

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

PART 2 RF EXPOSURE EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 06/12/2020 - 06/24/2020 Test Site/Location: PCTEST, Columbia, MD, USA Document Serial No.: 1M2004170066-22.A3L

FCC ID:

A3LSMN986W

APPLICANT:

DUT Type: Application Type: FCC Rule Part(s): Model: Device Serial Numbers:

SAMSUNG ELECTRONICS CO., LTD.

Portable Handset Certification CFR §2.1093 SM-N986W Pre-Production Samples [SN: 32429M, 32466M, D0387M, 32454M]

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 1 of 50
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 1 of 58
0	2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	.3		
2	RF EXPC	SURE LIMITS	.5		
3	TIME VA	RYING TRANSMISSION TEST CASES	.7		
4	FCC ME	ASUREMENT PROCEDURES (FREQ < 6 GHZ)	.9		
5	MEASUF	REMENT TEST SETUP (FREQ < 6 GHZ)	18		
6	TEST CC	DNFIGURATIONS (FREQ < 6 GHZ)	21		
7	CONDUC	CTED TX CASES (FREQ < 6 GHZ)	24		
8	SYSTEM	VERIFICATION (FREQ < 6 GHZ)	45		
9	SAR TES	ST RESULTS (FREQ < 6 GHZ)	47		
10	EQUIPMENT LIST				
11	MEASUF	REMENT UNCERTAINTIES	55		
12	CONCLU	ISION	56		
13	REFERE	NCES	57		
APPEN APPEN		VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS			
APPEN	IDIX C:	SAR SYSTEM VALIDATION			
APPEN	IDIX D:	TEST SETUP PHOTOGRAPHS			
APPEN	IDIX E:	TEST SEQUENCES			
APPEN	IDIX F:	TEST PROCEDURES FOR SUB6 NR + NR RADIO			
APPEN	IDIX G:	CALIBRATION CERTIFICATES			

	FCC ID: A3LSMN986W	Froud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 2 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 2 of 58
0	2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
GSWGPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
LTE Band 38	Voice/Data	2572.5 - 2617.5 MHz
NR Band n71	Data	665.5 - 695.5 MHz
NR Band n66 (AWS)	Data	1712.5 - 1777.5 MHz
NR Band n41	Data	2506.02 - 2679.99 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
MST	Data	555 Hz - 8.33 kHz
WPT	N/A	110 kHz - 148 kHz

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 2 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 3 of 58
0	2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

1.2 Time-Averaging Algorithm for RF Exposure Compliance

The device under test (DUT) contains:

a. Qualcomm[®] SDX55M modem supporting 2G/3G/4G/5G WWAN technologies

Qualcomm[®] SDX55M modems are enabled with Qualcomm[®] Smart Transmit feature. This feature performs time averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time.

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of SAR_design_target, below the predefined time-averaged power limit (i.e., Plimit for sub-6 radio), for each characterized technology and band.

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} for frequencies < 6 GHz.

Note that the device uncertainty for sub-6GHz WWAN is 1.0dB for this DUT and the reserve power margin is 3 dB.

This purpose of the Part 2 report is to demonstrate the DUT complies with FCC RF exposure requirement under Tx varying transmission scenarios, thereby validity of Qualcomm[®] Smart Transmit feature implementation in this device. It serves to compliment the Part 0 and Part 1 Test Reports to justify compliance per FCC and ISED.

1.3 Bibliography

Report Type	Report Serial Number
Part 0 SAR Test Report	1M2004170066-20.A3L
Part 1 SAR Test Report	1M2004170066-01.A3L
RF Exposure Compliance Summary	1M2004170066-21.A3L

FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 4 of 58
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Fage 4 01 56
© 2020 PCTEST				REV 1.0

2 RF EXPOSURE LIMITS

2.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

2.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

2.3 RF Exposure Limits for Frequencies Below 6 GHz

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR _{Head}	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

Table 2-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMN986W	Proud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 5 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 5 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

2.4 RF Exposure Limits for Frequencies Above 6 GHz

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 2-2 Human Exposure Limits Specified in FCC 47 CFR §1.1310							
Human Exposi	Human Exposure to Radiofrequency (RF) Radiation Limits						
Frequency Range [MHz]Power Density [mW/cm²]Averaging Time [Minutes]							
(A) Limit	s for Occupational / Controlled I	Invironments					
1,500 - 100,000	5.0	6					
(B) Limits for General Population / Uncontrolled Environments							
1,500 – 100,000	1.0	30					

Note: 1.0 mW/cm² is 10 W/m²

2.5 Time Averaging Windows for FCC Compliance

Per October 2018 TCB Workshop Notes, the below time-averaging windows can be used for assessing timeaveraged exposures for devices that are capable of actively monitoring and adjusting power output over time to comply with exposure limits.

Interim Guidance	Frequency (GHz)	Maximum Averaging Time (sec)
SAR	< 3	100
SAN	3 – 6	60
	6 - 10	30
	10 - 16	14
	16 - 24	8
MPE	24 - 42	4
	42 - 95	2

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 6 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 6 of 58
© 2020 PCTEST				REV 1.0

3 TIME VARYING TRANSMISSION TEST CASES

To validate the time averaging feature and demonstrate the compliance in Tx varying transmission conditions, the following transmission scenarios are covered in the Part 2 test:

- 1. During a time-varying Tx power transmission: To prove that the Smart Transmit feature accounts for Tx power variations in time accurately.
- 2. During a call disconnect and re-establish scenario: To prove that the Smart Transmit feature accounts for history of past Tx power transmissions accurately.
- 3. During a technology/band handover: To prove that the Smart Transmit feature functions correctly during transitions in technology/band.
- 4. During a DSI (Device State Index) change: To prove that the Smart Transmit feature functions correctly during transition from one device state (DSI) to another.
- 5. During an antenna switch: To prove that the Smart Transmit feature functions correctly during transitions in antenna (such as AsDiv scenario).
- 6. SAR exposure switching between two active radios (radio1 and radio2): To prove that the Smart Transmit feature functions correctly and ensures total RF exposure compliance when exposure varies among SAR_radio1 only, SAR_radio1 + SAR_radio2, and SAR_radio2 only scenarios.

As described in Part 0 report, the RF exposure is proportional to the Tx power for a SAR-characterized wireless device. Thus, feature validation in Part 2 can be effectively performed through conducted (for f < 6GHz) power measurement. Therefore, the compliance demonstration under dynamic transmission conditions and feature validation are done in conducted/radiated power measurement setup for transmission scenario 1 through 6.

To add confidence in the feature validation, the time-averaged SAR measurements are also performed but only performed for transmission scenario 1 to avoid the complexity in SAR measurement (such as, for scenario 3 requiring change in SAR probe calibration file to accommodate different bands and/or tissue simulating liquid).

The strategy for testing in Tx varying transmission condition is outlined as follows:

- Demonstrate the total RF exposure averaged over FCC defined time windows does not exceed FCC's SAR and PD limits, through <u>time-averaged power</u> measurements
 - Measure conducted Tx power (for f < 6GHz) versus time.
 - Convert it into RF exposure and divide by respective FCC limits to get normalized exposure versus time.
 - Perform running time-averaging over FCC defined time windows.
 - Demonstrate that the total normalized time-averaged RF exposure is less than 1 for all transmission scenarios (i.e., transmission scenarios 1, 2, 3, 4, 5, 6) at all times.

Mathematical expression:

For < 6 GHz transmission only:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(1a)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{or_{1}0gSAR(t)dt}}{FCC SAR limit} \le 1$$
(1b)

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 7 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 7 of 58
(2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

- where, $conducted_Tx_power(t)$, $conducted_Tx_power_P_{limit}$, and $1g_or_10gSAR_P_{limit}$ correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at P_{limit} , and measured 1gSAR or 10gSAR values at P_{limit} corresponding to sub-6 transmission. P_{limit} are the parameters pre-defined in Part 0 and loaded via Embedded File System (EFS) onto the EUT. T_{SAR} is the FCC defined time window for sub-6 radio.
 - Demonstrate the total RF exposure averaged over FCC defined time windows does not exceed FCC's SAR limits, through time-averaged SAR measurements. Note as mentioned earlier, this measurement is performed for transmission scenario 1 only.
 - For sub-6 transmission only, measure instantaneous SAR versus time; for LTE+sub6 NR transmission, request low power (or all-down bits) on LTE so that measured SAR predominantly corresponds to sub6 NR.
 - Convert it into RF exposure and divide by respective FCC limits to obtain normalized exposure versus time.
 - Perform time averaging over FCC defined time window.
 - Demonstrate that the total normalized time-averaged RF exposure is less than 1 for transmission scenario 1 at all times.

Mathematical expression:

- For sub-6 transmission only:

$$1g_or_10gSAR(t) = \frac{pointSAR(t)}{pointSAR_P_{limit}} * 1g_or_10gSAR(t)_P_{limit}$$
(3a)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_or_10gSAR(t)dt}{FCC SAR limit} \le 1$$
(3b)

where, pointSAR(t), $pointSAR_{limit}$, and $1g_{or}_{10}gSAR_{limit}$ correspond to the measured instantaneous point SAR, measured point SAR at P_{limit} , and measured 1gSAR or 10gSAR values at P_{limit} corresponding to sub-6 transmission.

FCC ID: A3LSMN986W	Proved to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 9 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 8 of 58
© 2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

4 FCC MEASUREMENT PROCEDURES (FREQ < 6 GHZ)

This chapter provides the test plan and test procedure for validating Qualcomm Smart Transmit feature for sub-6 transmission. The 100 seconds time window for operating f < 3GHz is used as an example to detail the test procedures in this chapter. The same test plan and test procedures described in this chapter apply to 60 seconds time window for operating $f \ge 3GHz$.

4.1 Test sequence determination for validation

Following the FCC recommendation, two test sequences having time-variation in Tx power are predefined for sub-6 (f < 6 GHz) validation:

- Test sequence 1: request DUT's Tx power to be at maximum power, measured P_{max}^{\dagger} , for 80s, then requesting for half of the maximum power, i.e., measured $P_{max}/2$, for the rest of the time.
- Test sequence 2: request DUT's Tx power to vary with time. This sequence is generated relative to measured P_{max}, measured P_{limit} and calculated P_{reserve} (= measured P_{limit} in dBm - Reserve_power_margin in dB) of DUT based on measured P_{limit}.

The details for generating these two test sequences is described and listed in Appendix E.

NOTE: For test sequence generation, "measured P_{limit} " and "measured P_{max} " are used instead of the " P_{limit} " specified in EFS entry and " P_{max} " specified for the device, because the Smart Transmit feature operates against the actual power level of the " P_{limit} " that was calibrated for the DUT. The "measured P_{limit} " accurately reflects what the feature is referencing to, therefore, it should be used during feature validation testing. The RF tune up and device-to-device variation are already considered in Part 0 report prior to determining P_{limit} .

4.2 Test configuration selection criteria for validating Smart Transmit feature

For validating the Smart Transmit feature, this section provides the general guidance to select test cases.

4.2.1 Test configuration selection for time-varying Tx power transmission

The Smart Transmit time averaging feature operation is independent of bands, modes, and channels for a given technology. Hence, validation of Smart Transmit in one band/mode/channel per technology is sufficient. Two bands per technology are proposed and selected for this testing to provide high confidence in this validation.

The criteria for the selection are based on the P_{limit} values determined in Part 0 report. Select two bands^{*} in each supported technology that correspond to least^{**} and highest^{***} P_{limit} values that are less than P_{max} for validating Smart Transmit.

* If one P_{limit} level applies to all the bands within a technology, then only one band needs to be tested. In this case, within the bands having the same P_{limit} , the radio configuration (e.g., # of RBs, channel#) and device position that correspond to the highest *measured* 1gSAR at P_{limit} shown in Part 1 report is selected.

** In case of multiple bands having the same least *P*_{limit} within the technology, then select the band having the highest *measured* 1gSAR at *P*_{limit}.

*** The band having a higher P_{limit} needs to be properly selected so that the power limiting enforced by Smart Transmit can be validated using the pre-defined test sequences. If the highest P_{limit} in a technology is too high where the power limiting enforcement is not needed when testing with the pre-defined test sequences, then the

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 0 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 9 of 58
© 2020 PCTEST					

next highest level is checked. This process is continued within the technology until the second band for validation testing is determined.

4.2.2 **Test configuration selection for change in call**

The criteria to select a test configuration for call-drop measurement is:

- Select technology/band with least *P*_{limit} among all supported technologies/bands, and select the radio configuration (e.g., # of RBs, channel#) in this technology/band that corresponds to the highest *measured* 1gSAR at *P*_{limit} listed in Part 1 report.
- In case of multiple bands having same least *P*_{limit}, then select the band having the highest *measured* 1gSAR at *P*_{limit} in Part 1 report.

This test is performed with the DUT's Tx power requested to be at maximum power, the above band selection will result in Tx power enforcement (i.e., DUT forced to have Tx power at $P_{reserve}$) for longest duration in one FCC defined time window. The call change (call drop/reestablish) is performed during the Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at $P_{reserve}$). One test is sufficient as the feature operation is independent of technology and band.

4.2.3 **Test configuration selection for change in technology/band**

The selection criteria for this measurement is, for a given antenna, to have DUT switch from a technology/band with lowest P_{limit} within the technology group (in case of multiple bands having the same P_{limit} , then select the band with highest *measured* 1gSAR at P_{limit}) to a technology/band with highest P_{limit} within the technology group, in case of multiple bands having the same P_{limit} , then select the band with lowest *measured* 1gSAR at P_{limit} in Part 1 report, or vice versa.

This test is performed with the DUT's Tx power requested to be at maximum power, the technology/band switch is performed during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at $P_{reserve}$).

4.2.4 **Test configuration selection for change in antenna**

The criteria to select a test configuration for antenna switch measurement is:

- Whenever possible and supported by the DUT, first select antenna switch configuration within the same technology/band (i.e., same technology and band combination).
- Then, select any technology/band that supports multiple Tx antennas, and has the highest difference in *P*_{limit} among all supported antennas.
- In case of multiple bands having same difference in *P*_{limit} among supported antennas, then select the band having the highest *measured* 1gSAR at *P*_{limit} in Part 1 report.

This test is performed with the DUT's Tx power requested to be at maximum power in selected technology/band, and antenna change is conducted during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at $P_{reserve}$).

4.2.5 **Test configuration selection for change in DSI**

The criteria to select a test configuration for DSI change test is

• Select a technology/band having the *P*_{limit} < *P*_{max} within any technology and DSI group, and for the same technology/band having a different *P*_{limit} in any other DSI group. Note that the selected DSI transition need to be supported by the device.

This test is performed with the DUT's Tx power requested to be at maximum power in selected technology/band, and DSI change is conducted during Tx power enforcement duration (i.e., during the time when DUT is forced to have Tx power at $P_{reserve}$).

	FCC ID: A3LSMN986W	Froud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 10 of 58
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 10 01 58
0	2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

4.2.6 Test configuration selection for SAR exposure switching

If supported, the test configuration for SAR exposure switching should cover

- 1. SAR exposure switch when two active radios are in the same time window
- 2. SAR exposure switch when two active radios are in different time windows. One test with two active radios in any two different time windows is sufficient as Smart Transmit operation is the same for RF exposure switch in any combination of two different time windows. For device supporting LTE + mmW NR, this test is covered in SAR vs PD exposure switch validation.

The Smart Transmit time averaging operation is independent of the source of SAR exposure (for example, LTE vs. Sub6 NR) and ensures total time-averaged RF exposure compliance. Hence, validation of Smart Transmit in any one simultaneous SAR transmission scenario (i.e., one combination for LTE + Sub6 NR transmission) is sufficient, where the SAR exposure varies among SAR_{radio1} only, SAR_{radio1} + SAR_{radio2}, and SAR_{radio2} only scenarios.

The criteria to select a test configuration for validating Smart Transmit feature during SAR exposure switching scenarios is

- Select any two < 6GHz technologies/bands that the EUT supports simultaneous transmission (for example, LTE+Sub6 NR).
- Among all supported simultaneous transmission configurations, the selection order is
 - select one configuration where both Plimit of radio1 and radio2 is less than their corresponding P_{max} , preferably, with different P_{limits} . If this configuration is not available, then.
 - 2. select one configuration that has P_{limit} less than its P_{max} for at least one radio. If this can not be found, then,
 - 3. select one configuration that has P_{limit} of radio1 and radio2 greater than P_{max} but with least $(P_{limit} - P_{max})$ delta.

Test for one simultaneous transmission scenario is sufficient as the feature operation is the same.

4.3 Test procedures for conducted power measurements

This section provides general conducted power measurement procedures to perform compliance test under dynamic transmission scenarios described in Section 3. In practice, an adjustment can be made in these procedures. The justification/clarification may be provided.

Time-varying Tx power transmission scenario 4.3.1

This test is performed with the two pre-defined test sequences described in Section 4.1 for all the technologies and bands selected in Section 4.2.1. The purpose of the test is to demonstrate the effectiveness of power limiting enforcement and that the time-averaged SAR (corresponding time-averaged Tx power) does not exceed the FCC limit at all times (see Eq. (1a) and (1b)).

Test procedure

- 1. Measure P_{max}, measure P_{limit} and calculate P_{reserve} (= measured P_{limit} in dBm Reserve_power_margin in dB) and follow Section 4.1 to generate the test sequences for all the technologies and bands selected in Section 4.2.1. Both test sequence 1 and test sequence 2 are created based on measured P_{max} and measured P_{limit} of the DUT. Test condition to measure P_{max} and P_{limit} is:
 - a. Measure P_{max} with Smart Transmit <u>disabled</u> and callbox set to request maximum power.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 11 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 11 of 58
© 2020 PCTEST				REV 1.0

04/06/2020

- b. Measure *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value (3dB for this DUT based on Part 1 report) and reset power on DUT to enable Smart Transmit, establish radio link in desired radio configuration, with callbox requesting the DUT's Tx power to be at pre-defined test sequence 1, measure and record Tx power versus time, and then convert the conducted Tx power into 1gSAR or 10gSAR value (see Eq. (1a)) using measured *P_{limit}* from above Step 1. Perform running time average to determine time-averaged power and 1gSAR or 10gSAR versus time as illustrated in Figure 4-1 where using 100-seconds time window as an example.

Note: In Eq.(1a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at *P*_{*limit*} for the corresponding technology/band/antenna/DSI reported in Part 1 report.

Note: For an easier computation of the running time average, 0 dBm can be added at the beginning of the test sequences the length of the responding time window, for example, add 0dBm for 100-seconds so the running time average can be directly performed starting with the first 100-seconds data using excel spreadsheet. This technique applies to all tests performed in this Part 2 report for easier time-averaged computation using excel spreadsheet.

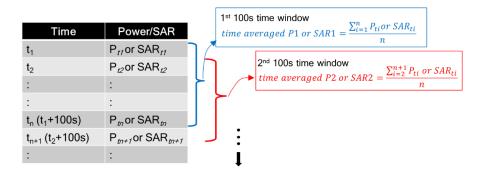


Figure 4-1 Running Average Illustration

- 3. Make one plot containing:
 - a. Instantaneous Tx power versus time measured in Step 2,
 - b. Requested Tx power used in Step 2 (test sequence 1),
 - c. Computed time-averaged power versus time determined in Step 2,
 - d. Time-averaged power limit (corresponding to FCC SAR limit of 1.6 W/kg for 1gSAR or 4.0W/kg for 10gSAR) given by

 $Time \ avearged \ power \ limit = meas. P_{limit} + 10 \times \log(\frac{FCC \ SAR \ limit}{meas.SAR_Plimit})$ (5a)

where *meas*. P_{limit} and *meas*. *SAR_Plimit* correspond to measured power at P_{limit} and measured SAR at P_{limit} .

- 4. Make another plot containing:
 - a. Computed time-averaged 1gSAR or 10gSAR versus time determined in Step 2

F	CC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Do	ocument S/N:	Test Dates:	DUT Type:		Dage 12 of 59
1N	12004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 12 of 58
© 20	20 PCTEST				REV 1.0

REV 1.0 04/06/2020

- b. FCC 1gSAR_{limit} of 1.6W/kg or FCC 10gSAR_{limit} of 4.0W/kg.
- 5. Repeat Steps 2 ~ 4 for pre-defined test sequence 2 and replace the requested Tx power (test sequence 1) in Step 2 with test sequence 2.
- 6. Repeat Steps 2 ~ 5 for all the selected technologies and bands.
- 7. The validation criteria are, at all times, the time-averaged power versus time shown in Step 3 plot shall not exceed the time-averaged power limit (defined in Eq. (5a)), in turn, the time-averaged 1gSAR or 10gSAR versus time shown in Step 4 plot shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (1b)).

4.3.2 Change in call scenario

This test is to demonstrate that Smart Transmit feature accurately accounts for the past Tx powers during time-averaging when a new call is established.

The call disconnect and re-establishment needs to be performed during power limit enforcement, i.e., when the DUT's Tx power is at $P_{reserve}$ level, to demonstrate the continuity of RF exposure management and limiting in call change scenario. In other words, the RF exposure averaged over any FCC defined time window (including the time windows containing the call change) doesn't exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

Test procedure

- 1. Measure *P*_{limit} for the technology/band selected in Section 4.2.2. Measure *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value and reset power on DUT to enable Smart Transmit.
- 3. Establish radio link with callbox in the selected technology/band.
- 4. Request DUT's Tx power at 0 dBm for at least one time window specified for the selected technology/band, followed by requesting DUT's Tx power to be at maximum power for about ~60 seconds, and then drop the call for ~10 seconds. Afterwards, re-establish another call in the same radio configuration (i.e., same technology/band/channel) and continue callbox requesting DUT's Tx power to be at maximum power for the remaining time of at least another full duration of the specified time window. Measure and record Tx power versus time. Once the measurement is done, extract instantaneous Tx power versus time, convert the measured conducted Tx power into 1gSAR or 10gSAR value using Eq. (1a), and then perform the running time average to determine time-averaged power and 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(1a), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at *P*_{limit} for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- 5. Make one plot containing: (a) instantaneous Tx power versus time, (b) requested power, (c) computed time-averaged power, (d) time-averaged power limit calculated using Eq.(5a).
- 6. Make another plot containing: (a) computed time-averaged 1gSAR or 10gSAR versus time, and (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

The validation criteria are, at all times, the time-averaged power versus time shall not exceed the timeaveraged power limit (defined in Eq.(5a)), in turn, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (1b)).

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 12 of 59	
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 13 of 58	
0	2020 PCTEST				REV 1.0	

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

4.3.3 Change in technology and band

This test is to demonstrate the correct power control by Smart Transmit during technology switches and/or band handovers.

Similar to the change in call test in Section 4.3.2, to validate the continuity of RF exposure limiting during the transition, the technology and band handover needs to be performed when DUT's Tx power is at $P_{reserve}$ level (i.e., during Tx power enforcement) to make sure that the DUT's Tx power from previous $P_{reserve}$ level to the new $P_{reserve}$ level (corresponding to new technology/band). Since the P_{limit} could vary with technology and band, Eq. (1a) can be written as follows to convert the instantaneous Tx power in 1gSAR or 10gSAR exposure for the two given radios, respectively:

$$1g_or_10gSAR_{1}(t) = \frac{conducted_Tx_power_1(t)}{conducted_Tx_power_P_{limit_1}} * 1g_or_10gSAR_P_{limit_1}$$
(6a)

$$1g_or_10gSAR_{2}(t) = \frac{conducted_Tx_power_2(t)}{conducted_Tx_power_P_{limit_2}} * 1g_or_10gSAR_P_{limit_2}$$
(6b)

$$\int_{a} \int_{a} \int_{a}$$

$$\frac{1}{T_{SAR}} \left[\int_{t-T_{SAR}}^{t_1} \frac{1g_{-}or_{-}10gSAR_1(t)}{FCC\ SAR\ limit} dt + \int_{t-T_{SAR}}^{t} \frac{1g_{-}or_{-}10gSAR_2(t)}{FCC\ SAR\ limit} dt \right] \le 1$$
(6c)

where, *conducted_Tx_power_1(t)*, *conducted_Tx_power_P*_{*limit_1*}, and *1g_or_10gSAR_P*_{*limit_1*} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at *P*_{*limit*}, and measured *1gSAR* or *10gSAR* value at *P*_{*limit*} of technology1/band1; *conducted_Tx_power_2(t)*, *conducted_Tx_power_P*_{*limit_2*}(*t*), and *1g_or_10gSAR_P*_{*limit_2*} correspond to the measured instantaneous conducted Tx power at *P*_{*limit_1*}, and measured *Tx_power_2(t)*, *conducted_Tx_power_P*_{*limit_2*}(*t*), and *1g_or_10gSAR_P*_{*limit_2*} correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at *P*_{*limit_1*}, and measured *1gSAR* or *10gSAR* value at *P*_{*limit_1*} of technology2/band2. Transition from technology1/band1 to the technology2/band2 happens at time-instant '*t*₁'.

Test procedure

- 1. Measure *P*_{*limit*} for both the technologies and bands selected in Section 4.2.3. Measure *P*_{*limit*} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
- 2. Set *Reserve_power_margin* to actual (intended) value and reset power on DUT to enable Smart Transmit
- 3. Establish radio link with callbox in first technology/band selected.
- 4. Request DUT's Tx power at 0 dBm for at least one time window specified for the selected technology/band, followed by requesting DUT's Tx power to be at maximum power for about ~60 seconds, and then switch to second technology/band selected. Continue with callbox requesting DUT's Tx power to be at maximum power for the remaining time of at least another full duration of the specified time window. Measure and record Tx power versus time for the full duration of the test.
- 5. Once the measurement is done, extract instantaneous Tx power versus time, and convert the conducted Tx power into 1gSAR or 10gSAR value using Eq. (6a) and (6b) and corresponding measured *P*_{limit} values from Step 1 of this section. Perform the running time average to determine time-averaged power and 1gSAR or 10gSAR versus time.
 - NOTE: In Eq.(6a) & (6b), instantaneous Tx power is converted into instantaneous 1gSAR or 10gSAR value by applying the measured worst-case 1gSAR or 10gSAR value at *P*_{limit} for the corresponding technology/band/antenna/DSI reported in Part 1 report.
- 6. Make one plot containing: (a) instantaneous Tx power versus time, (b) requested power, (c) computed time-averaged power, (d) time-averaged power limit calculated using Eq.(5a).

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Туре:		Dogo 14 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 14 of 58	
© 2020 PCTEST					

7. Make another plot containing: (a) computed time-averaged 1gSAR or 10gSAR versus time, and (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (6c)).

4.3.4 Change in antenna

This test is to demonstrate the correct power control by Smart Transmit during antenna switches from one antenna to another. The test procedure is identical to Section 4.3.3, by replacing technology/band switch operation with antenna switch. The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

NOTE: If the DUT does not support antenna switch within the same technology/band, but has multiple antennas to support different frequency bands, then the antenna switch test is included as part of change in technology and band (Section 4.3.3) test.

4.3.5 Change in DSI

This test is to demonstrate the correct power control by Smart Transmit during DSI switches from one DSI to another. The test procedure is identical to Section 4.3.3, by replacing technology/band switch operation with DSI switch. The validation criteria are, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

4.3.6 SAR exposure switching

This test is to demonstrate that Smart Transmit feature is accurately accounts for switching in exposures among SAR from radio1 only, SAR from both radio1 and radio2, and SAR from radio2 only scenarios, and ensures total time-averaged RF exposure complies with the FCC limit. Here, radio1 represents primary radio (for example, LTE anchor in a NR non-standalone mode call) and radio2 represents secondary radio (for example, sub6 NR or mmW NR). The detailed test procedure for SAR exposure switching in the case of LTE+Sub6 NR non-standalone mode transmission scenario is provided in APPENDIX F:.

Test procedure:

- 1. Measure conducted Tx power corresponding to *P*_{limit} for radio1 and radio2 in selected band. Test condition to measure conducted *P*_{limit} is:
 - Establish device in call with the callbox for radio1 technology/band. Measure conducted Tx power corresponding to radio1 *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
 - Repeat above step to measure conducted Tx power corresponding to radio2 <u>*P*_{limit}</u>. If radio2 is dependent on radio1 (for example, non-standalone mode of Sub6 NR requiring radio1 LTE as anchor), then establish radio1 + radio2 call with callbox, and request all down bits for radio1 LTE. In this scenario, with callbox requesting maximum power from radio2 Sub6 NR, measured conducted Tx power corresponds to radio2 <u>*P*_{limit}</u> (as radio1 LTE is at all-down bits)
- 2. Set Reserve_power_margin to actual (intended) value, with EUT setup for radio1 + radio2 call. In this description, it is assumed that radio2 has lower priority than radio1. Establish device in radio1+radio2 call, and request all-down bits or low power on radio1, with callbox requesting EUT's Tx power to be at maximum power in radio2 for at least one time window. After one time window, set callbox to request EUT's Tx power to be at maximum power on radio1, i.e., all-up bits. Continue radio1+radio2 call with both radios at maximum power for at least one time window, and drop (or request all-down

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 15 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 15 of 58
© 2020 PCTEST				REV 1.0

bits on) radio2. Continue radio1 at maximum power for at least one time window. Record the conducted Tx power for both radio1 and radio2 for the entire duration of this test.

- Once the measurement is done, extract instantaneous Tx power versus time for both radio1 and radio2 links. Convert the conducted Tx power for both these radios into 1gSAR or 10gSAR value (see Eq. (6a) and (6b)) using corresponding technology/band P_{limit} measured in Step 1, and then perform the running time average to determine time-averaged 1gSAR or 10gSAR versus time.
- 4. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 2.
- Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 3, (b) computed time-averaged 1gSAR versus time determined in Step 3, and (c) corresponding regulatory 1gSAR_{limit} of 1.6W/kg or 10gSAR_{limit} of 4.0W/kg.

The validation criteria is, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed the regulatory *1gSAR*_{limit} of 1.6W/kg or *10gSAR*_{limit} of 4.0W/kg.

4.4 Test procedure for time-varying SAR measurements

This section provides general time-varying SAR measurement procedures to perform compliance test under dynamic transmission scenarios described in Section 3. In practice, an adjustment can be made in these procedures. The justification/clarification may be provided.

To perform the validation through SAR measurement for transmission scenario 1 described in Section 3, the "path loss" between callbox antenna and DUT needs to be calibrated to ensure that the DUT Tx power reacts to the requested power from callbox in a radiated call. It should be noted that when signaling in closed loop mode, protocol-level power control is in play, resulting in DUT not solely following callbox TPC (Tx power control) commands. In other words, DUT response has many dependencies (RSSI, quality of signal, path loss variation, fading, etc.,) other than just TPC commands. These dependencies have less impact in conducted setup (as it is a controlled environment and the path loss can be very well calibrated) but have significant impact on radiated testing in an uncontrolled environment, such as SAR test setup. Therefore, the deviation in DUT Tx power from callbox requested power is expected, however the time-averaged SAR should not exceed FCC SAR requirement at all times as Smart Transmit controls Tx power at DUT.

The following steps are for time averaging feature validation through SAR measurement:

- 1. "Path Loss" calibration: Place the DUT against the phantom in the worst-case position determined based on Section 4.2.1. For each band selected, prior to SAR measurement, perform "path loss" calibration between callbox antenna and DUT. Since the SAR test environment is not controlled and well calibrated for OTA (Over the Air) test, extreme care needs to be taken to avoid the influence from reflections. The test setup is described in Section 5.2.
- 2. Time averaging feature validation:
 - i For a given radio configuration (technology/band) selected in Section 4.2.1, enable Smart Transmit and set *Reserve_power_margin* to 0 dB, with callbox to request maximum power, perform area scan, conduct pointSAR measurement at peak location of the area scan. This point SAR value, *pointSAR_P_{limit}*, corresponds to point SAR at the measured *P_{limit}* (i.e., measured *P_{limit}* from the DUT in Step 1 of Section 4.3.1).
 - ii Set *Reserve_power_margin* to actual (intended) value and reset power on DUT to enable Smart Transmit. Note, if *Reserve_power_margin* cannot be set wirelessly, care must be taken to reposition the DUT in the exact same position relative to the SAM phantom as in above Step 2.i. Establish radio link in desired radio configuration, with callbox requesting the DUT's Tx power at power levels described by test sequence 1 generated in Step 1 of Section 4.3.1, conduct point

	FCC ID: A3LSMN986W	PCTEST Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 16 of 58
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Fage 10 01 50
© 2020 PCTEST					

SAR measurement versus time at peak location of the area scan determined in Step 2.i of this section. Once the measurement is done, extract instantaneous point SAR vs time data, pointSAR(t), and convert it into instantaneous 1gSAR or 10gSAR vs. time using Eq. (3a), rewritten below:

 $1g_or_10gSAR(t) = \frac{pointSAR(t)}{pointSAR_P_{limit}} * 1g_or_10gSAR_P_{limit}$

where, *pointSAR_P_{limit}* is the value determined in Step 2.i, and *pointSAR(t)* is the instantaneous point SAR measured in Step 2.ii, $1g_{or_1} 0g_{SAR_P_{limit}}$ is the measured 1gSAR or 10gSAR value listed in Part 1 report.

- iii Perform 100s running average to determine time-averaged 1gSAR or 10gSAR versus time.
- iv Make one plot containing: (a) time-averaged 1gSAR or 10gSAR versus time determined in Step 2.iii of this section, (b) FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.
- v Repeat 2.ii ~ 2.iv for test sequence 2 generated in Step 1 of Section 4.3.1.
- vi Repeat 2.i ~ 2.v for all the technologies and bands selected in Section 4.2.1.

The time-averaging validation criteria for SAR measurement is that, at all times, the time-averaged 1gSAR or 10gSAR versus time shall not exceed FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR (i.e., Eq. (3b)).

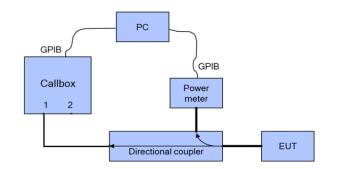
FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 17 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 17 of 58	
© 2020 PCTEST					

04/06/2020

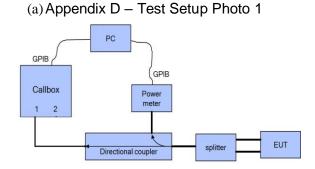
5 MEASUREMENT TEST SETUP (FREQ < 6 GHZ)

5.1 Conducted Measurement Test setup

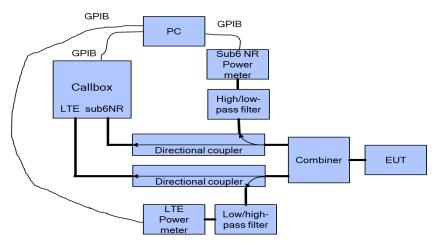
Legacy Test Setup


The Rohde & Schwarz CMW500 callbox was used in this test. The test setup schematic is shown in Figure 5-1a (Appendix D – Test Setup Photo 1) for measurements with a single antenna of DUT, and in Figure 5-1b (Appendix D – Test Setup Photo 2) for measurements involving antenna switch. For single antenna measurement, one port (RF1 COM) of the callbox is connected to the RF port of the DUT using a directional coupler. For technology/band switch measurement, one port (RF1 COM) of the callbox used for signaling two different technologies is connected to a combiner, which is in turn connected to a directional coupler. The other end of the directional coupler is connected to a splitter to connect to two RF ports of the DUT corresponding to the two antennas of interest. In the setups, power meter is used to tap the directional coupler for measuring the conducted output power of the DUT. For all legacy conducted tests, only RF1 COM port of the callbox is used to communicate with the DUT.

All the path losses from RF port of DUT to the callbox RF COM port and to the power meter are calibrated and automatically entered as offsets in the callbox and the power meter via test scripts on the PC used to control callbox and power meter.


LTE+Sub6 NR test setup:

LTE conducted port and Sub6 NR conducted port are same on this EUT (i.e., they share the same antenna), therefore, low-/high-pass filter are used to separate LTE and Sub6 NR signals for power meter measurement via directional couplers, as shown in below Figure 5-1c (Appendix D – Test Setup Photo 3).


All the path losses from RF port of DUT to the callbox RF COM port and to the power meter are calibrated and automatically entered as offsets in the callbox and the power meter via test scripts on the PC used to control callbox and power meter.

FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 19 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 18 of 58
© 2020 PCTEST				REV 1.0

(b) Appendix D – Test Setup Photo 2

(c) Appendix D – Test Setup Photo 3

Figure 5-1 Conducted power measurement setup

Both the callbox and power meter are connected to the PC using GPIB cables. Two test scripts are custom made for automation, and the test duration set in the test scripts is 500 seconds.

For time-varying Tx power measurement, the PC runs the 1st test script to send GPIB commands to control the callbox's requested power versus time, while at the same time to record the conducted power measured at DUT RF port using the power meter. The commands sent to the callbox to request power are:

- 0dBm for 100 seconds
- test sequence 1 or test sequence 2 (defined in Section 4.1 and generated in Section 4.2.1), for 360 seconds
- stay at the last power level of test sequence 1 or test sequence 2 for the remaining time.

FCC ID: A3LSMN986W	Proud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 10 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 19 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

Power meter readings are periodically recorded every 100ms. A running average of this measured Tx power over 100 seconds is performed in the post-data processing to determine the 100s-time averaged power.

For call drop, technology/band/antenna switch, and DSI switch tests, after the call is established, the callbox is set to request the DUT's Tx power at 0dBm for 100 seconds while simultaneously starting the 2^{nd} test script runs at the same time to start recording the Tx power measured at DUT RF port using the power meter. After the initial 100 seconds since starting the Tx power recording, the callbox is set to request maximum power from the DUT for the rest of the test. Note that the call drop/re-establish, or technology/band/antenna switch or DSI switch is manually performed when the Tx power of DUT is at $P_{reserve}$ level. See Section 4.3 for detailed test procedure of call drop test, technology/band/antenna switch test and DSI switch test.

5.2 SAR Measurement setup

The measurement setup is similar to normal SAR measurements as described in the Part 1 Test Report. The difference in SAR measurement setup for time averaging feature validation is that the callbox is signaling in close loop power control mode (instead of requesting maximum power in open loop control mode) and callbox is connected to the PC using GPIB so that the test script executed on PC can send GPIB commands to control the callbox's requested power over time (test sequence). The same test script used in conducted setup for time-varying Tx power measurements is also used in this section for running the test sequences during SAR measurements, and the recorded values from the disconnected power meter by the test script were discarded.

As mentioned in Section 4.4, for DUT to follow TPC command sent from the callbox wirelessly, the "path loss" between callbox antenna and the DUT needs to be very well calibrated. Since the SAR chamber is in uncontrolled environment, precautions must be taken to minimize the environmental influences on "path loss". Similarly, in the case of time-varying SAR measurements in Sub6 NR (with LTE as anchor), "path loss" between callbox antenna and the EUT needs to be carefully calibrated for both LTE link as well as for Sub6 NR link.

The DUT is placed in worst-case position according to Table 6-2.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Туре:		Dogo 20 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 20 of 58
© 2020 PCTEST				REV 1.0

6 TEST CONFIGURATIONS (FREQ < 6 GHZ)

6.1 WWAN (sub-6) transmission

The P_{limit} values, corresponding to 1.0 W/kg (1gSAR) and 2.5 W/kg (10gSAR) of SAR_design_target , for technologies and bands supported by DUT are derived in Part 0 report and summarized in Table 6-1. Note all P_{limit} power levels entered in Table 6-1 correspond to average power levels after accounting for duty cycle in the case of TDD modulation schemes.

					L		1
Exposure Scenario:	Body-Worn	Phablet	Phablet	Head	Hotspot	Earjack	-
Averaging Volume:	1g	10g	10g	1g	1g	10g	Maximum Tune-up
Spacing:	15 mm	8, 6, 12	0 mm	0 mm	10 mm	0 mm	Output Power*
DSI:	0	0	1	2	3	4	
Technology/Band		Plimit c	orresponding to 1	nW/g (SAR_design	n_target)		Pmax
CDMA/EVDO BCO	29	.8	27.2	32.6	25.9	27.2	24.8
GSM/GPRS/EDGE 850 MHz	31	.8	28.7	26.3	28.7	28.7	25.3
GSM/GPRS/EDGE 1900 MHz	25	.7	20.1	23.3	18.6	20.1	22.3
UMTS B5	30	.4	27.1	33.2	27.0	27.1	24.8
UMTS B4	24.7		20.0	32.6	19.0	20.0	23.5
UMTS B2	26	.9	20.0	32.4	18.0	20.0	23.0
LTE FDD B71	31	.4	26.7	33.6	26.7	26.7	24.8
LTE FDD B12	31	.1	27.4	32.9	27.4	27.4	24.8
LTE FDD B13	29	.4	28.0	32.2	27.1	28.0	24.8
LTE FDD B5	31	.0	27.1	33.3	27.1	27.1	24.8
LTE FDD B66/4	24	.8	19.5	32.8	19.0	19.5	23.5
LTE FDD B25/2	25	.2	21.0	33.6	18.5	21.0	23.5
LTE FDD B30	26.2		23.1	36.9	19.0	23.1	23.0
LTE FDD B7	27.3		19.0	33.6	19.0	19.0	23.0
LTE TDD B41/38	27.7		20.0	34.8	19.0	20.0	22.0
NR FDD n71	31.1		28.5	33.4	28.5	28.5	24.5
NR FDD n66	24.1		19.5	31.7	19.0	19.5	23.5
NR TDD n41	27	.0	27.0	16.5	21.1	27.0	18.5

 Table 6-1

 *P*_{limit} for supported technologies and bands (*P*_{limit} in EFS file)

* Maximum tune up target power, P_{max} , is configured in NV settings in DUT to limit maximum transmitting power. This power is converted into peak power in NV settings for TDD schemes. The DUT maximum allowed output power is equal to P_{max} + 1 dB device uncertainty.

Based on selection criteria described in Section 4.2.1, the selected technologies/bands for testing time-varying test sequences are highlighted in yellow in Table 6-1. Per the manufacturer, the *Reserve_power_margin* (dB) is set to 3dB in EFS and is used in Part 2 test.

The radio configurations used in Part 2 test for selected technologies, bands, DSIs and antennas are listed in Table 6-2. The corresponding worst-case radio configuration 1gSAR or 10gSAR values for selected technology/band/DSI are extracted from Part 1 report and are listed in the last column of Table 6-2.

Based on equations (1a), (2a), (3a) and (4a), it is clear that Part 2 testing outcome is normalized quantity, which implies that it can be applied to any radio configuration within a selected technology/band/DSI. Thus, as long as applying the worst-case SAR obtained from the worst radio configuration in Part 1 testing to calculate time-varying SAR exposure in equations (1a), (2a), (3a) and (4a), the accuracy in compliance demonstration remains the same. Therefore, there may be some differences between the radio configuration selected for Part 2 testing and the radio configuration associated with worst-case SAR obtained in the Part 1 evaluation.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 21 of 58
© 2020 PCTEST				REV 1.0

 Table 6-2

 Radio configurations selected for Part 2 test

Test Case #	Test Scenario	Tech	Band	Antenna	DSI	Channel	Frequency [MHz]	RB/RB Offset/Bandwidth (MHz)	Mode	SAR Exposure Scenario	EFS Plimit [dBm]	Tune-up Pmax [dBm]	Measured Plimit [dBm]	Measured Pmax [dBm]
1	Test Sequence 1		B25	А	3	26365	1882.5	1/50/20 MHz BW	QPSK	Hotspot	18.5	23.5	19.46	24.11
	Test Sequence 2	LTE	D20	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	Hotspot	18.5	23.5	19.46	24.11
2	Test Sequence 1	LIE	B66	А	3	132322	1745	1/0/20 MHz BW	QPSK	Head	19.0	23.5	19.82	24.35
-	Test Sequence 2		DOO	^	5	132322	1745	1/0/20 MHz BW	QPSK	riedu	19.0	23.5	19.82	24.35
3	Test Sequence 1		B4	А	3	1412	1732.4	-	RMC	Hotspot	19.0	23.5	19.78	24.48
3	Test Sequence 2	UMTS	D4	A	3	1412	1732.4	-	RMC	Hotspot	19.0	23.5	19.78	24.48
4	Test Sequence 1	UNITS	B2	А	3	9400	1880	-	RMC	Hotspot	18.0	23.0	18.96	23.90
-	Test Sequence 2		DZ	^	5	9400	1880	-	RMC	Потэрог	18.0	23.0	18.96	23.90
5	Test Sequence 1	GPRS	1900		3	661	1880	-	GPRS, 4 Tx	Hotspot	18.6	21.3	18.45	21.54
5	Test Sequence 2	GPRS	1900	A	3	661	1880	-	GPRS, 4 Tx	Hotspot	18.6	21.3	18.45	21.54
6	Test Sequence 1	Sub6 NR	n66		3	351000	1755	1/1/20 MHz BW	DFT-S-OFDM, QPSK	Linter et	19.0	23.5	19.45	23.72
0	Test Sequence 2	SUDO INR	100	A	3	351000	1755	1/1/20 MHz BW	DFT-S-OFDM, QPSK	Hotspot	19.0	23.5	19.45	23.72
7	Change in Call	LTE	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
8	F 10 10 11	LTE	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
ð	Tech/Band Switch	GPRS	1900	A	3	661	1880	-	GPRS, 4 Tx	-	18.6	21.3	18.45	21.54
	D QL Q. 11		Doc	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
9	DSI Switch	LTE	B25	A	1	26365	1882.5	1/50/20 MHz BW	QPSK	-	21.0	23.5	21.85	24.11
		1.75	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
10	Antenna Switch	LTE	B7	В	3	21100	2535	1/0/20 MHz BW	QPSK	-	19.0	23.0	18.94	23.03
	0101 0100	LTE	B5	A	3	20525	836.5	1/25/10 MHz BW	QPSK	-	27.1	24.8	24.71	24.71
11	SAR1 vs SAR2	sub6 NR	n66	A	3	351000	1755	1/1/20 MHz BW	DFT-S-OFDM, QPSK	-	19.0	23.5	19.45	23.72

*Indicates 10g SAR

Note that the DUT has a proximity sensor to manage extremity exposure, which is represented using DSI = 1; the head exposure can be distinguished through audio receiver mode, represented as DSI = 2; similarly, the hotspot exposure is distinguished via hotspot mode, represented as DSI = 3; the exposure for headset jack active scenario is represented using DSI = 4 and is managed as the same exposure condition as extremity exposure at 0 mm; DSI = 0 represents all other exposures which cannot be distinguished, thus, in this case, the maximum 1gSAR and/or 10gSAR among all remaining exposure scenarios or the minimum *Plimit* among all remaining exposure scenarios (i.e., body worn 1gSAR evaluation at 15mm spacing, phablet 10gSAR extremity evaluation at 6~12mm spacing, phablet 10gSAR extremity evaluation at or left and right surfaces) is used in Smart Transmit feature for time averaging operation.

Based on the selection criteria described in Section 4.2, the radio configurations for the Tx varying transmission test cases listed in Section 3 are:

- 1. <u>Technologies and bands for time-varying Tx power transmission</u>: The test case 1~6 listed in Table 6-2 are selected to test with the test sequences defined in Section 4.1 in both time-varying conducted power measurement and time-varying SAR measurement.
- <u>Technology and band for change in call test</u>: LTE Band 25, having one of the lowest P_{limit} among all technologies and bands (test case 7 in Table 6-2), is selected for performing the call drop test in conducted power setup.
- Technologies and bands for change in technology/band test: Following the guidelines in Section 4.2.3, test case 8 in Table 6-2 is selected for handover test from a technology/band within one technology group (LTE Band 25, DSI=3, antenna A), to a technology/band in the same DSI within another technology group (GSM/GPRS/EDGE 1900, DSI=3, antenna A) in conducted power setup.
- <u>Technologies and bands for change in DSI</u>: Based on selection criteria in Section 4.2.5, for a given technology and band, test case 9 in Table 6-2 is selected for DSI switch test by establishing a call in LTE Band 25 in DSI=3, and then handing over to DSI = 1 exposure scenario in conducted power setup.

FCC ID: A3LSMN986W	Poud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 22 of 58
© 2020 PCTEST				REV 1.0

- 5. <u>Technologies and bands for change in antenna</u>: Based on selection criteria in Section 4.2.4, for a given DSI=3, test case 10 in Table 6-2 is selected for antenna switch Antenna A (LTE 25, Antenna A) and Antenna B (LTE 7, Antenna B) in conducted power setup.
- <u>Technologies and bands for switch in SAR exposure</u>: Based on selection criteria in Section 4.2.6 Scenario 1, test case 11 in Table 6-2 is selected for SAR exposure switching test in one of the supported simultaneous WWAN transmission scenario, i.e., LTE + Sub6 NR active in the same 100s time window, in conducted power setup.

6.2 *P_{limit}* and *P_{max}* measurement results

The measured P_{limit} for all the selected radio configurations given in Table 6-2 are listed in below Table 6-3. P_{max} was also measured for radio configurations selected for testing time-varying Tx power transmission scenarios in order to generate test sequences following the test procedures in Section 4.1.

Test Case #	Test Scenario	Tech	Band	Antenna	DSI	Channel	Frequency [MHz]	RB/RB Offset/Bandwidth (MHz)	Mode	SAR Exposure Scenario	EFS Plimit [dBm]	Tune-up Pmax [dBm]	Measured Plimit [dBm]	Measured Pmax [dBm]
1	Test Sequence 1		B25	А	3	26365	1882.5	1/50/20 MHz BW	QPSK	Hotspot	18.5	23.5	19.46	24.11
	Test Sequence 2	LTE	D25	^	5	26365	1882.5	1/50/20 MHz BW	QPSK	riotspot	18.5	23.5	19.46	24.11
2	Test Sequence 1		B66	А	3	132322	1745	1/0/20 MHz BW	QPSK	Head	19.0	23.5	19.82	24.35
-	Test Sequence 2		000	^	5	132322	1745	1/0/20 MHz BW	QPSK	riedu	19.0	23.5	19.82	24.35
3	Test Sequence 1		B4	А	3	1412	1732.4	-	RMC	Hotspot	19.0	23.5	19.78	24.48
3	Test Sequence 2	UMTS	t L	^	5	1412	1732.4	-	RMC	riotspot	19.0	23.5	19.78	24.48
4	Test Sequence 1	01/113	B2	А	3	9400	1880	-	RMC	Hotspot	18.0	23.0	18.96	23.90
-	Test Sequence 2		DZ	A	3	9400	1880	-	RMC	Hotspot	18.0	23.0	18.96	23.90
5	Test Sequence 1	GPRS	1900	А	3	661	1880	-	GPRS, 4 Tx	Hotspot	18.6	21.3	18.45	21.54
5	Test Sequence 2	GFRS	1900	~	3	661	1880	-	GPRS, 4 Tx	Hotspot	18.6	21.3	18.45	21.54
6	Test Sequence 1	Sub6 NR	n66		3	349000	1745	1/1/20 MHz BW	DFT-S-OFDM, QPSK	Unterest	19.0	23.5	19.45	23.72
0	Test Sequence 2	SUD6 INK	100	A	3	349000	1745	1/1/20 MHz BW	DFT-S-OFDM, QPSK	Hotspot	19.0	23.5	19.45	23.72
7	Change in Call	LTE	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
8	Task/Dased Owitak	LTE	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
•	Tech/Band Switch	GPRS	1900	A	3	661	1880	-	GPRS, 4 Tx	-	18.6	21.3	18.45	21.54
9	DOI Owitate	LTE	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
9	DSI Switch	LIE	B25	A	1	26365	1882.5	1/50/20 MHz BW	QPSK	-	21.0	23.5	21.85	24.11
40		1.75	B25	A	3	26365	1882.5	1/50/20 MHz BW	QPSK	-	18.5	23.5	19.46	24.11
10	Antenna Switch	LTE	B7	В	3	21100	2535	1/0/20 MHz BW	QPSK	-	19.0	23.0	18.94	23.03
11	SAR1 vs SAR2	LTE	B5	A	3	20525	836.5	1/25/10 MHz BW	QPSK	-	27.1	24.8	24.71	24.71
111	SART VS SARZ	sub6 NR	n66	A	3	349000	1745	1/1/20 MHz BW	DFT-S-OFDM, QPSK	-	19.0	23.5	19.45	23.72

Table 6-3Measured P_{limit} and P_{max} of selected radio configurations

Note: The device uncertainty of P_{max} is +/- 1 dB as provided by manufacturer.

Note: The above P_{max} value for GPRS1900 is for 4 Tx Slots

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 23 of 58
© 2020 PCTEST				REV 1 0

REV 1.0 04/06/2020

7 CONDUCTED TX CASES (FREQ < 6 GHZ)

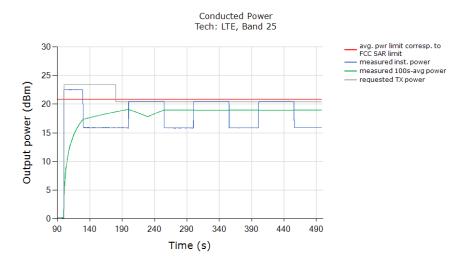
7.1 Time-varying Tx Power Case

The measurement setup is shown in Figure 5-1. The purpose of the time-varying Tx power measurement is to demonstrate the effectiveness of power limiting enforcement and that the time-averaged Tx power when represented in time-averaged 1gSAR or 10gSAR values does not exceed FCC limit as shown in Eq. (1a) and (1b), rewritten below:

$$1g_or_10gSAR(t) = \frac{conducted_Tx_power(t)}{conducted_Tx_power_P_{limit}} * 1g_or_10gSAR_P_{limit}$$
(1a)

$$\frac{\frac{1}{T_{SAR}}\int_{t-T_{SAR}}^{t} 1g_{-}or_{-}10gSAR(t)dt}{FCC\,SAR\,limit} \le 1$$
(1b)

where, $conducted_Tx_power(t)$, $conducted_Tx_power_P_{limit}$, and $1g_or_10gSAR_P_{limit}$ correspond to the measured instantaneous conducted Tx power, measured conducted Tx power at P_{limit} , and measured 1gSAR and 10gSAR values at P_{limit} reported in Part 1 test (listed in Table 6-2 of this report as well).

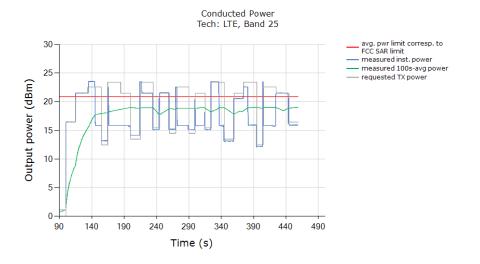

Following the test procedure in Section 4.3, the conducted Tx power measurement for all selected configurations are reported in this section. In all the conducted Tx power plots, the dotted line represents the requested power by callbox (test sequence 1 or test sequence 2), the blue curve represents the instantaneous conducted Tx power measured using power meter, the green curve represents time-averaged power and red line represents the conducted power limit that corresponds to FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.

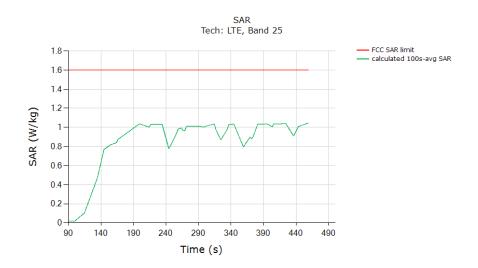
Similarly, in all the 1g or 10gSAR plots (when converted using Eq. (1a)), the green curve represents the 100s/60s-time averaged 1gSAR or 10gSAR value calculated based on instantaneous 1gSAR or 10gSAR; and the red line limit represents the FCC limit of 1.6 W/kg for 1gSAR or 4.0 W/kg for 10gSAR.


Time-varying Tx power measurements were conducted on test cases #1 ~ #6 in Table 6-2, by generating test sequence 1 and test sequence 2 given in APPENDIX E: using measured P_{limit} and measured P_{max} (last two columns of Table 6-3) for each of these test cases. Measurement results for test cases #1 ~ #6 are given in Sections 7.1.1 – 7.1.6.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 24 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 24 of 58
© 2020 PCTEST				REV 1.0

Test result for test sequence 1:

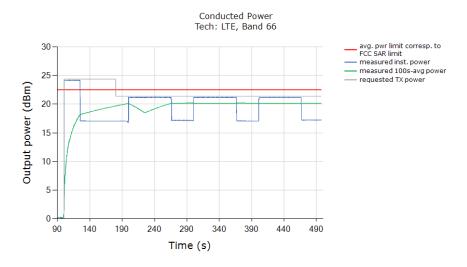

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.060
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

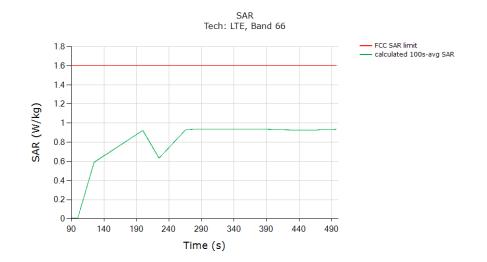
FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dara 05 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 25 of 58
© 2020 PCTEST				REV 1.0 04/06/2020

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

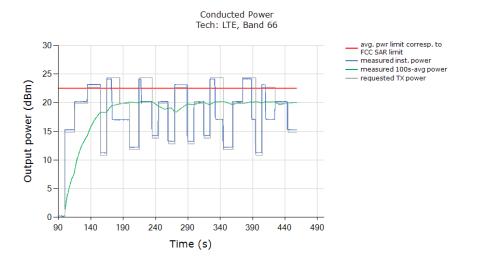


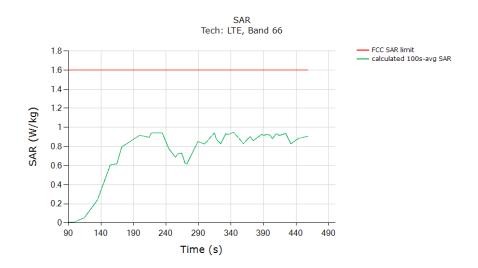
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.045
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured


	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 26 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 26 of 58
(2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

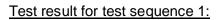
Test result for test sequence 1:

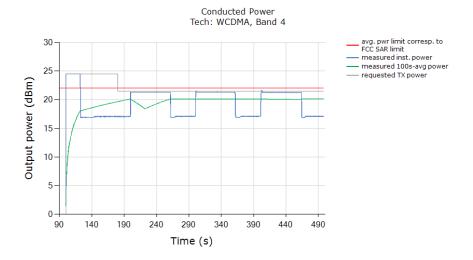

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.936
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{<i>limit</i>} (last column in Table 6-2).	nty of measured

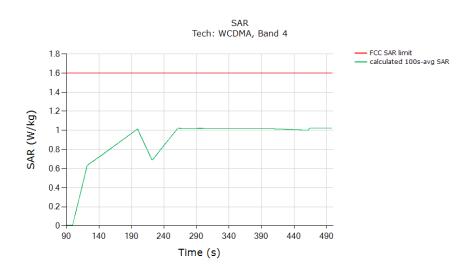
FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 07 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 27 of 58
© 2020 PCTEST				REV 1.0 04/06/2020

Test result for test sequence 2:

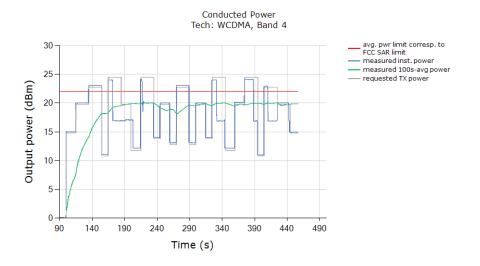

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

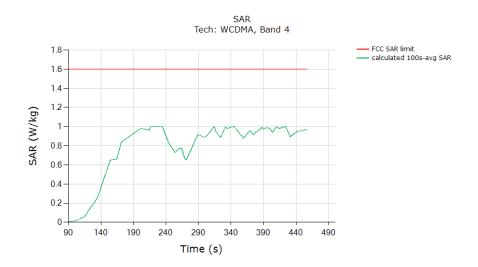


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.945
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of mea SAR at <i>P</i> _{limit} (last column in Table 6-2).	


	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 28 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 28 of 58
0	2020 PCTEST				REV 1.0

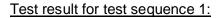
7.1.3 **UMTS B4**

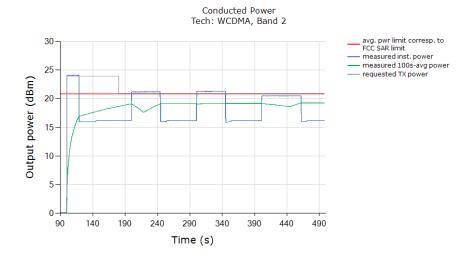

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:


	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged 1gSAR (green curve)	1.021	
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of SAR at <i>P</i> _{limit} (last column in Table 6-2).		

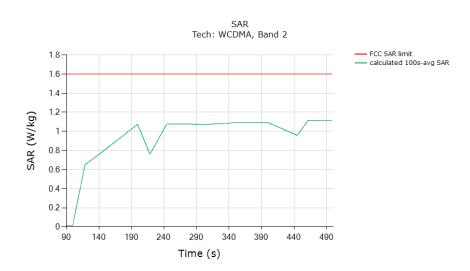
FCC ID: A3LSMN986W	PCTEST [*] Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 29 of 58
© 2020 PCTEST				REV 1.0

Test result for test sequence 2:


Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

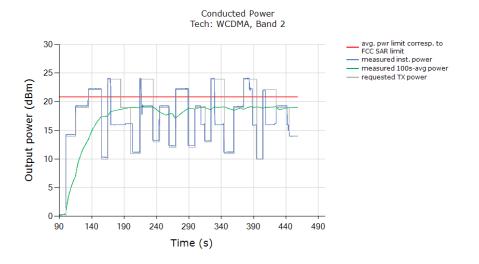


	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.002
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

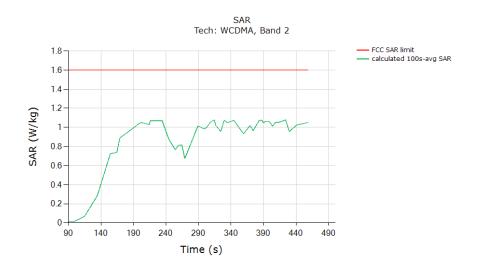

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 20 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 30 of 58
(2020 PCTEST				REV 1.0

7.1.4 **UMTS B2**

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



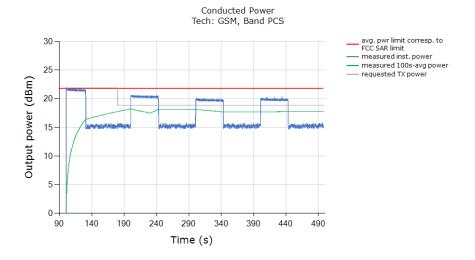
	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged 1gSAR (green curve)	1.115	
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of SAR at <i>P_{limit}</i> (last column in Table 6-2).		


FCC ID: A3LSMN986W	PCTEST [*] Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 21 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 31 of 58
© 2020 PCTEST				REV 1.0

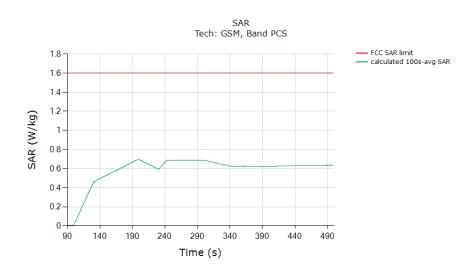
REV 1.0 04/06/2020

Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



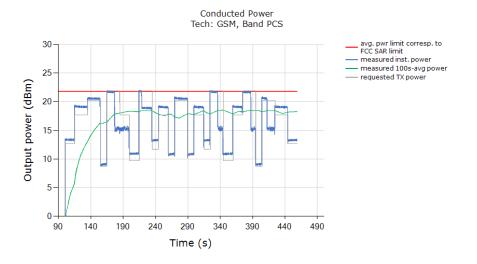
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.077
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured


	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 22 of 59	
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 32 of 58	
(© 2020 PCTEST			REV 1.0		

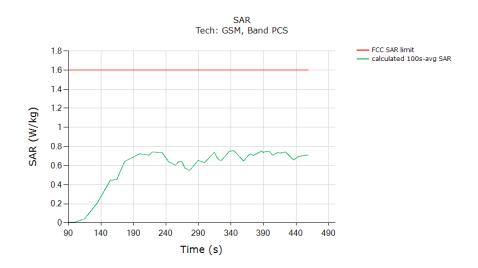
REV 1.0 04/06/2020

Test result for test sequence 1:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



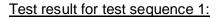
	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged 1gSAR (green curve)	0.699	
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 6-2).		

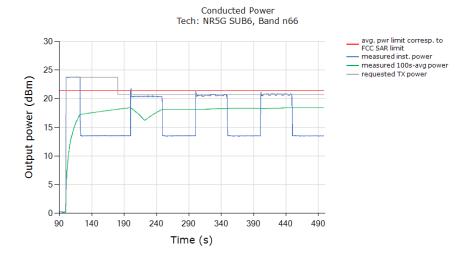

FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 33 of 58	
© 2020 PCTEST				REV 1.0	

REV 1.0 04/06/2020

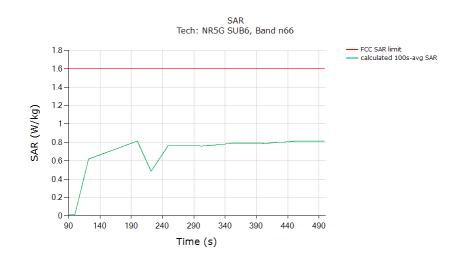
Test result for test sequence 2:

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



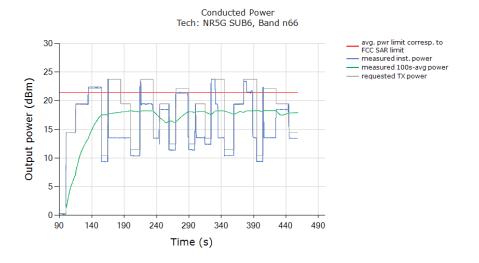

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.755
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 24 of 59	
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 34 of 58	
(© 2020 PCTEST			REV 1.0		

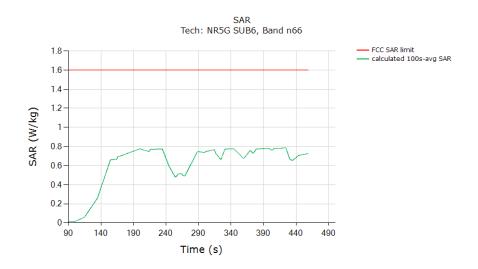

REV 1.0 04/06/2020

7.1.6 **NR n66**

Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:



	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.813
Validated: Max time averaged SAR (green curve) is within 1dB device uncertain 3dB Reserve_power_margin setting) of the measured SAR at <i>Plimit</i> (last column	

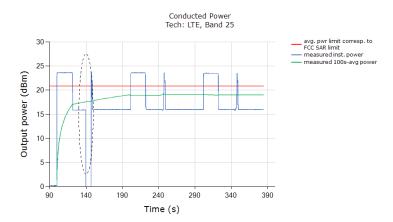

FCC ID: A3LSMN986W	Froud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 25 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 35 of 58	
© 2020 PCTEST			REV 1.0		

REV 1.0 04/06/2020

Test result for test sequence 2:

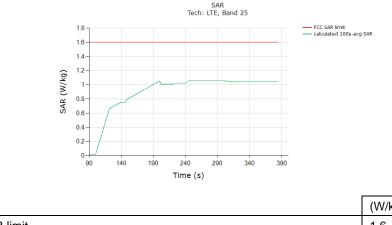
Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

	(W/kg)		
FCC 1gSAR limit	1.6		
Max 100s-time averaged 1gSAR (green curve)	0.785		
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 75% 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table			


	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 36 of 58	
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset			
© 2020 PCTEST				REV 1.0		

7.2 Call Drop Test Case

This test was measured LTE Band 25, Antenna A, DSI=3, and with callbox requesting maximum power. The call drop was manually performed when the DUT is transmitting at $P_{reserve}$ level as shown in the plot below (dotted black region). The measurement setup is shown in Figure 5-1. The detailed test procedure is described in Section 4.3.2.


Call drop test result:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power kept the same $P_{reserve}$ level of LTE Band 25 after the call was re-established:

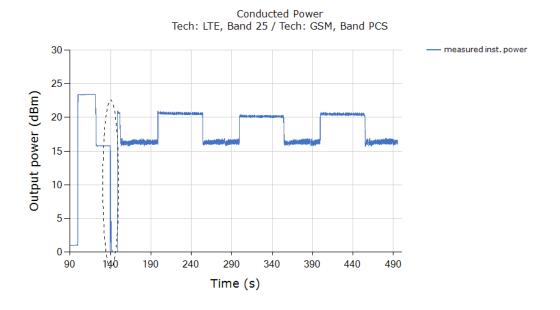
Plot Notes: The power level after the change in call kept the same *P*_{reserve} level of LTE Band 25. The conducted power plot shows expected Tx transition.

Plot 2: Above time-averaged conducted Tx power is converted/calculated into time-averaged 1gSAR using Equation (1a) and plotted below to demonstrate that the time-averaged 1gSAR versus time does not exceed the FCC limit of 1.6 W/kg for 1gSAR:

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	1.061
Validated	

The

Test result validated the continuity of power limiting in call change scenario.

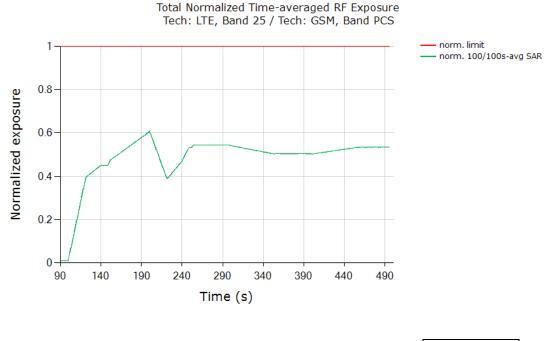

FCC ID: A3LSMN986W	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 27 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 37 of 58
© 2020 PCTEST				REV 1.0

7.3 Change in Technology/Band Test Case

This test was conducted with callbox requesting maximum power, and with a technology switch from LTE 25, Antenna A, DSI = 3 to GSM/GPRS/EDGE1900, Antenna A, DSI = 3. Following procedure detailed in Section 4.3.3, and using the measurement setup shown in Figure 5-1, the technology/band switch was performed when the DUT is transmitting at $P_{reserve}$ level as shown in the plot below (dotted black region).

Test result for change in technology/band:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed from LTE 25, Antenna A, DSI = 3 $P_{reserve}$ level to GSM/GPRS/EDGE1900, Antenna A, DSI = 3 $P_{reserve}$ level (within 1 dB device uncertainty):



Note: As per the manufacturer, *Reserve_power_margin* = 3 dB. Based on Table 6-1, EFS *Plimit* = 18.5dBm for LTE B25 (DSI=3), and EFS *Plimit* = 18.6 dBm for GSM/GPRS/EDGE1900 (DSI=3), it can be seen from above plot that the difference in *Preserve* (= *Plimit* – 3dB *Reserve_power_margin*) power level corresponds to the expected difference in *Plimit* levels of 0.1dB (within 1dB of sub6 radio design related uncertainty). Therefore, the conducted power plot shows expected transition in Tx power.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 38 of 58
© 2020 PCTEST				REV 1.0

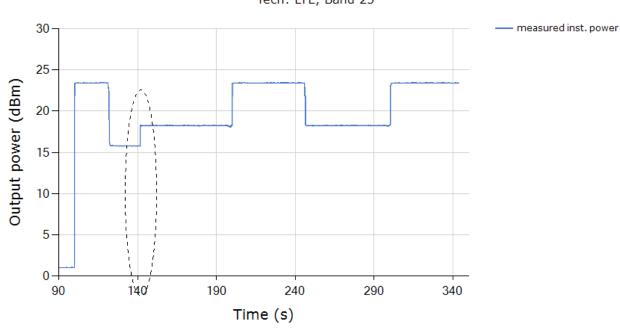
REV 1.0 04/06/2020

Plot 2: All the time-averaged conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (6a), (6b) and (6c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the normalized FCC limit of 1.0:

	(W/kg)
FCC normalized SAR limit	1.0
Max 100s-time averaged normalized SAR (green curve)	0.609
Validated	

The test result validated the continuity of power limiting in technology/band switch scenario.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 39 of 58
© 2020 PCTEST				REV 1.0

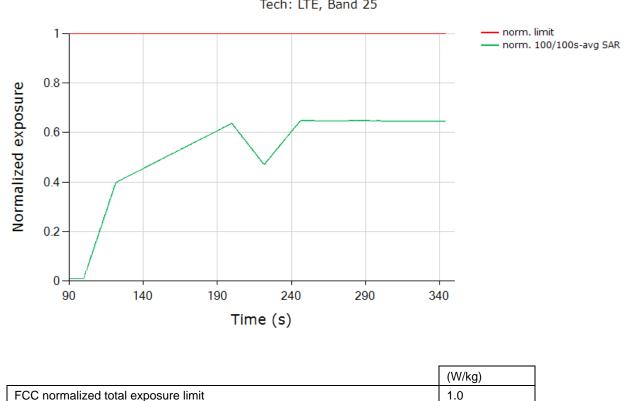

REV 1.0 04/06/2020

7.4 DSI Switch Test Case

This test was conducted with callbox requesting maximum power, and with DSI switch from LTE 25 DSI = 3 (hotspot) to DSI = 1 (grip sensor triggered). Following procedure detailed in Section 4.3.5 using the measurement setup shown in Figure 5-1, the DSI switch was performed when the DUT is transmitting at $P_{reserve}$ level as shown in the plot below (dotted black circle).

Test result for change in DSI:

Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed when DSI = 3 switches to DSI = 1:



Conducted Power Tech: LTE, Band 25

Note: As per the manufacturer, *Reserve_power_margin* = 3dB. Based on Table 6-1, EFS P_{limit} = 18.5 dBm for LTE B25 hotspot DSI = 3, and EFS P_{limit} = 21.0 dBm for extremity DSI = 1.The difference in $P_{reserve}$ (= P_{limit} – 3dB Reserve_power_margin) level corresponds to the expected different in P_{limit} levels of 2.5 dB (within 1dB of sub6 radio design related uncertainty). Therefore, the conducted power plot shows expected transition in Tx power.

FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 40 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 40 of 58
© 2020 PCTEST				REV 1.0

Plot 2: All the time-averaged conducted Tx power measurement results were converted into timeaveraged normalized SAR values using Equation (6a), (6b) and (6c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit.

0.648

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 25

Ih۵	test result validated the continuity of power limiting in DSI switch scenario.
1110	

Validated

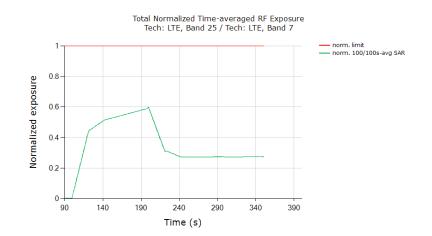
7.5 Change in antenna switch test results

Max 100s-time averaged normalized SAR (green curve)

This test was conducted with callbox requesting maximum power, and with an antenna switch from LTE 25, Antenna A, DSI = 3 to LTE 7, Antenna B, DSI = 3. Following procedure detailed in Section 4.2.4, and using the measurement setup shown in Figure 5-1, the technology/band switch was performed when the DUT is transmitting at $P_{reserve}$ level as shown in the plot below (dotted black region).

Test result for change in technology/band:

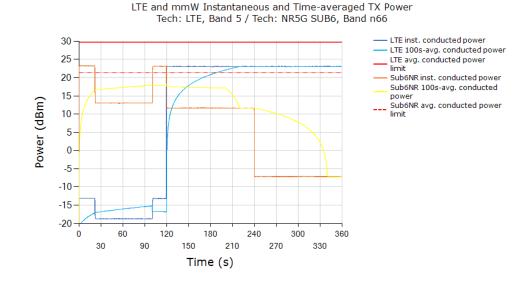
Plot 1: Measured Tx power (dBm) versus time shows that the transmitting power changed from LTE 25, Antenna A, DSI = 3 $P_{reserve}$ level to LTE Band 7, Antenna B, DSI = 3 $P_{reserve}$ level (within 1 dB device uncertainty):


FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 41 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 41 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

Note: As per Part 1 report, *Reserve_power_margin* = 3dB. Based on Table 6-1, EFS *Plimit* = 18.5dBm for LTE B25 (DSI=3), and 19.0dBm for LTE B7 (DSI=3), it can be seen from above plot that the difference in *Preserve* (= *Plimit* – 3dB *Reserve_power_margin*) power level corresponds to the expected difference in *Plimit* levels of 0.5 dB (within 1dB of sub6 radio design related uncertainty). Therefore, the conducted power plot shows expected transition in Tx power.

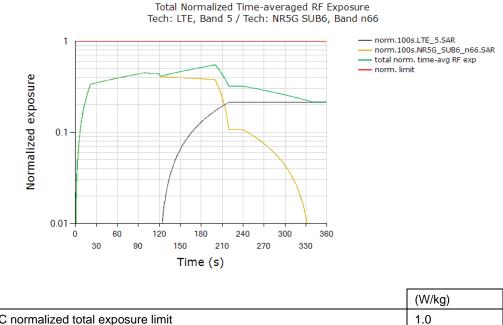
Plot 2: All the time-averaged conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (6a), (6b) and (6c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the normalized FCC limit of 1.0:


	(W/kg)
FCC normalized SAR limit	1.0
Max 100s-time averaged normalized SAR (green curve)	0.600
Validated	

The test result validated the continuity of power limiting in technology/band switch scenario.

FCC ID: A3LSMN986W	Proud to be part of registered	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 42 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 42 of 58
© 2020 PCTEST				REV 1.0

7.6 Switch in SAR exposure test results


This test was conducted with callbox requesting maximum power, and with the EUT in LTE B5 + Sub6 NR Band n66 call. Following procedure detailed in Section 4.3.6 and Appendix F.2, and using the measurement setup shown in Figure 5-1(c) since LTE and Sub6 NR are sharing the same antenna port, the SAR exposure switch measurement is performed with the EUT in various SAR exposure scenarios, i.e., in SAR_{sub6NR} only scenario (t =0s ~120s), SAR_{su6NR} + SAR_{LTE} scenario (t =120s ~ 240s) and SAR_{LTE} only scenario (t > 240s).

Plot 2: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the LTE Tx power of device to obtain 100s-averaged normalized SAR in LTE B5 as shown in black curve. Similarly, equation (7b) is used to obtain 100s-averaged normalized SAR in Sub6 NR n66 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

FCC ID: A3LSMN986W	Proud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 42 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 43 of 58
© 2020 PCTEST				REV 1.0

thereof, please contact INFO@PCTEST.COM.

	(W/kg)		
FCC normalized total exposure limit	1.0		
Max time averaged normalized SAR (green curve)	0.549		
Validated			

<u>Plot Notes:</u> Device starts predominantly in Sub6 NR SAR exposure scenario between 0s and 120s, and in LTE SAR + Sub6 NR SAR exposure scenario between 120s and 240s, and in predominantly in LTE SAR exposure scenario after t=240s. Here, Smart Transmit allocates a maximum of 75% of exposure margin (based on 3dB reserve margin setting) for Sub6 NR. This corresponds to a normalized 1gSAR exposure value = 75% * 1.030 W/kg measured SAR at Sub6 NR *Plimit* / 1.6W/kg limit = 0.483 ± 1dB device related uncertainty (see orange curve between 0s~120s). For predominantly LTE SAR exposure scenario, maximum normalized 1gSAR exposure should correspond to 100% exposure margin = 0.503 W/kg measured SAR at LTE *Plimit* / 1.6W/kg limit = 0.314 ± 1dB device related uncertainty (see black curve after t = 240s). Additionally, in SAR exposure switch test, at all times the total time-averaged normalized RF exposure (green curve) should not exceed normalized SAR of 0.549 being ≤ 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in SAR exposure switch scenario.

FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 44 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 44 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

8 SYSTEM VERIFICATION (FREQ < 6 GHZ)

8.1 Tissue Verification

Table 8-1 Measured Tissue Properties									
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			1710	1.481	51.590	1.463	53.537	1.23%	-3.64%
			1720	1.492	51.538	1.469	53.511	1.57%	-3.69%
06/16/2020	1750 Body	22	1745	1.521	51.433	1.485	53.445	2.42%	-3.76%
00/10/2020	1750 BOUY	22	1750	1.527	51.423	1.488	53.432	2.62%	-3.76%
			1770	1.549	51.339	1.501	53.379	3.20%	-3.82%
			1790	1.572	51.272	1.514	53.326	3.83%	-3.85%
			1710	1.471	51.097	1.463	53.537	0.55%	-4.56%
			1720	1.482	51.076	1.469	53.511	0.88%	-4.55%
06/22/2020	1750 Bodv	21.4	1745	1.507	51.025	1.485	53.445	1.48%	-4.53%
00/22/2020	1750 Body		1750	1.511	51.009	1.488	53.432	1.55%	-4.53%
			1770	1.532	50.919	1.501	53.379	2.07%	-4.61%
			1790	1.557	50.825	1.514	53.326	2.84%	-4.69%
			1710	1.497	51.000	1.463	53.537	2.32%	-4.74%
			1720	1.509	50.967	1.469	53.511	2.72%	-4.75%
06/24/2020	1750 Body	21.5	1745	1.535	50.887	1.485	53.445	3.37%	-4.79%
00/24/2020	1750 Body	21.5	1750	1.540	50.869	1.488	53.432	3.49%	-4.80%
			1770	1.561	50.792	1.501	53.379	4.00%	-4.85%
			1790	1.584	50.712	1.514	53.326	4.62%	-4.90%
			1850	1.528	55.125	1.520	53.300	0.53%	3.42%
			1860	1.539	55.096	1.520	53.300	1.25%	3.37%
06/12/2020	1900 Body	21.4	1880	1.561	55.022	1.520	53.300	2.70%	3.23%
			1900	1.582	54.965	1.520	53.300	4.08%	3.12%
			1905	1.589	54.947	1.520	53.300	4.54%	3.09%
			1850	1.528	55.731	1.520	53.300	0.53%	4.56%
			1860	1.541	55.707	1.520	53.300	1.38%	4.52%
06/15/2020	1900 Body	21.5	1880	1.564	55.638	1.520	53.300	2.89%	4.39%
			1900	1.585	55.597	1.520	53.300	4.28%	4.31%
			1905	1.591	55.592	1.520	53.300	4.67%	4.30%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMN986W	Froud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 45 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 45 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

8.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix C.

	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g(W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR1g(W/kg)	Deviation _{1g} (%)
М	1750	BODY	06/16/2020	21.9	22.0	0.100	1150	7526	3.720	36.600	37.200	1.64%
Ν	1750	BODY	06/22/2020	21.6	21.4	0.100	1150	3914	3.590	36.600	35.900	-1.91%
Ν	1750	BODY	06/24/2020	22.0	21.5	0.100	1150	3914	3.620	36.600	36.200	-1.09%
М	1900	BODY	06/12/2020	22.2	21.4	0.100	5d148	7526	3.930	39.100	39.300	0.51%
М	1900	BODY	06/15/2020	23.5	21.7	0.100	5d148	7526	3.680	39.100	36.800	-5.88%

Table 8-2System Verification Results – 1g

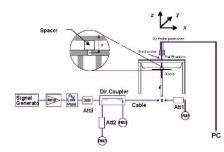


Figure 8-1 System Verification Setup Diagram

Figure 8-2 System Verification Setup Photo

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 46 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 46 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

9 SAR TEST RESULTS (FREQ < 6 GHZ)

9.1 Time-varying Tx Power Case

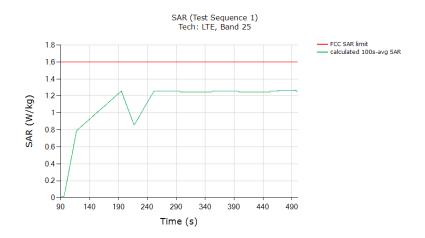
Following Section 4.4 procedure, time-averaged SAR measurements are conducted using a SAR probe at peak location of area scan over 500 seconds. cDASY6 system verification for SAR measurement is provided in Section 8, and the associated SPEAG certificates are attached in Appendix G.

SAR probe integration times depend on the communication signal being tested as defined in the probe calibration parameters.

Since the sampling rate used by cDASY6 for pointSAR measurements is not in user control, the number of points in 100s interval is determined from the scan duration setting in cDASY6 time-average pointSAR measurement by (100s cDASY6_scan_duration * total number of pointSAR values recorded). Running average is performed over these number of points in excel spreadsheet to obtain 100s averaged point SAR.

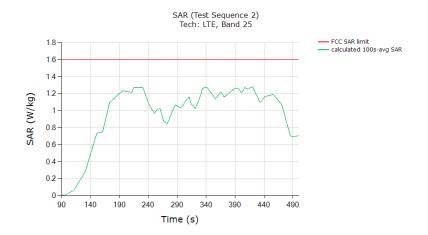
Following Section 4.4, for each of selected technology/band (listed in Table 6-2):

- With Reserve_power_margin set to 0 dB, area scan is performed at P_{limit}, and time-averaged pointSAR measurements are conducted to determine the pointSAR at P_{limit} at peak location, denoted as pointSAR_{Plimit}.
- With Reserve_power_margin set to actual (intended) value, two more time-averaged pointSAR measurements are performed at the same peak location for test sequences 1 and 2.


To demonstrate compliance, all the pointSAR measurement results were converted into 1gSAR or 10gSAR values by using Equation (3a), rewritten below:

$$1g_or_10gSAR(t) = \frac{pointSAR(t)}{pointSAR_{P_{limit}}} * 1g_or_10gSAR_{P_{limit}}$$
(3a)

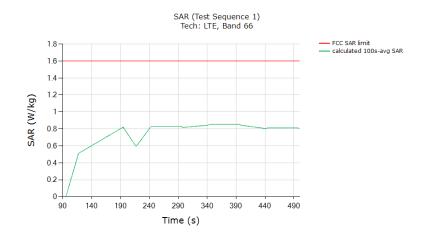
where, pointSAR(t), $pointSAR_P_{limit}$, and $1g_or_10gSAR_P_{limit}$ correspond to the measured instantaneous point SAR, measured point SAR at P_{limit} from above step 1 and 2, and measured 1gSAR or 10gSAR values at P_{limit} obtained from Part 1 report and listed in Table 6-2 of this report.


FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Туре:		Dage 47 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 47 of 58
© 2020 PCTEST				REV 1 0

SAR test results for test sequence 1:

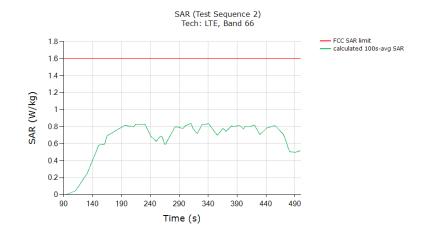
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	1.263
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

SAR test results for test sequence 2:


	(W/kg)		
FCC 1gSAR limit	1.6		
Max 100s-time averaged 1gSAR (green curve)	1.280		
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 6-2).			

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 40 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 48 of 58
© 2020 PCTEST				REV 1.0

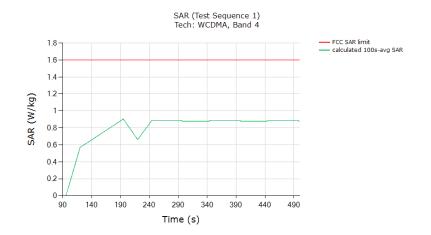
REV 1.0 04/06/2020


9.1.2 LTE Band 66

SAR test results for test sequence 1:

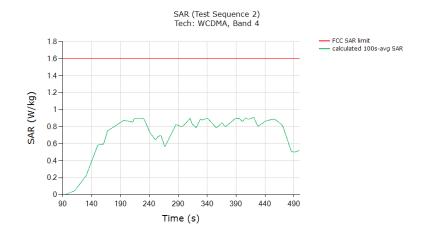
	(W/kg)		
FCC 1gSAR limit	1.6		
Max 100s-time averaged point 1gSAR (green curve)	0.85		
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 6-2).			

SAR test results for test sequence 2:



	(W/kg)		
FCC 1gSAR limit	1.6		
Max 100s-time averaged 1gSAR (green curve)	0.836		
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 6-2).			

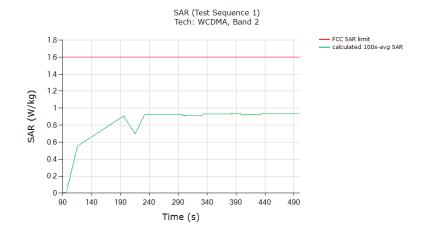
FCC ID: A3LSMN986W	PCTEST* Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 40 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 49 of 58
© 2020 PCTEST				REV 1.0


9.1.3 UMTS B4

SAR test results for test sequence 1:

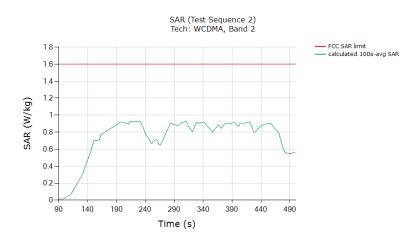
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.905
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

SAR test results for test sequence 2:



	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.907
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 6-2).	nty of measured

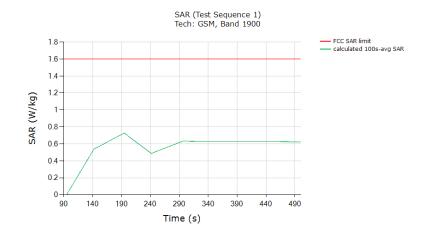
FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Daga 50 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 50 of 58	
© 2020 PCTEST				REV 1.0	


REV 1.0 04/06/2020

SAR test results for test sequence 1:

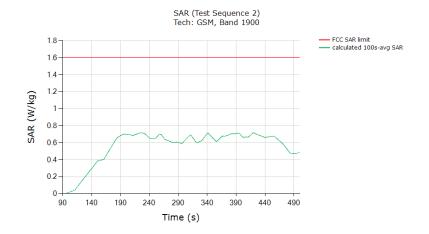
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.936
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

SAR test results for test sequence 2:



	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.929
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertainty of measured SAR at <i>P</i> _{limit} (last column in Table 6-2).	

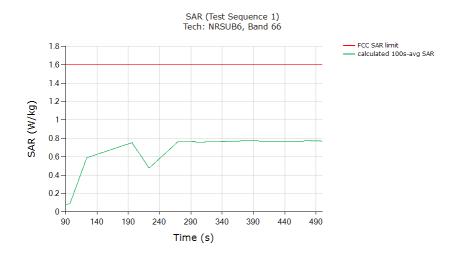
	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Daga 51 of 59	
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 51 of 58	
0	2020 PCTEST				REV 1.0	


GSM/GPRS/EDGE 1900

SAR test results for test sequence 1:

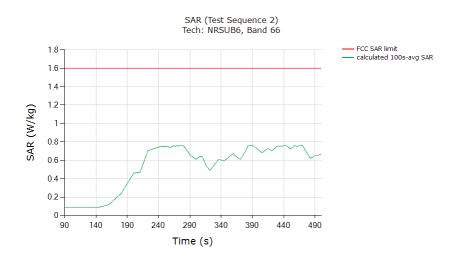
	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged point 1gSAR (green curve)	0.728
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>P</i> _{limit} (last column in Table 6-2).	nty of measured

SAR test results for test sequence 2:



	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.717
Validated: Max time averaged SAR (green curve) is within 1 dB device uncertain SAR at <i>Plimit</i> (last column in Table 6-2).	nty of measured

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 50 of 59	
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 52 of 58	
© 2020 PCTEST				REV 1.0	


9.1.6 **NR n66**

SAR test results for test sequence 1:

	(W/kg)	
FCC 1gSAR limit	1.6	
Max 100s-time averaged point 1gSAR (green curve)	0.775	
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 75% (with 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table 6-2).		

SAR test results for test sequence 2:

	(W/kg)
FCC 1gSAR limit	1.6
Max 100s-time averaged 1gSAR (green curve)	0.761
Validated: Max time averaged SAR (green curve) is within 1dB device uncertainty of 75% (with 3dB <i>Reserve_power_margin</i> setting) of the measured SAR at <i>Plimit</i> (last column in Table 6-2).	

	FCC ID: A3LSMN986W	PCTEST Proud to be part of @element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 53 of 58	
© 2020 PCTEST					REV 1.0	

REV 1.0 04/06/2020

10 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	E4432B	ESG-D Series Signal Generator	7/14/2019	Annual	7/14/2020	US40053896
Agilent	N9020A	MXA Signal Analyzer	12/19/2019	Annual	12/19/2020	MY48010233
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Agilent	8753ES	S-Parameter Network Analyzer	12/31/2019	Annual	12/31/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	3/11/2019	Biennial	3/11/2021	MY45090700
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520501
Anritsu	MA24106A	USB Power Sensor	2/27/2020	Annual	2/27/2021	1520503
Anritsu	ML2496A	Power Meter	12/17/2019	Annual	12/17/2020	1138001
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	0846215
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	1126066
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292061
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282753
Keysight Technologies	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4772-3	Attenuator	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator	CBT	N/A	CBT	120
Narda	BW-S10W2+	Attenuator	CBT	N/A	CBT	831
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	7/18/2018	Biennial	7/18/2020	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	8/26/2019	Annual	8/26/2020	100976
Rohde & Schwarz	CMW500	Radio Communication Tester	6/26/2019	Annual	6/26/2020	112347
SPEAG	D1750V2	1750 MHz SAR Dipole	10/22/2018	Biennial	10/22/2020	1150
SPEAG	EX3DV4	SAR Probe	3/18/2020	Annual	3/18/2021	7526
SPEAG	EX3DV4	SAR Probe	2/20/2020	Annual	2/20/2021	3914
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Biennial	2/21/2021	5d148
SPEAG	DAE4	Dasy Data Acquisition Electronics	12/18/2019	Annual	12/18/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/15/2020	Annual	4/15/2021	1582
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/22/2019	Annual	10/22/2020	1091
Mini Circuits	ZAPD-2-272-S+	Power Splitter	CBT	N/A	CBT	SF702001405
Keysight Technologies	E7515B	UXM 5G Wireless Test Platform	6/11/2019	Annual	12/11/2020	MY59150289
Narda	4216-10	Directional Coupler, 0.5 to 8.0 GHz, 10 dB	5/16/2019	Annual	11/16/2020	01492
Narda	4216-10	Directional Coupler, 0.5 to 8.0 GHz, 10 dB	5/16/2019	Annual	11/16/2020	01492
Rohde & Schwarz	NRP8S	3-Path Dipole Power Sensor	6/1/2019	Annual	12/1/2020	108168
	NRP8S	3-Path Dipole Power Sensor	6/1/2019	Annual	12/1/2020	108108
Rohde & Schwarz			0, 1, 2010			
Rohde & Schwarz Rohde & Schwarz	NRP8S	3-Path Dipole Power Sensor	6/10/2020	Annual	6/10/2021	109322
Rohde & Schwarz Rohde & Schwarz K & L		3-Path Dipole Power Sensor High Pass Filter	6/10/2020 N/A	Annual N/A	6/10/2021 N/A	109322 11SH10-1300/U4000 - 2

Notes:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Due to the worldwide pandemic caused by the novel SAR-CoV-2 virus (COVID-19), special calibration extensions have been permitted by A2LA. Some equipment had its calibration period extended accordingly and will be calibrated when possible.
- 3. Each equipment item is used solely within its respective calibration period.

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 54 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 54 of 58
© 2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

11 MEASUREMENT UNCERTAINTIES

For SAR Measurements

Measurements								
а	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		CI	CI	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u	u	vı
				•		(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	8
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	x
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	x
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS		•		11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 55 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 55 of 58
(2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 1.0 04/06/2020

12 CONCLUSION

12.1 Measurement Conclusion

The SAR evaluation indicates that the DUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMN986W	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Туре:		Dage 56 of 59
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 56 of 58
© 2020 PCTEST				REV 1.0

13 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

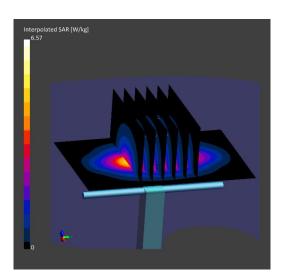
	FCC ID: A3LSMN986W	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 57 of 59
	1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 57 of 58
(2020 PCTEST				REV 1.0

REV 1.0 04/06/2020

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

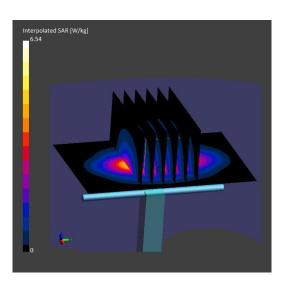
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.

thereof, please contact INFO@PCTEST.COM.

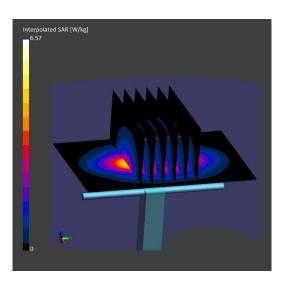

[30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMN986W	Froud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 50 of 50
1M2004170066-22.A3L	06/12/2020 - 06/24/2020	Portable Handset		Page 58 of 58
© 2020 PCTEST				REV 1 (

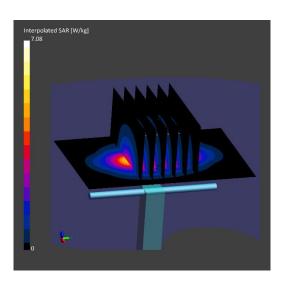
APPENDIX A: VERIFICATION PLOTS


PCTEST Date: 06-16-2020 1750 Body Verification

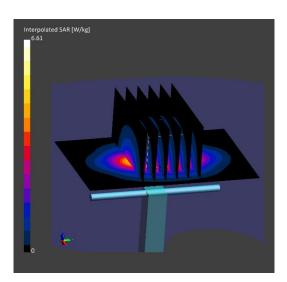
Frequency [MHz]	TSL		TSL Conductivit	y [S/m]	TS	L Permittivity	Ambie	ent Temperature [C]	Tissue Temperature [C]	
1750.0	1750	Body	1.53		51	.4	21.9		22.0	
Exposure Co	nditic	ons								
Phantom Section	st Distance [mm]			Power [dBm]		Communication Sy	vstem, UID			
Flat		10)			20.0		CW, 0		
Hardware Se	tup									
Phantom		Dipole		Probe	, Calibrati	on Date		Conversion Factor	DAE, Calibration Date	
Twin-SAM V8.0 - 1	964	D1750	V2 – SN1150	EX3D	V4 - SN75	26, 2020-03-1	8	7.62	DAE4 Sn859, 2019–12–18	
Scans Setup										
						A	rea Scan		Zoom Scan	
Grid Extents [mm]						60.	0 x 90.0		50.0 x 30.0 x 30.0	
Grid Steps [mm]						15.	0 x 15.0		6.0 x 6.0 x 5.0	
Sensor Surface [mm]						3.0		1.4	
Graded Grid							No		No	
Grading Ratio					n/a			n/a n/a		
Measuremen	t Res	ults		·						
									Zoom Scan	
psSAR1g [W/Kg]									3.72	
psSAR10g [W/Kg]							1.98			
Dev. 1g [%]										


PCTEST Date: 06-22-2020 1750 Body Verification

Frequency [MHz]	TSL		TSL Conductivi	ty [S/m]	TS	L Permittivity	Ambie	ent Temperature [C]	Tissue Temperature [C]
1750.0	1750	Body	1.51		51	.0	21.6		21.4
Exposure Co	nditio	ons							·
Phantom Section		Te	st Distance [mm]			Power [dBm]		Communication S	ystem, UID
Flat		10				20.0		CW, 0	
Hardware Set	tup								
Phantom		Dipole		Probe, C	alibrati	on Date	0	Conversion Factor	DAE, Calibration Date
Twin-SAM V8.0 - 19	978	D1750	V2 – SN1150	EX3DV4	- SN39	914, 2020-02-2	0 7	7.91	DAE4 Sn1582, 2020-04-15
Scans Setup									
						А	rea Scan		Zoom Scan
Grid Extents [mm]						60.	0 x 90.0		50.0 x 30.0 x 30.0
Grid Steps [mm]						15.	0 x 15.0		6.0 x 6.0 x 5.0
Sensor Surface [mm]						3.0		1.4
Graded Grid							No		No
Grading Ratio							n/a		n/a
Measuremen	t Resi	ults						1	
									Zoom Scan
psSAR1g [W/Kg]									3.59
psSAR10g [W/Kg]									1.87
Dev. 1g [%]									-1.91


PCTEST Date: 06-24-2020 1750 Body Verification

Frequency [MHz]	TSL		TSL Conductivi	ty [S/m]	TS	L Permittivity	Ambi	ent Temperature [C]		Tissue Temperature [C]	
1750.0	1750	Body	1.54		50).9	22.0			21.5	
Exposure Co	nditio	ons									
Phantom Section		Te	st Distance [mm]			Power [dBm]		Communication S	System	n, UID	
Flat		10				20.0		CW, 0			
Hardware Set	tup	·						·			
Phantom		Dipole		Probe, Ca	librati	on Date		Conversion Factor	DA	E, Calibration Date	
Twin-SAM V8.0 - 19	978	D1750	V2 – SN1150	EX3DV4 -	SN39	14, 2020-02-2	0	7.91	DA	E4 Sn1582, 2020-04-15	
Scans Setup									·		
						A	rea Scan			Zoom Scan	
Grid Extents [mm]						60.	0 x 90.0			50.0 x 30.0 x 30.0	
Grid Steps [mm]						15.	0 x 15.0			6.0 x 6.0 x 5.0	
Sensor Surface [mm]						3.0			1.4	
Graded Grid							No			No	
Grading Ratio							n/a			n/a	
Measuremen	t Resi	ults									
										Zoom Scan	
psSAR1g [W/Kg]										3.62	
psSAR10g [W/Kg]										1.91	
Dev. 1g [%]										-1.09	


PCTEST Date: 06-12-2020 1900 Body Verification

TSL		TSL Conductivity	/ [S/m]	тs	L Permittivity	Ambie	ent Temperature [C]	Tissue Temperature [C]	
1900 B	lody	1.58		55	.0	22.2		21.4	
nditio	ns							·	
	st Distance [mm]			Power [dBm]		Communication Sy	stem, UID		
	10				20.0		CW, 0		
up									
	Dipole		Probe, Ca	libra	tion Date		Conversion Factor	DAE, Calibration Date	
981	D1900	V2 – SN5d148	EX3DV4 -	- SN7	526, 2020-03-	18	7.33	DAE4 Sn859, 2019-12-18	
					A	rea Scan		Zoom Scan	
					60.	0 x 90.0		50.0 x 30.0 x 30.0	
					15.	0 x 15.0		6.0 x 6.0 x 5.0	
						3.0		1.4	
						No		No	
				n/a			n/a		
t Resu	ılts								
								Zoom Scan	
								3.93	
psSAR10g [W/Kg]						2.03			
								0.51	
	1900 E nditio	1900 Body nditions Te: 10 10 10 10 10 10 10 10 10 10 10 10 10	1900 Body 1.58 Test Distance [mm] 10 10 Clipple 01900V2 - SN5d148	International (1990) International (1990) 1900 Body 1.58 Inditions Test Distance [mm] 10 10 Cup Probe, Ca 181 D1900V2 - SN5d148 EX3DV4 -	1900 Body 1.58 55 nditions Test Distance [mm] 10 10 10 200 Dipole Probe, Calibra 181 D1900V2 - SN5d148 EX3DV4 - SN7	1900 Body 1.58 55.0 nditions Test Distance [mm] Power [dBm] 10 20.0 Clipple Dipole Probe, Calibration Date 181 D1900V2 - SN5d148 EX3DV4 - SN7526, 2020-03- A 60. 15.	1900 Body 1.58 55.0 22.2 nditions Test Distance [mm] Power [dBm] 10 20.0 CUP Dipole Probe, Calibration Date 181 D1900V2 - SN5d148 EX3DV4 - SN7526, 2020-03-18 Area Scan 60.0 x 90.0 15.0 x 15.0 Scan No No No No	1900 Body 1.58 55.0 22.2 nditions Test Distance [mm] Power [dBm] Communication Sy 10 20.0 CW, 0 Curves of Conversion Factor Outpole Probe, Calibration Date Conversion Factor 181 D1900V2 - SN5d148 EX3DV4 - SN7526, 2020-03-18 7.33 Area Scan Scan <td< td=""></td<>	

PCTEST Date: 06-15-2020 1900 Body Verification

Frequency [MHz]	TSL		TSL Conductivity	/ [S/m]	TS	L Permittivity	Ambie	nt Temperature [C]	Tissue Temperature [C]	
1900.0	1900	Body	1.58		55	5.6	23.5		21.7	
Exposure Co	nditio	ons								
Phantom Section	Te	st Distance [mm]			Power [dBm]		Communication Sy	stem, UID		
Flat		10				20.0		CW, 0		
Hardware Se	tup									
Phantom		Dipole		Probe, C	alibra	tion Date		Conversion Factor	DAE, Calibration Date	
Twin-SAM V8.0 - 1	981	D1900	V2 – SN5d148	EX3DV4	- SN7	7526, 2020-03-	18	7.33	DAE4 Sn859, 2019-12-18	
Scans Setup										
						A	rea Scan		Zoom Scan	
Grid Extents [mm]						60.0	0 x 90.0		50.0 x 30.0 x 30.0	
Grid Steps [mm]						15.0	0 x 15.0		6.0 x 6.0 x 5.0	
Sensor Surface [mm	1]						3.0		1.4	
Graded Grid							No		No	
Grading Ratio					n/a			n/a		
Measuremen	t Res	ults								
									Zoom Scan	
psSAR1g [W/Kg]									3.68	
psSAR10g [W/Kg]							1.93			
Dev. 1g [%]										
							1			

APPENDIX B: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with Declarable, or hazardous component		
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Additional information:	· · · ·	

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

withheld as a trade secret.

©

Figure B -1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID: A3LSMN986W	PRT 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
	Test Dates:	DUT Type:	APPENDIX B:
	06/12/2020 - 06/24/2020	Portable Handset	Page 1 of 3
) 202	0 PCTEST		REV 1.0 04/06/2020

Schmid & Partner Engineering AG S peag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Ambient Condi	tion 22°C ; 30% humidity	
TSL Temperat	ure 22°C	
Test Date	30-Oct-18	
Operator	CL	
Additional Inf	ormation	
TSL Density		
TSL Heat-capa	city	

4500 5500

5500 4500

-0.4 -8.8 -0.5 -8.8

0.8 -2.3 -2.5 5.77

1.3

1.8

3.31 3.55 5.30 -1.8 -0.6 5.36 5.42 -1.9 -2.0 -0.4 -0.2

5.65 -2.2

6.00 -2.6

5.88

Results

Т

12013	Measu	ured		Targe	ət	Diff.to Tar	get [%]					
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0	100	Self-	35 816	
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	10.0		19 192	1.00	
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0		120.0			
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5	≈ 5.0	1244			
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0	0.0 tivit	-	-	101	
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7	0.0 Permittivity				
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	۵5.0 >				
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	a -10.0				in the second
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5		1			
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	-15.0	500	1500	2500	350
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3					ancy MH
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3					
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2	15.0				
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	15.0				
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	10.0				
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	20 - 0		S. Pay	1	
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9	- 0.0 - 0.0	1200		~	
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3	0.0 -	120	- 1	1	
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	Con	Λ	2	1	
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3	O5.0 ·	16	/	1	
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7	-10.0	-		10 10 10 10 10 10 10 10 10 10 10 10 10 1	~
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3	-15.0				
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3		00	1500	2500	3500
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5			U. MORENAU	Frequer	ncy MHz
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7					
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6					
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9	3500	51.1	15.5	3.02	51.3
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8	3700	50.8	15.7	3.24	51.1
	53.1	14.4	1.85	52.9	1.81	0.4	2.2	5200	48.1	18.2	5.27	49.0
2300	and the second s	14.5	1.89	52.8	1.85	0.3	2.2	5250	48.0	18.3	5.34	49.0
2300 2350	53.0			52.8	1.90	0.2	2.1	5300	47.9	18.4	5.41	48.9
	53.0 52.9	14.5	1.94	52.0					_			
2350	1. 1. 1. 1.	14.5 14.5	1.94 1.98	52.8	1.95	0.4	1.5	5500	47.5	18.6	5.70	48.6
2350 2400	52.9	_		_		0.4	1.5 0.5	5500 5600	47.5 47.3	18.6 18.8	5.70 5.84	48.6 48.5
2350 2400 2450	52.9 52.9	14.5	1.98	52.7	1.95							

TSL Dielectric Parameters

Figure B-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: A3LSMN986W		SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX B:
	06/12/2020 - 06/24/2020	Portable Handset		Page 2 of 3
© 202	0 PCTEST			REV 1.0 04/06/2020

Schmid & Partner Engineering AG	S	p	е	а	g	
Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com						

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16 BC (Batch: 181031-2)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Ambient Conditi	on 22°C ; 30% humidity	
TSL Temperatur		
Test Date	31-Oct-18	
Operator	CL	
Additional Info	rmation	
TSL Density		
TSL Heat-capac	ity	

Results

	Meas	ured	1 million	Targe	et	Diff.to Targ	jet [%]	15.4							
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0				1223		18182	
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0	0			-	all and	-	-
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5	2º 5.0		-					
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0	U.O.				-			
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5	E					-		
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1							-	-
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	Å 0-10.0							
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8	-15.0)	14		12-11-2		2012	
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1	1.1.1	500 15	00 2500		500 5500 Incy MHz	6500 7500	0 8500 9	9500
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7		-		Troque	andy with iz			_
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5	15.0		2 Salata	1353	0.52433		TRIS R	1
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0	10.0							
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9	Å 5.0	-	٨					
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8	0.0 nctiv		1		1	-	-	
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7	0.0 0.0-5.0	N	- /		/			
	41.9	13.8	1.40	40.0	1.40	4.7	0.0		1	1					
1810	41.9														
1810 1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7	a10.0						-	
				40.0 40.0	1.40 1.40	4.7 4.5	0.7 1.4	-15.0			1				
1825	41.9	13.8	1.41					-15.0	500 150	00 2500	3500 45 Freque	00 5500 e	500 7500	8500 9	500
1825 1850	41.9 41.8	13.8 13.8	1.41 1.42	40.0	1.40	4.5	1.4	-15.0	500 150	00 2500	3500 45 Freque	00 5500 e ency MHz 36.0			
1825 1850 1900	41.9 41.8 41.8	13.8 13.8 13.7	1.41 1.42 1.45	40.0 40.0	1.40 1.40	4.5 4.5	1.4 3.6	-15.0	-		Freque	ency MHz	4.66 4.71	0.9	-
1825 1850 1900 1950	41.9 41.8 41.8 41.7	13.8 13.8 13.7 13.7	1.41 1.42 1.45 1.48	40.0 40.0 40.0	1.40 1.40 1.40	4.5 4.5 4.3	1.4 3.6 5.7	-15.0 5200	36.3	15.8	4.57	36.0	4.66		-
1825 1850 1900 1950 2000	41.9 41.8 41.8 41.7 41.6	13.8 13.8 13.7 13.7 13.6	1.41 1.42 1.45 1.48 1.51	40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40	4.5 4.5 4.3 4.0	1.4 3.6 5.7 7.9	-15.0 5200 5250	36.3 36.2	15.8 15.9	4.57 4.63	36.0 35.9	4.66 4.71	0.9 0.8	500
1825 1850 1900 1950 2000 2050	41.9 41.8 41.8 41.7 41.6 41.6	13.8 13.8 13.7 13.7 13.6 13.6	1.41 1.42 1.45 1.48 1.51 1.55	40.0 40.0 40.0 39.9	1.40 1.40 1.40 1.40 1.44	4.5 4.3 4.0 4.2	1.4 3.6 5.7 7.9 7.3	-15.0 5200 5250 5300	36.3 36.2 36.1	15.8 15.9 15.9	4.57 4.63 4.69	36.0 35.9 35.9	4.66 4.71 4.76	0.9 0.8 0.7	
1825 1850 1900 1950 2000 2050 2100	41.9 41.8 41.7 41.6 41.6 41.6 41.5	13.8 13.8 13.7 13.7 13.6 13.6 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58	40.0 40.0 40.0 39.9 39.8	1.40 1.40 1.40 1.40 1.44 1.49	4.5 4.3 4.0 4.2 4.2	1.4 3.6 5.7 7.9 7.3 6.1	-15.0 5200 5250 5300 5500	36.3 36.2 36.1 35.8	15.8 15.9 15.9 16.1	4.57 4.63 4.69 4.92	36.0 35.9 35.9 35.6	4.66 4.71 4.76 4.96	0.9 0.8 0.7 0.3	1 4 4
1825 1850 1900 1950 2000 2050 2100 2150	41.9 41.8 41.8 41.7 41.6 41.6 41.5 41.4	13.8 13.7 13.7 13.6 13.6 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62	40.0 40.0 40.0 39.9 39.8 39.7	1.40 1.40 1.40 1.44 1.49 1.53	4.5 4.3 4.0 4.2 4.2 4.2 4.2	1.4 3.6 5.7 7.9 7.3 6.1 5.7	-15.0 5200 5250 5300 5500 5600	36.3 36.2 36.1 35.8 35.6	15.8 15.9 15.9 16.1 16.2	4.63 4.69 4.92 5.04	36.0 35.9 35.9 35.6 35.5	4.66 4.71 4.76 4.96 5.07	0.9 0.8 0.7 0.3 0.1	
1825 1850 1900 1950 2000 2050 2100 2150 2200	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69	40.0 40.0 40.0 39.9 39.8 39.7 39.6	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58	4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6	-15.0 5200 5250 5300 5500 5600 5700	36.3 36.2 36.1 35.8 35.6 35.4	15.8 15.9 15.9 16.1 16.2 16.2	4.57 4.63 4.69 4.92 5.04 5.15	36.0 35.9 35.9 35.6 35.5 35.4	4.66 4.71 4.76 4.96 5.07 5.17	0.9 0.8 0.7 0.3 0.1 0.0	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6	1.40 1.40 1.40 1.40 1.40 1.41 1.42 1.43 1.53 1.58 1.62	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2	-15.0 5200 5250 5300 5500 5600 5700 5800	36.3 36.2 36.1 35.8 35.6 35.4 35.2	15.8 15.9 15.9 16.1 16.2 16.2 16.3	4.57 4.63 4.69 4.92 5.04 5.15 5.27	36.0 35.9 35.6 35.5 35.4 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27	0.9 0.8 0.7 0.3 0.1 0.0 -0.2	-1 -1 -0 -0 0
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2	-15.0 5200 5250 5300 5500 5500 5600 5700 5800 6000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9	15.8 15.9 16.1 16.2 16.2 16.3 16.5	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6	
1825 1850 1900 2000 2050 2100 2150 2200 2250	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07	0,9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4	
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2400	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3	1.40 1.40 1.40 1.40 1.41 1.42 1.43 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500 7000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 33.1	15.8 15.9 16.1 16.2 16.3 16.5 16.9	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74	ancy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3	
1825 1850 1900 2000 2050 2100 2100 2100 2200 2200 22	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.65 1.69 1.72 1.76 1.80 1.88	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2	1.40 1.40 1.40 1.40 1.41 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6 4.6	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2	-15.0 5200 5250 5300 5500 5500 5500 5700 5800 6000 6500 7000 7500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2	15.8 15.9 16.1 16.2 16.3 16.5 16.9 17.3 17.6	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36	ancy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2	
1825 1850 1900 1950 2000 2050 2100 2150 2250 2300 2400 2450 2500	41.9 41.8 41.7 41.6 41.5 41.4 41.5 41.4 41.3 41.2 41.1 41.1 41.0 40.9	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.88 1.92	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6 4.5	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 1.4	-15.0 5200 5250 5300 5500 5500 5500 5700 5800 6000 6500 7000 7500 8000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1 -5.0	
1825 1850 1900 1950 2000 2050 2100 2150 2250 2300 2350 2400 2550	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9 40.9 40.8	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.43 1.44 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.80 1.88 1.92 1.93	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2 39.1 39.1	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85 1.91	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6 4.6 4.5 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.2 2.5 2.2 1.4 0.6	-15.0 5200 5250 5300 5600 5600 5600 6000 6500 7000 7500 8000 8500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4 30.5	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9 18.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97 8.59	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7 32.1	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84 8.45	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1	

TSL Dielectric Parameters

Figure B-3 600 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID: A3LSMN986W		SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX B:
	06/12/2020 - 06/24/2020	Portable Handset		Page 3 of 3
© 202	0 PCTEST			REV 1.0 04/06/2020

APPENDIX C: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System validation Summary – 1g													
								CI	CW VALIDATION			MOD. VALIDATION		
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	al Point	Cond. (σ)	Perm. (εr)	SENSITIV ITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
М	1750	5/19/2020	7526	1750	BODY	1.507	51.979	PASS	PASS	PASS	N/A	N/A	N/A	
М	1900	5/20/2020	7526	1900	BODY	1.585	53.549	PASS	PASS	PASS	GMSK	PASS	N/A	
N	1750	5/14/2020	3914	1750	BODY	1.463	52.562	PASS	PASS	PASS	N/A	N/A	N/A	

 Table C-1

 SAR System Validation Summary – 1g

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMN986W	PRT 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C:
06/12/2020 - 06/24/2020	Portable Handset		Page 1 of 1

APPENDIX E: TEST SEQUENCES

- 1. Test sequence is generated based on below parameters of the DUT:
 - a. Measured maximum power (Pmax)
 - b. Measured Tx_power_at_SAR_design_target (Plimit)
 - c. Reserve_power_margin (dB)
 - P_{reserve} (dBm) = measured P_{limit} (dBm) Reserve_power_margin (dB)
 - d. SAR_time_window (100s for FCC)
- 2. Test Sequence 1 Waveform:

Based on the parameters above, the Test Sequence 1 is generated with one transition between high and low Tx powers. Here, high power = P_{max} ; low power = $P_{max}/2$, and the transition occurs after 80 seconds at high power P_{max} . As long as the power enforcement is taking into effective during one 100s/60s time window, the validation test with this defined test sequence 1 is valid, otherwise, select other radio configuration (band/DSI within the same technology group) having lower P_{limit} for this test. The Test sequence 1 waveform is shown below:

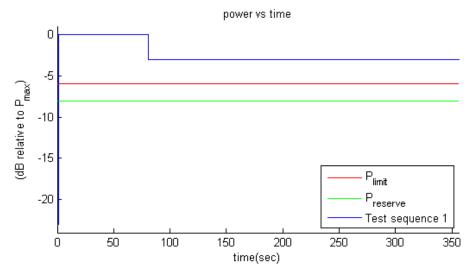
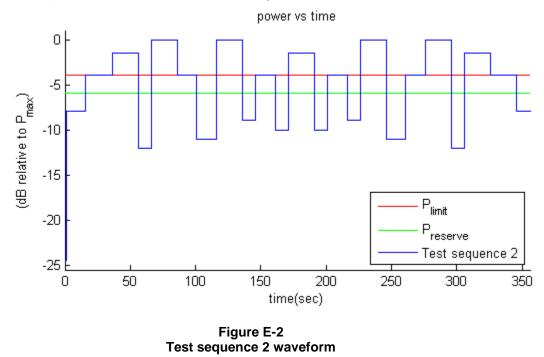


Figure E-1 Test sequence 1 waveform

	FCC ID: A3LSMN986W	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX E:
	06/12/2020 - 06/24/2020	Portable Handset		Page 1 of 3
© 202	2020 PCTEST			REV 1.0 04/06/2020


3. Test Sequence 2 Waveform:

Based on the parameters described above, the Test Sequence 2 is generated as described in Table 10-1, which contains two 170 second-long sequences (yellow and green highlighted rows) that are mirrored around the center row of 20s, resulting in a total duration of 360 seconds:

Time duration (seconds)	dB relative to <i>P_{limit}</i> or <i>P_{reserve}</i>	
<mark>15</mark>	P _{reserve} – 2	
20	P _{limit}	
20	(<i>P_{limit} + P_{max})/</i> 2 averaged in mW and rounded to nearest 0.1 dB step	
<mark>10</mark>	P _{reserve} – 6	
20	P _{max}	
<mark>15</mark>	P _{limit}	
<mark>15</mark>	P _{reserve} – 5	
<mark>20</mark>	P _{max}	
<mark>10</mark>	P _{reserve} – 3	
<mark>15</mark>	P _{limit}	
<mark>10</mark>	P _{reserve} – 4	
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step	
10	P _{reserve} – 4	
<mark>15</mark>	P _{limit}	
10	P _{reserve} – 3	
20	P _{max}	
<mark>15</mark>	P _{reserve} – 5	
<mark>15</mark>	P _{limit}	
20	P _{max}	
<mark>10</mark>	P _{reserve} – 6	
20	(<i>P_{limit}</i> + <i>P_{max}</i>)/2 averaged in mW and rounded to nearest 0.1 dB step	
20	P _{limit}	
<mark>15</mark>	P _{reserve} – 2	

Table E-1 Test Sequence 2

	FCC ID: A3LSMN986W	POT DE DE DE MARCELE PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
	Test Dates:	DUT Type:	APPENDIX E:
	06/12/2020 - 06/24/2020	Portable Handset	Page 2 of 3
© 202	20 PCTEST		REV 1.0 04/06/2020

	FCC ID: A3LSMN986W	PRT 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX E:
	06/12/2020 - 06/24/2020	Portable Handset		Page 3 of 3
202	0 PCTEST	·		REV 1.0 04/06/2020

©

APPENDIX F: TEST PROCEDURES FOR SUB6 NR + NR RADIO

Appendix F provides the test procedures for validating Qualcomm Smart Transmit feature for LTE + Sub6 NR non-standalone (NSA) mode transmission scenario, where sub-6GHz LTE link acts as an anchor.

F.1 Time-varying Tx power test for sub6 NR in NSA mode

Follows Section 4.2.1 to select test configurations for time-varying test. This test is performed with two pre-defined test sequences (described in Section 4.1) applied to Sub6 NR (with LTE on all-down bits or low power for the entire test after establishing the LTE+Sub6 NR call with the callbox). Follow the test procedures described in Section 4.3.1 to demonstrate the effectiveness of power limiting enforcement and that the time averaged Tx power of Sub6 NR when converted into 1gSAR values does not exceed the regulatory limit at all times (see Eq. (1a) and (1b)). Sub6 NR response to test sequence1 and test sequence2 will be similar to other technologies (say, LTE), and are shown in Sections 7.1.6 and 7.1.7.

F.2 Switch in SAR exposure between LTE vs. Sub6 NR during transmission

This test is to demonstrate that Smart Transmit feature accurately accounts for switching in exposures among SAR for LTE radio only, SAR from both LTE radio and sub6 NR, and SAR from sub6 NR only scenarios, and ensures total time-averaged RF exposure compliance with FCC limit.

Test procedure:

- 1. Measure conducted Tx power corresponding to P_{limit} for LTE and sub6 NR in selected band. Test condition to measure conducted P_{limit} is:
 - Establish device in call with the callbox for LTE in desired band. Measure conducted Tx power corresponding to LTE *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
 - Repeat above step to measure conducted Tx power corresponding to Sub6 NR <u>*Plimit*</u>. If testing LTE+Sub6 NR in non-standalone mode, then establish LTE+Sub6 NR call with callbox and request all down bits for radio1 LTE. In this scenario, with callbox requesting maximum power from Sub6 NR, measured conducted Tx power corresponds to radio2 <u>*Plimit*</u> (as radio1 LTE is at all-down bits)
- 2. Set Reserve_power_margin to actual (intended) value with EUT setup for LTE + Sub6 NR call. First, establish LTE connection in all-up bits with the callbox, and then Sub6 NR connection is added with callbox requesting UE to transmit at maximum power in Sub6 NR. As soon as the Sub6 NR connection is established, request all-down bits on LTE link (otherwise, Sub6 NR will not have sufficient RF exposure margin to sustain the call with LTE in all-up bits). Continue LTE (all-down bits)+Sub6 NR transmission for more than one time-window duration to test predominantly Sub6 NR SAR exposure scenario (as SAR exposure is negligible from all-down bits in LTE). After at least one time-window, request LTE to go all-up bits to test LTE SAR and Sub6 NR SAR exposure scenario. After at least one more time-window, drop (or request all-down bits) Sub6 NR transmission to test predominantly LTE SAR exposure scenario. Continue the test for at least one more time-window. Record the conducted Tx powers for both LTE and Sub6 NR for the entire duration of this test.

FCC ID: A3LSMN986W	POINT to be part of the second and t	Approved by: Quality Manager
Test Dates:	DUT Type:	APPENDIX F:
06/12/2020 - 06/24/2020	Portable Handset	Page 1 of 2

- 3. Once the measurement is done, extract instantaneous Tx power versus time for both LTE and Sub6 NR links. Similar to technology/band switch test in Section 4.3.3, convert the conducted Tx power for both these radios into 1gSAR value (see Eq. (6a) and (6b)) using corresponding technology/band *P*_{limit} measured in Step 1, and then perform 100s running average to determine time-averaged 1gSAR versus time as illustrated in Figure 4-1. Note that here it is assumed both radios have Tx frequencies < 3GHz, otherwise, 60s running average should be performed for radios having Tx frequency between 3GHz and 6GHz.
- 4. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 2.
- Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 3, (b) computed time-averaged 1gSAR versus time determined in Step 3, and (c) corresponding regulatory 1gSAR_{limit} of 1.6W/kg.

The validation criteria is, at all times, the time-averaged 1gSAR versus time shall not exceed the regulatory *1gSAR*_{limit} of 1.6W/kg.

	FCC ID: A3LSMN986W	Point to be port of @ element PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
	Test Dates:	DUT Type:	APPENDIX F:
	06/12/2020 - 06/24/2020	Portable Handset	Page 2 of 2
© 202	0 PCTEST		

APPENDIX G: CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Certificate No: D1750V2-1150_Oct18

Accreditation No.: SCS 0108

CALIBRAT	ON CERTIFICATE	

Object	D1750V2 SN.11	50	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits above.	700 MHz
Calibration date:	October 22, 2018		10/30/2018 10/30/2018 BNV 10-20-2019
	•	onal standards, which realize the physical units of robability are given on the following pages and are	measurements (51).
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C and	3 humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.WELET
Approved by:	Katja Pokovic	Technical Manager	CC 15
This calibration certificate shall not	be reproduced except in	n full without written approval of the laboratory.	Issued: October 22, 2018

Certificate No: D1750V2-1150_Oct18

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

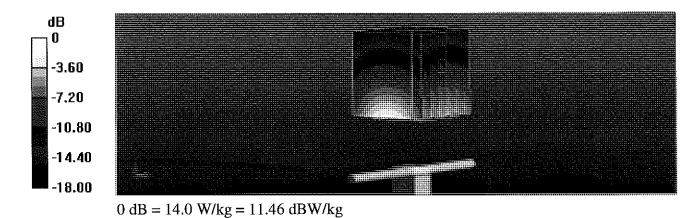
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

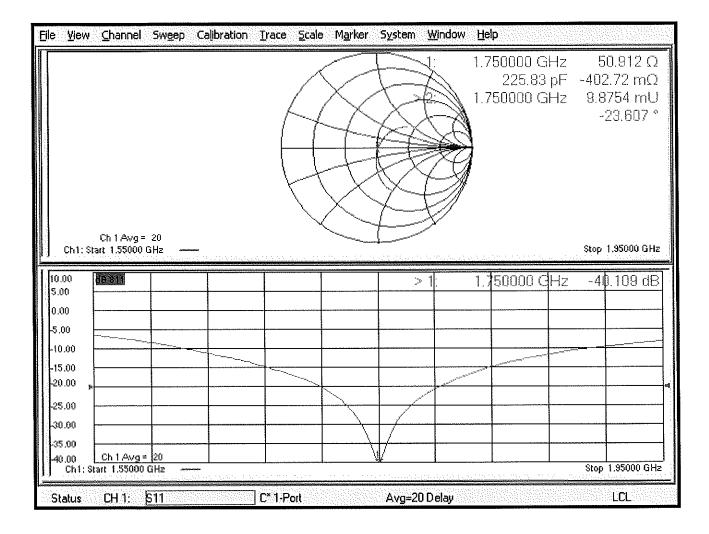
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

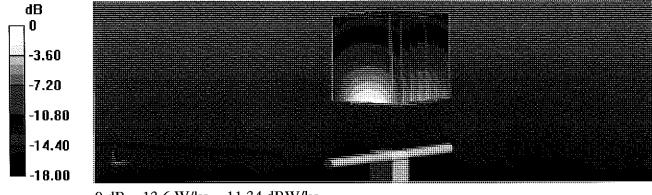
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

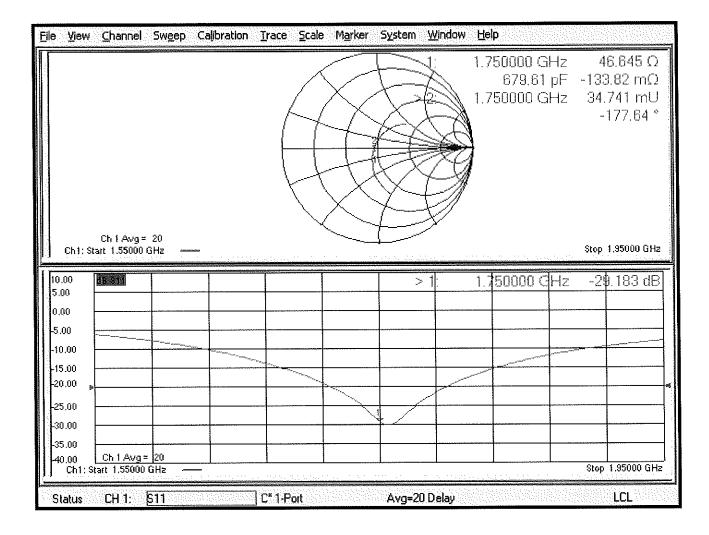
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

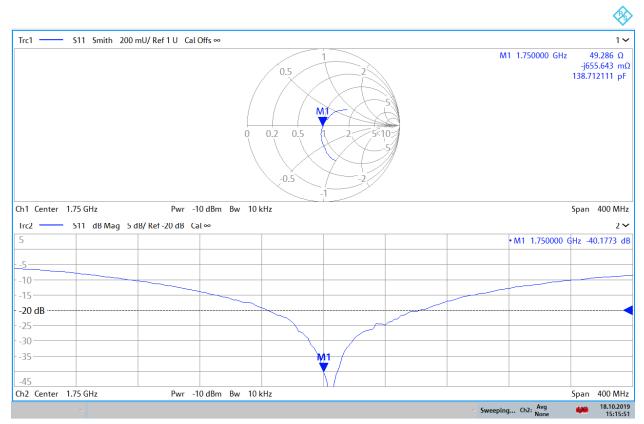
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Dogo 1 of 4
D1750V2 – SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

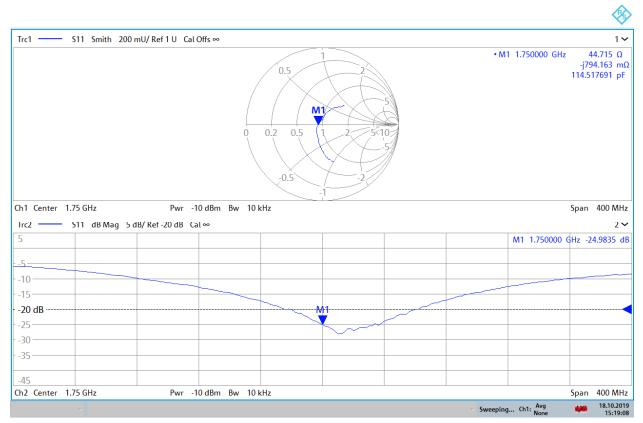
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 - SN:1150	10/18/2019	Faye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 – SN:1150	10/18/2019	raye 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Daga 4 of 4
D1750V2 – SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb19

Accreditation No.: SCS 0108

CALIBRATIONEC	ERIFICAT		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05 v11 Calibration Proc	edure for SAR Validation Source	
Calibration date:	February 21, 20	9	inits of measurements (SI). $02-26^{-23}$
This calibration certificate docume	ots the traceability to pat	ional standarda which makes the short start	m2-26/2
The measurements and the uncert	tainties with confidence r	ional standards, which realize the physical u probability are given on the following pages a	Inits of measurements (SI).
		ry facility: environment temperature (22 ± 3)	
Calibration Equipment used (M&T		,	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr~19
Type-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349 Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check; Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Simeture
Calibrated by:	Manu Seltz	สพิทธิสิทธิสติสติสติสติสติสติสติสติสติสติสติสติสติ	Signature
		Laboratory Technician	ALL
Approved by:	Kalja Pokovic	Technical Manager	
			to to the
			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
IOL	U
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.170 ns
	1370115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

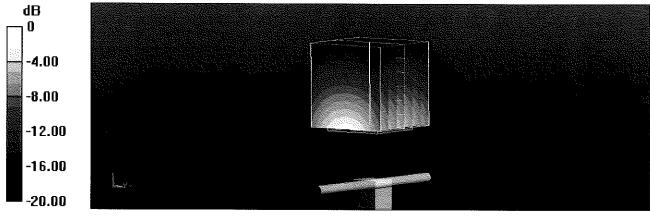
Manufactured by	SPEAG
	JEAG

DASY5 Validation Report for Head TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg **SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg** Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

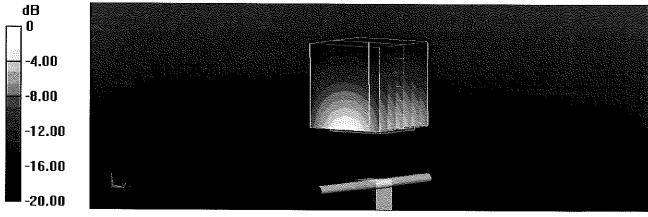
<u>File Viev</u>	v <u>C</u> hannel Sw <u>e</u> e	ep Calibration <u>T</u> r	ace <u>S</u> cale M <u>a</u> r	'ker S <u>y</u> stem <u>Wi</u> ni	dow Help	
Ch1::	Ch 1 Awg = 20 Start 1.70000 GHz				1.900000 GHz 573.82 pH 1.900000 GHz	51.822 Ω 6.8503 Ω 69.458 mU 71.260 °
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: 5	Ch 1 Avg = 20 3tart 1.70000 GHz				1.900000 GHz	-23.166 dB
Status	CH 1: <u>811</u>	C*-	1-Port	Avg=20 Delay		Stop 2.10000 GHz

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sweep	Calibration	<u>Trace</u> <u>S</u> c.	ale M <u>a</u> rker	System	Window	Help			
		Ch1Avg=				XXX			1.900000 G 652.32 1.900000 G	pН	48.446 Ω 7.7874 Ω 80.412 mU 96.762 °	
		rt 1.70000 (-4			s	top 2,10000 GHz	
10.0	no 16	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	7			Contraction of the second s		The second se	The second s			
5.0 0.0 -5.0 -10. -15. -20. -25. -30. -35. -40. (Ch 1 Awg = rt 1.70000 c	20 3Hz				>				-21.894 dB	

Certification of Calibration

Object

D1900V2 - SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

2/21/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

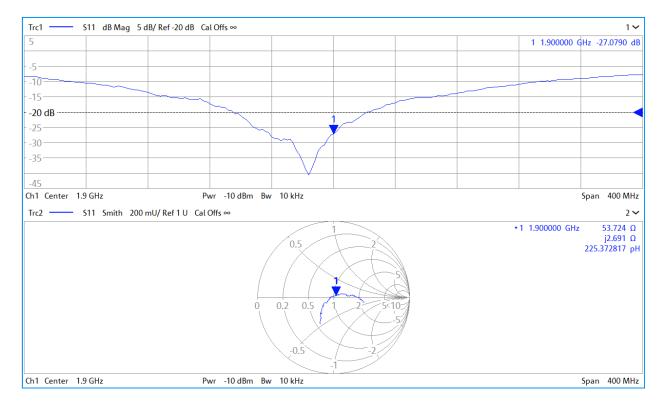
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 1014

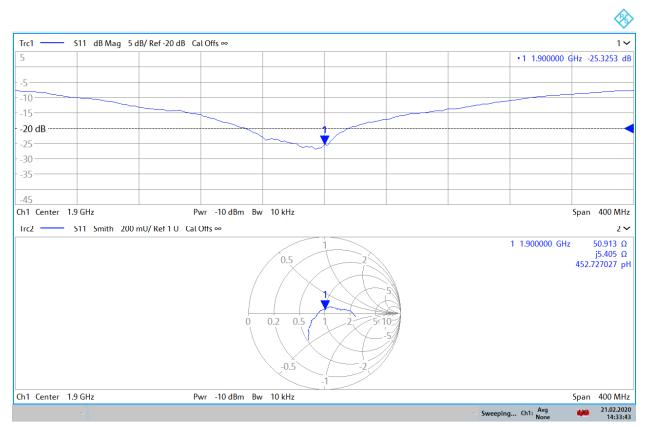
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS


Object:	Date Issued:	Page 2 of 4
D1900V2 – SN: 5d148	02/21/2020	raye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d148	02/21/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:33:44 21.02.2020

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-3914_Feb20/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-3914_Feb20)

Object	EX3DV4 - SN:3914
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	February 20, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Dec-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	\neg $ 1/2$
			C12-100
Approved by:	Katja Pokovic	Technical Manager	IENC
			14
			Issued: March 31, 2020
This calibration certificate	e shall not be reproduced except in fu	l without written approval of the lab	oratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMX v.z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx.v.z are only intermediate values, i.e., the uncertainties of NORMx,v.z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW ٠ signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.46	0.41	0.43	± 10.1 %
DCP (mV) ^B	102.6	106.5	103.5	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	214.4	± 3.5 %	±4.7 %
		Y	0.00	0.00	1.00		200.3		
		Z	0.00	0.00	1.00		207.5	Ì	
10352-	Pulse Waveform (200Hz, 10%)	X	7.75	77.71	15.85	10.00	60.0	± 2.7 %	± 9.6 %
AAA		Y	11.66	83.08	17.93		60.0		
		Z	10.29	80.51	16.87		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	18.15	87.22	17.38	6.99	80.0	± 1.7 %	± 9.6 %
AAA		Y	20.00	89.62	18.64		80.0		
		Z	20.00	88.22	17.78		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	86.76	15.35	3.98	95.0	± 1.2 %	± 9.6 %
AAA		Y	20.00	92.93	18.76		95.0	1	
		Z	20.00	87.16	15.59		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	0.59	63.45	6.66	2.22	120.0	± 1.3 %	± 9.6 %
AAA		Y	20.00	99.25	20.34		120.0		
		Z	0.82	65.27	7.36		120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.56	66.37	14.59	1.00	150.0	± 3.2 %	± 9.6 %
AAA		Ý	1.79	68.82	16.26		150.0		
		Z	1.59	67.54	15.14		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.14	68.01	15.57	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.35	69.94	16.82		150.0]	
		Z	2.15	68.67	16.02		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.61	68.51	17.77	3.01	150.0	±0.7 %	± 9.6 %
AAA		Y	3.45	74.28	20.32		150.0]	
		Z	2.64	69.01	18.05		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.47	67.23	15.79	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.55	67.91	16.23]	150.0		
		Z	3.44	67.38	15.93		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.84	65.92	15.69	0.00	150.0	± 3.9 %	± 9.6 %
AAA		Y	4.81	66.07	15.77		150.0		
		Z	4.74	65.87	15.70		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ^{∽2}	T5 V⁻¹	Т6
Х	40.2	305.48	36.61	8.62	0.51	5.05	0.00	0.47	1.01
Y	39.4	284.99	33.82	10.42	0.49	5.03	2.00	0.11	1.01
Z	37.1	279.52	36.22	8.29	0.63	5.05	0.10	0.45	1.01

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-0.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm
	1

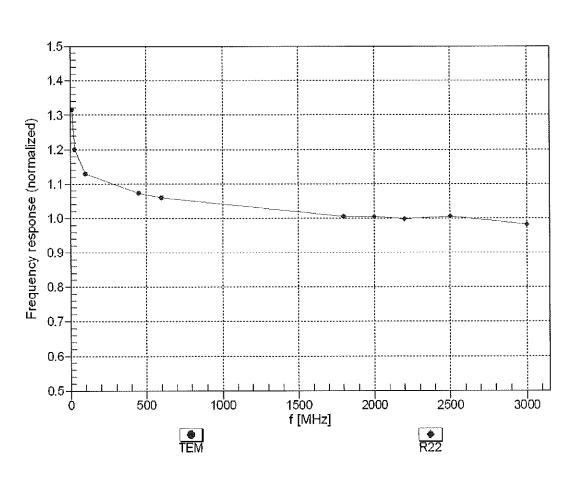
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6	55.5	0.75	21.74	21.74	21.74	0.00	1.00	± 13.3 %
13	55.5	0.75	18.50	18.50	18.50	0.00	1.00	± 13.3 %
750	41.9	0.89	10.14	10.14	10.14	0.59	0.80	± 12.0 %
835	41.5	0.90	9.73	9.73	9.73	0.53	0.83	± 12.0 %
1750	40.1	1.37	8.33	8.33	8.33	0.35	0.88	± 12.0 %
1900	40.0	1.40	7.98	7.98	7.98	0.35	0.88	± 12.0 %
2300	39.5	1.67	7.60	7.60	7.60	0.37	0.90	± 12.0 %
2450	39.2	1.80	7.34	7.34	7.34	0.31	0.90	± 12.0 %
2600	39.0	1.96	7.12	7.12	7.12	0.36	0.90	± 12.0 %
5250	35.9	4.71	5.25	5.25	5.25	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.90	4.90	4.90	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

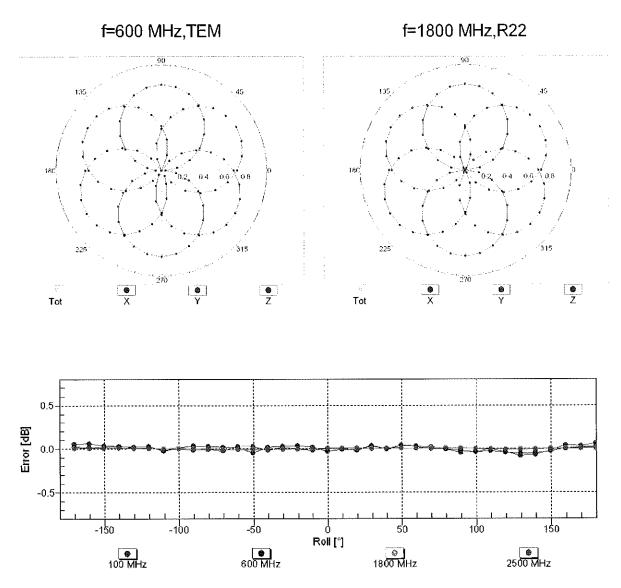
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

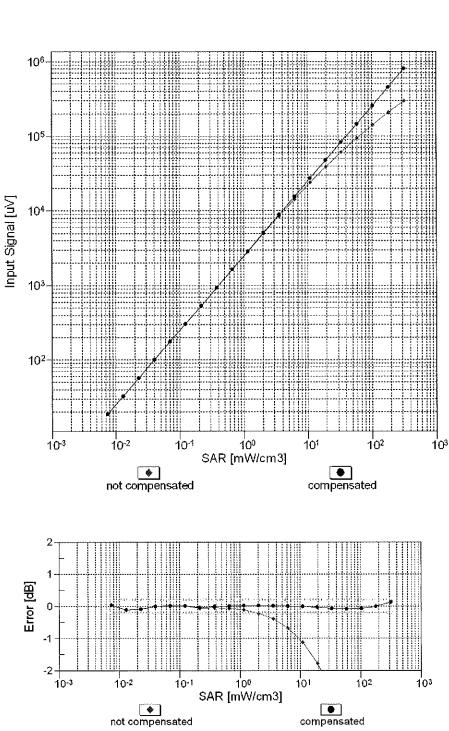

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.85	9.85	9.85	0.46	0.80	± 12.0 %
835	55.2	0.97	9.58	9.58	9.58	0.45	0.80	± 12.0 %
1750	53.4	1.49	7.91	7.91	7.91	0.37	0.88	± 12.0 %
1900	53.3	1.52	7.58	7.58	7.58	0.33	0.88	± 12.0 %
2300	52.9	1.81	7.44	7.44	7.44	0.41	0.90	± 12.0 %
2450	52.7	1.95	7.29	7.29	7.29	0.37	0.90	± 12.0 %
2600	52.5	2.16	7.06	7.06	7.06	0.27	0.95	± 12.0 %
5250	48.9	5.36	4.56	4.56	4.56	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.92	3.92	3.92	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.06	4.06	4.06	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

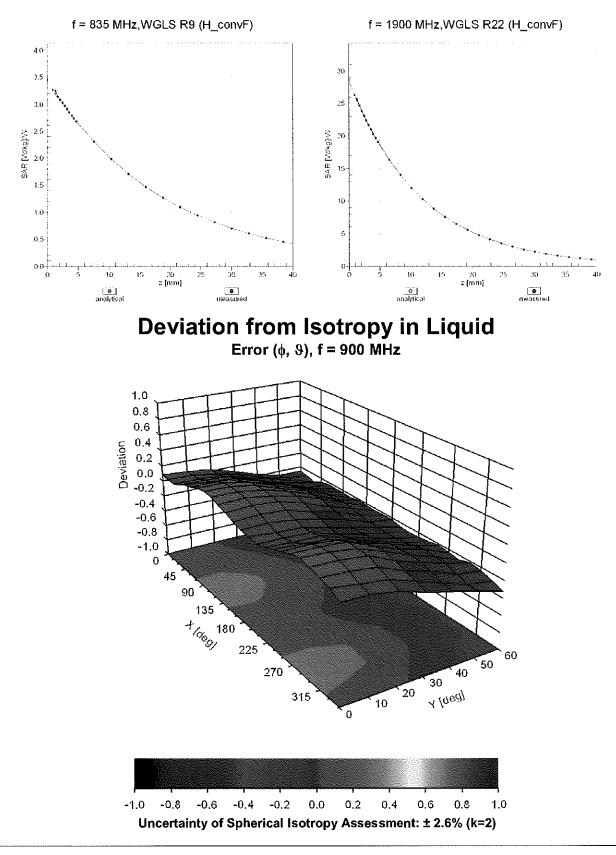
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	Unc ^E
0	<u> </u>	CW	cw	(dB) 0.00	(k=2) ± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 4.7 % ± 9.6 %
10010	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	$\pm 9.6\%$
10012	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9,46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9,39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6%
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6%
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN NI	2.12	±9.6%
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN WLAN	2.83	± 9.6 % ± 9.6 %
10061 10062	CAB CAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	3.60	$\pm 9.6\%$
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 10 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6 %
10071	CAB	IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6%
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)		9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6%
10105 10108	CAG CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD LTE-FDD	<u> </u>	<u>± 9.6 %</u> ± 9.6 %
10100	LONG	LIE-FUD (30-FUNIA, 10070 ND, 10 MIRZ, QFON)		0.00	1 1 3.0 70

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6%
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10145	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10150	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	$\pm 9.6\%$
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 30-SK)	LTE-TDD	9.92	± 9.6 %
<u>}</u>	_	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10153	CAG		LTE-FDD	5.75	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)			
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	$\pm 9.6\%$
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177		LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
101/80	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10183	CAE		LTE-FDD	5.73	$\pm 9.6\%$
10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD		
10185		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)		6.51	$\pm 9.6\%$
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	$\pm 9.6\%$
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8,10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
	1040	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10198 10219	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-GAM)	WLAN	0.21	± 9.6 %

10000	CAC 1	IEEE 202 11n (HT Mixed 42 2 Mines 16 OAM)	WLAN	0 4 9	+060/
10220 10221	CAC CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.13	±9.6 % ±9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.27	$\pm 9.6\%$ $\pm 9.6\%$
10222	CAC	IEEE 802.11n (HT Mixed, 10 Mbps, BPSK)	WLAN	8,48	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 350 Mbps, 10-QAM)	WLAN	8.08	± 9.6 %
10224	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10220	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9,48	± 9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9,21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAD CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.24	± 9.6 % ± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD		
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	<u> </u>	<u>±9.6 %</u> ±9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QFSR)	LTE-TDD	9.23	$\pm 9.6\%$ $\pm 9.6\%$
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	$\pm 9.6\%$
10200	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.00	± 9.6 %
10203	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10270	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
		PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10278	CAA				± 9.6 %
}	CAA CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	I9.0 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38) CDMA2000, RC1, SO55, Full Rate	CDMA2000	<u> </u>	
}		CDMA2000, RC1, SO55, Full Rate			± 9.6 % ± 9.6 %
10279 10290 10291	CAA AAB	CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.91 3.46	± 9.6 % ± 9.6 %
10279 10290	CAA AAB AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000 CDMA2000	3.91	± 9.6 %
10279 10290 10291 10292	CAA AAB AAB AAB	CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate	CDMA2000 CDMA2000 CDMA2000	3.91 3.46 3.39	± 9.6 % ± 9.6 % ± 9.6 %
10279 10290 10291 10292 10293	CAA AAB AAB AAB AAB	CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO3, Full Rate	CDMA2000 CDMA2000 CDMA2000 CDMA2000	3.91 3.46 3.39 3.50	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10279 10290 10291 10292 10293 10293	CAA AAB AAB AAB AAB AAB	CDMA2000, RC1, SO55, Full Rate CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate CDMA2000, RC3, SO3, Full Rate CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000 CDMA2000 CDMA2000 CDMA2000 CDMA2000 CDMA2000	3.91 3.46 3.39 3.50 12.49	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %

			{		
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	± 9.6 %
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	15.24	± 9.6 %
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.67	±9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.49	±9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6 %
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WIMAX	14.58	±9.6%
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WIMAX	14.57	±9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	±9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	±9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	±9.6 %
10317	AAC	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	$\pm 9.6\%$
10356	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10387	AAA	QPSK Waveform, 10 MHz	Generic	5.10	$\pm 9.6\%$ $\pm 9.6\%$
10388	AAA	64-QAM Waveform, 100 kHz	Generic		
10396				6.27	± 9.6 %
	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6%
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6%
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6%
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	±9.6%
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	±9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	±9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	±9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6%
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10433	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10447	AAD	LTE-FDD (OFDMA, 3 MH2, E-TM 3.1, Clipping 44%)	LTE-FDD	7.53	± 9.6 %
10448	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.51	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.51	$\pm 9.6\%$
· · · · · · · · · · · · · · · · · · ·			WCDMA		
		W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)		7.59	±9.6 % ±9.6 %
10451	AAA	Volidation (Causes 10ms 1ms)			1 + 9 n %
10451 10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	
10451 10453 10456	AAD AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	±9.6 %
10451 10453 10456 10457	AAD AAB AAA	IEEE 802.11ac WIFI (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA)	WLAN WCDMA	8.63 6.62	± 9.6 % ± 9.6 %
10451 10453 10456 10457 10458	AAD AAB AAA AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	WLAN WCDMA CDMA2000	8.63 6.62 6.55	± 9.6 % ± 9.6 % ± 9.6 %
10451 10453 10456 10457 10458 10459	AAD AAB AAA AAA AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	WLAN WCDMA CDMA2000 CDMA2000	8.63 6.62 6.55 8.25	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10451 10453 10456 10457 10458 10459 10460	AAD AAB AAA AAA AAA AAA	IEEE 802.11ac WiFI (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) UMTS-FDD (WCDMA, AMR)	WLAN WCDMA CDMA2000 CDMA2000 WCDMA	8.63 6.62 6.55 8.25 2.39	$\begin{array}{c} \pm \ 9.6 \ \% \\ \pm \ 9.6 \ \% \end{array}$
10451 10453 10456 10457 10458 10459	AAD AAB AAA AAA AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	WLAN WCDMA CDMA2000 CDMA2000	8.63 6.62 6.55 8.25	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %

40400				0.70	
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10467 10468	AAF AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD LTE-TDD	7.82	± 9.6 %
10468		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-GAM, 0L Sub)	LTE-TDD	8.32	±9.6 % ±9.6 %
10403	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	8.56	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	7.82	$\pm 9.6\%$ $\pm 9.6\%$
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	$\pm 9.6\%$
10472	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	$\pm 9.6\%$
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8,45	$\pm 9.6\%$
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6 %
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	±9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	±9.6%
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	±9.6%
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6 %
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	±9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	±9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	±9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	±9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	±9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	±9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	±9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	±9.6%
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	±9.6%
10508		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509		LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	$\pm 9.6\%$
10511		LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	$\pm 9.6\%$
10512 10513	AAF AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD LTE-TDD	7.74	$\pm 9.6\%$
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, 0L Sub)	LTE-TDD	8.42 8.45	$\pm 9.6\%$
10514		IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN		$\pm 9.6\%$
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 % ± 9.6 %
10516		IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10510	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 39pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 10 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	1		~	

			144 651	1 0 00	
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)		8.36	$\pm 9.6\%$
10529 10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN WLAN	8.36 8.43	<u>±9.6 %</u> ±9.6 %
	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8,29	± 9.6 %
10532 10533	AAB AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10533	AAB	IEEE 802.11ac WiFi (200Hz, MCS6, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.32	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 93pc dc)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFI (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	±9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAB	IEEE 802.11ac WiFI (80MHz, MCS4, 99pc dc)	WLAN	8.37	±9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	±9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WIFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN WLAN	8.00	± 9.6 %
10568		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6 % ± 9.6 %
10569	AAA AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.10	
10570		IEEE 802.11b WIFI 2.4 GHz (DSSS-OFDW, 54 Mbps, 95pc dc)	WLAN	1.99	± 9.6 % ± 9.6 %
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b Will 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 31Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	±9.6 %
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	±9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	±9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	±9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	±9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)	WLAN	8.74	±9.6%
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6 %

10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10602 10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN WLAN	8.94	$\pm 9.6\%$
	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)		9.03	± 9.6 %
10604 10605	AAB AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN WLAN	8.76	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.97	±9.6 % ±9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10608	AAB	IEEE 802.11ac WIFI (20MHz, MCS0, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFI (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10600	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAB	IEEE 802.11ac WIFI (40MHz, MCS5, 90pc dc)	WLAN	8.77	±9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	±9.6 %
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	±9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	±9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	±9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	±9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8,81	± 9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	8.80	±9.6 %
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	WLAN	8.83	±9.6%
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	±9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	±9.6 %
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	±9.6%
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	±9.6%
10646 10647	AAG AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD LTE-TDD	11.96	±9.6%
		LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)		11.96	±9.6 %
10649		CDMA2000 (1x Advanced)		215	1 4040
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6%
10652	AAA AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	CDMA2000 LTE-TDD	6.91	± 9.6 %
10652 10653	AAA AAE AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	CDMA2000 LTE-TDD LTE-TDD	6.91 7.42	± 9.6 % ± 9.6 %
10652 10653 10654	AAA AAE AAE AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD	6.91 7.42 6.96	± 9.6 % ± 9.6 % ± 9.6 %
10652 10653 10654 10655	AAA AAE AAE AAD AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD LTE-TDD	6.91 7.42 6.96 7.21	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10652 10653 10654 10655 10658	AAA AAE AAE AAD AAE AAA	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD Test	6.91 7.42 6.96 7.21 10.00	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
10652 10653 10654 10655 10658 10659	AAA AAE AAE AAD AAE AAA AAA	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD Test Test	6.91 7.42 6.96 7.21 10.00 6.99	$\begin{array}{c} \pm \ 9.6 \ \% \\ \pm \ 9.6 \ \% \end{array}$
10652 10653 10654 10655 10658 10659 10660	AAA AAE AAE AAD AAE AAA AAA AAA	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD Test Test Test	6.91 7.42 6.96 7.21 10.00 6.99 3.98	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10652 10653 10654 10655 10658 10659 10660 10661	AAA AAE AAD AAA AAA AAA AAA AAA	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD Test Test Test Test Test	6.91 7.42 6.96 7.21 10.00 6.99 3.98 2.22	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$
10652 10653 10654 10655 10658 10659 10660	AAA AAE AAE AAD AAE AAA AAA AAA	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%)	CDMA2000 LTE-TDD LTE-TDD LTE-TDD LTE-TDD Test Test Test	6.91 7.42 6.96 7.21 10.00 6.99 3.98	$\begin{array}{c} \pm 9.6 \% \\ \pm 9.6 \% \end{array}$

	·				
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8,29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
		IEEE 802.11ax (20MHz, MCS0, 95pc dc)	WLAN	8.29	± 9.6 %
10692			WLAN	8.25	$\pm 9.6\%$
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.57	$\pm 9.6\%$
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.78	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)			
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8,89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	±9.6%
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	±9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	±9.6%
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	±9.6%
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8,45	±9.6%
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	±9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
		IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.76	± 9.6 %
10721		IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.55	± 9.6 %
10722	AAA		WLAN	8.70	± 9.6 %
10723		IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.90	$\pm 9.6\%$ $\pm 9.6\%$
10724		IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN		
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc dc)		8.74	± 9.6 %
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8,66	±9.6%
10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	±9.6%
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %

			T		
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	±9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	±9.6 %
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	±9.6 %
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	±9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	±9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	±9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	±9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	±9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756		IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.77	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
			WLAN		
10758		IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69 8.58	$\pm 9.6\%$
10759		IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN		$\pm 9.6\%$
10760		IEEE 802.11ax (160MHz, MCS5, 99pc dc)		8.49	$\pm 9.6\%$
10761		IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	$\pm 9.6\%$
10762	AAA	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10775	AAB	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAB	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,31	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.40	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.35	±9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.44	± 9.6 %
			5G NR FR1 TDD		$\pm 9.6\%$
10788		5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)		8.37	± 9.6 % ± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6%
	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6%
10797					
10797 10798 10799	AAC AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.89	± 9.6 % ± 9.6 %

[· · · · · · · · · · · · · · · · · · ·				
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7,89	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAC	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6%
10822	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6%
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6 %
10824	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6 %
10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6 %
10830	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6 %
10831	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10834	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	± 9.6 %
10835	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10836	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6%
10841	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6 %
10843	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,34	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857		5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,41	± 9.6 %
10861	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10864		5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6%
10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6%
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %

	r				
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6 %
10898	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6 %
10899	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,68	± 9,6 %
10901	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
10903	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
10905	AAA	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAA	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10908	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6 %
10909	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6 %
10910	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10911	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10914	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6 %
10915	AAA	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAA	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10917	AAA	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10918	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10919	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6 %
10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10922	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAA	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAA	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6%
10928	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5,52	±9.6 %
10929	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10930	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10931	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6%
10932	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6 %
10937	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6%
10938	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10939	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 %
10940	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6 %
10941	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6 %
10942	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6%
10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6 %
10946	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±96%
10947	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
	1.001			1 0.10	

February 20, 2020

AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
AAA		5G NR FR1 FDD	8.14	±9.6 %
AAA		5G NR FR1 FDD	8.31	± 9.6 %
AAA		5G NR FR1 FDD	8.61	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6 %
AAA		5G NR FR1 TDD	9.55	±9.6 %
AAA		5G NR FR1 TDD	9.29	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6 %
AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6 %
	AAA AAA	AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 12 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 8.42 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.14 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.14 AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.31 AAA 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.61 AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 8.33 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 FDD 9.32 AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.36 AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.40 AAA 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.40 AAA 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.29 AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.37 AAA 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7526_Mar20

CALIBRATION CERTIFICATE

	Object	EX3DV4 - SN:7526	
	Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes	
	Calibration date:	March 18, 2020 • 04-2-2	20
	This calibration certificate document The measurements and the uncerta	ts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.	0.0
	All calibrations have been conducte	ed in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.	
I	Calibration Equipment used (MRTE	oritigation - the (1)	

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Seberfuled O-libert
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-660_Dec19)	Apr-20
Reference Probe ES3DV2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
·····			
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Jun-20 In house check: Oct-20

Collibrated buy	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	dalla
Approved by:	Katja Pokovic	Technical Manager	All
This calibration certificate	shall not be reproduced event in ful		Issued: March 18, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.40	0.43	0.39	± 10.1 %
DCP (mV) ^B	100.0	96.5	100.0	

Calibration Results for Modulation Response

ÛD	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E
0	CW	X	0.00	0.00	1.00	0.00	144.6	± 3.0 %	(k=2) ± 4.7 %
		Y	0.00	0.00	1.00	0.00	153.6	1 20.0 /0	2 7.7 70
		Z	0.00	0.00	1.00		139.6	1	
10352-	Pulse Waveform (200Hz, 10%)	X	2.27	64.83	9.33	10.00	60.0	± 2.6 %	± 9.6 %
AAA		Y	1.47	61.47	7.92		60.0		1 0.0 %
·····		Z	2.24	64.75	9.49	1	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.19	62.89	7.51	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	0.92	61.50	6.65	1	80.0		20.0 /0
		Z	1.48	64.63	8.40	1	80.0	-	
10354-	Pulse Waveform (200Hz, 40%)	X	0.47	60.82	5.72	3.98	95.0	± 1.1 %	± 9.6 %
AAA		Y	0.37	60.00	4.48		95.0		2 0.0 /0
		Z	0.70	63.37	6.83		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.29	61.21	5.28	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	0.27	60.00	2.87		120.0		
		Z	0.26	60.73	4.80		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.69	69.60	16.08	1.00	150.0	± 3.3 %	± 9.6 %
AAA		Υ	1.47	67.72	14.75		150.0		
		Z	2.01	73.12	17.66		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.10	68.63	16.26	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	1.98	67.68	15.60		150.0		
		Z	2.27	70.41	17.22		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.44	69.62	18.47	3.01	150.0	±0.8%	± 9.6 %
AAA		Y	2.15	66.59	17.11		150.0		
		Z	2.58	70.98	19.23		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.41	67.32	15.99	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.35	66.94	15.77		150.0		
		Z	3.49	68.04	16.43		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.63	65.89	15.72	0.00	150.0	±4.0 %	± 9.6 %
AAA		Y	4.61	65.72	15.68		150.0		-
		Z	4.69	66.35	16.02		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
<u>X</u>	28.7	212.51	35.16	5.03	0.00	4.98	1.61	0.00	1.00
Y	28.8	222.60	37.67	2.60	0.00	5.03	0.04	0.29	1.00
Ζ	27.4	203.13	35.18	4.45	0.03	5.00	1.43	0.03	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	124.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	
Probe Body Diameter	10 mm
Tip Length	
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

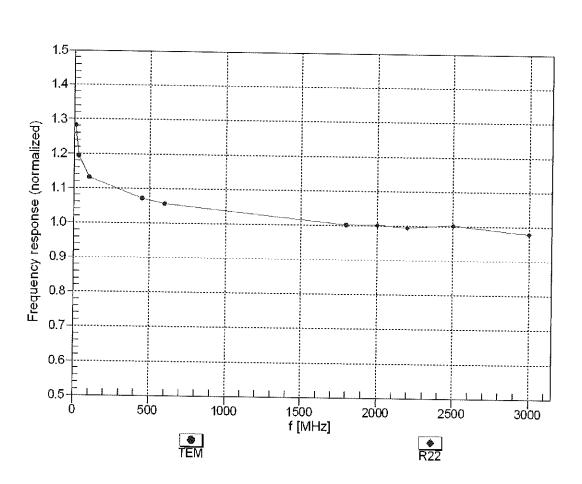
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.41	9.41	9.41	0.66	0.80	± 12.0 %
835	41.5	0.90	9.17	9.17	9.17	0.61	0.80	± 12.0 %
1750	40.1	1.37	7.96	7.96	7.96	0.34	0.88	± 12.0 %
1900	40.0	1.40	7.63	7.63	7.63	0.33	0.88	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.32	0.90	± 12.0 %
2450	39.2	1.80	7.24	7.24	7.24	0.39	0.90	± 12.0 %
2600	39.0	1.96	7.02	7.02	7.02	0.36	0.95	± 12.0 %
3500	37.9	2.91	6.43	6.43	6.43	0.35	1.30	± 13.1 %
3700	37.7	3.12	6.31	6.31	6.31	0.30	1.30	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

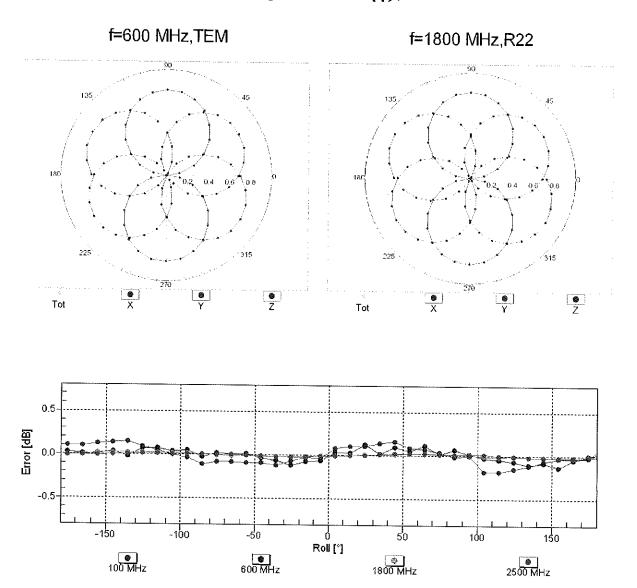
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

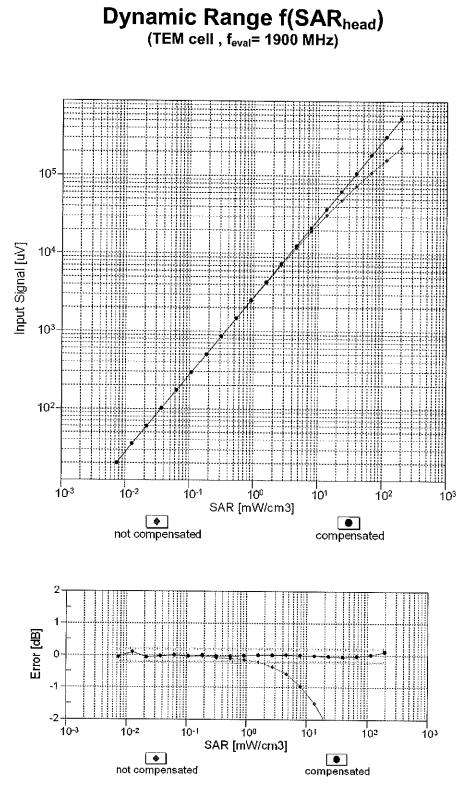

			-		•			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.87	9.87	9.87	0.47	0.80	± 12.0 %
835	55.2	0.97	9.55	9.55	9.55	0.46	0.87	± 12.0 %
1750	53.4	1.49	7.62	7.62	7.62	0.41	0.88	± 12.0 %
1900	53.3	1.52	7.33	7.33	7.33	0.39	0.88	± 12.0 %
2300	52.9	1.81	7.31	7.31	7.31	0.40	0.95	± 12.0 %
2450	52.7	1.95	7.22	7.22	7.22	0.36	0.95	± 12.0 %
2600	52.5	2.16	7.00	7.00	7.00	0.30	0.95	± 12.0 %
3500	51.3	3.31	6.20	6.20	6.20	0.45	1.35	± 13.1 %
3700	51.0	3.55	5.80	5.80	5.80	0.40	1.35	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

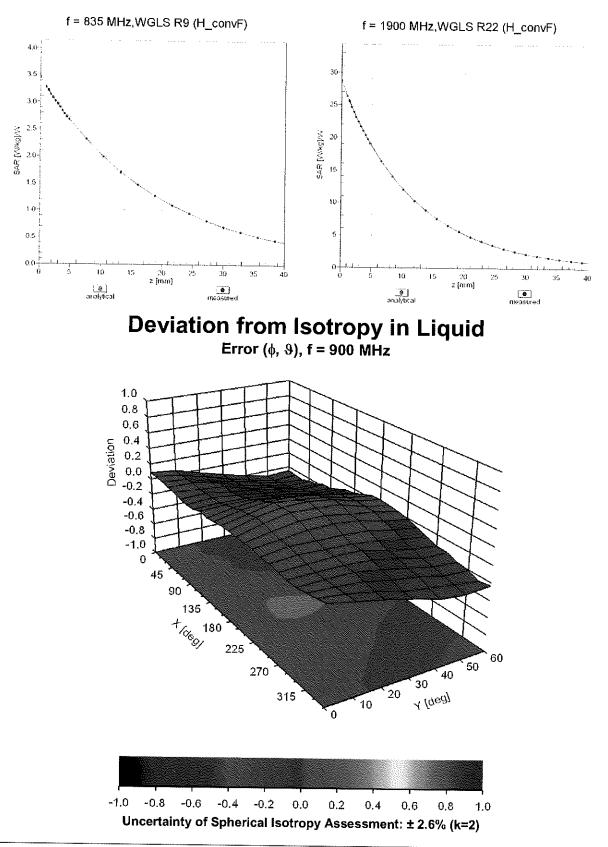
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [≞] (k=2)
0		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9,39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6 <i>.</i> 56	±9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9,6 %
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10020	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10023	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1,87	±9.6 %
		IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQFSK, DH3)	Bluetooth	4.53	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10035		IEEE 002.10.1 Divelopuli (FI/4-DQF 05, 0170)	Bluetooth	8.01	± 9.6 %
10036		IEEE 802.15.1 Bluetooth (8-DPSK, DH1) IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10037	CAA		Bluetooth	4.10	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	CDMA2000	4.57	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	AMPS	7.78	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	0.00	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	DECT	13.80	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	10.79	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)		11.01	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	6.52	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM WLAN	2.12	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)			± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10077	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10097	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10098	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10099	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10101			LTE-FDD	6.60	± 9.6 %
10102	CAE		LTE-TDD	9.29	± 9.6 %
10103			LTE-TDD	9.97	± 9.6 %
10104			LTE-TDD	10.01	± 9.6 %
					± 9.6 %
10105 10108	CAG CAG		LTE-FDD		5.80

				M	arch 18, 202
10109	CAG		LTE-FDD	6 40	1.000
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, OPSK)	LTE-FDD	6.43	
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	<u>5.75</u> 6.44	_ <u>}</u>
10112		LTE-FDD (SC-FDMA, 100% RB, 10 MHz 64-OAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-0AM)	LTE-FDD	6.62	± 9.6 % ± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-OAM)	WLAN	8.46	± 9.6 %
10117	CAC CAC		WLAN	8.15	± 9.6 %
10118	CAC		WLAN	8.07	± 9.6 %
10119	CAC		WLAN	8.59	± 9.6 %
10140	CAE		WLAN	8.13	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	6.53	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	6.65	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	5.76	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.41	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.72	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.42	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	6.60	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.28	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	9.92	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.05	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz 16-OAM)	LTE-FDD	5.75	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, OPSK)	LTE-FDD	6.43	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	5.79	±9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz 64-OAM)	LTE-FDD LTE-FDD	6.49	± 9.6 %
10159	CAG	LIE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-OAM)	LTE-FDD	6.62	±9.6%
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, OPSK)	LTE-FDD	6.56	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz 16-OAM)	LTE-FDD	<u>5.82</u> 6,43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz 64-0AM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, OPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz 16-OAM)	LTE-FDD	6.21	±9.6 % ±9.6 %
10168 10169	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-OAM)	LTE-FDD	6.79	$\pm 9.6\%$
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10172	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10175	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	6.52	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.52	±9.6 %
	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	5.72	±9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.52	±9.6 %
	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.51	±9.6 %
	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	6.50	±9.6 %
	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz 16-OAM)	LTE-FDD	5.73	± 9.6 %
	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.52	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbns, BPSK)	LTE-FDD	6.50	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-OAM)	WLAN WLAN	8.09	± 9.6 %
	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps 64-OAM)	WLAN	8.12	± 9.6 %
	CAC	TEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.21	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.10	± 9.6 %
	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10219 (CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.27 8.03	± 9.6 %
				0.05	±9.6 %

				0.40	L069/
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN WLAN	8.13 8.27	±9.6 % ±9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.06	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.48	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.08	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WCDMA	5.97	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+) LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 10 GAM)	LTE-TDD	10.26	±9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6%
10228 10229	CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6 %
10231	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10230	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10240	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9,86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	$\pm 9.6\%$
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 % ± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	$\pm 9.6\%$
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	$\pm 9.6\%$ $\pm 9.6\%$
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23 9.92	$\pm 9.6\%$ $\pm 9.6\%$
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.92	$\pm 9.6\%$
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	9.30	$\pm 9.6\%$
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	10.06	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.00	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	9.58	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	WCDMA	4.87	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	3.96	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	PHS	11.81	± 9.6 %
10277		PHS (QPSK) PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10278		PHS (QPSK, BW 884MHz, Rolloff 0.3) PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10279		CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10290		CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10291	AAB	CDMA2000, RC3, SO33, Full Rate	CDMA2000	3.39	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.50	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Pull Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10295	AAB AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %
1 10299					

40200	440				
10300 10301	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6,60	± 9.6 9
10301		IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 9
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.57	± 9.6 9
10303		symbols)			- 0.0 /
		IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.6 %
10304	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64OAM_PUSC)	WIMAX	11.86	± 9.6 %
10305	AAA	1 IEEE 802.166 WIMAX (31:15, 10ms, 10MHz, 640AM, PUSC, 15	WIMAX	15.24	± 9.6 %
10200		symbols)		1	
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WIMAX	14.67	± 9.6 %
40007	-	symbols)		14.01	± 0.0 /
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	WIMAX	14.49	± 9.6 %
40000	—	Symbols)		07.70	1 - 0.0 7
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.166 WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WIMAX	14.58	± 9.6 %
10010	<u> </u>	[symbols)		14.00	1 3.0 /
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WIMAX	14.57	± 9.6 %
10011		_ symbols)		14.07	1 9.0 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	1000
10313	AAA	[IDEN 1:3	IDEN		± 9.6 %
10314	AAA	IDEN 1:6	IDEN	10.51	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)		13.48	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	WLAN	8.36	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	10.00	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	6.99	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	3.98	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	2.22	± 9.6 %
10387	AAA	OBSK Maveform (200HZ, 80%)	Generic	0.97	± 9.6 %
10388	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10396	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10399		64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	
0406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, OPSK, LII	LTE-TDD	· · · · · · · · · · · · · · · · · · ·	±9.6%
		Subframe=2,3,4,7,8,9, Subframe Conf=4)		7.82	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	0.54	
0415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	8.54	± 9.6 %
0416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)		1.54	±9.6 %
0417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
0418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.23	±9.6 %
		Long preambule)	WLAN	8,14	± 9.6 %
0419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	14/1 4 1		
		Short preambule)	WLAN	8.19	± 9.6 %
0422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	1411 411		·····.
0423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.32	± 9.6 %
0424	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6 %
0425	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
0426	AAB	JEEE 802.11n (HT Greenfield, 15 Midps, BPSK)	WLAN	8.41	±9.6 %
0427	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6 %
0430	AAD	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
0431	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8,28	± 9.6 %
0432		LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
0432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
0434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
0435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UI	LTE-TDD	7.82	
		Subtrame=2,3,4,7,8,9)		1.02	± 9.6 %
0447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.50	
0448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.56	± 9.6 %
	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)		7.53	± 9.6 %
MED T	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.51	± 9.6 %
0450	MAC I	LIE" DU (UEDIMA, 20 MH7, E-1M 3.1, Clinning 4402)	LTE-FDD	7.48	± 9.6 %

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6 %
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2 3 4 7 8 9)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.32	± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 '
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 °
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.18	± 9.6
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.71	± 9.6
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	± 9.6
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	± 9.6
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	± 9.6
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	± 9.6
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	± 9.6
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.70	± 9.6
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6

10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	± 9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6 %
0515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	+ 0 0 0
0516	AAA	IEEE 802.11b WIFt 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN		± 9.6 %
0517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6 %
0518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
0519	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
0520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
0521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)		8.12	± 9.6 %
0522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 %
0523	AAB	IFEE 802.11a/n WiFi 5 GHz (OFDM 48 Mbps 99pc duty cycle)	WLAN	8.45	± 9.6 %
0524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 %
0525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.27	±9.6 %
0526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.36	±9.6 %
0527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.42	±9.6 %
	AAB	IEEE 802 11ac WiFi (20MHz, MOD2, 09pc duty cycle)	WLAN	8.21	±9.6 %
	<u>, , , , , , (</u>	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6 %
0528	AAR Ì		1		
0528 0529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36 I	±9.6 %
0528 0529 0531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN WLAN	8.36 8.43	<u>±9.6 %</u> ±9.6 %
0528 0529 0531 0532 0533		IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)		8.36 8.43 8.29	<u>± 9.6 %</u> <u>± 9.6 %</u> ± 9.6 %

Certificate No: EX3-7526_Mar20

				1 0 15	
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6%
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6%
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
		IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10553	AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10554	AAC		WLAN	8.47	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)		8.52	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN		
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8,56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	± 9.6 %
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10571		IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10574		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty	WLAN	8,59	± 9.6 %
		cvcle)	WLAN	8.60	± 9.6 %
10576		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	1		
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6 %
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	± 9.6 %
1 10 20 2				8.60	± 9.6 %
	AAR	I IEEE 802,118/N WIFI 5 GHZ (OFDIM, 9 MIDDS, 900C QUIV CVCIE)	WLAN	0.00	1 3.0 70
10583 10584 10585	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %

March 18, 2020

40507					
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90nc duty cycle)	WLAN	8.63	± 9.6
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN		± 9.6
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	<u>±9.6 °</u>
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)		8.74	± 9.6
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.71	± 9.6
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.72	± 9.6 °
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.50	± 9.6
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, sopc duty cycle)	WLAN	8.79	± 9.6
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 °
10602	AAB	IEEE 802.11n (ITT Mixed, 40ML/z, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6 '
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	± 9.6
0604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6
0605		IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 °
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	± 9.6 °
	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6
0607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	± 9.6 9
0608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 9
0609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90oc duty cycle)	WLAN	8.57	± 9.6
0610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	
0611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN		± 9.6 9
0612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.70	± 9.6 9
0613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.77	± 9.6 9
0614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)		8.94	± 9.6 %
0615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.59	± 9.6 %
0616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
0617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.82	± 9.6 %
0618	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	± 9.6 %
0619	AAB		WLAN	8.58	± 9.6 %
0620	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	± 9.6 %
0621	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 %
0622	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
0623	AAB	IEEE 802.11ac WIFI (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	± 9.6 %
0624	AAB	IEEE 802.11ac WIFI (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6 %
0625	f	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6 %
	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	± 9.6 %
0626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
0627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
0628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	
0629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN		± 9.6 %
0630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.85	± 9.6 %
)631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.72	± 9.6 %
0632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)		8.81	± 9.6 %
0633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.74	± 9.6 %
634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.83	± 9.6 %
635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.80	± 9.6 %
636	AAC	IEEE 802.11ac WIFI (160MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
637	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
638	AAC	IEEE 802 11ac WiFi (160MI L MOOD 00	WLAN	8.79	± 9.6 %
639	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6 %
640	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
641		IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6 %
642	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	± 9.6 %
	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	± 9.6 %
643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	± 9.6 %
644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	± 9.6 %
645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.05	
646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2.7)	LTE-TDD		<u>±9.6 %</u>
647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UI, Subframe=2.7)		11.96	± 9.6 %
648	AAA	CDMA2000 (1x Advanced)	LTE-TDD	11.96	± 9.6 %
652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	CDMA2000	3.45	±9.6 %
653	AAE	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD LTE-TDD	6.91	± 9.6 %
				7.42	± 9.6 %

10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9,6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9,09	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10672	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10677	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8,78	±9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN	8.80	± 9.6 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	± 9.6 %
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10683	AAA	EEE 802.11ax (20MHz, MCS0, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6%
10687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10690	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8,89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8.66	± 9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10711	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	± 9.6 %
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	± 9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	± 9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6 %
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	± 9.6 %
	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10725	i AAA				

40707					
10727			WLAN	8.66	± 9.6 %
10728			WLAN	8.65	± 9.6 %
	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)	WLAN	8.64	± 9,6 %
10730			WLAN	8.67	± 9.6 %
10731		IEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)	WLAN	8,42	± 9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN	8.40	± 9.6 %
10734		IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)	WLAN	8.43	± 9.6 %
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	± 9.6 %
10745		IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)	WLAN	8.93	± 9.6 %
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	9.11	
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	WLAN		<u>± 9.6 %</u>
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.93	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)		8.79	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	9.00	± 9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.94	± 9.6 %
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.64	± 9.6 %
10757	AAA	IEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)	WLAN	8.58	± 9.6 %
10761	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10762	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)	WLAN	8.58	±9.6 %
10763	AAA	IEEE 802 11ax (100MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6 %
10764	AAA	IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6 %
10765	AAA	IEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6 %
10766	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10767	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	WLAN	8.51	± 9.6 %
10/0/		5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	7.99	± 9.6 %
10768	AAC	SC ND (CD OFDM 4 DD 40 MM	TDD		ļ
10/00		5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	±9.6 %
10769	AAC		TDD	ĺ	
10703	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	±9.6 %
10770	AAC	5C NR (CR OFFIL 4 PR COLUMN AT	TDD	ļ	
10170		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
10771	AAC	SC ND (CD OFDNA 4 DT OF OF OF	TDD		
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
10772	AA0		TDD		//
10/72	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.23	± 9.6 %
10773	A A O		TDD	2.20	
10//3	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1	8.03	± 9.6 %
0774			TDD	2,00	
0774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
0775			TDD	O.OL	/0
10775	AAB	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	8.31	± 9.6 %
0770			TDD	0.01	1 9.0 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.30	± 9.6 %
			TDD	0.00	1 9.0 %
075-	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.30	± 9.6 %
10777	10.0			0.00	II I D %
					- 0.0 /0
10777 10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	TDD 5G NR FR1	8.34	± 9.6 %

10779	AAB	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10812	AAC	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %

March 18, 2020

r					
10821	AAC	2 = 1 ((C) - C) Din, 100 /0 (C), 20 Minz, QFOR, 50 Kmz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAC		5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC		5G NR FR1	8.36	± 9.6 %
10824	AAC		5G NR FR1	8.39	± 9.6 %
10825	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	8.41	± 9.6 %
10827	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	8.42	± 9.6 %
10828	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1	8.43	± 9.6 %
10829	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	8.40	± 9.6 %
10830	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1	7.63	± 9.6 %
10831	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	7.73	± 9.6 %
10832	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	7.74	± 9.6 %
10833	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10834	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.75	± 9.6 %
10835	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.70	± 9.6 %
10836	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.66	± 9.6 %
10837	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.68	± 9.6 %
10839	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10840	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.67	± 9.6 %
10841	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	7.71	± 9.6 %
10843	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.49	± 9.6 %
10844	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10846	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
10854	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10855	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.36	± 9.6 %
10856	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.37	± 9.6 %
10857	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.35	± 9.6 %
10858	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.36	± 9.6 %
10859	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.34	± 9.6 %
10860	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	
10861	AAC	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.40	±9.6 %
10863	AAC	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.40	
10864	AAC	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	TDD 5G NR FR1		± 9.6 %
10865	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1	8.37	± 9.6 %
			TDD	8.41	±9.6 %

.

10866	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9,6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901		5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902		5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903		5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %

10001				IV	arch 18, 20
10904		(5G NR FR1	5.68	± 9.6 %
10905	AAA	(1 - 1 / (1 - 1 - 0 - 0) Divi, 1 (10, 00 MHZ, QPSK, 30 KHZ)	TDD 5G NR FR1	5.68	± 9.6 %
10906	AAA	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5G NR FR1	5.68	± 9.6 %
10907	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	5.78	± 9.6 %
10908	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	5.93	± 9.6 %
10909	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	5.96	± 9.6 %
10910	AAA	· · · · · ·	TDD 5G NR FR1	5.83	
10911	AAA		TDD		± 9.6 %
10912	AAA		5G NR FR1 TDD	5.93	± 9.6 %
10913	AAA		5G NR FR1 TDD	5.84	± 9.6 %
10914	AAA	2011 (21 1 0 01 DW, 30% KB, 40 MHZ, QPSK, 30 KHZ)	5G NR FR1 TDD	5.84	± 9.6 %
10915		2 1 1 2 CF DW, 30 % RB, 30 MHZ, QPSK, 30 KHZ)	5G NR FR1 TDD	5.85	± 9.6 %
	AAA	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10916	AAA	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	5.87	± 9.6 %
10917	AAA	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	5.94	± 9.6 %
10918	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	5.86	± 9.6 %
10919	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	5.86	± 9.6 %
10920	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	TDD 5G NR FR1		
10921	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	TDD	5.87	± 9.6 %
10922	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10923	AAA		5G NR FR1 TDD	5.82	± 9.6 %
10924	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925		5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1	5.95	± 9.6 %
10926	AAA	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	5.84	±9.6 %
10927	AAA	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	5.94	± 9.6 %
10928	AAA	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	TDD 5G NR FR1	5.52	± 9.6 %
10929	AAA	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	FDD 5G NR FR1	5.52	(
10930	AAA	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	FDD		±9.6 %
10931	AAA	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6 %
10932	AAA	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA		5G NR FR1 FDD	5.51	± 9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6 %
		5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6 %
	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	5.51	± 9.6 %
10936	AAA	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	FDD 5G NR FR1	5.90	±9.6 %
	--		FDD		

10937	AAA	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6%
10938	AAA	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6 %
10939	AAA	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6 %
10940	AAA	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6 %
10941	AAA	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6 %
10942	AAA	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAA	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAA	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAA	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAA	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10947	AAA	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAA	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAA	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAA	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6 %
10951	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6 %
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6 %
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAA	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
	1		· -		

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.