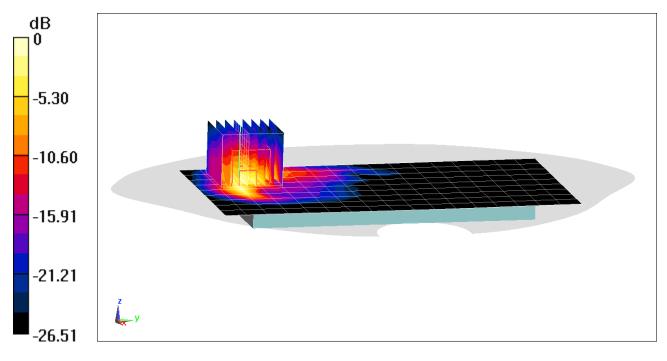
DUT: A3LSMN981U; Type: Portable Handset; Serial: 1832M


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2310 \mbox{ MHz; } \sigma = 1.876 \mbox{ S/m; } \epsilon_r = 51.19; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

Test Date: 06/11/2020; Ambient Temp: 24.0°C; Tissue Temp: 22.0°C

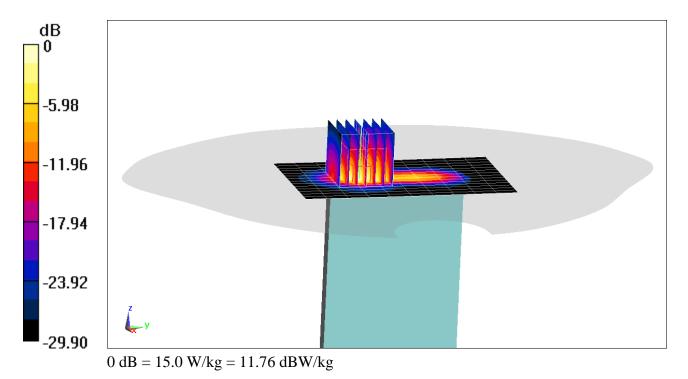
Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Phablet SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 25 RB, 12 RB Offset

Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.04 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.76 W/kg SAR(10 g) = 1.25 W/kg

0 dB = 5.83 W/kg = 7.66 dBW/kg

DUT: A3LSMN981U; Type: Portable Handset; Serial: 1845M


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7; Frequency: 2510 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2510 \mbox{ MHz; } \sigma = 2.091 \mbox{ S/m; } \epsilon_r = 51.882; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

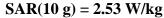
Test Date: 06/15/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.0°C

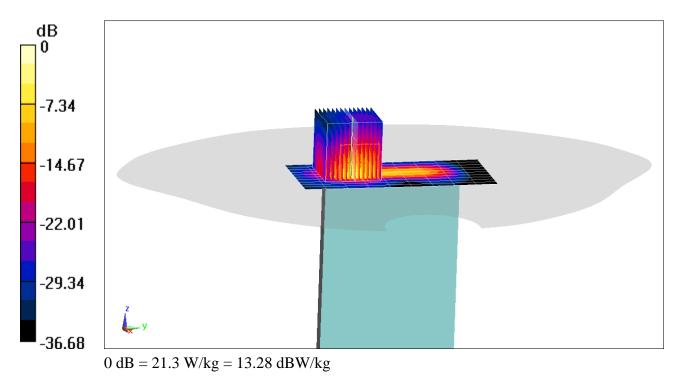
Probe: EX3DV4 - SN7552; ConvF(7.47, 7.47, 7.47) @ 2510 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Phablet SAR, Bottom Edge, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (15x11x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.64 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 20.9 W/kg SAR(10 g) = 1.97 W/kg

DUT: A3LSMN981U; Type: Portable Handset; Serial: 1799M


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 41 (Class 2); Frequency: 2680 MHz; Duty Cycle: 1:2.31 \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2680 \mbox{ MHz; } \sigma = 2.284 \mbox{ S/m; } \epsilon_r = 51.032; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$


Test Date: 06/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.2°C

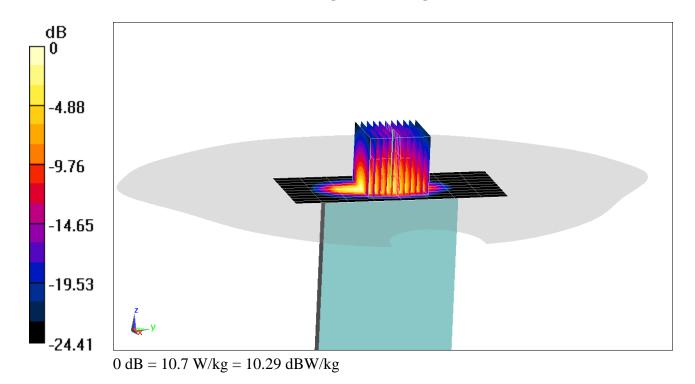
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2680 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 41 PC2 with ULCA, Phablet SAR, Bottom Edge, PCC: Ch. 41490, 20 MHz Bandwidth, QPSK, 50 RB, 0 RB Offset SCC: Ch. 41292, 20 MHz Bandwidth, QPSK, 50 RB, 50 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (14x14x8)/Cube 0: Measurement grid: dx=2.4mm, dy=2.4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 67.28 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 37.0 W/kg

DUT: A3LSMN981U; Type: Portable Handset; Serial: 1797M

Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1720 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 51.992$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm


Test Date: 06/18/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(8.08, 8.08, 8.08) @ 1720 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

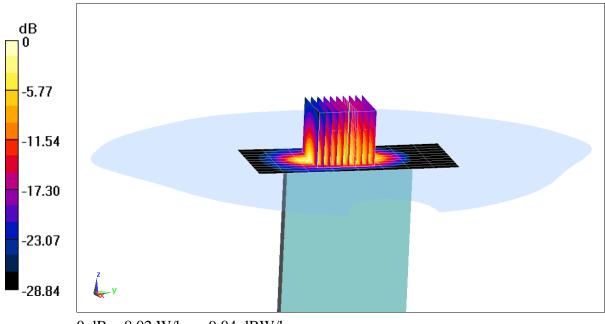
Mode: NR Band n66, Phablet SAR, Bottom Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 100 RB, 0 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (11x11x8)/Cube 0: Measurement grid: dx=3.4mm, dy=3.4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 68.32 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(10 g) = 2.71 W/kg

DUT: A3LSMN981U; Type: Portable Handset; Serial: 1793M

 $\begin{array}{l} \mbox{Communication System: UID 0, NR Band n25; Frequency: 1882.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1882.5 \mbox{ MHz; } \sigma = 1.552 \mbox{ S/m; } \epsilon_r = 52.88; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$


Test Date: 06/10/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.9°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1882.5 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

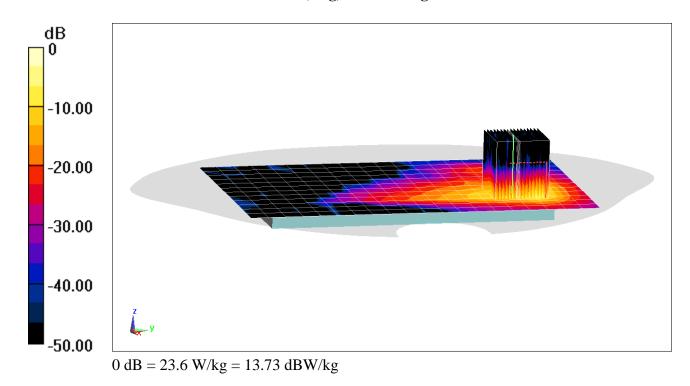
Mode: NR Band n25, Phablet SAR, Bottom Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 376500, 50 RB, 0 RB Offset

Area Scan (11x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 56.78 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 14.5 W/kg SAR(10 g) = 2.03 W/kg

0 dB = 8.02 W/kg = 9.04 dBW/kg

DUT: A3LSMN981U; Type: Portable Handset; Serial: 1831M


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5300 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Body Medium parameters used:} \\ f = 5300 \mbox{ MHz; } \sigma = 5.509 \mbox{ S/m; } \epsilon_r = 47.471; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

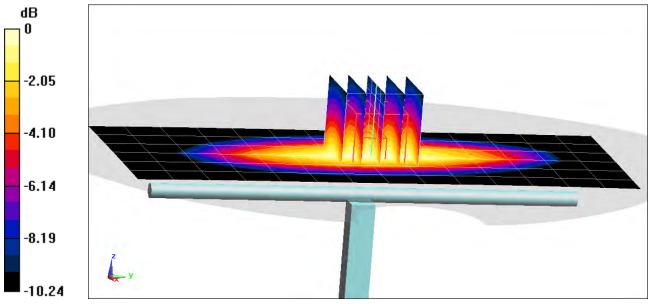
Test Date: 6/14/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5300 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11n MIMO, U-NII-2A, 20 MHz Bandwidth, Phablet SAR, Ch 60, 13 Mbps, Back Side

Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (17x17x8)/Cube 0: Measurement grid: dx=1.9mm, dy=1.9mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 32.83 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 46.8 W/kg SAR(10 g) = 1.57 W/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Head Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.873 \mbox{ S/m; } \epsilon_r = 41.208; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/08/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

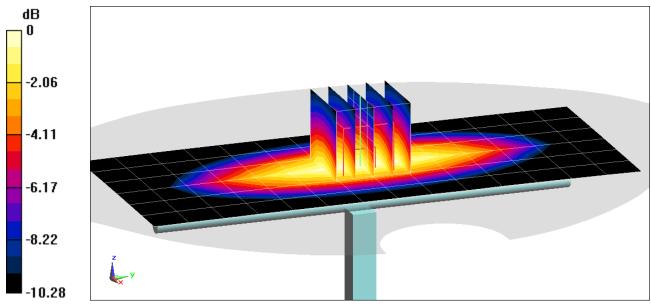
Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.39 W/kg SAR(1 g) = 1.65 W/kg Deviation(1 g) = -4.40%

0 dB = 2.16 W/kg = 3.34 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Head Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.875 \mbox{ S/m; } \epsilon_r = 40.611; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/11/2020; Ambient Temp: 24.0°C; Tissue Temp: 22.5°C

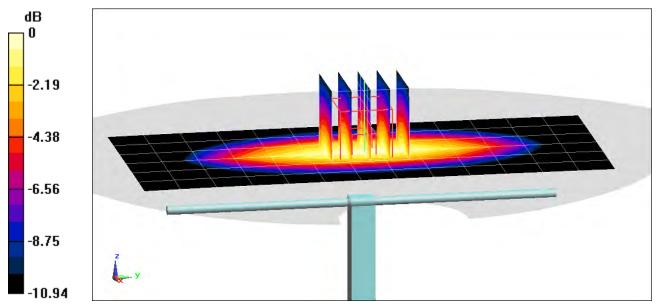
Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.38 W/kg SAR(1 g) = 1.65 W/kg Deviation(1 g) = -4.40%

0 dB = 2.16 W/kg = 3.34 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head; Medium parameters used:} \\ f = 835 \mbox{MHz; } \sigma = 0.936 \mbox{ S/m; } \epsilon_r = 42.172; \mbox{$\rho = 1000 \mbox{$kg/m^3$}$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 05/26/2020; Ambient Temp: 22.7°C; Tissue Temp: 21.8°C

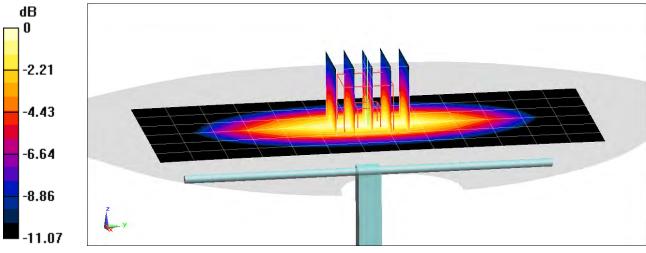
Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 1.98 W/kg Deviation(1 g) = 2.59%

0 dB = 2.67 W/kg = 4.27 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.915 \mbox{ S/m; } \epsilon_r = 40.568; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 05/28/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.7°C

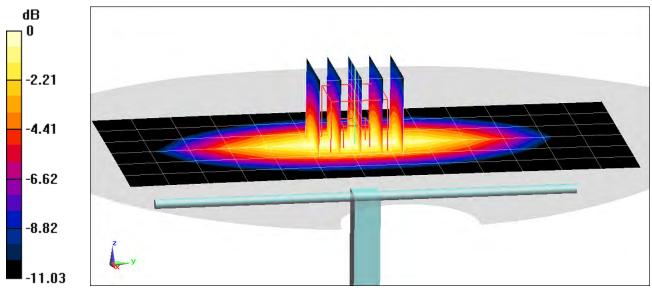
Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.98 W/kg SAR(1 g) = 1.93 W/kg Deviation(1 g) = 0.00%

0 dB = 2.62 W/kg = 4.18 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.919 \mbox{ S/m; } \epsilon_r = 41.757; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.7°C

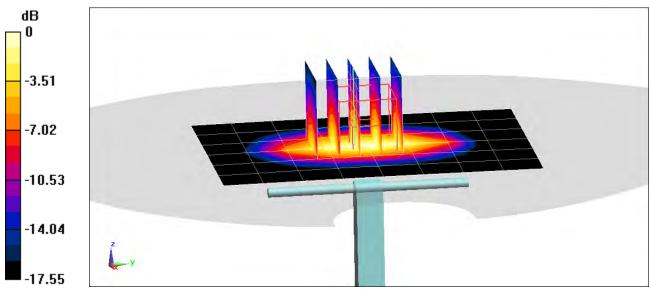
Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.93 W/kg Deviation(1 g) = 0.00%

0 dB = 2.61 W/kg = 4.17 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: f = 1750 MHz; $\sigma = 1.387$ S/m; $\epsilon_r = 39.782$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/05/2020; Ambient Temp: 24.5°C; Tissue Temp: 21.9°C

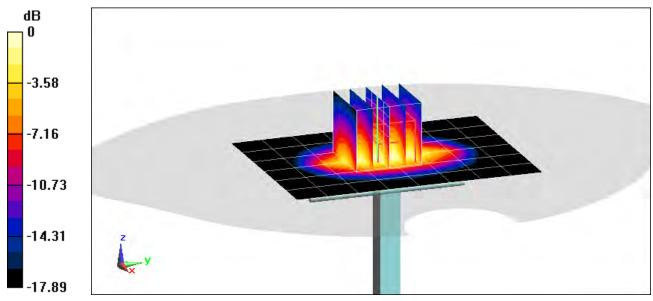
Probe: EX3DV4 - SN7551; ConvF(8.34, 8.34, 8.34) @ 1750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.12 W/kg SAR(1 g) = 3.77 W/kg Deviation(1 g) = 3.29%

0 dB = 5.81 W/kg = 7.64 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: f = 1750 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 39.488$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/08/2020; Ambient Temp: 21.6°C; Tissue Temp: 20.9°C

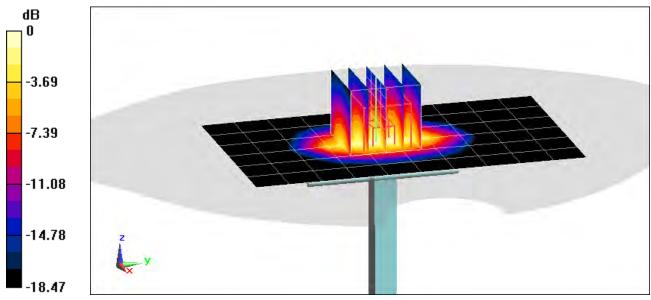
Probe: EX3DV4 - SN7551; ConvF(8.34, 8.34, 8.34) @ 1750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.41 W/kg SAR(1 g) = 3.89 W/kg Deviation(1 g) = 6.58%

0 dB = 6.03 W/kg = 7.80 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head; Medium parameters used:} \\ f = 1900 \mbox{ MHz; } \sigma = 1.436 \mbox{ S/m; } \epsilon_r = 39.063; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 06/01/2020; Ambient Temp: 22.2°C; Tissue Temp: 21.1°C

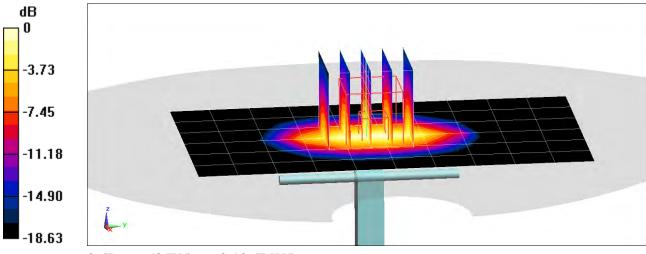
Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.76 W/kg SAR(1 g) = 4.07 W/kg Deviation(1 g) = 4.09%

0 dB = 6.43 W/kg = 8.08 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head; Medium parameters used:} \\ f = 1900 \mbox{ MHz; } \sigma = 1.444 \mbox{ S/m; } \epsilon_r = 39.743; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 06/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 21.7°C

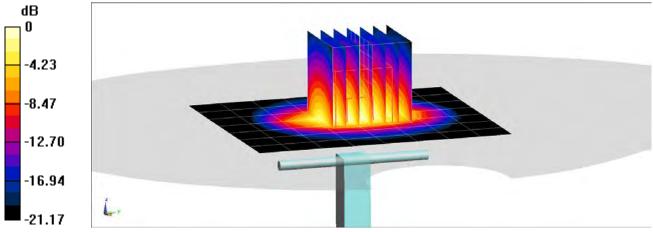
Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.92 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = 4.02%

0 dB = 6.50 W/kg = 8.13 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2300 MHz; $\sigma = 1.671$ S/m; $\epsilon_r = 40.381$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/05/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.9°C

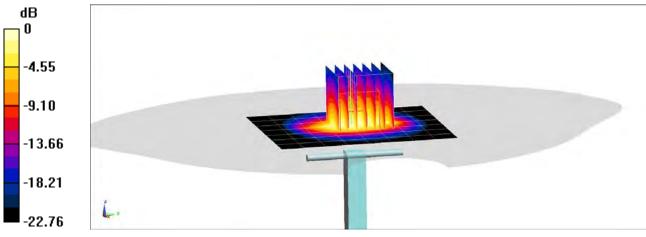
Probe: EX3DV4 - SN3589; ConvF(7.11, 7.11, 7.11) @ 2300 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 9.85 W/kg SAR(1 g) = 4.8 W/kg Deviation(1 g) = -2.44%

0 dB = 7.87 W/kg = 8.96 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.794$ S/m; $\epsilon_r = 40.056$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/03/2020; Ambient Temp: 23.6°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.5 W/kg SAR(1 g) = 5.07 W/kg Deviation(1 g) = -4.52%

0 dB = 8.38 W/kg = 9.23 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ S/m; $\epsilon_r = 38.583$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/07/2020; Ambient Temp: 21.7°C; Tissue Temp: 21.5°C

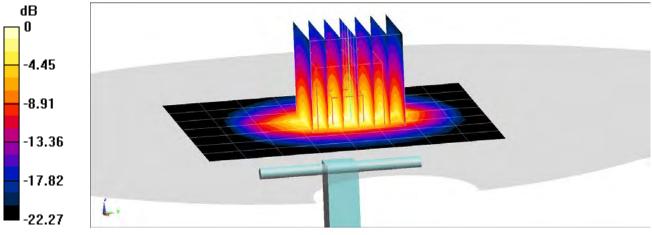
Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.35 W/kg Deviation(1 g) = 0.75%

0 dB = 8.95 W/kg = 9.52 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.776$ S/m; $\epsilon_r = 40.196$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/10/2020; Ambient Temp: 21.1°C; Tissue Temp: 21.5°C

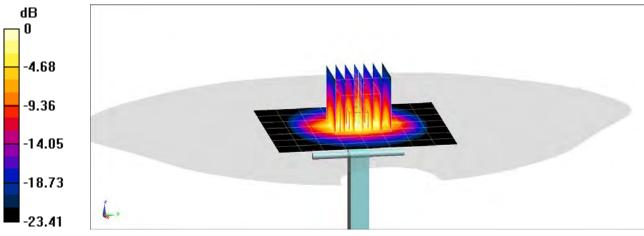
Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.6 W/kg SAR(1 g) = 5.04 W/kg Deviation(1 g) = -5.08%

0 dB = 8.45 W/kg = 9.27 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2600 MHz; $\sigma = 1.901$ S/m; $\epsilon_r = 39.318$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05/27/2020; Ambient Temp: 22.9°C; Tissue Temp: 22.7°C

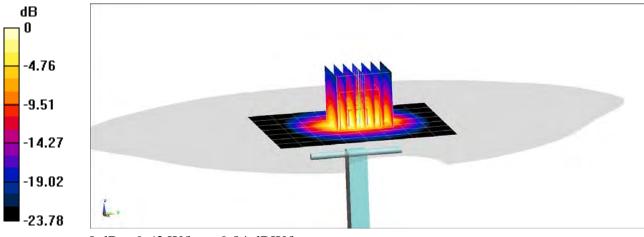
Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2600 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 5.78 W/kg Deviation(1 g) = 3.40%

0 dB = 10.0 W/kg = 10.00 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2600 MHz; $\sigma = 1.908$ S/m; $\epsilon_r = 39.842$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/03/2020; Ambient Temp: 23.6°C; Tissue Temp: 21.8°C

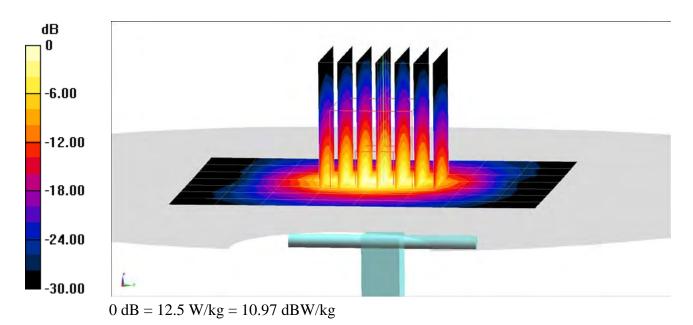
Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2600 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.4 W/kg SAR(1 g) = 5.54 W/kg Deviation(1 g) = -4.65%

0 dB = 9.63 W/kg = 9.84 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059


Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Head Medium parameters used: f = 3500 MHz; $\sigma = 2.935$ S/m; $\epsilon_r = 39.733$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

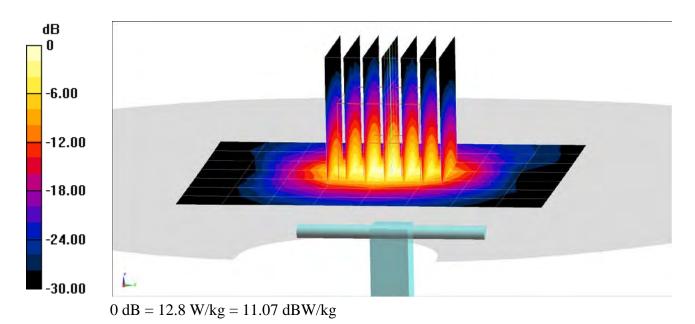
Test Date: 07/06/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 6.35 W/kg Deviation(1 g) = -1.70%

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 3600 Head Medium parameters used:} \\ f = 3700 \mbox{ MHz; } \sigma = 3.099 \mbox{ S/m; } \epsilon_r = 39.436; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

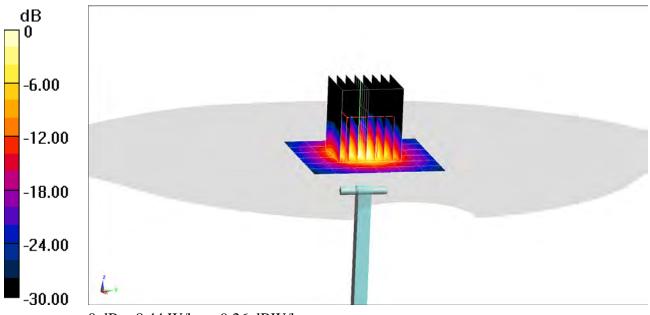
Test Date: 07/06/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 6.34 W/kg Deviation(1 g) = -3.65%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Head Medium parameters used:} \\ f = 5250 \mbox{ MHz; } \sigma = 4.488 \mbox{ S/m; } \epsilon_r = 37.144; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 07/10/2020; Ambient Temp: 21.4°C; Tissue Temp: 22.0°C

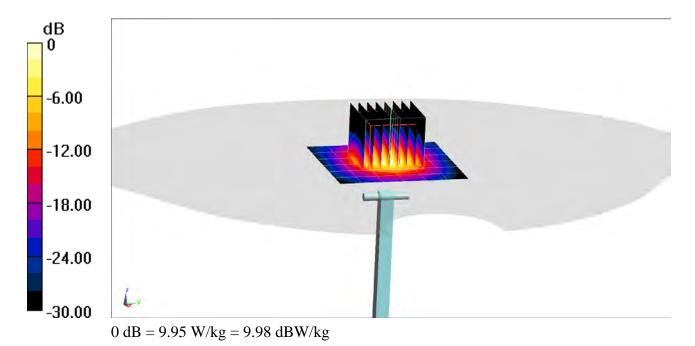
Probe: EX3DV4 - SN7357; ConvF(5.5, 5.5, 5.5) @ 5250 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.5 W/kg SAR(1 g) = 3.7 W/kg Deviation(1 g) = -6.57%

0 dB = 8.44 W/kg = 9.26 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5600 MHz; $\sigma = 4.885$ S/m; $\epsilon_r = 36.581$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

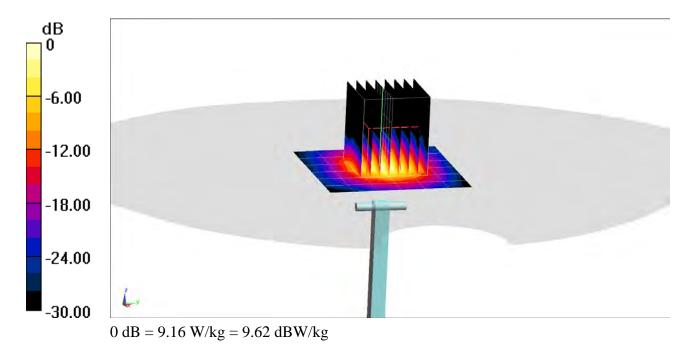
Test Date: 07/10/2020; Ambient Temp: 21.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7357; ConvF(4.93, 4.93, 4.93) @ 5600 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 4.11 W/kg Deviation(1 g) = -2.26%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Head Medium parameters used:} \\ f = 5750 \mbox{ MHz; } \sigma = 5.063 \mbox{ S/m; } \epsilon_r = 36.35; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

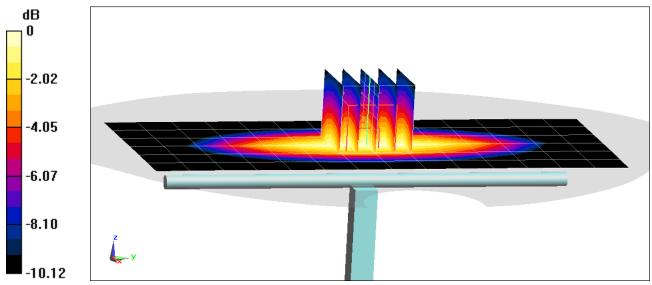
Test Date: 07/10/2020; Ambient Temp: 21.4°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7357; ConvF(5.05, 5.05, 5.05) @ 5750 MHz; Calibrated: 4/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 3.79 W/kg Deviation(1 g) = -5.84%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.947 \mbox{ S/m; } \epsilon_r = 54.369; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/01/2020; Ambient Temp: 22.3°C; Tissue Temp: 21.4°C

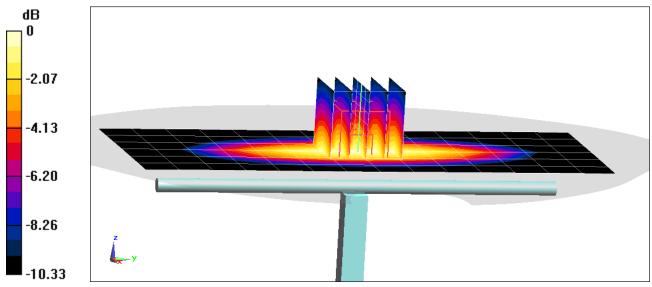
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.73 W/kg SAR(1 g) = 1.84 W/kg Deviation(1 g) = 7.85%

0 dB = 2.43 W/kg = 3.86 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.965 \mbox{ S/m; } \epsilon_r = 54.843; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/03/2020; Ambient Temp: 23.4°C; Tissue Temp: 21.5°C

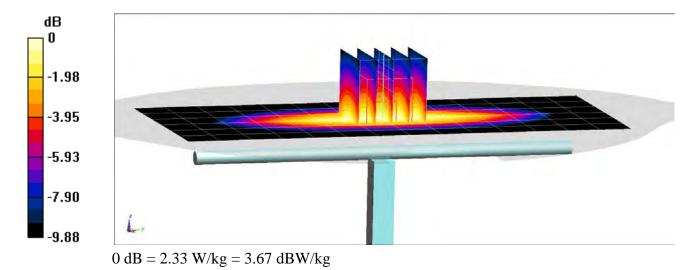
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.74 W/kg SAR(1 g) = 1.82 W/kg Deviation(1 g) = 6.68%

0 dB = 2.44 W/kg = 3.87 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used:} \\ \mbox{f} = 750 \mbox{ MHz; } \sigma = 0.939 \mbox{ S/m; } \epsilon_r = 56.756; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

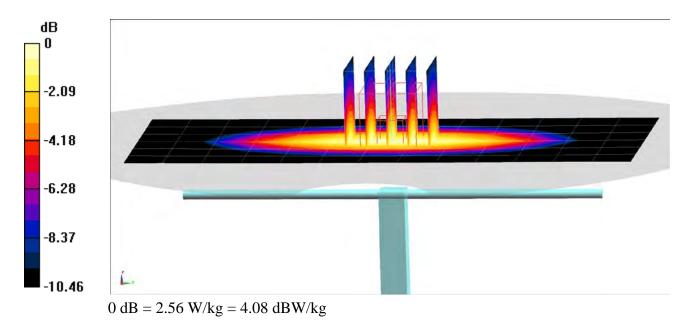
Test Date: 06/18/2020; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(8.49, 8.49, 8.49) @ 750 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.66 W/kg SAR(1 g) = 1.74 W/kg Deviation(1 g) = 1.05%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.963 \mbox{ S/m; } \epsilon_r = 53.524; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

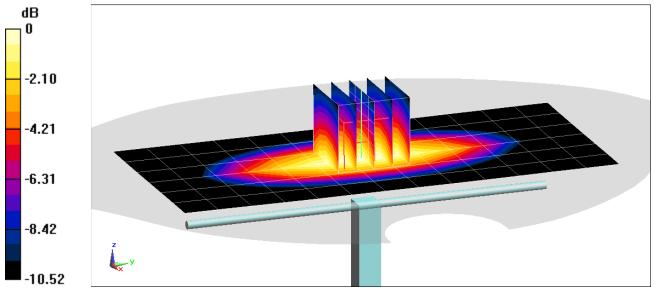
Test Date: 06/08/2020; Ambient Temp: 22.1°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.91 W/kg SAR(1 g) = 1.91 W/kg Deviation(1 g) = 0.84%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.956 \mbox{ S/m; } \epsilon_r = 53.038; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 06/10/2020; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

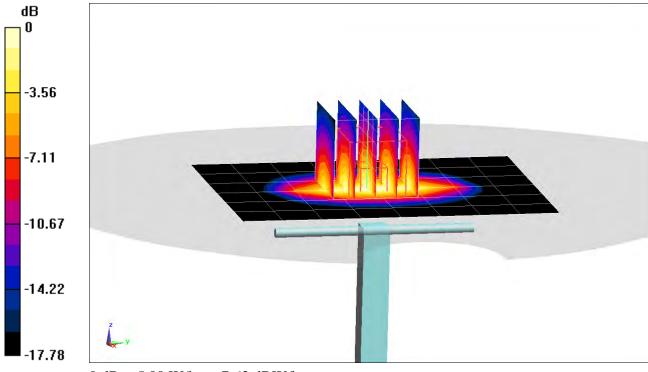
Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.01 W/kg SAR(1 g) = 1.99 W/kg Deviation(1 g) = -0.10%

0 dB = 2.65 W/kg = 4.23 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.526$ S/m; $\epsilon_r = 52.191$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05/25/2020; Ambient Temp: 21.2°C; Tissue Temp: 21.5°C

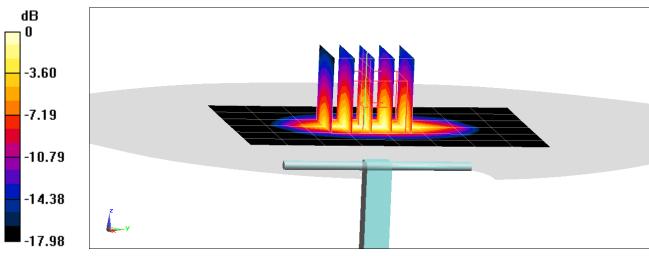
Probe: EX3DV4 - SN7527; ConvF(8.1, 8.1, 8.1) @ 1750 MHz; Calibrated: 3/17/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.82 W/kg SAR(1 g) = 3.81 W/kg Deviation(1 g) = 4.10%

0 dB = 5.80 W/kg = 7.63 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.509$ S/m; $\epsilon_r = 51.416$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/10/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.0°C

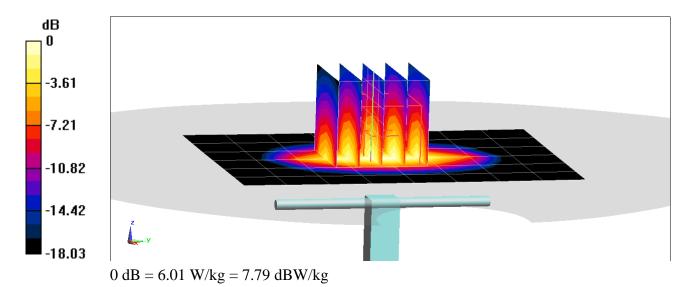
Probe: EX3DV4 - SN7527; ConvF(8.1, 8.1, 8.1) @ 1750 MHz; Calibrated: 3/17/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.75 W/kg SAR(1 g) = 3.8 W/kg; SAR(10 g) = 2 W/kg Deviation(1 g) = 1.60%; Deviation(10 g) = 0.50%

0 dB = 5.69 W/kg = 7.55 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.522$ S/m; $\epsilon_r = 50.958$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

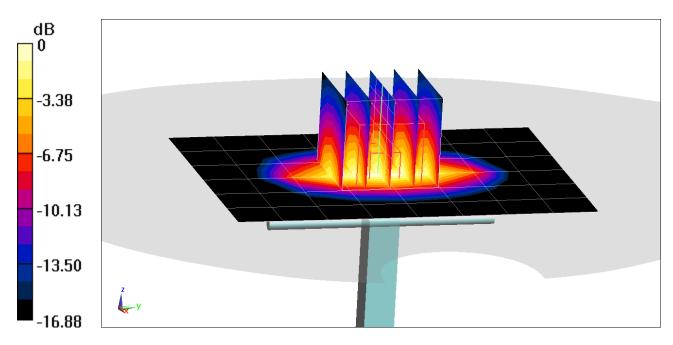
Test Date: 06/12/2020; Ambient Temp: 22.3°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7527; ConvF(8.1, 8.1, 8.1) @ 1750 MHz; Calibrated: 3/17/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.24 W/kg SAR(1 g) = 3.94 W/kg Deviation(1 g) = 5.35%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body; Medium parameters used:} \\ \mbox{f} = 1750 \mbox{ MHz; } \sigma = 1.483 \mbox{ S/m; } \epsilon_r = 51.941; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 06/18/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.5°C

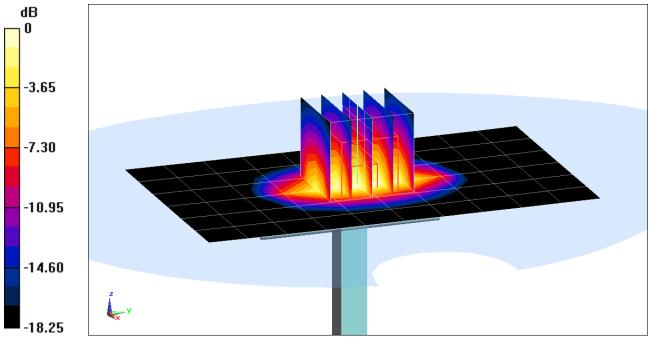
Probe: EX3DV4 - SN7410; ConvF(8.08, 8.08, 8.08) @ 1750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.06 W/kg SAR(1 g) = 3.92 W/kg; SAR(10 g) = 2.08 W/kg Deviation(1 g) = 7.10%; Deviation(10 g) = 7.22%

0 dB = 6.01 W/kg = 7.79 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.554$ S/m; $\epsilon_r = 51.737$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05/31/2020; Ambient Temp: 23.3°C; Tissue Temp: 24.0°C

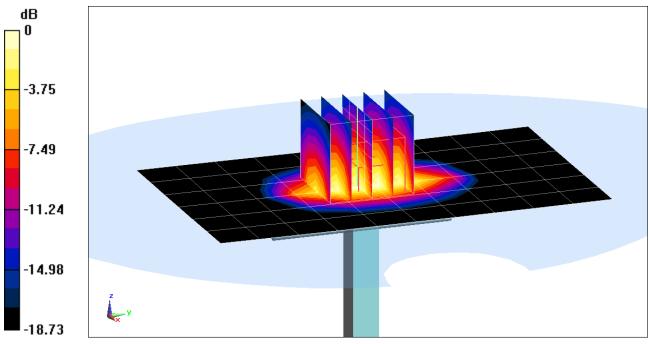
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.69 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = 5.61%

0 dB = 6.48 W/kg = 8.12 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.558$ S/m; $\epsilon_r = 52.135$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/03/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.6°C

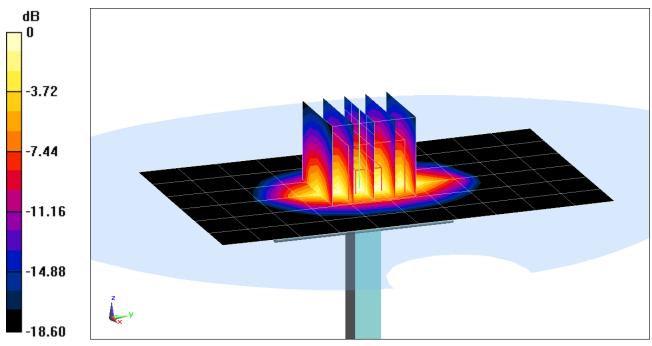
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.83 W/kg SAR(1 g) = 4.22 W/kg; SAR(10 g) = 2.17 W/kg Deviation(1 g) = 7.65%; Deviation(10 g) = 5.34%

0 dB = 6.43 W/kg = 8.08 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.579$ S/m; $\epsilon_r = 51.656$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/07/2020; Ambient Temp: 21.3°C; Tissue Temp: 21.2°C

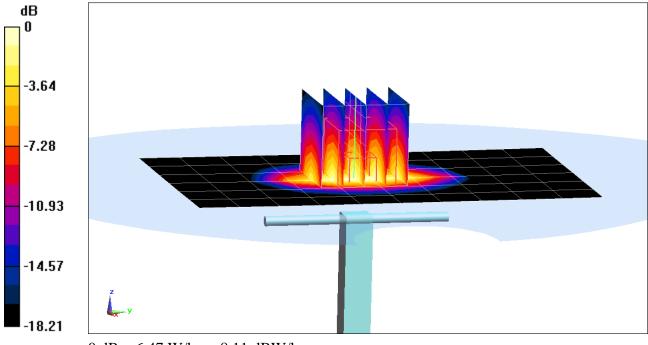
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.46 W/kg SAR(1 g) = 3.95 W/kg; SAR(10 g) = 2.02 W/kg Deviation(1 g) = 0.77%; Deviation(10 g) = -1.94%

0 dB = 6.22 W/kg = 7.94 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.573$ S/m; $\epsilon_r = 52.802$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/10/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.9°C

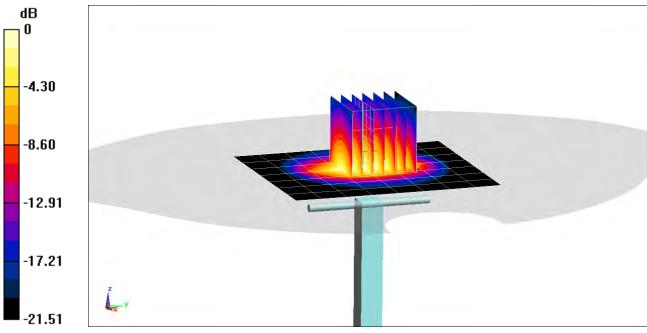
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.82 W/kg SAR(10 g) = 2.15 W/kg Deviation(10 g) = 4.37%

0 dB = 6.47 W/kg = 8.11 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2300 MHz; $\sigma = 1.865$ S/m; $\epsilon_r = 51.212$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/11/2020; Ambient Temp: 24.0°C; Tissue Temp: 22.0°C

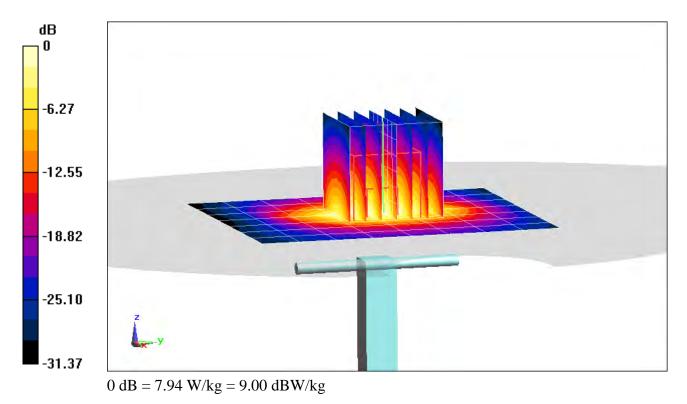
Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2300 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.1 W/kg SAR(1 g) = 5.09 W/kg; SAR(10 g) = 2.43 W/kg Deviation(1 g) = 6.71%; Deviation(10 g) = 4.74%

0 dB = 8.26 W/kg = 9.17 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.004$ S/m; $\epsilon_r = 51.322$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

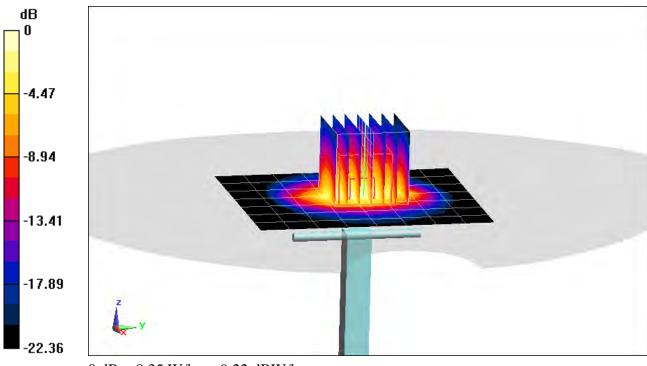
Test Date: 06/09/2020; Ambient Temp: 24.7°C; Tissue Temp: 21.8°C

Probe: EX3DV4 - SN7552; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.1 W/kg SAR(1 g) = 4.84 W/kg Deviation(1 g) = -5.28%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2450 \mbox{ MHz; } \sigma = 2.017 \mbox{ S/m; } \epsilon_r = 52.12; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 06/15/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.0°C

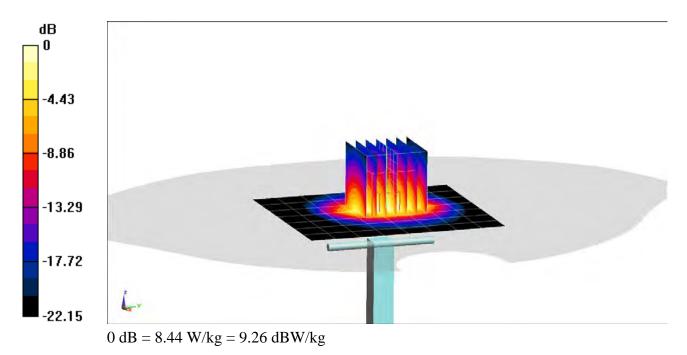
Probe: EX3DV4 - SN7552; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 4.97 W/kg; SAR(10 g) = 2.28 W/kg Deviation(1 g) = -2.36%; Deviation(10 g) = -5.79%

0 dB = 8.35 W/kg = 9.22 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2450 \mbox{ MHz; } \sigma = 2.011 \mbox{ S/m; } \epsilon_r = 51.69; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

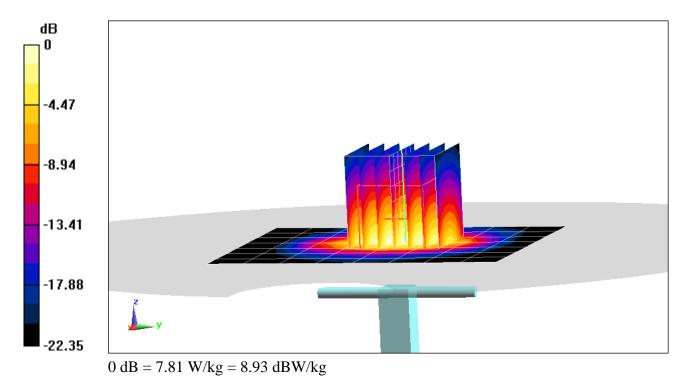
Test Date: 06/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.4 W/kg SAR(10 g) = 2.32 W/kg Deviation(10 g) = -3.33%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.014$ S/m; $\epsilon_r = 51.173$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

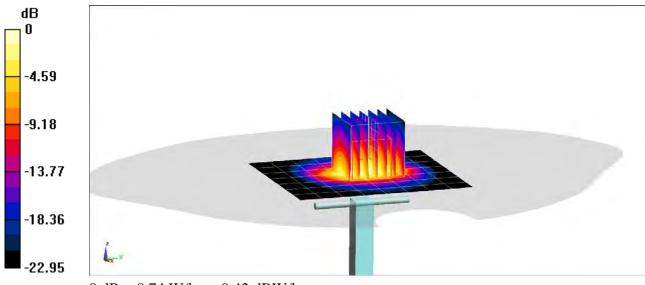
Test Date: 06/22/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7552; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.0 W/kg SAR(1 g) = 4.83 W/kg Deviation(1 g) = -5.11%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.019$ S/m; $\epsilon_r = 50.715$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/22/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.0°C

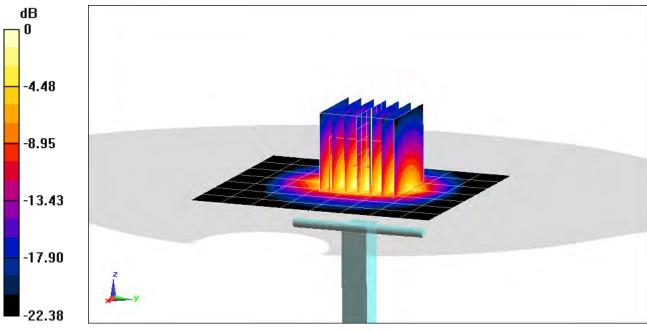
Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.2 W/kg Deviation(1 g) = 2.36%

0 dB = 8.74 W/kg = 9.42 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.028$ S/m; $\epsilon_r = 51.487$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/06/2020; Ambient Temp: 22.8°C; Tissue Temp: 21.9°C

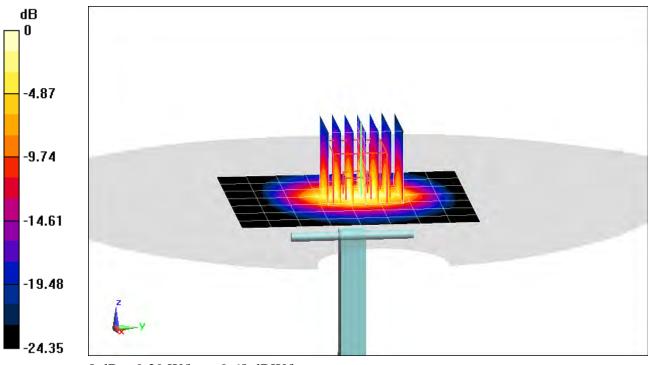
Probe: EX3DV4 - SN7552; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.0 W/kg SAR(1 g) = 4.9 W/kg Deviation(1 g) = -3.73%

0 dB = 8.10 W/kg = 9.08 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.219$ S/m; $\epsilon_r = 51.523$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/15/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.0°C

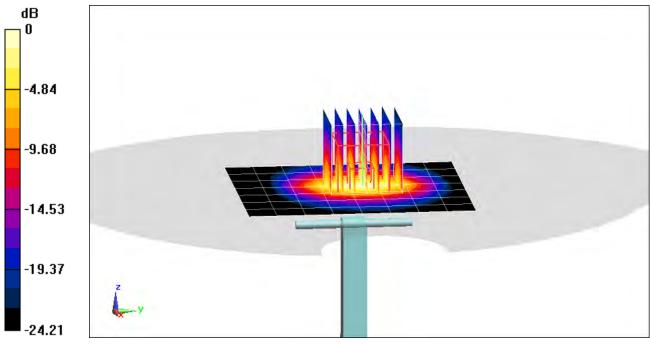
Probe: EX3DV4 - SN7552; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.39 W/kg; SAR(10 g) = 2.39 W/kg Deviation(1 g) = -1.64%; Deviation(10 g) = -3.24%

0 dB = 9.29 W/kg = 9.68 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 2.244 \text{ S/m}; \epsilon_r = 50.987; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/17/2020; Ambient Temp: 22.6°C; Tissue Temp: 21.9°C

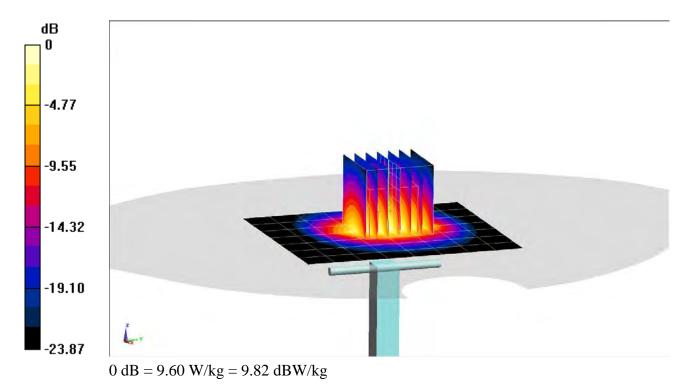
Probe: EX3DV4 - SN7552; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 5.75 W/kg Deviation(1 g) = 4.93%

0 dB = 10.0 W/kg = 10.00 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.183$ S/m; $\epsilon_r = 51.282$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space:1.0 cm

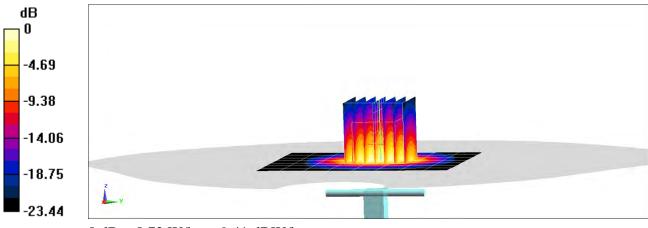
Test Date: 06/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.1 W/kg SAR(10 g) = 2.44 W/kg Deviation(10 g) = -2.40%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.219$ S/m; $\epsilon_r = 50.571$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 06/22/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.1°C

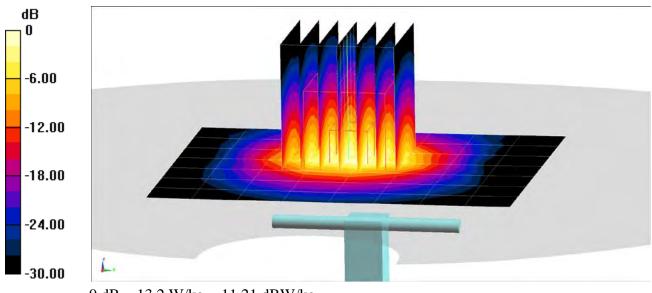
Probe: EX3DV4 - SN7552; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019 Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.06 W/kg Deviation(1 g) = -7.66%

0 dB = 8.72 W/kg = 9.41 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059


Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: f = 3500 MHz; $\sigma = 3.386$ S/m; $\epsilon_r = 49.566$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07/07/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.9°C

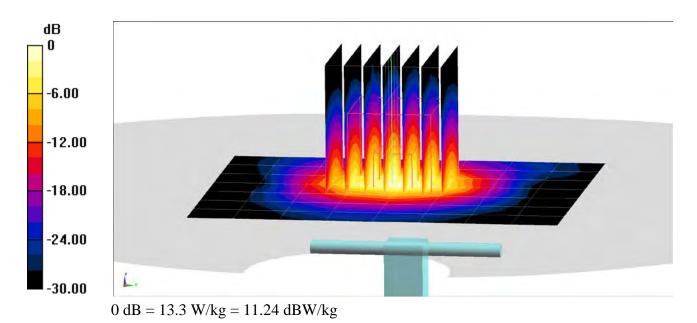
Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 6.76 W/kg Deviation(1 g) = 3.84%

0 dB = 13.2 W/kg = 11.21 dBW/kg

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 3600 Body Medium parameters used:} \\ f = 3700 \mbox{ MHz; } \sigma = 3.59 \mbox{ S/m; } \epsilon_r = 49.292; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

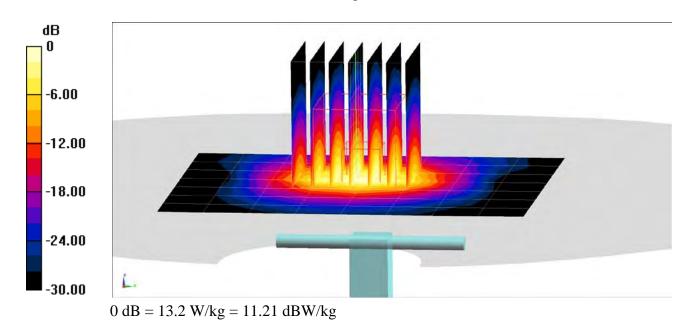
Test Date: 06/16/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 6.58 W/kg Deviation(1 g) = 2.33%

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 3600 Body Medium parameters used:} \\ f = 3700 \mbox{ MHz; } \sigma = 3.592 \mbox{ S/m; } \epsilon_r = 49.247; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

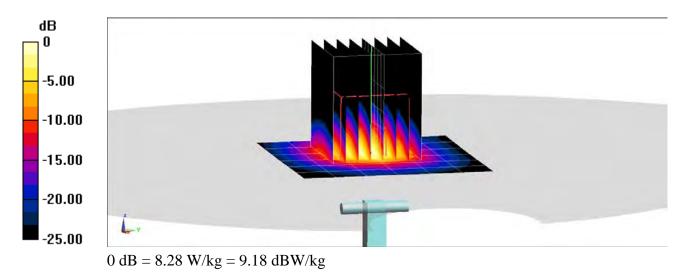
Test Date: 07/07/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.63 W/kg Deviation(1 g) = 3.11%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.438$ S/m; $\epsilon_r = 47.538$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

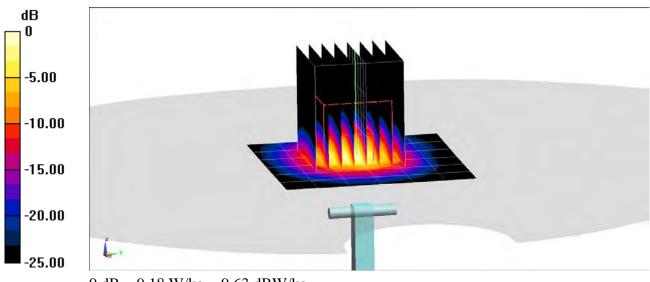
Test Date: 6/14/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5250 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.2 W/kg SAR(1 g) = 3.59 W/kg; SAR(10 g) = 0.996 W/kg Deviation(1 g) = -6.75%; Deviation(10 g) = -6.92%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.907$ S/m; $\epsilon_r = 46.984$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 6/14/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

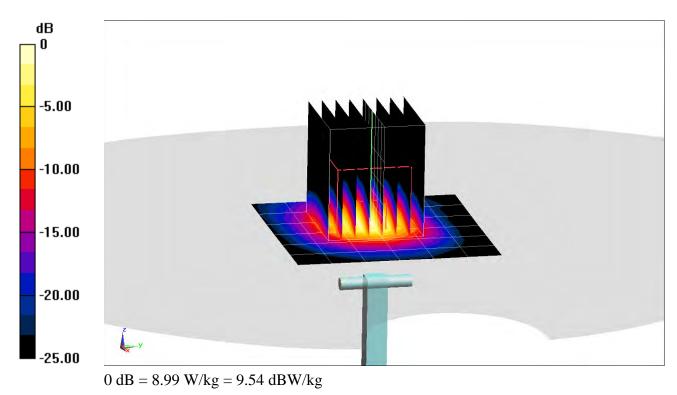
Probe: EX3DV4 - SN7538; ConvF(4.09, 4.09, 4.09) @ 5600 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 3.76 W/kg; SAR(10 g) = 1.04 W/kg Deviation(1 g) = -4.33%; Deviation(10 g) = -5.02%

0 dB = 9.18 W/kg = 9.63 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.114$ S/m; $\epsilon_r = 46.74$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 6/14/2020; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7538; ConvF(4.17, 4.17, 4.17) @ 5750 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 3.68 W/kg; SAR(10 g) = 1 W/kg Deviation(1 g) = -4.29%; Deviation(10 g) = -6.10%

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

withheld as a trade secret.

CAS: 107-21-1 EINECS: 203-473-3	Ethanediol STOT RE 2, H373;	>1.0-4.9%
Reg.nr.: 01-2119456816-28-0000	Acute Tox, 4, H302	
CAS: 68608-26-4 EINECS: 271-781-5 Reg.nr.: 01-2119527859-22-0000	Sodium petroleum sulfonate Eye Irrit. 2, H319	< 2.9%
CAS: 107-41-5 EINECS: 203-489-0 Reg.nr.: 01-2119539582-35-0000	Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.9%
CAS: 68920-66-1 NLP: 500-236-9 Reg.nr.: 01-2119489407-26-0000	Alkoxylated alcohol, > C ₁₆ Aquatic Chronic 2, H411; Skin Irrit. 2, H315; Eye Irrit. 2, H319	< 2.0%

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	05/25/20 - 07/10/20	Portable Handset			Page 1 of 3
© 202	20 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG S pe a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)	
Product No.	SL AAM U16 BC (Batch: 181029-1)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Ambient Condi	tion 22°C ; 30% humidity	
TSL Temperati	ure 22°C	
Test Date	30-Oct-18	
Operator	CL	
Additional Infe	ormation	
TSL Density		
TSL Heat-capa	acity	

Results

	Measu	ired	-	Targe	1	Diff.to Tar	get [%]	100							
f [MHz]	0'	0 ¹¹	sigma	eps:	sigma	A-eps	∆-sigma	15.0		-					1
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	10.0	-	_	_			_	-
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0								
835	55,1	20.5	0.96	55.1	0.99	0.0	-2.5	× 5.0	100						
850	55,1	20.4	0.96	55.2	0.99	-0.1	-3.0	M 0.0	-	-	-		-		
900	55:0	19.7	0.98	55.0	1.05	0.0	16.7	Permith/ly						-	-
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	d -5,0	1						
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	A-10.0	-	_		-		_	_
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5	1000	1						
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	-15.0	500	1500	2500	3500	4500	550	10
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3		208			ancy MHz			
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3							_	
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4,2	15.0							
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	15.0							
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	10.0	-	-	-			-	-
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	\$ 5.0							
1800	53.7	14.6	1.45	53.8	1.52	0.8	-3.9	AL D.O			1				-
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3	0.0		- 1	1			1	
1810 1825	53.7 53.7	14.6 14.6	1.47 1.48	53.3 53.3	1.52 1.52	0.8 0.8	-3.3 -2.6	Cord	٨	لم	1		/	/	
	10.00	0.00	10160	10000	1 igor			0.0 Conduct)	r	لہ	1		/	/	
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	٨	لہ	1	_	/	/	
1825 1850	53.7 53.6	14.6 14.5	1.48	53.3 53.3	1.52 1.52	0.8 0.6	-2.6 -1.3	-10.0	Λ	لہ	1	_	/	/	
1825 1850 1900	53.7 53.6 53.5	14.6 14.5 14.5	1.48 1.50 1.53	53.3 53.3 53.3	1.52 1.52 1.52	0.8 0.6 0.4	-2.6 -1.3 0.7	-10.0	A	لہر 1500	2500	3500	4500	550	0
1825 1850 1900 1950 2000 2050	53.7 53.6 53.5 53.5 53.4 53.4	14.6 14.5 14.5 14.5	1.48 1.50 1.53 1.57 1.60 1.64	53.3 53.3 53.3 53.3 53.3 53.2	1.52 1.52 1.52 1.52	0.8 0.6 0.4 0.4	-2.6 -1.3 0.7 3.3	-10.0	~ ~	لمر 1500		3500 ncy MHz	4500	550	0
1825 1850 1900 1950 2000 2050 2100	53.7 53.6 53.5 53.5 53.4	14.6 14.5 14.5 14.5 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68	53.3 53.3 53.3 53.3 53.3 53.3	1.52 1.52 1.52 1.52 1.52	0.8 0.6 0.4 0.4 0.2	-2.6 -1.3 0.7 3.3 5.3	-10.0	~	لمر 1500			4500	550	0
1825 1850 1900 1950 2000 2050 2100 2150	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3	14.6 14.5 14.5 14.5 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72	53.3 53.3 53.3 53.3 53.3 53.3 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66	0.8 0.6 0.4 0.4 0.2 0.3 0.2 0.2 0.4	-2.6 -1.3 0.7 3.3 5.3 4.5	-10.0	~	لہر 1500			4500	550	0
1825 1850 1900 2000 2050 2100 2150 2200	53.7 53.6 53.5 53.4 53.4 53.4 53.3 53.3 53.2	14.6 14.5 14.5 14.5 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76	53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71	0.8 0.6 0.4 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9	-10.0 -15.0 5 3500	51.1	15.5	Frequer		4500	550	
1825 1850 1900 2000 2050 2150 2250 2250	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3 53.3	14.8 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76	0.8 0.6 0.4 0.4 0.2 0.3 0.2 0.4 0.4 0.3 0.2	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8	-10.0	_	15.5 15.7	Frequer	51.3 51.1	3.31 3.55		-8.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2250	53.7 53.6 53.5 53.4 53.4 53.4 53.3 53.3 53.2	14.8 14.5 14.5 14.5 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76	53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71	0.8 0.6 0.4 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2	-10.0 -15.0 5 3500	51.1	15.5	Frequer	51.3	3.31	-0.4	-8.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.3 53.2 53.1 53.1 53.0	14.8 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85	0.8 0.4 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.2	3500 3500 3700 5250	51.1 50.8	15.5 15.7	3.02 3.24	51.3 51.1	3.31 3.55	-0.4 -0.5	-8. -8. -0.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2250	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.3 53.2 53.1 53.1	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81	0.8 0.4 0.4 0.2 0.3 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2	3500 3500 3700	51.1 50.8 48.1	15.5 15.7 18.2	3.02 3.24 5.27	51.3 51.1 49.0	3.31 3.55 5.30	-0.4 -0.5 -1.8	-8. -8. -0.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.3 53.2 53.1 53.1 53.0	14.8 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85	0.8 0.4 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.2	3500 3500 3700 5250	51.1 50.8 48.1 48.0	15.5 15.7 18.2 18.3	3.02 3.24 5.27 5.34	51.3 51.1 49.0 49.0	3.31 3.55 5.30 5.36	-0.4 -0.5 -1.8 -1.9	-8.1 -8.1 -0.1 -0.1
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2300 2350 2400	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3 53.3	14.8 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89 1.94	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85 1.90	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.2 2.2 2.1	3500 -10.0 -15.0 5 3500 3700 5250 5250 5300	51.1 50.8 48.1 48.0 47.9	15.5 15.7 18.2 18.3 18.4	3.02 3.24 5.27 5.34 5.41	51.3 51.1 49.0 48.9	3.31 3.55 5.30 5.36 5.42	-0.4 -0.5 -1.8 -1.9 -2.0	-8.8 -8.4 -0.0 -0.1 -0.1 -0.1
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3 53.3	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89 1.94 1.94	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85 1.90 1.95	0.8 0.6 0.4 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.1 1.5	3500 -10.0 -15.0 5 5 5 5 5 5 200 5 250 5 5 5 00 5 5 5 5	51.1 50.8 48.1 48.0 47.9 47.5	15.5 15.7 18.2 18.3 18.4 18.6	3.02 3.24 5.27 5.34 5.41 5.70	51.3 51.1 49.0 49.0 48.9 48.6	3.31 3.55 5.30 5.36 5.42 5.65	-0.4 -0.5 -1.8 -1.9 -2.0 -2.2	-8.1 -8.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0

TSL Dielectric Parameters

¥

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C:
	05/25/20 - 07/10/20	Portable Handset			Page 2 of 3
© 202	20 PCTEST				REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG	S	p	е	а	

g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)
Product No.	SL AAH U16 BC (Batch: 181031-2)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition		
Ambient Condition	22°C ; 30% humidity	
TSL Temperature		
Test Date	31-Oct-18	
Operator	CL	
Additional Inform	ation	
TSL Density		
TSL Heat-capacity		

Results

	Meas	ured		Targe	t	Diff.to Targ	let [%]								
[MHz]	e'	e"	sigma	eps	sigma	A-eps	∆-sigma	15.							
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0	0	-				-	_
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5	2º 5.0	- 0	-	_				
835	43.8	19.9	0.93	41.5	0.91	5,4	2.0	Permitivity	1		-	-			
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5	in the second					-		
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1	n. −5.0 >	0					-	-
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	A 10.0	0	-	-		-		_
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8	-15.0							
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1		500 15	00 2500	3500 45 Erecue	500 5500 ncy MHz	6500 750	0 8500 9	9500
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7		_		Treduc	noy micia.			-
1640	42.2	14.2	1,30	40.3	1.31	4.8	-0.5	15.0							
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0	10.0	-		-		-	-	-
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9	A 5.0	-	Λ					
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8	10 0.0		\square		-	-	-	_
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7	0.0 Conductivity 0.0	p	- /		/			
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0	G10.0			~				
1810	409														
1810	41.9	13.8	1.41	40.0	1.40	4.7	0.7	G10.0		-			-		-
1212	10.00	13,8 13,8	1.41 1.42	40.0 40.0	1.40 1.40	4.7 4.5	0.7 1.4	-15.0							
1825	41.9		and the second second					-15.0	500 150	0 2500	3500 45 Freque	00 5500 (6500 7500	8500 9	500
1825 1850	41.9 41.8	13.8	1.42	40.0	1.40	4.5	1.4	-15.0	500 150	0 2500	3500 45 Freque	00 5500 (ncy MHz 36.0	6500 7500 4.66	8500 9	_
1825 1850 1900	41.9 41.8 41.8	13.8 13.7	1.42	40.0	1.40 1,40	4.5 4.5	1.4 3.6	-15.0	_		Freque	ncy MHz		0.9	-1.
1825 1850 1900 1950	41.9 41.8 41.8 41.7	13.8 13.7 13.7	1.42 1.45 1.48	40.0 40.0 40.0	1.40 1,40 1.40	4.5 4.5 4.3	1.4 3.6 5.7	-15.0	36.3	15.8	4.57	36.0	4.66	_	-1.
1825 1850 1900 1950 2000	41.9 41.8 41.8 41.7 41.6	13.8 13.7 13.7 13.6	1.42 1.45 1.48 1.51	40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40	4.5 4.5 4.3 4.0	1.4 3.6 5.7 7.9	-15.0 5200 5250	36.3 36.2	15.8 15.9	4.57 4.63	36.0 35.9	4.66	0.9 0.8	-1. -1. -1.
1825 1850 1900 1950 2000 2050	41.9 41.8 41.8 41.7 41.6 41.6	13.8 13.7 13.7 13.6 13.6	1.42 1.45 1.48 1.51 1.55	40.0 40.0 40.0 39.9	1.40 1,40 1.40 1.40 1.44	4.5 4.3 4.0 4.2	1.4 3.6 5.7 7.9 7.3	-15.0 5200 5250 5300	36.3 36.2 36.1	15.8 15.9 15.9	4.57 4.63 4.69	36.0 35.9 35.9	4.65 4.71 4.76	0.9 0.8 0.7	-1. -1. -1. -0.
1825 1850 1900 1950 2000 2050 2100	41.9 41.8 41.8 41.7 41.6 41.6 41.6 41.5	13.8 13.7 13.7 13.6 13.6 13.5	1.42 1.45 1.48 1.51 1.55 1.58	40.0 40.0 40.0 39.9 39.8	1.40 1.40 1.40 1.40 1.44 1.49	4.5 4.3 4.0 4.2 4.2	1.4 3.6 5.7 7.9 7.3 6.1	-15.0 5200 5250 5300 5500	36.3 36.2 36.1 35.8	15.8 15.9 15.9 16.1	4.57 4.63 4.69 4.92	36.0 35.9 35.9 35.6	4.66 4.71 4.76 4.96	0.9 0.8 0.7 0,3	-1. -1. -1. -0.
1825 1850 1900 1950 2000 2050 2100 2150 2200 2250	41.9 41.8 41.8 41.7 41.6 41.6 41.6 41.5 41.4	13.8 13.7 13.6 13.6 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62	40.0 40.0 40.0 39.9 39.8 39.7	1.40 1.40 1.40 1.40 1.44 1.49 1.53	4.5 4.3 4.0 4.2 4.2 4.2	1.4 3.6 5.7 7.9 7.3 6.1 5.7	-15.0 5200 5250 5300 5500 5500	36.3 36.2 36.1 35.8 35.6	15.8 15.9 15.9 16.1 16.2	4.57 4.63 4.69 4.92 5.04	36.0 35.9 35.9 35.6 35.5	4.66 4.71 4.76 4.96 5.07	0.9 0.8 0.7 0,3 0.1	-1. -1. -1. -0. -0. -0.
1825 1850 1950 2000 2050 2100 2150 2200 2250 2300	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65	40.0 40.0 40.0 39.9 39.8 39.7 39.6	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58	4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.2	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6	-15.0 5200 5250 5300 5500 5600 5700	36.3 36.2 36.1 35.8 35.6 35.4	15.8 15.9 15.9 16.1 16.2 16.2	4.57 4.63 4.69 4.92 5.04 5.15	36.0 35.9 35.9 35.6 35.5 35.4	4.66 4.71 4.76 4.96 5.07 5.17	0.9 0.8 0.7 0.3 0.1 0.0	-1. -1. -1. -0. -0. -0.
1825 1850 1950 2000 2050 2100 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62	4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2	-15.0 5200 5250 5300 5500 5600 5700 5800	36.3 36.2 36.1 35.8 35.6 35.4 35.2	15.8 15.9 15.9 16.1 16.2 16.2 16.3	4.57 4.63 4.69 4.92 5.04 5.15 5.27	36.0 35.9 35.9 35.6 35.5 35.4 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27	0.9 0.8 0.7 0.3 0.1 0.0 -0.2	-1. -1. -1. -0. -0. -0. 0.0
1825 1850 1990 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.62	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2	-15.0 5200 5250 5300 5500 5500 5600 5700 5800 6000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9	15.8 15.9 16.1 16.2 16.2 16.3 16.5	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50	36.0 35.9 35.6 35.5 35.4 35.3 35.3 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6	-1. -1. -1. -0. -0. -0. 0.0 0.0
1825 1850 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.62 1.67 1.71	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9	-15.0 5200 5250 5300 5500 5500 5500 5600 5700 5800 6000 6500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4	-1. -1. -0. -0. -0. 0.0 0.0 0.0 0.0 0.0 0.0 0.
1825 1850 1900 1950 2000 2050 2100 2150 2250 2350 2350 2400 2450 2500	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.1 41.0 40.9	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500 7000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1	15.8 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3	-1. -1. -0. -0. -0. 0.0 0.9 0.9 0.9 1.3 1.6
1825 1850 1900 1950 2000 2050 2100 2150 2250 2350 2350 2400 2450 2500	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.1	13.8 13.7 13.6 13.6 13.5	1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84 1.88	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.6 39.5 39.4 39.3 39.3	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6 4.6 4.6	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.5 2.2	-15.0 5200 5250 5300 5500 5600 5700 6000 6500 7000 7500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2	15.8 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2	-1. -1. -0. -0. -0. -0. -0. 0.9 0.9 0.9 1.3 1.6 1.7
1825 1850 1900 1900 2000 2000 2100 2150 2200 2350 2400 2400 2450 2550	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.1 41.0 40.9	13.8 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84 1.88 1.92	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.1	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6 4.6 4.5	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 1.4	-15.0 5200 5250 5300 5500 5500 5700 5700 5800 6000 6500 7000 7500 8000	36.3 36.2 36.1 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97	asia asia 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84	0.9 0.8 0.7 0.3 0.1 0.0 0.2 -0.6 -1.4 -2.3 -3.2 -4.1	-1. -1. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0
1825 1850 1900 1950 2000 2050 2100 2150	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.3 41.2 41.1 41.1 41.1 41.0 40.9 40.8	13.8 13.7 13.6 13.5	1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84 1.84 1.84 1.92 1.96	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.6 39.5 39.4 39.3 39.2 39.1 39.1	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85 1.91	4.5 4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.6 4.5 4.5 4.4	1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.5 2.2 1.4 0.6	-15.0 5200 5250 5300 5500 5500 5700 5800 6000 6500 7500 8000 8000 8500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4 30.5	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9 18.2	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97 8.59	ncy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7 32.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84 8.45	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1 -5.0	500 -1. -1. -1. -1. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0

TSL Dielectric Parameters

Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
-	Test Dates:	DUT Type:			APPENDIX C:
(05/25/20 - 07/10/20	Portable Handset			Page 3 of 3
© 2020) PCTEST				REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System Vandation Summary – Ig														
SAR						COND.	PERM.	C	W VALIDATION		MOD. VALIDATION			
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
L	750	9/24/2019	7410	750	Head	0.878	42.471	PASS	PASS	PASS	N/A	N/A	N/A	
Р	835	10/1/2019	7551	835	Head	0.918	41.180	PASS	PASS	PASS	GMSK	PASS	N/A	
Р	1750	10/2/2019	7551	1750	Head	1.346	39.450	PASS	PASS	PASS	N/A	N/A	N/A	
Р	1900	10/2/2019	7551	1900	Head	1.444	39.260	PASS	PASS	PASS	GMSK	PASS	N/A	
E	2300	2/5/2020	3589	2300	Head	1.717	39.033	PASS	PASS	PASS	N/A	N/A	N/A	
Е	2450	2/5/2020	3589	2450	Head	1.823	38.835	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
Е	2600	2/5/2020	3589	2600	Head	1.933	38.635	PASS	PASS	PASS	TDD	PASS	N/A	
D	3500	2/4/2020	7488	3500	Head	2.882	36.886	PASS	PASS	PASS	TDD	PASS	N/A	
D	3700	2/4/2020	7488	3700	Head	3.037	36.597	PASS	PASS	PASS	TDD	PASS	N/A	
н	5250	5/7/2020	7357	5250	Head	4.644	35.120	PASS	PASS	PASS	OFDM	N/A	PASS	
н	5600	5/7/2020	7357	5600	Head	5.030	34.510	PASS	PASS	PASS	OFDM	N/A	PASS	
н	5750	5/7/2020	7357	5750	Head	5.207	34.260	PASS	PASS	PASS	OFDM	N/A	PASS	
L	750	8/20/2019	7410	750	Body	0.941	54.921	PASS	PASS	PASS	N/A	N/A	N/A	
Е	750	2/21/2020	3589	750	Body	0.965	53.650	PASS	PASS	PASS	N/A	N/A	N/A	
D	835	2/20/2020	7488	835	Body	1.001	53.450	PASS	PASS	PASS	GMSK	PASS	N/A	
Ι	1750	4/7/2020	7527	1750	Body	1.506	54.990	PASS	PASS	PASS	N/A	N/A	N/A	
L	1750	8/16/2019	7410	1750	Body	1.467	53.429	PASS	PASS	PASS	N/A	N/A	N/A	
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A	
к	2300	9/5/2019	7547	2300	Body	1.893	52.450	PASS	PASS	PASS	N/A	N/A	N/A	
0	2450	5/27/2020	7552	2450	Body	2.038	55.028	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
к	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
0	2600	5/27/2020	7552	2600	Body	2.183	54.825	PASS	PASS	PASS	TDD	PASS	N/A	
D	3500	2/12/2020	7488	3500	Body	3.373	50.003	PASS	PASS	PASS	TDD	PASS	N/A	
D	3700	2/12/2020	7488	3700	Body	3.585	49.719	PASS	PASS	PASS	TDD	PASS	N/A	
G	5250	6/8/2020	7538	5250	Body	5.400	47.530	PASS	PASS	PASS	OFDM	N/A	PASS	
G	5600	6/8/2020	7538	5600	Body	5.857	46.970	PASS	PASS	PASS	OFDM	N/A	PASS	
G	5750	6/8/2020	7538	5750	Body	6.061	46.723	PASS	PASS	PASS	OFDM	N/A	PASS	

 Table D-1

 SAR System Validation Summary – 1g

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	05/25/20 - 07/10/20	Portable Handset			Page 1 of 2
© 202	0 PCTEST				REV 21.4 M 09/11/2019

	٦	Table D-	-2	
SAR Sy	vstem Va	lidation	Summary	y – 10g

SAR						COND.	PERM.	C	W VALIDATION	1	1	MOD. VALIDATION	
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
1	1750	4/7/2020	7527	1750	Body	1.506	54.990	PASS	PASS	PASS	N/A	N/A	N/A
L	1750	8/16/2019	7410	1750	Body	1.467	53.429	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A
к	2300	9/5/2019	7547	2300	Body	1.893	52.450	PASS	PASS	PASS	N/A	N/A	N/A
0	2450	5/27/2020	7552	2450	Body	2.038	55.028	PASS	PASS	PASS	OFDWTDD	PASS	PASS
к	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
0	2600	5/27/2020	7552	2600	Body	2.183	54.825	PASS	PASS	PASS	TDD	PASS	N/A
к	2600	9/5/2019	7547	2600	Body	2.176	52.040	PASS	PASS	PASS	TDD	PASS	N/A
G	5250	6/8/2020	7538	5250	Body	5.400	47.530	PASS	PASS	PASS	OFDM	N/A	PASS
G	5600	6/8/2020	7538	5600	Body	5.857	46.970	PASS	PASS	PASS	OFDM	N/A	PASS
G	5750	6/8/2020	7538	5750	Body	6.061	46.723	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	05/25/20 - 07/10/20	Portable Handset			Page 2 of 2
© 202	0 PCTEST				REV 21.4 M 09/11/2019

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered. For licensed modes, the device state index as displayed on the device UI was recorded before and after the mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom. For licensed modes, the device state index on the device UI was monitored to determine the triggering state.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: A3LSMN981U	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
05/25/20 - 07/10/20	Portable Handset			Page 1 of 5
© 2020 PCTEST	•			REV 20.05 M

G.3 Main Antenna Verification Summary

Mechanism(s)			Device State Index			
1st	2nd	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)	
Hotspot On		GPRS 1900	0	3		
Grip		GPRS 1900	0	1		
Hotspot On	Grip	GPRS 1900	0	3	3	
Grip	Hotspot On	GPRS 1900	0	1	3	
Hotspot On		UMTS 1750	0	3		
Grip	6-1-	UMTS 1750	0	1	2	
Hotspot On Grip	Grip Hotspot On	UMTS 1750 UMTS 1750	0	3	3	
Hotspot On	Hotspot On	UMTS 1900	0	3	3	
Grip		UMTS 1900	0	1		
Hotspot On	Grip	UMTS 1900	0	3	3	
Grip	Hotspot On	UMTS 1900	0	1	3	
Hotspot On		PCS EVDO	0	3		
Grip		PCS EVDO	0	1		
Hotspot On	Grip	PCS EVDO	0	3	3	
Grip	Hotspot On	PCS EVDO	0	1	3	
Hotspot On		LTE FDD Band 4	0	3		
Grip	6	LTE FDD Band 4	0	1		
Hotspot On	Grip	LTE FDD Band 4	0	3	3	
Grip Hotspot On	Hotspot On	LTE FDD Band 4 LTE FDD Band 66	0	1	3	
Grip		LTE FDD Band 66	0	1		
Hotspot On	Grip	LTE FDD Band 66	0	3	3	
Grip	Hotspot On	LTE FDD Band 66	0	1	3	
Hotspot On	notsporton	LTE FDD Band 2	0	3	,	
Grip		LTE FDD Band 2	0	1		
Hotspot On	Grip	LTE FDD Band 2	0	3	3	
Grip	Hotspot On	LTE FDD Band 2	0	1	3	
Hotspot On		LTE FDD Band 25	0	3		
Grip		LTE FDD Band 25	0	1		
Hotspot On	Grip	LTE FDD Band 25	0	3	3	
Grip	Hotspot On	LTE FDD Band 25	0	1	3	
Hotspot On		LTE FDD Band 30	0	3		
Grip	61	LTE FDD Band 30	0	1	2	
Hotspot On	Grip	LTE FDD Band 30	0	3	3	
Grip Hotcpot Op	Hotspot On	LTE FDD Band 30 LTE FDD Band 7	0	3	3	
Hotspot On Grip		LTE FDD Band 7	0	1		
Hotspot On	Grip	LTE FDD Band 7	0	3	3	
Grip	Hotspot On	LTE FDD Band 7	0	1	3	
Hotspot On		LTE TDD Band 38	0	3	-	
Grip		LTE TDD Band 38	0	1		
Hotspot On	Grip	LTE TDD Band 38	0	3	3	
Grip	Hotspot On	LTE TDD Band 38	0	1	3	
Hotspot On		LTE TDD Band 41 (PC3)	0	3		
Grip	6.	LTE TDD Band 41 (PC3)	0	1		
Hotspot On Grin	Grip Hotcoot Op	LTE TDD Band 41 (PC3)	0	3	3	
Grip Hotspot On	Hotspot On	LTE TDD Band 41 (PC3) LTE TDD Band 41 (PC2)	0	3	3	
Grip		LTE TDD Band 41 (PC2)	0	1		
Hotspot On	Grip	LTE TDD Band 41 (PC2)	0	3	3	
Grip	Hotspot On	LTE TDD Band 41 (PC2)	0	1	3	
Held-to-Ear		LTE TDD Band 48	0	2		
Hotspot On		NR Band n66	0	3		
Grip	-	NR Band n66	0	1		
Hotspot On	Grip	NR Band n66	0	3	3	
Grip	Hotspot On	NR Band n66	0	1	3	
Hotspot On		NR Band n2	0	3		
Grip		NR Band n2	0	1		
Hotspot On	Grip	NR Band n2 NR Band n2	0	3	3	
Grip Hotcpot On	Hotspot On		0	1	3	
Hotspot On Grin		NR Band n25 NR Band n25	0	3		
Grip Hotspot On	Grip	NR Band n25	0	3	3	
Grip	Hotspot On	NR Band n25	0	1	3	
Held-to-ear	посарос он	NR Band n41	0	2	3	

Table G-1Power Measurement Verification for Main Antenna

*Note: This device uses different Device State Indices (DSI) to configure different time averaged power levels based on certain exposure scenarios. For this device, DSI = 1 represents the case when the grip sensor is active, DSI = 2 represents the case where the device is held to ear, and DSI = 3 represents the case when hotspot mode is active. DSI = 0 is configured at max power when the device cannot detect the use condition.

FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
05/25/20 - 07/10/20	Portable Handset			Page 2 of 5
© 2020 PCTEST	•			REV 20.05 M

Mechanism(s)	Test Condition	Band	Distance Measurements (mm)		Minimum Distance per			
wechanism(s)	Test condition	Bariu	Moving Toward	Moving Away	Manufacturer (mm)			
Grip	Phablet - Back Side	Mid	10	11	9			
Grip	Phablet - Back Side	High	9	10	9			
Grip	Phablet - Front Side	Mid	7	9	7			
Grip	Phablet - Front Side	High	7	9	7			
Grip	Phablet - Bottom Edge	Mid	12	13	12			
Grip	Phablet - Bottom Edge	High	12	13	12			

 Table G-2

 Distance Measurement Verification for Main Antenna

*Note: Mid band refers to: CDMA BC1, GSM1900, UMTS B2/4, LTE B2/4/25/66, NR Band n2/25/66; High band refers to: LTE B30/7/38/41 PC3 and PC2

G.4 WIFI Verification Summary

Power Measurement Verification WIFI – Antenna 1							
Mechanism(s)		Conducted Power (dBm)					
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)				
Held-to-Ear	802.11b	19.78	15.90				
Held-to-Ear	802.11g	16.96	16.06				
Held-to-Ear	802.11n (2.4GHz)	16.83	16.20				
Held-to-Ear	802.11a	16.01	12.22				
Held-to-Ear	802.11n (5GHz, 20MHz BW)	16.03	12.65				
Held-to-Ear	802.11ac (20MHz BW)	16.09	12.60				
Held-to-Ear	802.11n (5GHz, 40MHz BW)	15.40	12.99				
Held-to-Ear	802.11ac (40MHz BW)	15.16	12.44				
Held-to-Ear	802.11ac (80MHz BW)	13.15	12.17				

 Table G-3

 Power Measurement Verification WIFI – Antenna

*Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
05/25/20 - 07/10/20	Portable Handset			Page 3 of 5
© 2020 PCTEST	-			REV 20.05 M

Mechanism(s)		Conducted Power (dBm)					
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)				
Held-to-Ear	802.11b	19.83	16.40				
Held-to-Ear	802.11g	17.30	16.83				
Held-to-Ear	802.11n (2.4GHz)	17.36	16.99				
Held-to-Ear	802.11a	16.02	12.68				
Held-to-Ear	802.11n (5GHz, 20MHz BW)	16.19	13.25				
Held-to-Ear	802.11ac (20MHz BW)	16.24	12.97				
Held-to-Ear	802.11n (5GHz, 40MHz BW)	15.74	12.64				
Held-to-Ear	802.11ac (40MHz BW)	15.48	13.10				
Held-to-Ear	802.11ac (80MHz BW)	14.11	12.36				

Table G-4Power Measurement Verification WIFI – Antenna 2

*Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

 Table G-5

 Power Measurement Verification WIFI with NR Active – Antenna 1

Mode/Band	Conducted Power (dBm)					
	Un-triggered (Max)	Mechanism #1 NR Active (Reduced)	Mechanism #2 RCV and NR Active (Reduced)			
802.11b	20.33	15.69	13.09			
802.11g	17.23	15.67	12.94			
802.11n (2.4GHz)	17.31	15.77	13.03			
802.11a	16.84	12.69	12.86			
802.11n (5GHz, 20MHz BW)	17.10	12.93	12.82			
802.11ac (20MHz BW)	17.23	13.52	13.16			
802.11n (5GHz, 40MHz BW)	16.33	13.08	12.98			
802.11ac (40MHz BW)	16.11	12.97	12.87			
802.11ac (80MHz BW)	15.24	13.14	13.04			

*Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
05/25/20 - 07/10/20	Portable Handset			Page 4 of 5
© 2020 PCTEST				REV 20.05 M

Mode/Band	(Conducted Power (dBm	n)
	Un-triggered (Max)	Mechanism #1 NR Active (Reduced)	Mechanism #2 RCV and NR Active (Reduced)
802.11b	20.25	16.14	13.08
802.11g	17.33	15.74	12.54
802.11n (2.4GHz)	17.39	16.16	12.82
802.11a	17.16	12.65	12.77
802.11n (5GHz, 20MHz BW)	17.24	13.00	12.98
802.11ac (20MHz BW)	17.29	12.84	12.87
802.11n (5GHz, 40MHz BW)	16.22	12.81	12.85
802.11ac (40MHz BW)	16.27	12.68	12.79
802.11ac (80MHz BW)	15.04	13.25	13.07

 Table G-6

 Power Measurement Verification WIFI with NR Active – Antenna 2

*Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
05/25/20 - 07/10/20	Portable Handset			Page 5 of 5
© 2020 PCTEST	•			REV 20.05 M

APPENDIX H: IEEE 802.11AX RU SAR EXCLUSION

1.1 IEEE 802.11ax RU SAR Exclusion

To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T and 996T.

Per FCC Guidance, 802.11ax was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes.

1.2 **IEEE 802.11ax RU Target Powers**

Tones			SISO (ANT	1/2) /in dBm			MIMO (AL	L) /in dBm	
Tones		2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz	2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz
26T	Maximum	14	11	11	11	14	11	11	11
201	Nominal	13	10	10	10	13	10	10	10
52T	Maximum	15	13	12	11	15	13	12	11
521	Nominal	14	12	11	10	14	12	11	10
106T	Maximum	16	15	13	12	16	15	13	12
1061	Nominal	15	14	12	11	15	14	12	11
242T	Maximum	17	16	14	13	17	16	14	13
2421	Nominal	16	15	13	12	16	15	13	12
484T	Maximum			14	13			14	13
4041	Nominal			13	12			13	12
996T	Maximum				13				13
5301	Nominal				12				12

1.2.1 Maximum 802.11ax RU WLAN Output Power

1.2.2 Reduced 802.11ax RU WLAN Output Power (Table 1)

The below table is applicable in the following conditions:

- RCV active
- Simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN
- Simultaneous conditions with 5G NR and 2.4 GHz WLAN and/or 5 GHz WLAN
- RCV active during simultaneous conditions with 5G NR

Tones			SISO (ANT	1/2) /in dBm	MIMO (ALL) /in dBm				
Tones		2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz	2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz
26T	Maximum	14	11	11	11	14	11	11	11
261	Nominal	13	10	10	10	13	10	10	10
52T	Maximum	15	13	12	11	15	13	12	11
521	Nominal	14	12	11	10	14	12	11	10
106T	Maximum	16	14	13	12	16	15	13	12
1061	Nominal	15	13	12	11	15	14	12	11
242T	Maximum	17	14	14	13	17	16	14	13
2421	Nominal	16	13	13	12	16	15	13	12
484T	Maximum			14	13			14	13
4041	Nominal			13	12			13	12
996T	Maximum				13				13
9961	Nominal				12				12

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 1 of 10
9 202	0 PCTEST	•			REV 21.2 M 12/05/2018

Reduced 802.11ax RU WLAN Output Power (Table 2) 1.2.3

The below table is applicable in the following conditions:

• RCV active during simultaneous conditions with 2.4 GHz WLAN and 5 GHz WLAN

• RCV active during simultaneous conditions with 5G NR and 2.4 GHz WLAN and 5 GHz

WLAN

Tones		SISO (ANT1/2) /in dBm					MIMO (ALL) /in dBm			
Tones		2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz	2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz	
26T	Maximum	14	11	11	11	14	11	11	11	
201	Nominal	13	10	10	10	13	10	10	10	
52T	Maximum	14	13	12	11	15	13	12	11	
521	Nominal	13	12	11	10	14	12	11	10	
106T	Maximum	14	14	13	12	16	15	13	12	
1061	Nominal	13	13	12	11	15	14	12	11	
242T	Maximum	14	14	14	13	17	16	14	13	
2421	Nominal	13	13	13	12	16	15	13	12	
484T	Maximum			14	13			14	13	
4041	Nominal			13	12			13	12	
996T	Maximum				13				13	
9901	Nominal				12				12	

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 2 of 10
202	0 PCTEST	•			REV 21.2 M 12/05/2018

1.3 **IEEE 802.11ax Measured Powers**

ax	aximum 2.4 GHz 802.11ax RU Output Power – An								
	Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)				
				0	13.11				
	2412	1	26T	4	13.37				
				8	13.90				
				0	13.83				
	2437	6	26T	4	13.18				
				8	13.88				
				0	13.33				
	2462	11	26T	4	13.33				
				8	13.74				

Table 1 Ма t 1

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			37	14.54
2412	1	52T	38	14.01
			40	14.42
			37	14.82
2437	6	52T	38	14.41
			40	14.24
			37	14.52
2462	11	1 52T 38	14.55	
			40	14.31

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	106T	53	15.97
2412	1	1001	54	15.16
2437	6	106T	53	15.46
2437	0	1001	54	15.60
2462	2462 11	106T	53	15.11
2402		1001	54	15.29

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	242T	61	16.90
2437	6	242T	61	16.40
2462	11	242T	61	16.43

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager				
	Test Dates:	DUT Type:			APPENDIX H:				
	05/25/20 - 07/10/20	Portable Handset			Page 3 of 10				
0 202	2020 PCTEST								

Махі	Table 2 Maximum 2.4 GHz 802.11ax RU Output Power – Ant 2											
	Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)							
	2412		26T	0	13.24	1						
		1		4	13.71							
				8	13.94	1						
		6	26T	0	13.20							
	2437			4	13.77							
				8	13.04							
		11	26T	0	13.06							
	2462			4	13.86							
				8	13.85							

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			37	14.92
2412	1	52T	38	14.36
			40	14.01
		52T	37	14.99
2437			38	14.46
			40	14.48
			37	14.76
2462	11	52T	38	14.32
			40	14.17

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	106T -	53	15.22
2412	I		54	15.30
2437	6	106T	53	15.17
2437	0	1001	54	15.98
2462	11	106T	53	15.97
2402	11	1001	54	15.53

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	242T	61	16.99
2437	6	242T	61	16.99
2462	11	242T	61	16.26

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 4 of 10
D 202	0 PCTEST				REV 21.2 M
					12/05/2018

		E			Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIF12]			0	4	8
		5180	36	26T	10.65	10.07	10.01
ΒW	1	5200	40	26T	10.76	10.11	10.94
m		5240	48	26T	10.70	10.30	8 10.01 10.94 10.09 10.96 10.99 10.08 10.09 10.53 10.92 10.99
		5260	52	26T	10.79	10.06	10.96
20MHz	2A	5280	56	26T	10.84	10.22	10.99
5		5320	64	26T	10.99	10.17	10.08
5		5500	100	26T	10.89	10.31	10.09
Ñ	2C	5600	120	26T	10.43	10.73	10.53
		5720	144	26T	10.96	10.18	10.92
		5745	149	26T	10.03	10.32	10.99
	3	5785	157	26T	10.93	10.45	10.99
		5825	165	26T	10.96	10.26	10.04

Table 3 Maximum 5 GHz 802.11ax RU Output Power – Ant 1

		-			Avg Co	onducted Power	r (dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
					37	39	40
		5180	36	52T	12.74	12.15	12.03
2	1	5200	40	52T	12.77	12.18	12.99
ΒW		5240	48	52T	12.86	12.23	12.23
		5260	52	52T	12.86	12.21	12.13
÷	2A	5280	56	52T	12.86	12.28	12.30
20MHz		5320	64	52T	12.23	12.34	12.31
5		5500	100	52T	12.83	12.29	12.16
Ñ	2C	5600	120	52T	12.33	12.56	12.40
		5720	144	52T	12.96	12.05	12.89
		5745	149	52T	12.16	12.18	12.13
	3	5785	157	52T	12.98	12.40	12.16
		5825	165	52T	12.92	12.26	12.98

		-			Avg Co	onducted Power	r (dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIF12]			53	54	N/A
		5180	36	106T	14.90	14.15	
2	1	5200	40	106T	14.76	14.99	
ΒW		5240	48	106T	14.96	14.20	
		5260	52	106T	14.74	14.92	
Ĥ	2A	5280	56	106T	14.92	14.20	
20MHz		5320	64	106T	14.99	14.99	
0		5500	100	106T	14.78	14.99	
N	2C	5600	120	106T	14.44	14.36	
		5720	144	106T	14.79	14.75	
		5745	149	106T	14.15	14.10	
	3	5785	157	106T	14.14	14.21	
		5825	165	106T	14.98	14.08	

		_			Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIF12]			61	N/A	N/A
		5180	36	242T	15.99		
2	1	5200	40	242T	15.99		
ΒW		5240	48	242T	15.07		
N		5260	52	242T	15.90		
Ť	2A	5280	56	242T	15.99		
20MHz		5320	64	242T	15.01		
5		5500	100	242T	15.65		
3	2C	5600	120	242T	15.40		
		5720	144	242T	15.56		
		5745	149	242T	15.99		
	3	5785	157	242T	15.99		
		5825	165	242T	15.90		

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 5 of 10
© 202	0 PCTEST				REV 21.2 M
					12/05/2018

		-			Avg Co	onducted Power	(dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
		נואורוצן			0	8	17	
BW	1	5190	38	26T	10.15	10.50	10.36	
m	'	5230	46	26T	10.25	10.64	10.53	
<u>N</u>	2A	5270	54	26T	10.35	10.42	10.54	
40MHz	ZA	5310	62	26T	10.39	10.57	10.48	
Σ		5510	102	26T	10.42	10.72	10.78	
유	2C	5590	118	26T	10.25	10.26	10.24	
	3	5710	142	26T	10.48	10.42	10.54	
		5755	151	26T	10.65	10.71	10.81	
	3	5795	159	26T	10.12	10.67	10.16	

		-			Avg Co	onducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
_		[1411.12]			37	40	44	
ΒW	4	5190	38	52T	11.52	11.56	11.64	
m	1	5230	46	52T	11.57	11.66	11.79	
N	2A	5270	54	52T	11.67	11.45	11.84	
<u> </u>	ZA	5310	62	52T	11.67	11.58	11.76	
40MHz		5510	102	52T	11.70	11.74	11.96	
으	2C	5590	118	52T	11.45	11.28	11.35	
		5710	142	52T	11.64	11.50	11.69	
	3	5755	151	52T	11.98	11.69	11.93	
	3	5795	159	52T	11.46	11.72	11.52	

		-			Avg Co	onducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
					53	54	56	
BW	1	5190	38	106T	12.78	12.59	12.97	
m	1	5230	46	106T	12.80	12.55	12.93	
<u>N</u>	2A	5270	54	106T	12.80	12.52	12.96	
_	ZA	5310	62	106T	12.97	12.64	12.91	
40MHz		5510	102	106T	12.96	12.60	12.26	
음	2C	5590	118	106T	12.55	12.12	12.54	
	3	5710	142	106T	12.79	12.34	12.84	
		5755	151	106T	12.22	12.69	12.36	
	3	5795	159	106T	12.62	12.67	12.76	

		-			Avg Co	onducted Power	(dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
/		[IVII-12]			61	62	N/A	
ΒW	1	5190	38	242T	13.15	13.03		
Ξ	'	5230	46	242T	13.21	13.14		
N	2A	5270	54	242T	13.14	13.31		
40MHz	ZA	5310	62	242T	13.37	13.18		
≥		5510	102	242T	13.18	13.38		
약	2C	5590	118	242T	13.64	13.84		
7		5710	142	242T	13.90	13.97		
	3	5755	151	242T	13.30	13.38		
	3	5795	159	242T	13.08	13.15		

		-			Avg Conducted Power (dBm) RU Index		
	Band	Freq [MHz]	Channel	Tones			
		[INITIZ]			65	N/A	N/A
ΒW	4	5190	38	484T	13.66		
m		5230	46	484T	13.92		
N	2A	5270	54	484T	13.95		
_ _	24	5310	62	484T	13.84		
40MHz		5510	102	484T	13.45		
유	2C	5590	118	484T	13.46		
		5710	142	484T	13.66		
	3	5755	151	484T	13.01		
	3	5795	159	484T	13.89		

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 6 of 10
© 202	0 PCTEST				REV 21.2 M
					12/05/2018

	Erog				Avg Conducted Power (dBm)		
2	Band	Freq [MHz]	Channel	Tones		RU Index	
BW		[1411.12]			0	18	36
	1	5210	42	26T	10.21	10.87	10.50
Ϋ́	2A	5290	58	26T	10.80	10.51	10.90
5		5530	106	26T	10.44	10.93	10.30
80MHz	2C	5610	122	26T	10.24	10.72	10.30
õ		5690	138	26T	10.40	10.94	10.36
	3	5775	155	26T	10.54	10.39	10.58

		Erre			Avg Co	onducted Power	r (dBm)
2	Band	d Freq [MHz]	Channel	Tones		RU Index	
ΒW		[INIT2]			37	44	52
	1	5210	42	52T	10.44	10.94	10.59
Ť	2A	5290	58	52T	10.98	10.48	10.09
80MHz		5530	106	52T	10.55	10.85	10.43
5	2C	5610	122	52T	10.44	10.77	10.40
õ		5690	138	52T	10.60	10.88	10.52
	3	5775	155	52T	10.72	10.25	10.75

	_ Freq			Avg Conducted Power (dBm)				
2	Band	[MHz]	Channel	Tones	RU Index			
BW	Lian	[IVIF12]	[1011 12]		53	56	60	
	1	5210	42	106T	11.40	11.90	11.72	
P	2A	5290	58	106T	11.26	11.70	11.26	
5		5530	106	106T	11.60	11.95	11.64	
80MHz	2C	5610	122	106T	11.52	11.78	11.50	
õ		5690	138	106T	11.65	11.94	11.67	
	3	5775	155	106T	11.94	11.27	11.98	

		-			Avg Conducted Power (dBm)			
2	Band	Freq [MHz] Ch	Channel	Tones	RU Index			
BW					61	62	64	
	1	5210	42	242T	12.79	12.99	12.98	
80MHz	2A	5290	58	242T	12.41	12.63	12.44	
5		5530	106	242T	12.83	12.96	12.90	
6	2C	5610	122	242T	12.64	12.86	12.74	
õ		5690	138	242T	12.74	12.98	12.79	
	3	5775	155	242T	12.24	12.41	12.23	

		-			Avg Conducted Power (dBm)			
2	Band	Freq [MHz]	Channel	Tones	RU Index			
BW		[1411.12]			65	66	N/A	
	1	5210	42	484T	12.59	12.78		
T T	2A	5290	58	484T	12.24	12.30		
80MHz		5530	106	484T	12.58	12.75		
6	2C	5610	122	484T	12.44	12.67		
õ		5690	138	484T	12.62	12.79		
	3	5775	155	484T	12.89	12.06		

		-			Avg Co	onducted Power	(dBm)
2	Band	d Freq [MHz]	Channel	Tones	RU Index		
BW					67	N/A	N/A
	1	5210	42	996T	12.64		
Ϋ́	2A	5290	58	996T	12.37		
80MHz		5530	106	996T	12.61		
6	2C	5610	122	996T	12.54		
õ		5690	138	996T	12.68		
	3	5775	155	996T	12.94		

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 7 of 10
© 202	0 PCTEST				REV 21.2 M
					12/05/2018

Maxim	um	5 GHz	802.1	lax RL	J Outpu	t Power	⁻ – Ant 2
		Free			Avg Conducted Power (dBm)		
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIF12]			0	4	8
		5180	36	26T	10.34	10.61	10.37
2	1	5200	40	26T	10.32	10.58	10.40
BW		5240	48	26T	10.37	10.68	10.43
	2A	5260	52	26T	10.36	10.65	10.36
Ť		5280	56	26T	10.37	10.62	10.42
20MHz		5320	64	26T	10.36	10.65	10.44
6		5500	100	26T	10.75	10.91	10.50
Ñ	2C	5600	120	26T	10.95	10.99	10.71
		5720	144	26T	10.12	10.17	10.84
	3	5745	149	26T	10.65	10.75	10.41
		5785	157	26T	10.74	10.93	10.55
		5825	165	26T	10.59	10.96	10.57

Table 4

		-			Avg Co	onducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
					37	39	40	
		5180	36	52T	12.36	12.60	12.50	
2	1	5200	40	52T	12.50	12.70	12.56	
BW		5240	48	52T	12.57	12.76	12.58	
	2A	5260	52	52T	12.45	12.60	12.44	
H		5280	56	52T	12.54	12.63	12.54	
5		5320	64	52T	12.52	12.64	12.48	
20MHz		5500	100	52T	12.84	12.86	12.70	
Ñ	2C	5600	120	52T	12.99	12.99	12.87	
		5720	144	52T	12.09	12.16	12.99	
		5745	149	52T	12.45	12.50	12.27	
	3	5785	157	52T	12.52	12.71	12.44	
		5825	165	52T	12.36	12.61	12.30	

		_			Avg Co	onducted Powe	r (dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
					53	54	N/A
		5180	36	106T	14.33	14.39	
< <	1	5200	40	106T	14.37	14.47	
BW		5240	48	106T	14.47	14.49	
	2A	5260	52	106T	14.25	14.28	
Ϋ́		5280	56	106T	14.33	14.38	
20MHz		5320	64	106T	14.41	14.34	
5		5500	100	106T	14.70	14.65	
Ñ	2C	5600	120	106T	14.84	14.73	
		5720	144	106T	14.99	14.84	
	3	5745	149	106T	14.30	14.16	
		5785	157	106T	14.38	14.37	
		5825	165	106T	14.23	14.18	

		-			Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		נייויזבן			61	N/A	N/A
		5180	36	242T	15.37		
2	1	5200	40	242T	15.40		
BW		5240	48	242T	15.51		
	2A	5260	52	242T	15.25		
Ť		5280	56	242T	15.34		
20MHz		5320	64	242T	15.39		
5		5500	100	242T	15.45		
Ñ	2C	5600	120	242T	15.61		
		5720	144	242T	15.76		
	3	5745	149	242T	15.96		
		5785	157	242T	15.99		
		5825	165	242T	15.90		

FCC ID: A3LSMN981U		SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:		APPENDIX H:
05/25/20 - 07/10/20	Portable Handset		Page 8 of 10
D20 PCTEST			REV 21.2 M
			12/05/2018

		-			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
		נואורוצן			0	8	17	
BW	1	5190	38	26T	10.61	10.74	10.61	
m	1	5230	46	26T	10.70	10.80	10.70	
N	2A	5270	54	26T	10.57	10.52	10.59	
40MHz		5310	62	26T	10.66	10.68	10.50	
Σ		5510	102	26T	10.20	10.90	10.20	
유	2C	5590	118	26T	10.20	10.98	10.02	
		5710	142	26T	10.53	10.27	10.42	
	3	5755	151	26T	10.11	10.14	10.21	
	3	5795	159	26T	10.60	10.24	10.70	

		-			Avg Co	onducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
					37	40	44	
ΒW	1	5190	38	52T	11.87	11.76	11.84	
m	1	5230	46	52T	11.95	11.84	11.96	
N	2A	5270	54	52T	11.97	11.65	11.89	
<u> </u>		5310	62	52T	11.94	11.73	11.94	
40MHz		5510	102	52T	11.43	11.99	11.42	
유	2C	5590	118	52T	11.30	11.99	11.28	
		5710	142	52T	11.65	11.31	11.61	
	3	5755	151	52T	11.23	11.93	11.24	
		5795	159	52T	11.53	11.78	11.58	

		Fred			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVIFIZ]			53	54	56	
BW	1	5190	38	106T	12.11	12.64	12.09	
m	· ·	5230	46	106T	12.19	12.87	12.27	
<u>N</u>	2A	5270	54	106T	12.17	12.68	12.98	
_ _		5310	62	106T	12.31	12.74	12.98	
40MHz		5510	102	106T	12.66	12.99	12.71	
윾	2C	5590	118	106T	12.65	12.01	12.65	
		5710	142	106T	12.99	12.20	12.93	
	3	5755	151	106T	12.44	12.87	12.40	
	3	5795	159	106T	12.68	12.57	12.73	

		-			Avg Co	onducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
-		[IVIF12]			61	62	N/A	
ΒW	1	5190	38	242T	13.42	13.41		
m	1	5230	46	242T	13.45	13.41		
N	2A	5270	54	242T	13.28	13.30		
		5310	62	242T	13.32	13.21		
Σ		5510	102	242T	13.77	13.97		
40MHz	2C	5590	118	242T	13.78	13.81		
7		5710	142	242T	13.97	13.27		
	3	5755	151	242T	13.40	13.49		
		5795	159	242T	13.96	13.21		

		-	Channel		Avg Conducted Power (dBm)		
	Band	Freq [MHz]		Tones	RU Index		
		נייייבן			65	N/A	N/A
ΒW	4	5190	38	484T	13.24		
B	1	5230	46	484T	13.34		
N	2A	5270	54	484T	13.23		
_ I	ZA	5310	62	484T	13.21		
40MHz		5510	102	484T	13.77		
01	2C	5590	118	484T	13.65		
7		5710	142	484T	13.95		
	3	5755	151	484T	13.31		
		5795	159	484T	13.86		

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 9 of 10
© 202	0 PCTEST				REV 21.2 M
					12/05/2018

		-		nannel Tones	Avg Co	onducted Power	r (dBm)
2	Band	Freq [MHz]	Channel		RU Index		
BW		נואורוצן			0	18	36
	1	5210	42	26T	10.41	10.24	10.57
Ϋ́	2A	5290	58	26T	10.34	10.99	10.35
5		5530	106	26T	10.22	10.67	10.99
OMHz	2C	5610	122	26T	10.14	10.60	10.98
õ		5690	138	26T	10.48	10.85	10.31
	3	5775	155	26T	10.80	10.54	10.84

		_			Avg Conducted Power (dBm)		
2	Band	Freq [MHz]	Channel	Tones	RU Index		
ΒW		[INIT2]			37	44	52
	1	5210	42	52T	10.68	10.99	10.73
Ť	2A	5290	58	52T	10.47	10.97	10.49
80MHz		5530	106	52T	10.40	10.55	10.16
6	2C	5610	122	52T	10.40	10.50	10.22
õ		5690	138	52T	10.67	10.66	10.44
	3	5775	155	52T	10.95	10.38	10.98

		-		Tones	Avg Conducted Power (dBm)		
2	Band	Freq [MHz]	Channel		RU Index		
ΒW				53	56	60	
	1	5210	42	106T	11.91	11.21	11.99
1 1	2A	5290	58	106T	11.71	11.07	11.84
5		5530	106	106T	11.44	11.60	11.33
80MHz	2C	5610	122	106T	11.45	11.66	11.40
õ		5690	138	106T	11.64	11.70	11.51
	3	5775	155	106T	11.98	11.30	11.19

		-		Tones	Avg Conducted Power (dBm)		
2	Band	Freq [MHz]	Channel		RU Index		
BW		נואורובן			61	62	64
	1	5210	42	242T	12.12	12.25	12.18
1 1	2A	5290	58	242T	12.97	12.24	12.90
5		5530	106	242T	12.75	12.78	12.83
80MHz	2C	5610	122	242T	12.79	12.77	12.86
õ		5690	138	242T	12.93	12.88	12.99
	3	5775	155	242T	12.21	12.39	12.43

		-		Tones	Avg Conducted Power (dBm) RU Index		
2	Band	Freq [MHz]	Channel				
BW				65	66	N/A	
	1	5210	42	484T	12.90	12.99	
1	2A	5290	58	484T	12.99	12.13	
5		5530	106	484T	12.44	12.61	
80MHz	2C	5610	122	484T	12.44	12.58	
õ		5690	138	484T	12.65	12.79	
	3	5775	155	484T	12.99	12.29	

		-			Avg Conducted Power (dBm)		
2	Band	Freq [MHz]	Channel	Tones	RU Index		
BW		[IVIF12]			67	N/A	N/A
	1	5210	42	996T	12.74		
Ϋ́	2A	5290	58	996T	12.68		
80MHz		5530	106	996T	12.04		
5	2C	5610	122	996T	12.01		
õ		5690	138	996T	12.22		
	3	5775	155	996T	12.58		

	FCC ID: A3LSMN981U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	05/25/20 - 07/10/20	Portable Handset			Page 10 of 10
© 202	0 PCTEST				REV 21.2 M
					12/05/2018

APPENDIX I: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1054_Mar20

CALIBRATION CI	ERTIFICATE					
Object	D750V3 SN:1054					
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	odure for SAR Validation Sources	between 0.7-3 GHz			
Calibration date:	March 11, 2020	Managalan ya Managalan ya Kuto ya Kuto Kuto ya Kuto ya	BN BN its of measurements (SI). 04-30-20			
		onal standards, which realize the physical uni robability are given on the following pages an				
All calibrations have been conducte	d in the closed laborato	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.			
Calibration Equipment used (M&TE	critical for calibration)					
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20			
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20			
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20			
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20			
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20			
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20			
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20			
Secondary Standards	1D #	Check Date (in house)	Scheduled Check			
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20			
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20			
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	signature JCJ			
Approved by:	Katja Pok ov ic	Technical Manager	Jelle			
			Issued: March 19, 2020			
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	•			

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.63 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.69 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.63 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω - 1.9 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω - 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.035 ns
	1.035 HS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

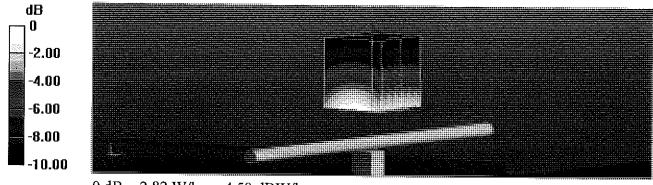
Manufactured by	SPEAG
	J SFEAG J

DASY5 Validation Report for Head TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Impedance Measurement Plot for Head TSL

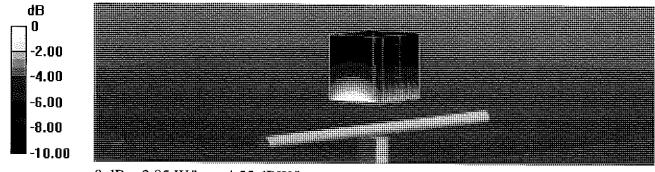
Ch 1 Avg	- 20		.000000 MHz 114,70 pF .000000 MHz	53.604 Ω -1.8500 Ω 39.096 mU -26.149 °
Ch1: Start 550,000 10.00 HB Sta 5.00		 > 1; 750	.000000 MHz	stop 350.009 мНа -28.157 dB
-5.00				
15.00	····			
20,00 , 				

DASY5 Validation Report for Body TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.96 S/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.22 W/kg **SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg** Smallest distance from peaks to all points 3 dB below = 16.1 mm Ratio of SAR at M2 to SAR at M1 = 66.7%Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File Vie</u>	w <u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>Trace</u> <u>5</u> ca	ale M <u>a</u> rker	System	<u>W</u> indow	Help		
	Ch 1 Avg =	20					A).000000 MHz 45.536 pF).000000 MHz	-4.6 46.68	831 Ω i602 Ω 31 mU 3.404 °
Ch1:	: Start 550.000 h		01wa						Stop 950	.000 MHz
¥ :										
10.00 5.00 0.00						>	1: 750).00000 MHz	-26.5	321 dB
5.00 0.00 -5.00						>	1: 750		-28.5	321 dB
5.00 0.00						>	1: 750	. 00000 MHz	-26.5	i21 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00	dbssta					>	1: 750		-28.5	i21 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00	20 						1: 750	00000 MHz	-28.6	i21 dB
5.00 0.00 5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -40.00	dB S11	1Hz					1: 750			321 dB

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For users with a CADODMO D/
	or an incud i nantom	For usage with cSAR3D V2 -R/L
		_

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	700-1
SAR for nominal Head TSL parameters	normalized to 1W	7.66 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.42 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	······

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	······································
SAR for nominal Head TSL parameters	normalized to 1W	7.89 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear ≅ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	6.82 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	······

 $^{^{1}\,}$ Additional assessments outside the current scope of SCS 0108 $\,$

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.:	SCS	0108

Certificate No: D835V2-4d132_Jan20 Client PC Test CALIBRATION CERTIFICATE D835V2 - SN:4d132 Object Calibration procedure(s) QA CALUE III in i cration BNY 2-05-2020 January 13, 2020 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 7349 31-Dec-19 (No. EX3-7349 Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 ID # Secondary Standards Check Date (in house) Scheduled Check SN: GB39512475 Power meter E4419B 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Name Function Signature Leif Klysner Calibrated by: Laboratory Technician Katla Pokovic Approved by: Technical Manager Issued: January 21, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	• • • •
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.65 W/kg ± 17.0 % (k=2)
	- I	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.30 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.96 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.64 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 3.1 jΩ
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.5 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.385 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

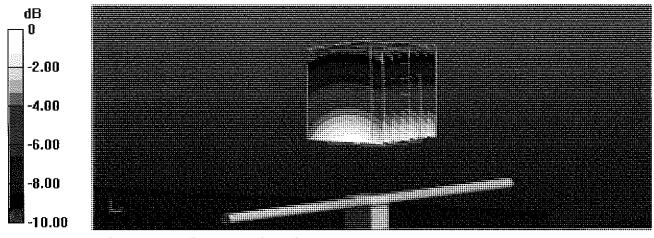
Manufactured by	SPEAG	
,		2
		Manufactured by SPEAG

DASY5 Validation Report for Head TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.94 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 3.20 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Head TSL

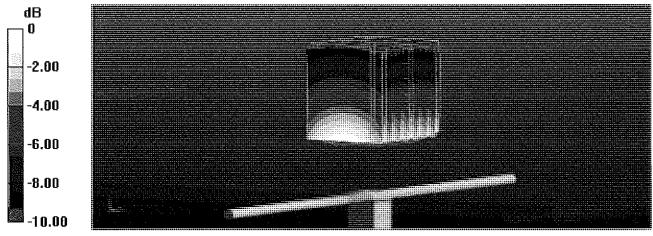
<u>File View C</u> hai	nnel Sw <u>e</u> ep Calibr	ation <u>Trace S</u> cale M <u>a</u> rk	er System <u>Wi</u> ndov	v <u>H</u> elp	
				35.000000 MHz 60.623 pF 35.000000 MHz	50.361 Ω -3.1441 Ω 31.518 mU -81.684 °
Ch 17 Ch1: Start 635	Avg ≠ 20 5.000 MHz		}		Stop 1.03500 GHz
10.00 5.00 0.00 -5.00 -10.00 -15.00 -25.00 -25.00 -30.00 -35.00 -40.00 -40.00 -11: Start 635				035.00000 MHz	-30.029 dB
Status CH 1	<u>§11</u>	C* 1-Port	Avg=20 Delay		LCL

DASY5 Validation Report for Body TSL

Date: 13.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.64 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.68 W/kg Smallest distance from peaks to all points 3 dB below = 16.2 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 3.33 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

Impedance Measurement Plot for Body TSL

<u>F</u> ile <u>V</u> iev	v <u>C</u> hannel	Sw <u>e</u> ep Calibrat	ion <u>T</u> race <u>S</u> cal	e M <u>a</u> rker S <u>v</u> s	item <u>W</u> indow) <u>H</u> elp	
						35.000000 MHz 34.503 pF 35.000000 MHz	-5.5242 Ω
Ch1:	Ch 1 Avg = Start 635.000 lv			~~		-	Stop 1.03500 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1:		20 1H2 connects			> 1 8	35.00000 MHz	-24.813 dB
Status	CH 1: 6	11	C* 1-Port	A۷	g=20 Delay		LCL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
	SAW HEAU FHAILUM	TO USage with COARODVZ-R/L

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.34 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth \cong F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	9.80 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck \cong H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR for nominal Head TSL parameters	normalized to 1W	9.32 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		

SAR result with SAM Head (Ear \cong D90)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	8.01 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	5.40 W/kg ± 16.9 % (k=2)

 $^{^{1}}$ Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Certificate No: D1750V2-1150_Oct18

Accreditation No.: SCS 0108

CALIBRAT	ON CERTIFICATE	

Object	D1750V2 SN.11	50	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits above.	700 MHz
Calibration date:	October 22, 2018		10/30/2018 10/30/2018 BNV 10-20-2019
	•	onal standards, which realize the physical units of robability are given on the following pages and are	measurements (51).
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C and	3 humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.WELET
Approved by:	Katja Pokovic	Technical Manager	CC 15
This calibration certificate shall not	be reproduced except in	n full without written approval of the laboratory.	Issued: October 22, 2018

Certificate No: D1750V2-1150_Oct18

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

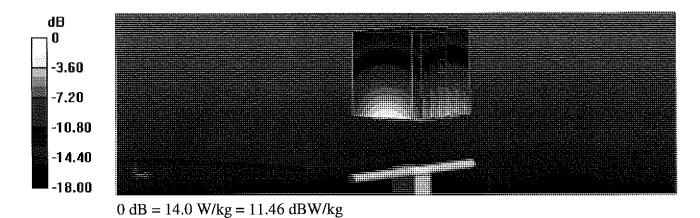
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

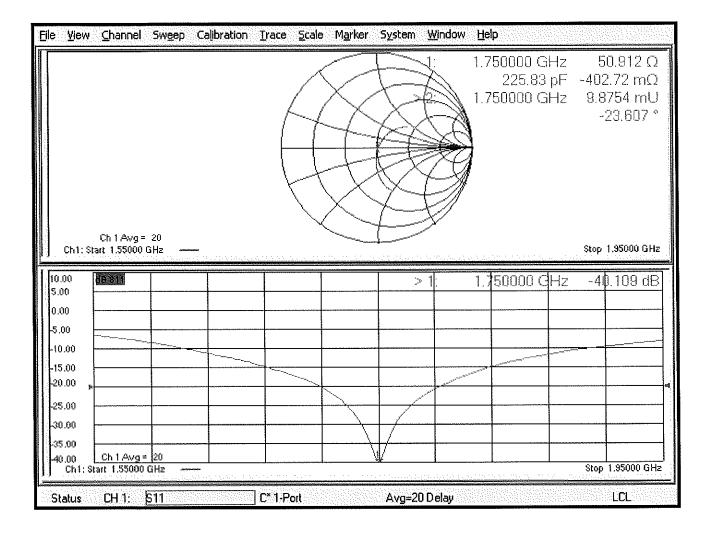
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

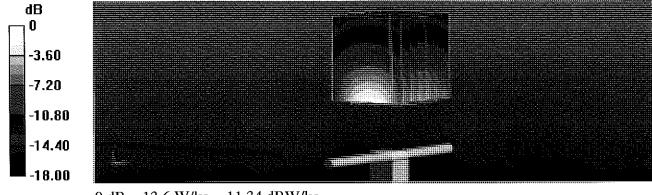
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

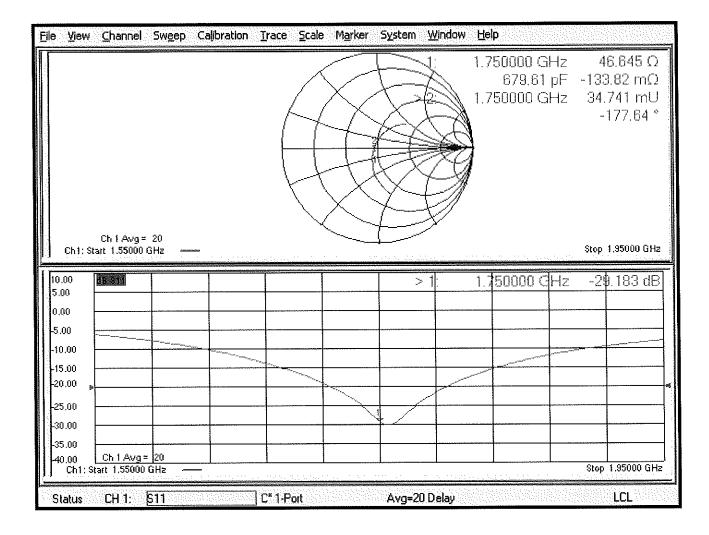
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

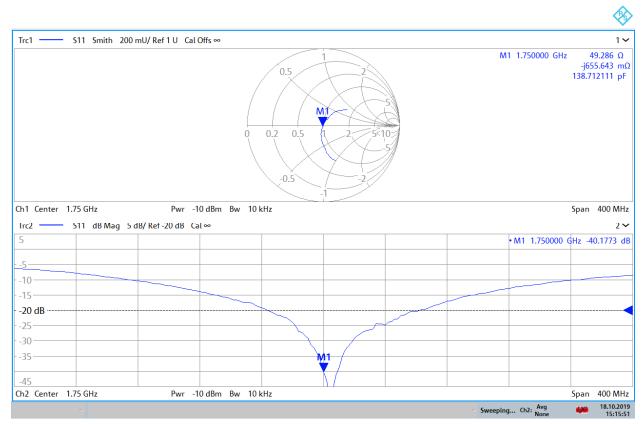
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Dogo 1 of 4
D1750V2 – SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

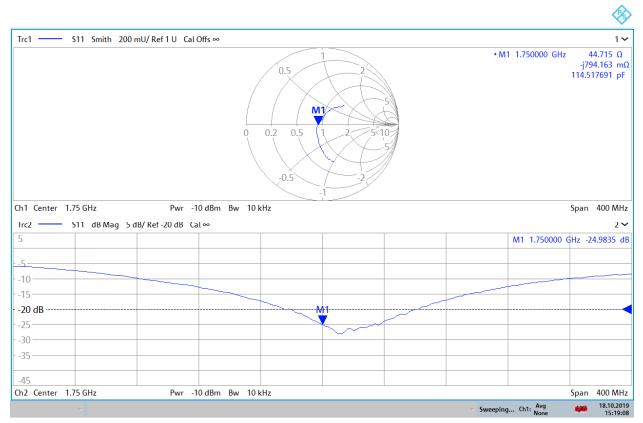
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN:1150	10/18/2019	raye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 – SN:1150	10/18/2019	raye 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Daga 4 of 4
D1750V2 – SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb19

Accreditation No.: SCS 0108

CALIBRATIONEC	ERIFICAT		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05 v11 Calibration Proc	edure for SAR Validation Source	
Calibration date:	February 21, 20	9	inits of measurements (SI). $02-26^{-23}$
This calibration certificate docume	ots the traceability to pat	ional standarda which makes the short start	m2-26/2
The measurements and the uncert	tainties with confidence r	ional standards, which realize the physical u probability are given on the following pages a	Inits of measurements (SI).
		ry facility: environment temperature (22 ± 3)	
Calibration Equipment used (M&T		,	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr~19
Type-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349 Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check; Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Simeture
Calibrated by:	Manu Seltz	สพิทธิสิทธิสติสติสติสติสติสติสติสติสติสติสติสติสติ	Signature
		Laboratory Technician	ALL
Approved by:	Kalja Pokovic	Technical Manager	
			to to the
			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
IOL	U
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	9.65 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	5.05 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.170 ns
	1370115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

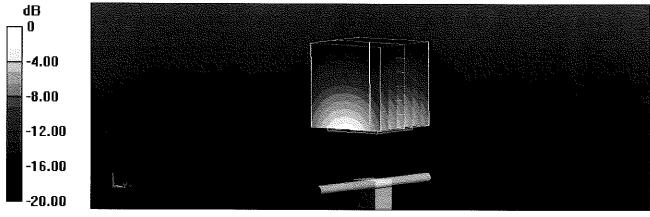
Manufactured by	SPEAG
	JEAG

DASY5 Validation Report for Head TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg **SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg** Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

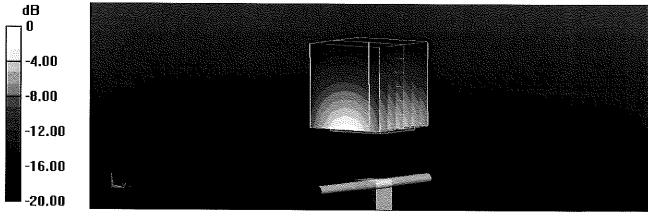
<u>File Viev</u>	v <u>C</u> hannel Sw <u>e</u> e	ep Calibration <u>T</u> r	ace <u>S</u> cale M <u>a</u> r	'ker S <u>y</u> stem <u>Wi</u> ni	dow Help	
Ch1::	Ch 1 Awg = 20 Start 1.70000 GHz				1.900000 GHz 573.82 pH 1.900000 GHz	51.822 Ω 6.8503 Ω 69.458 mU 71.260 °
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: 5	Ch 1 Avg = 20 3tart 1.70000 GHz				1.900000 GHz	-23.166 dB
Status	CH 1: <u>811</u>	C*-	1-Port	Avg=20 Delay		Stop 2.10000 GHz

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sweep	Calibration	<u>Trace</u> <u>S</u> c.	ale M <u>a</u> rker	System	Window	Help			
		Ch1Avg=				XXX			1.900000 G 652.32 1.900000 G	pН	48.446 Ω 7.7874 Ω 80.412 mU 96.762 °	
		rt 1.70000 (-4			S	top 2,10000 GHz	
10.0	no 16	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	7			Contraction of the second s		The second se	The second s			
5.0 0.0 -5.0 -10. -15. -20. -25. -30. -35. -40. (Ch 1 Awg = rt 1.70000 c	20 3Hz								-21.894 dB	

Certification of Calibration

Object

D1900V2 - SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

2/21/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

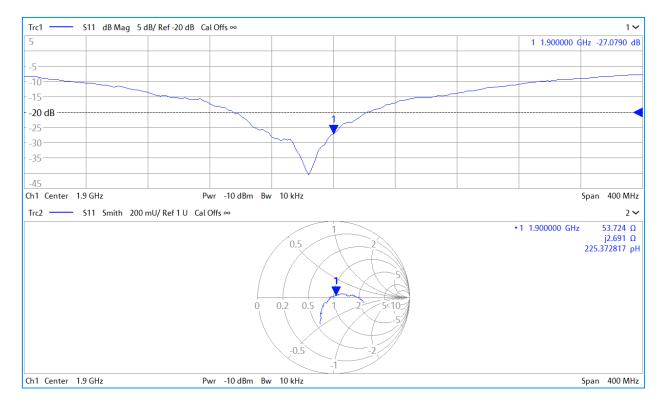
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 1014

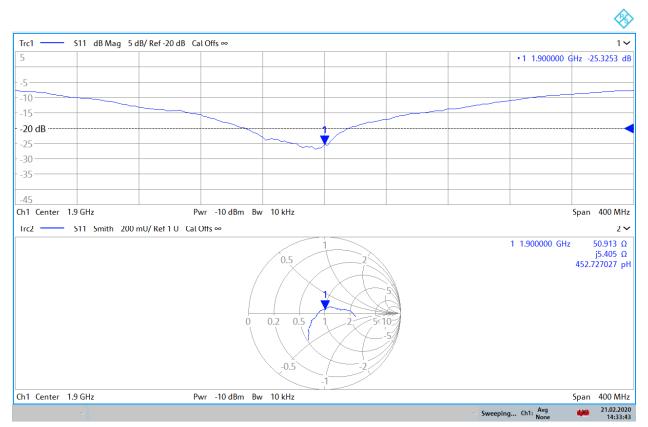
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS


Object:	Date Issued:	Page 2 of 4
D1900V2 – SN: 5d148	02/21/2020	raye 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d148	02/21/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:33:44 21.02.2020

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d148	02/21/2020	Fage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: S	SCS 01	08
----------------------	--------	-----------

Certificate No: D1900V2-5d080_Oct18

Client PC Test

	D1900V2 - SN:50	1080	
alibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	
			$BN^{1/2}$ 10-30-2018 $BN^{1/2}$ ts of measurements (SI). $10-20-2$
alibration date:	October 23, 2018		10-30-2018
he measurements and the uncerta	aintles with confidence p ed in the closed laborato	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
leference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
eterence Probe EX3DV4		,	
	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Oct-19 Scheduled Check
AE4 secondary Standards	1		
AE4 econdary Standards /ower meter EPM-442A	1D #	Check Date (in house)	Scheduled Check
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	ID # SN: GB37480704	Check Date (in house) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	Atomical advantation of Hannial
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	VJZ.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

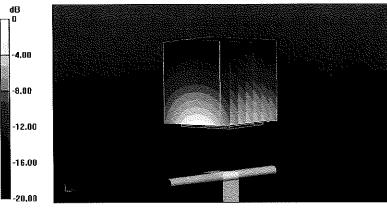
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

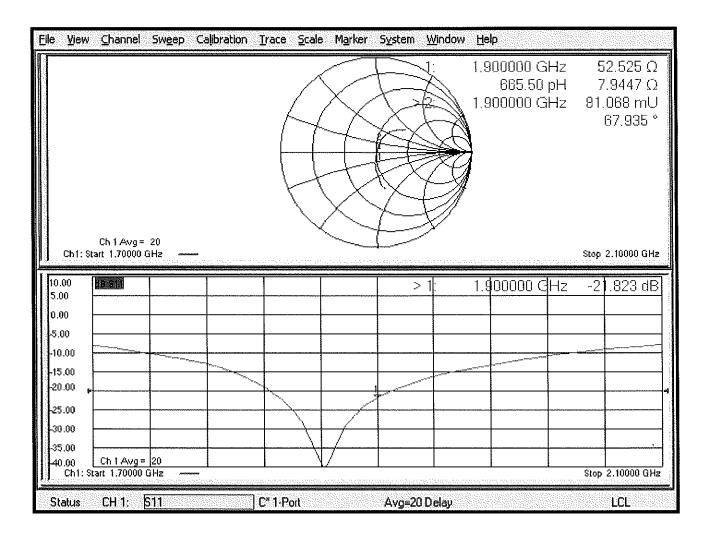
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

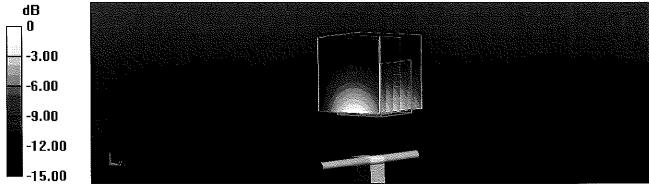
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

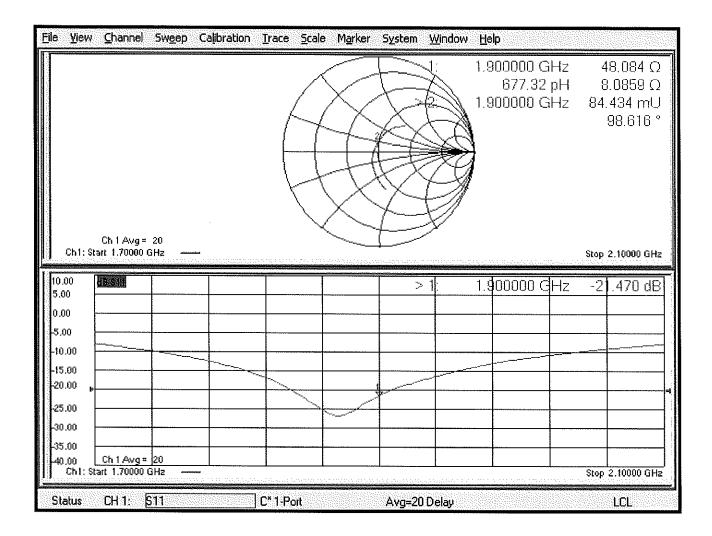
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN:5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

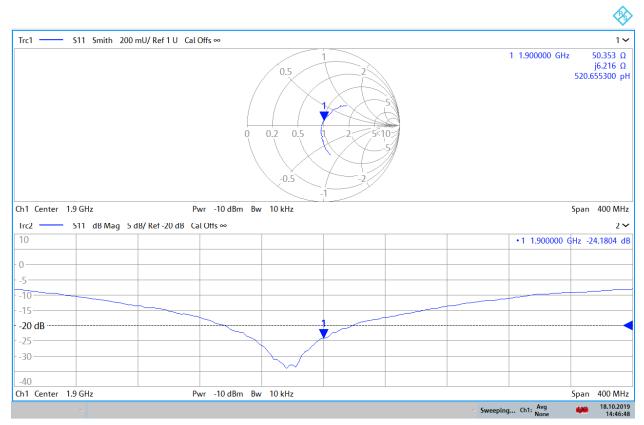
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

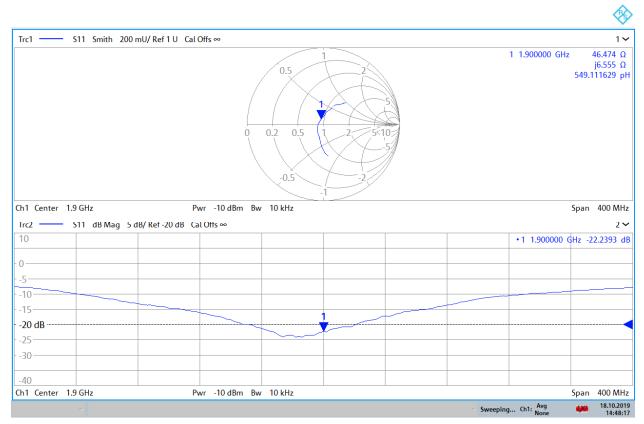
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.98	4.16	4.52%	2.07	2.13	2.90%	52.5	50.4	2.1	7.9	6.2	1.7	-21.8	-24.2	-10.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.92	4.21	7.40%	2.06	2.16	4.85%	48.1	46.5	1.6	8.1	6.6	1.5	-21.5	-22.2	-3.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

14:46:49 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:48:18 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test Certificate No: D2300V2-1073 Aug18 **IBRATION CERTIFICATE** CAI Object D2300V2 - SN:1073 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz BNV 19-06-2018 BNV 08 10 120 Calibration date: August 13, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-17) In house check: Oct-18 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2300V2-1073_Aug18

Issued: August 13, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

To	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	47.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 5.2 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (and dispation)	
Electrical Delay (one direction)	1.171 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 16, 2015

DASY5 Validation Report for Head TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073

Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.7 S/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Impedance Measurement Plot for Head TSL

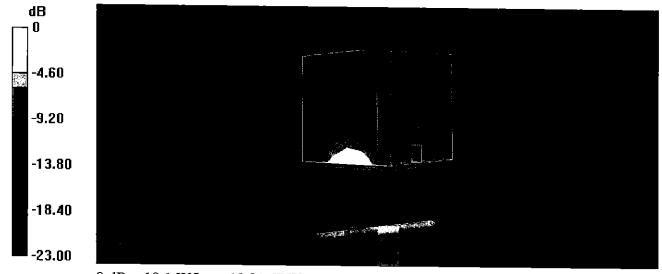
<u>Fi</u> le	⊻iew	Channel	Sw <u>e</u> ep	Calibration	<u>T</u> race	<u>S</u> cale	M <u>a</u> rker	S <u>y</u> stem	<u>Wi</u> ndow	<u>H</u> elp				
	01.1.0	Ch 1 Awg	20								8000 G 13,259 0000 G	рF	-5 52. -1	0.050 Ω .2189 Ω 094 mU 86.467 °
	Ch1:St	art 2,10000	GHz —					- 					Stop 2	2.50000 GHz
-15 -20 -25 -30 -35	00 00 00 00 00 00 00	<u>Ch 1 Avg</u>	GHz —							2.30				2.50000 GHz
St	atus	CH 1:	511		C* 1 Po	ut	•	Avg=20	Delay					LCL

DASY5 Validation Report for Body TSL

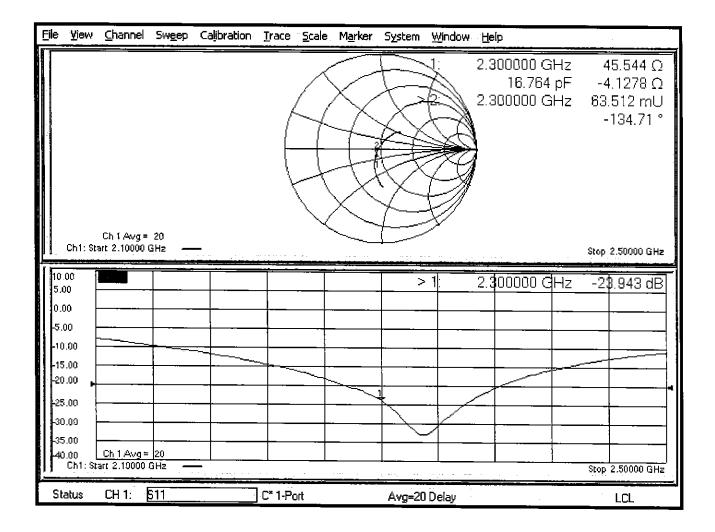
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.85 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2300V2 - SN: 1073

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

08/09/2019

Description:

SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

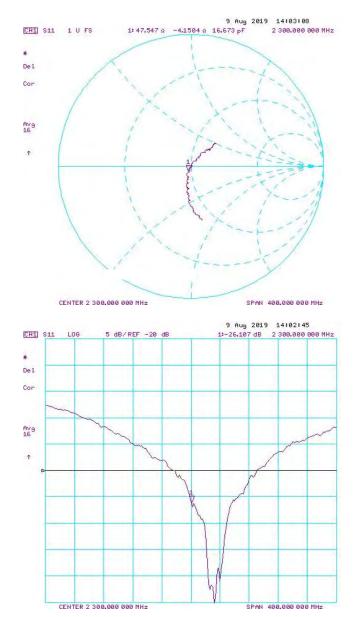
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

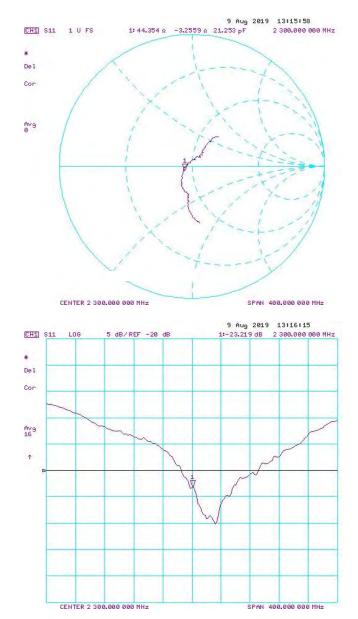
Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1073	08/09/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
8/13/2018	8/9/2019	1.171	4.92	5.21	5.89%	2.38	2.49	4.62%	50.1	47.5	2.6	-5.2	-4.2	1	-25.7	-26.1	-1.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/13/2018	8/9/2019	1.171	4.77	5.05	5.87%	2.32	2.4	3.45%	45.5	44.4	1.1	-4.1	-3.3	0.8	-23.9	-23.2	2.80%	PASS

Object:	Date Issued:	Page 2 of 4
D2300V2 – SN: 1073	08/09/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D2300V2 – SN: 1073	08/09/2019	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2300V2 – SN: 1073	08/09/2019	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug19

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:7	19	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources b	etween 0.7-3 GHz
Calibration date:	August 14, 2019		BNW 68 20 20 9
		onal standards, which realize the physical units or robability are given on the following pages and a	
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°C a	nd humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047,2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	tills
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: August 15, 2019

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 W/kg

SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1 .95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 5.6 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω + 8.4 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.150 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

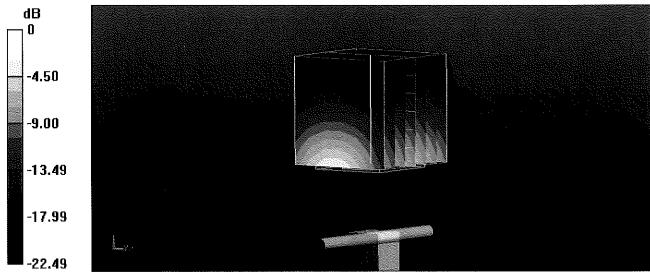
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 14.08.2019

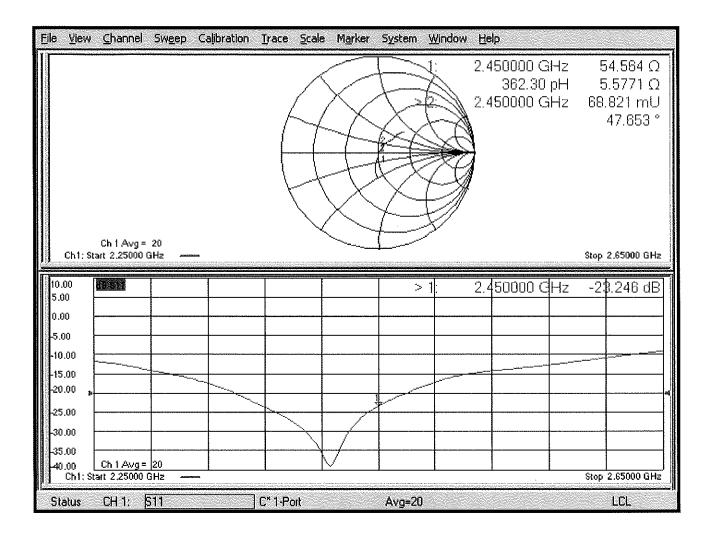
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.83 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.1 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

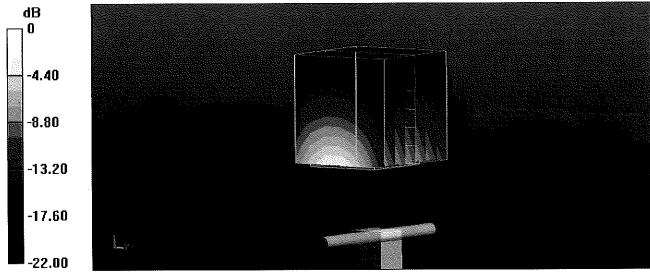
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.08.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.01 S/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.6 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.09 W/kg** Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	<u>C</u> hannel Sv	v <u>e</u> ep Calibratio	n <u>T</u> race <u>S</u> cale	Marker S <u>y</u> s	tem <u>W</u> indo	ow <u>H</u> elp			
Ch1: 3t2	Ch 1 Avg = 20 art 2.25000 GHz		A				0000 GHz 546.95 pH 0000 GHz	8 83. ,	1.000 Ω .4196 Ω 658 mU 78.464 °
	olouhe/weight databelere tagegottere ja	***************************************							
10.00					> 1;	2.45	60000 GHz	-2	.550 dB
10.00 5.00 0.00					> 1;	2.45	60000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 -					> 1;	2.45	0000 GHz	-2	.550 dB
5.00 - Q,00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 - -18.00 - -15.00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 - -10.00 - -15.00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00	Ch 1 Avg = 20 rart 2.25000 GHz				> 1:	2.45	0000 GHz		.550 dB

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

S

С

Schweizerischer Kalibrierdlenst Service suïsse d'étalonnage

Servizio svizzero di taratura S Sudoc Collection Condu

Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No. D2600V2-1004 April 8 ovviele: evviele) v control de la control de Object D2600V2-SN Calibration procedure(s) QA CALL05 V10 Calibration procedure for dipole validation kits above 700 MH. BNY 5-01-2018 Extended Calibration date: April 1420185 BN 04-This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. BN bs 12020 Extended All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards iD# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-291 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7949 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 Secondary Standards 1D# Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Callbrated by: Michael Weber Laboratory Approved by: Katla Bokov issued: April 12, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1004_Apr18 Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
	F	······································
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		,

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 5.7 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 3.8 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	A I I I I I I I I I I
	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

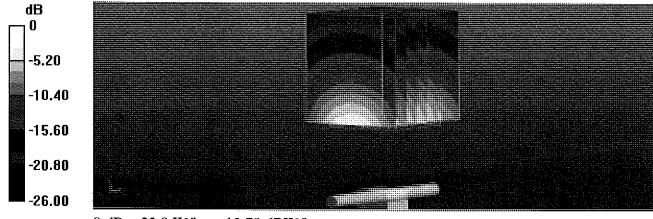
Manufactured by	SPEAG
Manufactured on	December 23, 2006

DASY5 Validation Report for Head TSL

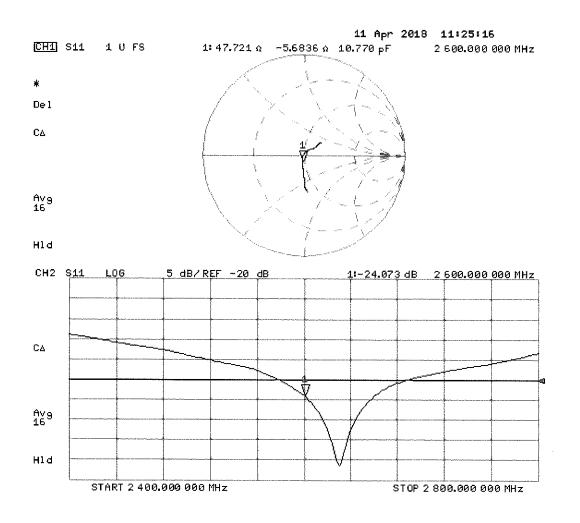
Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.6 W/kg **SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg** Maximum value of SAR (measured) = 23.9 W/kg

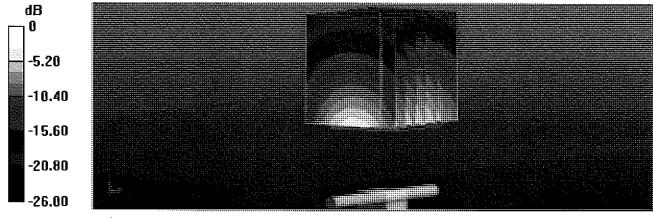
0 dB = 23.9 W/kg = 13.78 dBW/kg

DASY5 Validation Report for Body TSL

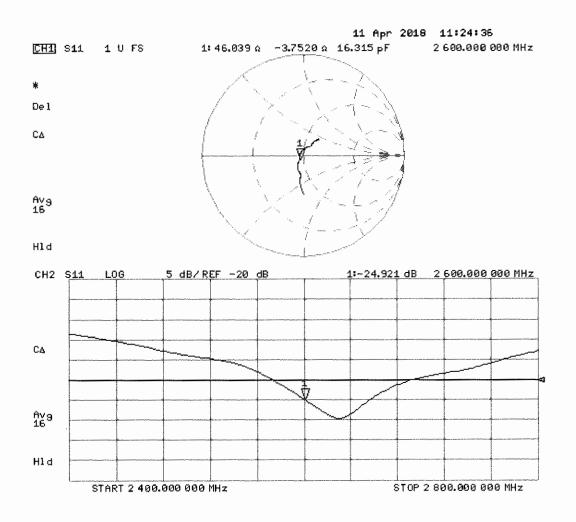
Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.19 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2600V2 - SN: 1004

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 4/11/2019

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

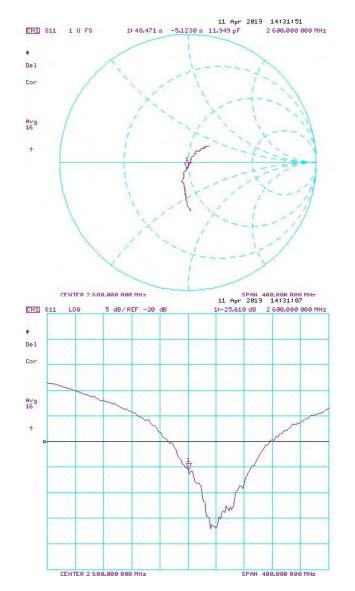
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK-

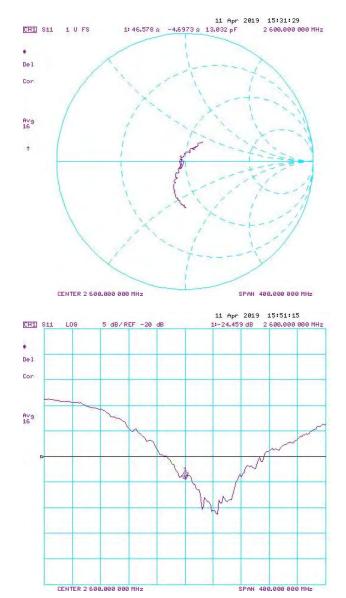
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1004	04/11/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2019	1.149	5.59	5.51	-1.43%	2.51	2.47	-1.59%	47.7	48.5	0.8	-5.7	-5.1	0.6	-24.1	-25.6	-6.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2019	1.149	5.48	5.65	3.10%	2.47	2.48	0.40%	46	46.6	0.6	-3.8	-4.7	0.9	-24.9	-24.5	1.80%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1004	04/11/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2600V2 – SN: 1004	04/11/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1004	04/11/2019	Page 4 of 4

Certification of Calibration

Object

D2600V2 - SN: 1004

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

4/11/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

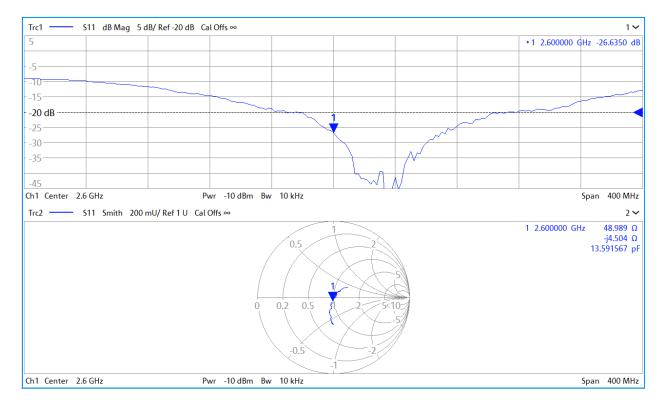
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7552
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/12/2019	Annual	9/12/2020	1449
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

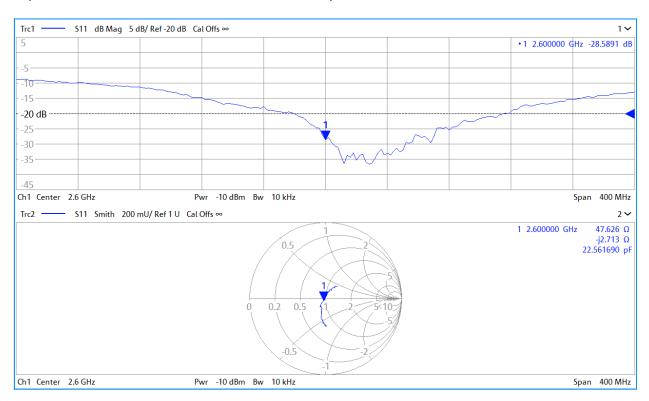
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1004	04/11/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2020	1.419	5.59	5.78	3.40%	2.51	2.59	3.19%	47.7	49.0	1.3	-5.7	-4.5	1.2	-24.1	-26.6	-10.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10-) (10-	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
4/11/2018	4/11/2020	1.149	5.48	5.16	-5.84%	2.47	2.36	-4.45%	46	47.6	1.6	-3.8	-2.7	1.1	-24.9	-28.6	-14.80%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1004	04/11/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D2600V2 – SN: 1004	04/11/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1004	04/11/2020	Page 4 of 4

Calibration Laboratory of

PC Test

Client

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2600V2-1064_Jun19

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:10	164	
00,000	D2000 V2 - 011. 11		ne na na kaka kaka kana kana kana kana k
			ANV
Calibration procedure(s)	QA CAL-05.v11		BNV BNV 181/2019
candiation procedure(s)			
	Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
			RN
			··· 06-70-30
Calibration date:	June 14, 2019		
	·····		
This calibration partificate documer	to the tracebility to not	and standards, which realize the physical up	ite of monourements (CI)
		onal standards, which realize the physical ur	
The measurements and the uncertain	anties with confidence p	robability are given on the following pages ar	id are part of the certificate.
l			
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
		00 Apr 10 (No. DAL+001_Apr 0)	Αμ-20
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06			In house check: Oct-20
0	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	•	–	
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			Miller
Approved by:	Katja Pokovic	Technical Manager	Clint
			/tent
			Issued: June 20, 2019
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	,
			•

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

,

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 6.9 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 4.4 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

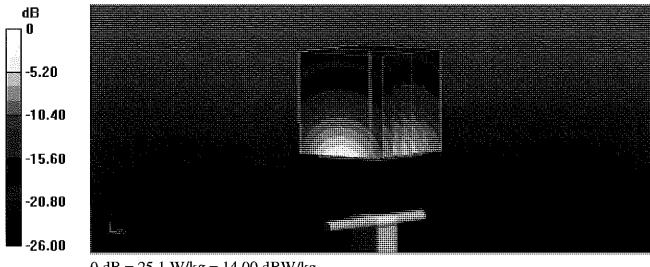
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.03 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 120.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.2 W/kg **SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg** Maximum value of SAR (measured) = 25.1 W/kg

Impedance Measurement Plot for Head TSL

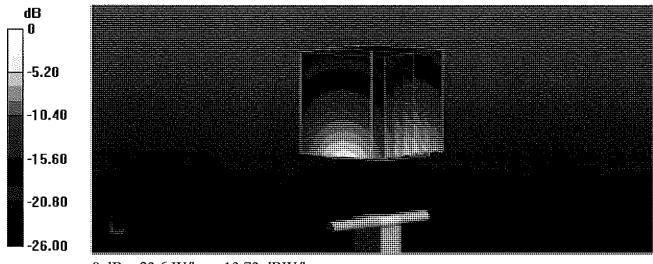
File View	<u>C</u> hannel Sw <u>e</u> ep	o Ca <u>l</u> ibration <u>T</u>	race <u>S</u> cale I	M <u>a</u> rker S <u>y</u> stem	<u>W</u> indow <u>H</u> elp		
			X		A)0000 GHz 8.8630 pF)0000 GHz	49.847 Ω -6.9066 Ω 69.025 mU -87.316 °
Chi:S	Ch 1 Avg = 20 Start 2.40000 GHz						Stop 2.80000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -35.00 -40.00 -Ch1: S	Ch 1 Avg = 20 Start 2,40000 GHz =						-23.220 dB
Status	CH 1: 511	C	1-Port	Avg=20 [)elay		LCL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.6 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>v</u> stem <u>W</u> ir	ndow <u>H</u>	elp		
		Ch 1 Avg =	20						600000 GHz 14.009 pF 600000 GHz	-4.3 56.9	645 Ω 1696 Ω 44 mU 24.93 °
	Ch1: St	art 2.40000								Stop 2.8	80000 GHz
10. 5.0		ALE AND					> 1;	2.	\$00000 dHz	-74 (391 dB
-30 -35 -40	00 00. 00. 00. 00. 00.	<u>Ch 1 Avg =</u> art 2.40000	20 3Hz —								

Certification of Calibration

Object

D2600V2 - SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

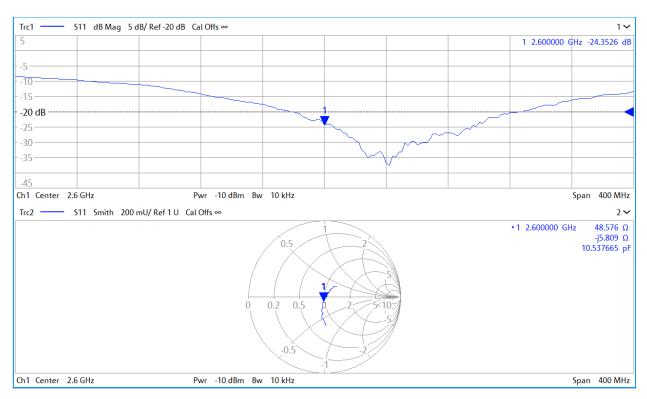
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	7/18/2019	Annual	7/18/2020	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Test Engineer	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Managing Director	ROK

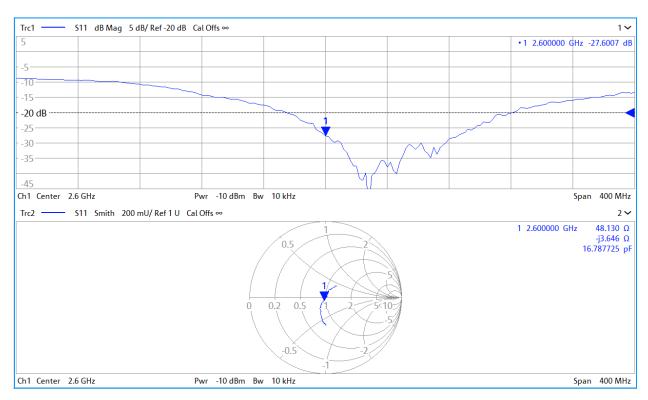
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1064	6/14/2020	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.81	5.68	-2.24%	2.6	2.56	-1.54%	49.8	48.6	1.2	-6.9	-5.8	1.1	-23.2	-24.4	-5.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
6/14/2019	6/14/2020	1.151	5.56	5.43	-2.34%	2.5	2.39	-4.40%	46.6	48.1	1.5	-4.4	-3.6	0.8	-24.9	-27.6	-10.80%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1064	6/14/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4	
D2600V2 – SN: 1064	6/14/2020	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2600V2 – SN: 1064	6/14/2020	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

.

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

.

. •

Client PC Test

Certificate No: D3500V2-1059_Jan18

S

C

CALIBRATION CERTIFICATE

Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: January 11, 2018 Calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration OHIZT Power meter NRP SN: 104778 94-Apr-17 (No. 217-02521/02522) Apr-18
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity <70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration OI 1124
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration (11/2/2 Power meter NRP SN: 104778 04-Apr-17 (No. 217-0521) Apr-18
Calibration Equipment used (M&TE critical for calibration) HAC Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NBP SN: 104778 04-Apr-17 (No. 217-052) (M2522) Apr-18
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration
Power meter NBP SN: 104778 04-Apr-77 (No. 217-0521/02523) Apr-19
Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18
Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18
Reference 20 dB Atlenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18
Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18
Reference Probe EX3DV4 SN: 3503 30-Dec-17 (No. EX3-3503 Dec17) Dec-18
DAE4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18
Secondary Standards ID # Check Date (in house) Scheduled Check
Power meter EPM-442A SN: GB37460704 07-Oct-15 (in house check Oct-16) In house check: Oct-18
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18
Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18
Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18
Name Function Signature
Calibrated by: Michael Weber Laboratory Technician
Approved by: Kalja Pokovic Technical Manager
Issued: January 16, 2018 This calibration certificate shalf not be reproduced except in full without written approval of the laboratory.

Certificate No: D3500V2-1059_Jan18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	2.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	64.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.3	3.31 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.0 ± 6 %	3.32 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	65.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω - 7.1 jΩ
Return Loss	- 22.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.4 Ω - 4.5 jΩ
Return Loss	- 25.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.136 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

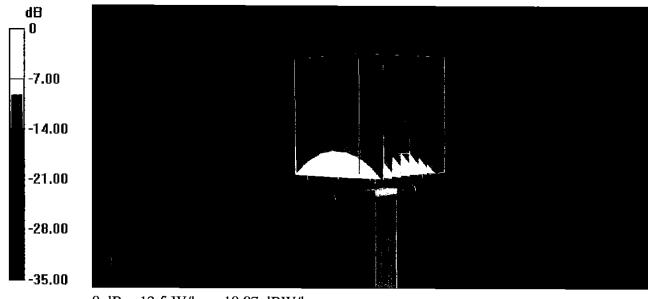
Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 20, 2017

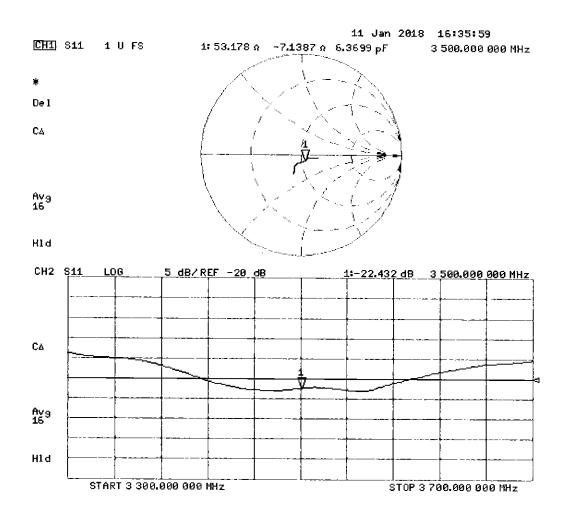
DASY5 Validation Report for Head TSL

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.91$ S/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.8, 7.8, 7.8); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

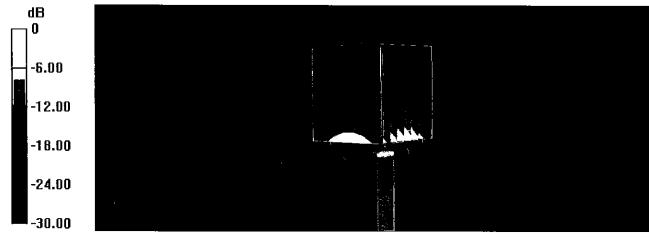
Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.59 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

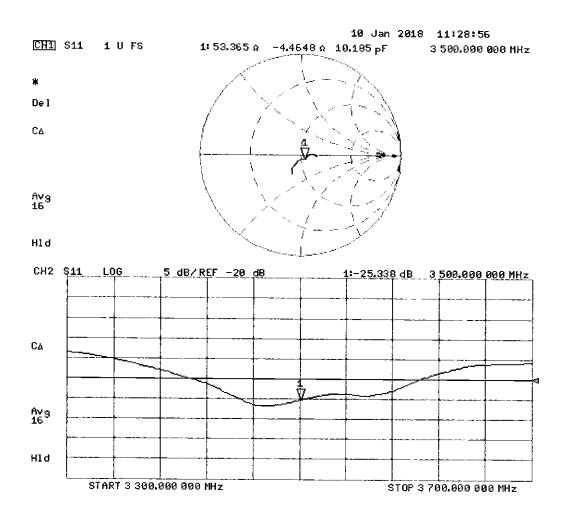
DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1059

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 3.32$ S/m; $\varepsilon_r = 50$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.43, 7.43, 7.43); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.18 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.55 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D3500V2 - SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

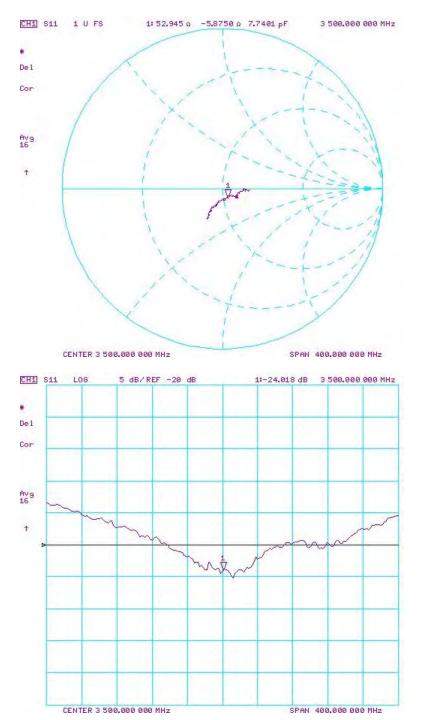
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2019	US39170122		
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	2/14/2018	Annual	2/14/2019	3914
SPEAG	EX3DV4	SAR Probe	8/24/2018	Annual	8/24/2019	3949

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

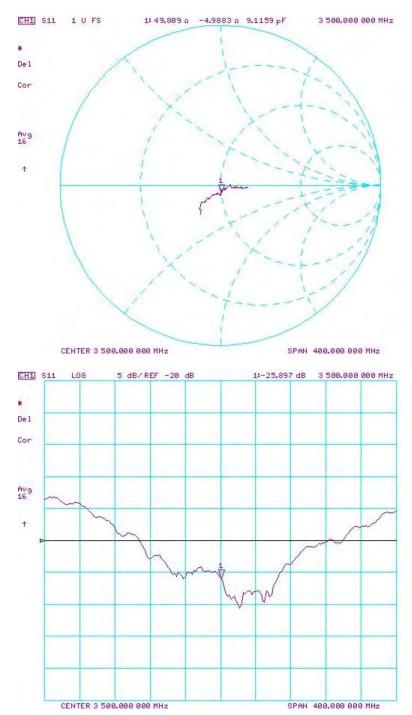
Object:	Date Issued:	Page 1 of 5
D3500V2 – SN: 1059	01/11/2019	Page 1 of 5

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
1/11/2018	1/16/2019	1.136	6.46	6.23	-3.56%	2.44	2.34	-4.10%	53.2	52.9	0.3	-7.1	-5.9	1.2	-22.4	-24	-7.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9()	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/16/2019	1.136	6.51	6	-7.83%	2.42	2.26	-6.61%	53.4	49.8	3.6	-4.5	-5	0.5	-25.3	-25.9	-2.40%	PASS

Object:	Date Issued:	Page 2 of 5
D3500V2 – SN: 1059	01/11/2019	Faye 2 01 5

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 5
D3500V2 – SN: 1059	01/11/2019	Fage 5 01 5

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 5
D3500V2 – SN: 1059	01/11/2019	Faye 4 01 5

Certification of Calibration

Object

D3500V2 - SN: 1059

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

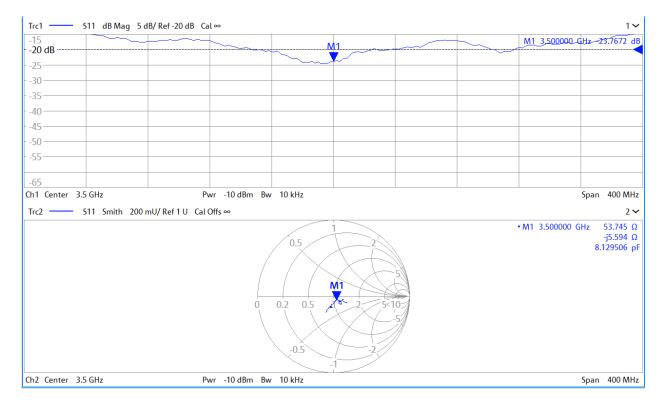
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

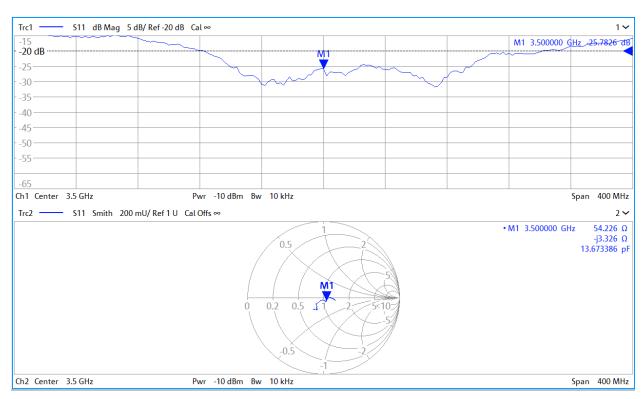
Object:	Date Issued:	Page 1 of 4
D3500V2 – SN: 1059	01/11/2020	raye 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.46	6.73	4.18%	2.44	2.56	4.92%	53.2	53.7	0.5	-7.1	-5.6	1.5	-22.4	-23.8	-6.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.136	6.51	6.53	0.31%	2.42	2.4	-0.83%	53.4	54.2	0.8	-4.5	-3.3	1.2	-25.3	-25.8	-1.90%	PASS

Object:	Date Issued:	Dogo 2 of 4
D3500V2 – SN: 1059	01/11/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dage 2 of 4
D3500V2 – SN: 1059	01/11/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Daga 4 of 4
D3500V2 – SN: 1059	01/11/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étaionnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ALIBRATION C	ERTIFICATE		
zject	D3700V2 - SN:10	18	:
allbration procedure(s)	QA CAL-22.v2 Calibration process	iure for dipole validation kits betw	een 3-6 GHz
alibration date:	January 11, 2018		BN 01-26-2018
he measurements and the unc	entainties with confidence p	onal standards, which realize the physical unit robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C	1 are part of the centricate. 02/06/2 02/06/2
Calibration Equipment used (M8			01/12/
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18 ·
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2/06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
DAE4			Scheduled Check
	lin #	Check Date (in house)	
Secondary Standards	ID #	Check Date (in house) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Secondary Standards Power mater EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: GB37480704 SN: US37292783	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: GB37480704 SN: US37292783 SN: MY41092317	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18
	SN: GB37480704 SN: US37292783	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Certificate No; D3700V2-1018_Jan18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	3.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	51.0	3.55 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.7 ± 6 %	3.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	6.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	64.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω - 8.3 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.5 Ω - 6.3 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

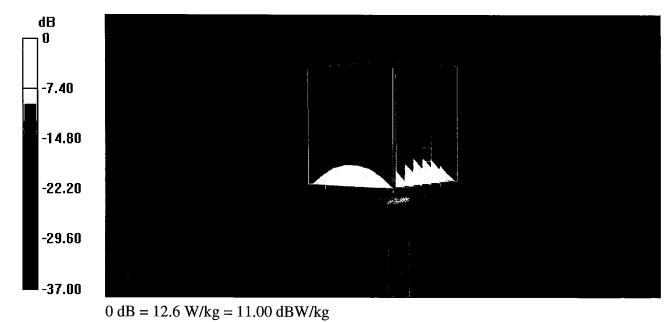
Additional EUT Data

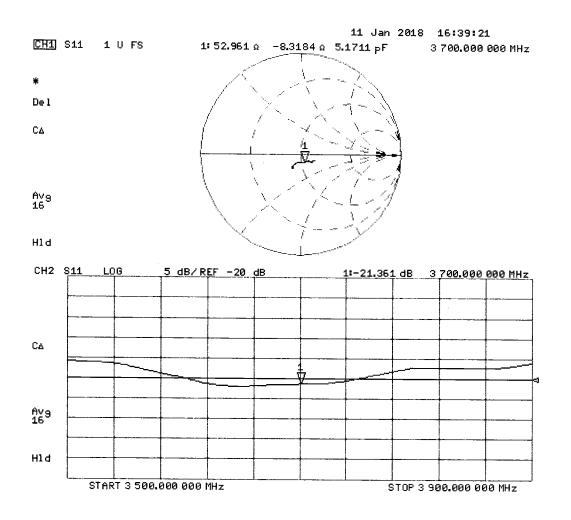
Manufactured by	SPEAG
Manufactured on	December 18, 2015

DASY5 Validation Report for Head TSL

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1018


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.07$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.5, 7.5, 7.5); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

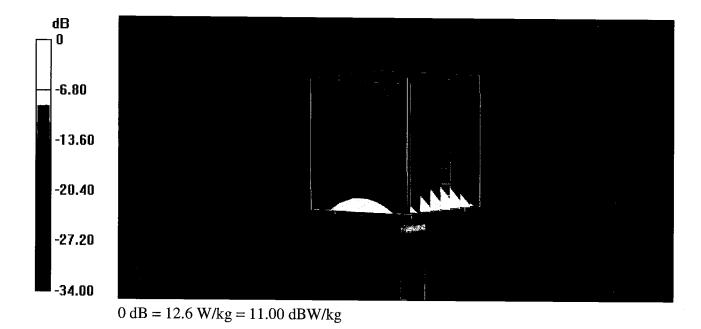
Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.54 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 12.6 W/kg

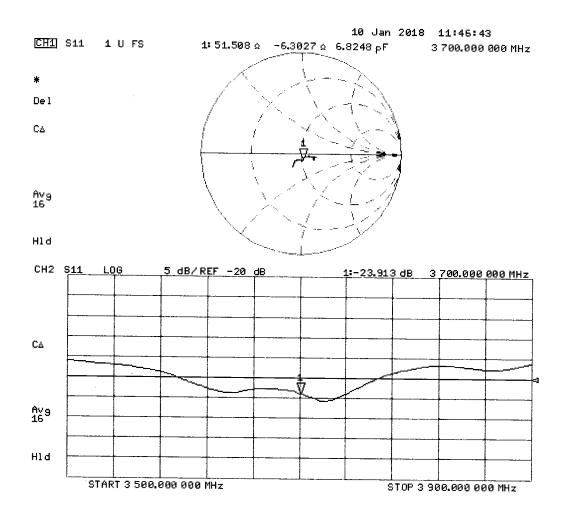
DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1018


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.53$ S/m; $\epsilon_r = 49.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.28, 7.28, 7.28); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 64.16 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 6.46 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 12.6 W/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D3700V2 - SN: 1018

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 3500 MHz.

Calibration Equipment used:

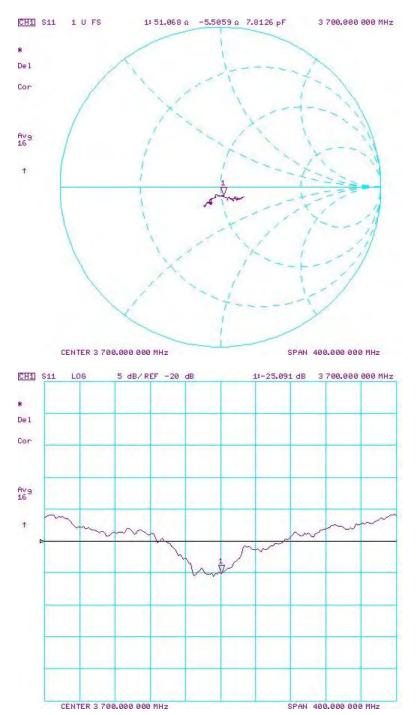
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	2/14/2018	Annual	2/14/2019	3914
SPEAG	EX3DV4	SAR Probe	8/24/2018	Annual	8/24/2019	3949

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

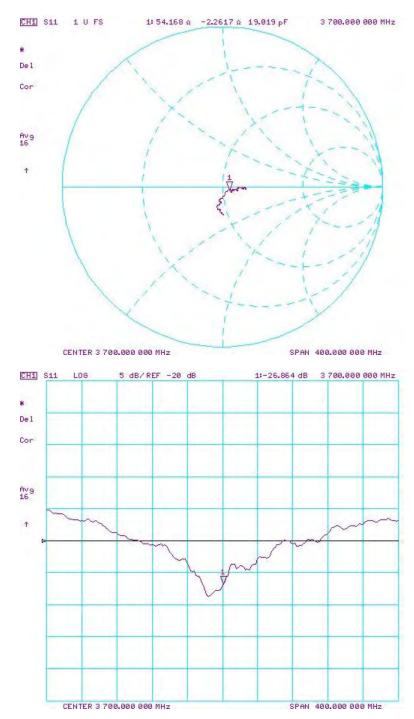
Object:	Date Issued:	Page 1 of 4
D3700V2 – SN: 1018	01/11/2019	raye 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2019	1.144	6.58	6.22	-5.47%	2.42	2.27	-6.20%	53	51.1	1.9	-8.3	-5.5	2.8	-21.4	-25.1	-17.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2019	1.144	6.43	6.08	-5.44%	2.31	2.21	-4.33%	51.5	54.2	2.7	-6.3	-2.3	4	-23.9	-26.9	-12.40%	PASS

Object:	Date Issued:	Daga 2 of 4
D3700V2 – SN: 1018	01/11/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D3700V2 – SN: 1018	01/11/2019	Page 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D3700V2 – SN: 1018	01/11/2019	Faye 4 01 4

Certification of Calibration

Object

D3700V2 - SN: 1018

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/11/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 3700 MHz.

Calibration Equipment used:

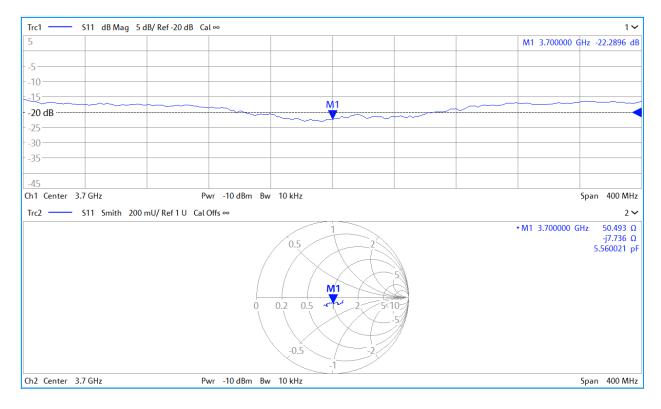
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

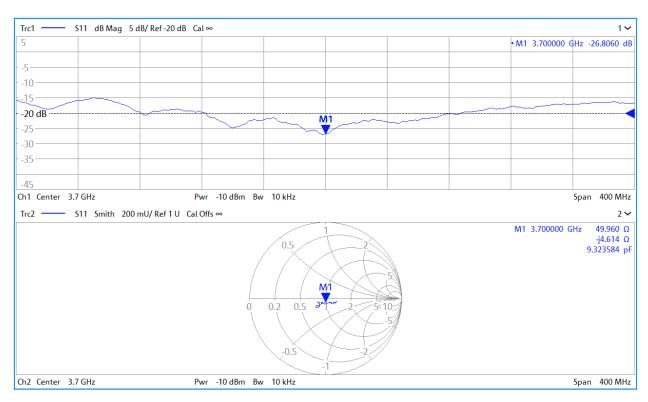
Object:	Date Issued:	Page 1 of 4	
D3700V2 – SN: 1018	01/11/2020	Fage 1014	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.144	6.58	7.08	7.60%	2.42	2.6	7.44%	53	50.5	2.5	-8.3	-7.7	0.6	-21.4	-22.3	-4.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm			(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/11/2018	1/11/2020	1.144	6.43	6.6	2.64%	2.31	2.36	2.16%	51.5	50	1.5	-6.3	-4.6	1.7	-23.9	-26.8	-12.20%	PASS

Object:	Date Issued:	Dogo 2 of 4
D3700V2 – SN: 1018	01/11/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D3700V2 – SN: 1018	01/11/2020	Faye 5 01 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D3700V2 – SN: 1018	01/11/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 6004 Zurich, Switzerland

S

Schweizertscher Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etaionnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D5GHzV2-1057_Jan18

Objeci	D5GHzV2 - SN:1	057	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits be	tween 3-6 GHz
			RN
Calibration date:	January 16, 2018	3	BN 01-25-2018
This calibration certificate docum	onis the traceshilling to not	ional standards, which realize the physical ur	
The measurements and the unce	rtaintles with confidence p	nonal standards, which realize the physical up probability are given on the following pages a	
Au calidrations have deen conque	xed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	³ C and humidity < 70% BN
Calibration Equipment used (M&1	E critical for calibration)		nilití
	1.		
Primary Standards	[D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2/06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-16
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Schedulec Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
	Leif Kivsner	Laboratory Technician	Sollyn
Calibrated by:		•	
Callbrated by: Approved by:	Katja Pokovic	Technical Manager	66KS

Certificate No: D5GHzV2-1057_Jan18

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service sulsse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.55 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)
	1	

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.0 Ω - 5.5 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.0 jΩ
Return Loss	- 31.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 6.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω - 3.9 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 1.6 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.6 Ω + 1.1 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	51.8 Ω - 0.4 jΩ
Return Loss	- 34.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.203 ns	Electrical Delay (one direction)	1.203 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5200 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 20.3 % (k=2)
CAD successed over 10 cm ³ (10 s) of Head TCI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.35 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.76 W/kg

Measurement Conditions (f=5800 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 $ m cm^3$ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 20.3 % (k=2)
SAB averaged over 10 cm ³ (10 g) of Head TSI	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.89 W/kg

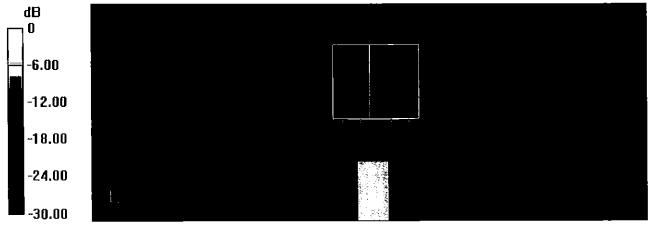
DASY5 Validation Report for Head TSL

Date: 11.01.2018

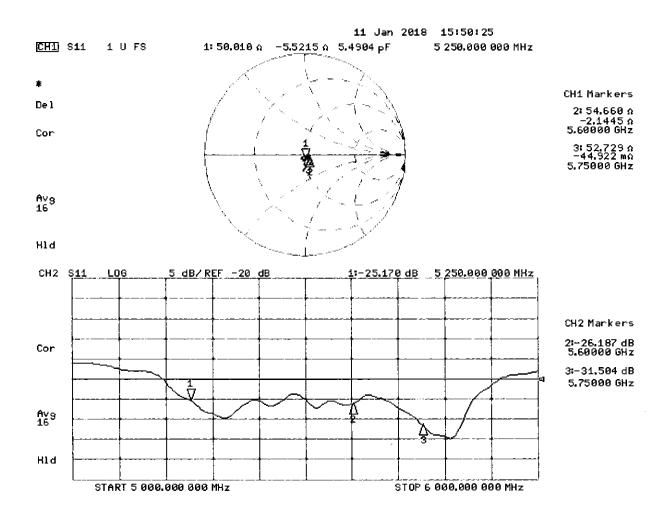
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.54 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.77 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.93 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

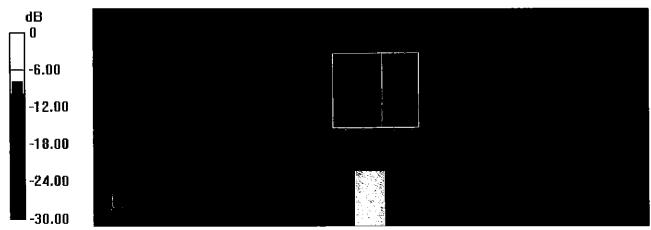
Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.41$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

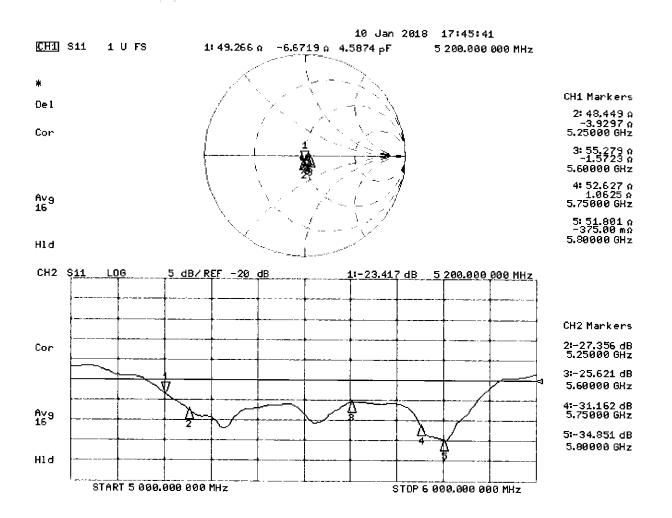
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.05 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.53 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.09 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.45 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.14 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.59$ S/m; $\epsilon r = 36.5$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 5.28$ S/m; $\epsilon r = 35.4$; $\rho = 1000$ kg/m3 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

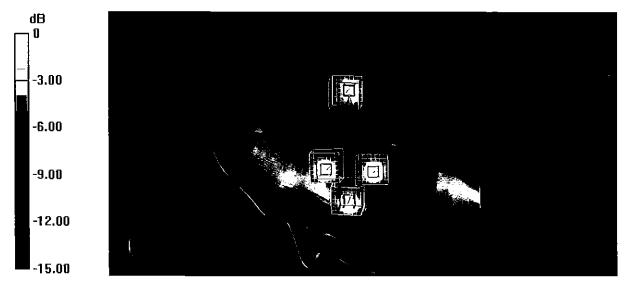
dz=1.4mm Reference Value = 72.99 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.7 W/kg

SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 73.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 21.9 W/kg

SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.7 W/kg SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kgMaximum value of SAR (measured) = 23.0 W/kg

SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm Reference Value = 72.48 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.3 W/kg

SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.4 W/kgSAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kgMaximum value of SAR (measured) = 21.8 W/kg

SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 11.1 W/kg

SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 21.2 W/kg SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 - SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/16/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

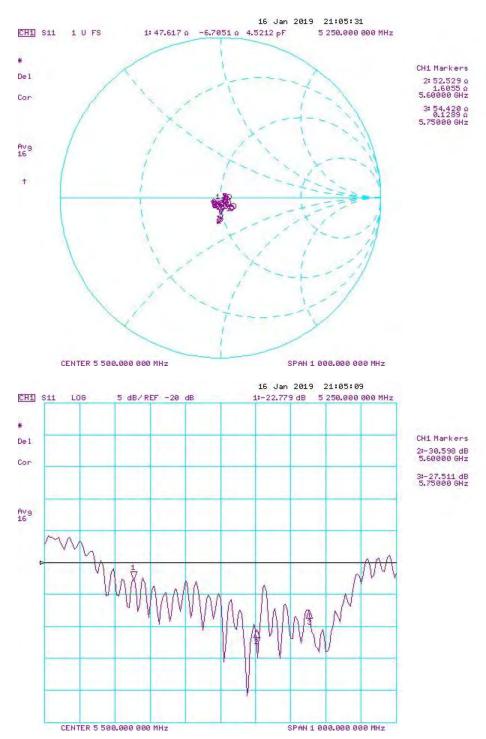
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

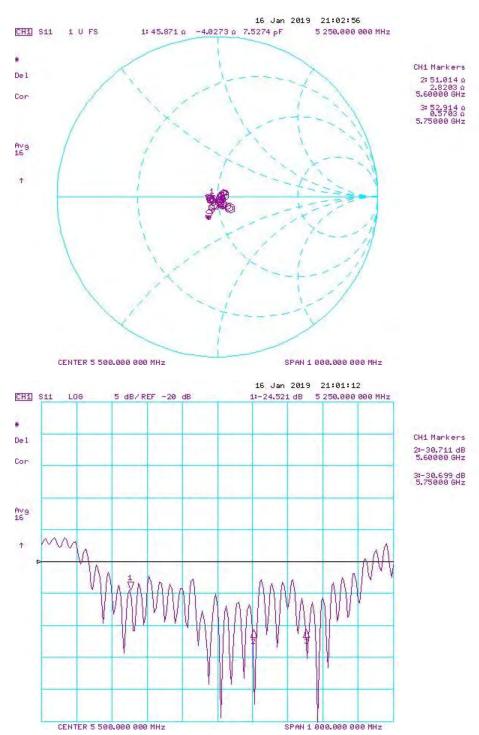
Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1057	01/16/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)		Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2019	1.203	3.96	3.63	-8.33%	1.14	1.04	-8.77%	50	47.6	2.4	-5.5	-6.7	1.2	-25.2	-22.8	9.60%	PASS
5600	1/16/2018	1/16/2019	1.203	4.205	3.84	-8.68%	1.2	1.09	-9.17%	54.7	52.5	2.2	-2.1	1.6	3.7	-26.2	-30.6	-16.80%	PASS
5750	1/16/2018	1/16/2019	1.203	4.025	3.76	-6.58%	1.15	1.07	-6.96%	52.7	54.4	1.7	0	0.1	0.1	-31.5	-27.5	12.70%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2019	1.203	3.795	3.73	-1.71%	1.06	1.03	-2.37%	48.4	45.9	2.5	-3.9	-4	0.1	-27.4	-24.5	10.50%	PASS
5600	1/16/2018	1/16/2019	1.203	3.995	4.06	1.63%	1.12	1.12	0.45%	55.3	51	4.3	-1.6	2.8	4.4	-25.6	-30.7	-20.00%	PASS
5750	1/16/2018	1/16/2019	1.203	3.835	3.65	-4.82%	1.06	1.02	-3.77%	52.6	52.9	0.3	1.1	0.6	0.5	-31.2	-30.7	1.60%	PASS

Object:	Date Issued:	Page 2 of 4	
D5GHzV2 – SN: 1057	01/16/2019	Page 2 of 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D5GHzV2 – SN: 1057	01/16/2019	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D5GHzV2 – SN: 1057	01/16/2019	Page 4 of 4	

Certification of Calibration

Object

D5GHzV2 – SN: 1057

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/16/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	EX3DV4	SAR Probe	6/19/2019	Annual	6/19/2020	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/20/2019	Annual	6/20/2020	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	728

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

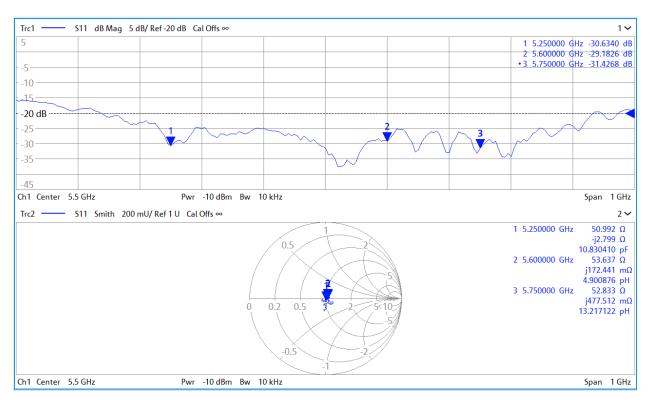
Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1057	01/16/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2020	1.203	3.96	3.72	-6.06%	1.14	1.05	-7.89%	50	46.9	3.1	-5.5	-6.3	0.8	-25.2	-22.8	9.50%	PASS
5600	1/16/2018	1/16/2020	1.203	4.205	3.91	-7.02%	1.2	1.11	-7.50%	54.7	52.9	1.8	-2.1	-1.4	0.7	-26.2	-30.2	-15.20%	PASS
5750	1/16/2018	1/16/2020	1.203	4.025	3.72	-7.58%	1.15	1.05	-8.70%	52.7	52.4	0.4	0	-2.3	2.3	-31.5	-29.8	5.30%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	1/16/2018	1/16/2020	1.203	3.795	3.75	-1.19%	1.06	1.04	-1.42%	48.4	51	2.6	-3.9	-2.8	1.1	-27.4	-30.6	-11.80%	PASS
5600	1/16/2018	1/16/2020	1.203	3.995	3.98	-0.38%	1.12	1.1	-1.35%	55.3	53.6	1.7	-1.6	0.2	1.8	-25.6	-29.2	-14.00%	PASS
5750	1/16/2018	1/16/2020	1.203	3.835	3.87	0.91%	1.06	1.06	0.00%	52.6	52.8	0.2	1.1	0.5	0.6	-31.2	-31.4	-0.20%	PASS

Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1057	01/16/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D5GHzV2 – SN: 1057	01/16/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1057	01/16/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1003_Mar20

PC Test Client

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02895) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	4 1301 1
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	4 1301 1
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	<u>+</u> 13° 1
Calibration Equipment used (M&TE critical for calibration)Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477803-Apr-19 (No. 217-02892/02893)Apr-20Power sensor NRP-Z91SN: 10324403-Apr-19 (No. 217-02892)Apr-20Power sensor NRP-Z91SN: 10324503-Apr-19 (No. 217-02893)Apr-20Reference 20 dB AttenuatorSN: 5058 (20k)04-Apr-19 (No. 217-02894)Apr-20Type-N mismatch combinationSN: 5047.2 / 0632704-Apr-19 (No. 217-02895)Apr-20	
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 04-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Reference 20 dB Attenuator SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Fype-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 ype-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
ype-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20	
Inference Probe EX3DV4 SN: 7349 31-Dec-19 (No. EX3-7349_Dec19) Dec-20	
DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20	
Secondary Standards ID # Check Date (in house) Scheduled Check	
Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20	
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20	
Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20	
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20	
Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20	
Name Function Signature	
Calibrated by: Jeton Kastrati Laboratory Technician	
Approved by: Katja Pokovic Technical Manager	
Juny	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	······

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.5 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.78 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.77 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54. 7 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		te da m ta

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	······································
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.67 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω - 0.1 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω - 2.4 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.043 ns
_		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

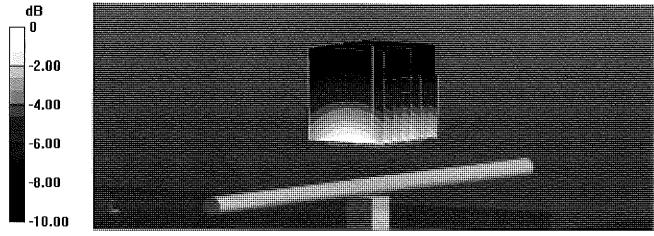
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 16.03.2020

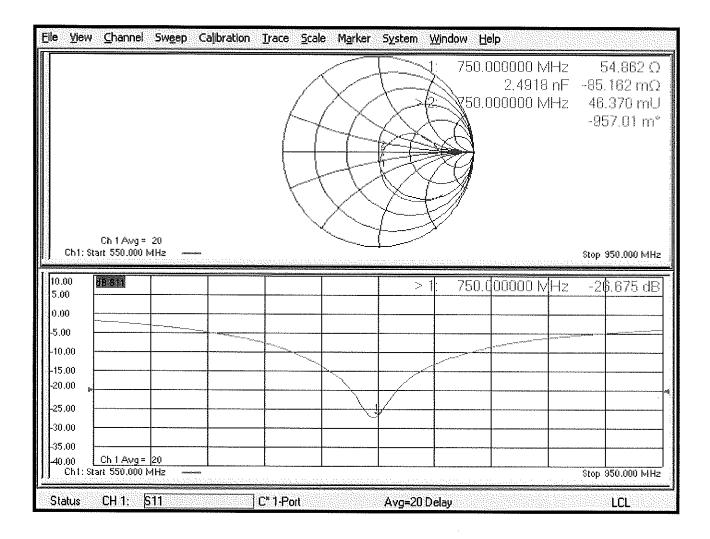
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\varepsilon_r = 42.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.72 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.27 W/kg **SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.43 W/kg** Smallest distance from peaks to all points 3 dB below = 16.5 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 2.90 W/kg

0 dB = 2.90 W/kg = 4.62 dBW/kg

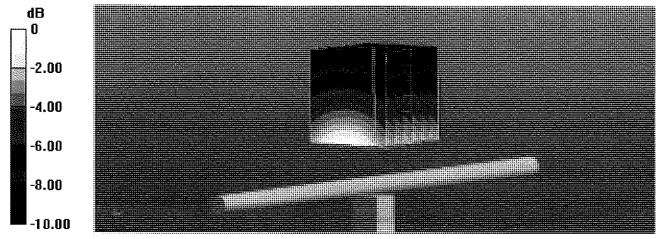
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2020

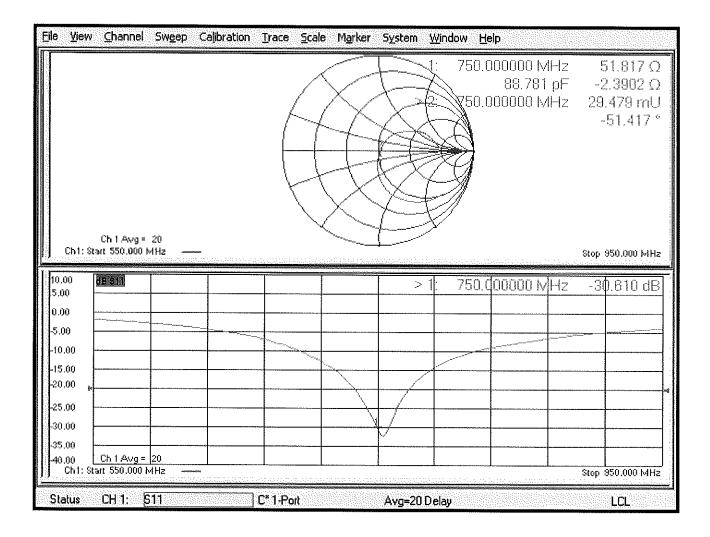
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.96 S/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.60 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.23 W/kg **SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg** Smallest distance from peaks to all points 3 dB below = 21.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client PC Test		e e e e e e e e e e e e e e e e e e e	Certificate No: D835V2-4d047_Mar19
CALIBRATIONIC	Enteloat		
Object	D835V2 - SN 4d	047	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validatio	n Sources between 0:7-3 GHz
Calibration date:	March 13, 2019		BN 04-12-2019
This calibration certificate docume	nts the traceability to nat	ional standards, which realize th	The physical units of measurements (SI). $04-12-20.19$ BNV Extends by BNV Extends BNV
		· · ·	wing pages and are part of the certificate. $'$ ture (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&Ti		ту тасниу, елиногипент тепрега	ure (22 ± 5) O and Humany < 70%.
Primary Standards	1D#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_D	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_0	Oct-19
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check F	
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check C	,
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check O	
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check C	
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check C	•
	Name	Function	Signature
Calibrated by:	Manu:Seitz	Laboratory Tech	
Approved by:	Katja Poković	Technical Manac	
			issued: March 13, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	····
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)
		· · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

Electi	, ,	1.387 ns
house and house the	······································	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

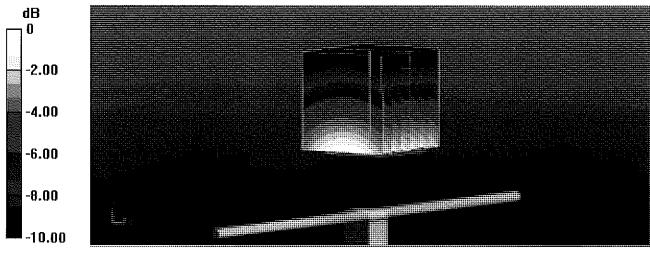
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 13.03.2019

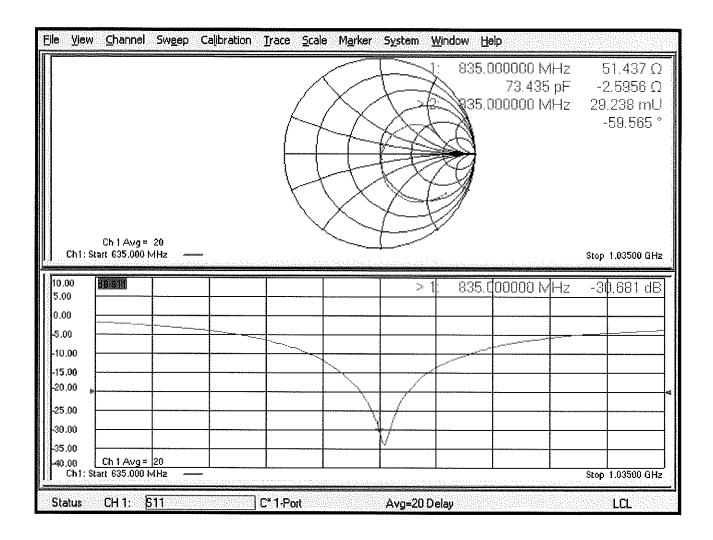
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

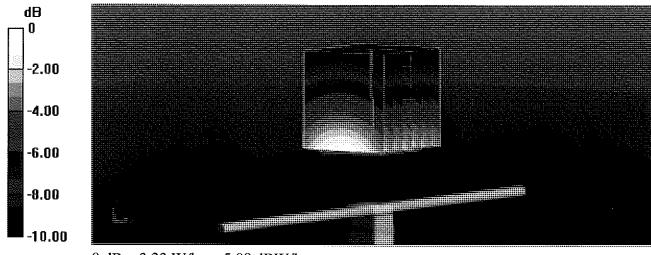
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

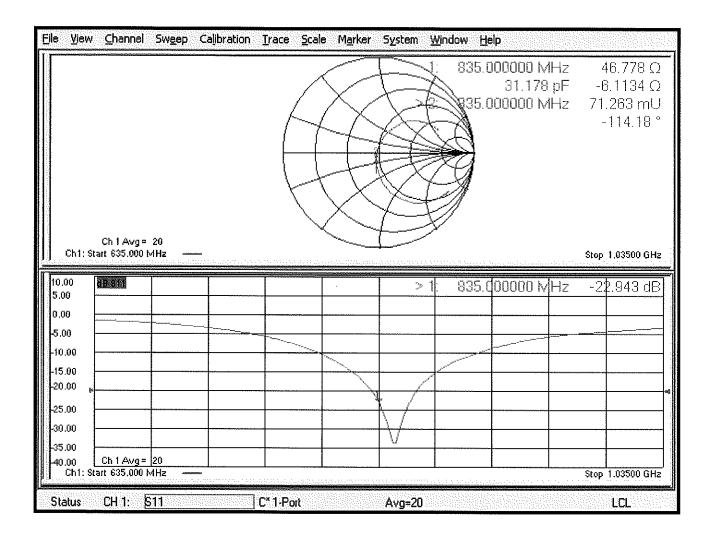
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Certification of Calibration

Object

D835V2 - SN: 4d047

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 3/13/2020

Description:

SAR Validation Dipole at 835 MHz

Calibration Equipment used:

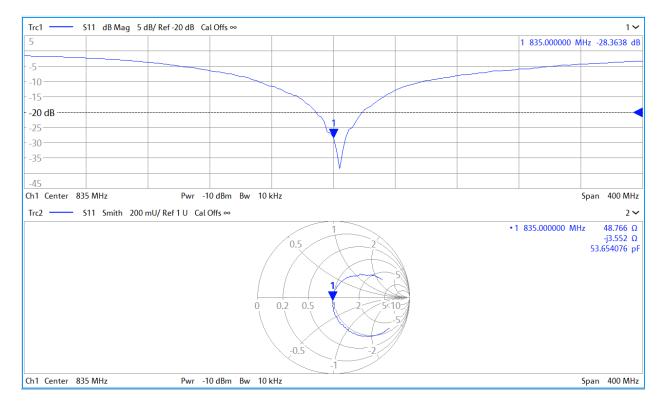
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	7488
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1530

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

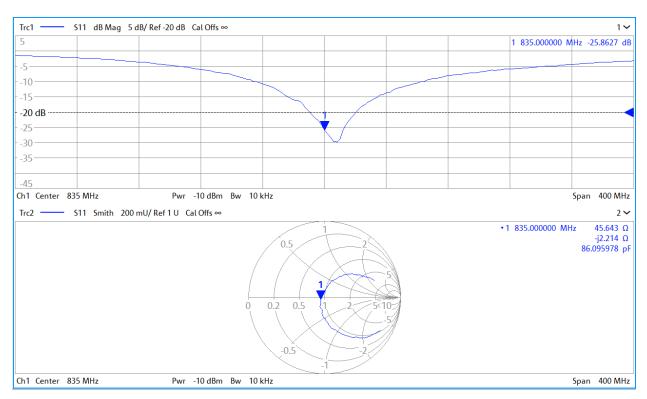
Object:	Date Issued:	Page 1 of 4
D835V2 – SN: 4d047	03/13/2020	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.884	1.87	-0.74%	1.226	1.22	-0.49%	51.4	48.8	2.6	-2.6	-3.6	1.0	-30.7	-28.4	7.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) 1000-0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
3/13/2019	3/13/2020	1.387	1.894	1.91	0.84%	1.254	1.26	0.48%	46.8	45.6	1.2	-6.1	-2.2	3.9	-22.9	-25.9	-12.90%	PASS

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d047	03/13/2020	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dege 4 of 4
D835V2 – SN: 4d047	03/13/2020	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

71612018

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates Certificate No: D1765V2-1008 May18 Client PC Test GALIBRATION CERTIFICATE Object D1765V2 - SN.1008 QA CAL-05 v10 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz

May 23, 2018

Calibration date:

BNV 05/2012019 BNV 05/2012020 Extended This catibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Od-18
Secondary Standards	1D#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8461A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Elaboratory Technician	Æ
			. The second
Approved by:	Katia Pokovic	Technical Manager	- AND

issued: May 23, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1765V2-1008_May18

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	······
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.71 W/kg
o/a mouodicu		in r tonig

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom SAM Head Phantom For usage with cSAR3DV	2-R/L
---	-------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.95 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.2 W/kg ± 17.5 % (k=2)
SAB averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

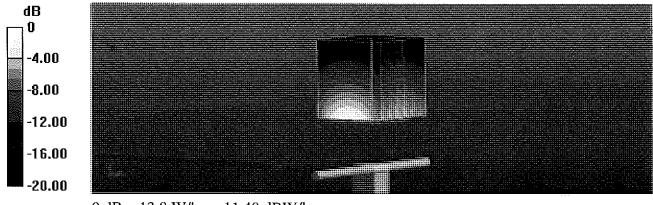
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7 .12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.01 W/kg

DASY5 Validation Report for Head TSL

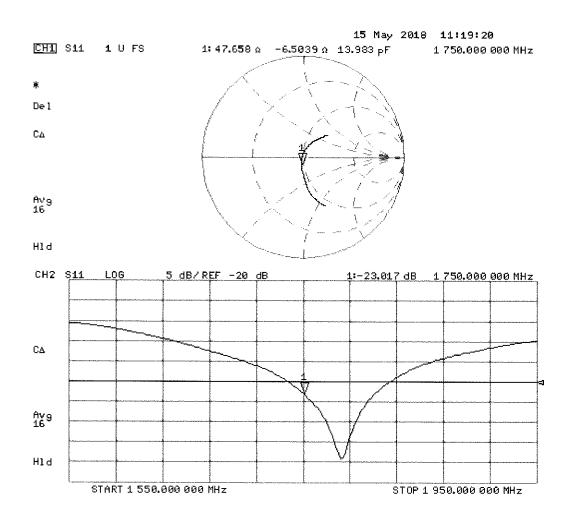
Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ _r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

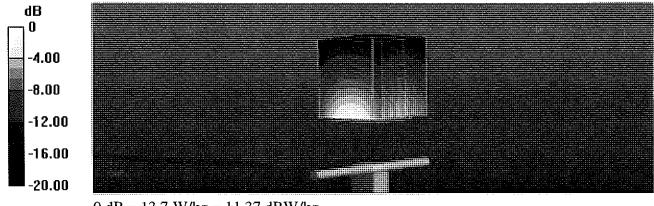
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg