16	0	72582	QPSK	50	50	0 mm	back	1:1	0.824	1.072	0.883	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.96	-0.18	0	72582	QPSK	50	50	0 mm	back	1:1	0.924	1.009	0.932	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.88	-0.08	0	72582	QPSK	100	0	0 mm	back	1:1	0.910	1.028	0.935	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	-0.01	0	72582	QPSK	1	99	0 mm	top	1:1	0.185	1.014	0.188	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.96	0.08	0	72582	QPSK	50	50	0 mm	top	1:1	0.174	1.009	0.176	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	0.03	0	72582	QPSK	1	99	0 mm	left	1:1	0.041	1.014	0.042	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.96	-0.03	0	72582	QPSK	50	50	0 mm	left	1:1	0.038	1.009	0.038	
1770.00	132572	High	LTE Band 66 (AWS)	20	11.0	10.94	-0.16	0	72582	QPSK	1	99	0 mm	back	1:1	1.020	1.014	1.034	A20
		Al	NSI / IEEE C95.1		FETY LIMIT			Body											
			•	ial Peak				1.6 W/kg (mW/g)											
		Unc	ontrolled Expos	ure/Genera	al Population								average	d over 1	gram				

Note: Blue entry represents variability measurement.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 64 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 64 of 92

Table 11-21 LTE Band 2 (PCS) Body SAR

										T RESULT		AIX.							
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[2]	Power [dBm]	· ower [abin]	D.i.i. [GD]		Number							(W/kg)	1 40101	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	23.84	-0.04	0	71634	QPSK	1	50	19 mm	back	1:1	0.598	1.219	0.729	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	22.92	0.01	1	71634	QPSK	50	0	19 mm	back	1:1	0.418	1.197	0.500	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	23.84	0.01	0	71634	QPSK	1	50	12 mm	top	1:1	0.731	1.219	0.891	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	23.61	0.05	0	71634	QPSK	1	0	12 mm	top	1:1	0.735	1.285	0.944	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	23.75	-0.19	0	71634	QPSK	1	50	12 mm	top	1:1	0.751	1.245	0.935	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	22.92	0.06	1	71634	QPSK	50	0	12 mm	top	1:1	0.527	1.197	0.631	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	22.91	-0.04	1	71634	QPSK	100	0	12 mm	top	1:1	0.551	1.199	0.661	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	23.84	-0.12	0	71634	QPSK	1	50	0 mm	right	1:1	0.234	1.219	0.285	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	22.92	0.05	1	71634	QPSK	50	0	0 mm	right	1:1	0.183	1.197	0.219	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	23.84	-0.03	0	71634	QPSK	1	50	7 mm	left	1:1	0.339	1.219	0.413	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	22.92	0.09	1	71634	QPSK	50	0	7 mm	left	1:1	0.242	1.197	0.290	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	-0.04	0	72582	QPSK	1	50	0 mm	back	1:1	0.911	1.014	0.924	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	11.0	9.92	0.01	0	72582	QPSK	1	50	0 mm	back	1:1	1.000	1.282	1.282	
1900.00	19100	High	LTE Band 2 (PCS)	20	11.0	10.13	0.01	0	72582	QPSK	1	0	0 mm	back	1:1	1.040	1.222	1.271	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	-0.02	0	72582	QPSK	50	50	0 mm	back	1:1	0.926	1.067	0.988	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	11.0	9.95	-0.02	0	72582	QPSK	50	50	0 mm	back	1:1	0.982	1.274	1.251	
1900.00	19100	High	LTE Band 2 (PCS)	20	11.0	10.12	0.02	0	72582	QPSK	50	0	0 mm	back	1:1	1.040	1.225	1.274	A21
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.70	0.01	0	72582	QPSK	100	0	0 mm	back	1:1	0.896	1.072	0.961	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	-0.02	0	72582	QPSK	1	50	0 mm	top	1:1	0.230	1.014	0.233	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	0.01	0	72582	QPSK	50	50	0 mm	top	1:1	0.238	1.067	0.254	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.94	0.01	0	72582	QPSK	1	50	0 mm	left	1:1	0.076	1.014	0.077	
1860.00	18700	Low	LTE Band 2 (PCS)	20	11.0	10.72	-0.05	0	72582	QPSK	50	50	0 mm	left	1:1	0.081	1.067	0.086	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
	Spatial Peak							1.6 W/kg (mW/g)											
		Ur	controlled Expos	sure/Gener	al Populatio	n							average	d over 1	gram				

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 65 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 65 of 92

Table 11-22 LTE Band 41 Body SAR

	MEASUREMENT RESULTS																		
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[IIII12]	Power [dBm]	r ower [ubin]	Dilit [dD]		Number							(W/kg)	racioi	(W/kg)	
2593.00	40620	Mid	LTE Band 41	20	23.2	23.04	-0.09	0	23502	QPSK	1	0	19 mm	back	1:1.58	0.337	1.038	0.350	
2549.50	40185	Low- Mid	LTE Band 41	20	22.2	22.12	-0.03	0	23502	QPSK	50	0	19 mm	back	1:1.58	0.283	1.019	0.288	
2593.00	40620	Mid	LTE Band 41	20	23.2	23.04	0.00	0	23502	QPSK	1	0	12 mm	top	1:1.58	0.512	1.038	0.531	
2549.50	40185	Low- Mid	LTE Band 41	20	22.2	22.12	-0.02	1	23502	QPSK	50	0	12 mm	top	1:1.58	0.436	1.019	0.444	
2593.00	40620	Mid	LTE Band 41	20	23.2	23.04	0.03	0	23502	QPSK	1	0	0 mm	right	1:1.58	0.073	1.038	0.076	
2549.50	40185	Low- Mid	LTE Band 41	20	22.2	22.12	0.08	1	23502	QPSK	50	0	0 mm	right	1:1.58	0.038	1.019	0.039	
2593.00	40620	Mid	LTE Band 41	20	23.2	23.04	0.05	0	23502	QPSK	1	0	7 mm	left	1:1.58	0.118	1.038	0.122	
2549.50	40185	Low- Mid	LTE Band 41	20	22.2	22.12	-0.01	1	23502	QPSK	50	0	7 mm	left	1:1.58	0.106	1.019	0.108	
2506.00	39750	Low	LTE Band 41	20	14.0	12.04	-0.11	0	23538	QPSK	1	0	0 mm	back	1:1.58	0.495	1.570	0.777	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	-0.13	0	23538	QPSK	1	0	0 mm	back	1:1.58	0.524	1.256	0.658	
2593.00	40620	Mid	LTE Band 41	20	14.0	12.90	-0.08	0	23538	QPSK	1	0	0 mm	back	1:1.58	0.525	1.288	0.676	
2636.50	41055	Mid- High	LTE Band 41	20	14.0	12.47	0.19	0	23538	QPSK	1	0	0 mm	back	1:1.58	0.401	1.422	0.570	
2680.00	41490	High	LTE Band 41	20	14.0	12.42	0.12	0	23538	QPSK	1	0	0 mm	back	1:1.58	0.356	1.439	0.512	
2506.00	39750	Low	LTE Band 41	20	14.0	12.02	-0.05	0	23538	QPSK	50	50	0 mm	back	1:1.58	0.528	1.578	0.833	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.00	-0.06	0	23538	QPSK	50	0	0 mm	back	1:1.58	0.529	1.259	0.666	A22
2593.00	40620	Mid	LTE Band 41	20	14.0	13.01	-0.09	0	23538	QPSK	50	0	0 mm	back	1:1.58	0.501	1.256	0.629	
2636.50	41055	Mid- High	LTE Band 41	20	14.0	12.48	-0.18	0	23538	QPSK	50	25	0 mm	back	1:1.58	0.397	1.419	0.563	
2680.00	41490	High	LTE Band 41	20	14.0	12.40	0.02	0	23538	QPSK	50	25	0 mm	back	1:1.58	0.352	1.445	0.509	
2593.00	40620	Mid	LTE Band 41	20	14.0	12.97	-0.04	0	23538	QPSK	100	0	0 mm	back	1:1.58	0.503	1.268	0.638	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	-0.06	0	23538	QPSK	1	0	0 mm	top	1:1.58	0.416	1.256	0.522	
2593.00	40620	Mid	LTE Band 41	20	14.0	13.01	-0.04	0	23538	QPSK	50	0	0 mm	top	1:1.58	0.395	1.256	0.496	
2549.50	40185	Low- Mid	LTE Band 41	20	14.0	13.01	0.07	0	23538	QPSK	1	0	0 mm	left	1:1.58	0.042	1.256	0.053	
2593.00	40620	Mid	LTE Band 41	20	14.0	13.01	0.12	0	23538	QPSK	50	0	0 mm	left	1:1.58	0.035	1.256	0.044	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body			·		
			Spa	tial Peak				1.6 W/kg (mW/g)											
		Un	controlled Expo	sure/Gener	al Population	n		averaged over 1 gram											

Table 11-23 2 4 GHz WI AN Body SAR

						2.4 G	HZ WL	AN B	oay :	SAR							
	MEASUREMENT RESULTS																
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WITIZ]	[dBm]	[dBiii]	[ub]		Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	18.0	17.62	-0.05	6 mm	72582	1	back	99.8	0.831	1.091	1.002	0.908	A23
2437	6	802.11b	DSSS	22	18.0	17.29	0.00	6 mm	72582	1	back	99.8	0.613	1.178	1.002	0.724	
2462	11	802.11b	DSSS	22	18.0	17.43	0.12	6 mm	72582	1	back	99.8	0.640	1.140	1.002	0.731	
2412	1	802.11b	DSSS	22	18.0	17.62	-0.09	0 mm	72582	1	top	99.8	0.523	1.091	1.002	0.572	
2412	1	802.11b	DSSS	22	18.0	17.62	-0.20	0 mm	72582	1	right	99.8	0.299	1.091	1.002	0.327	
2437	6	802.11b	DSSS	22	12.0	11.48	-0.10	0 mm	72582	1	back	99.8	0.384	1.127	1.002	0.434	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Body			·	
	Spatial Peak										1.	6 W/kg (mW	/g)				
		Unce	ontrolled	Exposure/G	eneral Population	n		1				ave	raged over 1	gram			

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 66 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 66 of 92

Table 11-24 5 GHz WLAN Body SAR

							MEASI		IT RESU		•							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	mode	Service	[MHz]	[dBm]	[dBm]	[dB]	Opacing	Config.	Number	(Mbps)	Side	(%)	(W/kg)	(Power)	Cycle)	(W/kg)	11101#
5230	46	802.11n	OFDM	40	12.0	11.92	0.20	6 mm	1	72814	13.5	back	97.5	0.207	1.019	1.026	0.216	
5190	38	802.11n	OFDM	40	12.0	11.65	0.12	0 mm	1	72814	13.5	top	97.5	0.939	1.084	1.026	1.044	
5230	46	802.11n	OFDM	40	12.0	11.92	0.03	0 mm	1	72814	13.5	top	97.5	1.100	1.019	1.026	1.150	
5230	46	802.11n	OFDM	40	12.0	11.92	0.13	0 mm	1	72814	13.5	right	97.5	0.066	1.019	1.026	0.069	
5210	42	802.11ac	OFDM	80	8.5	7.56	0.13	0 mm	1	72814	29.3	back	91.0	0.631	1.242	1.099	0.861	
5270	54	802.11n	OFDM	40	12.0	11.90	0.12	6 mm	1	72814	13.5	back	97.5	0.222	1.023	1.026	0.233	
5270	54	802.11n	OFDM	40	12.0	11.90	-0.15	0 mm	1	72814	13.5	top	97.5	1.220	1.023	1.026	1.281	
5310	62	802.11n	OFDM	40	12.0	11.68	0.20	0 mm	1	72814	13.5	top	97.5	1.220	1.076	1.026	1.347	A24
5270	54	802.11n	OFDM	40	12.0	11.90	0.12	0 mm	1	72814	13.5	right	97.5	0.064	1.023	1.026	0.067	
5290	58	802.11ac	OFDM	80	8.5	7.70	0.13	0 mm	1	72814	29.3	back	91.0	0.685	1.202	1.099	0.905	
5590	118	802.11n	OFDM	40	12.0	11.90	-0.02	6 mm	1	23502	13.5	back	97.5	0.423	1.023	1.026	0.444	
5510	102	802.11n	OFDM	40	12.0	11.68	-0.20	0 mm	1	23502	13.5	top	97.5	1.060	1.076	1.026	1.170	
5590	118	802.11n	OFDM	40	12.0	11.90	0.12	0 mm	1	23502	13.5	top	97.5	1.150	1.023	1.026	1.207	
5630	126	802.11n	OFDM	40	12.0	11.87	0.12	0 mm	1	23502	13.5	top	97.5	1.070	1.030	1.026	1.131	
5710	142	802.11n	OFDM	40	12.0	11.89	-0.03	0 mm	1	23502	13.5	top	97.5	1.030	1.026	1.026	1.084	
5590	118	802.11n	OFDM	40	12.0	11.90	-0.12	0 mm	1	23502	13.5	right	97.5	0.069	1.023	1.026	0.072	
5530	106	802.11ac	OFDM	80	8.5	8.11	-0.14	0 mm	1	72814	29.3	back	91.0	0.776	1.094	1.099	0.933	
5610	122	802.11ac	OFDM	80	8.5	8.28	-0.20	0 mm	1	72814	29.3	back	91.0	0.746	1.052	1.099	0.862	
5690	138	802.11ac	OFDM	80	8.5	7.97	-0.13	0 mm	1	72814	29.3	back	91.0	0.651	1.130	1.099	0.808	
5755	151	802.11n	OFDM	40	12.0	11.56	0.07	6 mm	1	71634	13.5	back	97.5	0.299	1.107	1.026	0.340	
5755	151	802.11n	OFDM	40	12.0	11.56	-0.16	0 mm	1	71634	13.5	top	97.5	0.716	1.107	1.026	0.813	
5795	159	802.11n	OFDM	40	12.0	11.54	-0.11	0 mm	1	71634	13.5	top	97.5	0.775	1.112	1.026	0.884	
5755	151	802.11n	OFDM	40	12.0	11.56	-0.13	0 mm	1	71634	13.5	right	97.5	0.061	1.107	1.026	0.069	
5775	155	802.11ac	OFDM	80	8.5	7.95	0.20	0 mm	1	72814	29.3	back	91.0	0.650	1.135	1.099	0.811	
5310	62	802.11n	OFDM	40	12.0	11.68	0.19	0 mm	1	72814	13.5	top	97.5	1.190	1.076	1.026	1.314	
5590	118	802.11n	OFDM	40	12.0	11.90	0.04	0 mm	1	23502	13.5	top	97.5	1.150	1.023	1.026	1.207	
5710	142	802.11n	OFDM	40	12.0	11.89	0.01	0 mm	1	23502	13.5	top	97.5	1.060	1.026	1.026	1.116	
		Al	NSI / IEEE	C95.1 1992	- SAFETY LIMIT								В	ody				
				Spatial Pea									1.6 W/I	kg (mW/g)				
	Uncontrolled Exposure/General Population											a	veraged	over 1 gram				

Note: Blue entry represents variability measurement.

11.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 67 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Fage 07 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.
- 8. Head SAR testing was required for this tablet because it has a speaker/receiver and microphone positioning that allows for a held-to-ear configuration usage. Head SAR tests were performed at reduced power levels for some licensed modes.

GSM Test Notes:

- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for body SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 60 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 68 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 operations, the highest measured maximum output power channel for DSSS was selected for SAR
 measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed
 powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.6.6 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 5. For held-to-ear operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 60 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 69 of 92

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Head)	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2480	7.00	5	0.210	5	0.210

Note: Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 70 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Fage 70 01 92

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	1	2	1+2
GSM 850	0.768	1.023	See Table Below
GSM 1900	0.135	1.023	1.158
UMTS 850	0.976	1.023	See Table Below
UMTS 1750	0.154	1.023	1.177
UMTS 1900	0.225	1.023	1.248
LTE Band 12	0.760	1.023	See Table Below
LTE Band 5 (Cell)	0.838	1.023	See Table Below
LTE Band 66 (AWS)	0.122	1.023	1.145
LTE Band 2 (PCS)	0.301	1.023	1.324
LTE Band 41	0.222	1.023	1.245

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Right Cheek	0.768	0.280	1.048
Head SAR	Right Tilt	0.480	0.192	0.672
Head SAR	Left Cheek	0.250	1.023	1.273
	Left Tilt	0.217	0.640	0.857
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Simult Tx	Configuration		WLAN SAR	
Simult Tx	Configuration Right Cheek	SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)
	Ü	SAR (W/kg)	WLAN SAR (W/kg)	(W/kg) 1+2
Simult Tx Head SAR	Right Cheek	SAR (W/kg) 1 0.976	WLAN SAR (W/kg) 2 0.280	(W/kg) 1+2 1.256

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 74 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 71 of 92

Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Head SAR	Right Cheek	0.760	0.280	1.040
	Right Tilt	0.589	0.192	0.781
	Left Cheek	0.329	1.023	1.352
	Left Tilt	0.270	0.640	0.910
Simult Tx				
Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Simult Tx	Configuration	(Cell) SAR	WLAN SAR	
Simult Tx	Configuration Right Cheek	(Cell) SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)
	<u> </u>	(Cell) SAR (W/kg)	WLAN SAR (W/kg)	(W/kg) 1+2
Simult Tx Head SAR	Right Cheek	(Cell) SAR (W/kg) 1 0.838	WLAN SAR (W/kg) 2 0.280	(W/kg) 1+2 1.118

Table 12-3 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

inditalicous Transmission occinano with 5 Chz WEAN (ficia to E					
2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
1	2	1+2			
0.768	0.486	1.254			
0.135	0.486	0.621			
0.976	0.486	1.462			
0.154	0.486	0.640			
0.225	0.486	0.711			
0.760	0.486	1.246			
0.838	0.486	1.324			
0.122	0.486	0.608			
0.301	0.486	0.787			
0.222	0.486	0.708			
	2G/3G/4G SAR (W/kg) 1 0.768 0.135 0.976 0.154 0.225 0.760 0.838 0.122 0.301	2G/3G/4G SAR (W/kg) 1 2 0.768 0.486 0.135 0.486 0.976 0.486 0.154 0.486 0.225 0.486 0.760 0.486 0.838 0.486 0.122 0.486 0.301 0.486			

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Do ao 70 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 72 of 92

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Simultaneous Transmission ocenario with bluetooth (neid to Lar)					
Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
	1	2	1+2		
GSM 850	0.768	0.210	0.978		
GSM 1900	0.135	0.210	0.345		
UMTS 850	0.976	0.210	1.186		
UMTS 1750	0.154	0.210	0.364		
UMTS 1900	0.225	0.210	0.435		
LTE Band 12	0.760	0.210	0.970		
LTE Band 5 (Cell)	0.838	0.210	1.048		
LTE Band 66 (AWS)	0.122	0.210	0.332		
LTE Band 2 (PCS)	0.301	0.210	0.511		
LTE Band 41	0.222	0.210	0.432		

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

Body Simultaneous Transmission Analysis 12.4

Table 12-5 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Bodv)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.992	0.908	See Table Below
	GPRS 1900	1.138	0.908	See Table Below
	UMTS 850	0.379	0.908	1.287
	UMTS 1750	1.139	0.908	See Table Below
Body SAR	UMTS 1900	1.257	0.908	See Table Below
Body SAR	LTE Band 12	0.655	0.908	1.563
	LTE Band 5 (Cell)	0.520	0.908	1.428
	LTE Band 66 (AWS)	1.034	0.908	See Table Below
	LTE Band 2 (PCS)	1.282	0.908	See Table Below
	LTE Band 41	0.833	0.908	See Table Below

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 72 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 73 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

Simult Tx	Simult Tx Configuration		2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.992	0.908	See Note 1	0.04
	Тор	0.440	0.572	1.012	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.134	0.327	0.461	N/A
	Left	0.212	0.400	0.612	N/A
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.138	0.908	See Note 1	0.04
	Тор	0.281	0.572	0.853	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.080	0.327	0.407	N/A
	Left	0.113	0.400	0.513	N/A
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.139	0.908	See Note 1	0.04
	Тор	0.587	0.572	1.159	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.357	0.327	0.684	N/A
	Left	0.356	0.400	0.756	N/A
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	1			1.0	1+2
		1	2	1+2	1+2
	Back	1.257	0.908	See Note 1	0.04
	Back Top				
Body SAR		1.257	0.908	See Note 1	0.04
Body SAR	Тор	1.257 0.770	0.908 0.572	See Note 1 1.342	0.04 N/A

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 74 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 74 of 92

Simult Tx	Simult Tx Configuration		2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.034	0.908	See Note 1	0.04
	Тор	0.597	0.572	1.169	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.344	0.327	0.671	N/A
	Left	0.279	0.400	0.679	N/A
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.282	0.908	See Note 1	0.04
	Тор	0.944	0.572	1.516	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.285	0.327	0.612	N/A
	Left	0.413	0.400	0.813	N/A
Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.833	0.908	See Note 1	0.03
	Тор	0.531	0.572	1.103	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.076	0.327	0.403	N/A
	Left	0.122	0.400	0.522	N/A

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 75 -1 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 75 of 92

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	
		1	2	1+2
	GPRS 850	0.992	1.347	See Table Below
	GPRS 1900	1.138	1.347	See Table Below
	UMTS 850	0.379	1.347	See Table Below
	UMTS 1750	1.139	1.347	See Table Below
Body SAR	UMTS 1900	1.257	1.347	See Table Below
Body SAR	LTE Band 12	0.655	1.347	See Table Below
	LTE Band 5 (Cell)	0.520	1.347	See Table Below
	LTE Band 66 (AWS)	1.034	1.347	See Table Below
	LTE Band 2 (PCS)	1.282	1.347	See Table Below
	LTE Band 41	0.833	1.347	See Table Below

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.992	0.933	See Note 1	0.04
	Тор	0.440	1.347	See Note 1	0.03
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.134	0.072	0.206	N/A
	Left	0.212	0.400	0.612	N/A
Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.138	0.933	See Note 1	0.04
	Тор	0.281	1.347	See Note 1	0.03
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.080	0.072	0.152	N/A
	Left	0.113	0.400	0.513	N/A

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 76 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 76 of 92

Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.315	0.933	1.248	N/A
	Тор	0.379	1.347	See Note 1	0.04
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.106	0.072	0.178	N/A
	Left	0.160	0.400	0.560	N/A
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.139	0.933	See Note 1	0.04
	Тор	0.587	1.347	See Note 1	0.03
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.357	0.072	0.429	N/A
	Left	0.356	0.400	0.756	N/A
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.257	0.933	See Note 1	0.04
Ī			0.000	OCC NOIC I	0.04
1	Тор	0.770	1.347	See Note 1	0.04
Body SAR	Top Bottom	0.770 0.400			
Body SAR			1.347	See Note 1	0.04 N/A N/A
Body SAR	Bottom	0.400	1.347 0.400	See Note 1 0.800	0.04 N/A
Body SAR Simult Tx	Bottom Right	0.400 0.270 0.332 LTE Band 12 SAR	1.347 0.400 0.072	See Note 1 0.800 0.342	0.04 N/A N/A
,	Bottom Right Left	0.400 0.270 0.332 LTE Band 12 SAR	1.347 0.400 0.072 0.400 5 GHz WLAN SAR	See Note 1 0.800 0.342 0.732 Σ SAR	0.04 N/A N/A N/A
,	Bottom Right Left	0.400 0.270 0.332 LTE Band 12 SAR (W/kg)	1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg)	See Note 1 0.800 0.342 0.732 Σ SAR (W/kg)	0.04 N/A N/A N/A SPLSR
Simult Tx	Bottom Right Left Configuration	0.400 0.270 0.332 LTE Band 12 SAR (W/kg)	1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg)	See Note 1 0.800 0.342 0.732 Σ SAR (W/kg) 1+2	0.04 N/A N/A N/A SPLSR
,	Bottom Right Left Configuration Back	0.400 0.270 0.332 LTE Band 12 SAR (W/kg) 1	1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg) 2 0.933	See Note 1 0.800 0.342 0.732 Σ SAR (W/kg) 1+2 1.588	0.04 N/A N/A N/A SPLSR 1+2 N/A
Simult Tx	Bottom Right Left Configuration Back Top	0.400 0.270 0.332 LTE Band 12 SAR (W/kg) 1 0.655 0.334	1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg) 2 0.933 1.347	See Note 1 0.800 0.342 0.732 Σ SAR (W/kg) 1+2 1.588 See Note 1	0.04 N/A N/A N/A SPLSR 1+2 N/A 0.03

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 77 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 77 of 92

Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.520	0.933	1.453	N/A
	Тор	0.321	1.347	See Note 1	0.04
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.096	0.072	0.168	N/A
	Left	0.152	0.400	0.552	N/A
Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.034	0.933	See Note 1	0.04
	Тор	0.597	1.347	See Note 1	0.03
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.344	0.072	0.416	N/A
	Left	0.279	0.400	0.679	N/A
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.282	0.933	1+2 See Note 1	1+2 0.04
	Тор	1.282 0.944	0.933 1.347	See Note 1 See Note 1	0.04 0.04
Body SAR	Top Bottom	1.282 0.944 0.400	0.933 1.347 0.400	See Note 1 See Note 1 0.800	0.04 0.04 N/A
Body SAR	Top Bottom Right	1.282 0.944 0.400 0.285	0.933 1.347 0.400 0.072	See Note 1 See Note 1 0.800 0.357	0.04 0.04 N/A N/A
Body SAR	Top Bottom	1.282 0.944 0.400	0.933 1.347 0.400	See Note 1 See Note 1 0.800	0.04 0.04 N/A
Body SAR Simult Tx	Top Bottom Right	1.282 0.944 0.400 0.285	0.933 1.347 0.400 0.072	See Note 1 See Note 1 0.800 0.357	0.04 0.04 N/A N/A
,	Top Bottom Right Left	1.282 0.944 0.400 0.285 0.413 LTE Band 41 SAR	0.933 1.347 0.400 0.072 0.400 5 GHz WLAN SAR	See Note 1 See Note 1 0.800 0.357 0.813 Σ SAR	0.04 0.04 N/A N/A N/A
,	Top Bottom Right Left	1.282 0.944 0.400 0.285 0.413 LTE Band 41 SAR (W/kg)	0.933 1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg)	See Note 1 See Note 1 0.800 0.357 0.813 Σ SAR (W/kg)	0.04 0.04 N/A N/A N/A SPLSR
Simult Tx	Top Bottom Right Left Configuration	1.282 0.944 0.400 0.285 0.413 LTE Band 41 SAR (W/kg)	0.933 1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg)	See Note 1 See Note 1 0.800 0.357 0.813 Σ SAR (W/kg)	0.04 0.04 N/A N/A N/A SPLSR
,	Top Bottom Right Left Configuration Back	1.282 0.944 0.400 0.285 0.413 LTE Band 41 SAR (W/kg)	0.933 1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg) 2 0.933	See Note 1 See Note 1 0.800 0.357 0.813 Σ SAR (W/kg) 1+2 See Note 1	0.04 0.04 N/A N/A N/A SPLSR 1+2 0.03
Simult Tx	Top Bottom Right Left Configuration Back Top	1.282 0.944 0.400 0.285 0.413 LTE Band 41 SAR (W/kg) 1 0.833 0.531	0.933 1.347 0.400 0.072 0.400 5 GHz WLAN SAR (W/kg) 2 0.933 1.347	See Note 1 See Note 1 0.800 0.357 0.813 Σ SAR (W/kg) 1+2 See Note 1 See Note 1	0.04 0.04 N/A N/A N/A SPLSR 1+2 0.03 0.03

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 70 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 78 of 92

Table 12-7 Simultaneous Transmission Scenario with Bluetooth (Body)

	ultarieous Transinissio	ii Occiianio ii	Titil Blactoot	(204)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.992	0.400	1.392
	GPRS 1900	1.138	0.400	1.538
	UMTS 850	0.379	0.400	0.779
	UMTS 1750	1.139	0.400	1.539
Body SAR	UMTS 1900	1.257	0.400	See Table Below
Body SAR	LTE Band 12	0.655	0.400	1.055
	LTE Band 5 (Cell)	0.520	0.400	0.920
	LTE Band 66 (AWS)	1.034	0.400	1.434
	LTE Band 2 (PCS)	1.282	0.400	See Table Below
	LTE Band 41	0.833	0.400	1.233

Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.257	0.210	1.467
	Тор	0.770	0.210	0.980
Body SAR	Bottom	0.400	0.400	0.800
	Right	0.270	0.210	0.480
	Left	0.332	0.400	0.732
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	1.282	0.210	1.492
	Тор	0.944	0.210	1.154
Body SAR	Bottom	0.400	0.400	0.800
	Right	0.285	0.210	0.495
	Left	0.413	0.400	0.813

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 70 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 79 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

Notes:

- 1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.5 for detailed SPLS ratio analysis.
- 2. When the antenna separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine the simultaneous transmission SAR exclusion for test positions excluded per FCC KDB Publication 447498 D01v06.
- 3. For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

12.5 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is

≤ 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (Body)
SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

12.5.1 Back Side SPLSR Evaluation and Analysis

Table 12-8 Peak SAR Locations for Body Back Side

Mode/Band	x (mm)	y (mm)
2.4 GHz WLAN	-36.20	34.00
5 GHz WLAN	-39.00	34.00
GPRS 850	-31.55	-33.02
GPRS 1900	-29.50	-36.50
UMTS 1750	-23.00	-40.50
UMTS 1900	-34.00	-40.50
LTE Band 66 (AWS)	-35.50	-39.00
LTE Band 2 (PCS)	-32.50	-39.00
LTE Band 41	-33.80	-34.20

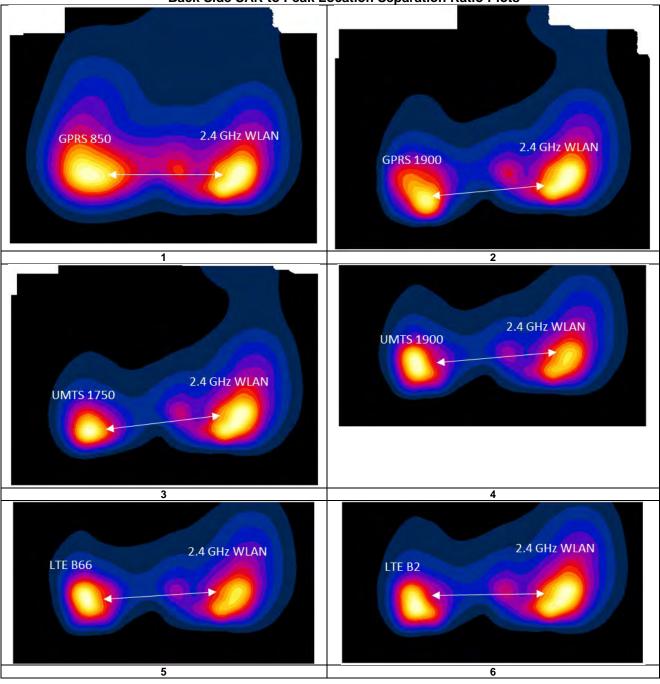
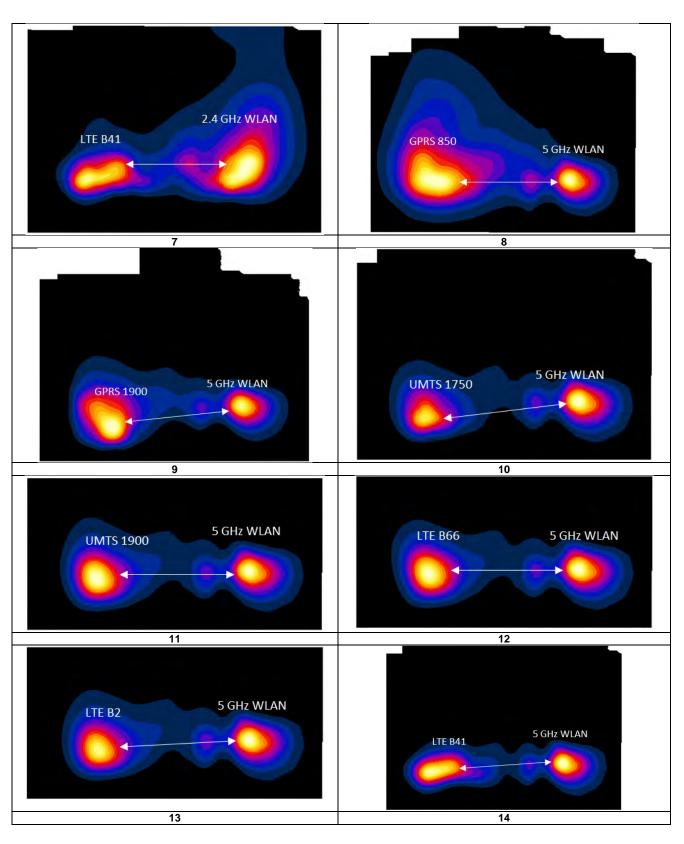

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 80 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 60 01 92

Table 12-9 Back Side SAR to Peak Location Separation Ratio Calculations


Back Side SAN to Feak Education Separation Natio Calculations							
Anten	na Pair		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
GPRS 850	2.4 GHz WLAN	0.992	0.908	1.900	67.18	0.04	1
GPRS 1900	2.4 GHz WLAN	1.138	0.908	2.046	70.82	0.04	2
UMTS 1750	2.4 GHz WLAN	1.139	0.908	2.047	75.66	0.04	3
UMTS 1900	2.4 GHz WLAN	1.257	0.908	2.165	74.53	0.04	4
LTE Band 66 (AWS)	2.4 GHz WLAN	1.034	0.908	1.942	73.00	0.04	5
LTE Band 2 (PCS)	2.4 GHz WLAN	1.282	0.908	2.190	73.09	0.04	6
LTE Band 41	2.4 GHz WLAN	0.833	0.908	1.741	68.24	0.03	7
GPRS 850	5 GHz WLAN	0.992	0.933	1.925	67.43	0.04	8
GPRS 1900	5 GHz WLAN	1.138	0.933	2.071	71.14	0.04	9
UMTS 1750	5 GHz WLAN	1.139	0.933	2.072	76.20	0.04	10
UMTS 1900	5 GHz WLAN	1.257	0.933	2.190	74.67	0.04	11
LTE Band 66 (AWS)	5 GHz WLAN	1.034	0.933	1.967	73.08	0.04	12
LTE Band 2 (PCS)	5 GHz WLAN	1.282	0.933	2.215	73.29	0.04	13
LTE Band 41	5 GHz WLAN	0.833	0.933	1.766	68.40	0.03	14

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 94 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 81 of 92

Table 12-10 Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 92 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 82 of 92

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 92 of 92
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 83 of 92

12.5.2 Top Edge SPLSR Evaluation and Analysis

Table 12-11
Peak SAR Locations for Body Top Edge

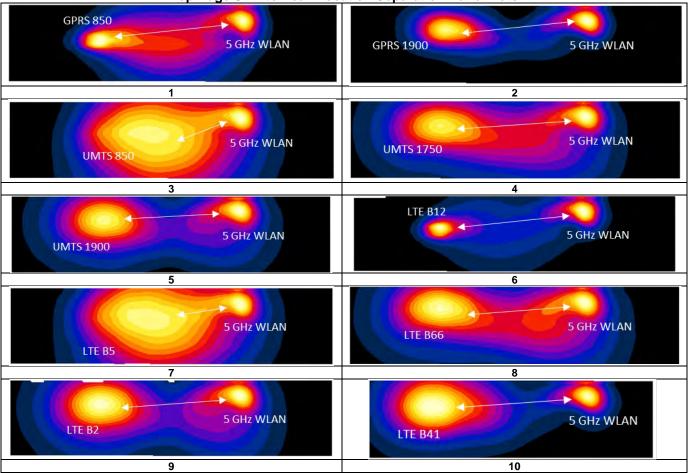

PEAK SAN LUCATIONS IO	Body 10	Luge
Mode/Band	x (mm)	y (mm)
5 GHz WLAN	-36.50	38.00
GPRS 850	-24.53	-40.51
GPRS 1900	-31.00	-37.50
UMTS 850	-27.03	-12.00
UMTS 1750	-23.00	-40.50
UMTS 1900	-31.00	-37.50
LTE Band 12	-26.53	-42.04
LTE Band 5 (Cell)	-27.53	-13.50
LTE Band 2 (PCS)	-30.99	-39.00
LTE Band 66 (AWS)	-25.00	-40.50
LTE Band 41	-31.50	-40.80

Table 12-12
Top Edge SAR to Peak Location Separation Ratio Calculations

Anten	na Pair	Standalone SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
GPRS 850	5 GHz WLAN	0.440	1.347	1.787	79.42	0.03	1
GPRS 1900	5 GHz WLAN	0.281	1.347	1.628	75.70	0.03	2
UMTS 850	5 GHz WLAN	0.379	1.347	1.726	50.89	0.04	3
UMTS 1750	5 GHz WLAN	0.587	1.347	1.934	79.65	0.03	4
UMTS 1900	5 GHz WLAN	0.770	1.347	2.117	75.70	0.04	5
LTE Band 12	5 GHz WLAN	0.334	1.347	1.681	80.66	0.03	6
LTE Band 5 (Cell)	5 GHz WLAN	0.321	1.347	1.668	52.28	0.04	7
LTE Band 66 (AWS)	5 GHz WLAN	0.597	1.347	1.944	79.34	0.03	8
LTE Band 2 (PCS)	5 GHz WLAN	0.944	1.347	2.291	77.20	0.04	9
LTE Band 41	5 GHz WLAN	0.531	1.347	1.878	78.96	0.03	10

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 04 600	
1M1901170008-01-R2.A3L 02/03/19 - 02/21/19		Portable Tablet	Page 84 of 92	

Table 12-13
Top Edge SAR to Peak Location Separation Ratio Plots

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 95 of 99	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 85 of 92	

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1
Head SAR Measurement Variability Results

	HEAD VARIABILITY RESULTS													
Band	FREQUI	ENCY	Mode/Band	Service	Side	Test Position	Data Rate (Mbps)	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)		3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2412.00	1	802.11b, 22 MHz Bandwidth	DSSS	Left	Cheek	1	0.936	0.828	1.13	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population			Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 13-2 Bodv SAR Measurement Variability Results

	Body SAR Measurement Variability Results													
	BODY VARIABILITY RESULTS													
Band	FREQUENCY	Mode	Service	Data Rate	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz	Ch.		'	(Mbps)			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1770.00	132572	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	N/A	back	0 mm	0.970	1.020	1.05	N/A	N/A	N/A	N/A
1900	1907.60	9538	UMTS 1900	RMC	N/A	back	0 mm	1.120	1.110	1.01	N/A	N/A	N/A	N/A
5250	5310.00	62	802.11n, 40 MHz Bandwidth	OFDM	13.5	top	0 mm	1.220	1.190	1.03	N/A	N/A	N/A	N/A
5600	5590.00	118	802.11n, 40 MHz Bandwidth	OFDM	13.5	top	0 mm	1.150	1.150	1.00	N/A	N/A	N/A	N/A
5750	5710.00	142	802.11n, 40 MHz Bandwidth	OFDM	13.5	top	0 mm	1.030	1.060	1.03	N/A	N/A	N/A	N/A
		Α	NSI / IEEE C95.1 1992 - SAFET	Y LIMIT			Body							
			Spatial Peak				1.6 W/kg (mW/g)							
		Und	controlled Exposure/General Po	opulation					av	eraged o	ver 1 gram			

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 96 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		Page 86 of 92

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

Measurement Uncertainty 13.2

The measured SAR was <1.5 W/kg for 1g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 97 of 02
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 87 of 92

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85033E	3.5mm Standard Calibration Kit	8/13/2018	Annual	8/13/2019	MY53402352
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	8753ES	Network Analyzer	2/21/2018	Annual	2/21/2019	MY40001472
Agilent	E4438C	ESG Vector Signal Generator	6/22/2018	Annual	6/22/2019	MY53401181
Agilent	E4440A	PSA Series Spectrum Analyzer	11/14/2018	Annual	11/14/2019	MY46186272
Agilent	E5515C	Wireless Communications Test Set	2/28/2018	Biennial	2/28/2020	GB41450275
Agilent	N5182A	MXG Vector Signal Generator	6/15/2018	Annual	6/15/2019	MY47420837
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA24106A	USB Power Sensor	7/17/2018	Annual	7/17/2019	1827527
Anritsu	MA24106A	USB Power Sensor	6/5/2018	Annual	6/5/2019	1248508
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	ML2496A	Power Meter	10/21/2018	Annual	10/21/2019	1138001
Anritsu	MT8820C	Radio Communication Analyzer	6/27/2018	Annual	6/27/2019	6201240328
Anritsu	MT8821C	Radio Communication Analyzer	3/20/2018	Annual	3/20/2019	6201144419
Control Company	4040	Digital Thermometer	2/28/2018	Biennial	2/28/2020	130448366
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	6/6/2018	Biennial	6/6/2020	181334694
Control Company	4352	Ultra Long Stem Thermometer	5/21/2018	Biennial	5/21/2020	181292000
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	4/20/2018	Annual	4/20/2019	128635
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/6/2018	Annual	7/6/2019	151849
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/5/2018	Annual	7/5/2019	145663
SPEAG	D750V3	750 MHz SAR Dipole	9/8/2017	Biennial	9/8/2019	1097
SPEAG	D835V2	835 MHz SAR Dipole	5/18/2018	Annual	5/18/2019	4d180
SPEAG	D850V2	850 MHz SAR Dipole	8/16/2017	Biennial	8/16/2019	1009
SPEAG	D850V2	850 MHz SAR Dipole	9/8/2017	Biennial	9/8/2019	1010
SPEAG	D1750V2	1750 MHz SAR Dipole	9/7/2017	Biennial	9/7/2019	1104
SPEAG	D1750V2	1750 MHz SAR Dipole	5/15/2018	Annual	5/15/2019	1092
SPEAG	D1900V2	1900 MHz SAR Dipole	9/7/2017	Biennial	9/7/2019	5d181
SPEAG	D1900V2	1900 MHz SAR Dipole	5/14/2018	Annual	5/14/2019	5d026
SPEAG	D1900V2	1900 MHz SAR Dipole	8/16/2017	Biennial	8/16/2019	5d180
SPEAG	D2450V2	2450 MHz SAR Dipole	6/7/2017	Biennial Annual	6/7/2019	750 945
SPEAG SPEAG	D2450V2 D2600V2	2450 MHz SAR Dipole 2600 MHz SAR Dipole	5/16/2018 9/11/2017	Annual Biennial	5/16/2019 9/11/2019	1069
	D2600V2 D2600V2		6/7/2017	Biennial	6/7/2019	1069
SPEAG SPEAG	D5GHzV2	2600 MHz SAR Dipole 5 GHz SAR Dipole	3/13/2018	Annual	3/13/2019	1123
SPEAG	D5GHzV2 D5GHzV2	5 GHZ SAR DIpole SAR Dipole	9/13/2018	Annual	9/13/2019	1163
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/10/2018	Annual	7/10/2019	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	11/12/2018	Annual	11/12/2019	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	4/12/2018	Annual	4/12/2019	501
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	10/18/2018	Annual	10/18/2019	1364
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	4/12/2018	Annual	4/12/2019	3275
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	EX3DV4	SAR Probe	9/18/2018	Annual	9/18/2019	7420
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7491
5. 27.0		5.11.11000	.,20,2010	, iuu	.,20/2010	

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Note: Each equipment item was used solely within its respective calibration period.

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Do ac 90 of 00
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 88 of 92	

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

a	С	d	e=	f	g	h =	i =	k
-			f(d,k)		0	c x f/e		
	T-I	Deele	I(u,K)	_	_		c x g/e	
Unacodalista Campanant	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	u _i	Vi
Measurement System						(± %)	(± %)	
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	oc
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	oc
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	oc
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	× ×
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	×
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	× ×
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	×
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	×
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	×
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	×
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	-xo
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	-xo
Combined Standard Uncertainty (k=1)	ı	RSS	1		•	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								1

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Daga 90 of 02	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet	Page 89 of 92	

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMP205	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 00 of 02
1M1901170008-01-R2.A3L 02/03/19 - 02/21/19		Portable Tablet	Page 90 of 92	

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMP205	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 91 of 92	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet		

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMP205	POTEST*	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 92 of 92	
1M1901170008-01-R2.A3L	02/03/19 - 02/21/19	Portable Tablet			

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

APPENDIX A: SAR TEST DATA

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 848.8 \text{ MHz}; \ \sigma = 0.889 \text{ S/m}; \ \epsilon_r = 42.655; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

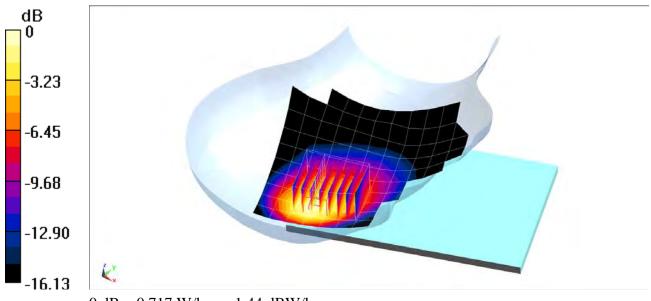
Test Date: 02-12-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3131; ConvF(6.35, 6.35, 6.35) @ 848.8 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GSM 850, Right Head, Cheek, High.ch


Area Scan (11x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.03 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.599 W/kg

0 dB = 0.717 W/kg = -1.44 dBW/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 71634

Communication System: UID 0, GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.432 \text{ S/m}; \ \epsilon_r = 40.622; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

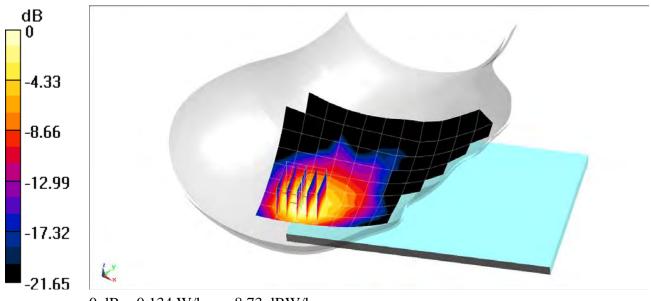
Test Date: 02-14-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.5°C

 $Probe: EX3DV4 - SN7491; ConvF(8.48, 8.48, 8.48) @ 1880 \ MHz; Calibrated: 7/20/2018; \\$

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 10/18/2018

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: GSM 1900, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.174 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.172 W/kg

SAR(1 g) = 0.089 W/kg

0 dB = 0.134 W/kg = -8.73 dBW/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, UMTS; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 826.4 \text{ MHz}; \ \sigma = 0.88 \text{ S/m}; \ \epsilon_r = 42.717; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

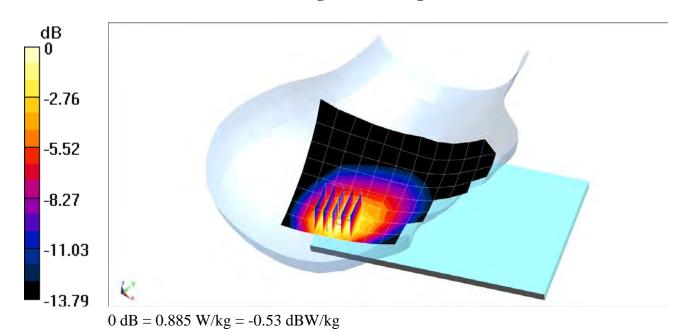
Test Date: 02-12-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3131; ConvF(6.35, 6.35, 6.35) @ 826.4 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 850, Right Head, Cheek, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.32 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.728 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.317 \text{ S/m}; \ \epsilon_r = 40.645; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-14-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C

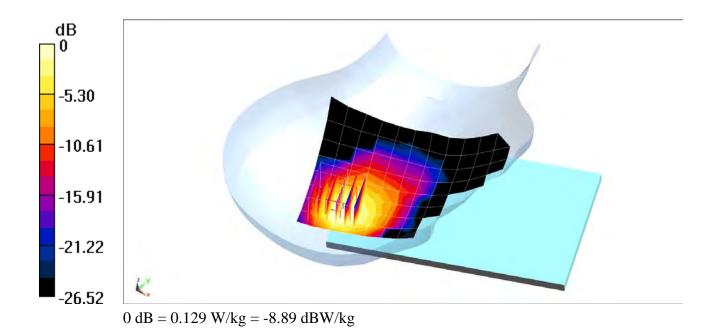
Probe: ES3DV3 - SN3131; ConvF(5.57, 5.57, 5.57) @ 1732.4 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Phontom: SAM Main: Type: SAM 4.0: Sociel: TD 1406

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1750, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.288 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.108 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.408 \text{ S/m}; \ \epsilon_r = 40.431; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-14-2019; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

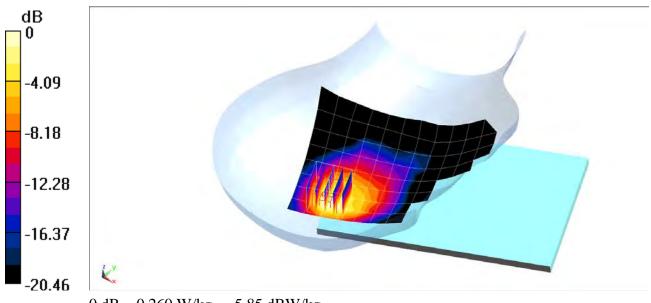
Probe: ES3DV3 - SN3131; ConvF(5.27, 5.27, 5.27) @ 1880 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Phontom: SAM Main Type: SAM 4.0; Sarial: TP 1406

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.99 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.206 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.883 \text{ S/m}; \ \epsilon_r = 42.786; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

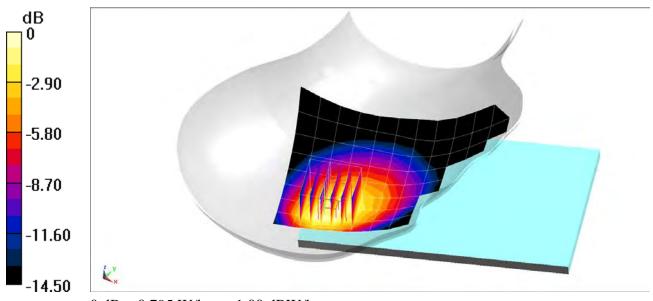
Test Date: 02-12-2019; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7491; ConvF(10.48, 10.48, 10.48) @ 707.5 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 10/18/2018

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.82 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.578 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 23502

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.874 \text{ S/m}; \ \epsilon_r = 42.014; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-03-2019; Ambient Temp: 21.0°C; Tissue Temp: 18.4°C

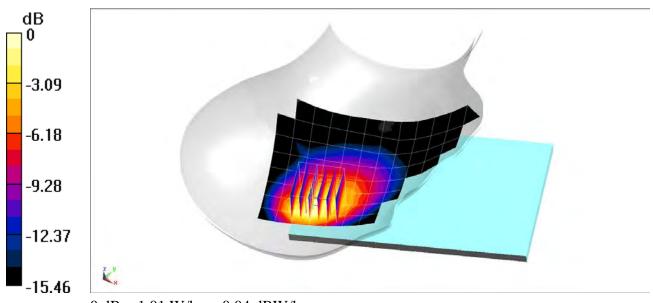
Probe: EX3DV4 - SN7416; ConvF(9.45, 9.45, 9.45) @ 836.5 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.43 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.21 W/kg

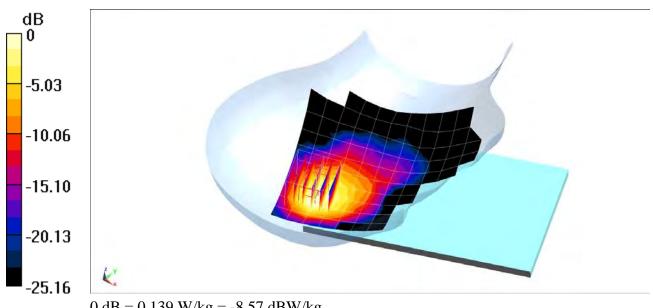
SAR(1 g) = 0.681 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1770 \text{ MHz}; \sigma = 1.338 \text{ S/m}; \epsilon_r = 40.587; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-14-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C


Probe: ES3DV3 - SN3131; ConvF(5.57, 5.57, 5.57) @ 1770 MHz; Calibrated: 3/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (11x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.54 V/m: Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.222 W/kgSAR(1 g) = 0.120 W/kg

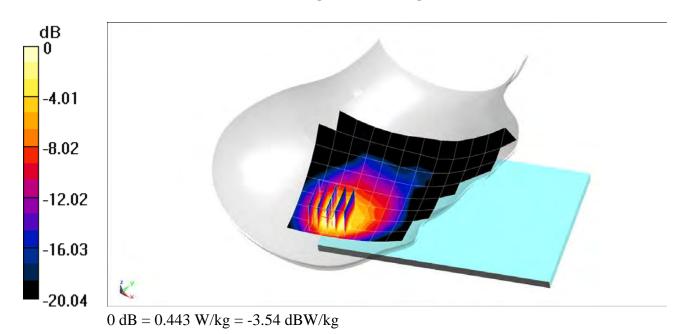
DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, _LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.419 \text{ S/m}; \ \epsilon_r = 40.669; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-14-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7491; ConvF(8.48, 8.48, 8.48) @ 1860 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 10/18/2018
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 50 RB, 50 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.42 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.282 W/kg

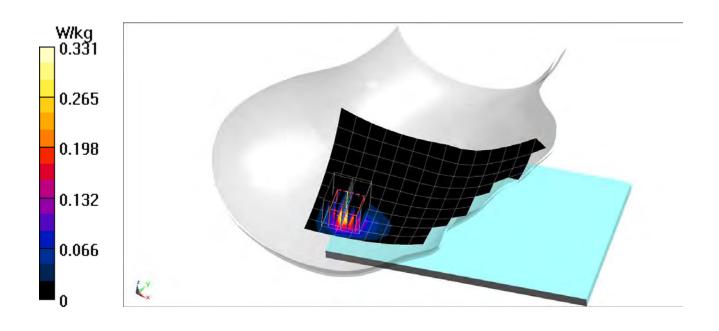
DUT: A3LSMP205; Type: Portable Tablet; Serial: 71634

Communication System: UID 0, LTE Band 41; Frequency: 2549.5 MHz; Duty Cycle: 1:1.58 Medium: 2300-2600 MHz Head Medium parameters used: $f = 2550 \text{ MHz}; \ \sigma = 1.912 \text{ S/m}; \ \epsilon_r = 39.651; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-14-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7491; ConvF(7.52, 7.52, 7.52) @ 2550 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 10/18/2018
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 41, Right Head, Cheek, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.18 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.177 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, _IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450-2600 Head Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.835 \text{ S/m}; \ \epsilon_r = 40.015; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02-11-2019; Ambient Temp: 19.4°C; Tissue Temp: 19.1°C

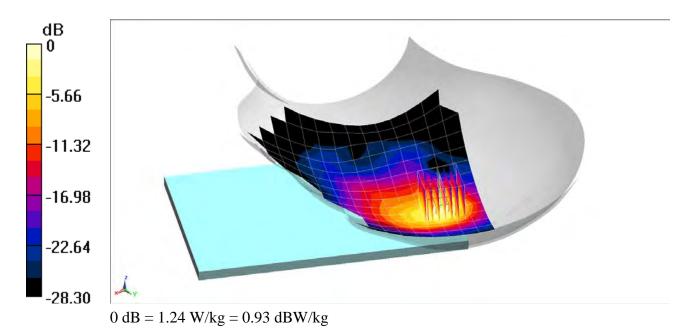
Probe: ES3DV3 - SN3275; ConvF(4.74, 4.74, 4.74) @ 2412 MHz; Calibrated: 4/12/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 1, 1 Mbps


Area Scan (14x21x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.561 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.936 W/kg

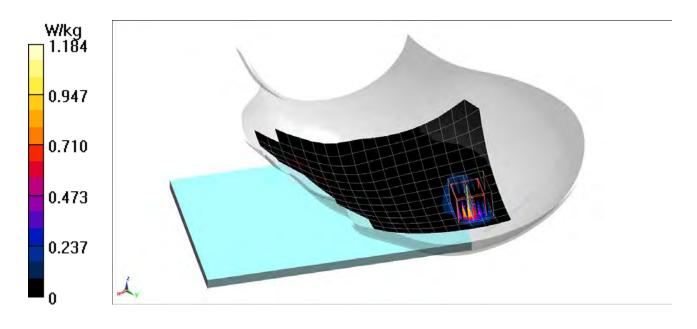
DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5590 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): $f = 5590 \text{ MHz}; \ \sigma = 4.923 \text{ S/m}; \ \epsilon_r = 34.587; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02-12-2019; Ambient Temp: 20.3°C; Tissue Temp: 18.7°C

Probe: EX3DV4 - SN7416; ConvF(4.75, 4.75, 4.75) @ 5590 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1402; Calibrated: 7/10/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11n, U-NII-2C, 40 MHz Bandwidth, Left Head, Cheek, Ch 118, 13.5 Mbps


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 2.522 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 0.463 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 71634

Communication System: UID 0, _GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.01 \text{ S/m}; \ \epsilon_r = 53.042; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-15-2019; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

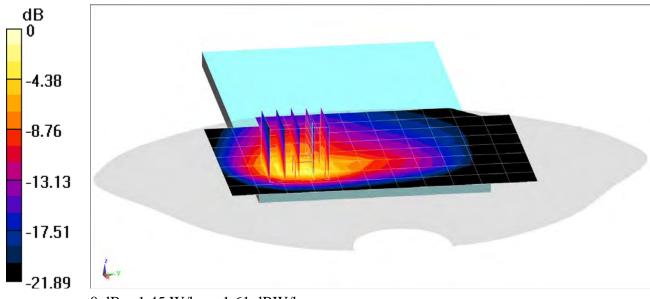
Probe: EX3DV4 - SN7420; ConvF(9.61, 9.61, 9.61) @ 836.6 MHz; Calibrated: 9/18/2018;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 11/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (10x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.30 W/kg

SAR(1 g) = 0.674 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, _GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.575 \text{ S/m}; \ \epsilon_r = 50.871; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

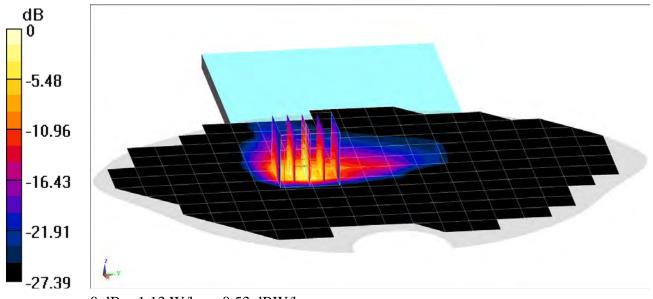
 $Probe: ES3DV3 - SN3275; ConvF(4.85, 4.85, 4.85) @ 1880 \ MHz; Calibrated: 4/12/2018; \\$

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots


Area Scan (15x19x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.75 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.782 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 71634

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.994 \text{ S/m}; \ \epsilon_r = 53.485; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.2 cm

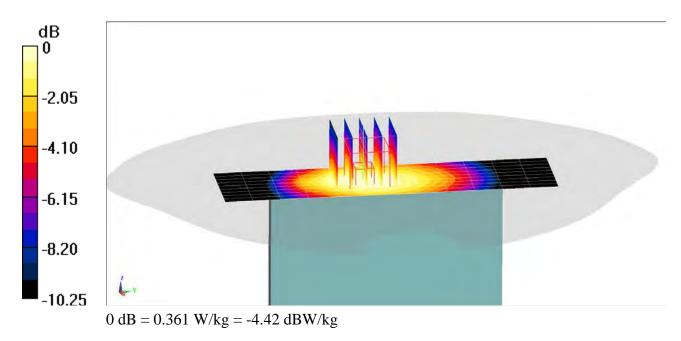
Test Date: 02-11-2019; Ambient Temp: 20.7°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7420; ConvF(9.61, 9.61, 9.61) @ 836.6 MHz; Calibrated: 9/18/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1449; Calibrated: 11/12/2018 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 850, Body SAR, Top Edge, Mid.ch


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.20 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.282 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 23494

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.49 \text{ S/m}; \ \epsilon_r = 52.218; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

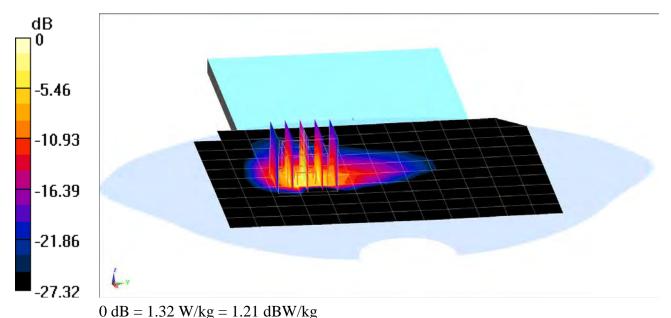
Test Date: 02-06-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3131; ConvF(5.03, 5.03, 5.03) @ 1752.6 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1750, Body SAR, Back side, High.ch


Area Scan (11x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.54 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.844 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.593 \text{ S/m}; \ \epsilon_r = 50.842; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

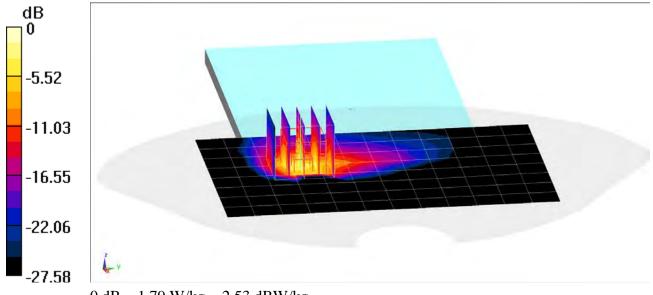
Probe: ES3DV3 - SN3275; ConvF(4.85, 4.85, 4.85) @ 1907.6 MHz; Calibrated: 4/12/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Body SAR, Back side, High.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.97 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.12 W/kg

0 dB = 1.79 W/kg = 2.53 dBW/kg

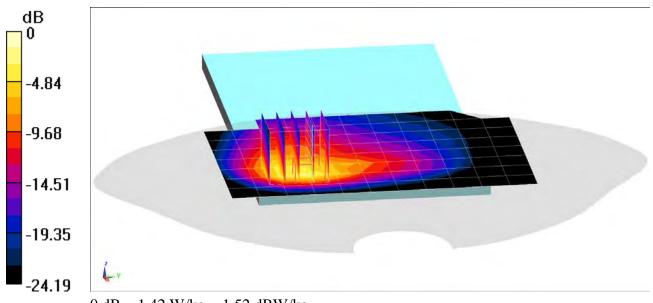
DUT: A3LSMP205; Type: Portable Tablet; Serial: 71634

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.943 \text{ S/m}; \ \epsilon_r = 53.791; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-11-2019; Ambient Temp: 20.7°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7420; ConvF(9.71, 9.71, 9.71) @ 707.5 MHz; Calibrated: 9/18/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1449; Calibrated: 11/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (10x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.05 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.44 W/kg

SAR(1 g) = 0.620 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 23502

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.981 \text{ S/m}; \ \epsilon_r = 53.396; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

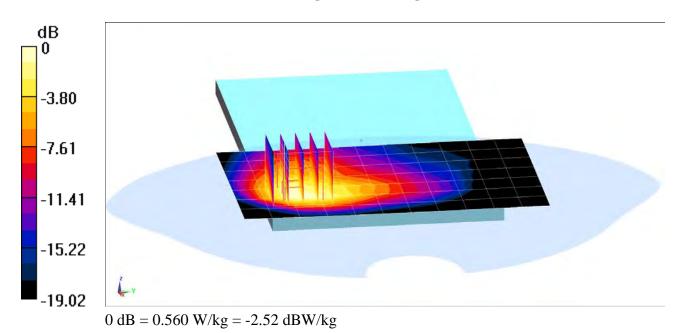
Test Date: 02-03-2019; Ambient Temp: 20.6°C; Tissue Temp: 19.7°C

Probe: ES3DV3 - SN3131; ConvF(6.14, 6.14, 6.14) @ 836.5 MHz; Calibrated: 3/13/2018;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.22 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.487 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

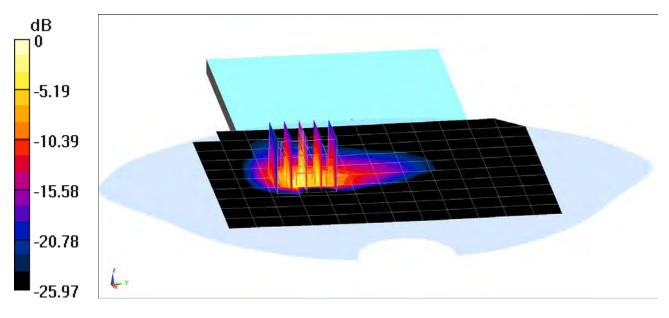
Communication System: UID 0, _LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1770 \text{ MHz}; \ \sigma = 1.495 \text{ S/m}; \ \epsilon_r = 51.026; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3275; ConvF(5.08, 5.08, 5.08) @ 1770 MHz; Calibrated: 4/12/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn501; Calibrated: 4/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (11x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.39 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.55 W/kg

SAR(1 g) = 1.02 W/kg

0 dB = 1.50 W/kg = 1.76 dBW/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, _LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.588 \text{ S/m}; \ \epsilon_r = 50.85; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

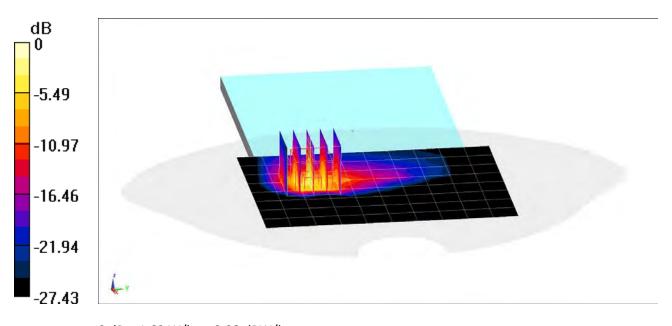
Probe: ES3DV3 - SN3275; ConvF(4.85, 4.85, 4.85) @ 1900 MHz; Calibrated: 4/12/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset


Area Scan (9x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.04 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.04 W/kg

0 dB = 1.69 W/kg = 2.28 dBW/kg

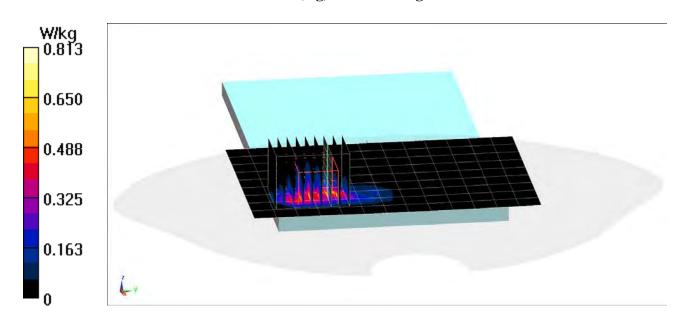
DUT: A3LSMP205; Type: Portable Tablet; Serial: 23538

Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2549.5 MHz; Duty Cycle: 1:1.58 Medium: 2450-2600 Body Medium parameters used: $f = 2550 \text{ MHz}; \ \sigma = 2.105 \text{ S/m}; \ \epsilon_r = 50.326; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-05-2019; Ambient Temp: 19.6°C; Tissue Temp: 19.7°C

Probe: ES3DV3 - SN3275; ConvF(4.47, 4.47, 4.47) @ 2550 MHz; Calibrated: 4/12/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn501; Calibrated: 4/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: LTE Band 41, Body SAR, Back side, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset


Area Scan (10x14x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.19 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 0.529 W/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72582

Communication System: UID 0, _IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 2.003 \text{ S/m}; \ \epsilon_r = 50.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.6 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

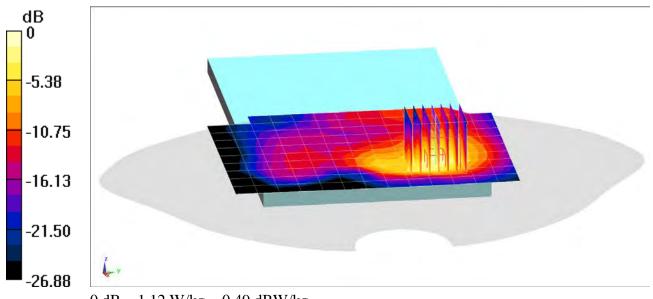
Probe: ES3DV3 - SN3275; ConvF(4.57, 4.57, 4.57) @ 2412 MHz; Calibrated: 4/12/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 1, 1 Mbps, Back Side


Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.76 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.831 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

DUT: A3LSMP205; Type: Portable Tablet; Serial: 72814

Communication System: UID 0, _IEEE 802.11n; Frequency: 5310 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated): $f = 5310 \text{ MHz}; \ \sigma = 5.558 \text{ S/m}; \ \epsilon_r = 47.188; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-07-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

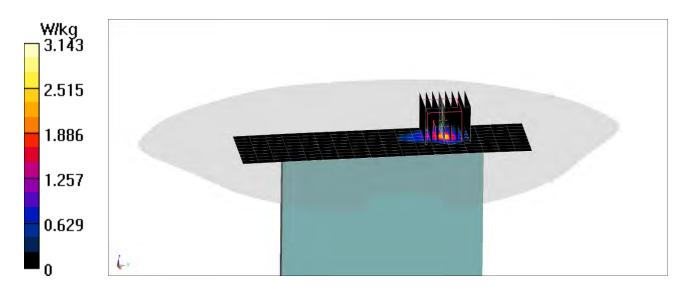
Probe: EX3DV4 - SN7416; ConvF(4.61, 4.61, 4.61) @ 5310 MHz; Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11n, U-NII-2A, 40 MHz Bandwidth, Body SAR, Ch 62, 13.5 Mbps, Top Edge


Area Scan (10x19x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 15.21 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 5.50 W/kg

SAR(1 g) = 1.22 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1097

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.897 \text{ S/m}; \ \epsilon_r = 42.643; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

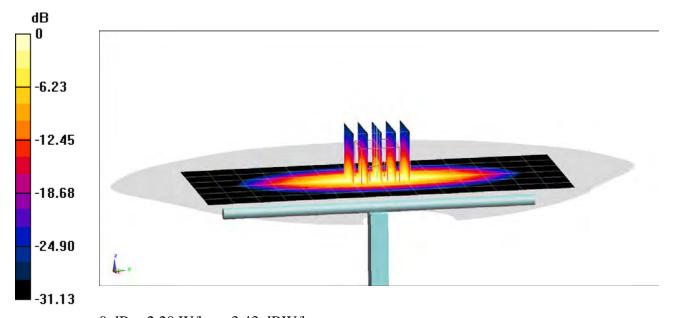
Test Date: 02-12-2019; Ambient Temp: 20.1°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7491; ConvF(10.48, 10.48, 10.48) @ 750 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1364; Calibrated: 10/18/2018

Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.46 W/kg

SAR(1 g) = 1.65 W/kg

Deviation(1 g) = 0.36%

0 dB = 2.20 W/kg = 3.43 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d180

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.873 \text{ S/m}; \ \epsilon_r = 42.018; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

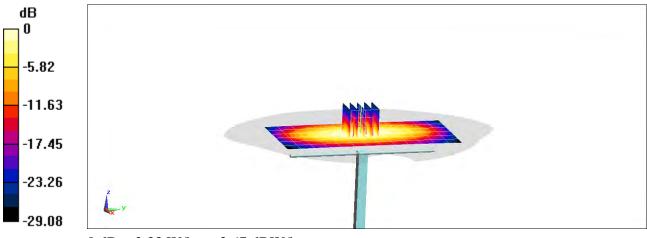
Test Date: 02-03-2019; Ambient Temp: 21.0°C; Tissue Temp: 18.4°C

Probe: EX3DV4 - SN7416; ConvF(9.45, 9.45, 9.45) @ 835 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 1.91 W/kg

Deviation(1 g) = -0.52%

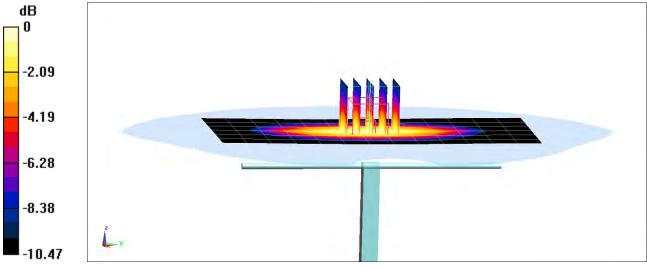
0 dB = 2.33 W/kg = 3.67 dBW/kg

DUT: D850V2; Type: D850V2; Serial: 1010

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 850 \text{ MHz}; \ \sigma = 0.889 \text{ S/m}; \ \epsilon_r = 42.652; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-12-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3131; ConvF(6.35, 6.35, 6.35) @ 850 MHz; Calibrated: 3/13/2018


Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Plantage SAM Main Types SAM 4 0 Sarial TP 1406

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

850 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 1.96 W/kgDeviation(1 g) = -1.31%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1104

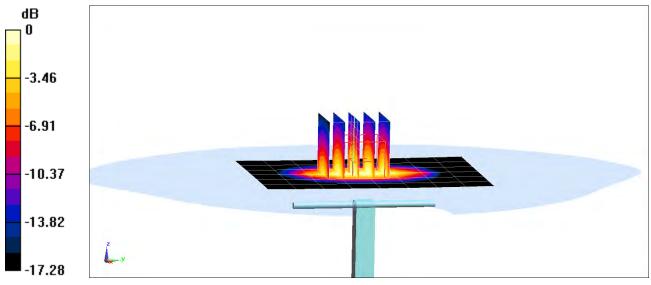
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.326 \text{ S/m}; \ \epsilon_r = 40.62; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-14-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3131; ConvF(5.57, 5.57, 5.57) @ 1750 MHz; Calibrated: 3/13/2018

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Plantage SAM Main Tages SAM 4 0 Savials TD 1406

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.11 W/kgSAR(1 g) = 3.47 W/kgDeviation(1 g) = -4.67%

0 dB = 4.30 W/kg = 6.33 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d181

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.421 \text{ S/m}; \ \epsilon_r = 40.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-14-2019; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

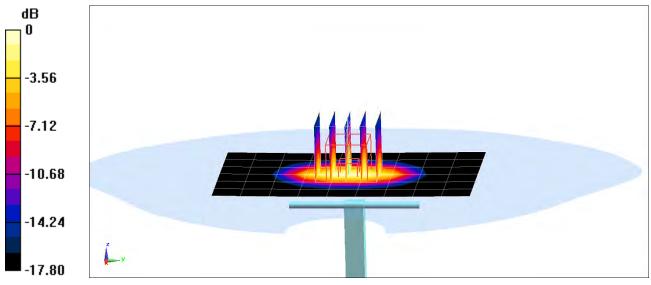
Probe: ES3DV3 - SN3131; ConvF(5.27, 5.27, 5.27) @ 1900 MHz; Calibrated: 3/13/2018

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Phantom: SAM Main: Type: SAM 4.0: Sarial: TP 1406

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.75 W/kg

SAR(1 g) = 3.77 W/kg

Deviation(1 g) = -4.56%

0 dB = 4.77 W/kg = 6.79 dBW/kg

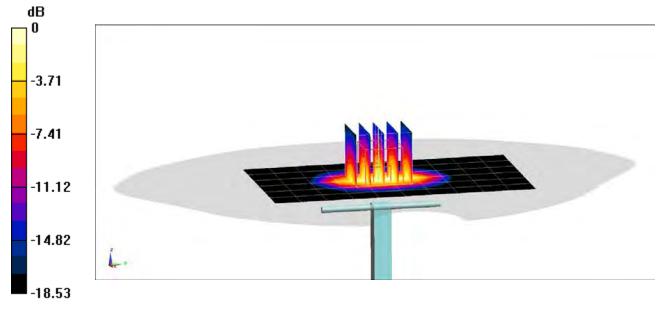
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d181

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.443 \text{ S/m}; \ \epsilon_r = 40.587; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-14-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7491; ConvF(8.48, 8.48, 8.48) @ 1900 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 10/18/2018
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.68 W/kg

SAR(1 g) = 4.02 W/kg

Deviation(1 g) = 1.77%

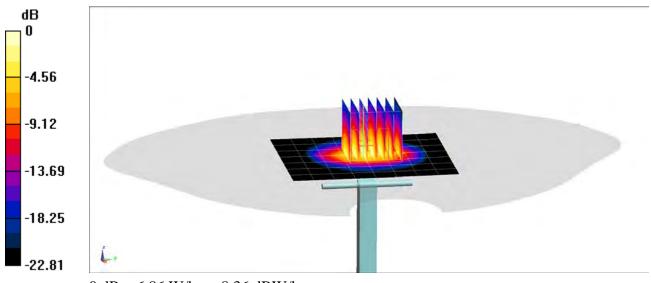
0 dB = 6.36 W/kg = 8.03 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450-2600 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.865 \text{ S/m}; \ \epsilon_r = 39.927; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-11-2019; Ambient Temp: 19.4°C; Tissue Temp: 19.1°C

Probe: ES3DV3 - SN3275; ConvF(4.74, 4.74, 4.74) @ 2450 MHz; Calibrated: 4/12/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.28 W/kg Deviation(1 g) = -0.94%

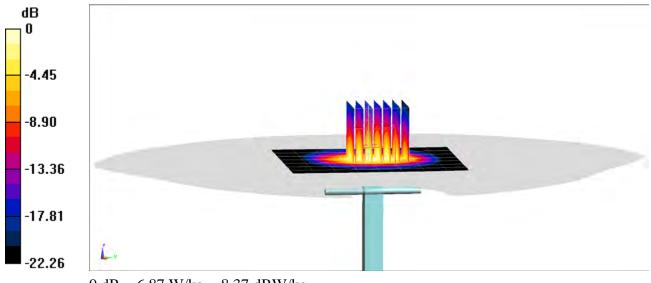
0 dB = 6.86 W/kg = 8.36 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 750

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.791 \text{ S/m}; \ \epsilon_r = 38.599; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-21-2019; Ambient Temp: 22.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3275; ConvF(4.74, 4.74, 4.74) @ 2450 MHz; Calibrated: 4/12/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

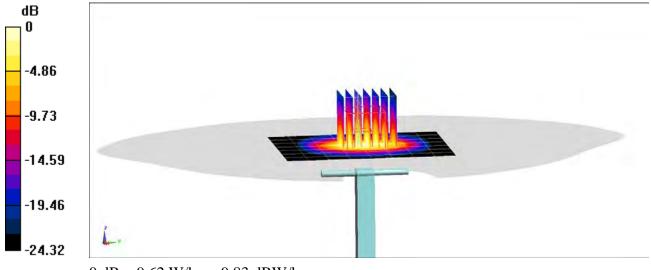
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 5.27 W/kg Deviation(1 g) = -1.13%

0 dB = 6.87 W/kg = 8.37 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1069


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2300-2600Mhz Head Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 1.958 \text{ S/m}; \ \epsilon_r = 39.585; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-14-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7491; ConvF(7.52, 7.52, 7.52) @ 2600 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 10/18/2018
Phantom: Twin-SAM V8.0_Left; Type: QD 000 P41 AA; Serial: 1935
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 5.63 W/kgDeviation(1 g) = -1.05%

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 4.573 \text{ S/m}; \ \epsilon_r = 35.044; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

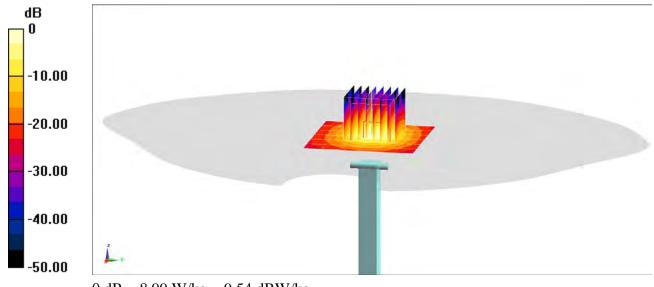
Test Date: 02-12-2019; Ambient Temp: 20.3°C; Tissue Temp: 18.7°C

Probe: EX3DV4 - SN7416; ConvF(5.21, 5.21, 5.21) @ 5250 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 3.87 W/kg Deviation(1 g) = -5.15%

0 dB = 8.99 W/kg = 9.54 dBW/kg

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 4.933 \text{ S/m}; \ \epsilon_r = 34.57; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

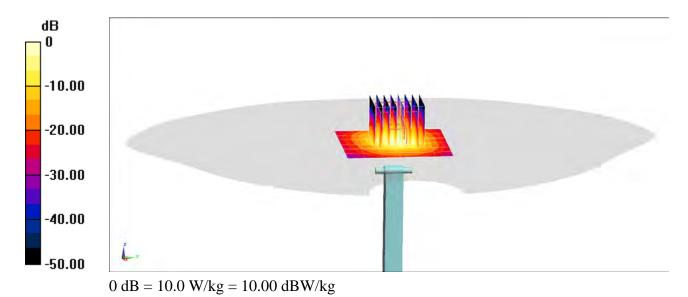
Test Date: 02-12-2019; Ambient Temp: 20.3°C; Tissue Temp: 18.7°C

Probe: EX3DV4 - SN7416; ConvF(4.75, 4.75, 4.75) @ 5600 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 4.14 W/kg Deviation(1 g) = -2.70%

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 5.089 \text{ S/m}; \ \epsilon_r = 34.306; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

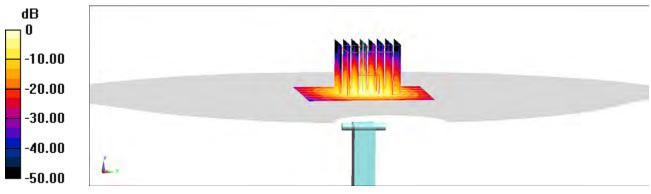
Test Date: 02-12-2019; Ambient Temp: 20.3°C; Tissue Temp: 18.7°C

Probe: EX3DV4 - SN7416; ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 3.95 W/kgDeviation(1 g) = -1.99%

0 dB = 9.73 W/kg = 9.88 dBW/kg

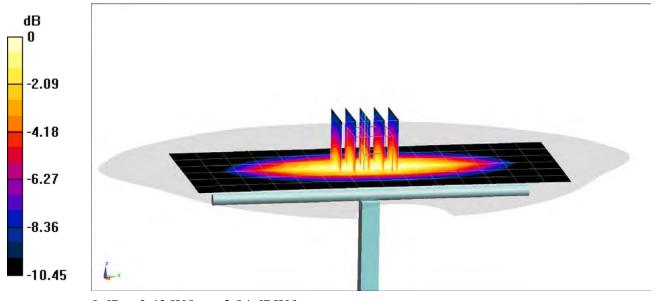
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1097

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 53.685; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-11-2019; Ambient Temp: 20.7°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7420; ConvF(9.71, 9.71, 9.71) @ 750 MHz; Calibrated: 9/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1449; Calibrated: 11/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.8 W/kg

Deviation(1 g) = 5.14%

0 dB = 2.42 W/kg = 3.84 dBW/kg

DUT: D850V2; Type: D850V2; Serial: 1009

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 850 \text{ MHz}; \ \sigma = 0.986 \text{ S/m}; \ \epsilon_r = 53.362; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

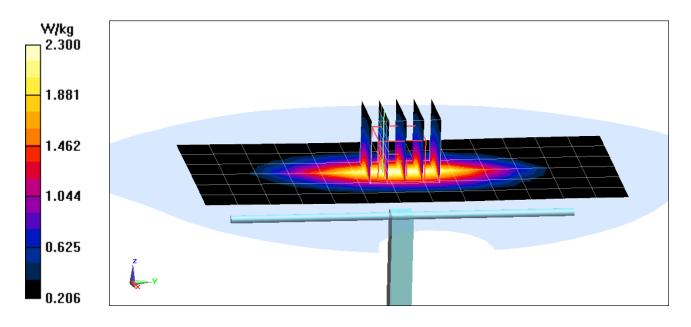
Test Date: 02-03-2019; Ambient Temp: 20.6°C; Tissue Temp: 19.7°C

Probe: ES3DV3 - SN3131; ConvF(6.14, 6.14, 6.14) @ 850 MHz; Calibrated: 3/13/2018

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn604; Calibrated: 3/7/2018 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

850 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 1.96 W/kg

Deviation(1 g) = -0.81%

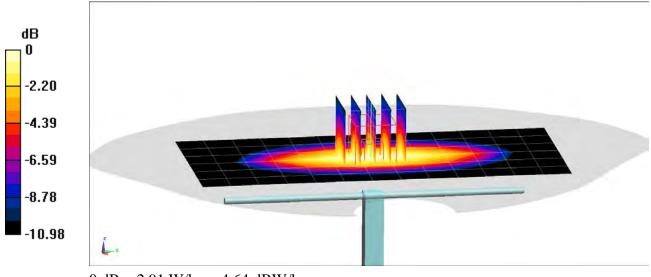
DUT: D850V2; Type: D850V2; Serial: 1010

Communication System: UID 0, CW; Frequency: 850 MHz; Duty Cycle: 1:1 Medium: 835 MHz Body Medium parameters used: f = 850 MHz; $\sigma = 0.998$ S/m; $\epsilon_r = 53.442$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-11-2019; Ambient Temp: 20.7°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7420; ConvF(9.61, 9.61, 9.61) @ 850 MHz; Calibrated: 9/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1449; Calibrated: 11/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

850 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.17 W/kg

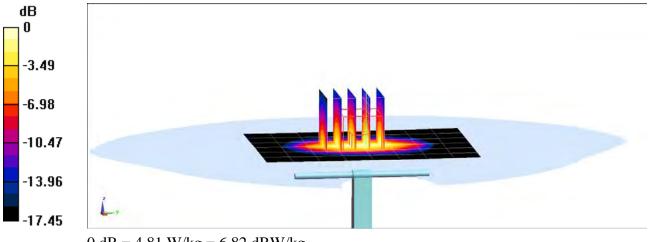
Deviation(1 g) = 6.37%

0 dB = 2.91 W/kg = 4.64 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1092

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.488 \text{ S/m}; \ \epsilon_r = 52.221; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-06-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.7°C


Probe: ES3DV3 - SN3131; ConvF(5.03, 5.03, 5.03) @ 1750 MHz; Calibrated: 3/13/2018 Sensor-Surface: 3mm (Mechanical Surface Detection)

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn604; Calibrated: 3/7/2018
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.86 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = 7.14%

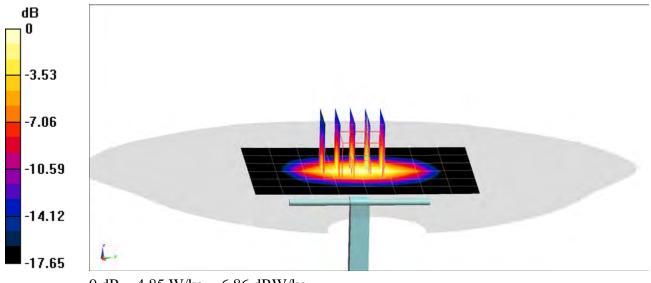
0 dB = 4.81 W/kg = 6.82 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1092

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.481 \text{ S/m}; \ \epsilon_r = 51.04; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-18-2019; Ambient Temp: 21.1°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3275; ConvF(5.08, 5.08, 5.08) @ 1750 MHz; Calibrated: 4/12/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.92 W/kg SAR(1 g) = 3.92 W/kg Deviation(1 g) = 7.69%

0 dB = 4.85 W/kg = 6.86 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d180

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.588 \text{ S/m}; \ \epsilon_r = 50.85; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

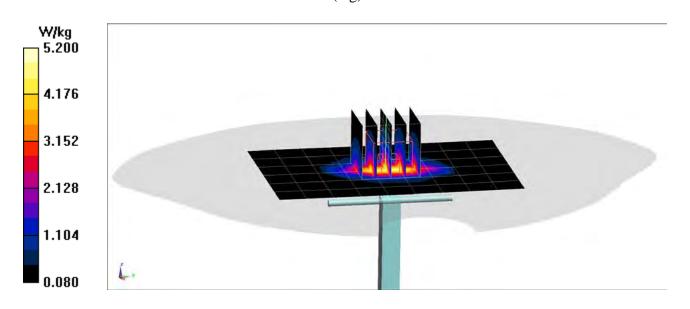
Probe: ES3DV3 - SN3275; ConvF(4.85, 4.85, 4.85) @ 1900 MHz; Calibrated: 4/12/2018

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.31 W/kg

SAR(1 g) = 4.09 W/kg

Deviation(1 g) = 3.54%

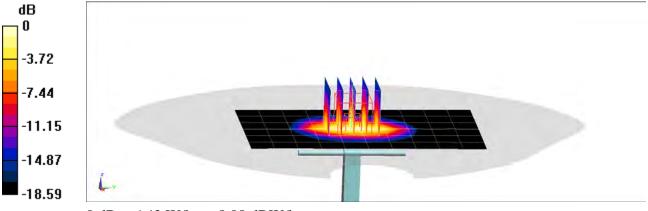
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d026

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.587 \text{ S/m}; \ \epsilon_r = 51.269; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-19-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7420; ConvF(7.7, 7.7, 7.7) @ 1900 MHz; Calibrated: 9/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1449; Calibrated: 11/12/2018
Phantom: Twin-SAM V4.0; Type: QD 000 P40 CC; Serial: 1596
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.66 W/kg

SAR(1 g) = 4.09 W/kg

Deviation(1 g) = 2.51%

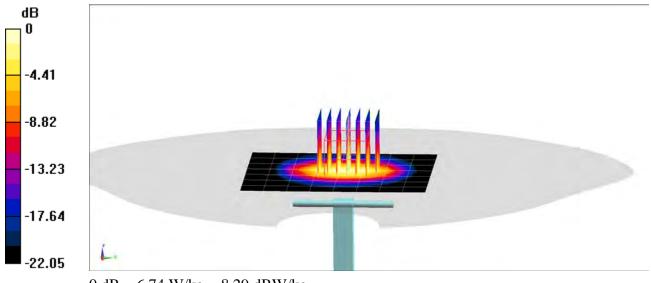
0 dB = 6.42 W/kg = 8.08 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 945

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.039 \text{ S/m}; \ \epsilon_r = 50.2; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3275; ConvF(4.57, 4.57, 4.57) @ 2450 MHz; Calibrated: 4/12/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 5.12 W/kg Deviation(1 g) = 3.64%

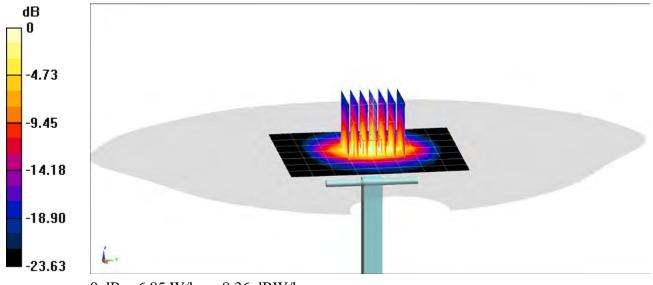
0 dB = 6.74 W/kg = 8.29 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1042

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2300-2600 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.156 \text{ S/m}; \ \epsilon_r = 50.292; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-05-2019; Ambient Temp: 19.6°C; Tissue Temp: 19.7°C

Probe: ES3DV3 - SN3275; ConvF(4.47, 4.47, 4.47) @ 2600 MHz; Calibrated: 4/12/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn501; Calibrated: 4/12/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CD; Serial: 1736

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.14 W/kg Deviation(1 g) = -6.72%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 5.47 \text{ S/m}; \ \epsilon_r = 47.326; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

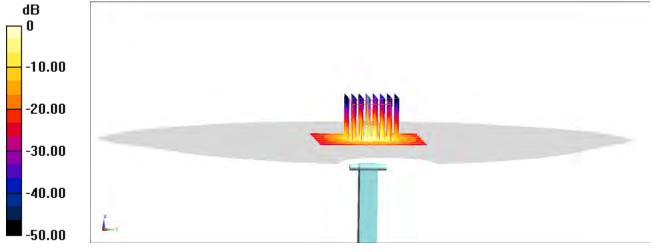
Test Date: 02-07-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7416; ConvF(4.61, 4.61, 4.61) @ 5250 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.8 W/kg

SAR(1 g) = 3.61 W/kg Deviation(1 g) = -2.43%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

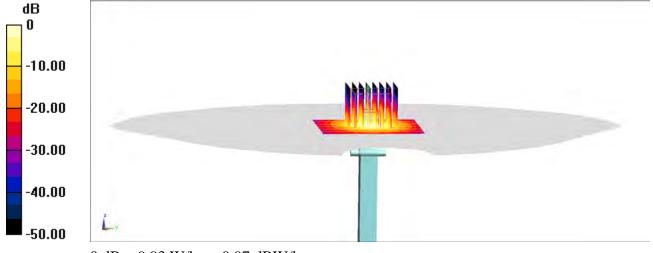
Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.968 \text{ S/m}; \ \epsilon_r = 46.667; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-07-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7416; ConvF(4.02, 4.02, 4.02) @ 5600 MHz; Calibrated: 7/20/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1402; Calibrated: 7/10/2018 Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)


5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 3.99 W/kgDeviation(1 g) = 2.84%

0 dB = 9.93 W/kg = 9.97 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1123

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 6.193 \text{ S/m}; \ \epsilon_r = 46.37; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

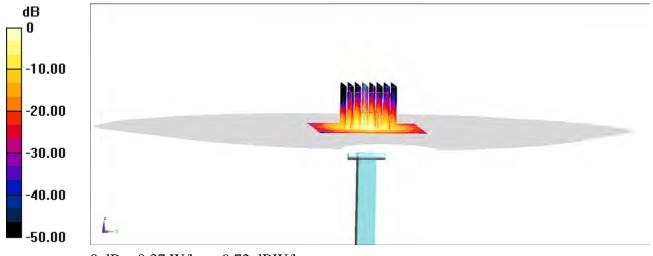
Test Date: 02-07-2019; Ambient Temp: 23.1°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7416; ConvF(4.21, 4.21, 4.21) @ 5750 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = **3.72 W/kg** Deviation(1 g) = -0.40%

0 dB = 9.37 W/kg = 9.72 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 5.44 \text{ S/m}; \ \epsilon_r = 47.05; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-18-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

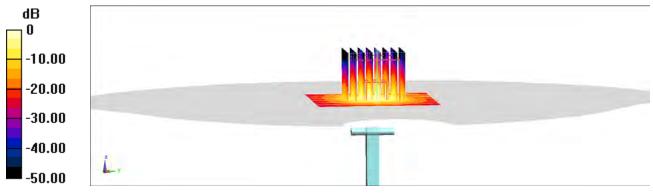
Probe: EX3DV4 - SN7416; ConvF(4.61, 4.61, 4.61) @ 5250 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 3.68 W/kg

Deviation(1 g) = -5.28%

0 dB = 8.76 W/kg = 9.43 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.933 \text{ S/m}; \ \epsilon_r = 46.399; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-18-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

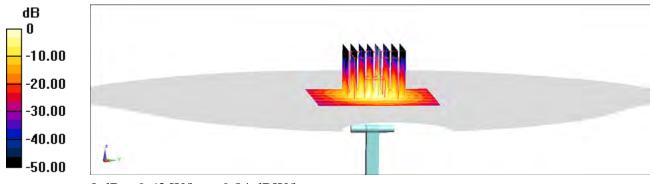
Probe: EX3DV4 - SN7416; ConvF(4.02, 4.02, 4.02) @ 5600 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 3.92 W/kg

Deviation(1 g) = -2.12%

0 dB = 9.63 W/kg = 9.84 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1163

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Body Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 6.16 \text{ S/m}; \ \epsilon_r = 46.114; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-18-2019; Ambient Temp: 22.1°C; Tissue Temp: 20.1°C

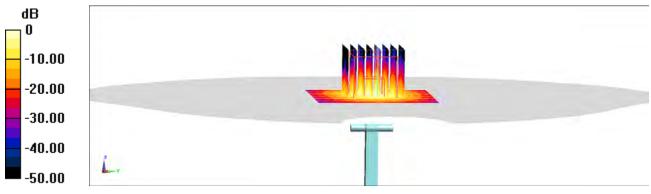
Probe: EX3DV4 - SN7416; ConvF(4.21, 4.21, 4.21) @ 5750 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1402; Calibrated: 7/10/2018

Phantom: Twin-SAM V4.0; Type: QD 000 P40 CA; Serial: 1275

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 3.94 W/kg

Deviation(1 g) = 1.29%

0 dB = 9.57 W/kg = 9.81 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D750V3-1097_Sep17

Object	D750V3 - SN:10	97	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz SC~ 10/03 SC~
Calibration date:	September 08, 2	017	3CV 918/20
This calibration certificate docum The measurements and the unce	ents the traceability to nate	ional standards, which realize the physical un robability are given on the following pages an	its of measurements (SI).
		ry facility: environment temperature (22 ± 3)°(
Calibration Equipment used (M&		ry racinty, environment temperature (22 ± 3) (and numbery < 70%.
orlmary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
leference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
ype-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Арг-18
	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
Reference Probe EX3DV4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
	1011.001		Scheduled Check
DAE4	ID#	Check Date (in house)	In house check: Oct-18
DAE4 Becondary Standards		Check Date (in house) 07-Oct-15 (in house check Oct-16)	in nouse check. Oct-10
Secondary Standards Cowar meter EPM-442A	ID#		In house check: Oct-18
OAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID# SN: GB37480704	07-Oct-15 (in house check Oct-16)	** * * * * * * * * * * * * * * * * * * *
OAE4 Secondary Standards Cower meter EPM-442A Cower sensor HP 8481A Cower sensor HP 8481A RF generator R&S SMT-06	ID # SN; GB37480704 SN; US37292783	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	In house check: Oct-18
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID# SN: GB37480704 SN: US37292783 SN: MY41092317	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID# SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Issued: September 8, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1097_Sep17

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1097 Sep17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	_
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.56 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 0.6 jΩ	
Return Loss	- 27.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω - 3.6 jΩ
Return Loss	- 28.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2013

Certificate No: D750V3-1097_Sep17

DASY5 Validation Report for Head TSL

Date: 08.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.49, 10.49, 10.49); Calibrated: 31.05.2017;

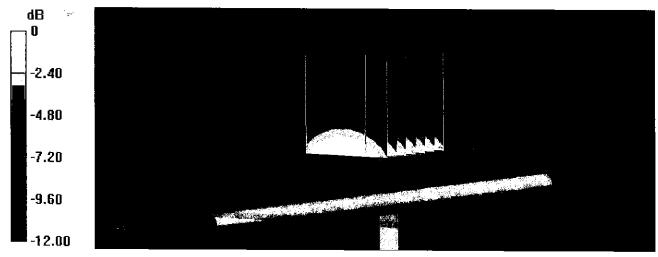
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

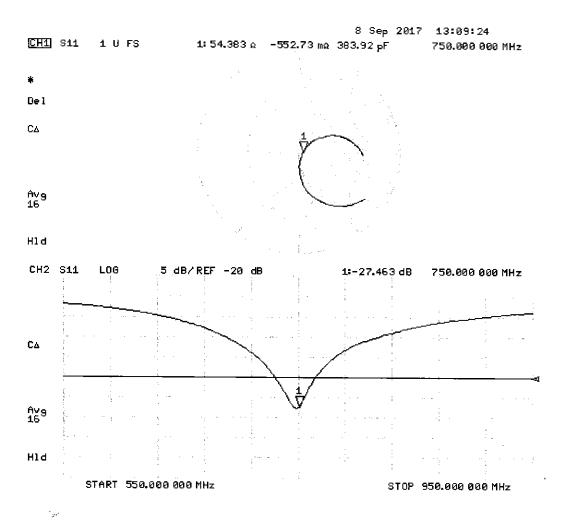
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.59 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.19 W/kg


SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.35, 10.35, 10.35); Calibrated: 31.05.2017;

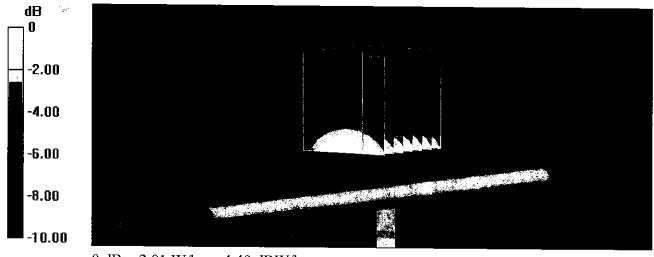
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

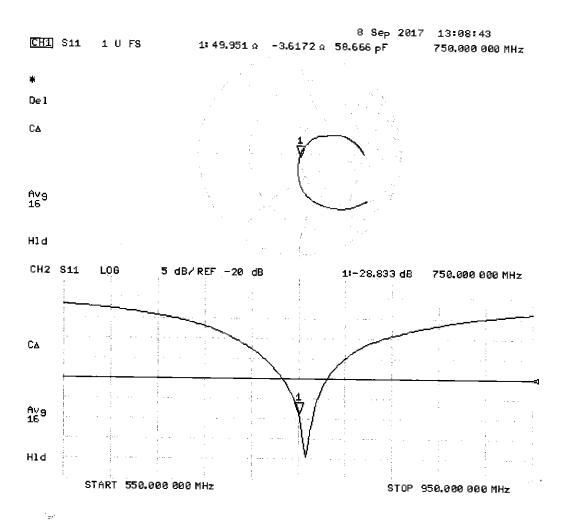
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.96 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN: 1097

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 08, 2018

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	nufacturer Model Descrip		Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/18/2018	Annual	1/18/2019	793

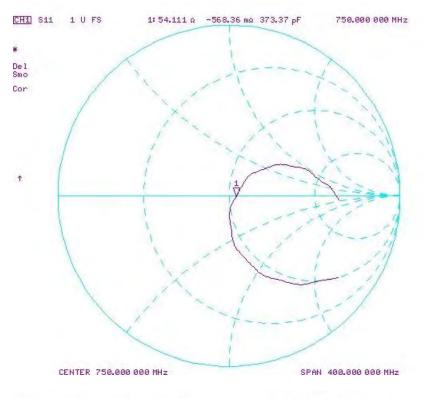
Measurement Uncertainty = $\pm 23\%$ (k=2)

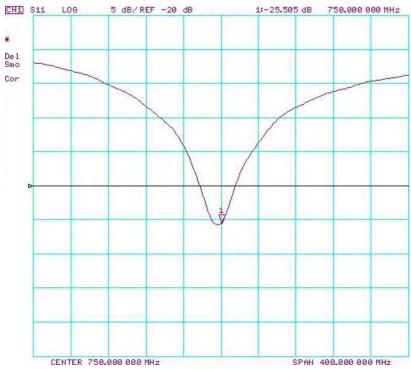
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tengen
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1097	09/08/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

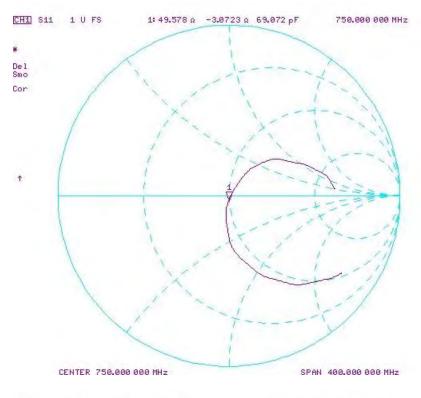
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

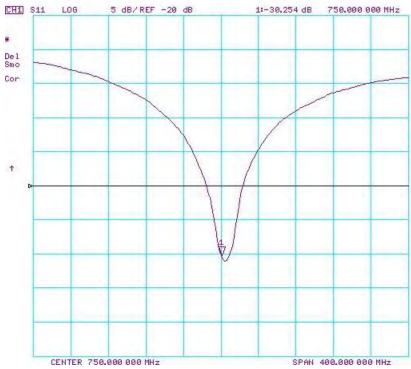

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 23.0 dBm	asm	(%)	VV/kg ⊚ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
9/8/2017	9/8/2018	1.034	1.644	1.7	3.41%	1.078	1.12	3.90%	54.4	54.1	0.3	-0.6	-0.6	0	-27.5	-25.5	7.30%	PASS
Date	Extension Date		W/kg @ 23.0 dBm	asm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Body (dB)	Body (dB)	Deviation (%)	
9/8/2017	9/8/2018	1.034	1.712	1.78	3.97%	1.136	1.17	2.99%	50	49.6	0.4	-3.6	-3.1	0.5	-28.8	-30.3	-5.20%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1097	09/08/2018	rage 2 014


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D750V3 – SN: 1097	09/08/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 – SN: 1097	09/08/2018	raye 4 01 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d180_May18

CALIBRATION CERTIFICATE

Object D835V2 - SN:4d180

Calibration procedure(s) QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

5/31/2018

Calibration date:

May 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	920/
			Text
Approved by:	Katja Pokovic	Technical Manager	Ally

Issued: May 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d180_May18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d180_May18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.60 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.22 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.31 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d180_May18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω - 5.1 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2 Ω - 8.2 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.396 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2014

Certificate No: D835V2-4d180_May18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 17.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

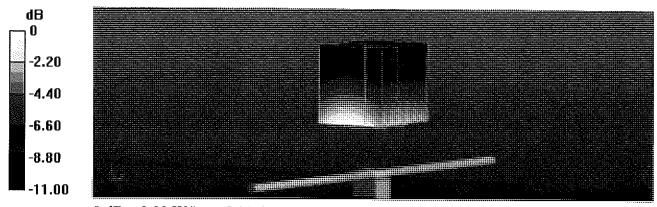
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

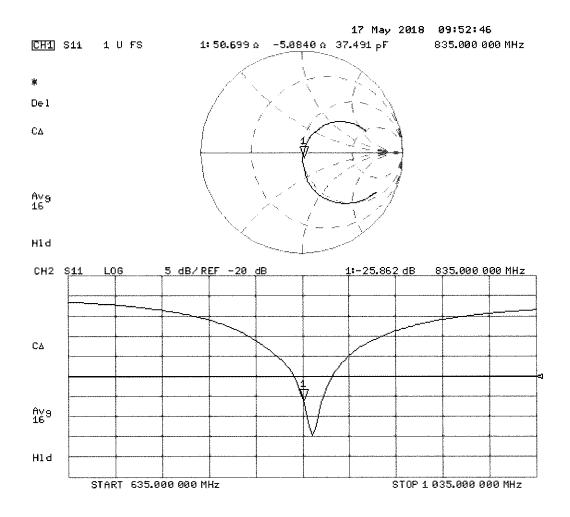
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.39 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.78 W/kg


SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.32 W/kg

0 dB = 3.32 W/kg = 5.21 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d180

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

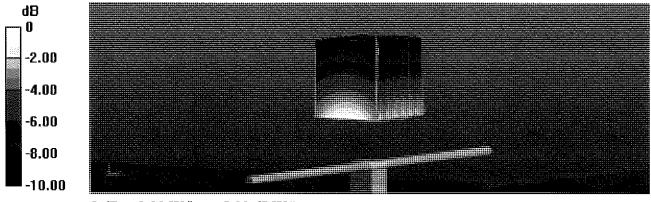
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

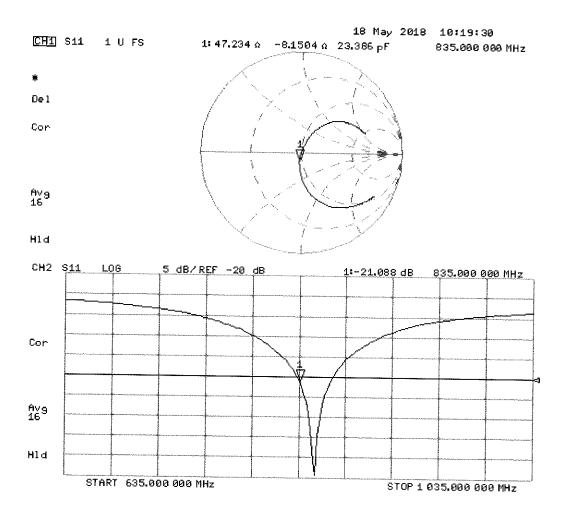
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.80 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.62 W/kg


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Cilent

PC Test

Certificate No: D850V2-1009_Aug17

CALIBRATION CERTIFICATE

Object

D850V2 - SN:1009

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 16, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of maasurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02628)	Apr-18
Type-N mismatch combination	SN: 5047,2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Stendards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check; Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check; Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Fun cti οπ	Signalure
Calibrated by:	Johannes Kurikka	Laboratory Technician	yn w
Approved by:	Katja Pokovic	Technical Manager	El Uz-

Issued: August 17, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D850V2-1009_Aug17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	· ·
Frequency	850 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.92 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	10.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.54 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.99 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54. 7 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.88 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.48 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω - 2.5 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 7.3 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.438 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 04, 2012

DASY5 Validation Report for Head TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN:1009

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(9.93, 9.93, 9.93); Calibrated: 31.05.2017;

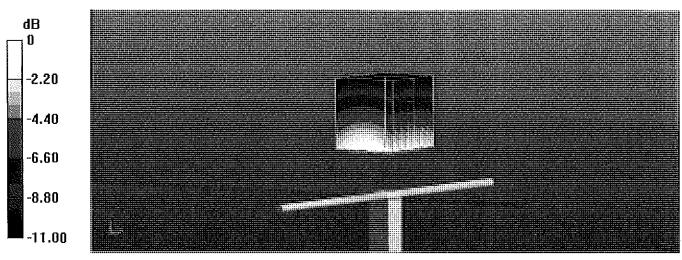
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

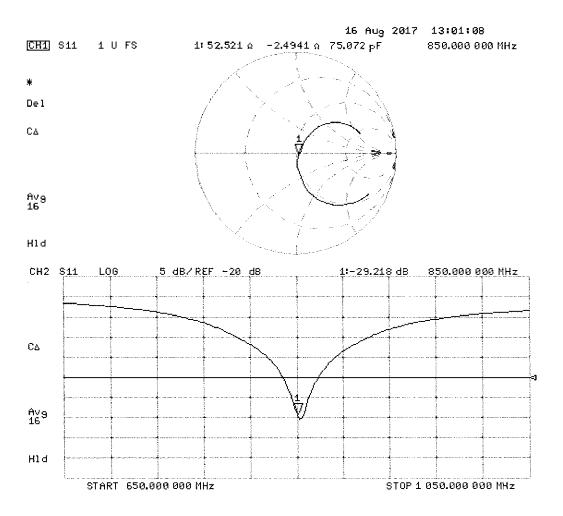
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.35 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.86 W/kg


SAR(1 g) = 2.56 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 3.43 W/kg

0 dB = 3.43 W/kg = 5.35 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN:1009

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 1.02 \text{ S/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11); Calibrated: 31.05.2017;

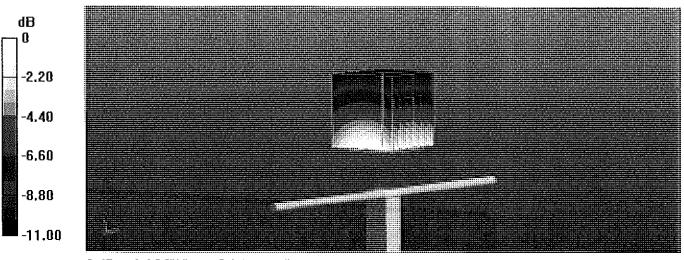
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

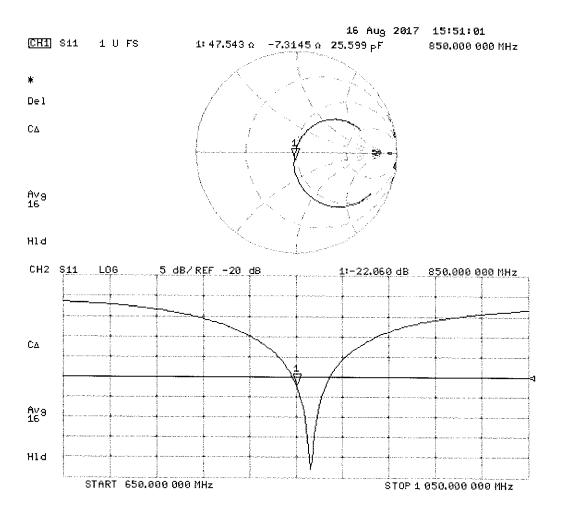
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.51 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.80 W/kg


SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.35 W/kg

0 dB = 3.35 W/kg = 5.25 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D850V2 – SN: 1009

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: August 02, 2018

Description: SAR Validation Dipole at 850 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/5/2017	Annual	9/5/2018	1045
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604

Measurement Uncertainty = ±23% (k=2)

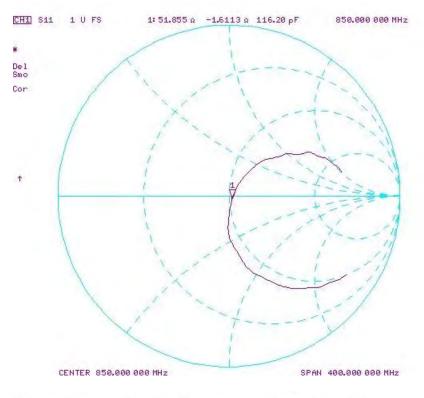
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Biomedical Engineer II	Tenget
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D850V2 - SN: 1009	08/02/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

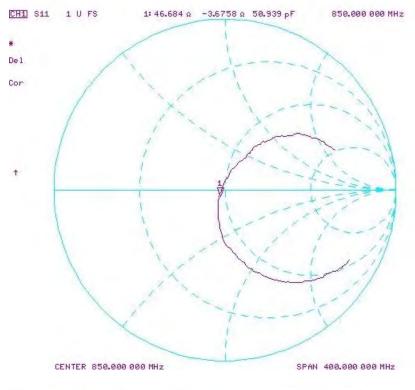
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

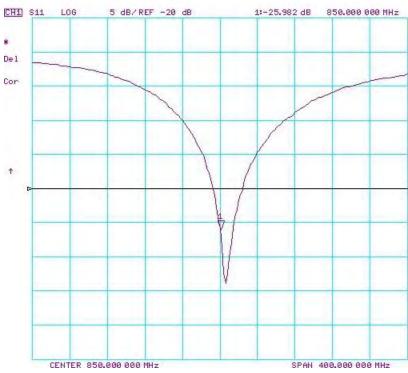

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Electrical	SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Head SAR	Deviation 10g (%)			Difference (Ohm) Real		Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/16/2017	8/2/2018	1.438	2	1.93	-3.50%	1.308	1.25	-4.43%	52.5	51.9	0.6	-2.5	-1.6	0.9	-29.2	-29.6	-1.40%	PASS
					•	•												•

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	Deviation 1g (%)	SAR Target Body (10g) W/kg @ 23.0 dBm	Measured	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary		Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
8/16/2017	8/2/2018	1.438	1.976	2.07	4.76%	1.296	1.36	4.94%	47.5	46.7	0.8	-7.3	-3.7	3.6	-22.1	-26	-17.60%	PASS	

Object:	Date Issued:	Page 2 of 4	
D850V2 – SN: 1009	08/02/2018	rage 2 01 4	


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D850V2 - SN: 1009	08/02/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D850V2 – SN: 1009	08/02/2018	rage 4 or 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D850V2-1010_Sep17

Object	D850V2 - SN:10	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Calibration procedure(s)	QACAL-05.v9 Callbration proce	dure for dipole validation kits abo	ove 700 MHz 3CV しのかり
Calibration date:	September 08, 2	017	919/201
The measurements and the unce	ntainties with confidence p	ional standards, which realize the physical unitrobability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
			Ocheudied Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
	SN: 104778 SN: 103244		
Power sensor NRP-Z91		04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Issued: September 8, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D850V2-1010 Sep17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	850 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C	41.5	0.92 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.93 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.99 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	10.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.6 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.68 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108).

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 3.1 jΩ
Return Loss	- 30.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 5.8 jΩ
Return Loss	- 23.2 dB

General Antenna Parameters and Design

7.102 (13	Electrical Delay (one direction)	1.432 ns
-----------	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 04, 2012

Certificate No: D850V2-1010 Sep17

DASY5 Validation Report for Head TSL

Date: 08.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.93, 9.93, 9.93); Calibrated: 31.05.2017;

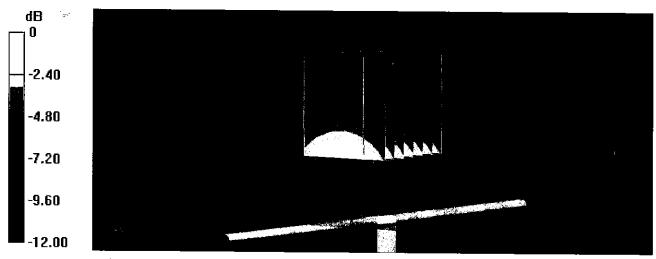
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

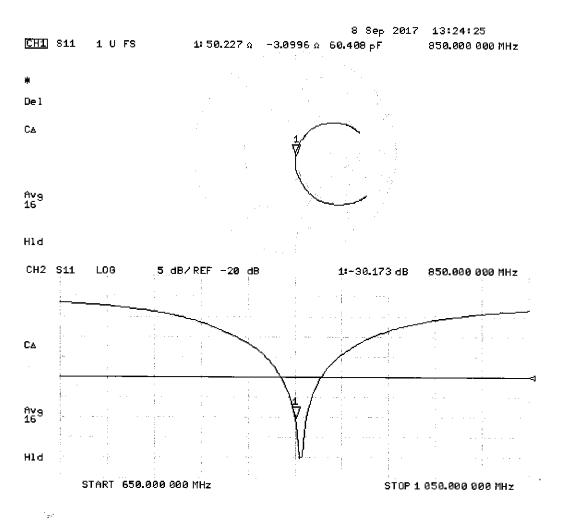
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.32 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.85 W/kg


SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.63 W/kg

Maximum value of SAR (measured) = 3.41 W/kg

0 dB = 3.41 W/kg = 5.33 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.09,2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11); Calibrated: 31.05.2017;

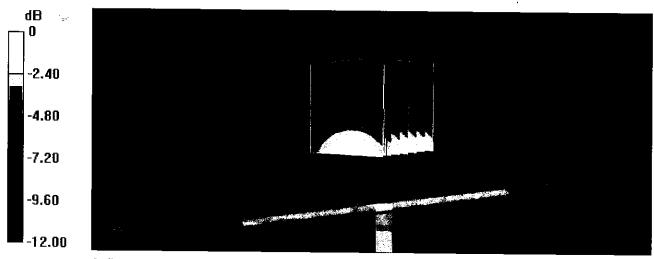
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

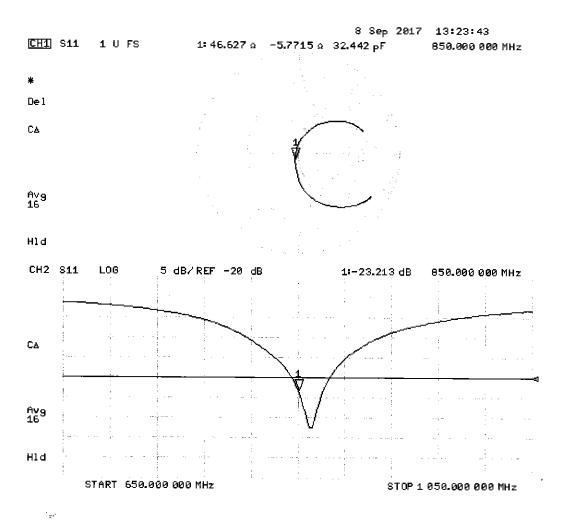
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.09 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.79 W/kg


SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.67 W/kg

Maximum value of SAR (measured) = 3.36 W/kg

0 dB = 3.36 W/kg = 5.26 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D850V2 – SN: 1010

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 08, 2018

Description: SAR Validation Dipole at 850 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	EX3DV4	SAR Probe	1/26/2018	Annual	1/26/2019	7490
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1532

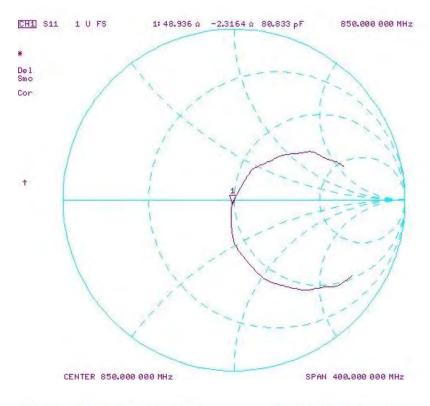
Measurement Uncertainty = ±23% (k=2)

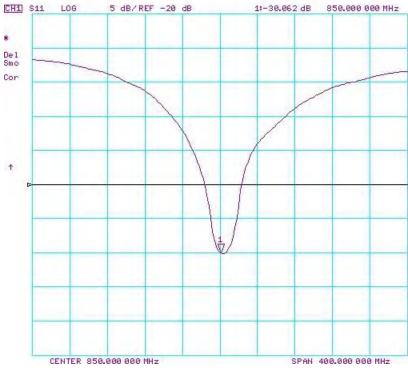
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Finger
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D850V2 – SN: 1010	09/08/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

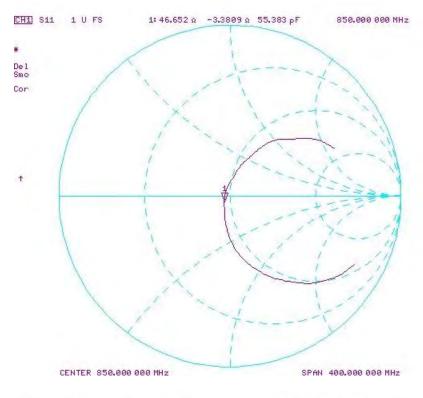
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

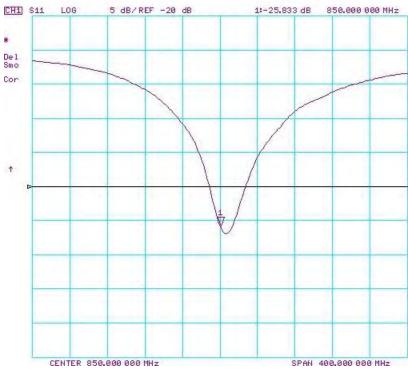

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 23.0 dBm	asm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
9/8/2017	9/8/2018	1.432	1.986	2.01	1.21%	1.284	1.31	2.02%	50.2	48.9	1.3	-3.1	-2.3	0.8	-30.2	-30.1	0.30%	PASS
Date	Extension Date		W/kg @ 23.0 dBm	dBm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
9/8/2017	9/8/2017	1.432	2.04	2.01	-1.47%	1.336	1.32	-1.20%	46.6	46.7	0.1	-5.8	-3.4	2.4	-23.2	-25.8	-11.20%	PASS

Object:	Date Issued:	Page 2 of 4
D850V2 - SN: 1010	09/08/2018	r age 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D850V2 – SN: 1010	09/08/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D850V2 - SN: 1010	09/08/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizertscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D1750V2-1104_Sep17

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1104

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

10103(20)

Calibration date:

September 07, 2017

-1/1/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The meesurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-801_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	Iп house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (In house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Milleber
Approved by:	Katja Pokovic	Technical Maneger	00m

Issued: September 7, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 0.2 jΩ
Return Loss	- 41.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 0.7 jΩ
Return Loss	- 28.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2013

DASY5 Validation Report for Head TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.73, 8.73, 8.73); Calibrated: 31.05.2017;

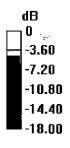
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

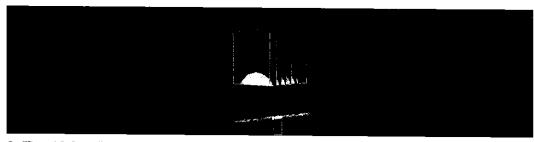
• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

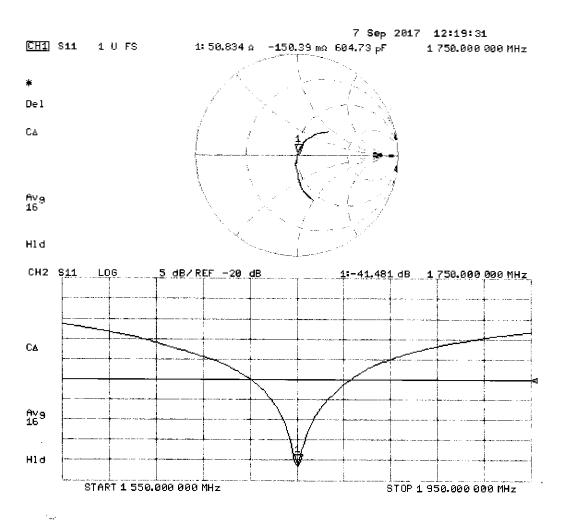
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 104.9 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.81 W/kg


Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1104_Sep17

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 07.09,2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.05.2017;

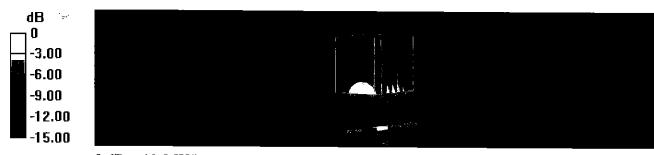
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

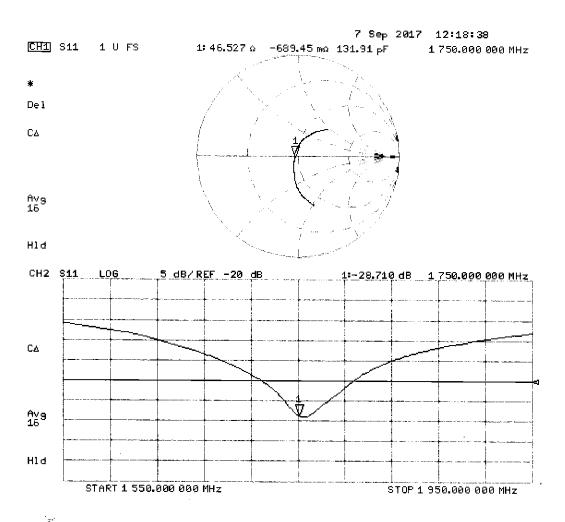
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.30 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 15.6 W/kg


SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1750V2 – SN: 1104

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 07, 2018

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Calibration	'					
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533

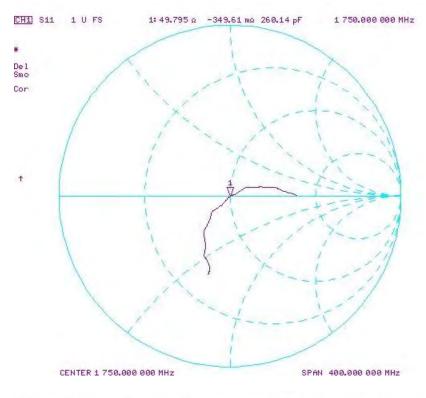
Measurement Uncertainty = ±23% (k=2)

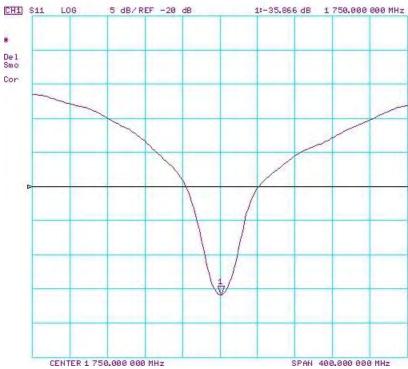
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Finger
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1750V2 – SN: 1104	09/07/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

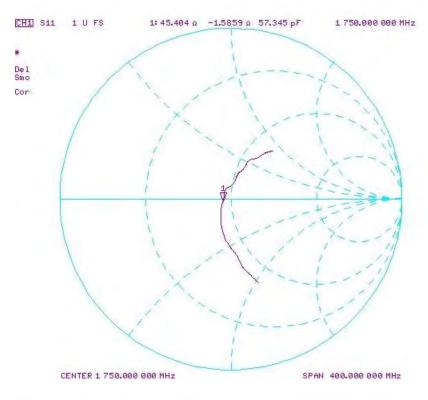
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

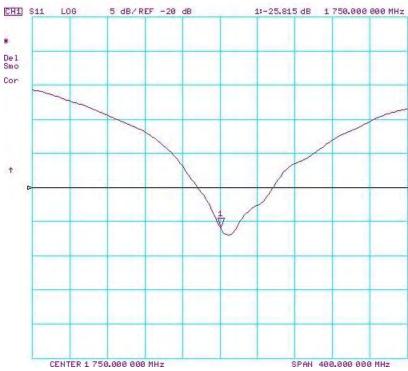

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.217	3.64	3.62	-0.55%	1.92	1.94	1.04%	50.8	49.8	1	-0.2	-0.3	0.1	-41.5	-35.9	13.50%	PASS
Date	Extension Date		W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
9/7/2017	9/7/2018	1.217	3.66	3.84	4.92%	1.96	2.07	5.61%	46.527	45.4	1.1	-0.69	-1.6	0.9	-28.7	-25.8	10.10%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN: 1104	09/07/2018	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D1750V2 - SN: 1104	09/07/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1750V2 – SN: 1104	09/07/2018	rage 4 01 4

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1750V2-1092_May18

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1092

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

5/31/2918

Calibration date:

May 15, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seltz	Laboratory Technician	THE STATE OF THE S
Approved by:	Katja Pokovic	Technical Manager	KKU

Issued: May 17, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D1750V2-1092_May18

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	8.99 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1092_May18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 1.0 jΩ
Return Loss	- 37.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8 Ω - 0.6 jΩ
Return Loss	- 25.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 07, 2012

DASY5 Validation Report for Head TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1092

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

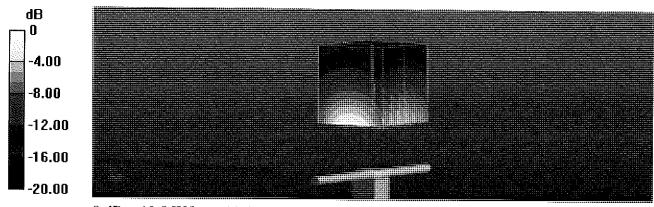
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017

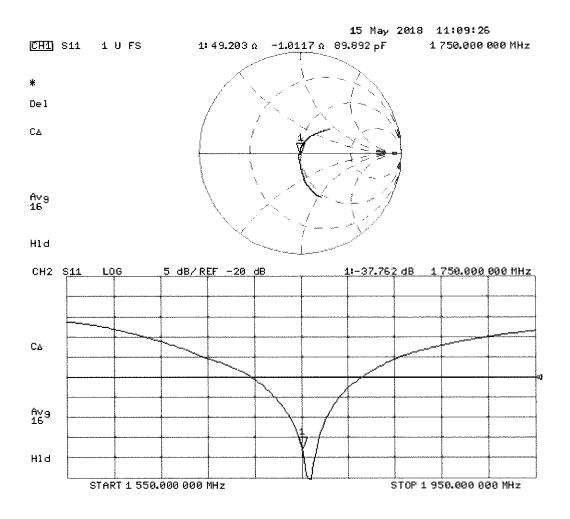
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.8 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 8.95 W/kg; SAR(10 g) = 4.73 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1092

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017

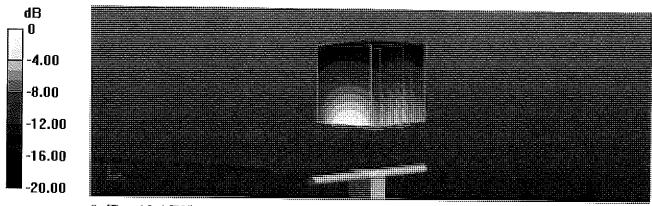
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

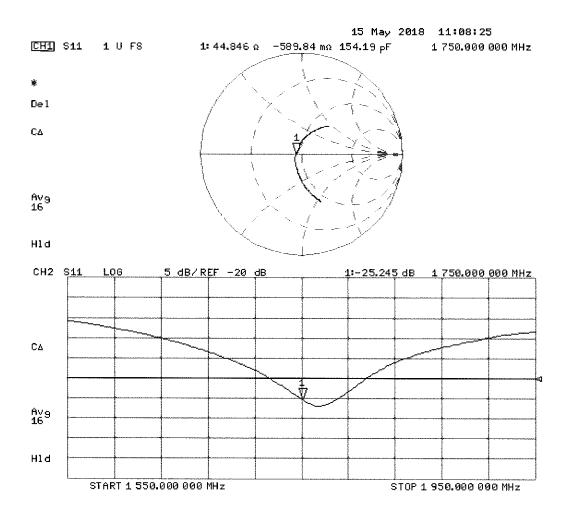
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 15.8 W/kg


SAR(1 g) = 8.99 W/kg; SAR(10 g) = 4.81 W/kg

Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 13.4 W/kg = 11.27 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio avizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

CALIBRATION	CERTIFICATE	
Object	D1900V2 - SN:5d181	• • • •
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700	O MHz 10/03/201
Calibration date:	September 07, 2017	9/1/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	ln house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	 Technical Manager	1. M 101
Approved by:	raga i otorio	i outmout Wanage	Let B
	•		

Issued: September 7, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d181 Sep17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5$ mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.7 \Omega + 4.6 j\Omega$
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω + 5.6 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 23, 2013

DASY5 Validation Report for Head TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;

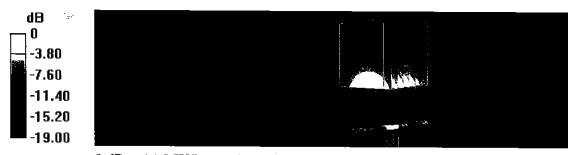
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

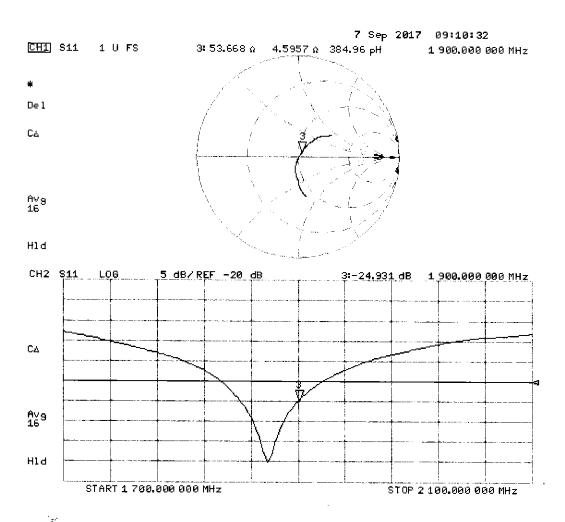
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.8 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 18.5 W/kg


SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d181_Sep17

DASY5 Validation Report for Body TSL

Date: 07.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d181

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;

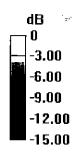
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

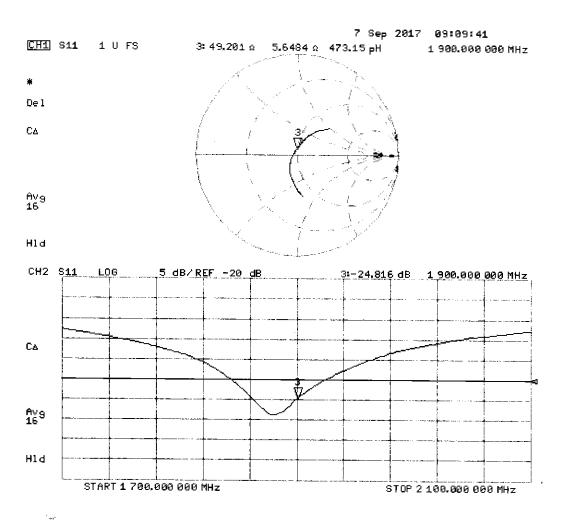
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.14 W/kg


Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d181_Sep17

Page 8 of 8

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN: 5d181

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 07, 2018

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604

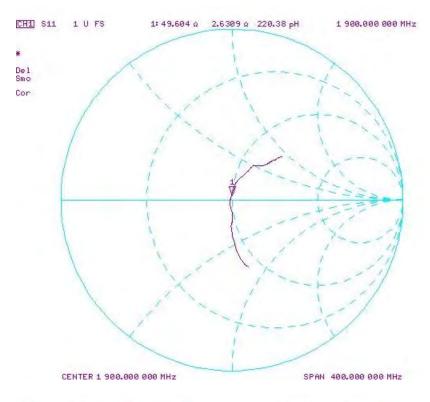
Measurement Uncertainty = ±23% (k=2)

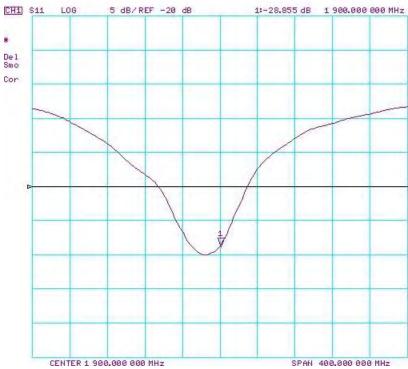
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Finger
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d181	09/07/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

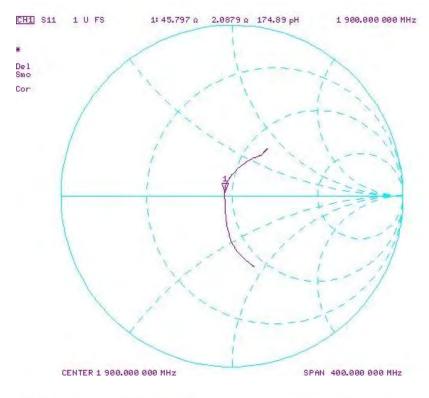
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

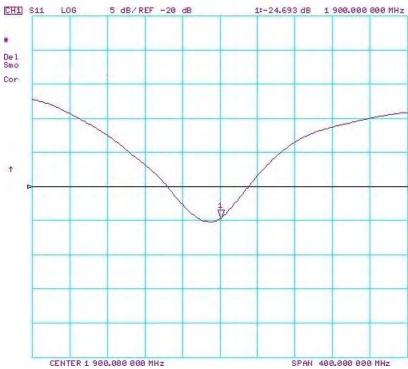

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/7/2017	9/7/2018	1.2	3.95	3.99	1.01%	2.06	2.07	0.49%	53.7	49.6	4.1	4.6	2.6	2	-24.9	-28.9	-16.10%	PASS
Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Body (dB)	Deviation (%)	
9/7/2017	9/7/2018	1.2	3.95	4.13	4.56%	2.09	2.14	2.39%	49.2	45.8	3.4	5.6	2.1	3.5	-24.8	-24.7	0.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1900V2 - SN: 5d181	09/07/2018	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D1900V2 - SN: 5d181	09/07/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1900V2 - SN: 5d181	09/07/2018	Fage 4 01 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d026_May18

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d026

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

May 14, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	O War
Approved by:	Katja Pokovic	Technical Manager	ES UC
The state of the s			

Issued: May 14, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	~~~	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.65 W /kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 8.0 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω + 7.4 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.100
Liectrical Delay (One direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

DASY5 Validation Report for Head TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

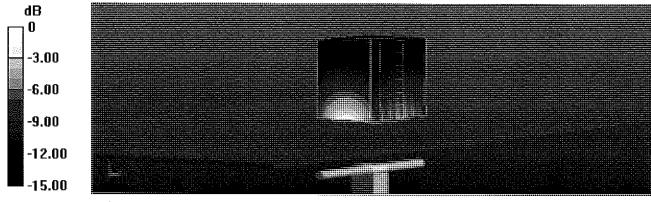
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

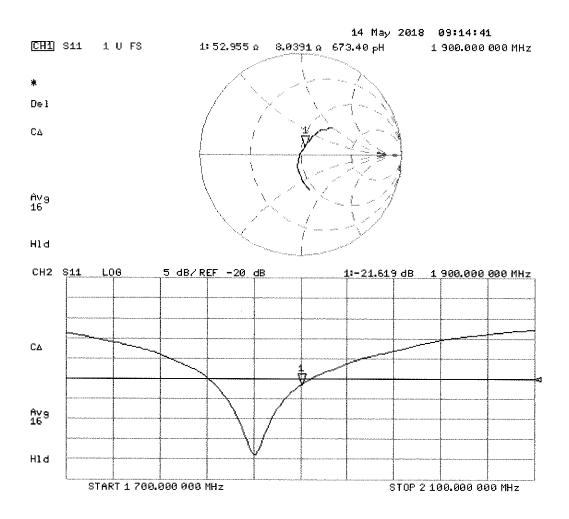
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.9 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

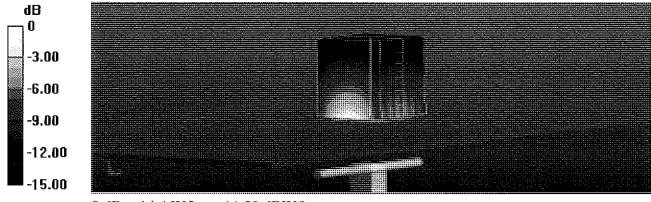
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

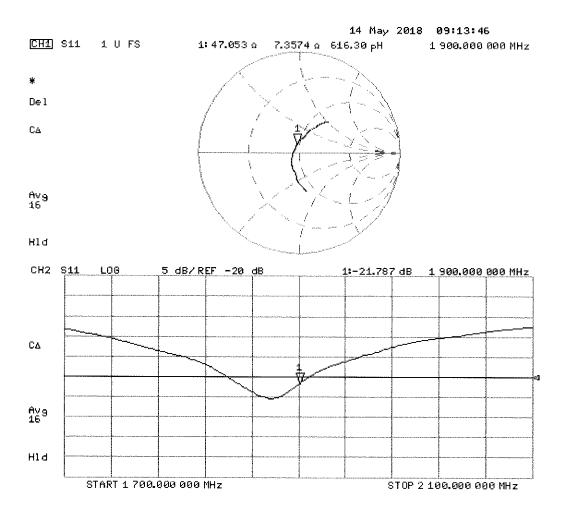
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.5 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.19 W/kg


Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Certificate No: D1900V2-5d026_May18 Page 7 of 8

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the eignatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accraditation No.: SCS 0108

Cllent

PC Test

Certificate No: D1900V2-5d180_Aug17

CALIBRATION	CERTIFICATE	V.
Object	D1900V2 SN:5d180	1
Calibration procedure(s)	QA CAL-05 v9 Calibration procedure for dipole validation kits above 700 MHz 8/2	7/17
Calibration date:	August 16, 2017	118

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Altenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	Iп house check; Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (іл house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	. SN: 100972	15-Jun-15 (Iл house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN; US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	 **CANAL MARKETINAL MARKATANA 	Laboratory Technician	no le
Approved by:		Technical Manager	IS 18
	and the second section of		And the same of the same

Issued: August 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d180_Aug17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d180_Aug17

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity		
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m		
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.48 mho/m ± 6 %		
Body TSL temperature change during test	< 0.5 °C				

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k≕2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d180_Aug17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.0 Ω + 5.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 6.5 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 23, 2013

DASY5 Validation Report for Head TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;

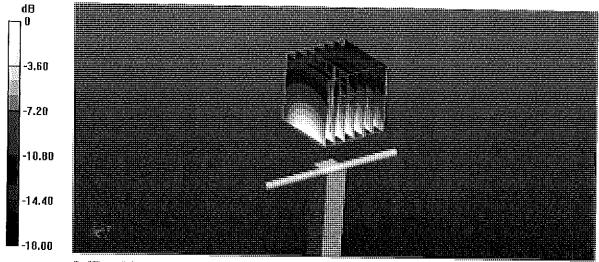
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

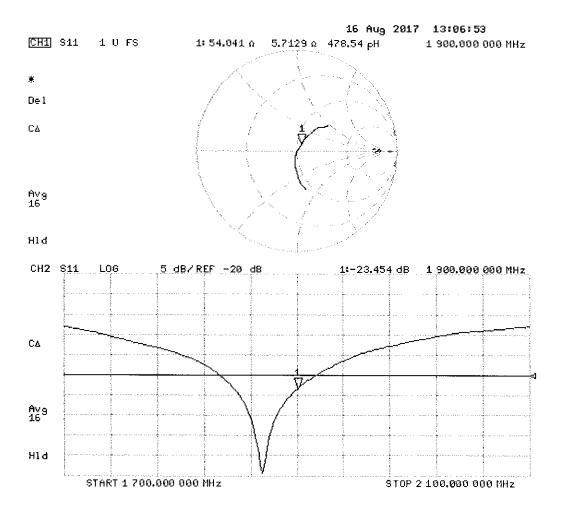
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.7 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 17.6 W/kg


SAR(1 g) = 9.6 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;

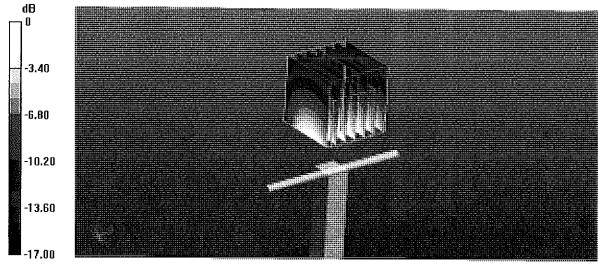
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

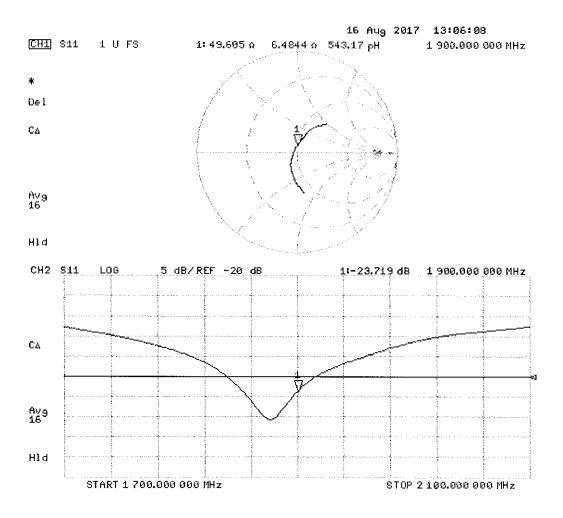
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.33 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1900V2 – SN: 5d180

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: August 01, 2018

Description: SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer Model		Description	Cal Date	Cal Interval	Cal Due	Serial Number	
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118	
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505	
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972	
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001	
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007	
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008	
Control Company 4040 Temperature / Humidity Moni		Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911	
Control Company	mpany 4352 Ultra Long Stem Thermometer		2/14/2017	Biennial	2/14/2019	170112507	
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215	
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181	
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A	
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A	
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406	
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A	
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A	
SPEAG	DAKS-3.5	Portable DAK	9/5/2017	Annual	9/5/2018	1045	
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3329	
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/8/2018	Annual	2/8/2019	1403	

Measurement Uncertainty = ±23% (k=2)

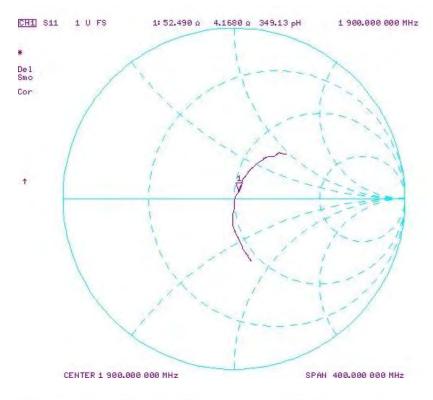
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Biomedical Engineer II	Tenger
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XDK-

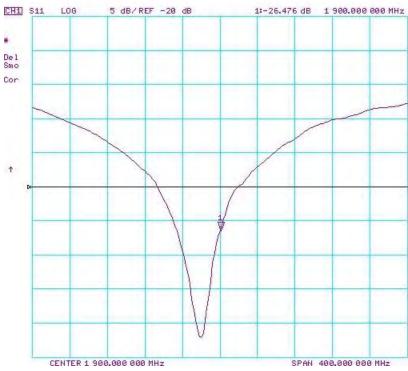
Object:	Date Issued:	Page 1 of 4
D1900V2 - SN: 5d180	08/01/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

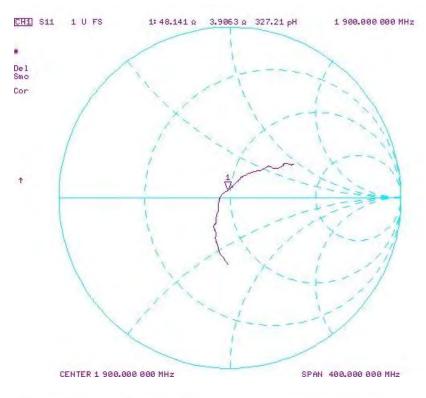
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

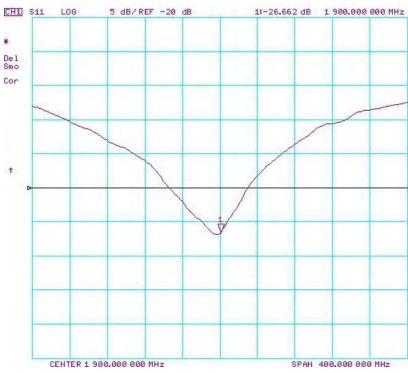

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm			Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) M//ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real		Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/16/2017	8/1/2018	1.203	3.92	3.81	-2.81%	2.06	1.97	-4.37%	54	52.5	1.5	5.7	4.2	1.5	-23.5	-26.5	-12.80%	PASS

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real			Impedance	Measured Impedance Body (Ohm) Imaginary	Difference	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
8/16/2017	8/1/2018	1.203	3.95	4.29	8.61%	2.09	2.21	5.74%	49.6	48.1	1.5	6.5	3.9	2.6	-23.7	-26.7	-12.70%	PASS	ı

Object:	Date Issued:	Page 2 of 4
D1900V2 - SN: 5d180	08/01/2018	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D1900V2 - SN: 5d180	08/01/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D1900V2 - SN: 5d180	08/01/2018	Page 4 of 4	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

BN 8/1/2018

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Citent

PC Test

Certificate No: D2450V2-750_Jun17

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:750

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

June 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Callbration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NAP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-1B
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (In house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	nur ben
Approved by:	Kalja Pokovic	Technical Manager	July In

Issued: June 9, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-750_Jun17

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-750_Jun17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.7 \Omega + 5.8 j\Omega$					
Return Loss	- 23.5 dB					

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.7 \Omega + 6.7 j\Omega$
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-750_Jun17

DASY5 Validation Report for Head TSL

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

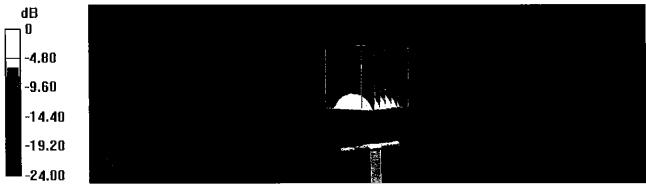
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

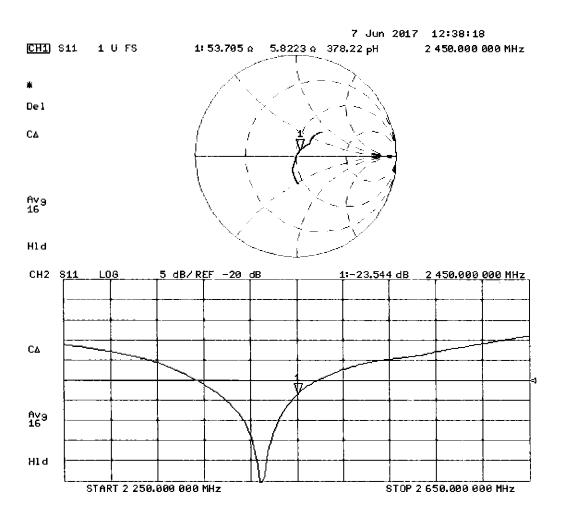
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.7 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.9 W/kg


SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.29 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

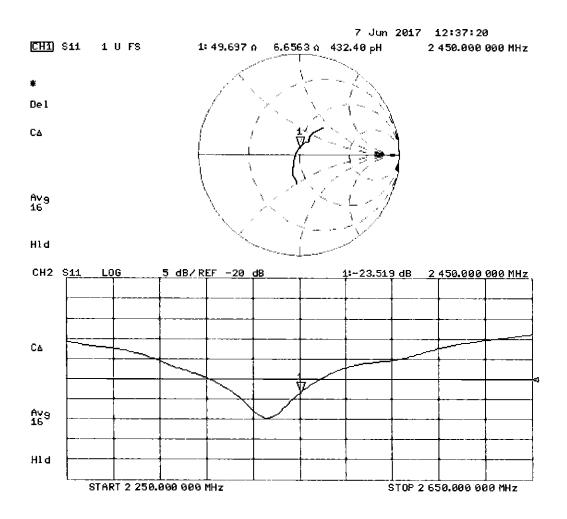
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.3 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 26.0 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg = 13.12 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 750

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 01, 2018

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/5/2017	Annual	9/5/2018	1045
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	EX3DV4	SAR Probe	1/26/2018	Annual	1/26/2019	7490
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1532

Measurement Uncertainty = $\pm 23\%$ (k=2)

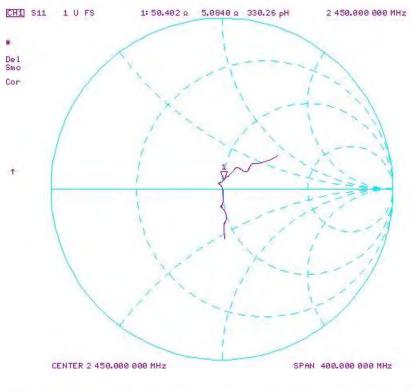
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Biomedical Engineer II	Tenger
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XDK-

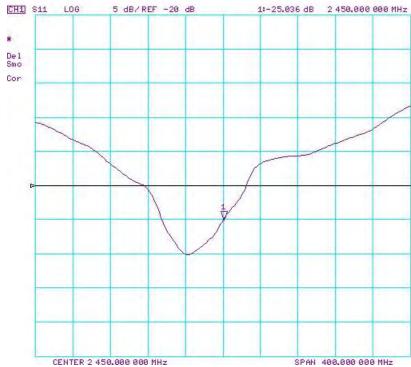
Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 750	06/01/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

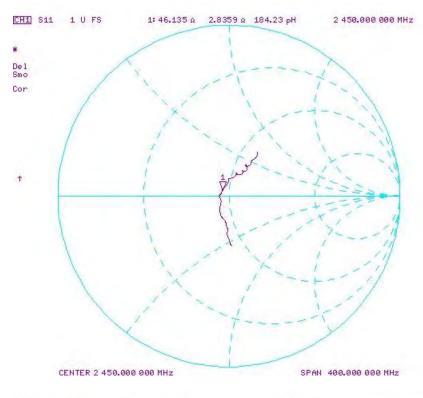
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

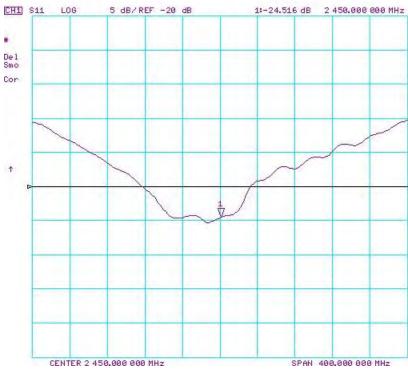

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm			Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) M//ka @	Deviation 10g (%)		Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/7/2017	6/1/2018	1.155	5.33	5.54	3.94%	2.48	2.51	1.21%	53.7	50.4	3.3	5.8	5.1	0.7	-23.5	-25	-6.40%	PASS

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real		Difference	Certificate Impedance Body (Ohm) Imaginary	Impedance	(Oh)	Certificate Return Loss Body (dB)		Deviation (%)	PASS/FAIL	
6/7/2017	6/1/2018	1.155	5.12	4.9	-4.30%	2.42	2.23	-7.85%	49.7	46.1	3.6	6.7	2.8	3.9	-23.5	-24.5	-4.30%	PASS	ı

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 750	06/01/2018	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2450V2 – SN: 750	06/01/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 750	06/01/2018	rage 4 01 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-945_May18

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:945

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

May 16, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check; Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seltz	Laboratory Technician	Sub
Approved by:	Katja Pokovic	Technical Manager	10M-
			16× 14

Issued: May 17, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-945_May18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permitti∨ity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		******

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	100 MA 100	84 SA SA SA

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-945_May18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.1 Ω + 3.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω + 5.0 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 15, 2014

DASY5 Validation Report for Head TSL

Date: 16.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

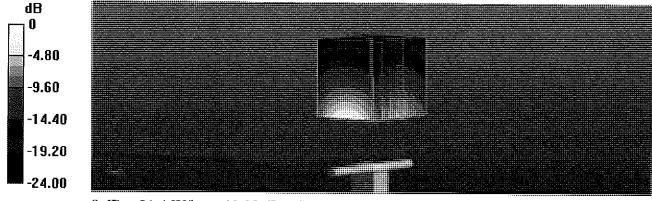
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

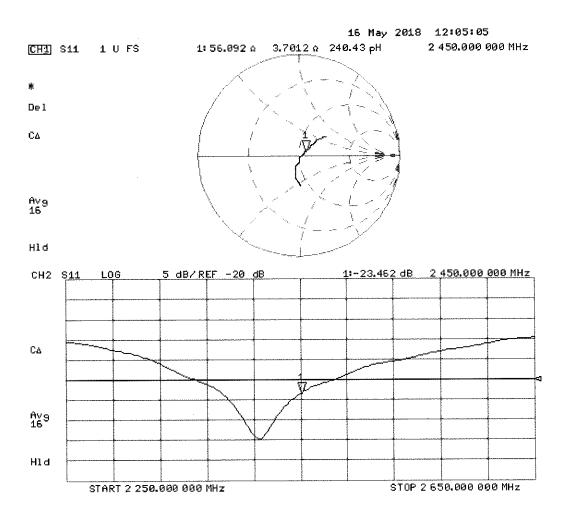
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.9 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.05,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

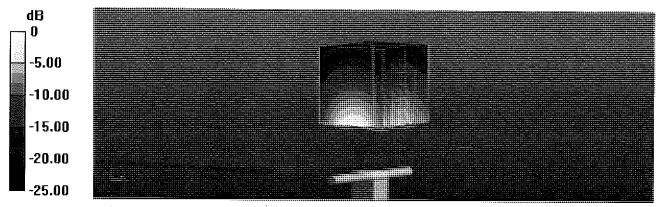
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

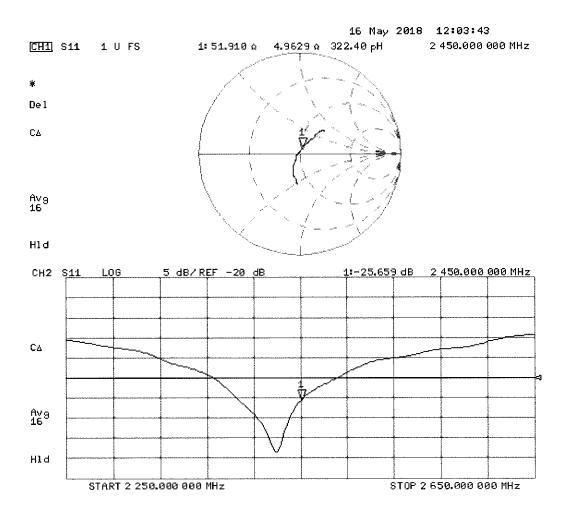
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.8 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 25.0 W/kg


SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.83 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kailbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D2600V2-1069_Sep17

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1069

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

5C V

Calibration date:

September 11, 2017

7/10/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NAP-Z91	SN: 103244	04-Apr-17 (No. 217-02621)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Callbrated by:	Michael Weber	Laboratory Technician	MIKESET
Approved by:	Katja Pokovic	Technical Manager	ll lls

Issued: September 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1069_Sep17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1069_Sep17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 6.1 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 4.7 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
Liectrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

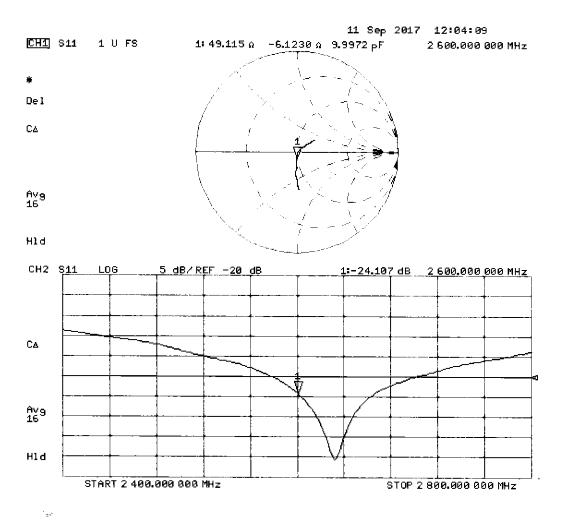
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.4 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.5 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1069

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.23$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

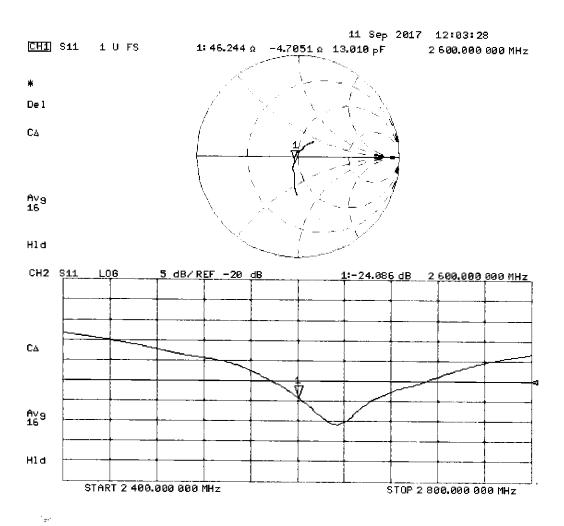
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.7 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.9 W/kg


SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1069

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 10, 2018

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	DAE4	Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1533
SPEAG	ES3DV3	SAR Probe	4/12/2018	Annual	4/12/2019	3275
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/12/2018	Annual	4/12/2019	501

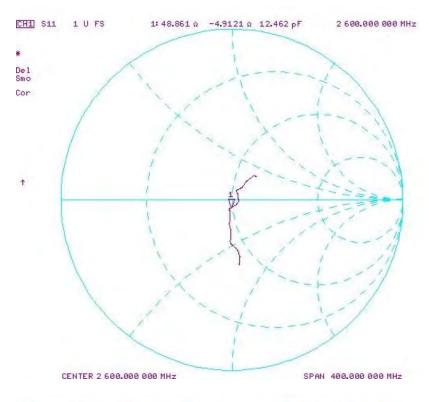
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Sangmin Cha	Team Lead Engineer	Tenget
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	301

Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1069	09/10/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

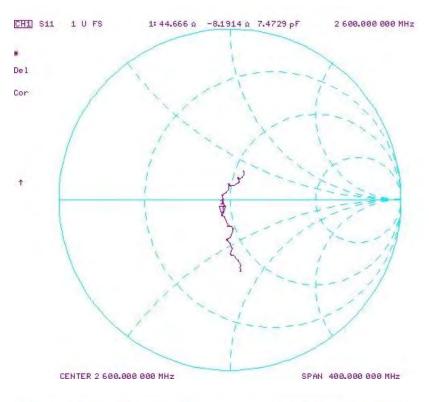
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

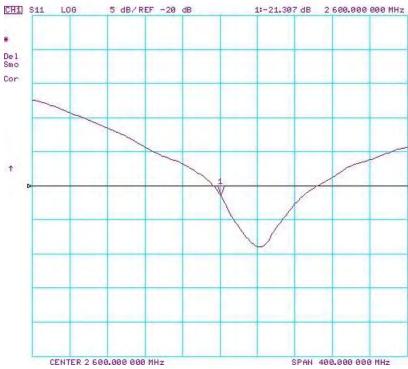

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9/.)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/10/2018	1.152	5.69	5.52	-2.99%	2.54	2.51	-1.18%	49.1	48.9	0.2	-6.1	-4.9	1.2	-24.1	-25.8	-7.10%	PASS
Date	Extension Date		W/kg @ 20.0 dBm	asm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Body (dB)	Body (dB)	Deviation (%)	
9/11/2017	9/10/2018	1.152	5.53	5.28	-4.52%	2.48	2.35	-5.24%	46.2	44.7	1.5	-4.7	-8.2	3.5	-24.1	-21.3	11.60%	PASS

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1069	09/10/2018	raye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2600V2 - SN: 1069	09/10/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D2600V2 – SN: 1069	09/10/2018	rage 4 01 4	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2600V2-1042_Jun17

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1042

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

SC 5 6/1/2018

Calibration date:

June 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

1D#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
\1D#	Check Date (in house)	Scheduled Check
SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Name	Function	Signature
Johannes Kurlkka	Laboratory Technician	jun len
Katja Pokovic	Technical Manager	ICK -
	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Johannes Kurikka	SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 SN: 601 Check Date (in house) SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 O4-Apr-17 (No. 217-02522) SN: 217-02528) SN: Ay-17 (No. 217-02529) SN: GB37480704 SN: GB37480704 SN: US37292783 SN: WY41092317 SN: MY41092317 SN: 100972 SN: US37390585 Name Function Laboratory Technician

Issued: June 8, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1042_Jun17

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1042_Jun17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.0 Ω - 8.4 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 6.2 jΩ
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 24, 2011

DASY5 Validation Report for Head TSL

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;

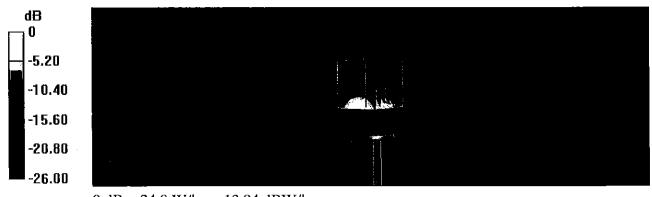
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

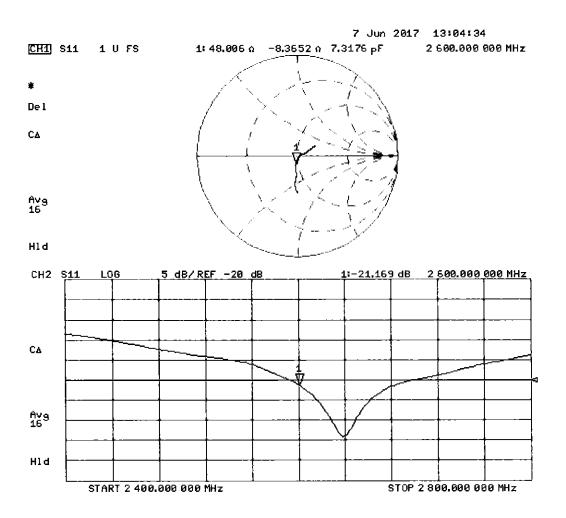
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.46 W/kg

Maximum value of SAR (measured) = 24.8 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.06.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

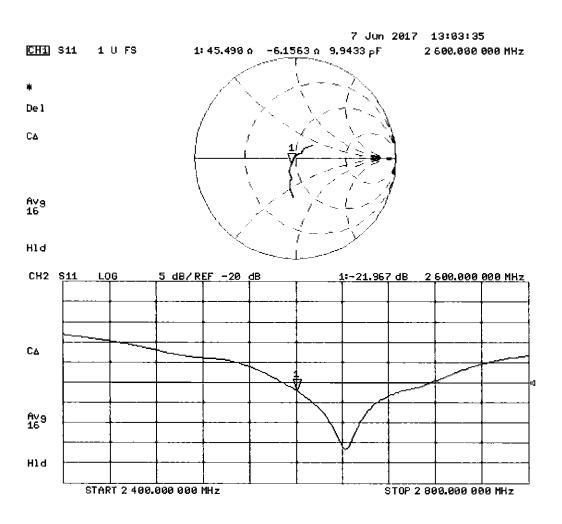
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.5 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.8 W/kg


SAR(1 g) = 14 W/kg; SAR(10 g) = 6.19 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2600V2 – SN: 1042

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: June 01, 2018

Description: SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	3/19/2018	Annual	3/19/2019	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2496A	Power Meter	10/9/2017	Annual	10/9/2018	1138001
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Anritsu	MA2411B	Pulse Power Sensor	11/22/2017	Annual	11/22/2018	1339008
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/14/2017	Biennial	2/14/2019	170112507
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAKS-3.5	Portable DAK	9/5/2017	Annual	9/5/2018	1045
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3131
SPEAG	EX3DV4	SAR Probe	1/26/2018	Annual	1/26/2019	7490
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	604
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/26/2018	Annual	1/26/2019	1532

Measurement Uncertainty = $\pm 23\%$ (k=2)

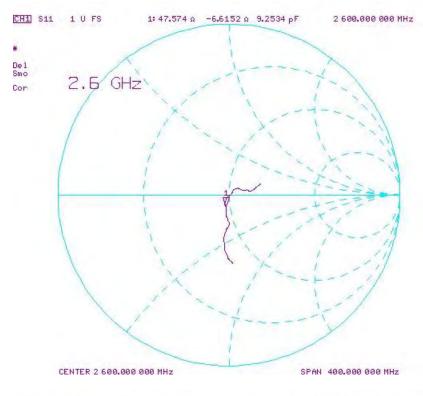
	Name	Function	Signature
Calibrated By:	Sangmin Cha	Biomedical Engineer II	Tenget
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1042	06/01/2018	rage 1014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

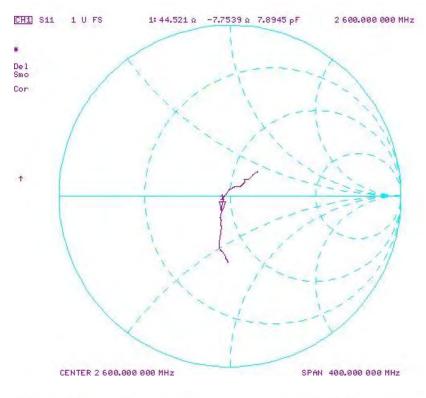
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W//ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real		Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/7/2017	6/1/2018	1.149	5.74	6.14	6.97%	2.55	2.64	3.53%	48	47.6	0.4	-8.4	-6.6	1.8	-21.2	-23.6	-11.30%	PASS
			Certificate			Certificate												

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real			Impedance	Impedance	Difference	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
6/7/2017	6/1/2018	1.149	5.51	5.3	-3.81%	2.45	2.33	-4.90%	45.5	44.5	1	-6.2	-7.8	1.6	-22	-21.1	4.10%	PASS	ı

Object:	Date Issued:	Page 2 of 4
D2600V2 – SN: 1042	06/01/2018	raye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2600V2 - SN: 1042	06/01/2018	rage 3 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 - SN: 1042	06/01/2018	raye 4 01 4

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1123 Mar18

Object D5GHzV2 - SN:1123 QA CAL-22.v2 Calibration procedure(s) Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: March 13, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 3503 30-Dec-17 (No. EX3-3503_Dec17) Dec-18 DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 Secondary Standards Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 SN: MY41092317 Power sensor HP 8481A 07-Oct-16 (No. 217-02223) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 SN: US37390585 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name **Eunction** Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 14, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: D5GHzV2-1123_Mar18

Page 1 of 13

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1123_Mar18

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		* - *

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 19.5 % (k=2)

Page 3 of 13 Certificate No: D5GHzV2-1123_Mar18

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1123_Mar18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	53.2 Ω - 5.2 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.2 Ω - 0.4 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$56.7 \Omega + 0.9 j\Omega$
Return Loss	- 23.9 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.6 Ω - 4.3 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.0 Ω - 0.3 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.8 Ω + 1.0 jΩ
Return Loss	- 22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 08, 2011

Certificate No: D5GHzV2-1123_Mar18 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 13.03.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017,
 ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.12 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.34 V/m; Power Drift = -0.09 dB

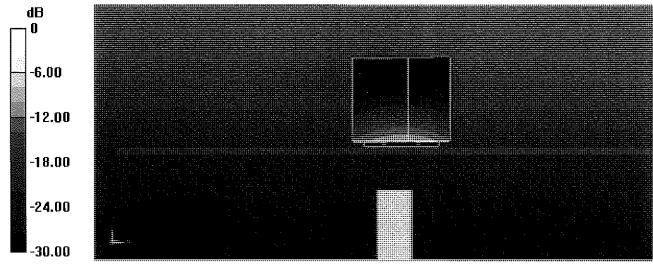
Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

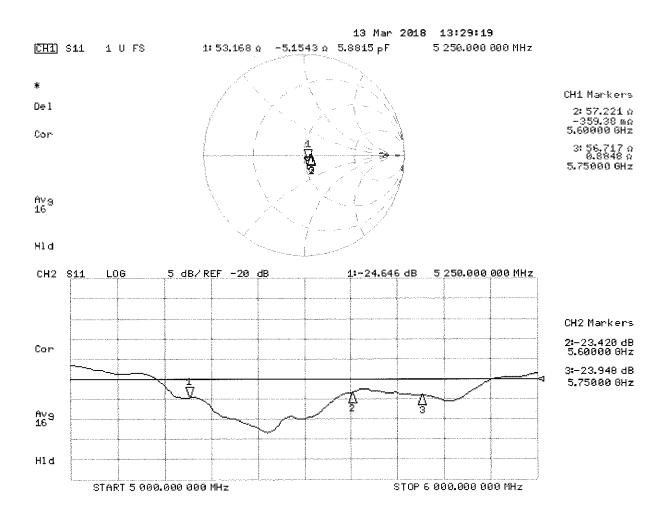
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 70.38 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.29 W/kg


Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D5GHzV2-1123_Mar18 Page 8 of 13

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 12.03,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1123

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.97$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\epsilon_r = 46.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017,
 ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.35 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63,20 V/m; Power Drift = -0.06 dB

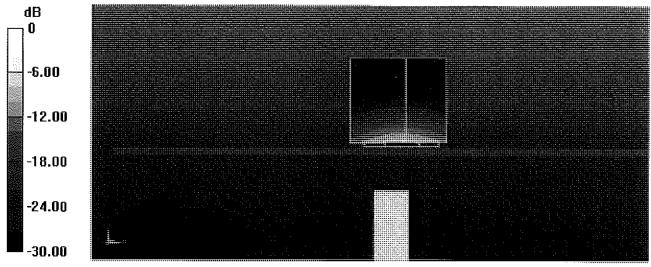
Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

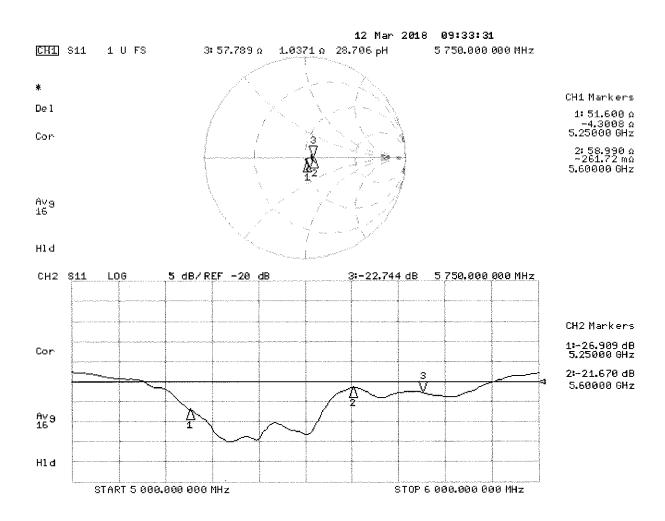
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 61.74 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg


Maximum value of SAR (measured) = 18.5 W/kg

Certificate No: D5GHzV2-1123_Mar18

0 dB = 18.5 W/kg = 12.67 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D5GHzV2-1163_Sep18

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1163

Calibration procedure(s)

QA CAL-22.v3

Calibration procedure for dipole validation kits between 3-6 GHz

9/21/2018

Calibration date:

September 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
-	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	mil-
			Gate
Approved by:	Katja Pokovic	Technical Manager	Ma

Issued: September 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1163_Sep18 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V 5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		W 25 to 10

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	La and And And	

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7 .83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivíty	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 2.0 jΩ
Return Loss	- 30.9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	49.0 Ω + 4.4 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.9 Ω + 4.3 jΩ
Return Loss	- 27.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.4 Ω - 0.4 jΩ				
Return Loss	- 28.5 dB				

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.2 Ω + 4.1 jΩ				
Return Loss	- 27.8 dB				

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	51.8 Ω + 5.9 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

	······································
Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 06, 2013

Certificate No: D5GHzV2-1163_Sep18 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 13.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1163

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.87$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz,
 ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.54 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.29 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

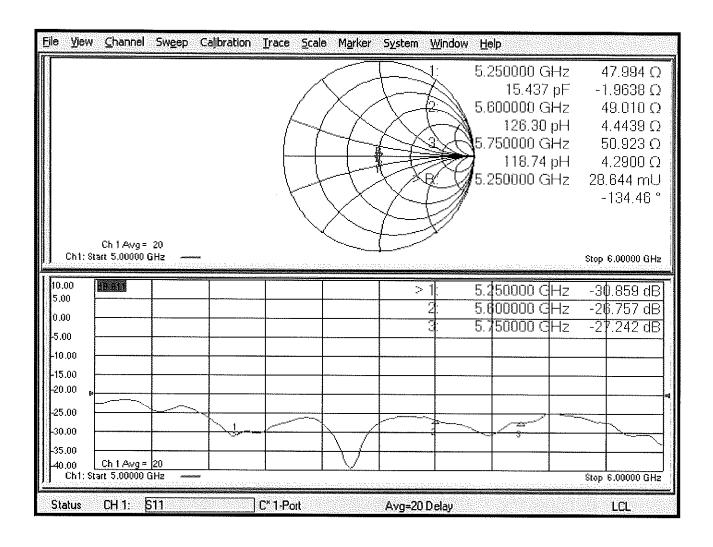
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 75.35 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.32 W/kg


Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1163_Sep18 Page 8 of 13

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.09.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1163

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.14$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz,
 ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.57 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.75 V/m; Power Drift = -0.04 dB

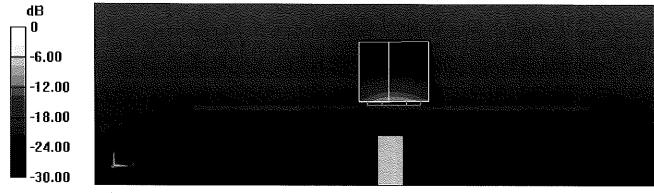
Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

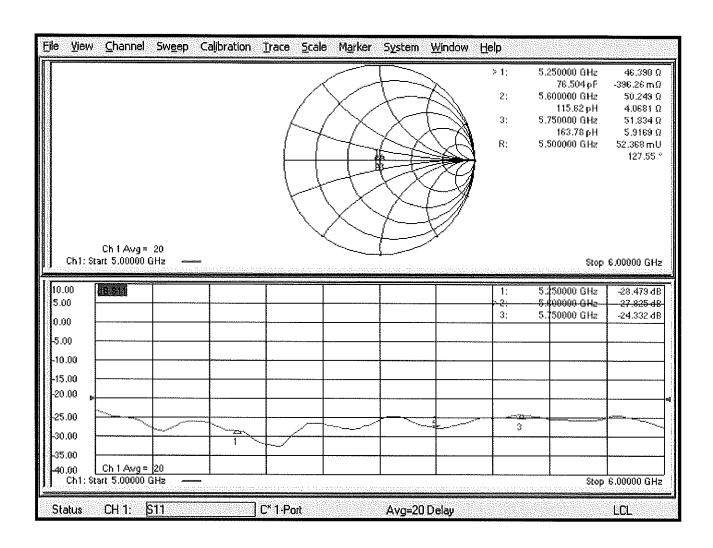
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 67.61 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.18 W/kg


Maximum value of SAR (measured) = 18.6 W/kg

Certificate No: D5GHzV2-1163_Sep18 Page 11 of 13

0 dB = 17.8 W/kg = 12.50 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: ES3-3275_Apr18

C

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3275

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

April 12, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:

Name

Function

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 14, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

NORMx,y,z ConvF sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

Information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3275_Apr18

Page 2 of 39

Probe ES3DV3

SN:3275

Manufactured: February 25, 2010

Calibrated:

April 12, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.30	1.12	1.19	± 10.1 %
DCP (mV) ^B	106.5	106.3	107.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	C	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	211.6	±3.3 %
		Y	0.0	0.0	1.0		202.8	
		Z	0.0	0.0	1.0		212.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻¹	T6
X	47.39	333.3	34.06	27.31	1.692	5.10	0.785	0.383	1.01
Υ	60.06	422.6	34.22	29.68	3.227	5.10	1.009	0.485	1.01
Z	52.40	372.5	34.74	28.40	1.978	5.10	0.709	0.438	1.01

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

 $^{^{}A}$ The uncertainties of Norm X,Y,Z do not affect the E^{2} -field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.80	1.12	± 12.0 %
835	41.5	0.90	6.28	6.28	6.28	0.76	1.19	± 12.0 %
1750	40.1	1.37	5.52	5.52	5.52	0.80	1.19	± 12.0 %
1900	40.0	1.40	5.33	5.33	5.33	0.63	1.39	± 12.0 %
2300	39.5	1.67	5.02	5.02	5.02	0.80	1.25	± 12.0 %
2450	39.2	1.80	4.74	4.74	4.74	0.64	1.41	± 12.0 %
2600	39.0	1.96	4.58	4.58	4.58	0.72	1.37	± 12.0 %

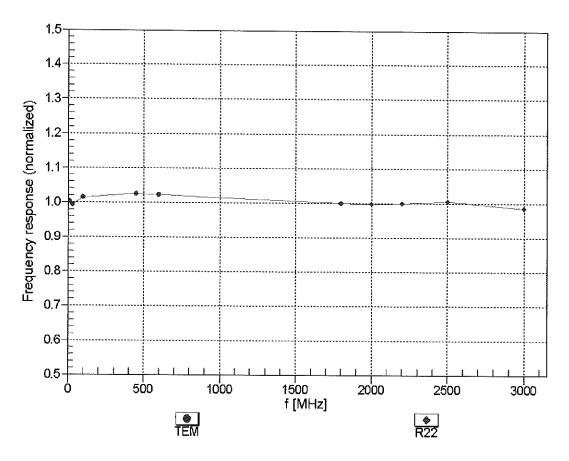
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz the validity of the second of the convF assessments.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

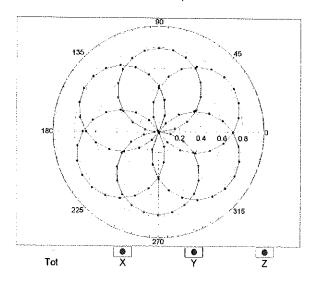

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.34	6.34	6.34	0.80	1.14	± 12.0 %
835	55.2	0.97	6.16	6.16	6.16	0.80	1.15	± 12.0 %
1750	53.4	1.49	5.08	5.08	5.08	0.62	1.38	± 12.0 %
1900	53.3	1.52	4.85	4.85	4.85	0.61	1.46	± 12.0 %
2300	52.9	1.81	4.66	4.66	4.66	0.80	1.38	± 12.0 %
2450	52.7	1.95	4.57	4.57	4.57	0.80	1.38	± 12.0 %
2600	52.5	2.16	4.47	4.47	4.47	0.80	1.30	± 12.0 %

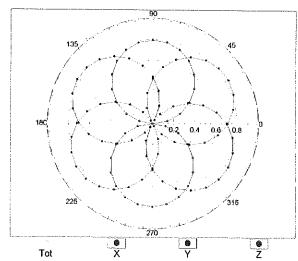
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

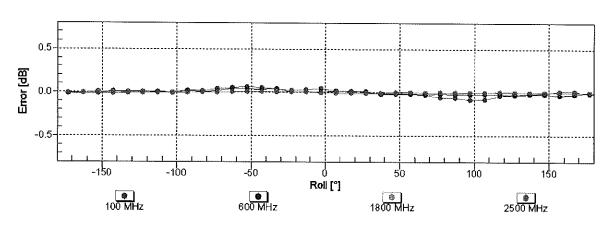
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

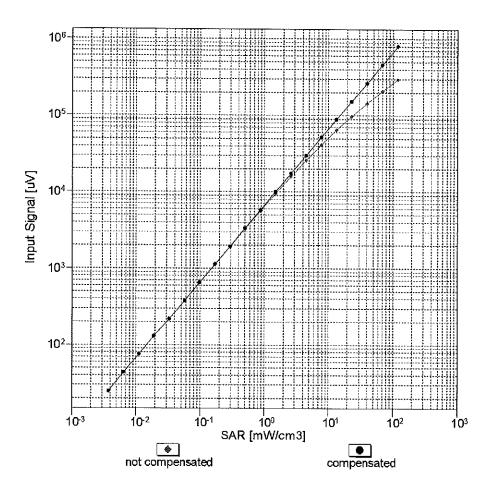


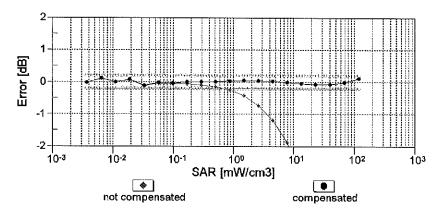

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

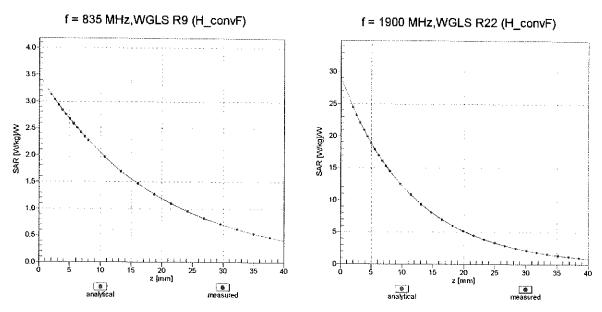
f=600 MHz,TEM

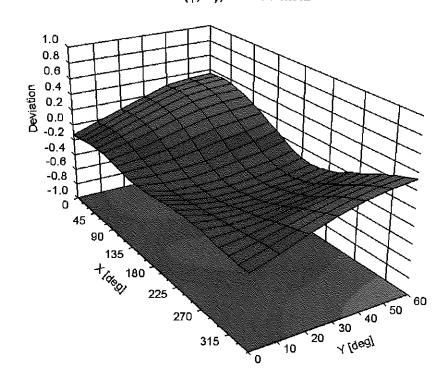
f=1800 MHz,R22

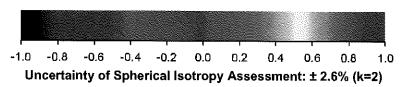




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-2.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ES3DV3- SN:3275 April 12, 2018

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	211.6	± 3.3 %
		Υ	0.00	0.00	1.00		202.8	
10010	0.00 (0.00 (0.00)	Z	0.00	0.00	1.00	10.00	212.4	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	8.10	79.10	17.81	10.00	25.0	± 9.6 %
		Υ	8.98	80.10	19.70		25.0	
10011		Z	8.37	79.48	18.27		25.0	
10011- CAB	UMTS-FDD (WCDMA)	X	0.88	65.06	13.38	0.00	150.0	± 9.6 %
		Υ	1.07	67.99	15.47		150.0	
	IFFE 000 445 MUELO 4 OLL- (DODO 4	Z	0.93	65.71	13.90	0.44	150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	1.21	64.06	14.74	0.41	150.0	± 9.6 %
		Y	1.31	65.35	15.86		150.0	
40040	IEEE 000 44 - MIEI C 4 OU 4 (DOOG	Z	1.23	64.32	15.05	4 10	150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	4.96	67.12	17.13	1.46	150.0	±9.6%
		Υ	5.16	67.34	17.40		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	Z X	5.03 100.00	67.12 119.32	17.22 31.53	9.39	150.0 50.0	± 9.6 %
		\ \ \	45.04	00.04	05.04		50.0	
		Z	15.84 61.29	90.94 112.41	25.21 30.22		50.0 50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	X	77.79	115.43	30.22	9.57	50.0	± 9.6 %
DAC		Y	14.80	89.62	24.82	0.07	50.0	20.0 %
		Z	43.92	107.10	28.86		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	115.73	28.71	6.56	60.0	±9.6 %
DAG		Y	58.69	111.44	29.41		60.0	
		Z	100.00	116.52	29.27		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	Х	17.13	105.61	40.29	12.57	50.0	± 9.6 %
		Υ	18.87	104.10	39.34		50.0	
		Z	17.63	105.48	40.14		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	20.83	106.25	36.55	9.56	60.0	± 9.6 %
		Υ	18.80	100.85	34.58		60.0	
		Z	20.73	105.43	36.25		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	100.00	114.30	27.22	4.80	80.0	± 9.6 %
		Υ	100.00	118.06	29.74		80.0	
		Z	100.00	115.07	27.73		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	113.86	26,28	3.55	100.0	± 9.6 %
		Y	100.00	117.89	28.79		100.0	
		Z	100.00	114.66	26.78		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Х	12.40	94.17	31.28	7.80	80.0	± 9.6 %
		Y	13.55	93.90	31.08		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	12.90 100.00	94.54 113.83	31.40 27.31	5.30	80.0 70.0	± 9.6 %
		Y	100.00	117.88	30.01		70.0	
		Ż	100.00	114.71	27.89		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	111.82	23.95	1.88	100.0	± 9.6 %
		Y	100.00	118.45	27.41	<u> </u>	100.0	
		Z	100.00	113.17	24.65		100.0	1

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	112.20	23.12	1.17	100.0	± 9.6 %
U/ J/		Υ	100.00	121.81	27.68	-	100.0	
		Z	100.00	114,11	24.02	 	100.0	ļ
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	21.07	98.64	26.38	5.30	100.0 70.0	± 9.6 %
		Y	14.09	92.25	25.41		70.0	
		Z	20.45	98.58	26.72		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	5.23	81.12	19.05	1.88	100.0	± 9.6 %
		Υ	7.04	85.97	21.84		100.0	
		Z	5.81	82.96	20.11		100,0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Х	2.87	74.72	16.38	1.17	100.0	± 9.6 %
		Y	4.21	80.36	19.64		100.0	
40000	JEEG BOOME AND A MARKET BLOOM	Z	3.19	76.34	17.44		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	28.09	103.31	27.76	5.30	70.0	±9.6 %
		Y	16.17	94.70	26,25		70.0	
10037-	IEEE 000 45 4 Dt (, /0 DDOK DUO)	Z	26.60	102.95	28.04		70.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	4.90	80.29	18.73	1.88	100.0	± 9.6 %
		Y	6.80	85.50	21.65		100.0	
10038-	IEEE 000 45 4 Division to 10 DDOM DIVE	Z	5.49	82.23	19.83		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	2.93	75.19	16.66	1.17	100.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.35	81.05	19.97		100.0	
10039-	CDMA2000 (1xRTT, RC1)	Z	3.27	76.90	17.74		100.0	
CAB	CDWA2000 (TXRTT, RC1)	Х	1.31	67.49	13.02	0.00	150.0	± 9.6 %
		Y	1.95	72.25	16.31		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	Z X	1.50 100.00	68.83 114.49	14.08 28.35	7.78	150.0 50.0	± 9.6 %
O/LD	DQF3K, Hamate)	Υ	27.19	00.00	05.00			
		Z	100.00	98.62	25.96		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	115.37 111.31	28.96 1.40	0.00	50.0 150.0	± 9.6 %
		Υ	0.00	103.37	3.11		150.0	
		Z	0.00	110.12	0.15		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	Х	21.05	95.06	26.86	13.80	25.0	± 9.6 %
		Υ	10.74	81.59	23.78		25.0	
		Z	16.51	90.77	25.87	<u></u>	25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	Х	26,53	98.80	26.58	10.79	40.0	± 9.6 %
		Υ	12.09	85.40	23.77	V	40.0	
40050	LINTO TOD (TO COOK	Ζ	20.58	94.89	25.77		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	Х	17.62	93.32	25.83	9.03	50.0	± 9.6 %
		Y	12.02	85,58	24.15		50.0	
10058-	EDGE EDD (TDMA ODOM THE A CO.	Z	16.01	91.64	25.58		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	8.71	87.03	27.93	6.55	100.0	± 9.6 %
		Y	10.25	88.69	28.50		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	9.17 1.34	87.70 65.88	28.19 15.66	0.61	100.0 110.0	± 9.6 %
		Υ	1.51	67.63	16.95		110.0	
		z	1.38	66.26	16.01		110.0	
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	29.91	111.02	27.96	1.30	110.0	± 9.6 %
10060- CAB		l	1	I	}		I	
	Mbps)	Y	100.00	129.73	33.11		110.0	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	Х	7.26	90.44	24.60	2.04	110.0	± 9.6 %
OVD.	ivipo)	Y	9.89	94.72	26.32		110.0	
		Z	8.15	92.24	25.31		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.68	66.84	16.38	0.49	100.0	± 9.6 %
0, 10	111000)	ΙΥΙ	4.87	67.06	16.67		100.0	
		Z	4.75	66.85	16.49	w	100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.71	66,99	16.52	0.72	100.0	± 9.6 %
		Y	4.91	67.23	16.82	-,	100.0	
		Z	4.79	67.01	16.62		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.01	67.29	16.78	0.86	100.0	± 9.6 %
		Υ	5.25	67.57	17.09		100.0	
		Z	5.10	67.33	16.89		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	Х	4.92	67.31	16.94	1.21	100.0	± 9.6 %
		Υ	5.16	67.64	17.27		100.0	
		Z	5.01	67.35	17.06		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.97	67.44	17.17	1.46	100.0	± 9.6 %
		Y	5.23	67.79	17.51		100.0	
		Z	5.06	67.48	17.28		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.30	67.71	17.69	2.04	100.0	± 9.6 %
		Y	5.56	67.97	17.98		100.0	
		Z	5.38	67.70	17.77	0.55	100.0	1000
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	5.40	67.92	18.00	2.55	100.0	± 9.6 %
		Υ	5.72	68.38	18.38		100.0	
		Z	5.50	67.99	18.12		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	Х	5.48	67.95	18.21	2.67	100.0	± 9.6 %
		Υ	5.80	68.33	18.57		100.0	
		Z	5.58	67.97	18.31		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.10	67.35	17.51	1.99	100.0	± 9.6 %
		Υ	5.32	67.61	17.81		100.0	
		Z	5.17	67.35	17.60		100.0	<u> </u>
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	Х	5.14	67.84	17.82	2.30	100.0	± 9.6 %
		Y	5.41	68.22	18.15		100.0	
		Z	5.22	67.87	17.91		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.27	68.20	18.25	2.83	100.0	± 9.6 %
		Y	5.56	68.62	18.60		100.0	
		Z	5.35	68.21	18.34	0.00	100.0	1000
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.31	68.26	18.49	3.30	100.0	± 9.6 %
		<u>Y</u>	5.62	68.74	18.88		100.0	1
		Z	5.38	68.28	18.58		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	Х	5.42	68.63	18.93	3.82	90.0	± 9.6 %
		Y	5.80	69.31	19.42	 	90.0	
10076-	IEEE 802.11g WiFi 2.4 GHz	Z X	5.51 5.46	68.69 68.51	19.05 19.11	4.15	90.0	± 9.6 %
CAB	(DSSS/OFDM, 48 Mbps)				40 ==	<u> </u>	 	
		Y	5.82	69.14	19.55		90.0	
		Z	5.54	68.54	19.20	4 20	90.0	1060/
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.50	68.62	19.22	4.30	90.0	± 9.6 %
		Y	5.87	69.25	19.67		90.0	4
		Z	5.58	68.63	19.31	1	90.0	<u> </u>

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.67	63.34	10.42	0.00	150.0	± 9.6 %
***************************************		Y	0.93	66.76	13.40		150.0	
		Z	0.75	64.19	11.31		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	Х	1.67	62.28	7.31	4.77	80.0	± 9.6 %
		Υ	2.42	64.72	9.59		80.0	·
		Z	1.82	62,74	7.75		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	Х	100.00	115.81	28.77	6.56	60.0	± 9.6 %
		Υ	56.26	110.87	29.30		60.0	
		Z	100.00	116.61	29.33		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.67	66.31	14.50	0.00	150.0	± 9.6 %
		Y	1.84	67.65	15.71		150.0	
40000		Z	1.72	66.59	14.85		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	1.63	66.25	14.46	0.00	150.0	± 9.6 %
		Υ	1.81	67.62	15.68		150.0	
40000		Z	1.69	66.54	14.81		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	20.79	106.16	36.52	9.56	60.0	± 9.6 %
		Y	18.70	100.68	34.52		60.0	
40466		Z	20.67	105.32	36.21		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.89	69.12	15.77	0.00	150.0	± 9.6 %
		Υ	3.26	70,83	16.74		150.0	*****
···		Z	3.00	69.53	16.03		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	3.12	67.04	15.37	0.00	150.0	± 9.6 %
		Y	3.34	67.92	16.00		150.0	
		Z	3.20	67.25	15.56		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Х	3.23	67.05	15.49	0.00	150.0	± 9.6 %
		Υ	3.44	67.83	16.07		150.0	
······································		Z	3.31	67.24	15.67		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	8.43	78.64	21.26	3.98	65.0	± 9.6 %
		Υ	8.62	77.74	20.97		65.0	
		Z	8.52	78.48	21.24		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	8.17	76.82	21.36	3.98	65.0	± 9.6 %
		Υ	8.69	76.76	21.44		65.0	
		Z	8.34	76.86	21.44		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Х	7.76	75.79	21.22	3.98	65.0	± 9.6 %
		Y	7.66	74.29	20.64		65.0	
40400		Z	7.91	75.83	21.30		65.0	····
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.53	68.36	15.57	0.00	150.0	± 9.6 %
···········		Υ	2.87	70.01	16.56		150.0	
40400	1 TE FOR (60 FOR	Z	2.63	68.77	15.84		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.77	66.79	15.20	0.00	150.0	± 9.6 %
		Y	3.01	67.70	15.91		150.0	
40440	LTC EDD (OO EDL)	Z	2.86	67.01	15.42		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	2.03	67.36	15.06	0.00	150.0	± 9.6 %
		Υ	2.35	69.06	16.22		150.0	
10111	LTE EDD (OO ED) (OO	Z	2.14	67.79	15.40		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.45	67.27	15.27	0.00	150.0	± 9.6 %
		Υ	2.70	68.19	16.15		150.0	
		Z	2.54	67.49	15.56		150.0	

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	Х	2.90	66.83	15.29	0.00	150.0	± 9.6 %
		Υ	3.13	67.63	15.95		150.0	
		Z	2.98	67.02	15.50		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	Х	2.61	67.47	15.44	0.00	150.0	± 9.6 %
		Υ	2.85	68.27	16.25		150.0	
		Z	2.69	67.66	15.71		150,0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	5.06	67.18	16.20	0.00	150.0	± 9.6 %
		Υ	5.20	67.35	16.40		150.0	
		Z	5.13	67.21	16.28		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.35	67.33	16.28	0.00	150.0	± 9.6 %
		Υ	5.57	67.66	16.57		150.0	
		Z	5.46	67.46	16.42		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	Х	5.16	67.37	16.22	0.00	150.0	± 9.6 %
		Y	5.33	67.61	16.46		150.0	
		Z	5.24	67.44	16.33		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	5.03	67.04	16.14	0.00	150.0	± 9.6 %
		Υ	5.20	67.36	16.43		150.0	
		Z	5.10	67.11	16.25		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	X	5.44	67.54	16.40	0.00	150.0	± 9.6 %
	·	Υ	5.64	67.83	16.66		150.0	
		Z	5.54	67.67	16.54		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	X	5.14	67.32	16.20	0.00	150.0	± 9.6 %
		Υ	5.30	67.56	16.44		150.0	
		Z	5.21	67.37	16.30		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	Х	3.27	67.06	15.42	0.00	150.0	± 9.6 %
		Y	3.49	67.84	16.00		150.0	
		Z	3.35	67.25	15.60		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	Х	3,39	67.19	15.61	0.00	150.0	± 9.6 %
		Y	3.61	67.88	16.14		150.0	
		Z	3.47	67.35	15.78		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.79	67.06	14.53	0.00	150.0	± 9.6 %
		Y	2.12	68.96	15.99		150.0	
		Z	1.90	67.56	14.99		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	2.25	67.55	14.72	0.00	150.0	± 9.6 %
		Y	2.56	68.81	15.99		150.0	
		Z	2.36	67.89	15.16		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.09	65.69	13.32	0.00	150.0	±9.6%
		Y	2.40	67.02	14.68		150.0	
		Z	2.20	66.07	13.79		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	1.05	63.35	10.30	0.00	150.0	± 9.6 %
		Υ	1.46	66.87	13.44		150.0	
		Z	1.18	64.41	11.38		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	Х	1.86	65.82	11.18	0.00	150.0	±9.6%
		Υ	3.29	72.53	15.56		150.0	
		Z	2.22	67.67	12.62		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	2.14	67.48	12.12	0.00	150.0	± 9.6 %
		Y	4.19	75.89	17.09		150.0	

Certificate No: ES3-3275_Apr18

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.78	66.84	15.24	0.00	150.0	± 9.6 %
		Y	3.02	67.75	15.95		150.0	
		Z	2.86	67.07	15.46		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	2.91	66.88	15.33	0.00	150.0	± 9.6 %
		Υ	3.14	67.67	15.98		150.0	
		Z	2.99	67.07	15.54		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	9.16	81.37	22.36	3.98	65.0	± 9.6 %
		Υ	9.09	79.83	21.89		65.0	
		Z	9.17	81.01	22.29		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	7.77	76.96	21.11	3.98	65.0	± 9.6 %
		Υ	8.32	76.95	21.30		65.0	
		Z	7.95	77.03	21.24		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	8.23	77.96	21.87	3.98	65.0	± 9.6 %
		Y	8.66	77.60	21.89		65.0	
40		Z	8.37	77.93	21.96		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	2.07	67.69	15.28	0.00	150,0	± 9.6 %
	A	Y	2.40	69.48	16.48		150.0	
40455		Z	2.18	68.16	15.64		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.45	67.29	15.29	0.00	150.0	± 9.6 %
		Υ	2.70	68.20	16.16		150.0	
45455		Z	2.54	67.50	15.57		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.62	66,85	14.14	0.00	150.0	± 9.6 %
		Υ	1.98	69.14	15.92		150.0	
		Z	1.74	67.48	14.72		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	1.89	65.90	13.14	0.00	150.0	± 9.6 %
		Υ	2.24	67.60	14.80		150.0	
		Z	2.01	66.40	13.72		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.61	67.53	15.49	0.00	150.0	± 9.6 %
		Υ	2.85	68.31	16.29		150.0	
		Z	2.70	67.71	15.76		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	1.98	66,28	13.39	0.00	150.0	± 9.6 %
***************************************		Υ	2,35	68.01	15.07		150.0	
10100		Ζ	2.11	66.81	13.99		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	2.58	67.74	15.49	0.00	150.0	± 9.6 %
		Υ	2.84	68.87	16.30		150.0	
40404		Z	2.67	68.04	15.75		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	2,80	66.79	15.23	0.00	150.0	± 9.6 %
		Υ	3.03	67.56	15.92		150.0	
40400	LITE EDD (00	Z	2.88	66.97	15.46		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.91	66.96	15.36	0.00	150.0	± 9.6 %
		Υ	3.13	67.64	16.00		150.0	
40400	LITE EDD (OO ED)	Z	2.99	67.11	15.57		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	3.59	69.77	19.04	3.01	150.0	± 9.6 %
		Υ	4.00	70.80	19.68		150.0	
10167	LTE CDD (CO CDM)	Z	3.70	69.87	19.15		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	4.47	72.90	19.57	3.01	150.0	± 9.6 %
		Υ	5.27	74.48	20.43		150.0	
		Z	4.64	73.01	19.69			

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	Х	4.99	75.28	20.95	3.01	150.0	± 9.6 %
		Υ	5.79	76.50	21.58	*****	150.0	
		Z	5.15	75.23	20.99	*****	150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.02	69.44	18.89	3.01	150.0	± 9.6 %
		Υ	3.72	72.54	20.42		150.0	
		Ζ	3.17	70.01	19.21		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	4.27	75.88	21.39	3.01	150.0	± 9.6 %
		Υ	5.90	80.40	23.19		150.0	
		Z	4.56	76.58	21.71		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.46	71.49	18.53	3.01	150.0	± 9.6 %
		Y	4.68	75.47	20.32		150.0	
40470		Z	3.69	72.13	18.87		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	22.89	107.17	33.00	6.02	65.0	± 9.6 %
	····	Υ	29.16	108.40	33.11		65.0	
701=-		Z	25.77	108.46	33.30		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	45.14	114.12	32.95	6.02	65.0	± 9.6 %
		Υ	33.44	106.00	30.71		65.0	
		Z	41.34	111.77	32.33		65.0	•
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	Х	29.39	105.15	29.95	6.02	65.0	± 9.6 %
		Υ	25.45	99.94	28.48		65.0	
101		Z	28.31	103.70	29.56		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	2.98	69.13	18.64	3.01	150.0	± 9.6 %
		Υ	3.67	72.17	20.16		150.0	
		Z	3.13	69.69	18.96		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.28	75.90	21.40	3.01	150.0	± 9.6 %
		Y	5.91	80.43	23.20		150.0	
		Z	4.57	76.60	21.72		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.01	69.28	18.73	3.01	150.0	± 9.6 %
		Υ	3.70	72.35	20.26		150.0	
		Z	3.16	69.85	19.06		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	4.24	75.68	21.28	3.01	150.0	± 9.6 %
		Υ	5.82	80.10	23.05		150.0	
		Z	4.51	76.35	21.59		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.83	73.53	19.82	3.01	150.0	± 9.6 %
		Υ	5.23	77.74	21.60		150.0	
		Z	4.08	74.20	20.14		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	3.45	71.42	18.49	3.01	150.0	± 9.6 %
		Y	4.66	75.36	20.26		150.0	
		Z	3,68	72.05	18.82		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.00	69.26	18.73	3.01	150.0	± 9.6 %
		Y	3.70	72.33	20.25		150.0	
10182-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z X	3.15 4.23	69.83 75.65	19.05 21.27	3.01	150.0 150.0	± 9.6 %
CAD	16-QAM)	T	E 04	00.07	22.04		4500	
		Z	5.81	80.07	23.04		150.0	
10183-	I TE EDD (SC EDMA 1 DD 15 ML)		4.50	76.32	21.58	3.04	150.0	1069/
AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.45	71.39	18.47	3.01	150.0	± 9.6 %
		Y	4.65	75.34	20.25		150.0	
		Z	3.67	72.02	18.81	<u> </u>	150.0	<u></u>

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	3.01	69.30	18.75	3.01	150.0	± 9.6 %
CAD	QPSK)							
		Υ	3.71	72.38	20.28		150.0	
40405	LTE EDD (OG ED) (A 4 DD GAN)	Z	3.16	69.87	19.07		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	4.25	75.73	21.31	3.01	150.0	± 9.6 %
		Y	5.84	80.16	23.08		150.0	
10186-	LTE FDD /CC FDMA 4 DD 2 MH= 04	Z	4.53	76.40	21.62		150.0	
AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	3.46	71.46	18.51	3.01	150.0	± 9.6 %
		Z	4.68	75.42	20.28		150.0	
10187-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	X	3.69 3.02	72.09	18.84	2.04	150.0	1000
CAE	QPSK)	^ Y	3.72	69.36	18.81	3.01	150.0	±9.6%
	i -	$\frac{1}{Z}$	3.12	72.43	20.33		150.0	·····
10188-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	 × −	4.39	69.92 76.42	19.13	2.04	150.0	1000
CAE	16-QAM)	^ Y			21.70	3.01	150.0	± 9.6 %
		Z	6.08	80.98	23.49	ļ	150.0	
10189-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	X	4.69 3.55	77.13 71.90	22.01	2.04	150.0	1000
AAE	64-QAM)	Y	4.81		18.79	3.01	150.0	± 9.6 %
		Z	3.78	75.94	20.58		150.0	
10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps.	X	4.45	72.55	19.13	0.00	150.0	. 0.0.01
CAC	BPSK)	Y		66.56	15.86	0.00	150.0	± 9.6 %
***************************************		Z	4.63	66.77	16.18		150.0	
10194-	IEEE 802.11n (HT Greenfield, 39 Mbps,	X	4.53	66.58	15.98	0.00	150.0	
CAC	16-QAM)		4.62	66.87	15.99	0.00	150.0	± 9.6 %
		Υ	4.82	67.14	16.29		150.0	
10195-	IEEE 802.11n (HT Greenfield, 65 Mbps,	Z	4.70	66.91	16.10		150.0	
CAC	64-QAM)	X	4.66	66.90	16.01	0.00	150.0	± 9.6 %
		Y	4.86	67.15	16.30		150.0	
10196-	IEEE 802.11n (HT Mixed, 6.5 Mbps,	Z	4.75	66.94	16.12		150.0	
CAC	BPSK)	Х	4.46	66.61	15.88	0.00	150.0	± 9.6 %
		Y	4.65	66.87	16.21		150.0	
10197-	IEEE 802.11n (HT Mixed, 39 Mbps, 16-	Z	4.53	66.65	16.00		150.0	
CAC	QAM)	X	4.64	66.89	16.00	0.00	150.0	± 9.6 %
		Y	4.84	67.16	16.30		150.0	
10198-	IEEE 802.11n (HT Mixed, 65 Mbps, 64-	Z	4.72	66.93	16.11		150.0	
CAC	QAM)	X	4.66	66.92	16.02	0.00	150.0	± 9.6 %
		Y	4.87	67.17	16.31		150.0	
10219-	IEEE 802.11n (HT Mixed, 7.2 Mbps,	Z	4.75	66.96	16.13		150.0	
CAC	BPSK)	X	4.40	66.62	15.83	0.00	150.0	± 9.6 %
		Y	4.59	66.88	16.17		150.0	
10220-	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-	Z	4.48	66.66	15.96		150.0	
CAC	QAM)	X	4.63	66.86	15.99	0.00	150.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.84	67.15	16,30		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	X	4.72 4.67	66.91 66.85	16.11 16.01	0.00	150.0 150.0	± 9.6 %
	Se sivi)	Υ	4.00	07.40	40.00			
			4.88	67.10	16.30		150.0	
10222-	IEEE 802.11n (HT Mixed, 15 Mbps,	Z X	4.76 5.00	66.89	16.12		150.0	
CAC	BPSK)			67.05	16.14	0.00	150.0	± 9.6 %
		Y	5.18	67.38	16.43		150.0	
		Ζ	5.08	67.12	16.24		150.0	

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	Х	5.31	67.27	16.28	0.00	150.0	± 9.6 %
***		Y	5,55	67.70	16.61		150.0	
		Z	5.39	67.33	16.38		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	×	5.05	67.15	16.12	0.00	150.0	± 9.6 %
		Υ	5.23	67.47	16.40		150.0	
		Ζ	5.12	67.22	16.22		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.70	65.72	14.75	0.00	150.0	± 9.6 %
		Υ	2.89	66.26	15.48		150.0	
10000		Z	2.77	65.84	15.01		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	50.25	116.22	33.59	6.02	65.0	± 9.6 %
		1	35.30	107.10	31.10		65.0	
40007		Z	45.30	113.57	32.91		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	39.94	110.39	31.44	6.02	65.0	± 9.6 %
		Y	27.63	101.45	29.00		65.0	
40000	LITE TOP (OO EDITA (EE . (CE)	Z	35.20	107.48	30.68		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	31.91	113.91	34.98	6.02	65.0	± 9.6 %
		Υ	33.76	111.66	34.13		65.0	
40000	LITE TOD (CO. FD.M. 4 CD. C.M.)	Z	33.64	113.99	34.94		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	45.34	114.19	32.97	6.02	65.0	± 9.6 %
		Y	33.47	106.00	30.72		65.0	
40000	LITE TOP (OO FOLM) C PD O LILL OL	Z	41.47	111.81	32.35		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	36.52	108.73	30.92	6.02	65.0	± 9.6 %
		Υ	26.46	100.60	28.69		65.0	
		Z	32.69	106.09	30.22		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	29.50	112.23	34.43	6.02	65.0	± 9.6 %
		Y	32.10	110.57	33.75		65.0	
		Z	31.26	112.42	34.42		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	Х	45.34	114.20	32.98	6.02	65.0	± 9.6 %
		Υ	33.46	106.00	30.72		65.0	
		Z	41.46	111.82	32.35		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	36.50	108.73	30.92	6.02	65.0	± 9.6 %
		Υ	26.48	100.63	28.69		65.0	
		Z	32.69	106.10	30.23		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	27.44	110.59	33.85	6.02	65.0	± 9.6 %
		Υ	30.42	109,33	33.31		65.0	
		Z.	29.16	110.83	33.87		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	×	45.55	114.29	33.00	6.02	65.0	±9.6%
		Y	33.56	106.07	30.74		65.0	
		Z	41.64	111.91	32.38		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	36.95	108.91	30.96	6.02	65.0	± 9.6 %
		Υ	26.68	100.74	28.72		65.0	
		Z	33.05	106.26	30.27		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	29.76	112.43	34.49	6.02	65.0	±9.6%
		Υ	32.41	110.77	33.81		65.0	
		Z	31.56	112.63	34.48		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	Х	45.34	114.21	32.98	6.02	65.0	± 9.6 %
		Υ	33.47	106.02	30.72		65.0	
		Z	41.47	111.83	32.35	1	65.0	1

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	Х	36.46	108.72	30.92	6.02	65,0	± 9.6 %
		Υ	26.48	100.65	28.70		65.0	1
		Z	32.67	106.10	30.23	1	65.0	-
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	29.66	112.38	34.47	6.02	65.0	± 9.6 %
		Y	32.31	110.72	33,80		65.0	-
		Z	31.45	112.57	34.47		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	12.07	87.90	27.72	6.98	65.0	± 9.6 %
······································		Υ	13.30	87.80	27.79		65.0	
		Z	12,09	87.25	27.54		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	10.79	85.52	26.74	6.98	65.0	± 9.6 %
		Υ	11.93	85.40	26.80		65.0	
10010		Z	10.92	85.06	26.63		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	8.53	82.01	26.28	6.98	65.0	± 9.6 %
		Υ	9.73	82.85	26.70		65.0	
400		Z	8.73	81.87	26.27		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	8.65	79.36	19.73	3.98	65.0	± 9.6 %
		Υ	9.67	80.41	21.07		65.0	
		Z	9.07	80.05	20.38		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	Х	8.37	78.61	19.39	3.98	65.0	± 9.6 %
		Υ	9.55	79.98	20.86		65.0	· · · · · · · · · · · · · · · · · · ·
		Ζ	8.85	79.41	20.09		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	Х	8.45	81.72	20.65	3.98	65.0	± 9.6 %
		Υ	8.96	81.90	21.58		65.0	
		Ζ	8.89	82.46	21.26		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	7.05	76.85	19.45	3.98	65.0	± 9.6 %
		Υ	7.74	77.40	20.39		65.0	<u> </u>
		Z	7.34	77.32	19.94		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Х	6.95	76.21	19.18	3.98	65.0	± 9.6 %
		Υ	7.76	77.01	20.23		65.0	
		Z	7.27	76.74	19.70		65.0	İ
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	10.21	85.26	22.77	3.98	65.0	± 9.6 %
		Υ	9.74	83.39	22.69		65.0	
		Z	10.26	85.16	22.98		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	8.24	79.77	22.15	3.98	65.0	± 9.6 %
		Υ	8.54	79.06	22.18		65.0	
		Z	8.37	79.72	22.29		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	7.65	77.33	20.87	3.98	65.0	± 9.6 %
		Υ	8.18	77.25	21.21		65.0	
1005-		Z	7.84	77.43	21.08		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	10.15	84.92	23.58	3.98	65.0	± 9.6 %
		Υ	9.64	82.56	22.96		65.0	
10050		Z	10.08	84.44	23.52		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	7.59	76.43	20.88	3.98	65.0	± 9.6 %
		Υ	8.12	76.41	21.12	······	65.0	
100-:		Z	7.75	76.47	21.02		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	8.02	77.36	21.56	3.98	65.0	± 9.6 %
טאט								. ,
		Y	8.47	77.08	21.68		65.0	

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.82	80.95	22.40	3.98	65.0	± 9.6 %
		Y	8.84	79.53	22.01		65.0	
		Z	8.84	80.61	22.35		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	Х	6.82	75.23	17.15	3.98	65.0	± 9.6 %
		Y	8.68	78.37	19.56		65,0	
		Z	7.54	76.70	18.19		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	6.54	74.30	16.68	3.98	65.0	± 9.6 %
		Y	8.52	77.75	19.24		65.0	
		<u>Z</u>	7.28	75.85	17.77		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	6.37	76.83	18.03	3.98	65.0	± 9.6 %
		<u>Y</u>	7.89	79.52	20.15		65.0	
***************************************		Z	7.10	78.42	19.06		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	7.52	77.93	20.42	3.98	65.0	± 9.6 %
		Υ	8.06	77.98	21.01		65.0	
		Z	7.74	78.19	20.78		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	7.49	77.59	20.29	3.98	65.0	± 9.6 %
		Υ	8.09	77.75	20.94		65.0	
		Z.	7.73	77.88	20.67		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.67	84.29	22.82	3.98	65.0	± 9.6 %
		Υ	9.39	82.53	22.65		65.0	
		Z	9.71	84.10	22.96		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.22	79.70	22.11	3.98	65.0	± 9.6 %
		Υ	8.54	79.02	22.15		65.0	
		Z	8.36	79.67	22.25		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.64	77.31	20.87	3.98	65.0	± 9.6 %
		Υ	8.18	77.24	21,21		65.0	
		Z	7.83	77.41	21.08		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.05	84.72	23.48	3.98	65.0	± 9.6 %
		Y	9.59	82.44	22.90		65.0	
		Z	9.99	84.26	23.44		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	Х	7.77	76.96	21.11	3.98	65.0	± 9.6 %
		Υ	8.32	76.95	21.31		65.0	
		Z	7.94	77.03	21.24		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.23	77.95	21.86	3.98	65.0	± 9.6 %
		Υ	8.66	77.60	21.89		65.0	
		Z	8.37	77.92	21.95		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	9.14	81.33	22.34	3.98	65.0	± 9.6 %
		Y	9.08	79.80	21.88		65.0	
		Z	9.15	80.97	22,27		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	Х	8.28	76.59	21.39	3.98	65.0	± 9.6 %
		Y	8.78	76.48	21.45		65.0	
		Z	8.43	76.60	21.46		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	Х	8.21	76.18	21.28	3.98	65.0	± 9.6 %
		Υ	8.71	76.12	21.38		65.0	
		Z	8,36	76.19	21.36		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.50	78.31	21.37	3.98	65.0	± 9.6 %
		Y	8.72	77.47	21.11		65.0	
		Z	8.58	78.11	21.34	T	65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.47	65.94	14.57	0.00	150.0	± 9.6 %
		Y	2.63	66.50	15.32		150.0	
		Z	2.53	66.03	14.81	-	150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	1.44	66.22	14.17	0.00	150.0	± 9.6 %
		Y	1.67	68.26	15.67		150.0	
		Z	1.51	66.69	14.59		150.0	
10277- CAA	PHS (QPSK)	X	4.33	66.71	11.48	9.03	50.0	± 9.6 %
		Y	6.15	70.64	14.98		50.0	
40070	PHO (OPOK PIM OO MALL PLU (CO. 5)	Z	4.74	67.68	12.36		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	7.81	77.29	18.58	9.03	50.0	± 9.6 %
		Y	9.15	79.24	20.78		50.0	<u> </u>
10279-	DHC (ODCK DW 004MH- D-II-# 0 00)	Z	8.54	78.77	19.60		50.0	<u> </u>
CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	7.93	77.47	18.68	9.03	50.0	± 9.6 %
····		Y	9.31	79.44	20.87		50.0	ļ
10290-	CDMA0000 DO4 COFF F-H D-4	Z	8.68	78.95	19.70		50.0	
AAB	CDMA2000, RC1, SO55, Full Rate	Х	1.13	65.57	11.82	0.00	150.0	± 9.6 %
		<u> Y</u>	1.61	69.49	14.83		150.0	
10291-	CDMAROOD BOX COSS 5 II B I	Z	1.28	66.68	12.80		150.0	
AAB	CDMA2000, RC3, SO55, Full Rate	X	0.66	63.21	10.32	0.00	150.0	± 9.6 %
		Y	0.91	66.51	13.26	ļ	150.0	
10292-	CDMA0000 BC0 BC00 Full B (Z	0.74	64.03	11.21		150.0	
AAB	CDMA2000, RC3, SO32, Full Rate	X	0.74	65.25	11.76	0.00	150.0	± 9.6 %
		Υ	1.12	70.35	15.50		150.0	
40000		Z	0.84	66.45	12.83		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	0.95	68.31	13.72	0.00	150.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Υ	1.55	75.23	18.07		150.0	
40005	ODMASSOS DOL GOS LIST DE COL	Z	1.09	69.98	14.96	ļ	150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	Х	12.11	86.74	24.46	9.03	50.0	± 9.6 %
		Υ	10.43	82.76	23.86		50.0	
4000=		Z	11.51	85.80	24.46		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	2.54	68.44	15.63	0.00	150.0	± 9.6 %
		Υ	2.88	70.10	16.62		150.0	
40000	LTE EDD (00 ED)	Ζ	2.65	68.86	15.90		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.32	65.46	12.43	0.00	150.0	± 9.6 %
		Y	1.75	68.52	14.93		150.0	
10200	LITE EDD (CO EDMA SON ED CATIO	Z	1.46	66.37	13.28		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	2.54	69.20	13.80	0.00	150.0	± 9.6 %
		Υ	3.80	74.14	16.99		150.0	
10200	LTE EDD (OO EDL)	Z	2.86	70.52	14.83		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.93	65.01	11.07	0.00	150.0	± 9.6 %
·····		Υ	2.76	68.72	13.93		150.0	
10001	IFFE 000 40 Minutes (Co. 1)	Z	2.16	66.01	12.01		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	Х	5.32	67.49	18.08	4.17	80.0	± 9.6 %
		Υ	5.89	68.64	18.91		80.0	
40202	IEEE 000 40 - MENANY (CO. 10 -	Z	5.45	67.61	18.29		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	Х	5.78	68.03	18.79	4.96	80.0	± 9.6 %
		Υ	6.52	69.89	20.04		80.0	
		Z	5.91	68.17	19.00		80.0	

40000		· · · · · · · · · · · · · · · · · · ·					Y	
10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.59	67.95	18.74	4.96	80.0	± 9.6 %
		Υ	6.42	70.15	20.19		80.0	
		Z	5.74	68.13	18.99		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	Х	5.29	67.40	18.02	4.17	80.0	± 9.6 %
		Υ	5.95	69.11	19.19		80.0	
		Z	5.41	67.52	18.23		80.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	7.11	77.24	23.60	6.02	50.0	±9.6%
		Υ	8.84	79.94	24.96		50.0	
		Z	7.43	78.03	24.25		50.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.77	69.91	20.22	6.02	50.0	± 9.6 %
		Y	7.32	74.38	22.84		50.0	
.,		Z	5.96	70.26	20.60		50.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	Х	6.28	73.17	21.91	6.02	50.0	± 9.6 %
		Υ	7.57	75.42	23.10		50.0	
10000		Z	6.51	73.71	22.40		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.38	73.80	22.22	6.02	50.0	± 9.6 %
		Y	7.71	76.06	23.38		50.0	
		Z	6.62	74.34	22.70		50.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	Х	5.84	70.15	20.38	6.02	50.0	± 9.6 %
		Υ	7.47	74.77	23.04		50.0	
		Z	6.05	70.54	20.77		50.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.76	70.08	20.22	6.02	50.0	± 9.6 %
		Υ	7.39	74.75	22.90		50.0	
		Z	5.95	70.44	20.60		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.88	67.82	15.36	0.00	150.0	± 9.6 %
		Y	3.24	69.40	16.27		150.0	
		Z	2.99	68.21	15.61		150.0	
10313- AAA	iDEN 1:3	Х	6.98	77.79	17.99	6.99	70.0	± 9.6 %
		Υ	7.35	77.62	18.55		70.0	
		Z	7.10	77.83	18.14		70.0	
10314- AAA	IDEN 1:6	Х	10.47	86.66	23.65	10.00	30.0	± 9.6 %
		Y	8.79	81.86	22.43		30.0	
		Z	10.14	85.77	23.45		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.08	63.51	14.40	0.17	150.0	± 9.6 %
		Υ	1.16	64.75	15.55		150.0	
		Z	1.10	63.77	14.71		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.55	66.75	16.09	0.17	150.0	± 9.6 %
		Υ	4.74	66.99	16.40		150.0	
		Z	4.63	66.78	16.20		150.0	<u> </u>
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.55	66.75	16.09	0.17	150.0	± 9.6 %
		Υ	4.74	66.99	16.40		150.0	
		Z	4.63	66.78	16.20		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.61	66.92	15.98	0.00	150.0	± 9.6 %
		Y	4.83	67.21	16.30		150.0	
		Z	4.70	66.97	16.10		150.0	1
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	Х	5.33	67.20	16.22	0.00	150.0	± 9.6 %
		Y	5.47	67.31	16.40		150.0	
		Z	5.40	67.21	16.30		150.0	1

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	Х	5.57	67.46	16.21	0.00	150.0	± 9.6 %
		Υ	5.76	67.80	16.49		150.0	
		Z	5.66	67.55	16.32		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	1.13	65.57	11.82	9		
		Y	1.61	69.49	14.83		115.0	
		Z	1.28	66.68	12.80		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.13	65.57	11.82	0.00		± 9.6 %
***************************************		Υ	1.61	69.49	14.83			
		Z	1.28	66.68	12.80			
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	88.62	118.42	29.12	0.00		± 9.6 %
		Υ	100.00	121.65	30.84			
		Z	64.62	115.49	28.99		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	119.91	29.89	3.23	80.0	± 9.6 %
		Y	100.00	119.37	30.35		80.0	
10115		Z	100.00	119.74	30.02			
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	0.95	62.22	13.58	0.00	150.0	± 9.6 %
		Υ	1.00	63.15	14.62			
40440		Z	0.96	62.40	13.86			
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.46	66.60	15.93	0.00	150.0	± 9.6 %
		Υ	4.63	66.81	16.22		150.0	
		Z	4.53	66.62	16.04		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.46	66.60	15.93	0.00	150.0	± 9.6 %
		Υ	4.63	66.81	16.22			
		Z	4.53	66.62	16.04		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.44	66.75	15.94	0,00	150.0	± 9.6 %
		Υ	4.62	66.95	16.22		150.0	
		Z	4.52	66.76	16.04		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.47	66.70	15.95	0.00		± 9.6 %
····		Υ	4.64	66.91	16.23		150.0	
		Z	4.54	66.72	16.05		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	Х	4.58	66.71	15.97	0.00	150.0	± 9.6 %
		Υ	4.77	66.92	16.25		150.0	
40.400		Z	4.66	66.73	16.08		150.0	· · · · · · · · · · · · · · · · · · ·
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.74	67.02	16.09	0.00	150.0	± 9.6 %
		Υ	4.97	67.29	16.39		150.0	
40404		Z	4.84	67.07	16.20		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.67	66.97	16.06	0.00	150.0	± 9.6 %
		Y	4.88	67.23	16.36		150.0	
10405	IEEE 000 44- (IEE C. C. C. C. C. C. C. C. C. C. C. C. C.	Z	4.75	67.01	16.17		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.27	67.32	16.28	0.00	150.0	± 9.6 %
		Y	5.44	67.54	16.51		150.0	
40400		Z	5.36	67.40	16.39		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	Х	5.28	67.36	16.29	0.00	150.0	± 9.6 %
		Υ	5.45	67.57	16.52		150.0	
		Z	5.36	67.41	16.39		150.0	

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	Х	5.29	67.32	16.27	0.00	150.0	± 9.6 %
		Υ	5.47	67.58	16.52		150.0	
		Z	5,38	67.39	16.38		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.07	70.23	17.55	0.00	150.0	± 9.6 %
		Υ	4.27	70.06	17.88		150.0	
		Z	4.15	70.14	17.71		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	Х	4.11	67.04	15.84	0.00	150.0	± 9.6 %
		<u>Y</u>	4.36	67.35	16.27		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.21 4.43	67.10 66.98	16.00 15.97	0.00	150.0 150.0	± 9.6 %
		Υ	4.65	67.26	16.32		150.0	
		Z	4.52	67.02	16.10		150.0	***************************************
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.68	67.00	16.07	0.00	150.0	± 9.6 %
		Υ	4.89	67.27	16.38		150.0	
		Z	4.77	67.04	16.19		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	Х	4.12	70.89	17.41	0.00	150.0	± 9.6 %
	- Indiana and a second a second and cond and	Y	4.34	70.74	17.85		150.0	
15.15		Z	4.22	70.82	17.62		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	119.71	29.80	3.23	80.0	± 9.6 %
		Y	100.00	119.22	30.28		80.0	
40447	LITE EDD (OFDMA E MILE E TMO)	Z	100.00	119.56	29.94	0.00	80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.37	66.82	14.98	0.00	150.0	± 9.6 %
		Y	3.67	67.36	15.75		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	3.49 3.96	66.96 66.81	15.27 15.69	0.00	150.0 150.0	± 9.6 %
7010	Опрриг 4470)	Y	4.18	67.12	16.13	-	150.0	
		Z	4.05	66.86	15.85		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.24	66.79	15.86	0.00	150.0	± 9.6 %
		Υ	4.44	67.08	16.21		150.0	
		Z	4.32	66.83	15.98		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.44	66.75	15.91	0.00	150.0	± 9.6 %
		Υ	4.62	67.02	16.23		150.0	
	•	<u>Z</u>	4.52	66.79	16.03	ļ	150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.24	66.86	14.51	0.00	150.0	± 9.6 %
		Y	3,59	67.61	15.48		150.0	ļ
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	Z	3.38 6.15	67.08 67.91	14.88 16.46	0.00	150.0 150.0	± 9.6 %
	oopo darij ojoloj	Y	6.30	68.18	16.69		150.0	
		Ż	6.22	67.98	16.56	1	150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.73	65.25	15.62	0.00	150.0	± 9.6 %
		Y	3.83	65.45	15.95		150.0	
		Z	3.77	65.26	15.74		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	Х	3.76	70.07	16.73	0.00	150.0	± 9.6 %
		Y	3.96	69.90	17.32		150.0	
		Z	3.85	70.03	17.01		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.92	68.09	17.69	0.00	150.0	± 9.6 %
		Υ	5.09	67.55	17.82		150.0	
		Z	5.01	67.92	17.81		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	Х	0.75	65.19	13.76	0,00	150.0	± 9.6 %
		Y	0.92	68.59	16.20	1	150.0	
		Z	0.79	65.92	14.36	<u> </u>	150.0	<u> </u>
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	123.79	31.74	3.29	80.0	± 9.6 %
		Υ	100.00	122.12	31.69		80.0	
		Z	100.00	123.30	31.73		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	32.80	95.15	20.97	3.23	80.0	± 9.6 %
····		Y	100.00	108.81	25.31		80.0	
10463-	LTE TOD (CO EDMA 4 DD 4 4 MI)	Z	69.50	103.52	23.30		80.0	
AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.39	75.30	14.79	3,23	80.0	± 9.6 %
		Y	43.22	97.24	21.98		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z	9.33	80.70	16.78		80.0	
AAA	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.52	30.54	3.23	80.0	± 9.6 %
		Y	100.00	120.38	30.74		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z	100.00	121.16	30.59	0.77	80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)	X	14.77	86.68	18.69	3.23	80.0	± 9.6 %
		Y	100.00	108.39	25.10		80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	Z	27.22	93.26	20.74		80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)	X	4.02	72.31	13.72	3.23	80.0	± 9.6 %
	,,,,	Y	24.89	91.04	20.33		80.0	
10467-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z	6.35	76.67	15.47		80.0	
AAC	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	121.77	30.65	3.23	80.0	± 9.6 %
		Y	100.00	120.56	30.82		80.0	
10460	LTE TOD (CO COMA 4 DD 5 MIL 40	Z	100.00	121.39	30.69		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	17.84	88.71	19.26	3.23	80.0	± 9.6 %
		Y	100.00	108.52	25.16		80.0	
10469-	LTE TOD (OO EDMA 4 DD EAST OF	Z	33.81	95.65	21.37		80.0	
AAC AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	4.05	72.41	13.75	3.23	80.0	± 9.6 %
		Υ	25.54	91.32	20.40		80.0	
10470-	LTE TOD (OO FOLIA (DD 10 III)	Z	6.43	76.81	15.51		80.0	
AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.79	30.65	3.23	80.0	± 9.6 %
		Y	100.00	120.58	30.82		80.0	
10471-	LTE TOD (CO FDMA 4 DD 40 MH 40	Z	100.00	121.41	30.69		80.0	
AAC AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	17.61	88.54	19.20	3.23	80.0	± 9.6 %
		Y	100.00	108.47	25.13		80.0	
10472-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-	Z	33.47	95.51	21.32		80.0	
AAC	QAM, UL Subframe=2,3,4,7,8,9)	X	4.02	72.32	13.71	3.23	80.0	± 9.6 %
		Y	25.57	91.31	20.39		80.0	
10473-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	Z	6.39	76.72	15.47		80.0	
AAC	QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	121.76	30.64	3.23	80.0	± 9.6 %
		Υ	100.00	120.56	30.81		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-	Z X	100.00 17.32	121.38 88.38	30.68 19.16	3.23	80.0 80.0	± 9.6 %
7770	QAM, UL Subframe=2,3,4,7,8,9)	L,	400.00	400.10				
		Y	100.00	108.48	25.14		80.0	
10475-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-	Z	32.82	95.31	21.27		80.0	
AAC	QAM, UL Subframe=2,3,4,7,8,9)	X	3.99	72.26	13.69	3.23	80.0	± 9.6 %
		Y	25.19	91.16	20.35		80.0	
		Z	6.32	76.64	15.44		80.0	

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	Х	15.07	06.06	10.70	2 22	000	+0.00/
AAC	QAM, UL Subframe=2,3,4,7,8,9)	^	15.07	86.86	18.72	3.23	80.0	± 9.6 %
		Υ	100.00	108.34	25.07		80.0	
		Z	28.04	93.54	20.79		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	3.95	72.14	13.64	3.23	80.0	± 9.6 %
		Υ	24.77	90.95	20.29		80.0	
		Z	6.24	76.49	15.38		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	18.00	97.43	26.23	3.23	80.0	± 9.6 %
		Υ	13.36	92.12	25.35		80.0	
		Z	14.86	94.42	25.64		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	15.57	89.49	22.03	3.23	80.0	± 9.6 %
		<u>Y</u>	14,49	88.43	22.68		80.0	
10101	1 TT TOO (00 TD) (4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z	14.38	88.56	22.14		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	11.30	84.47	20.12	3.23	80.0	± 9.6 %
		Y	12.51	85.67	21.51		80.0	
40400	LITE TOD (OO EDMA 500) DD 0 A "	Z	11.33	84.56	20.56	0.00	80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.07	74.15	17.16	2.23	80.0	± 9.6 %
		Y	5.81	78.45	19.63		80.0	
40400	LTE TOD /OO FOMA FOR ON DO O MUL	Z	4.63	75.76	18.13	0.00	80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.76	77.89	18.30	2.23	80.0	± 9.6 %
		Y	8.61	81.09	20.48		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	7.45 6.10	79.28 76.33	19.22 17.74	2.23	80.0 80.0	± 9.6 %
AAA	04-QAW, OL Subirante-2,3,4,7,6,9)	Y	8.03	79.88	20.06		80.0	
		Z	6.80	77.82	18.72		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.67	76.32	18.94	2.23	80.0	± 9.6 %
7010	Grand Control	Y	6.01	79.09	20.51		80.0	
		Z	5.06	77.24	19.52		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.00	71.17	16.48	2.23	80.0	± 9.6 %
		Y	4.90	73.23	18.04	***************************************	80.0	
		Z	4.29	71.91	17.09		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.96	70.71	16.28	2.23	80.0	± 9.6 %
		Y	4.86	72.77	17.85		80.0	
		Z	4.25	71.45	16.90		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	4.80	75.39	19.35	2.23	80.0	± 9.6 %
		Y	5.90	77.41	20.35	<u> </u>	80.0	
40400	LTC TDD (OO EDMA FOOT ED TOTT)	Z	5.11	75.98	19.69		80.0	1
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.30	71.16	17.75	2.23	80.0	± 9.6 %
		Y	4.95	72.31	18.56	<u> </u>	80.0	
40400	LITE TOD (SO COMA FOX DD 40 ML)	Z	4.48	71.46	18.03	0.00	80.0	1060
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.37	70.93	17.67	2.23	80.0	± 9.6 %
***		Y	5.00	71.98	18.45	1	80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.55 4.81	71.20 73.40	17.95 18.77	2.23	80.0 80.0	± 9.6 %
770	\(\sqrt{\alpha}\) \(\sqrt{\omega}\) \(\o	Y	5.66	74.90	19.51		80.0	1
	+	Z	5.05	73.81	19.01		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	4.58	70.26	17.73	2.23	80.0	± 9.6 %
10492- AAC				1			l .	
10492- AAC	16-QAM, UL Subframe=2,3,4,7,8,9)	Y	5.15	71.20	18.35		80.0	

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	TX	4.63	70.09	17.67	1 0 00	1 00 0	1 . 0 0 0/
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)	^	4.03	70.09	17.67	2.23	80.0	± 9.6 %
		Y	5.20	70.99	18.28		80.0	1
		Z	4.79	70.31	17.88		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.26	74.92	19.20	2.23	80.0	± 9.6 %
		Υ	6.31	76.72	20.02		80.0	
		Z	5.56	75.45	19.47		80,0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.63	70.67	17.93	2.23	80.0	± 9.6 %
		Y	5.25	71.75	18.56		80.0	
10496-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	4.81	70.95	18.14	ļ	80.0	ļ
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.69	70.35	17.84	2.23	80.0	± 9.6 %
		Z	5.28	71.32	18.43		80.0	
10497-	LTE-TDD (SC-FDMA, 100% RB, 1.4	+	4.85	70.59	18.04	0.00	80.0	
AAA	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.80	69.04	14.16	2.23	80.0	± 9.6 %
			4.67	75.26	17.80			
10498-	LTE-TDD (SC-FDMA, 100% RB, 1.4	Z	3.38	71.31	15.55	0.00		
AAA	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.04	63.14	10.52	2.23	80.0	± 9.6 %
		Υ	3.54	68.97	14.46		80.0	
1015		Z	2.48	65.07	11.94		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.97	62.57	10.11	2.23	80.0	± 9.6 %
		Υ	3.46	68.37	14.08		80.0	†
····		Ζ	2.40	64.45	11.52			!
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	4.63	75.63	19.00	2.23	80.0	± 9.6 %
		Y	5.77	77.85	20.27		80.0	
40504		Ζ	4.95	76.31	19.46		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.15	71.24	16.99	2.23	80.0	± 9.6 %
		Y	4.91	72.75	18.19		80.0	
10502-	LTE TDD (SC EDMA 4000) DD 0 MIL	Z	4.38	71.72	17.45			
AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.19	71.02	16.85	2.23		±9.6%
***************************************		Y	4.94	72.49	18.05			
10503-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	Z	4.41	71.50	17.31	<u> </u>		
AAC	QPSK, UL Subframe=2,3,4,7,8,9)	X	4.74	75.17	19.25	2.23		± 9.6 %
		Z	5.83 5.04	77.22	20.27		80.0 80.0 80.0 80.0 80.0 80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.28	75.77 71.06	19.59 17.69	2.23		± 9.6 %
		Y	4.93	72.23	18.51		80.0	
		Z	4.45	71.37	17.98			
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.35	70.83	17.62	2.23		± 9.6 %
		Υ	4.98	71.89	18.41		80.0	
10=0=		Z	4.52	71.11	17.90		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.22	74.76	19.13	2.23	80.0	± 9.6 %
		Y	6.26	76.58	19.96		80.0	*****
40507	LTE TOP (OC EDM) (See 1	Ζ	5.51	75.29	19.40		80.0	
10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	Х	4.62	70.61	17.89	2.23	80.0	± 9.6 %
	Subframe=2,3,4,7,8,9)		l	I	1	J		
	Subframe=2,3,4,7,8,9)	Υ	5.23	71.69	18.53		80.0	

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.67	70.27	17.79	2.23	80.0	± 9.6 %
		Y	5.26	71.26	18.40		80.0	
		Z	4.84	70.52	18.00		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.37	73.08	18.53	2.23	80.0	± 9.6 %
		Y	6.17	74.40	19.15	***************************************	80.0	***************************************
		Z	5.59	73.44	18.73		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.06	70.14	17.83	2,23	80.0	± 9.6 %
		Υ	5.64	71.11	18.37		80.0	*****
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	5.23 5.10	70.39 69.87	18.01 17.77	2.23	80.0 80.0	± 9.6 %
	Subframe=2,5,4,7,6,9)	Y	5.65	70.75	18.27		80.0	
		Z	5.26	70.73	17.94		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.71	74.71	19.00	2.23	80.0	± 9.6 %
	, , = = = = = = = = = = = = = = = = = =	Y	6.73	76.43	19.76	***************************************	80.0	
		Ζ	6.00	75.21	19.25		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.97	70.47	17.95	2.23	80.0	± 9.6 %
		Y	5,59	71.60	18.54		80.0	
		Z	5.15	70.78	18.15		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.97	70.02	17.83	2.23	80.0	± 9.6 %
		Υ	5.54	71.04	18.38		80.0	
		Z	5.13	70.28	18.01		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	Х	0.91	62.31	13.57	0.00	150.0	± 9.6 %
		Y	0.96	63.34	14.68		150.0	
10-10		Z	0.92	62.52	13.87	0.00	150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.44	65.20	13,42	0.00	150.0	± 9.6 %
		Y Z	0.63	71.46 66.36	17.49 14.27		150.0 150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.47	63.39	13.61	0.00	150.0	± 9.6 %
7001	Mapo, cope duty cyclo)	Y	0.82	65.40	15.35		150.0	
		Ż	0.76	63.83	14.06		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Х	4.45	66.67	15.90	0.00	150.0	± 9.6 %
		Υ	4.63	66.88	16.20		150.0	
		Z	4.52	66,69	16.01		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	Х	4.63	66.90	16.03	0.00	150.0	± 9.6 %
	And Andrews and An	<u> Y</u>	4.84	67.17	16.34		150.0	
40500	LETE ORD AL II LIEU & COLL CORDA AN	Z	4.72	66.95	16.14	0.00	150.0	1
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.48	66.84	15.93	0.00	150.0 150.0	± 9.6 %
		Z	4.69 4.56	67.14 66.89	16.27 16.06		150.0	-
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.41	66.82	15.91	0.00	150.0	± 9.6 %
•=	- Indiana in the second in the	Y	4.62	67.15	16.25		150.0	
		Z	4.50	66.88	16.04		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	Х	4.47	66.93	16.01	0.00	150.0	±9.6 %
		Υ	4.67	67.14	16.29		150.0	
		Z	4.56	66.96	16.12		150.0	

10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.35	66.79	15.85	0.00	150.0	± 9.6 %
		Y	4.54	67.03	16.15	†	150.0	
		Z	4.43	66.81	15.95		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	Х	4.41	66.84	15.97	0.00	150.0	± 9.6 %
		Y	4.62	67.10	16.28		150.0	
		Z	4.50	66.88	16.08		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	Х	4.40	65.89	15.57	0.00	150.0	± 9.6 %
***************************************		Y	4.58	66.12	15.86		150.0	
10526-	IEEE 000 44 co MSE: (00MI - MOO4	Z	4.48	65.92	15.67		150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.56	66.24	15.71	0.00	150.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.78	66.52	16.01		150.0	
10527-	IEEE 802.11ac WiFi (20MHz, MCS2,	Z	4.65	66.29	15.82		150.0	ļ
AAB	99pc duty cycle)	X	4.48	66.19	15.64	0.00	150.0	± 9.6 %
		Y	4.69	66.49	15.96		150.0	
10528-	IEEE 802.11ac WiFi (20MHz, MCS3,	Z	4.57	66.24	15.76	0.00	150.0	
AAB	99pc duty cycle)	X	4.50	66.21	15.67	0.00	150.0	± 9.6 %
····		Z	4.71	66.51	15.99		150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,	X	4.59	66.26	15.79		150.0	
AAB	99pc duty cycle)	Y	4.50	66.21	15.67	0.00	150.0	±9.6%
		Z	4.71	66.51	15.99		150.0	
10531-	IEEE 802.11ac WiFi (20MHz, MCS6,	X	4.59 4.48	66.26	15.79	0.00	150.0	
AAB	99pc duty cycle)			66.29	15.67	0.00	150.0	± 9.6 %
		Y	4.72	66.66	16.02		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	Z	4.58 4.35	66.37 66.14	15.80 15.60	0.00	150.0 150.0	± 9.6 %
	3350 335 37507	Y	4.57	66.52	15.96		150.0	
***************************************		Ż	4.44	66.22	15.73		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.51	66.26	15.66	0.00	150.0	± 9.6 %
		Υ	4.72	66.54	15.97		150.0	
		Ζ	4.60	66.30	15.77		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	Х	5.04	66.36	15.78	0.00	150.0	± 9.6 %
		Y	5.23	66.67	16.05	-	150.0	
40505		Ζ	5.12	66.43	15.88		150.0	· · · · · · · · · · · · · · · · · · ·
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.11	66.54	15.86	0.00	150.0	± 9.6 %
		Υ	5.29	66.81	16.11		150.0	
10520	#FF 000 44 W/F: //01/11	Z	5.19	66.60	15.96		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	Х	4.98	66.48	15.81	0.00	150.0	± 9.6 %
		Y	5.16	66.79	16.08		150.0	
10537-	JEEE 900 4400 WIE: (40M 14000)	Z	5.06	66.54	15.91		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.04	66.45	15.80	0.00	150.0	± 9.6 %
		Y	5.23	66.77	16.07		150.0	
10538-	IEEE 802.11ac WiFi (40MHz, MCS4,	X	5.12 5.12	66.52 66.48	15.90 15.85	0.00	150.0 150.0	± 9.6 %
AAB	99pc duty cycle)	 						
		Υ	5.34	66.84	16.15		150.0	
10540-	IEEE 902 11co Wiri (40M) - 14000	Z	5.21	66.56	15.97		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	Х	5.06	66.49	15.87	0.00	150.0	± 9.6 %
		Υ	5.24	66.78	16.14		150.0	
		Ζ	5.14	66.56	15.98		150.0	