

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing: 05/26/2020 - 06/22/2020 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2004170066-18-R1.A3L Date of Issue: 07/07/2020

FCC ID:

A3LSMN986W

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard:

DUT Type: Model: Test Device Serial No.: Audio Band Magnetic Testing (T-Coil) Certification CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v05 285076 D02 T-Coil testing for CMRS IP v03 Portable Handset SM-N986W *Pre-Production Sample* [S/N: 1248M]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M2004170066-18-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 1 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 1 of 95
© 2020 PCTEST				REV 3.5.M

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	22
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	27
8.	FCC 3G MEASUREMENTS	32
9.	T-COIL TEST SUMMARY	34
10.	MEASUREMENT UNCERTAINTY	50
11.	EQUIPMENT LIST	51
12.	TEST DATA	52
13.	CALIBRATION CERTIFICATES	83
14.	CONCLUSION	90
15.	REFERENCES	91
16.	TEST SETUP PHOTOGRAPHS	93

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 2 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 2 of 95
© 2020 PCTEST		•		REV 3.5.M

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 2 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 3 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

2. DUT DESCRIPTION

FCC ID:	A3LSMN986W
Applicant:	Samsung Electronics Co., Ltd.
	129, Samsung-ro, Maetan dong,
	Yeongtong-gu, Suwon-si
	Gyeonggi-do 16677, Korea
Model:	SM-N986W
Serial Number:	1248M
HW Version:	1.0
SW Version:	N986WVLU0ATDA
Antenna:	Internal Antenna
DUT Type:	Portable Handset

I. LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B4 & B66 and LTE B38 & B41. These pairs of LTE bands have the same target powers and share the same transmission paths. Since the supported frequency spans for the smaller LTE bands are completely covered by the larger LTE bands, only the larger LTE bands (LTE B66 & B41) were evaluated for hearing-aid compliance. LTE B2 is an LTE anchor band for dual connectivity (EN-DC) scenarios between LTE and NR so it was additionally evaluated as an independent LTE band.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 4 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 4 of 95
© 2020 PCTEST		·		REV 3.5.M

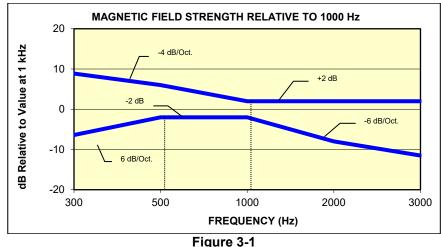
5/22/2020

			7,51	SIVIN900W HAC AII IIILEITA	1003	
Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
	835	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EVRC
CDMA	EvDO	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	850	vo	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR
GSM	1900					
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	850	-				
UMTS	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR
	1900					
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	680 (B71)	-	Yes ³			
	700 (B12)	-				
	780 (B13)					
	850 (B5)					
LTE (FDD)	1700 (B4)	VD		Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	VOLTE: NB AMR, WB AMR, EVS
· · /	1700 (B66) 1900 (B2)		Yes		,	Google Duo: OPUS
		1900 (B2)				
	1900 (B25)					
	2300 (B30)					
	2500 (B7)					
LTE (TDD)	2600 (B38)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	VoLTE: NB AMR, WB AMR, EVS Google Duo: OPUS
	2600 (B41)					
NR (FDD)	680 (n71)	VD	Yes ^{3,4}	Yes: WIFI or BT	Google Duo ²	OPUS
	1700 (n66)		Yes ⁴			
NR (TDD)	2600 (n41)	VD	Yes ⁴	Yes: WIFI or BT	Google Duo ²	OPUS
	2450	-				
	5200 (U-NII 1)			VoWIFI: NB AMR, WB AMR, EVS		
WIFI	5300 (U-NII 2A)	VD	Yes	Yes Yes: CDMA, GSM, UMTS, LTE, or NR VoWIFI ² , Google Duo ²	VoWIFI ² , Google Duo ²	Google Duo: OPUS
	5500 (U-NII 2C)					
	5800 (U-NII 3)					
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, LTE, or NR	N/A	N/A
DT = Digital Da	Type Transport Notes: V0 = Voice Only 1. Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE Interpretation. DT = Digital Data - Not intended for Voice Services 2. Reference level is -20dBm0 in accordance with FCC KDB 285076 D02 JD = CMRS and/or IP Voice over Data Transport 3. LTE B71 and NR n71, while outside the scope of ANSI C63.19 and FCC HAC regulations, were additionally tested according to the existing HAC procedures with currently available test equipment. 4. NR was evaluated using an interim procedure outlined Section 7.1I.3.					

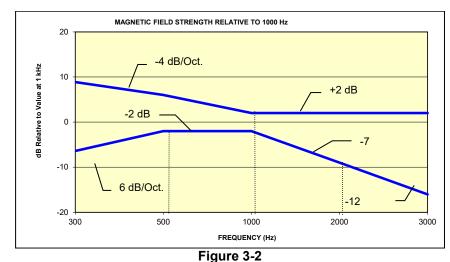
Table 2-1 A3LSMN986W HAC Air Interfaces

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 5 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 5 of 95
© 2020 PCTEST		•		REV 3.5.M

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES


I. MAGNETIC COUPLING

Axial and Radial Field Intensity


All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 6 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 6 of 95
© 2020 PCTEST				REV 3.5.M

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters			
	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 7 af 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 7 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

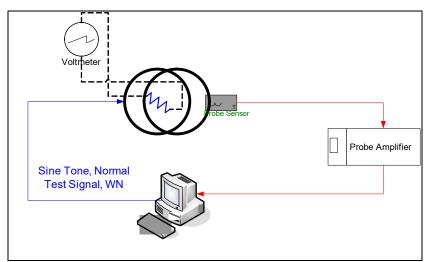
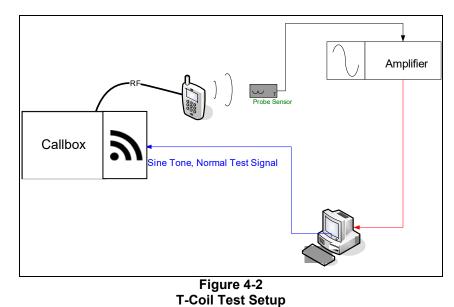



Figure 4-1 Validation Setup with Helmholtz Coil

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 0 af 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 8 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. 3GPP2 Normal Test Signal (Speech)

Manufacturer:	3GPP2 (TIA 1042 §3.3.1)	
	Modified-IRS weighted, multi-talker speech signal, 4 Male and 4	
Stimulus Type:	Female speakers (alternating)	
Single Sample Duration:	51.62 seconds	
Activity Level:	77.4%	

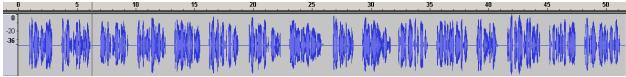
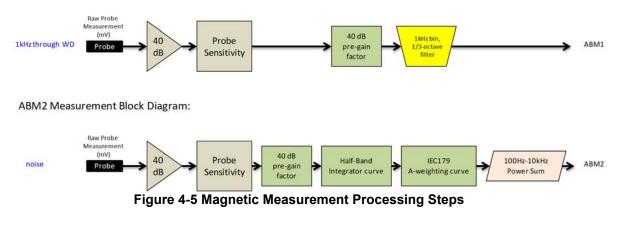



Figure 4-4 Temporal Characteristic of Normal Test Signal

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dage 0 of 05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 9 of 95	
© 2020 PCTEST		•		REV 3.5.M	

ABM1 Measurement Block Diagram:

IV. Test Procedure

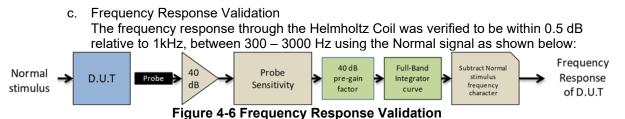
- 1. Ambient Noise Check per C63.19 §7.3.1
 - Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter

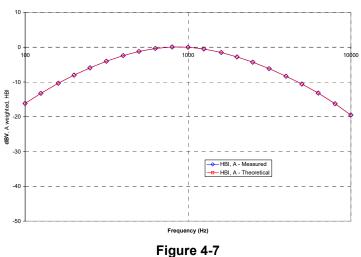

N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_{c} = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^{3}}} = 0.316A/m \approx -10dB(A/m)$$

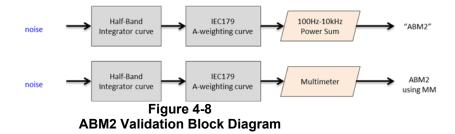
Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within \pm 0.5 dB of the -10dB(A/m) value (see Page 47 and 47).

FCC ID: A3LSMN986W	PCTEST Proof to be part of @ revenues	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 10 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 10 of 95
© 2020 PCTEST	•	·		REV 3.5.M


d. ABM2 Measurement Validation

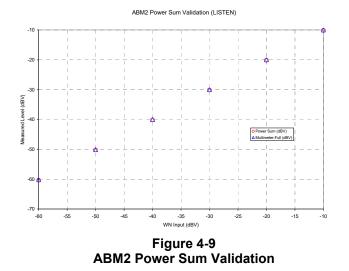
WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

Table 4-1 ABM2 Frequency Response Validation				
f (Hz)	HBI, A - HBI, A - Measured Theoretical (dB re 1kHz) (dB re 1kHz)		dB Var.	
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

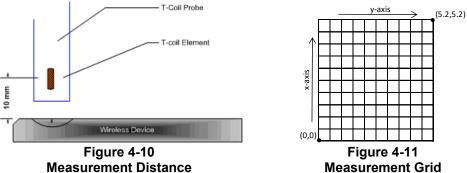

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 11 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 11 of 95
© 2020 PCTEST				REV 3.5.M

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-8). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.


Table 4-2 ABM2 Power Sum Validation					
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)		
-60	-60.36	-60.2	0.16		
-50	-50.19	-50.13	0.06		
-40	-40.14	-40.03	0.11		
-30	-30.13	-30.01	0.12		
-20	-20.12	-20	0.12		
-10	-10.14	-10	0.14		

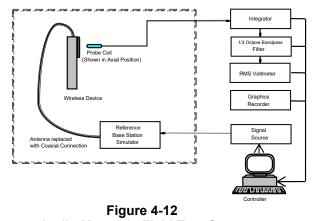
FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 12 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 12 of 95
© 2020 PCTEST		•		REV 3.5.M

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-11, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-13 after a T-coil orientation was fully measured with the SoundCheck system. b. Speech Signal Setup to Base Station Simulator
 - - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18


FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 12 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 13 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for CDMA and UMTS. LTE configuration information can be found in Section 5 and 7. NR configuration information can be found in Section 7. WIFI configuration information can be found in Section 6 and 7.)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-6. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: A3LSMN986W	PCTEST Road to be part at & evenese	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dage 14 of 05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 14 of 95	
© 2020 PCTEST		·		REV 3.5.M	

V. Test Setup

Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 15 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 15 of 95
© 2020 PCTEST		·		REV 3.5.M

REV 3.5.M 5/22/2020

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Center Channels and F	requencies					
Test frequencies & associa	ted channels					
Channel Frequency (MHz)						
Cellular 850						
384 (CDMA)	836.52					
190 (GSM)	836.60					
4183 (UMTS)	836.60					
AWS 1750						
1412 (UMTS)	1730.40					
PCS 1900						
661 (GSM)	1880					
9400 (UMTS)	1880					

Table 4-3 Center Channels and Frequencies

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels are additionally tested for LTE TDD. The middle channel and supported bandwidths from the worst-case LTE FDD band according to Table 7-6 was additionally evaluated with OTT VoIP for each probe orientation. LTE TDD was additionally evaluated with OTT VoIP for each probe orientation as well. See Tables 9-5 to 9-14 as well as 9-23 to 9-24 for LTE bandwidths and channels.

3. 5G (NR) Modes

The middle channel and supported bandwidths from the worst-case NR FDD band according to Table 7-9 was evaluated with OTT VoIP for each probe orientation. NR TDD was additionally evaluated with OTT VoIP for each probe orientation as well. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels are additionally tested for NR TDD. See Tables 9-25 and 9-26 for NR bandwidths and channels.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-15 to 9-19 and 9-27 to 9-31 for WIFI standards and channels.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		D 10 (05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 16 of 95	
© 2020 PCTEST		•		REV 3.5.M	

IX. Test Flow

The flow diagram below was followed (From C63.19):

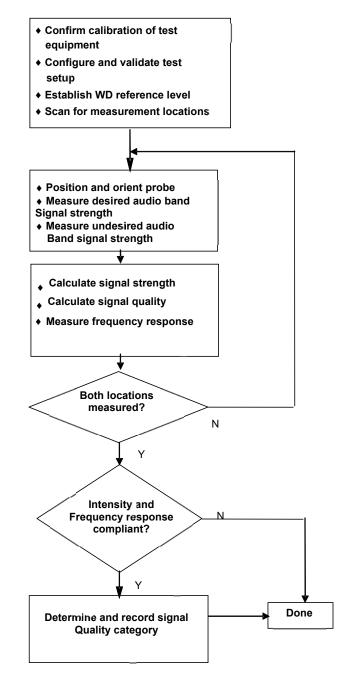


Figure 4-13 C63.19 T-Coil Signal Test Process

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 17 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 17 of 95
© 2020 PCTEST		•		REV 3.5.M

REV 3.5.M 5/22/2020

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

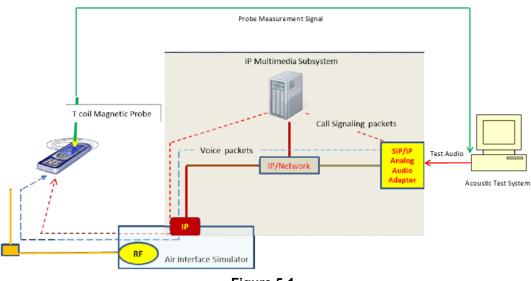


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level^{*}. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		D 40 (05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 18 of 95	
© 2020 PCTEST		•		REV 3.5.M	

II. DUT Configuration for VoLTE over IMS T-coil Testing

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

					y				
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
66	1745.0	132322	20	QPSK	1	0	4.09	-52.14	56.23
66	1745.0	132322	20	QPSK	1	50	3.84	-50.85	54.69
66	1745.0	132322	20	QPSK	1	99	4.16	-51.65	55.81
66	1745.0	132322	20	QPSK	50	0	3.36	-51.11	54.47
66	1745.0	132322	20	QPSK	50	25	4.25	-52.55	56.80
66	1745.0	132322	20	QPSK	50	50	3.80	-51.38	55.18
66	1745.0	132322	20	QPSK	100	0	3.74	-52.06	55.80
66	1745.0	132322	20	16QAM	1	0	3.71	-48.87	52.58
66	1745.0	132322	20	16QAM	1	50	3.80	-48.98	52.78
66	1745.0	132322	20	16QAM	1	99	4.66	-48.13	52.79
66	1745.0	132322	20	16QAM	50	0	3.43	-50.13	53.56
66	1745.0	132322	20	16QAM	50	25	3.05	-51.16	54.21
66	1745.0	132322	20	16QAM	50	50	3.10	-51.10	54.20
66	1745.0	132322	20	16QAM	100	0	3.52	-51.65	55.17
66	1745.0	132322	20	64QAM	1	0	3.24	-49.79	53.03
66	1745.0	132322	20	64QAM	1	50	3.76	-49.27	53.03
66	1745.0	132322	20	64QAM	1	99	3.21	-49.54	52.75
66	1745.0	132322	20	64QAM	50	0	3.89	-51.38	55.27
66	1745.0	132322	20	64QAM	50	25	3.19	-51.03	54.22
66	1745.0	132322	20	64QAM	50	50	3.31	-51.68	54.99
66	1745.0	132322	20	64QAM	100	0	3.69	-52.93	56.62
66	1745.0	132322	20	256QAM	1	0	3.14	-51.35	54.49
66	1745.0	132322	20	256QAM	1	50	4.20	-51.71	55.91
66	1745.0	132322	20	256QAM	1	99	3.39	-51.24	54.63
66	1745.0	132322	20	256QAM	50	0	3.18	-51.30	54.48
66	1745.0	132322	20	256QAM	50	25	3.67	-50.98	54.65
66	1745.0	132322	20	256QAM	50	50	4.17	-50.86	55.03
66	1745.0	132322	20	256QAM	100	0	3.19	-51.76	54.95

Table 5-1 VoLTE over IMS SNNR by Radio Configuration

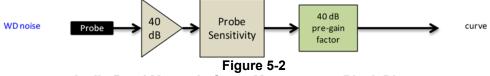
2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The EVS Primary NB 5.9kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

		IR Codec In	vestigation	- VOLIE ON	/er IMS		
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	4.05	2.95	5.52	5.40			
ABM2 (dBA/m)	-50.18	-50.79	-49.96	-49.62	Axial	Band 12	23095
Frequency Response	Pass	Pass	Pass	Pass	10MHz		23093
S+N/N (dB)	54.23	53.74	55.48	55.02			

Table 5-2 AMR Codec Investigation – VoLTE over IMS

FCC ID: A3LSMN986W	Road to be part of & evenese	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 19 of 95
© 2020 PCTEST	•	•		REV 3.5.M


© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

5/22/2020

		EVSC	Jouec my	esuyauoi	I-VOLIE	over invo			
Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	5.38	4.74	4.17	3.94	5.17	3.71			
ABM2 (dBA/m)	-49.55	-49.41	-49.88	-49.78	-49.66	-49.55	Axial	Band 12	23095
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axia	10MHz	23033
S+N/N (dB)	54.93	54.15	54.05	53.72	54.83	53.26			

Table 5-3 EVS Codec Investigation - VoLTE over IMS

- Mute on; Backlight off; Max Volume; Max Contrast
 - TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length $T_f = 307200 \cdot T_s = 10 \text{ ms}$, where T_s is a number of time units equal to 1/(15000 x 2048) seconds. Additionally, each radio frame consists of 10 subframes, each of length $30720 \cdot T_s = 1 \text{ ms}$, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 \cdot Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

	Opinik-Downlink Con	gar		0 101				000		00		
Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity				Su	bfram	e numt	ber				Calculated Transmission
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

 Table 5-4

 Uplink-Downlink Configurations for Type 2 Frame Structures

FCC ID: A3LSMN986W	Road to be part of & eveness	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 20 of 95
© 2020 PCTEST	•	-		REV 3.5.M

KEV 3.5.M 5/22/2020

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power Class 3 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 0RB Offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 1 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	0	0	3.95	-39.18	43.13
2593.0	40620	20	16QAM	1	0	1	3.85	-38.31	42.16
2593.0	40620	20	16QAM	1	0	2	4.14	-38.34	42.48
2593.0	40620	20	16QAM	1	0	3	3.80	-41.30	45.10
2593.0	40620	20	16QAM	1	0	4	3.37	-41.36	44.73
2593.0	40620	20	16QAM	1	0	5	3.48	-40.76	44.24
2593.0	40620	20	16QAM	1	0	6	4.10	-38.54	42.64

Table 5-5
Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

b. Conclusion

Per the investigations above, UL-DL Configuration 1 was used to evaluate Power Class 3 VoLTE over IMS.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 21 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset	:	
© 2020 PCTEST		•		REV 3.5.M

REV 3.5.M 5/22/2020

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

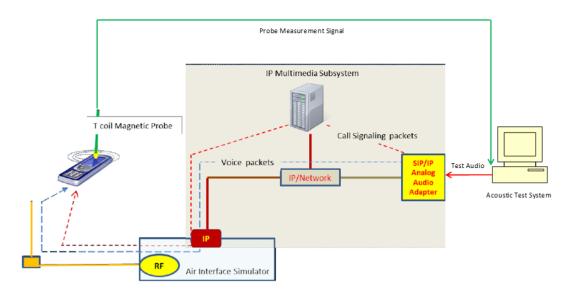


Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 22 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 22 of 95
© 2020 PCTEST		•		REV 3.5.M

REV 3.5.M 5/22/2020

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

IEEE 802.11b SNNR by Radio Configuration									
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]			
IEEE 802.11b	6	DSSS	1	0.12	-43.66	43.78			
IEEE 802.11b	6	DSSS	2	0.17	-44.56	44.73			
IEEE 802.11b	6	CCK	5.5	0.14	-45.39	45.53			
IEEE 802.11b	6	CCK	11	0.55	-44.62	45.17			

Table 6-1 IEEE 802.11b SNNR by Radio Configuration

 Table 6-2

 IEEE 802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
IEEE 802.11g	6	BPSK	6	0.13	-46.49	46.62				
IEEE 802.11g	6	BPSK	9	0.18	-47.73	47.91				
IEEE 802.11g	6	QPSK	12	0.17	-41.08	41.25				
IEEE 802.11g	6	QPSK	18	0.40	-40.80	41.20				
IEEE 802.11g	6	16QAM	24	0.10	-40.93	41.03				
IEEE 802.11g	6	16QAM	36	0.90	-42.70	43.60				
IEEE 802.11g	6	64QAM	48	0.15	-43.19	43.34				
IEEE 802.11g	6	64QAM	54	0.20	-43.50	43.70				

Table 6-3 IEEE 802.11n/ac 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11n	20	40	BPSK	0	0.63	-41.32	41.95		
IEEE 802.11n	20	40	QPSK	1	0.58	-41.27	41.85		
IEEE 802.11n	20	40	QPSK	2	0.60	-41.26	41.86		
IEEE 802.11n	20	40	16QAM	3	0.10	-41.06	41.16		
IEEE 802.11n	20	40	16QAM	4	0.11	-42.21	42.32		
IEEE 802.11n	20	40	64QAM	5	0.70	-42.53	43.23		
IEEE 802.11n	20	40	64QAM	6	0.19	-42.27	42.46		
IEEE 802.11n	20	40	64QAM	7	0.90	-42.93	43.83		
IEEE 802.11ac	20	40	256QAM	8	0.65	-42.70	43.35		

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset	ortable Handset	
© 2020 PCTEST				REV 3.5.M

IEEE 002.11ax 30 20Minz BW SNINK by Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11ax SU	20	40	BPSK	0	-0.40	-45.25	44.85		
IEEE 802.11ax SU	20	40	QPSK	1	0.26	-46.03	46.29		
IEEE 802.11ax SU	20	40	QPSK	2	0.35	-45.85	46.20		
IEEE 802.11ax SU	20	40	16QAM	3	0.24	-46.11	46.35		
IEEE 802.11ax SU	20	40	16QAM	4	0.42	-45.34	45.76		
IEEE 802.11ax SU	20	40	64QAM	5	0.69	-46.73	47.42		
IEEE 802.11ax SU	20	40	64QAM	6	0.50	-46.70	47.20		
IEEE 802.11ax SU	20	40	64QAM	7	0.25	-47.49	47.74		
IEEE 802.11ax SU	20	40	256QAM	8	0.53	-47.33	47.86		
IEEE 802.11ax SU	20	40	256QAM	9	0.67	-47.46	48.13		
IEEE 802.11ax SU	20	40	1024QAM	10	0.92	-47.31	48.23		
IEEE 802.11ax SU	20	40	1024QAM	11	0.50	-46.92	47.42		

Table 6-4 IEEE 802.11ax SU 20MHz BW SNNR by Radio Configuration

 Table 6-5

 IEEE 802.11ax RU 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11ax RU	20	40	BPSK	0	0	1.20	-43.95	45.15
IEEE 802.11ax RU	20	40	BPSK	0	8	0.76	-45.01	45.77
IEEE 802.11ax RU	20	40	BPSK	0	37	0.77	-44.72	45.49
IEEE 802.11ax RU	20	40	BPSK	0	40	0.63	-45.01	45.64
IEEE 802.11ax RU	20	40	BPSK	0	53	0.82	-44.65	45.47
IEEE 802.11ax RU	20	40	BPSK	0	54	0.77	-45.09	45.86
IEEE 802.11ax RU	20	40	BPSK	0	61	0.51	-45.45	45.96

Table 6-6 IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	40	38	BPSK	0	0.39	-40.62	41.01
IEEE 802.11n	40	38	QPSK	1	0.61	-40.90	41.51
IEEE 802.11n	40	38	QPSK	2	0.15	-41.15	41.30
IEEE 802.11n	40	38	16QAM	3	0.19	-41.67	41.86
IEEE 802.11n	40	38	16QAM	4	0.12	-40.90	41.02
IEEE 802.11n	40	38	64QAM	5	0.17	-41.40	41.57
IEEE 802.11n	40	38	64QAM	6	0.19	-38.07	38.26
IEEE 802.11n	40	38	64QAM	7	0.97	-45.28	46.25
IEEE 802.11ac	40	38	256QAM	8	0.52	-44.10	44.62
IEEE 802.11ac	40	38	256QAM	9	0.82	-45.30	46.12

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 24 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 24 of 95
© 2020 PCTEST		·		REV 3.5.M

	Bandwidth ABM1 ABM2 SNNR DY RADIO CONTIGURATION									
Mode		Channel	Modulation	MCS Index			SNNR			
	[MHz]				[dB(A/m)]	[dB(A/m)]	[dB]			
IEEE 802.11ax SU	40	38	BPSK	0	0.92	-47.48	48.40			
IEEE 802.11ax SU	40	38	QPSK	1	0.36	-46.59	46.95			
IEEE 802.11ax SU	40	38	QPSK	2	0.09	-46.91	47.00			
IEEE 802.11ax SU	40	38	16QAM	3	0.49	-46.96	47.45			
IEEE 802.11ax SU	40	38	16QAM	4	0.30	-47.00	47.30			
IEEE 802.11ax SU	40	38	64QAM	5	0.69	-47.33	48.02			
IEEE 802.11ax SU	40	38	64QAM	6	0.66	-47.59	48.25			
IEEE 802.11ax SU	40	38	64QAM	7	0.16	-47.92	48.08			
IEEE 802.11ax SU	40	38	256QAM	8	0.26	-47.12	47.38			
IEEE 802.11ax SU	40	38	256QAM	9	0.80	-47.62	48.42			
IEEE 802.11ax SU	40	38	1024QAM	10	0.89	-47.27	48.16			
IEEE 802.11ax SU	40	38	1024QAM	11	0.54	-48.01	48.55			

Table 6-7 IEEE 802.11ax SU 40MHz BW SNNR by Radio Configuration

Table 6-8 IEEE 802.11ax RU 40MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11ax RU	40	38	QPSK	1	0	0.78	-45.08	45.86
IEEE 802.11ax RU	40	38	QPSK	1	17	0.50	-45.79	46.29
IEEE 802.11ax RU	40	38	QPSK	1	37	0.73	-44.47	45.20
IEEE 802.11ax RU	40	38	QPSK	1	44	0.22	-45.89	46.11
IEEE 802.11ax RU	40	38	QPSK	1	53	1.19	-46.30	47.49
IEEE 802.11ax RU	40	38	QPSK	1	56	0.39	-46.15	46.54
IEEE 802.11ax RU	40	38	QPSK	1	61	0.16	-44.17	44.33
IEEE 802.11ax RU	40	38	QPSK	1	62	1.01	-45.93	46.94
IEEE 802.11ax RU	40	38	QPSK	1	65	0.73	-45.87	46.60

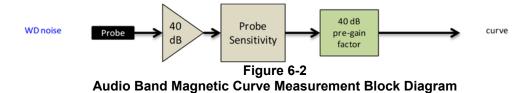
2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

	AMR Codec Investigation – VoWIFI over IMS									
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel		
ABM1 (dBA/m)	-1.14	0.30	-0.35	0.01						
ABM2 (dBA/m)	-45.45	-43.22	-46.20	-46.87	Axial	2.4GHz	IEEE 802.11b	6		
Frequency Response	Pass	Pass	Pass	Pass	Axiai	2.4612		0		
S+N/N (dB)	44.31	43.52	45.85	46.88	1					

Table 6-9 MR Codec Investigation – VoWIFI over IM

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 25 of 95
© 2020 PCTEST				REV 3.5.M


REV 3.5.M 5/22/2020

Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	1.32	0.68	-1.05	-1.88	-0.15	0.17				
ABM2 (dBA/m)	-44.19	-45.27	-45.06	-45.86	-45.48	-44.66	Axial	2.4GHz	IEEE 802.11b	6
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axia			
S+N/N (dB)	45.51	45.95	44.01	43.98	45.33	44.83				

Table 6-10 EVS Codec Investigation – VoWIFI over IMS

Mute on; Backlight off; Max Volume; Max Contrast

•

FCC ID: A3LSMN986W	Rod to be part at @ ensures	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 26 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 26 of 95
© 2020 PCTEST		•		REV 3.5.M

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Codec Investigation – OTT VoIP (EvDO)							
Codec Setting:	75kbps	6kbps	Orientation	Channel			
ABM1 (dBA/m)	11.90	11.73					
ABM2 (dBA/m)	-46.48	-46.63	Axial	384			
Frequency Response	Pass	Pass	Ana	304			
S+N/N (dB)	58.38	58.36					

Table 7-1 Codec Investigation – OTT VoIP (EvDO)

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dego 27 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 27 of 95
© 2020 PCTEST				REV 3.5.M

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

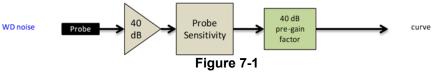
5/22/2020

Codec Inv	Codec Investigation – OTT VoIP (EDGE)							
Codec Setting:	75kbps 6kbps		Orientation	Channel				
ABM1 (dBA/m)	11.17	11.35						
ABM2 (dBA/m)	-32.61	-31.12	Axial	661				
Frequency Response	Pass	Pass	Axiai	001				
S+N/N (dB)	43.78	42.47						

Table 7-2

Table 7-3 Codec Investigation – OTT VolP (HSPA)

Codec Setting:	75kbps	6kbps	Orientation	Channel		
ABM1 (dBA/m)	11.74	11.66				
ABM2 (dBA/m)	-45.15	-44.99	Axial	9400		
Frequency Response	Pass	Pass	Aniai	3400		
S+N/N (dB)	56.89	56.65				


Table 7-4 Codec Investigation – OTT VoIP (LTE)

Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	11.49	11.61			23095	
ABM2 (dBA/m)	-50.19	-49.41	Axial	Band 12		
Frequency Response	Pass	Pass		10MHz	23095	
S+N/N (dB)	61.68	61.02	61.02			

Table 7-5 Codec Investigation – OTT VoIP (WIFI)

				<u> </u>			
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel	
ABM1 (dBA/m)	11.40	11.20					
ABM2 (dBA/m)	-45.32	-44.49	Avial	2.4GHz	IEEE 802.11b	6	
Frequency Response	Pass	Pass	Axial	2.4002			
S+N/N (dB)	56.72	55.69					

- .
- Mute on; Backlight off; Max Volume; Max Contrast Radio Configurations can be found in Section 9.II.H .

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMN986W	PCTEST Hood to be port at & ensured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 00 af 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 28 of 95
© 2020 PCTEST		·		REV 3.5.M

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 30 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

					SIMININ DY		inu		
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
71	680.5	133297	20	16QAM	1	0	11.78	-46.46	58.24
12	707.5	23095	10	16QAM	1	0	11.28	-48.97	60.25
13	782.0	23230	10	16QAM	1	0	11.66	-48.65	60.31
5	836.5	20525	10	16QAM	1	0	11.75	-47.66	59.41
66	1745.0	132322	20	16QAM	1	0	11.61	-48.98	60.59
2	1880.0	18900	20	16QAM	1	0	11.66	-48.62	60.28
25	1882.5	26365	20	16QAM	1	0	11.77	-48.19	59.96
30	2310.0	27710	10	16QAM	1	0	11.75	-46.31	58.06
7	2535.0	21100	20	16QAM	1	0	11.57	-47.26	58.83

Table 7-6 OTT VoIP (LTE FDD) SNNR by LTE Band

3. Interim Procedure for evaluation OTT VoIP (NR)

The following procedure is used to evaluate OTT VoIP (NR) given equipment limitations.

- a. This procedure is applicable for OTT VoIP (NR) voice calls that use the same protocol, codec(s), and reference level as OTT VoIP (LTE) (i.e. -20dBm0).
- b. Establish the ABM1_{NR} value by using the ABM1_{LTE} magnetic intensity for an LTE call through existing procedures and test equipment.
- c. Establish an $ABM2_{NR}$ value using factory test mode (FTM) to simulate a NR connection for the desired NR band and channel under test.
- d. The following information is documented in Section 9:
 - i. ABM2_{LTE} and ABM2_{NR} for respective tests.
 - ii. Calculate SNNR:
 - 1. ABM1 = ABM1_{LTE}
 - 2. $ABM2 = ABM2_{NR}$
 - 3. $SNNR_{NR} = [ABM1_{LTE} ABM2_{NR}] 3dB$
 - a. A 3dB margin is built in to ensure conservative results with this interim procedure.

The above is only applicable for OTT VoIP scenarios, this device does not support VoNR over IMS.

The manufacturer has confirmed the handset as designed is expected to exhibit similar audio intensity levels between an OTT VoIP call placed over a 4G LTE and a 5G Sub-6GHz data connection.

FCC ID: A3LSMN986W	PCTEST Houd to be part of & eveness	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 00 af 05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 29 of 95	
© 2020 PCTEST		·		REV 3.5.M	

4. Radio Configuration for OTT VoIP (NR)

An investigation was performed to determine the waveform, modulation, and RB configuration to be used for testing. Due to equipment limitations, the procedure outlined in 7.II.3 was used to evaluate the SNNR for each radio configuration below. DFT-s-OFDM 16QAM, 1RB, 100%RB offset was determined to be the worst-case configuration for the handset and will be used for full testing in Section 9.

NR OTT VOIP SNNR by Radio Configuration (CP-OFDM)											
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
n66	1745.0	349000	20	CP-OFDM	QPSK	1	1	11.36	-46.21	57.57	
n66	1745.0	349000	20	CP-OFDM	QPSK	1	53	11.36	-45.14	56.50	
n66	1745.0	349000	20	CP-OFDM	QPSK	1	104	11.36	-44.05	55.41	
n66	1745.0	349000	20	CP-OFDM	QPSK	53	0	11.36	-52.69	64.05	
n66	1745.0	349000	20	CP-OFDM	QPSK	53	26	11.36	-51.41	62.77	
n66	1745.0	349000	20	CP-OFDM	QPSK	53	53	11.36	-52.27	63.63	
n66	1745.0	349000	20	CP-OFDM	QPSK	106	0	11.36	-52.34	63.70	
n66	1745.0	349000	20	CP-OFDM	16QAM	1	1	11.36	-49.49	60.85	
n66	1745.0	349000	20	CP-OFDM	16QAM	1	53	11.36	-48.99	60.35	
n66	1745.0	349000	20	CP-OFDM	16QAM	1	104	11.36	-47.98	59.34	
n66	1745.0	349000	20	CP-OFDM	16QAM	53	0	11.36	-52.72	64.08	
n66	1745.0	349000	20	CP-OFDM	16QAM	53	26	11.36	-50.45	61.81	
n66	1745.0	349000	20	CP-OFDM	16QAM	53	53	11.36	-52.76	64.12	
n66	1745.0	349000	20	CP-OFDM	16QAM	106	0	11.36	-52.49	63.85	
n66	1745.0	349000	20	CP-OFDM	64QAM	1	1	11.36	-46.84	58.20	
n66	1745.0	349000	20	CP-OFDM	64QAM	1	53	11.36	-46.58	57.94	
n66	1745.0	349000	20	CP-OFDM	64QAM	1	104	11.36	-46.02	57.38	
n66	1745.0	349000	20	CP-OFDM	64QAM	53	0	11.36	-52.05	63.41	
n66	1745.0	349000	20	CP-OFDM	64QAM	53	26	11.36	-52.10	63.46	
n66	1745.0	349000	20	CP-OFDM	64QAM	53	53	11.36	-52.27	63.63	
n66	1745.0	349000	20	CP-OFDM	64QAM	106	0	11.36	-52.49	63.85	
n66	1745.0	349000	20	CP-OFDM	256QAM	1	1	11.36	-50.30	61.66	
n66	1745.0	349000	20	CP-OFDM	256QAM	1	53	11.36	-49.67	61.03	
n66	1745.0	349000	20	CP-OFDM	256QAM	1	104	11.36	-48.37	59.73	
n66	1745.0	349000	20	CP-OFDM	256QAM	53	0	11.36	-52.33	63.69	
n66	1745.0	349000	20	CP-OFDM	256QAM	53	26	11.36	-52.34	63.70	
n66	1745.0	349000	20	CP-OFDM	256QAM	53	53	11.36	-52.22	63.58	
n66	1745.0	349000	20	CP-OFDM	256QAM	106	0	11.36	-50.34	61.70	

Table 7-7
NR OTT VolP SNNR by Radio Configuration (CP-OFDM)

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 30 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

	NR OT I VOIP SNNR by Radio Configuration (DFT-S-OFDM)											
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	1	1	11.36	-47.58	58.94		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	1	53	11.36	-47.24	58.60		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	1	104	11.36	-47.81	59.17		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	50	0	11.36	-51.01	62.37		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	50	28	11.36	-50.61	61.97		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	50	56	11.36	-50.32	61.68		
n66	1745.0	349000	20	DFT-s-OFDM	π/2-BPSK	100	0	11.36	-50.26	61.62		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	1	1	11.36	-47.94	59.30		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	1	53	11.36	-48.85	60.21		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	1	104	11.36	-48.45	59.81		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	50	0	11.36	-50.61	61.97		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	50	28	11.36	-50.75	62.11		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	50	56	11.36	-50.47	61.83		
n66	1745.0	349000	20	DFT-s-OFDM	QPSK	100	0	11.36	-50.71	62.07		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	1	1	11.36	-44.64	56.00		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	1	53	11.36	-43.52	54.88		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	1	104	11.36	-42.05	53.41		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	50	0	11.36	-48.95	60.31		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	50	28	11.36	-49.92	61.28		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	50	56	11.36	-49.89	61.25		
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	100	0	11.36	-50.32	61.68		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	1	1	11.36	-46.85	58.21		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	1	53	11.36	-45.51	56.87		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	1	104	11.36	-45.06	56.42		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	50	0	11.36	-51.04	62.40		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	50	28	11.36	-50.47	61.83		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	50	56	11.36	-50.21	61.57		
n66	1745.0	349000	20	DFT-s-OFDM	64QAM	100	0	11.36	-50.69	62.05		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	1	1	11.36	-49.31	60.67		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	1	53	11.36	-48.74	60.10		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	1	104	11.36	-48.74	60.10		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	50	0	11.36	-50.53	61.89		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	50	28	11.36	-50.72	62.08		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	50	56	11.36	-50.49	61.85		
n66	1745.0	349000	20	DFT-s-OFDM	256QAM	100	0	11.36	-50.49	61.85		

Table 7-8 NR OTT VoIP SNNR by Radio Configuration (DFT-s-OFDM)

An investigation was performed to determine the worst-case NR FDD band to be used for OTT VoIP testing. NR n66 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different NR FDD bands:

Table 7-9									
OTT VoIP (NR FDD) SNNR by Bane	b								

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
n71	680.5	136100	20	DFT-s-OFDM	16QAM	1	104	11.36	-46.25	57.61
n66	1745.0	349000	20	DFT-s-OFDM	16QAM	1	104	11.36	-42.60	53.96

FCC ID: A3LSMN986W	PCTEST Prod to be part of & ensurement	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Demo 21 of 05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 31 of 95	
© 2020 PCTEST	•			REV 3.5.M	

8. FCC 3G MEASUREMENTS

I. CDMA Test Configurations

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worstcase configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:

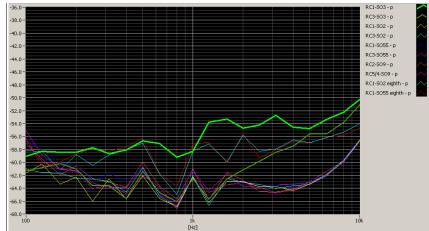


Figure 8-1 CDMA Audio Band Magnetic Noise

Table 8-1 FCC 3G ABM Measurements for A3LSMN986W (CDMA)

Configuration:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel				
ABM1 (dBA/m)	3.12	3.22	3.07						
ABM2 (dBA/m)	-44.25	-54.92	-54.82	Axial	384				
Frequency Response	Pass	Pass	Pass	Axiai					
S+N/N (dB)	47.37	58.14	57.89						

• Mute on; Backlight off; Max Volume; Max Contrast

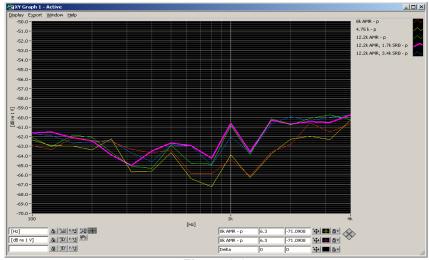
Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 00 af 05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 32 of 95	
© 2020 PCTEST		·		REV 3.5.M	

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB (thick, purple data curve) was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:



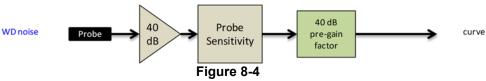

Figure 8-3 UMTS Audio Band Magnetic Noise

Table 8-2 Codec Investigation - UMTS

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
ABM1 (dBA/m)	5.57	5.56	5.31		
ABM2 (dBA/m)	-54.36	-54.63	-54.72	Axial	9400
Frequency Response	Pass	Pass	Pass		
S+N/N (dB)	59.93	60.19	60.03		

Mute on; Backlight off; Max Volume; Max Contrast

TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		D 00 (05	
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 33 of 95	
© 2020 PCTEST				REV 3.5.M	

9. T-COIL TEST SUMMARY

Consolidated Tabled Results											
			esponse rgin		netic / Verdict		SNNR dict	Margin from FCC Limit	C63.19-2011		
C63 10	9 Section	8.	3.2	8.	3.1	8.3	3.4	(dB)	Rating		
005.18	Section	Axial	Radial	Axial	Radial	Axial	Radial				
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-24.37	T4		
EvDO (OTT VoIP)	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-34.72	Т4		
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-9.86	Т3		
COM	PCS	PASS	NA	PASS	PASS	PASS	PASS	-9.00	15		
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-21.85	Τ4		
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-21.05	1.4		
	Cellular	PASS	NA	PASS	PASS	PASS	PASS				
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-32.95	Т4		
	PCS	PASS	NA	PASS	PASS	PASS	PASS				
HSPA	Cellular	PASS	NA	PASS	PASS	PASS	PASS				
(OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS	-35.55	Т4		
	PCS	PASS	NA	PASS	PASS	PASS	PASS				
	B71	PASS	NA	PASS	PASS	PASS	PASS				
	B12	PASS	NA	PASS	PASS	PASS	PASS				
	B13	PASS	NA	PASS	PASS	PASS	PASS				
	B5	PASS	NA	PASS	PASS	PASS	PASS				
LTE FDD	B66	PASS	NA	PASS	PASS	PASS	PASS	-24.58	Τ4		
	B2	PASS	NA	PASS	PASS	PASS	PASS				
	B25	PASS	NA	PASS	PASS	PASS	PASS				
	B30	PASS	NA	PASS	PASS	PASS	PASS				
	B7	PASS	NA	PASS	PASS	PASS	PASS				
LTE FDD (OTT VoIP)	B30	PASS	NA	PASS	PASS	PASS	PASS	-34.51	Τ4		
LTE TDD	B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS	-17.26	T4		
LTE TDD (OTT VoIP)	B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS	-26.29	Т4		
NR FDD (OTT VoIP)	n66	NA	NA	PASS	PASS	PASS	PASS	-10.15	Т4		
NR TDD (OTT VoIP)	n41	NA	NA	PASS	PASS	PASS	PASS	-5.19	Т3		
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS				
WLAN	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-8.21	Т3		
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS				
WLAN	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS				
(OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-20.42	Τ4		
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS				
U-NII	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-14.07	Т4		
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS	-24.88			
	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS				
U-NII	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS				
(OTT VoIP)	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS		Т4		
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS				
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS				

Table 9-1 Consolidated Tabled Results

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 24 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 34 of 95
© 2020 PCTEST				REV 3.5.M

REV 3.5.M 5/22/2020

I. Raw Handset Data

	Raw Data Results for CDMA												
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
		1013	3.10	-43.16		1.94	46.26	20.00	-26.26	T4			
	Axial	384	2.97	-44.05	-58.78	2.00	47.02	20.00	-27.02	T4	0.8, 2.4		
Cellular		777	3.03	-42.58		2.00	45.61	20.00	-25.61	T4			
Cellular		1013	-4.32	-52.34			48.02	20.00	-28.02	T4			
	Radial	384	-4.39	-48.76	-59.40	N/A	44.37	20.00	-24.37	T4	0.8, 1.2		
		777	-4.45	-50.30			45.85	20.00	-25.85	T4			

Table 9-2 Raw Data Results for CDMA

Table 9-3 Raw Data Results for GSM

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates												
		128	6.09	-28.48		2.00	34.57	20.00	-14.57	T4													
	Axial	190	6.16	-27.40	-58.78	2.00	33.56	20.00	-13.56	T4	0.8, 2.4												
GSM850		251	6.16	-29.10		2.00	35.26	20.00	-15.26	T4													
GSINIOSU		128	-1.40	-32.19			30.79	20.00	-10.79	T4													
	Radial	190	-1.60	-31.46	-59.40	N/A	29.86	20.00	-9.86	Т3	0.8, 1.2												
		251	-1.76	-35.14			33.38	20.00	-13.38	T4													
		512	6.32	-29.70		2.00	36.02	20.00	-16.02	T4													
	Axial	661	6.08	-28.39	-58.78	2.00	34.47	20.00	-14.47	T4	0.8, 2.4												
GSM1900		810	6.10	-29.63		2.00	35.73	20.00	-15.73	T4													
G3W1900	900 Radial	512	-1.26	-36.33			35.07	20.00	-15.07	T4													
		661	-1.58	-35.75	-59.40		-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	-59.40	N/A	34.17	20.00	-14.17	T4	0.8, 1.2
		810	-1.79	-35.46			33.67	20.00	-13.67	T4													

Table 9-4 Raw Data Results for UMTS

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		4132	5.55	-54.35		2.00	59.90	20.00	-39.90	T4		
	Axial	4183	5.54	-54.46	-58.78	2.00	60.00	20.00	-40.00	T4	0.8, 2.4	
UMTS V		4233	5.51	-54.38		2.00	59.89	20.00	-39.89	T4		
UNITS V		4132	-2.40	-55.46			53.06	20.00	-33.06	T4		
	Radial	4183	-2.35	-55.92	-59.40	N/A	53.57	20.00	-33.57	T4	0.8, 1.2	
		4233	-2.35	-55.84			53.49	20.00	-33.49	T4		
					-							
		1312	5.57	-54.77	-58.78	2.00	60.34	20.00	-40.34	T4		
	Axial	1412	5.55	-54.63		2.00	60.18	20.00	-40.18	T4	0.8, 2.4	
UMTS IV		1513	5.54	-54.49		2.00	60.03	20.00	-40.03	T4		
01411314		1312	-2.42	-55.37			52.95	20.00	-32.95	T4		
	Radial	1412	-2.56	-55.52	-59.40	N/A	52.96	20.00	-32.96	T4	0.8, 1.2	
		1513	-2.38	-55.66			53.28	20.00	-33.28	T4		
		9262	5.57	-54.32		2.00	59.89	20.00	-39.89	T4		
	Axial	9400	5.59	-54.23	-58.78	2.00	59.82	20.00	-39.82	T4	0.8, 2.4	
UMTS II		9538	5.60	-54.38		2.00	59.98	20.00	-39.98	T4		
011131		9262	-2.33	-55.60			53.27	20.00	-33.27	T4		
	Radial	9400	-2.61	-55.63	3 -59.40 N/A		N/A	53.02	20.00	-33.02	T4	0.8, 1.2
		9538	-2.37	-55.79			53.42	20.00	-33.42	T4		

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 35 of 95
© 2020 PCTEST		<u>.</u>		REV 3.5.M

5/22/2020

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
		20MHz	133297	4.08	-46.36		1.91	50.44	20.00	-30.44	T4			
	Axial	15MHz	133297	3.82	-45.78	-60.97	1.84	49.60	20.00	-29.60	T4	0.8, 2.4		
		10MHz	133297	3.68	-46.69	-00.97	1.87	50.37	20.00	-30.37	T4	0.0, 2.4		
LTE Band		5MHz	133297	3.29	-50.00		2.00	53.29	20.00	-33.29	T4	1		
71		20MHz	133297	-4.25	-50.16			45.91	20.00	-25.91	T4			
	Radial	15MHz	133297	-4.73	-51.26	-63.86	62.96	62.96	N/A	46.53	20.00	-26.53	T4	0.8, 1.2
Radiai	10MHz	133297	-4.87	-51.00	-03.80		IN/A	46.13	20.00	-26.13	T4	0.0, 1.2		
		5MHz	133297	-4.73	-51.87			47.14	20.00	-27.14	T4			

Table 9-5 Raw Data Results for LTE B71

Table 9-6 Raw Data Results for LTE B12

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)		Test Coordinates
		10MHz	23095	3.53	-49.43	-60.97	1.90	52.96	20.00	-32.96	T4	
	Axial	5MHz	23095	3.66	-47.77		1.90	51.43	20.00	-31.43	T4	0.8, 2.4
		3MHz	23095	3.77	-49.12		1.87	52.89	20.00	-32.89	T4	0.0, 2.4
LTE Band		1.4MHz	23095	4.20	-50.89		1.87	55.09	20.00	-35.09	T4	1
12		10MHz	23095	-4.05	-52.14		-63.86 N/A	48.09	20.00	-28.09	T4	
	Radial	5MHz	23095	-4.94	-51.68	-63.86		46.74	20.00	-26.74	T4	0.8, 1.2
Radiai	3MHz	23095	-4.77	-51.40	-03.80	IN/A	46.63	20.00	-26.63	T4	0.0, 1.2	
		1.4MHz	23095	-4.56	-51.79	1		47.23	20.00	-27.23	T4	

Table 9-7Raw Data Results for LTE B13

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	10MHz	23230	4.01	-47.26	-60.97	1.89	51.27	20.00	-31.27	T4	0.8, 2.4
LTE Band		5MHz	23230	3.80	-50.89		1.91	54.69	20.00	-34.69	T4	T4 0.8, 2.4
13	Radial	10MHz	23230	-4.82	-50.38	-63.86	N/A	45.56	20.00	-25.56	T4	0.8, 1.2
Radiai	5MHz	23230	-4.14	-50.69	-63.86	N/A	46.55	20.00	-26.55	T4	0.0, 1.2	

Table 9-8 Raw Data Results for LTE B5

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates																							
		10MHz	20525	3.94	-48.70	-60.97	1.92	52.64	20.00	-32.64	T4																								
		5MHz	20525	3.35	-48.52		1.92	51.87	20.00	-31.87	T4	0.8. 2.4																							
	Axial	3MHz	20635	3.01	-48.19		1.99	51.20	20.00	-31.20	T4																								
	Anidi	3MHz	20525	3.04	-46.19		1.92	49.23	20.00	-29.23	T4	0.0, 2.4																							
LTE Band 5		3MHz	20415	3.16	-46.37		2.00	49.53	20.00	-29.53	T4																								
LTE Ballu 5		1.4MHz	20525	3.53	-48.75		1.97	52.28	20.00	-32.28	T4																								
		10MHz	20525	-4.39	-50.94			46.55	20.00	-26.55	T4																								
	Radial	5MHz	20525	-4.94	-50.29	-63.86	62.96	62.96	62.96	62.96	62.96	62.96	62.96	62.96	62.96	62.96	62.96	_63.86	-63.86	-63.86	62.96	-63.86	-63.86	-63.86	-63.86	-63.86	-63.86	-63.86	-63.86	N/A	45.35	20.00	-25.35	T4	0.8, 1.2
		3MHz	20525	-4.01	-50.26		N/A	46.25	20.00	-26.25	T4	0.0, 1.2																							
		1.4MHz	20525	-4.23	-51.60			47.37	20.00	-27.37	T4																								

FCC ID: A3LSMN986W	Road to be part at @ memory	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 26 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 36 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

				1.0011	Dutuit	counto ito						
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132322	3.91	-48.45		2.00	52.36	20.00	-32.36	T4	
		15MHz	132322	3.88	-47.46	1	2.00	51.34	20.00	-31.34	T4	
	Axial	10MHz	132322	3.88	-47.85	-60.97	1.88	51.73	20.00	-31.73	T4	0.8, 2.4
	Axiai	5MHz	132322	3.70	-47.37	-00.97	1.99	51.07	20.00	-31.07	T4	0.0, 2.4
		3MHz	132322	3.23	-47.00	4	2.00	50.23	20.00	-30.23	T4	
		1.4MHz	132322	3.60	-48.99		1.79	52.59	20.00	-32.59	T4	
LTE Band		20MHz	132322	-4.58	-50.81			46.23	20.00	-26.23	T4	
66		15MHz	132322	-4.70	-50.84	1		46.14	20.00	-26.14	T4	
		10MHz	132322	-4.95	-50.61	1		45.66	20.00	-25.66	T4	
	Dedial	5MHz	132647	-4.58	-51.20	62.96	NIZA	46.62	20.00	-26.62	T4	0.8, 1.2
	Radial	5MHz	132322	-4.58	-49.72	-63.86 N/A 78 44	IN/A	45.14	20.00	-25.14	T4	0.0, 1.2
	-	5MHz	131997	-4.20	-48.78		48.78	44.58	20.00	-24.58	T4	
		3MHz	132322	-4.12	-49.44			45.32	20.00	-25.32	T4	
		1.4MHz	132322	-4.08	-50.66			46.58	20.00	-26.58	T4	

Table 9-9 Raw Data Results for LTE B66

Table 9-10 Raw Data Results for LTE B25

						counto no						
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	3.75	-49.33		1.94	53.08	20.00	-33.08	T4	
		15MHz	26365	3.84	-47.51		2.00	51.35	20.00	-31.35	T4	
	Axial	10MHz	26365	3.78	-48.19	-60.97	1.94	51.97	20.00	-31.97	T4	0.8, 2.4
	-	5MHz	26365	3.71	-48.14		1.92	51.85	20.00	-31.85	T4	0.0, 2.4
		3MHz	26365	3.18	-46.88		1.94	50.06	20.00	-30.06	T4	
LTE Band		1.4MHz	26365	3.97	-48.11		1.91	52.08	20.00	-32.08	T4	
25		20MHz	26365	-4.65	-50.23	3 5 9 1 4		45.58	20.00	-25.58	T4	
	Radial	15MHz	26365	-4.39	-49.95			45.56	20.00	-25.56	T4	
		10MHz	26365	-4.37	-50.49		NI/A	46.12	20.00	-26.12	T4	0.8, 1.2
		5MHz	26365	-4.36	-50.01		01 -63.86 N/A	45.65	20.00	-25.65	T4	0.0, 1.2
		3MHz	26365	-4.38	-51.74			47.36	20.00	-27.36	T4]
		1.4MHz	26365	-4.49	-51.19			46.70	20.00	-26.70	T4	

Table 9-11 Raw Data Results for LTE B2

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	18900	3.64	-49.19		1.91	52.83	20.00	-32.83	T4	
		15MHz	18900	3.85	-47.74		1.91	51.59	20.00	-31.59	T4	
	Axial	10MHz	18900	3.55	-47.17	-60.97	1.93	50.72	20.00	-30.72	T4	0.8, 2.4
		5MHz	18900	3.77	-48.39		1.98	52.16	20.00	-32.16	T4	0.0, 2.4
		3MHz	18900	3.43	-47.52		1.96	50.95	20.00	-30.95	T4	
LTE Band 2		1.4MHz	18900	3.76	-49.64		1.86	53.40	20.00	-33.40	T4	
LTE Ballu Z		20MHz	18900	-4.19	-50.33			46.14	20.00	-26.14	T4	
	Radial	15MHz	18900	-4.34	-50.14	1		45.80	20.00	-25.80	T4	
		10MHz	18900	-4.10	-50.65	5 9 8	NIZA	46.55	20.00	-26.55	T4	0.8, 1.2
	Nadiai	5MHz	18900	-4.29	-51.29		-51.29 -63.86 N/A 4	47.00	20.00	-27.00	T4	0.0, 1.2
		3MHz	18900	-3.86	-50.08			46.22	20.00	-26.22	T4]
		1.4MHz	18900	-4.67	-51.22			46.55	20.00	-26.55	T4	

Table 9-12 Raw Data Results for LTE B30

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates	
	Avial	10MHz	27710	3.50	-48.30	-60.97	2.00	51.80	20.00	-31.80	T4	0.8, 2.4	
LTE Band	Axial	5MHz	27710	3.30	-46.07	-60.97	1.93	49.37	20.00	-29.37	T4		
30	Radial	10MHz	27710	-4.10	-50.88	62.96	NIZA	46.78	20.00	-26.78	T4	0.8, 1.2	
	Radial	5MHz	27710	-4.51	-50.72	-63.86	-63.86	6 N/A	46.21	20.00	-26.21	T4	0.0, 1.2

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 27 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 37 of 95
© 2020 PCTEST				REV 3.5.M

S/22/2020

								-				
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
		20MHz	21100	3.61	-45.86		1.85	49.47	20.00	-29.47	T4	
	Axial	15MHz	21100	3.36	-46.50	-60.97	1.83	49.86	20.00	-29.86	T4	0.8. 2.4
		10MHz	21100	3.49	-45.99		1.86	49.48	20.00	-29.48	T4	0.0, 2.4
LTE Band 7		5MHz	21100	3.62	-46.45		2.00	50.07	20.00	-30.07	T4	
LIE Ballu /		20MHz	21100	-4.29	-50.87	-63.86		46.58	20.00	-26.58	T4	
	Radial	15MHz	21100	-4.81	-50.55		-63.86 N/A	45.74	20.00	-25.74	T4	0.8, 1.2
		10MHz	21100	-4.57	-50.13			IN/A	45.56	20.00	-25.56	T4
		5MHz	21100	-4.65	-50.02			45.37	20.00	-25.37	T4	

Table 9-13 Raw Data Results for LTE B7

Table 9-14Raw Data Results for LTE B41 Power Class 3

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	3.86	-38.08		2.00	41.94	20.00	-21.94	T4	
		15MHz	41490	3.87	-39.84]	2.00	43.71	20.00	-23.71	T4	
		15MHz	41055	3.39	-39.77]	2.00	43.16	20.00	-23.16	T4	
	Axial	15MHz	40620	3.05	-38.03	-61.72	2.00	41.08	20.00	-21.08	T4	0.8, 2.4
	Axiai	15MHz	40185	3.74	-39.17	-01.72	2.00	42.91	20.00	-22.91	T4	0.0, 2.4
		15MHz	39750	3.66	-39.21		1.91	42.87	20.00	-22.87	T4	
		10MHz	40620	3.79	-38.04		2.00	41.83	20.00	-21.83	T4	
LTE Band		5MHz	40620	3.71	-38.18		2.00	41.89	20.00	-21.89	T4	
41		20MHz	40620	-4.52	-42.01			37.49	20.00	-17.49	T4	
		15MHz	40620	-4.19	-41.74	1		37.55	20.00	-17.55	T4	
		10MHz	41490	-4.52	-42.74			38.22	20.00	-18.22	T4	
	Radial	10MHz	41055	-4.89	-43.41	-63.86 39 34	N/A	38.52	20.00	-18.52	T4	0.8, 1.2
	Nadiai	10MHz	40620	-4.63	-41.89		IN/A	37.26	20.00	-17.26	T4	0.0, 1.2
		10MHz	40185	-4.53	-42.84			38.31	20.00	-18.31	T4	
		10MHz	39750	-4.48	-42.02			37.54	20.00	-17.54	T4	
		5MHz	40620	-4.27	-41.75			37.48	20.00	-17.48	T4	

Table 9-15 Raw Data Results for 2.4GHz WIFI

					incounto						
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
IEEE	Axial	6	0.57	-44.04	-59.68	1.24	44.61	20.00	-24.61	T4	0.8, 2.4
802.11b	Radial	6	-7.92	-40.63	-61.32	N/A	32.71	20.00	-12.71	T4	0.8, 1.2
		1	0.92	-39.13		1.48	40.05	20.00	-20.05	T4	
	Axial	6	0.88	-39.87	-59.68	1.20	40.75	20.00	-20.75	T4	0.8, 2.4
IEEE		11	1.38	-39.73		1.34	41.11	20.00	-21.11	T4	
802.11g		1	-7.60	-41.51			33.91	20.00	-13.91	T4	
	Radial	6	-7.65	-35.86	-61.32	N/A	28.21	20.00	-8.21	Т3	0.8, 1.2
		11	-7.71	-40.49			32.78	20.00	-12.78	T4	
IEEE	Axial	6	0.13	-42.89	-59.68	1.13	43.02	20.00	-23.02	T4	0.8, 2.4
802.11n	Radial	6	-6.98	-37.54	-61.32	N/A	30.56	20.00	-10.56	T4	0.8, 1.2
IEEE	Axial	6	-0.47	-47.19	-59.68	1.32	46.72	20.00	-26.72	T4	0.8, 2.4
802.11ax SU	Radial	6	-7.82	-42.77	-61.32	N/A	34.95	20.00	-14.95	T4	0.8, 1.2
					•			•	•		
IEEE	Axial	6	1.15	-42.10	-59.68	1.60	43.25	20.00	-23.25	T4	0.8, 2.4
802.11ax RU	Radial	6	-7.91	-38.68	-61.32	N/A	30.77	20.00	-10.77	T4	0.8, 1.2

FCC ID: A3LSMN986W	Road to be post of @ wetware	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 38 of 95
© 2020 PCTEST				REV 3.5.M

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response	S+N/N (dB)	FCC Limit (dB)	FCC Limit	C63.19-2011	Test Coordinates
	Axial	20MHz	1	40	0.93	-38.99	-59.68	Margin (dB) 1.42	39.92	20.00	(dB) -19.92		0.8, 2.4
	Anai	2010112	1	40	0.93	-30.99	-53.00	1.42	39.92	20.00	-13.32	14	0.0, 2.4
		20MHz	1	36	-7.32	-41.62			34.30	20.00	-14.30	T4	
IEEE	Radial 2004Hz 2004Hz 2004Hz	1	40	-7.41	-41.48			34.07	20.00	-14.07	T4		
802.11a		20MHz	1	48	-7.29	-41.87	-61.32	32 N/A	34.58	20.00	-14.58	T4	0.8, 1.2
		20MHz	2A	56	-7.49	-42.16			34.67	20.00	-14.67	T4	0.0, 1.2
		20MHz	2C	120	-7.00	-41.76			34.76	20.00	-14.76	T4	
		20MHz	3	157	-7.42	-42.77			35.35	20.00	-15.35	T4	

Table 9-16 Raw Data Results for 5GHz WIFI IEEE 802.11a

Table 9-17 Raw Data Results for 5GHz WIFI IEEE 802.11n

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
		40MHz	1	38	-0.46	-37.70		1.24	37.24	20.00	-17.24	T4	
		40MHz	1	46	-0.42	-38.02		1.14	37.60	20.00	-17.60	T4	
		20MHz	1	40	-0.06	-38.99		1.30	38.93	20.00	-18.93	T4	
		40MHz	2A	54	-0.46	-39.42		1.21	38.96	20.00	-18.96	T4	
	Axial	20MHz	2A	56	-0.42	-39.90	-59.68	1.28	39.48	20.00	-19.48	T4	0.8, 2.4
IEEE		40MHz	2C	118	-0.11	-40.85		1.24	40.74	20.00	-20.74	T4	
802.11n		20MHz	2C	120	0.03	-42.83		1.25	42.86	20.00	-22.86	T4	
		40MHz	3	151	0.08	-39.28	-	1.23	39.36	20.00	-19.36	T4	
		20MHz	3	157	-0.04	-39.86		1.37	39.82	20.00	-19.82	T4	
	Radial	40MHz	1	38	-7.04	-41.65	-61.32	NIA	34.61	20.00	-14.61	T4	0.8, 1.2
	Raulai	20MHz	1	40	-6.91	-41.59		-61.32 N/A	34.68	20.00	-14.68	T4	0.0, 1.2

Table 9-18 Raw Data Results for 5GHz WIFI IEEE 802.11ac

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Avial	40MHz	1	38	-0.12	-42.66	-59.68	1.33	42.54	20.00	-22.54	T4	0.8, 2.4
Axial	20MHz	1	40	-0.12	-39.63	-59.00	1.75	39.51	20.00	-19.51	T4	0.0, 2.4	
	Radial	40MHz	1	38	-7.35	-42.08	-61.32	N/A	34.73	20.00	-14.73	T4	0.8, 1.2
	Radial	20MHz	1	40	-6.77	-41.58	-61.32	-01.32 N/A	34.81	20.00	-14.81	T4	0.0, 1.2

Table 9-19 Raw Data Results for 5GHz WIFI IEEE 802.11ax

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	40MHz	1	38	-0.12	-46.73	-59.68	1.33	46.61	20.00	-26.61	T4	0.8, 2.4
IEEE	Aniai	20MHz	1	40	-0.20	-45.24	-59.00	1.24	45.04	20.00	-25.04	T4	0.0, 2.4
802.11ax													
SU	Radial	40MHz	1	38	-7.16	-44.35	-61.32	N/A	37.19	20.00	-17.19	T4	0.8, 1.2
	Naulai	20MHz	1	40	-7.45	-44.39	-01.52	19/2	36.94	20.00	-16.94	T4	0.0, 1.2
	Axial	40MHz	1	38	-0.11	-44.99	-59.68	1.40	44.88	20.00	-24.88	T4	0.8, 2.4
IEEE	Anai	20MHz	1	40	0.17	-44.43	-59.00	1.25	44.60	20.00	-24.60	T4	0.0, 2.4
802.11ax													
RU	Radial	40MHz	1	38	-7.34	-42.81	-61.32	N/A	35.47	20.00	-15.47	T4	0.8, 1.2
	Naulai	20MHz	1	40	-7.10	-42.67	-01.32	IN/A	35.57	20.00	-15.57	T4	0.0, 1.2

Table 9-20 Raw Data Results for EvDO (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Cellular	Axial	384	11.77	-45.44	-58.78	1.72	57.21	20.00	-37.21	T4	0.8, 2.4
EvDO	Radial	384	4.19	-50.53	-59.40	N/A	54.72	20.00	-34.72	T4	0.8, 1.2

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 39 of 95
© 2020 PCTEST				REV 3.5.M

			i\aw	Data N	coulto IUI)			
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	11.25	-30.60	-58.78	1.59	41.85	20.00	-21.85	T4	0.8, 2.4
EDGE050	Radial	190	4.32	-41.28	-59.40	N/A	45.60	20.00	-25.60	T4	0.8, 1.2
EDGE1900	Axial	661	11.28	-30.82	-58.78	1.53	42.10	20.00	-22.10	T4	0.8, 2.4
EDGE 1900	Radial	661	4.24	-41.69	-59.40	N/A	45.93	20.00	-25.93	T4	0.8, 1.2

Table 9-21 Raw Data Results for EDGE (OTT VoIP)

Table 9-22 Raw Data Results for HSPA (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
HSPA V	Axial	4183	11.35	-44.85	-58.78	1.55	56.20	20.00	-36.20	T4	0.8, 2.4
HSPA V	Radial	4183	4.57	-53.30	-59.40	N/A	57.87	20.00	-37.87	T4	0.8, 1.2
HSPA IV	Axial	1412	11.42	-44.13	-58.78	1.59	55.55	20.00	-35.55	T4	0.8, 2.4
HOPAN	Radial	1412	4.61	-53.42	-59.40	N/A	58.03	20.00	-38.03	T4	0.8, 1.2
HSPA II	Axial	9400	11.24	-44.74	-58.78	1.63	55.98	20.00	-35.98	T4	0.8, 2.4
njra i	Radial	9400	4.65	-53.11	-59.40	N/A	57.76	20.00	-37.76	T4	0.8, 1.2

Table 9-23Raw Data Results for LTE B30 (OTT VoIP)

								/				
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	10MHz	27710	11.36	-46.39	-61.72	1.33	57.75	20.00	-37.75	T4	0.8.2.4
LTE Band	Axiai	5MHz	27710	11.59	-46.66	-01.72	1.34	58.25	20.00	-38.25	T4	0.0, 2.4
30	Radial	10MHz	27710	4.48	-50.03	-63.86	N/A	54.51	20.00	-34.51	T4	0.8. 1.2
	Raulai	5MHz	27710	4.36	-50.61	-03.00	IN/A	54.97	20.00	-34.97	T4	0.0, 1.2

Table 9-24 Raw Data Results for LTE B41 Power Class 3 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates				
		20MHz	40620	11.66	-37.98		1.36	49.64	20.00	-29.64	T4					
		15MHz	40620	11.69	-38.36		1.31	50.05	20.00	-30.05	T4					
		10MHz	40620	11.64	-38.18		1.40	49.82	20.00	-29.82	T4					
	Axial	5MHz	41490	11.62	-38.99	-61.72	1.19	50.61	20.00	-30.61	T4	0.8, 2.4				
	Axiai	5MHz	41055	11.62	-39.29	-01.72	1.12	50.91	20.00	-30.91	T4	0.8, 2.4				
		5MHz	40620	11.60	-37.56		1.47	49.16	20.00	-29.16	T4					
		5MHz	40185	11.69	-38.95		1.48	50.64	20.00	-30.64	T4					
LTE Band		5MHz	39750	11.64	-37.93		1.34	49.57	20.00	-29.57	T4					
41		20MHz	40620	4.52	-41.97			46.49	20.00	-26.49	T4					
		15MHz	40620	4.54	-41.76	-	4	-]			46.30	20.00	-26.30	T4	
		10MHz	41490	4.58	-42.97	1		47.55	20.00	-27.55	T4					
	Radial	10MHz	41055	4.47	-43.25	-63.86 N/A	47.72	20.00	-27.72	T4	0.9.1.2					
	Radiai	10MHz	40620	4.46	-41.83		-63.86 N/A	-63.86	-63.86	-63.86	-63.86 N/A	46.29	20.00	-26.29	T4	0.8, 1.2
		10MHz	40185	4.50	-42.64								.64		47.14	20.00
		10MHz	39750	4.52	-42.12				46.64	20.00	-26.64	T4				
		5MHz	40620	4.45	-41.91			46.36	20.00	-26.36	T4					

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 40 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 40 of 95
© 2020 PCTEST		· ·		REV 3.5.M

	Table 9-25		
Raw Data	Results for NR n66	(OTT V	/oIP)

Mode	Orientation	Bandwidth	Channel	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{NR} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	354000	11.36	-46.41	-46.39			57.77	54.77	20.00	-34.77	T4	
		20MHz	349000	11.36	-42.73	-46.39			54.09	51.09	20.00	-31.09	T4	
	Axial	20MHz	344000	11.36	-46.65	-46.39	-61.72	N/A	58.01	55.01	20.00	-35.01	T4	0.8, 2.4
	Axiai	15MHz	349000	11.36	-43.15	-46.39	-01.72	IN/A	54.51	51.51	20.00	-31.51	T4	0.0, 2.4
		10MHz	349000	11.36	-45.21	-46.39			56.57	53.57	20.00	-33.57	T4	
NR n66		5MHz	349000	11.36	-45.39	-46.39			56.75	53.75	20.00	-33.75	T4	
NIX 1100		20MHz	354000	4.36	-32.61	-50.61			36.97	33.97	20.00	-13.97	T4	
		20MHz	349000	4.36	-28.79	-50.61			33.15	30.15	20.00	-10.15	T4	
	Destint	20MHz	344000	4.36	-34.40	-50.61	00.00		38.76	35.76	20.00	-15.76	T4	
	Radial	15MHz	349000	4.36	-29.23	-50.61	-63.86	N/A	33.59	30.59	20.00	-10.59	T4	0.8, 1.2
		10MHz	349000	4.36	-31.49	-50.61]		35.85	32.85	20.00	-12.85	T4	
		5MHz	349000	4.36	-34.99	-50.61			39.35	36.35	20.00	-16.35	T4	

Table 9-26 Raw Data Results for NR n41 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{NR} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	528000	11.60	-28.47	-37.56			40.07	37.07	20.00	-17.07	T4	
		100MHz	523302	11.60	-27.17	-37.56			38.77	35.77	20.00	-15.77	T4	
		100MHz	518598	11.60	-26.89	-37.56			38.49	35.49	20.00	-15.49	T4	
		100MHz	513900	11.60	-28.70	-37.56			40.30	37.30	20.00	-17.30	T4	
		100MHz	509202	11.60	-28.03	-37.56			39.63	36.63	20.00	-16.63	T4	
	Axial	90MHz	518598	11.60	-27.06	-37.56	-61.72	N/A	38.66	35.66	20.00	-15.66	T4	0.8, 2.4
		80MHz	518598	11.60	-27.69	-37.56			39.29	36.29	20.00	-16.29	T4	
		60MHz	518598	11.60	-28.55	-37.56			40.15	37.15	20.00	-17.15	T4	
		50MHz	518598	11.60	-28.69	-37.56			40.29	37.29	20.00	-17.29	T4	
		40MHz	518598	11.60	-28.88	-37.56			40.48	37.48	20.00	-17.48	T4	
NR n41		20MHz	518598	11.60	-30.90	-37.56			42.50	39.50	20.00	-19.50	T4	
141		100MHz	518598	4.45	-24.86	-41.91			29.31	26.31	20.00	-6.31	T3	
		90MHz	518598	4.45	-25.38	-41.91			29.83	26.83	20.00	-6.83	T3	
		80MHz	518598	4.45	-25.17	-41.91			29.62	26.62	20.00	-6.62	T3	
		60MHz	518598	4.45	-25.22	-41.91			29.67	26.67	20.00	-6.67	Т3	
		50MHz	518598	4.45	-24.60	-41.91			29.05	26.05	20.00	-6.05	Т3	
	Radial	40MHz	534000	4.45	-23.74	-41.91	-63.86	N/A	28.19	25.19	20.00	-5.19	T3	0.8, 3.6
		40MHz	526302	4.45	-24.90	-41.91			29.35	26.35	20.00	-6.35	T3	
		40MHz	518598	4.45	-23.79	-41.91			28.24	25.24	20.00	-5.24	T3]
		40MHz	510900	4.45	-24.16	-41.91			28.61	25.61	20.00	-5.61	T3]
		40MHz	503202	4.45	-24.49	-41.91			28.94	25.94	20.00	-5.94	T3]
		20MHz	518598	4.45	-25.80	-41.91			30.25	27.25	20.00	-7.25	T4	

Table 9-27 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
IEEE	Axial	6	11.16	-45.08	-59.68	1.43	56.24	20.00	-36.24	T4	0.8, 2.4
802.11b	Radial	6	4.21	-38.20	-61.32	N/A	42.41	20.00	-22.41	T4	0.8, 1.2
		1	11.15	-38.25		1.41	49.40	20.00	-29.40	T4	
	Axial	6	11.06	-41.97	-59.68	1.39	53.03	20.00	-33.03	T4	0.8, 2.4
IEEE		11	10.98	-41.64		1.43	52.62	20.00	-32.62	T4	
802.11g		1	4.22	-36.20			40.42	20.00	-20.42	T4	
	Radial	6	4.06	-36.86	-61.32	N/A	40.92	20.00	-20.92	T4	0.8, 1.2
		11	4.25	-36.29			40.54	20.00	-20.54	T4	
IEEE	Axial	6	11.31	-43.54	-59.68	1.50	54.85	20.00	-34.85	T4	0.8, 2.4
802.11n	Radial	6	4.15	-38.88	-61.32	N/A	43.03	20.00	-23.03	T4	0.8, 1.2
IEEE	Axial	6	11.32	-44.66	-59.68	1.69	55.98	20.00	-35.98	T4	0.8, 2.4
802.11ax SU	Radial	6	3.89	-43.01	-61.32	N/A	46.90	20.00	-26.90	T4	0.8, 1.2
				•	•				•		
IEEE	Axial	6	11.83	-43.85	-59.68	1.09	55.68	20.00	-35.68	T4	0.8, 2.4
802.11ax RU	Radial	6	4.16	-41.81	-61.32	N/A	45.97	20.00	-25.97	T4	0.8, 1.2

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 41 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 41 of 95
© 2020 PCTEST				REV 3.5.M

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	20MHz	1	40	10.35	-41.39	-59.68	1.23	51.74	20.00	-31.74	T4	0.8, 2.4
		20MHz	1	36	4.34	-40.55			44.89	20.00	-24.89	T4	
IEEE		20MHz	1	40	4.38	-40.50			44.88	20.00	-24.88	T4	
802.11a	Radial	20MHz	1	48	4.36	-41.79	-61.32	N/A	46.15	20.00	-26.15	T4	0.8, 1.2
	Naulai	20MHz	2A	56	4.30	-41.62	-01.32	IN/A	45.92	20.00	-25.92	T4	0.0, 1.2
		20MHz	2C	120	4.39	-41.57			45.96	20.00	-25.96	T4	
		20MHz	3	157	4.18	-41.14			45.32	20.00	-25.32	T4	

 Table 9-28

 Raw Data Results for 5GHz WIFI IEEE 802.11a (OTT VoIP)

Table 9-29Raw Data Results for 5GHz WIFI IEEE 802.11n (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	10.72	-38.29		1.24	49.01	20.00	-29.01	T4	
		40MHz	1	46	11.07	-40.75		1.52	51.82	20.00	-31.82	T4	
		20MHz	1	40	11.01	-39.51	-59.68	1.13	50.52	20.00	-30.52	T4	0.8, 2.4
		40MHz	2A	54	11.06	-42.17		1.21	53.23	20.00	-33.23	T4	
	Axial	20MHz	2A	56	11.51	-40.05		1.19	51.56	20.00	-31.56	T4	
IEEE		40MHz	2C	118	10.55	-41.56		1.10	52.11	20.00	-32.11	T4	
802.11n		20MHz	2C	120	11.04	-40.06		1.38	51.10	20.00	-31.10	T4	
		40MHz	3	151	11.24	-41.76		1.28	53.00	20.00	-33.00	T4	
		20MHz	3	157	11.11	-40.85		1.19	51.96	20.00	-31.96	T4	
	Radial	40MHz	1	38	4.22	-41.04	-61.32	N/A	45.26	20.00	-25.26	T4	0.8, 1.2
	Naulai	20MHz	1	40	4.33	-41.91	-01.32	IN/A	46.24	20.00	-26.24	T4	0.0, 1.2

Table 9-30 Raw Data Results for 5GHz WIFI IEEE 802.11ac (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	40MHz	1	38	11.42	-40.44	-59.68	1.22	51.86	20.00	-31.86	T4	0.8, 2.4
IEEE	Aniai	20MHz	1	40	11.31	-41.58	-09.00	1.23	52.89	20.00	-32.89	T4	0.0, 2.4
802.11ac													
002.1140	Radial	40MHz	1	38	4.16	-41.42	-61.32	N/A	45.58	20.00	-25.58	T4	0.8, 1.2
	raulai	20MHz	1	40	4.37	-42.19	-01.32	N/A	46.56	20.00	-26.56	T4	0.0, 1.2

Table 9-31 Raw Data Results for 5GHz WIFI IEEE 802.11ax (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	40MHz	1	38	11.23	-40.59	-59.68	1.33	51.82	20.00	-31.82	T4	0.8, 2.4
IEEE	Axidi	20MHz	1	40	10.92	-40.83	-59.06	1.08	51.75	20.00	-31.75	T4	0.0, 2.4
802.11ax													
SU	Radial	40MHz	1	38	4.41	-42.07	-61.32	N/A	46.48	20.00	-26.48	T4	0.8, 1.2
	Naulai	20MHz	1	40	4.39	-41.93	-01.32	N/A	46.32	20.00	-26.32	T4	0.0, 1.2
	Axial	40MHz	1	38	11.14	-41.85	-59.68	1.26	52.99	20.00	-32.99	T4	0.8, 2.4
IEEE	Axiai	20MHz	1	40	11.15	-39.19	-09.00	1.44	50.34	20.00	-30.34	T4	0.0, 2.4
802.11ax													
RU	Radial	40MHz	1	38	4.32	-43.50	-61.32	N/A	47.82	20.00	-27.82	T4	0.8, 1.2
	Radiai	20MHz	1	40	4.27	-41.98	-01.32	IN/A	46.25	20.00	-26.25	T4	0.0, 1.2

FCC ID: A3LSMN986W	PCTEST Prod to be part of & ensurement	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 42 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 42 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

II. Test Notes

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone→Settings→Other Call Settings→Hearing aid compatibility) was set to ON for Frequency Response compliance
- 4. Speech Signal: 3GPP2 Normal Test Signal
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. CDMA

- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)

C. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);
- D. UMTS
 - 1. Power Configuration: TPC= "All 1s";
 - 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- E. LTE FDD
 - 1. Power Configuration: TPC = "Max Power"
 - 2. Radio Configuration: 16QAM, 1RB, 0RB offset
 - 3. Vocoder Configuration: EVS Primary NB 5.9kbps
 - 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 5 at 3MHz is the worst-case for the Axial probe orientation. LTE Band 66 at 5MHz bandwidth is the worst-case for the Radial probe orientation.

F. LTE TDD

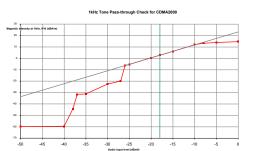
- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 0RB offset
- 3. Power Class 3 Uplink-Downlink configuration: 1
- 4. Vocoder Configuration: EVS Primary NB 5.9kbps
- 5. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 3) at 15MHz is the worst-case for the Axial probe orientation. LTE Band 41 (Power Class 3) at 10MHz is the worst-case for the Radial probe orientation.

FCC ID: A3LSMN986W	Road to be part of the means	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 42 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 43 of 95
© 2020 PCTEST		·		REV 3.5.M

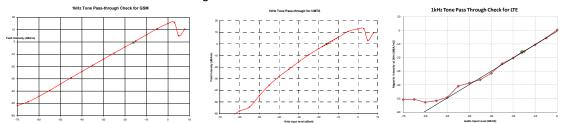
^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- G. WIFI
 - 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11g/a: 16QAM, 24Mbps
 - c. IEEE 802.11n/ac 20MHz: 16QAM, MCS 3
 - d. IEEE 802.11ax SU 20MHz: BPSK, MCS 0
 - e. IEEE 802.11n/ac 40MHz: 64QAM, MCS 6
 - f. IEEE 802.11ax SU 40MHz: QPSK, MCS 1
 - 2. RU Index
 - a. IEEE 802.11ax RU 20MHz: 0
 - b. IEEE 802.11ax RU 40MHz: 61
 - 3. Vocoder Configuration: WB AMR 6.60kbps
 - 4. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11g is the worst-case for both Axial and Radial probe orientations.
 - 5. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11n 40MHz BW (U-NII 1) is the worst-case for the Axial probe orientation. IEEE 802.11a 20MHz BW (U-NII 1) is the worst-case for the Radial probe orientation.
- H. OTT VoIP
 - 1. Vocoder Configuration: 6kbps
 - 2. EvDO Configuration
 - a. Revision: A
 - 3. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
 - 4. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
 - 5. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. LTE Band 30 was the worst-case band from Table 7-6 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 30 at 10MHz is the worst-case for both Axial and Radial probe orientations, however, LTE Band 30 at 10MHz only supports one channel therefore low and high channels were not evaluated.
 - 6. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. Power Class 3 Uplink-Downlink configuration: 1
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 3) at 5MHz is the worst-case for the Axial probe orientation. LTE Band 41 (Power Class 3) at 10MHz is the worst-case for the Radial probe orientation.
 - 7. NR FDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: DFT-s-OFDM, 16QAM, 1RB, 100% RB Offset

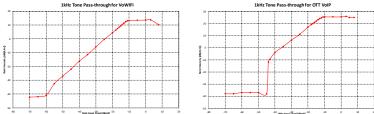
FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 44 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 44 of 95
© 2020 PCTEST		•		REV 3.5.M


5/22/2020

- c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, the procedure outlined in Section 7.II.3 was followed to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.
- d. NR Band 66 was the worst-case band from Table 7-9 and was used to test both Axial and Radial probe orientations.
- e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n66 at 20MHz is the worst-case for both Axial and Radial probe orientations.
- 8. NR TDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: DFT-s-OFDM, 16QAM, 1RB, 100% RB Offset
 - c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, the procedure outlined in Section 7.II.3 was followed to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations. The ABM1 used for the Radial probe orientation was an additional ABM1 measurement due to the change in test coordinates for n41 from other OTT VoIP air interfaces.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n41 at 100MHz is the worst-case for the Axial probe orientation. NR n41 at 40MHz bandwidth is the worst-case for the Radial probe orientation.
- 9. WIFI Configuration:
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g/a: 16QAM, 24Mbps
 - iii. IEEE 802.11n/ac 20MHz: 16QAM, MCS 3
 - iv. IEEE 802.11ax SU 20MHz: BPSK, MCS 0
 - v. IEEE 802.11n/ac 40MHz: 64QAM, MCS 6
 - vi. IEEE 802.11ax SU 40MHz: QPSK, MCS 1
 - b. RU Index
 - i. IEEE 802.11ax RU 20MHz: 0
 - ii. IEEE 802.11ax RU 40MHz: 61
 - c. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11g is the worst-case for both Axial and Radial probe orientations.
 - d. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11n 40MHz BW (U-NII 1) is the worst-case for the Axial probe orientation. IEEE 802.11a 20MHz BW (U-NII 1) is the worst-case for the Radial probe orientation.


FCC ID: A3LSMN986W	Road to be part at @ memory	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 45 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 45 of 95
© 2020 PCTEST				REV 3.5.M

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: A3LSMN986W	PCTEST. Bould be part of @ encount	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 46 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 46 of 95
© 2020 PCTEST		· · · · · · · · · · · · · · · · · · ·		REV 3.5.M

5/22/2020

IV. T-Coil Validation Test Results

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.929	PASS
Environmental Noise	< -58 dBA/m	-58.78	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.222	PASS
Environmental Noise	< -58 dBA/m	-59.40	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

 Table 9-32

 Helmholtz Coil Validation Table of Results – 05/26/2020

Table 9-33Helmholtz Coil Validation Table of Results – 06/01/2020

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.905	PASS
Environmental Noise	< -58 dBA/m	-60.97	PASS
Frequency Response, from limits	> 0 dB	0.50	PASS

Table 9-34Helmholtz Coil Validation Table of Results – 06/08/2020

	Item	Target	Result	Verdict
Axial				
Magnetic Intensity, -10 dBA/m		-10 ± 0.5 dB	-9.991	PASS
Environmental N	oise	< -58 dBA/m	-61.72	PASS
Frequency Response, from limits		> 0 dB	0.70	PASS
Radial				
Magnetic Intensi	ty, -10 dBA/m	-10 ± 0.5 dB	-10.116	PASS
Environmental Noise		< -58 dBA/m	-63.86	PASS
Frequency Response, from limits		> 0 dB	0.70	PASS
CID: A3LSMN986W	Hoad to be part of S research	HAC (T-COIL) TEST RE	PORT	Approved b Quality Mana
namo.	Tost Dates:	DUT Type:		

			g
Filename:	Test Dates:	DUT Type:	Page 47 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset	Fage 47 01 95
© 2020 PCTEST			REV 3.5.M
			5/22/2020

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.874	PASS
Environmental Noise	< -58 dBA/m	-59.68	PASS
Frequency Response, from limits	> 0 dB	0.50	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.115	PASS
Environmental Noise	< -58 dBA/m	-61.32	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 9-35Helmholtz Coil Validation Table of Results – 06/15/2020

Table 9-36Helmholtz Coil Validation Table of Results – 06/22/2020

Item	Target	Result	Verdict
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.125	PASS
Environmental Noise	< -58 dBA/m	-62.49	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 49 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 48 of 95
© 2020 PCTEST				REV 3.5.M

ABM1 Magnetic Field Distribution Scan Overlays V.

Figure 9-1 T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots. The NR TDD (n41) Radial measurement location is indicated by a blue cursor.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 40 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 49 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

10. MEASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)							0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Table 10-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 50 af 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 50 of 95
© 2020 PCTEST		·		REV 3.5.M

KEV 3.5.M 5/22/2020

11. EQUIPMENT LIST

Table 11-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Temperature / Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	9/6/2018	Biennial	9/6/2020	2655082910
Listen	SoundConnect	Microphone Power Supply	9/6/2018	Biennial	9/6/2020	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/6/2018	Biennial	9/6/2020	23792992
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/4/2020	Annual	2/4/2021	162125
Rohde & Schwarz	CMW500	Radio Communication Tester	5/21/2020	Annual	5/21/2021	128635
Seekonk	NC-100	Torque Wrench (8" lb)	7/18/2019	Annual	7/18/2020	N/A
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A
TEM	Helmholtz Coil	Helmholtz Coil	10/10/2018	Biennial	10/10/2020	SBI 1052
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1129

FCC ID: A3LSMN986W	POTEST Road to be port of @ memory	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 51 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 51 of 95
© 2020 PCTEST		<u>.</u>		REV 3.5.M

5/22/2020

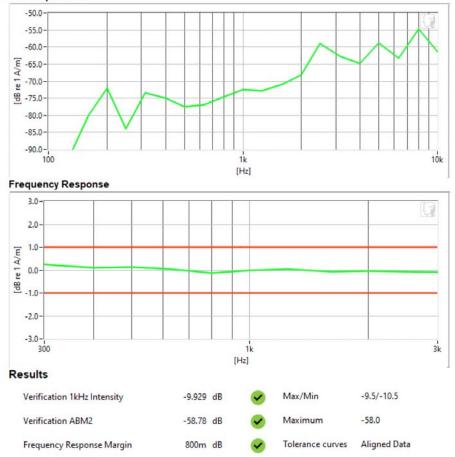
12. TEST DATA

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 52 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 52 of 95
© 2020 PCTEST		·		REV 3.5.M

S/22/2020

05/26/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

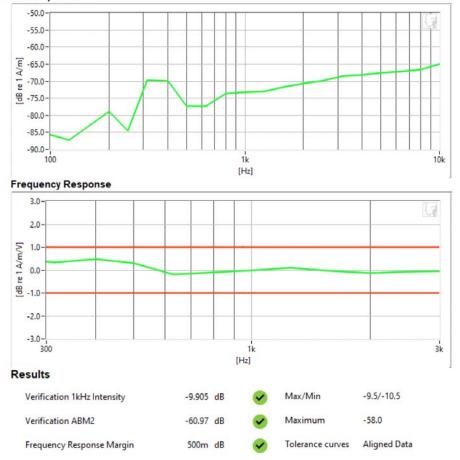
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Not to be part of & exercise	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 52 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 53 of 95
© 2020 PCTEST				REV 3.5.M

06/01/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

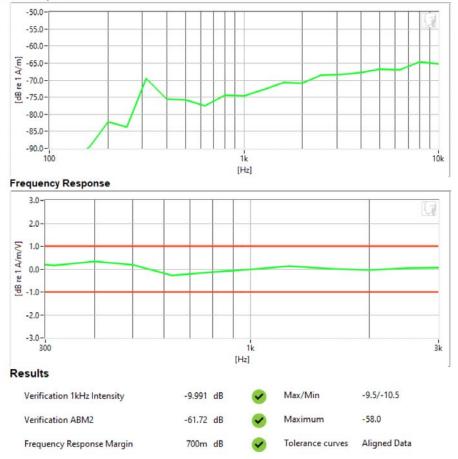
Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 54 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 54 of 95
© 2020 PCTEST				REV 3.5.M

06/08/2020


DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

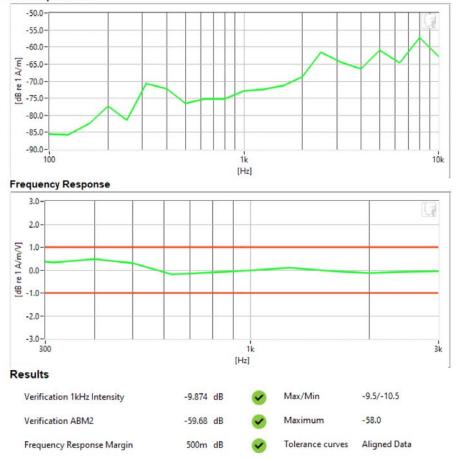
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	Hoad to be part of @ menues	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga EE of OE
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 55 of 95
© 2020 PCTEST		•		REV 3.5.M

06/15/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

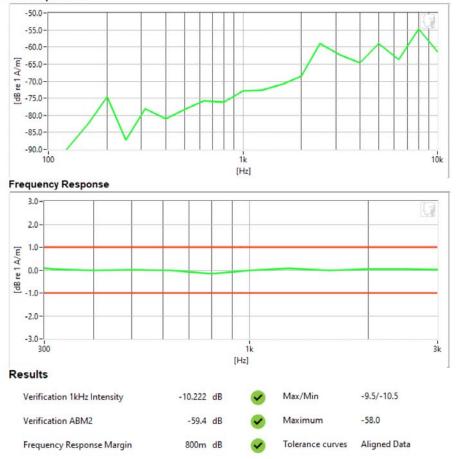
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga EG af OF
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 56 of 95
© 2020 PCTEST		·		REV 3.5.M

05/26/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

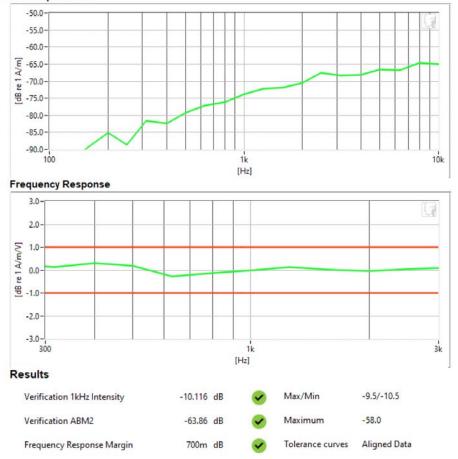
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 57 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 57 of 95
© 2020 PCTEST				REV 3.5.M

06/08/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

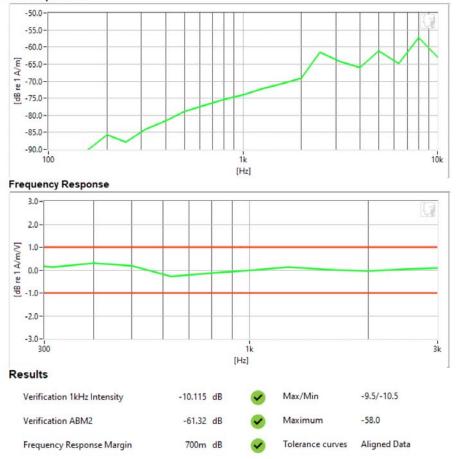
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 59 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 58 of 95
© 2020 PCTEST		·		REV 3.5.M

06/15/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

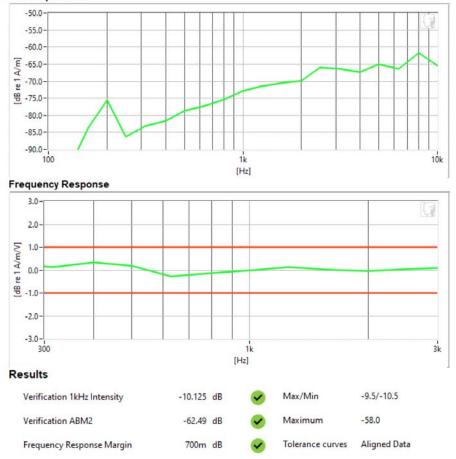
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Hoad to be port of @ interest	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 50 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 59 of 95
© 2020 PCTEST				REV 3.5.M

06/22/2020

DUT: HH Coil – SN: SBI 1052 Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

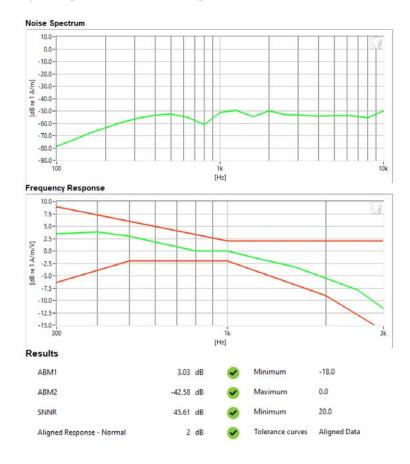
Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Hoad to be part of @ interest	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 60 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 60 of 95
© 2020 PCTEST		·		REV 3.5.M

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: Cellular CDMA
- Channel: 777
- Speech Signal: 3GPP2 Normal Test Signal

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 61 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 61 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM850
- Channel: 190
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum 10.0 0.0--10.0--20.0--30.0-[w/V 1=2 80.0--40.0-80.0--60.0--70.0 -80.0--90.0-100 1k [Hz] Frequency Response 10.0 7.5 5.0 2.5 [dB re 1 A/m/V] 0.0--2.5--5.0 -7.5 -10.0--12.5--15.0-1İ [Hz] Results ABM1 Minimum -18.0 6.16 dB ABM2 -27.4 dB Maximum 0 33.56 dB SNNR Minimum 20 Aligned Response - Normal 2 dB Tolerance curves Aligned Data 0

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 62 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 62 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

Mode: GSM1900

- Channel: 661
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum 10.0 0.0--10.0--20.0--30.0-[w/V 1=2 80.0--40.0-80.0--60.0--70.0--80.0 -90.0-100 1k [Hz] Frequency Response 10.0 7.5 5.0 2.5 [dB re 1 A/m/V] 0.0--2.5--5.0 -7.5 -10.0--12.5--15.0-1İ [Hz] Results ABM1 Minimum -18.0 6.08 dB ABM2 -28.39 dB Maximum 0.0 34.47 dB 20.0 SNNR Minimum Aligned Response - Normal 2 dB Tolerance curves Aligned Data 0

PCTEST 2020

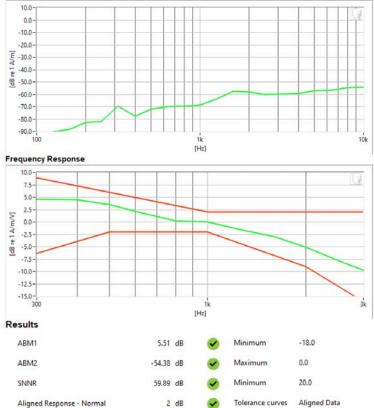
FCC ID: A3LSMN986W	Road to be part at @ minutes	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 62 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 63 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS V
- Channel: 4233
- Speech Signal: 3GPP2 Normal Test Signal

PCTEST 2020

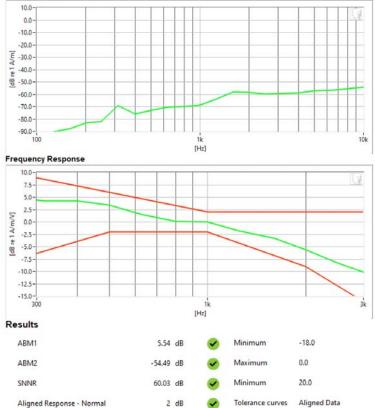
FCC ID: A3LSMN986W	PCTEST Hoad to be part of & memory	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 64 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 64 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS IV
- Channel: 1513
- Speech Signal: 3GPP2 Normal Test Signal

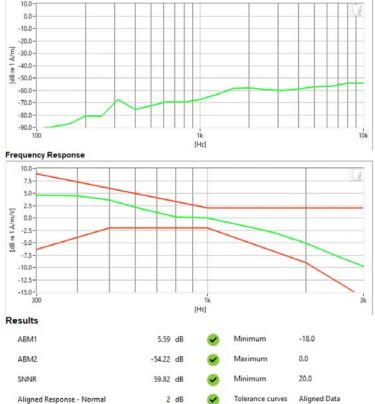
PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 65 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 65 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS II
- Channel: 9400
- Speech Signal: 3GPP2 Normal Test Signal

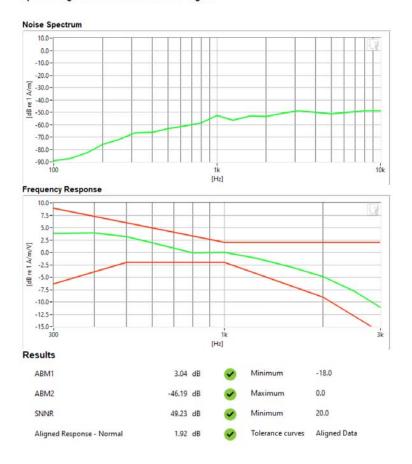
PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 66 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 66 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

06/05/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE FDD Band 5
- Bandwidth: 3MHz
- Channel: 20525
- Speech Signal: 3GPP2 Normal Test Signal

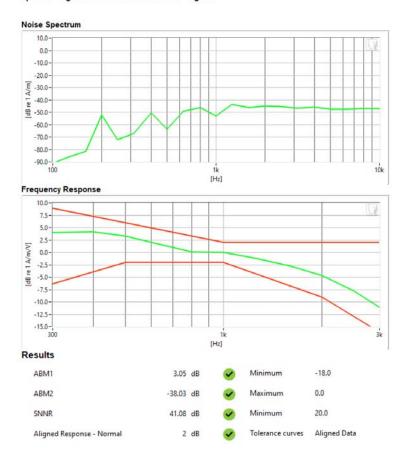
PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 67 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 67 of 95
© 2020 PCTEST		<u>.</u>		REV 3.5.M

5/22/2020

06/08/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE TDD Band 41
- Bandwidth: 15MHz
- Channel: 40620
- Speech Signal: 3GPP2 Normal Test Signal

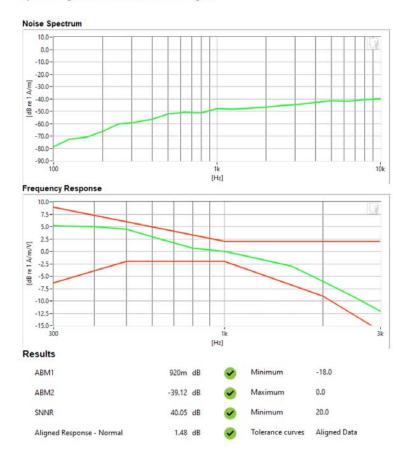
PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 69 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 68 of 95
© 2020 PCTEST		·		REV 3.5.M

06/16/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11g
- Channel: 1
- Speech Signal: 3GPP2 Normal Test Signal

PCTEST 2020

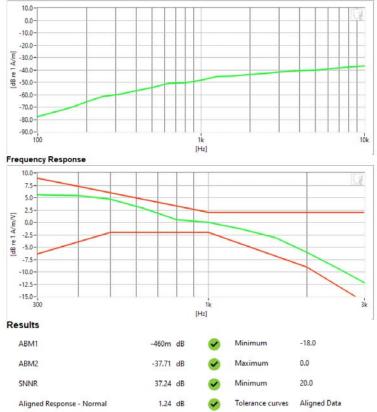
FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 60 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 69 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

06/16/2020

DUT: A3LSMN986W Type: Portable Handset Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 5GHz WIFI
- Standard: IEEE 802.11n (U-NII 1)
- Bandwidth: 40MHz
- Channel: 38
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 70 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 70 of 95
© 2020 PCTEST		·		REV 3.5.M

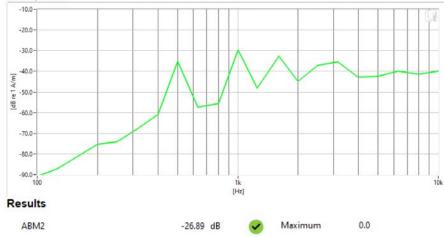
5/22/2020

06/11/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: NR TDD n41
- · Bandwidth: 100MHz
- Channel: 518598

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 71 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 71 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: Cellular CDMA
- Channel: 384

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 70 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 72 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM850
- Channel: 190

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 72 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 73 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM1900
- Channel: 810

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Hould be part of @ viewer	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 74 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 74 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS V
- Channel: 4132

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Hold to be part of & revenues	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 75 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 75 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS IV
- Channel: 1312

PCTEST 2020

FCC ID: A3LSMN986W	Road to be part of & eveneer	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 76 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 76 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS II
- Channel: 9400

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dego 77 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 77 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

06/10/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE FDD Band 66
- Bandwidth: 5MHz
- Channel: 131997

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Not to be part of & exercise	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 79 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 78 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

06/09/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE TDD Band 41
- Bandwidth: 10MHz
- Channel: 40620

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Had to be part of & revenue	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 70 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 79 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

06/16/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11g
- Channel: 6

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Hold to be part of & revenues	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 90 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 80 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

06/16/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 5GHz WIFI
- Standard: IEEE 802.11a (U-NII 1)
- Bandwidth: 20MHz
- Channel: 40

Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 91 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 81 of 95
© 2020 PCTEST				REV 3.5.M

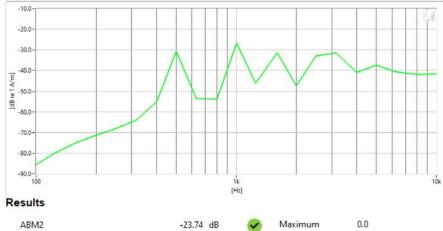
5/22/2020

6/22/2020

DUT: A3LSMN986W Type: Portable Handset

Serial: 1248M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: NR TDD n41
- · Bandwidth: 40MHz
- Channel: 534000

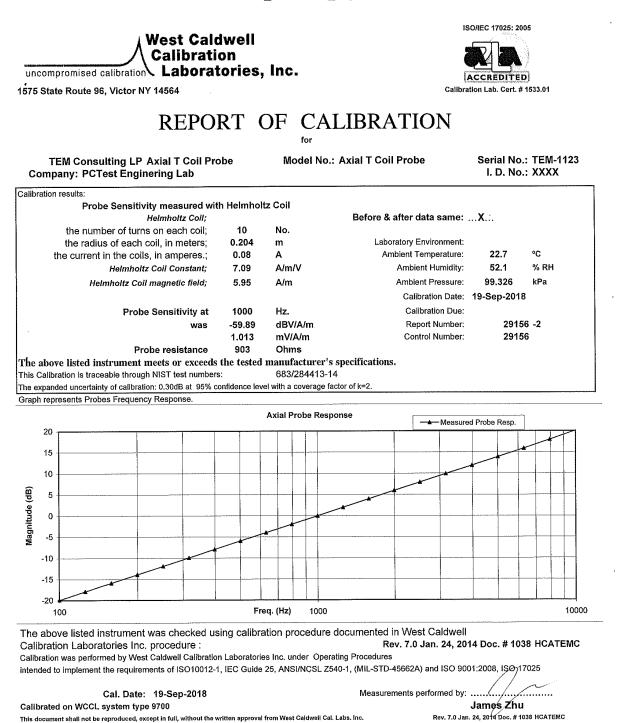
Noise Spectrum

PCTEST 2020

FCC ID: A3LSMN986W	PCTEST Pool to be port of @ interest	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 92 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 82 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

13. CALIBRATION CERTIFICATES


FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 82 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 83 of 95
© 2020 PCTEST				REV 3.5.M

5/22/2020

West Caldwell Calibration La	aboratories Inc.
Certificate of Ca	
for	
Submitted By:	
Customer: Andrew Harwel Company: PCTest Enginee Address: 6660-B Dobbin Columbia	ering Lab
The subject instrument was calibrated to the indicated specifica National Institute of Standards and Technology or to accepted This document certifies that the instrument met the following sp submitter.	values of natural physical constants.
West Caldwell Calibration Laboratories Procedure No. AX	KIAL T C TEM C
Upon receipt for Calibration, the instrument was found to be: Within (X)	12/4/2019
tolerance of the indicated specification. See attached Report of The information supplied relates to the calibrated item listed al West Caldwell Calibration Laboratories' calibration control sy 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25	bove. estem meets the requirements, ISO
Note: With this Certificate, Report of Calibration is included.	Approved by: Fc
Calibration Date: 19-Sep-18	Felix Christopher (QA Mgr.)
Certificate No: 29156 -2	ISO/IEC 17025:2005
QA Doc. #1051 Rev. 2.0 10/1/01 Certificate Page 1 of 1 West Caldwell Calibration uncompromised calibration 1575 State Route 96, Victor, NY 14564, U.S.A.	ACCREDITED Calibration Lab. Cert. # 1533.01

FCC ID: A3LSMN986W	Road to be part of @ minutes	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 94 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 84 of 95
© 2020 PCTEST				REV 3.5.M

HCATEMC_TEM-1123_Sep-19-2018

Page 1 of 2

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 95 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 85 of 95
© 2020 PCTEST		·		REV 3.5.M

5/22/2020

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564

Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab for Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Test	Function	Tolerance		Measured values			
•••••				Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89			
			dB				
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
•			-6	-6.03			
			-12	-12.05			
	W ^{an} Wessenmann.		Hz				
3.0	Probe Frequency Response		100	-19.9			
			126	-17.9			
			158	-15.9			
			200	-13.9			
			251	-11.9			
			316	-9.9			
			398	-7.9			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	5.9			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
•			6310	15.9			
			7943	18.0			
			10000	20.1			

Instruments used for c	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

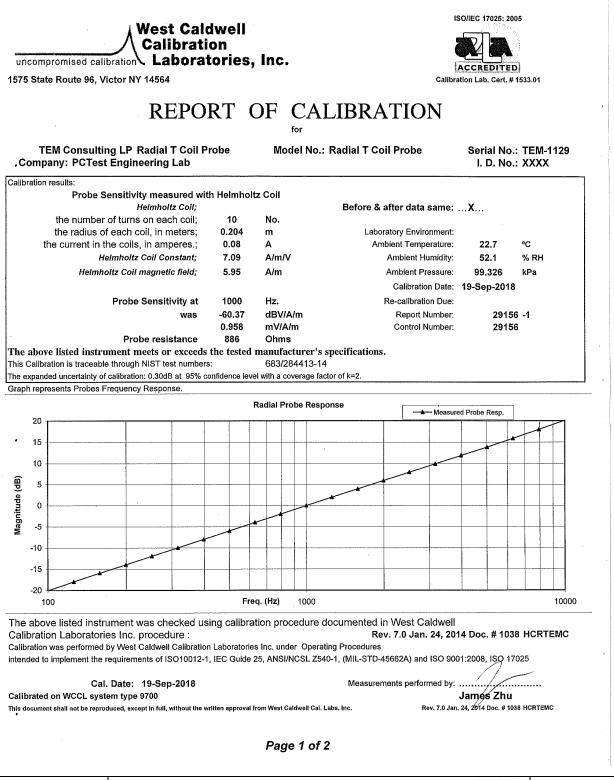
Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2


FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 96 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 86 of 95
© 2020 PCTEST		•		REV 3.5.M

5/22/2020

West (Caldwell Cal	libratio	n Laborato	ories Inc.	
Cert	ificate	of C	Calib	ration	
					E
	RADIA Manufactured Model No: Serial No: Calibration Ro	-	ROBE TEM CONSULT RADIAL T COIL TEM-1129 29156		
		Submitted B	y:		100 100 100 100 100 100 100 100 100 100
	Customer:	Andrew]	Harwell		
	Company: Address:		Engineering Lab Pobbin Road A	MD 21045	
This document certifi submitter.	es that the instrument	t met the follo	-	IC /	
Upon receipt for Cali	bration, the instrume	nt was found	to be:	12/4/2018	1000 - 10
Within	n (X)			12/4/2018	
The information supp West Caldwell Calibr	cated specification. Sed blied relates to the cali cation Laboratories' c: 6662A, ANSI/NCSL Z:	brated item li alibration con	sted above. trol system meets t	the requirements, ISO	
Note: With this Certificate	, Report of Calibration is i	ncluded.	Approve	d by: FC	
Calibration Date:	19-Sep-18		Felix Ch	ristopher (QA Mgr.)	
Certificate No:	29156 - 1			VIEC 17025-2005	100 100 100 100 100 100 100 100 100 100
QA Doc. #1051 Rev. 2.0 10/1/01	Certi	flcate Page 1 o		D/IEC 17025:2005	Ĩ
٨	Vest Caldwell				
	Calibration		r		

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 97 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 87 of 95
© 2020 PCTEST		·		REV 3.5.M

HCRTEMC_TEM-1129_Sep-19-2018

FCC ID: A3LSMN986W	PCTEST Nout to be part of @ energies	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 99 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	/2020 - 06/22/2020 Portable Handset		Page 88 of 95
© 2020 PCTEST				REV 3.5.M

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab ^{for} Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Test	Function	Tolera	Tolerance		Measured values		
	and decomposition of the second second second second second second second second second second second second se			Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37			
			dB				
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
			-6	-6.03			
			-12	-12.05			
			Hz				
3.0	Probe Frequency Response		100	-20.0			
			126	-17.9			
			158	-15.9			
			200	-14.0			
			251	-12.0			
			316	-10.0			
			398	-8.0			
			501	-6.0			
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	6.0			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
			6310	15.9			
			7943	18.0			
			10000	20.1			

nstruments used for a	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 89 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset	Portable Handset	
© 2020 PCTEST				REV 3.5.M

5/22/2020

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 00 of 05
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		Page 90 of 95
© 2020 PCTEST		·		REV 3.5.M

REV 3.5.M 5/22/2020

15. REFERENCES

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 91 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		
© 2020 PCTEST		•		REV 3.5.M

- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMN986W		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 92 of 95
1M2004170066-18-R1.A3L	05/26/2020 - 06/22/2020	Portable Handset		
© 2020 PCTEST		•		REV 3.5.M

5/22/2020