

Note: As per the manufacturer, *Reserve_power_margin* = 3dB. Based on Table 8-1, EFS *Plimit* = 21.4 dBm (*Pmax* = 20.5 dBm) for LTE B48 DSI = 3 (60s window), and EFS *Plimit* = 18.0 dBm for LTE B25 DSI = 3 (100s window). The conducted power plot shows expected transitions in Tx power at ~185s (60s-to-100s transition) and at ~290s (100s-to-60s transition) in order to maintain total time-averaged RF exposure compliance across time windows, as show in next plot.

Plot 2: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the Tx power of device to obtain 60s-averaged normalized SAR in LTE B48 as shown in black curve. Similarly, equation (7b) is used to obtain 100s-averaged normalized SAR in LTE B25 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

	(W/kg)			
FCC normalized total exposure limit	1.0			
Max time averaged normalized SAR (green curve)	0.735			
Validated				

FCC ID: A3LSMN981U	PCTEST [*] Proud to be part of ® element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 56 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 56 of 78
© 2020 PCTEST				REV 1.

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of cor copying and thereof, please contact INFO@PCTEST.COM.

04/06/2020

Plot Notes: Maximum power is requested by callbox for the entire duration of the test, with tech/band switches from 60s-to-100s window at ~185 time stamp, and from 100s-to-60s window at ~290s time stamp. Smart Transmit controls the Tx power during these time-window switches to ensure total time-averaged RF exposure, i.e., sum of black and orange curves given by equation (7c), is always compliant. In time-window switch test, at all times the total time-averaged normalized RF exposure (green curve) should not exceed normalized SAR_design_target + 1dB device uncertainty. In this test, with a maximum normalized SAR of 0.735 being ≤ 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in time-window switch scenario.

9.6 Switch in SAR exposure test results

This test was conducted with callbox requesting maximum power, and with the EUT in LTE B5 + Sub6 NR Band n66 call. Following procedure detailed in Section 4.3.7 and Appendix E.2, and using the measurement setup shown in Figure 6-1(c) since LTE and Sub6 NR are sharing the same antenna port, the SAR exposure switch measurement is performed with the EUT in various SAR exposure scenarios, i.e., in SAR_{sub6NR} only scenario (t =0s ~120s), SAR_{su6NR} + SAR_{LTE} scenario (t =120s ~ 240s) and SAR_{LTE} only scenario (t > 240s).

Plot 2: All the conducted Tx power measurement results were converted into time-averaged normalized SAR values using Equation (7a), (7b) and (7c), and plotted below to demonstrate that the time-averaged normalized SAR versus time does not exceed the FCC limit of 1 unit. Equation (7a) is used to convert the LTE Tx power of device to obtain 100s-averaged normalized SAR in LTE B5 as shown in black curve. Similarly, equation (7b) is used to obtain 100s-averaged normalized SAR in Sub6 NR n66 as shown in orange curve. Equation (7c) is used to obtain total time-averaged normalized SAR as shown in green curve (i.e., sum of black and orange curves).

FCC ID: A3LSMN981U	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 57 (70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 57 of 78
2020 PCTEST				REV 1.0 04/06/2020

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 5 / Tech: NR5G SUB6, Band n66

<u>Plot Notes:</u> Device starts predominantly in Sub6 NR SAR exposure scenario between 0s and 120s, and in LTE SAR + Sub6 NR SAR exposure scenario between 120s and 240s, and in predominantly in LTE SAR exposure scenario after t=240s. Here, Smart Transmit allocates a maximum of 75% of exposure margin (based on 3dB reserve margin setting) for Sub6 NR. This corresponds to a normalized 1gSAR exposure value = 75% * 1.110 W/kg measured SAR at Sub6 NR *Plimit* / 1.6W/kg limit = 0.520 ± 1dB device related uncertainty (see orange curve between 0s~120s). For predominantly LTE SAR exposure scenario, maximum normalized 1gSAR exposure should correspond to 100% exposure margin = 0.782 W/kg measured SAR at LTE *Plimit* / 1.6W/kg limit = 0.489 ± 1dB device related uncertainty (see black curve after t = 240s). Additionally, in SAR exposure switch test, at all times the total time-averaged normalized RF exposure (green curve) should not exceed normalized SAR of 0.646 being ≤ 0.79 (= 1.0/1.6 + 1dB device uncertainty), the above test result validated the continuity of power limiting in SAR exposure switch scenario.

FCC ID: A3LSMN981U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 50 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 58 of 78
© 2020 PCTEST				REV 1.

10 TEST CONFIGURATIONS (FREQ > 6 GHZ)

10.1 LTE + mmW NR transmission

Based on the selection criteria described in Section 4.2, the selections for LTE and mmW NR validation test are listed in Table 10-1. The radio configurations used in this test are listed in Table 10-2.

Transmission Scenario	Test	Technology and Band	mmW Beam				
Time-varying	1. Cond. & Rad. Power	LTE Band 2 and n261	Beam ID 19				
Tx power test 2.	meas. 2. PD meas.	LTE Band 2 and n260	Beam ID 26				
Switch in SAR 1 vs. PD	1. Cond. & Rad. Power meas.	LTE Band 2 and n261	Beam ID 19				
		LTE Band 2 and n260	Beam ID 26				
Beam switch test	1. Cond. & Rad. Power	LTE Band 2 and n261	Beam ID 19 to Beam ID 1				
	meas.	LTE Band 2 and n260	Beam ID 26 to Beam ID 1				

 Table 10-1

 Selections for LTE + mmW NR validation measurements

Table 10-2 Test configuration for LTE + mmW NR validation

Tech	Band	Antenna	DSI	Channel	Freq (MHz)	RB/RB Offset/Bandwidth (MHz)	Mode	UL Duty Cycle
LTE	2	А	3	18900	1880	1/0/20 MHz BW	QPSK	100%
mm\// NP	n261	К	-	2071821	27559.32	66/0/100 MHz BW	CP-OFDM, QPSK	75.6%*
mmvv NR	n260	К	-	2254147	38498.88	66/0/100 MHz BW	CP-OFDM, QPSK	75.6%*

10.2 mmW NR radiated power test results

To demonstrate the compliance, the conducted Tx power of LTE 2 in DSI = 3 is converted to 1gSAR exposure by applying the corresponding worst-case 1g SAR value at P_{limit} as reported in Part 1 report and listed in Table 8-2 of this report.

Similarly, following Step 4 in Section 5.3.1, radiated Tx power of mmW Band n261 and n260 for the beams tested is converted by applying the corresponding measured worst-case 4cm²PD values, and listed in below Table 10-3. Qualcomm Smart Transmit feature operates based on time-averaged Tx power reported on a per symbol basis, which is independent of modulation, channel and bandwidth (RBs), therefore the worst-case 4cm²PD was conducted with the EUT in FTM mode, with CW modulation and 100% duty cycle. cDASY6 system verification for power density measurement is provided in Section 12, and the associated SPEAG certificates are attached in Appendix E.

Both the worst-case 1gSAR and 4cm²PD values used in this section are listed in Table 10-3. The measured EIRP at *input.power.limit* for the beams tested in this section are also listed in Table 10-3.

FCC ID: A3LSMN981U		PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 50 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 59 01 78
				REV/1

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INPO@PCTEST.COM.

04/06/2020

Table 10-3Worst-case 1gSAR, 4cm² avg. PD and EIRP measured at *input.power.limit* for the selected
configurations

					Measured psPD at input.power.limit			
Tech	Band	Antenna	Beam ID	input.power.limit (dBm)	limit 4cm ² psPD (W/m ²) Test Position		Measured EIRP at input.power.limit (dBm)	
mm\// ND	n761	К	19	4.1	4.23	Left	14.77	
mmw NR N261	К	1	9.3	4.05	Left	11.21		
	К	26	4.6	4.67	Left	17.49		
IIIIIIV NK	n260	К	1	8.5**	5.01	Left	10.86	

Tech	Band	Antenna	DSI	Measured	Measured 1g SAR at Plin	
	Bunu		201	Plimit (dBm)	1g SAR (W/kq)	Test Position
LTE	2	A	3	18.58	1.04	Bottom

*The *input.power.limit* for n260 beam 1 is 9.9 dBm. However, the maximum input power of SDX55M for n261 CP-OFDM modulation is 8.5dBm for the test configuration used, thus, the *input.power.limit* was adjusted to 8.5 dBm in the static PD measurement via FTM for n260 beam 1 to obtain the maximum PD exposure for CP-OFDM modulation.

The 4cm² psPD distributions for the highest PD value per band, as listed in Table 10-3, are plotted below.

FCC ID: A3LSMN981U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 60 of 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 60 of 78
© 2020 PCTEST				REV 1.0 04/06/2020

Figure 10-1 4cm² psPD distribution measured at *input.power.limit* of 4.1 dBm on the left surface for n261 beam 19

Figure 10-2 4cm² psPD distribution measured at *input.power.limit* of 8.5 dBm on the left surface for n260 beam 1

FCC ID: A3LSMN981U	PCTEST* Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 61 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 61 01 76
© 2020 PCTEST				REV 1

REV 1.0 04/06/2020

11 RADIATED POWER TX CASES (FREQ > 6 GHZ)

11.1 Maximum Tx power test results for n261

This test was measured with LTE 2 and mmW Band n261 Beam ID 19, by following the detailed test procedure described in Section 5.3.1.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:

LTE and mmW Instantaneous and Time-averaged TX Power Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

Above time-averaged conducted Tx power for LTE 2 and radiated Tx power for mmW NR n261 beam 19 are converted into time-averaged 1gSAR and time-averaged 4cm²PD using Equation (2a) and (2b), which are divided by FCC 1gSAR limit of 1.6 W/kg and 4cm²PD limit of 10 W/m², respectively, to obtain normalized exposures versus time. Below plot shows (a) normalized time-averaged 1gSAR versus time, (b) normalized time-averaged 4cm²-avg.PD versus time, (c) sum of normalized time-averaged 1gSAR and normalized time-averaged 4cm²-avg.PD:

FCC ID: A3LSMN981U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dara (0) of 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 62 of 78
© 2020 PCTEST				REV 1.

REV 1.0 04/06/2020

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

<u>Plot notes:</u> As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 10-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 19 of (75% * 4.23 W/m²)/(10 W/m²) = 31.7% ± 2.1dB device related uncertainty (see green/orange curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of (100% * 1.04 W/kg)/(1.6 W/kg) = 65.0% ± 1dB design related uncertainty (see black curve approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized timeaveraged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMN981U	Proud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana (2) af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 63 of 78
© 2020 PCTEST				REV 1.

REV 1.0 04/06/2020

11.2 Maximum Tx power test results for n260

This test was measured with LTE 2 and mmW Band n260 Beam ID 26, by following the detailed test procedure described in Section 5.3.1.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:

Above time-averaged conducted Tx power for LTE 2 and radiated Tx power for mmW NR n260 beam 26 are converted into time-averaged 1gSAR and time-averaged 4cm²PD using Equation (2a) and (2b), which are divided by FCC 1gSAR limit of 1.6 W/kg and 4cm²PD limit of 10 W/m², respectively, to obtain normalized exposures versus time. Below plot shows (a) normalized time-averaged 1gSAR versus time, (b) normalized time-averaged 4cm²-avg.PD versus time, (c) sum of normalized time-averaged 1gSAR and normalized time-averaged 4cm²-avg.PD:

FCC ID: A3LSMN981U	Proud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 64 of 78
© 2020 PCTEST				REV 1.

REV 1.0 04/06/2020

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

<u>Plot notes:</u> As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on the 3dB reserve setting in Part 1 report). From Table 10-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 26 of $(75\% * 4.67 \text{ W/m}^2)/(10 \text{ W/m}^2) = 35.0\% \pm 2.1\text{dB}$ device related uncertainty (see green/orange curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually. Towards the end of test, LTE is the dominant contributor towards RF exposure, i.e., corresponding normalized 1gSAR exposure value of $(100\% * 1.04 \text{ W/kg})/(1.6 \text{ W/kg}) = 65.0\% \pm 1\text{dB}$ design related uncertainty (see black curve approaching this level towards end of the test).

As can be seen, the power limiting enforcement is effective and the total normalized timeaveraged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMN981U	PCTEST [®] Proud to be part of [®] element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 65 of 78
© 2020 PCTEST				REV 1.

REV 1.0 04/06/2020

11.3 Switch in SAR vs. PD exposure test results for n261

This test was measured with LTE Band 2 (DSI =3) and mmW Band n261 Beam ID 19 by following the detailed test procedure is described in Section 5.3.2.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:

From the above plot, it is predominantly instantaneous PD exposure between 0s ~ 120s, it is instantaneous SAR+PD exposure between 120s ~ 140s, it is predominantly instantaneous SAR exposure between 140s ~ 200s, and above 200s, it is predominantly instantaneous PD exposure.

Normalized time-averaged exposures for LTE (1gSAR) and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

FCC ID: A3LSMN981U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 60 of 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	/07/2020 Portable Handset		Page 66 of 78
2020 PCTEST				REV 1.0 04/06/2020

Plot notes: As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). From Table 10-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 19 of $(75\% * 4.23 \text{ W/m}^2)/(10 \text{ W/m}^2) = 31.7\% \pm 2.1 \text{dB}$ device related uncertainty (see orange/green curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually (orange curve for mmW exposure goes down while black curve for LTE exposure goes up). At ~200s time mark, LTE is set to all-down bits, which results in mmW getting back RF margin slowly as seen by gradual increase in mmW exposure (orange curve for mmW exposure goes up while black curve for LTE exposure goes down). The calculated maximum RF exposure from LTE corresponds to normalized 1gSAR exposure value of $(100\% \times 1.04 \text{ W/kg})/(1.6 \text{ W/kg}) = 65.0\% \pm 1 \text{ dB}$ design related uncertainty (note that this level will be achieved by green and black curves if LTE remains in all-up bits for longer time duration which was already demonstrated in maximum Tx power test in Section 11.1). Total normalized time-averaged exposure (green curve) for this test should be within the calculated range between $31.7\% \pm 2.1$ dB device related uncertainty (only PD exposure) and $65.0\% \pm 1$ dB design related uncertainty (only SAR exposure).

As can be seen, the power limiting enforcement is effective during transmission when SAR and PD exposures are switched, and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMN981U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 07 -f 70
1M2005050081-25.A3L	1-25.A3L 07/03/2020 - 07/07/2020 Portable Handset			Page 67 of 78
© 2020 PCTEST				REV 1

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

11.4 Switch in SAR vs. PD exposure test results for n260

This test was measured with LTE Band 2 (DSI =3) and mmW Band n260 Beam ID 26, by following the detailed test procedure is described in Section 5.3.2.

Instantaneous and 100s-averaged conducted LTE Tx power versus time, instantaneous and 4saveraged radiated mmW Tx power versus time, time-averaged conducted LTE Tx power limit and time-averaged radiated mmW Tx power limit:

From the above plot, it is predominantly instantaneous PD exposure between $0s \sim 120s$, it is instantaneous SAR+PD exposure between 120s ~ 140s, it is predominantly instantaneous SAR exposure between 140s ~ 200s, and above 200s, it is predominantly instantaneous PD exposure

Normalized time-averaged exposures for LTE (1gSAR) and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

FCC ID: A3LSMN981U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 60 of 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 68 of 78
2020 PCTEST				REV 1.0 04/06/2020

Plot notes: As soon as 5G mmW NR call was established, LTE was placed in all-down bits immediately. Between 0s~120s, mmW exposure is the dominant contributor. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). From Table 10-3, this corresponds to a normalized 4cm²PD exposure value for Beam ID 26 of (75% * 4.67 W/m²)/(10 W/m²) = 35.0% ± 2.1dB device related uncertainty (see orange/green curve between 0s~120s). At ~120s time mark, LTE is set to all-up bits, taking away margin from mmW exposure gradually (orange curve for mmW exposure goes down while black curve for LTE exposure goes up). At ~200s time mark, LTE is set to all-down bits, which results in mmW getting back RF margin slowly as seen by gradual increase in mmW exposure (orange curve for mmW exposure goes up while black curve for LTE exposure goes down). The calculated maximum RF exposure from LTE corresponds to normalized 1gSAR exposure value of $(100\% \times 1.04 \text{ W/kg})/(1.6 \text{ W/kg}) = 65.0\% \pm 1 \text{ dB}$ design related uncertainty (note that this level will be achieved by green and black curves if LTE remains in all-up bits for longer time duration which was already demonstrated in maximum Tx power test in Section 11.1). Total normalized time-averaged exposure (green curve) for this test should be within the calculated range between $35.0\% \pm 2.1$ dB device related uncertainty (only PD exposure) and $65.0\% \pm 1$ dB design related uncertainty (only SAR exposure).

As can be seen, the power limiting enforcement is effective during transmission when SAR and PD exposures are switched, and the total normalized time-averaged RF exposure does not exceed 1.0. Therefore, Qualcomm[®] Smart Transmit time averaging feature is validated.

FCC ID: A3LSMN981U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 60 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	20 - 07/07/2020 Portable Handset		
© 2020 PCTEST				REV 1

REV 1.0 04/06/2020

11.5 Change in Beam test results for n261

This test was measured with LTE Band 2 (DSI = 3) and mmW Band n261, with beam switch from Beam ID 19 to Beam ID 1, by following the test procedure is described in Section 5.3.3.

Instantaneous conducted LTE Tx power versus time, instantaneous and 4s-averaged radiated mmW Tx power versus time, time-averaged radiated mmW Tx power limits for beam 19 and beam 1:

Normalized time-averaged exposures for LTE and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

Total Normalized Time-averaged RF Exposure Tech: LTE, Band 2 / Tech: NR5G MMW, Band n261

FCC requirement for total RF exposure (normalized)	1.0				
Max total normalized time-averaged RF exposure (green curve)					
Validated					

FCC ID: A3LSMN981U	Poud to be part of the element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 70 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 70 of 78
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

<u>Plot notes:</u> 5G mmW NR call was established at ~1s time mark and LTE was placed in all-down bits immediately after 5G mmW NR call was established. For the rest of this test, mmW exposure is the dominant contributor as LTE is left in all-down bits. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). From Table 10-3, exposure between 1s ~100s corresponds to a normalized 4cm2PD exposure value for Beam ID 19 of (75% * 4.23 W/m2)/(10 W/m2) = 31.7% ± 2.1dB device related uncertainty. At ~100s time mark (shown in black dotted ellipse), beam was switched to Beam ID 1. Note that the *input.power.limit* for Beam ID 1 is 9.3dBm. Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). Therefore, normalized 4cm²PD exposure value for n261 Beam ID 1 = (75% * 4.05 W/m²)/(10 W/m²) = 30.4% ± 2.1dB device related uncertainty. Additionally, during the switch, the ratio between the averaged radiated powers of the two beams (yellow curve) should correspond to the difference in EIRPs measured at each corresponding *input.power.limit* for these beams listed in Table 10-3, i.e., 3.6 dB ± 2.1dB device uncertainty.

11.6 Change in Beam test results for n260

This test was measured with LTE Band 2 (DSI = 3) and mmW Band n260, with beam switch from Beam ID 26 to Beam ID 1, by following the test procedure is described in Section 5.3.3.

Instantaneous conducted LTE Tx power versus time, instantaneous and 4s-averaged radiated mmW Tx power versus time, time-averaged radiated mmW Tx power limits for beam 26 and beam 1:

LTE and mmW Instantaneous and Time-averaged TX Power Tech: LTE, Band 2 / Tech: NR5G MMW, Band n260

Normalized time-averaged exposures for LTE and mmW (4cm²PD), as well as total normalized time-averaged exposure versus time:

FCC ID: A3LSMN981U	PCTEST Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 74 (70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page /1 of /8
2020 PCTEST				REV 1.0 04/06/2020

Plot notes: 5G mmW NR call was established at ~1s time mark and LTE was placed in all-down bits immediately after 5G mmW NR call was established. For the rest of this test, mmW exposure is the dominant contributor as LTE is left in all-down bits. Here, Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). From Table 10-3, exposure between 1s ~100s corresponds to a normalized 4cm²PD exposure value for Beam ID 26 of (75% * 4.67 W/m²)/(10 W/m^2) = 35.0% ± 2.1dB device related uncertainty. At ~100s time mark (shown in black dotted ellipse), beam was switched to Beam ID 1. Note that the input power.limit for Beam ID 1 is 9.9 dBm, however the maximum input power for n260 CP-OFDM modulation is capped at 8.5dBm. Smart Transmit feature allocates a maximum of 75% for mmW (based on 3dB reserve setting in Part 1 report). Therefore. normalized 4cm²PD exposure value for n260 Beam ID 1 = $(75\% * 5.01 \text{ W/m}^2)/(10 \text{ W/m}^2) = 37.6\% \pm 2.1 \text{ dB}$ device related uncertainty. Additionally, during the switch, the ratio between the averaged radiated powers of the two beams (vellow curve) should correspond to the difference in EIRPs measured at each corresponding input.power.limit for these beams listed in Table 10-3, i.e., 6.6dB ± 2.1dB device uncertainty.

FCC ID: A3LSMN981U	PCTEST [*] Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 70 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 72 of 78
© 2020 PCTEST				REV 1.0

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of con copying and thereof, please contact INFO@PCTEST.COM.

04/06/2020

12 SYSTEM VERIFICATION (FREQ > 6 GHZ)

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

Table 12-1

System Verification Results										
System Verification										
Syst.	Freq. (GHz)	Date	Source	Probe SN Normal psPD (W/m ² over 4 cm ²)	² over 4 cm ²)	Deviation (dB)	Total psPD (W/m ² over 4 cm ²) Devi		Deviation (dB)	
			SIN		measured	target		measured	target	
N	30	7/6/2020	1035	9420	28.80	32.10	-0.47	29.40	32.50	-0.44
Ν	30	7/7/2020	1035	9420	28.50	32.10	-0.52	29.40	32.50	-0.44

Note: A **10 mm distance spacing** was used from the reference horn antenna aperture to the probe element. This includes 4.45 mm from the reference antenna horn aperture to the surface of the verification source plus 5.55 mm from the surface to the probe. The SPEAG software requires a setting of "5.55 mm" for the correct set up.

Figure 12-1 System Verification Setup Photo

FCC ID: A3LSMN981U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 72 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page / 3 07 / 8
© 2020 PCTEST				REV 1.

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/06/2020

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	E4432B	ESG-D Series Signal Generator	7/14/2019	Annual	7/14/2020	US40053896
Agilent	N9020A	MXA Signal Analyzer	12/19/2019	Annual	12/19/2020	MY48010233
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Agilent	8753ES	S-Parameter Network Analyzer	12/31/2019	Annual	12/31/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	3/11/2019	Biennial	3/11/2021	MY45090700
Agilent	8753ES	S-Parameter Network Analyzer	1/16/2020	Annual	1/16/2021	US39170118
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Amplifier Research	155166	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	155166	Amplifier	CBT	N/A	CBT	433974
Anritsu	MI 2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	MA24106A	LISB Power Sensor	2/27/2020	Annual	2/27/2021	1520501
Anritsu	MA24106A	LISB Power Sensor	2/27/2020	Annual	2/27/2021	1520501
Anritsu	MI 2496A	Bower Meter	12/17/2020	Annual	12/17/2021	11320503
Anritou	ML2450A	Pulso Power Sensor	12/1//2019	Annual	12/1//2020	0846215
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	1120000
Annisu	MA2411B	Pulse Power Serisor	12/4/2019	Annual	12/4/2020	1120000
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
COMTech	AR85729-5	Solid State Amplifier	CBI	N/A	CBI	M1S5A00-009
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292061
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282753
Keysight Technologies	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4772-3	Attenuator	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator	CBT	N/A	CBT	120
Narda	BW-S10W2+	Attenuator	CBT	N/A	CBT	831
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	7/18/2018	Biennial	7/18/2020	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	8/26/2019	Annual	8/26/2020	100976
SPEAG	5G Verification Source 30GHz	30GHz System Verification Antenna	2/12/2020	Annual	2/12/2021	1035
SPEAG	EUmmWV3	EUmmWV3 Probe	2/14/2020	Annual	2/14/2021	9420
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/15/2020	Annual	4/15/2021	1582
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/22/2019	Annual	10/22/2020	1091
Mini Circuits	ZAPD-2-272-S+	Power Splitter	СВТ	N/A	CBT	SF702001405
Keysight Technologies	E7515B	UXM 5G Wireless Test Platform	6/11/2019	Annual	12/11/2020	MY59150289
Ramsey Electronics LLC	STE6300	Shielded Test Enclosure	N/A	N/A	N/A	1310
Newmark System	NSC-G2	Motion Controller	CBT	N/A	CBT	1007-D
Keysight Technologies	M1740A	mmWaye Transceiver	5/7/2019	Annual	11/7/2020	MY58481076
Keysight Technologies	M1740A	mmWave Transceiver	5/7/2019	Annual	11/7/2020	MY58481133
Narda	4216-10	Directional Coupler 0.5 to 8.0 GHz 10.dB	5/16/2019	Annual	11/16/2020	01/02
Narda	4216-10	Directional Coupler, 0.5 to 8.0 GHz, 10 dB	5/16/2010	Δnnual	11/16/2020	01/02
Kodar	4210-10	Directional Coupler, 10 - 67 GHz	N/A	N/A	N/A	200301
Kiyldi Kovcight Tachnologiaa	E7770A	Common Interface Unit	4/20/2010	Annual	10/20/2020	200391 MVE9200492
Republic rechnologies		2 Path Dipolo Power Concer	4/29/2019	Annual	12/1/2020	109169
Robdo & Schwarz		3-Path Dipole Power Sensor	6/1/2019	Annual	12/1/2020	109522
Robde & Schwarz	NRDSC	3-Path Dipole Power Sensor	6/10/2020	Δnnual	6/10/2021	100323
Robde & Schwarz	NRP50S	3-Path Dipole Power Sensor	6/1/2020	Annual	12/1/2020	103322
K 0. I	115H10-1200/114000	High Dass Eilter	N/A	NI/A	12/1/2020 N/A	115H10-1200/U4000 2
N QL L	115H10-1500/04000	nigri Pass riiter	IN/A	N/A	IN/A	113F1U-1300/04000 - 2
IVIINICITCUITS	NLP-1200+	LOW Pass Filter	N/A	IN/A	N/A	VUU/8201318

Notes:

CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were 1. connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Due to the worldwide pandemic caused by the novel SAR-CoV-2 virus (COVID-19), special calibration extensions have been permitted 2.

- by A2LA. Some equipment had its calibration period extended accordingly and will be calibrated when possible.
- Each equipment item is used solely within its respective calibration period. 3.

FCC ID: A3LSMN981U	Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 74 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 74 of 78
2020 PCTEST				REV 1.0 04/06/2020

14 MEASUREMENT UNCERTAINTIES

For PD Measurements

a	b	C	d	e	f =	g
		Č	3	, C	b x e/d	ъ
Uncertainty Component	Unc.	Prob.			ui	
	(± dB)	Dist.	Div.	ci	(± dB)	vi
Calibration	0.49	Ν	1	1.0	0.49	~
Probe correction	0	R	1.73	1.0	0.00	~
Frequency Response (BW \leq 1 GHz)	0.20	R	1.73	1.0	0.12	~
Sensor cross coupling	0	R	1.73	1.0	0.00	∞
Isotropy	0.50	R	1.73	1.0	0.29	8
Linearity	0.20	R	1.73	1.0	0.12	8
Probe Scattering	0	R	1.73	1.0	0	∞
Probe Positioning Offset	0.30	R	1.73	1.0	0.17	8
Probe Positioning Repeatability	0.04	R	1.73	1.0	0.02	8
Sensor Mechanical Offset	0	R	1.73	1.0	0	8
Probe Spatial Resolution	0	R	1.73	1.0	0	8
Field Impedance Dependence	0	R	1.73	1.0	0	~
Amplitude and phase drift	0	R	1.73	1.0	0	8
Amplitude and phase noise	0.04	R	1.73	1.0	0.02	~
Measurement area truncation	0	R	1.73	1.0	0	~
Data acquisition	0.03	Ν	1	1.0	0.03	~
Sampling	0	R	1.73	1.0	0	~
Field Reconstruction	0.60	R	1.73	1.0	0.35	∞
Forward Transformation	0	R	1.73	1.0	0	~
Power Density Scaling	-	R	1.73	1.0	-	~
Spatial Averaging	0.10	R	1.73	1.0	0.06	~
System Detection Limit	0.04	R	1.73	1.0	0.02	~
Test Sample and Environmental Factors						
Probe Coupling with DUT	0	R	1.73	1.0	0	~
Modulation Response	0.40	R	1.73	1.0	0.23	∞
Integration Time	0	R	1.73	1.0	0	∞
Response Time	0	R	1.73	1.0	0	∞
Device Holder Influence	0.10	R	1.73	1.0	0.06	∞
DUT Alignment	0	R	1.73	1.0	0	∞
RF Ambient Conditions	0.04	R	1.73	1.0	0.02	∞
Ambient Reflections	0.04	R	1.73	1.0	0.02	~
Immunity / Secondary Reception	0	R	1.73	1.0	0	∞
Drift of the DUT	0.22	R	1.73	1.0	0.13	∞
Combined Standard Uncertainty (k=1)		RSS			0.76	∞
(95% CONFIDENCE LEVEL) k=2				1.53		

FCC ID: A3LSMN981U	PCTEST [®] Proud to be part of element	PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 75 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset	Page 75 of 78
2020 BCTEST			DEV/1

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the DUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMN981U	PCTEST [•] Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 76 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 76 of 78
© 2020 PCTEST				REV 1.0

16 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMN981U	PCTEST [•] Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 77 of 79
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page // of /8
© 2020 PCTEST				REV 1.0

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of conte copying and thereof, please contact INFO@PCTEST.COM.

04/06/2020

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMN981U	Proud to be part of @ element	PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 70 af 70
1M2005050081-25.A3L	07/03/2020 - 07/07/2020	Portable Handset		Page 78 of 78
© 2020 PCTEST				REV 1

APPENDIX A: VERIFICATION PLOTS

PCTEST

Date: 07/06/2020

30 GHz System Verification

Device Under Test Properties

DUT	Serial Number
30 GHz Verification Source	1035

Exposure Conditions

Phantom Section	Position	Test Distance [mm]	Band	Frequency [MHz]
5G	FRONT	5.55	Validation band	30000.0

Hardware Setup

Probe, Calibration Date	DAE, Calibration Date
EUmmWV3 - SN9420, 02/14/2020	DAE4 SN1582,04/15/2020

Software Setup

Software	Software Version
cDASY6 Module mmWave	2.0.2.34

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	60.0 × 60.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	5.55

Measurement Results

Scan Type	5G Scar
Avg. Area [cm²]	4.00
pStot avg [W/m²]	29.40
pSn avg [W/m²]	28.80
Epeak [V/m]	124
Deviation (dB)	-0.44

30GHz System Verification

Calibration Certificate

PCTEST

Date: 07/07/2020

30 GHz System Verification

Device Under Test Properties

DUT	Serial Number
30 GHz Verification Source	1035

Exposure Conditions

Phantom Section	Position	Test Distance [mm]	Band	Frequency [MHz]
5G	FRONT	5.55	Validation band	30000.0

Hardware Setup

Probe, Calibration Date	DAE, Calibration Date	
EUmmWV3 - SN9420, 02/14/2020	DAE4 SN1582, 04/15/2020	

Software Setup

Software	Software Version
cDASY6 Module mmWave	2.0.2.34

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	60.0 × 60.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	5.55

Measurement Results

Scan Type	5G Scar
Avg. Area [cm²]	4.00
pStot avg [W/m²]	29.40
pSn avg [W/m²]	28.50
Epeak [V/m]	124
Deviation (dB)	-0.44

30GHz System Verification

Calibration Certificate

APPENDIX C: TEST SEQUENCES

- 1. Test sequence is generated based on below parameters of the DUT:
 - a. Measured maximum power (P_{max})
 - b. Measured Tx_power_at_SAR_design_target (Plimit)
 - c. Reserve_power_margin (dB)
 - P_{reserve} (dBm) = measured P_{limit} (dBm) Reserve_power_margin (dB)
 - d. SAR_time_window (100s for FCC)
- 2. Test Sequence 1 Waveform:

Based on the parameters above, the Test Sequence 1 is generated with one transition between high and low Tx powers. Here, high power = P_{max} ; low power = $P_{max}/2$, and the transition occurs after 80 seconds at high power P_{max} . As long as the power enforcement is taking into effective during one 100s/60s time window, the validation test with this defined test sequence 1 is valid, otherwise, select other radio configuration (band/DSI within the same technology group) having lower P_{limit} for this test. The Test sequence 1 waveform is shown below:

Figure C-1 Test sequence 1 waveform

	FCC ID: A3LSMN981U	POCTEST Proceeding Part 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by:
				Quality Manager
	Test Dates:	DUT Type:		APPENDIX C:
	07/03/2020 - 07/07/2020	Portable Handset		Page 1 of 3
© 202	20 PCTEST			REV 1.0
				04/06/2020

3. Test Sequence 2 Waveform:

Based on the parameters described above, the Test Sequence 2 is generated as described in Table 10-1, which contains two 170 second-long sequences (yellow and green highlighted rows) that are mirrored around the center row of 20s, resulting in a total duration of 360 seconds:

Time duration (seconds)	dB relative to <i>P_{limit}</i> or <i>P_{reserve}</i>	
<mark>15</mark>	P _{reserve} – 2	
<mark>20</mark>	P _{limit}	
20	(<i>P_{limit} + P_{max})</i> /2 averaged in mW and rounded to nearest 0.1 dB step	
<mark>10</mark>	P _{reserve} – 6	
<mark>20</mark>	P _{max}	
<mark>15</mark>	P _{limit}	
<mark>15</mark>	P _{reserve} – 5	
<mark>20</mark>	P _{max}	
<mark>10</mark>	P _{reserve} – 3	
<mark>15</mark>	P _{limit}	
<mark>10</mark>	P _{reserve} – 4	
20	$(P_{limit} + P_{max})/2$ averaged in mW and rounded to nearest 0.1 dB step	
<mark>10</mark>	P _{reserve} – 4	
<mark>15</mark>	P _{limit}	
<mark>10</mark>	P _{reserve} – 3	
<mark>20</mark>	P _{max}	
<mark>15</mark>	P _{reserve} – 5	
<mark>15</mark>	P _{limit}	
<mark>20</mark>	P _{max}	
<mark>10</mark>	P _{reserve} – 6	
20	(<i>P_{limit}</i> + <i>P_{max}</i>)/2 averaged in mW and rounded to nearest 0.1 dB step	
<mark>20</mark>	Piimit	
<mark>15</mark>	P _{reserve} – 2	

Table C-1 Test Sequence 2

	FCC ID: A3LSMN981U	Point to be part of @ element PART 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX C:
	07/03/2020 - 07/07/2020	Portable Handset		Page 2 of 3
© 202	20 PCTEST			REV 1.0 04/06/2020

The Test Sequence 2 waveform is shown in Figure C-2.

	FCC ID: A3LSMN981U	PORT 2 RF EXPOSURE EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:		APPENDIX C:
	07/03/2020 - 07/07/2020	Portable Handset		Page 3 of 3
© 202	20 PCTEST			REV 1.0 04/06/2020

APPENDIX D: TEST PROCEDURES FOR SUB6 NR + NR RADIO

Appendix D provides the test procedures for validating Qualcomm Smart Transmit feature for LTE + Sub6 NR non-standalone (NSA) mode transmission scenario, where sub-6GHz LTE link acts as an anchor.

D.1 Time-varying Tx power test for sub6 NR in NSA mode

Follows Section 4.2.1 to select test configurations for time-varying test. This test is performed with two pre-defined test sequences (described in Section 4.1) applied to Sub6 NR (with LTE on all-down bits or low power for the entire test after establishing the LTE+Sub6 NR call with the callbox). Follow the test procedures described in Section 4.3.1 to demonstrate the effectiveness of power limiting enforcement and that the time averaged Tx power of Sub6 NR when converted into 1gSAR values does not exceed the regulatory limit at all times (see Eq. (1a) and (1b)). Sub6 NR response to test sequence1 and test sequence2 will be similar to other technologies (say, LTE), and are shown in Sections 9.1.7 and 9.1.8.

D .2 Switch in SAR exposure between LTE vs. Sub6 NR during transmission

This test is to demonstrate that Smart Transmit feature accurately accounts for switching in exposures among SAR for LTE radio only, SAR from both LTE radio and sub6 NR, and SAR from sub6 NR only scenarios, and ensures total time-averaged RF exposure compliance with FCC limit.

Test procedure:

- 1. Measure conducted Tx power corresponding to P_{limit} for LTE and sub6 NR in selected band. Test condition to measure conducted P_{limit} is:
 - Establish device in call with the callbox for LTE in desired band. Measure conducted Tx power corresponding to LTE *P*_{limit} with Smart Transmit <u>enabled</u> and *Reserve_power_margin* set to 0 dB, callbox set to request maximum power.
 - Repeat above step to measure conducted Tx power corresponding to Sub6 NR <u>*P*limit</u>. If testing LTE+Sub6 NR in non-standalone mode, then establish LTE+Sub6 NR call with callbox and request all down bits for radio1 LTE. In this scenario, with callbox requesting maximum power from Sub6 NR, measured conducted Tx power corresponds to radio2 <u>*P*limit</u> (as radio1 LTE is at all-down bits)
- 2. Set Reserve_power_margin to actual (intended) value with EUT setup for LTE + Sub6 NR call. First, establish LTE connection in all-up bits with the callbox, and then Sub6 NR connection is added with callbox requesting UE to transmit at maximum power in Sub6 NR. As soon as the Sub6 NR connection is established, request all-down bits on LTE link (otherwise, Sub6 NR will not have sufficient RF exposure margin to sustain the call with LTE in all-up bits). Continue LTE (all-down bits)+Sub6 NR transmission for more than one time-window duration to test predominantly Sub6 NR SAR exposure scenario (as SAR exposure is negligible from all-down bits in LTE). After at least one time-window, request LTE to go all-up bits to test LTE SAR and Sub6 NR SAR exposure scenario. After at least one more time-window, drop (or request all-down bits) Sub6 NR transmission to test predominantly LTE SAR exposure scenario. Continue the test for at least one more time-window. Record the conducted Tx powers for both LTE and Sub6 NR for the entire duration of this test.

FCC ID: A3LSMN981U		SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX D:
07/03/2020 - 07/07/2020	Portable Handset		Page 1 of 2

- 3. Once the measurement is done, extract instantaneous Tx power versus time for both LTE and Sub6 NR links. Similar to technology/band switch test in Section 4.3.3, convert the conducted Tx power for both these radios into 1gSAR value (see Eq. (6a) and (6b)) using corresponding technology/band Plimit measured in Step 1, and then perform 100s running average to determine time-averaged 1gSAR versus time as illustrated in Figure 4-1. Note that here it is assumed both radios have Tx frequencies < 3GHz, otherwise, 60s running average should be performed for radios having Tx frequency between 3GHz and 6GHz.
- 4. Make one plot containing: (a) instantaneous Tx power versus time measured in Step 2.
- 5. Make another plot containing: (a) instantaneous 1gSAR versus time determined in Step 3, (b) computed time-averaged 1gSAR versus time determined in Step 3, and (c) corresponding regulatory 1gSAR_{limit} of 1.6W/kg.

The validation criteria is, at all times, the time-averaged 1gSAR versus time shall not exceed the regulatory 1gSAR_{limit} of 1.6W/kg.

	FCC ID: A3LSMN981U	POINT De point of @ verneret PART 2 RF EXPOSURE EVALUATION REPORT	Approved by: Quality Manager	
	Test Dates:	DUT Type:	APPENDIX D:	1
	07/03/2020 - 07/07/2020	Portable Handset	Page 2 of 2	1
202	20 PCTEST		REV 1.0 04/0	6/202

APPENDIX E: CALIBRATION CERTIFICATES

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EUmmWV3-9420_Feb20

CALIBRATION CERTIFICATE

Object	EUmmWV3 - SN:9420	NAB .
Calibration procedure(s)	QA CAL-02.v9, QA CAL-25.v7, QA CAL-42.v2 Calibration procedure for E-field probes optimized for close near field evaluations in air	4/8/20
Calibration date:	February 14, 2020	

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	(D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
Reference Probe ER3DV6	SN: 2328	05-Oct-19 (No. ER3-2328_Oct19)	Oct-20
DAE4	SN: 789	27-Dec-19 (No. DAE4-789_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-19)	In house check: Oct-20

	Name	Function	Signature	
Calibrated by:	Jeton Kastrati	Laboratory Technician	$ \rightarrow 1/2 $	
			J= Ve	
Approved by:	Katja Pokovic	Technical Manager	fille	
			Issued: February 15, 2020	
This calibration certificate	e shall not be reproduced except in fu	I without written approval of the lab	oratory.	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Gloceary

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Olossal y.	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization &	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system
Sensor Angles	sensor deviation from the probe axis, used to calculate the field orientation and polarization
k	is the wave propagation direction

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p).
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

Accreditation No.: SCS 0108

DASY - Parameters of Probe: EUmmWV3 - SN:9420

Basic Calibration Parameters

	Sensor X	Sensor Y	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.02240	0.02203	± 10.1 %
DCP (mV) ^B	103.0	109.0	
Equivalent Sensor Angle	-60.0	35.9	

Calibration results for Frequency Response (750 MHz – 110 GHz)

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
0.75	77.2	-0,08	-0.06	± 0.43 dB
1.8	140.4	0.06	0.10	± 0.43 dB
2	133.0	0.06	0.09	± 0.43 dB
2.2	124.8	0.05	0.07	± 0.43 dB
2.5	123.0	-0.05	-0.06	± 0.43 dB
3.5	256.2	0.12	-0.03	± 0.43 dB
3.7	249.8	0.20	0.03	± 0.43 dB
6.6	41.8	-0.13	0.10	± 0.98 dB
8	48.4	-0.33	-0.33	± 0.98 dB
10	54.4	-0.02	0.02	± 0.98 dB
15	71.5	0.22	-0.27	± 0.98 dB
18	85.3	0.34	0.25	± 0.98 dB
26.6	96.9	0.15	0.14	± 0.98 dB
30	92.6	0.08	0,08	± 0.98 dB
35	93.7	-0.19	-0.07	± 0.98 dB
40	91.5	-0.53	-0.43	± 0.98 dB
50	19.6	-0.41	-0.35	± 0.98 dB
55	22.4	0.46	0.27	± 0.98 dB
60	23.0	-0.03	-0.03	± 0.98 dB
65	27.4	0.13	0.16	± 0.98 dB
70	23.9	0.27	0.04	± 0.98 dB
75	20.0	-0.06	0.04	± 0.98 dB
75	14.8	-0.27	-0.11	± 0.98 dB
80	22.5	0.09	0.22	± 0.98 dB
85	22.8	0.00	-0.01	± 0.98 dB
90	23.8	0.06	0.06	± 0.98 dB
92	23.9	-0.13	-0.18	± 0.98 dB
95	20.5	-0.26	-0.23	± 0.98 dB
97	24.4	-0.02	-0.02	± 0.98 dB
100	22.6	-0.01	-0.06	± 0.98 dB
105	22.7	0.01	0.03	± 0.98 dB
110	19.7	0.09	0.11	± 0.98 dB

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: EUmmWV3 - SN:9420

UID	Communication System Name		A	B	С	D	VR	Max	Max
			aв	αθλήλ		ав	mv	aev.	0nc (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	112.7	± 3.5 %	±4.7 %
		Y	0.00	0.00	1.00		87.4		
10352-	Pulse Waveform (200Hz, 10%)	X	1.40	60.00	13.59	10.00	6.0	± 1.4 %	±9.6 %
AAA		Y	1.45	60.00	13.75		6.0		
10353-	Pulse Waveform (200Hz, 20%)	X	0.91	60.00	12.59	6.99	12.0	±0.8 %	±9.6 %
AAA		Y	0.91	60.00	12.99		12.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.52	60.00	11.39	3.98	23.0	± 0.9 %	± 9.6 %
AAA		Y	0.52	60.00	12.05		23.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.33	60.00	10.38	2.22	27.0	±0.7 %	± 9.6 %
AAA		Y	0.37	60.00	11.16		27.0		
10387-	QPSK Waveform, 1 MHz	X	0.90	60.00	11.03	1.00	22.0	± 2.2 %	± 9.6 %
AAA		ΙY	0.91	60.00	11.42		22.0		
10388-	QPSK Waveform, 10 MHz	X	1.23	60.00	11.61	0.00	22.0	± 0.7 %	± 9.6 %
AAA		Y	1.21	60.00	11.82		22.0		
10396-	64-QAM Waveform, 100 kHz	X	2.00	60.46	13.87	3.01	17.0	±0.7 %	±9.6 %
AAA		Y	1.87	60.00	13.56		17.0		
10399-	64-QAM Waveform, 40 MHz	X	2.09	60.00	12.24	0.00	19.0	±0.8 %	±9.6 %
AAA		Y	1.97	60.00	12.37		19.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	3.13	60.00	12.70	0.00	12.0	± 0.7 %	± 9.6 %
AAA		Y	2.92	60.00	12.80		12.0	L	

Calibration Results for Modulation Response

Note: For details on all calibrated UID parameters see Appendix

Calibration Results for Linearity Response

Frequency GHz	Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
0.9	50.0	-0.14	0.11	± 0.2 dB
0.9	100.0	-0.08	0.09	± 0.2 dB
0.9	500.0	0.02	-0.04	± 0.2 dB
0.9	1000.0	0.04	-0.01	± 0.2 dB
0.9	1500.0	0.02	-0.01	± 0.2 dB
0.9	2000.0	-0.03	0.01	± 0.2 dB

Sensor Frequency Model Parameters (750 MHz – 78 GHz)

	Sensor X	Sensor Y
R (Ω)	43.27	46.51
$R_{p}(\Omega)$	94.02	89.96
L (nH)	0.04059	0.03944
C (pF)	0.2221	0.2928
C _p (pF)	0.1219	0.1203

Sensor Frequency Model Parameters (55 GHz – 110 GHz)

	Sensor X	Sensor Y
R (Ω)	24.87	28.26
$R_{p}(\Omega)$	100.51	96.93
L (nH)	0.04092	0.03941
C (pF)	0.1193	0.1431
C _p (pF)	0.1289	0.1178

DASY - Parameters of Probe: EUmmWV3 - SN:9420

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ^{∽2}	T5 V ⁻¹	Т6
X	27.5	206.07	35.41	0.00	2.24	5.01	0.00	1.17	1.01
Y	27.5	191.29	31.29	0.92	2.02	5.00	0.00	1.15	1.00

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	100.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	320 mm
Probe Body Diameter	8 mm
Tip Length	23 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm

Probe isotropy for E_{tot} : probe rotated $\varphi = 0^{\circ}$ to 360°, tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi = 0^{\circ} - 90^{\circ}$) at 30 GHz: deviation within ± 0.36 dB Parallel to the field propagation ($\psi = 0^{\circ} - 90^{\circ}$) at 60 GHz: deviation within ± 0.36 dB

Appendix: Modulation Calibration Parameters

ŲID	Rev	Communication System Name	Group	PAR	Unc ^E
				(aR)	(K=2)
U 10010	C A A	CAP Validation (Square 100ms 10ms)	Toot	10.00	<u>±4.1 %</u>
10010		IMTS_EDD (M/CDMA)		2 01	+96%
10012	CAR	IFEE 802 11h WIEL2 4 GHz (DSSS_1 Mbps)	WIAN	1.87	+96%
10012	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OEDM_6 Mbps)	WIAN	9.46	+96%
10021	DAC	GSM-EDD (TDMA_GMSK)	GSM	9.39	+96%
10023	DAC	GPRS-EDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038		IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6 %
10042	CAB	IS-54 / IS-136 FDD (IDMA/FDM, PI/4-DQPSK, Haltrate)	AMPS	1.78	$\pm 9.6\%$
10044		IS-91/EIA/TIA-553 FUD (FUMA, FM)	AMPS	0.00	±9.6%
10048		DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.0%
10049		UNTO TOD, TDIMA/FDM, GFSK, DOUDIE SIO(, 12)		10.79	$\pm 9.6\%$
10050			CSM	6.52	±9.0%
10050		EDGE-FDD (TDWA, OFON, TN 0-1-2-3)		2.12	+96%
10055		IEEE 802.11b WIF12.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.12	+96%
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS_11 Mbps)	WIAN	3.60	$\pm 9.6\%$
10062	CAC	IEEE 802 11a/b WiEi 5 GHz (OEDM 6 Mbps)	WLAN	8.68	$\pm 9.6\%$
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6 %
10065	CAC	IEEE 802,11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6 %
10066	CAC	IEEE 802,11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6 %
10071	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6%
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6%
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090		GPRS-FDD (TDMA, GMSK, TN 0-4)		6.56	± 9.6 %
10097				3,98	± 9.6 %
10098		UMTS-FDD (HSUPA, Subtest 2)		3.98	± 9.6 %
10099				9,55	±9.0%
10100				6.40	10.0 %
10101		LTE-FUD (SC-FUNA, 100% RD, 20 MHz 64 0AM)		6.60	+9.6 %
10102		LIE-FUD (SC-FUNA, 100% RD, 20 MHZ, 04-QAM)		0.00	+9.6 %
10103		LTE-TOD (SC-FOMA 100% RB 20 MHz 46.0AM)		0.23	+96%
10104		TE-TDD (SC-FDMA, 100% RB 20 MHz, 10-QAM)		10.01	+96%
10100		TE-TOD (30- DMA, 100 / TD, 20 MHz, 04-30 MH		5.80	+96%
10100	1000			0.00	1 - 0.0 /0

10109	CAG	LTE-EDD (SC-EDMA_100% RB_10 MHz_16-QAM)	LTE-FDD	6.43	± 9.6 %
40440		$I = EDD (CC = DMA 400% DD = MU_{2} ODC()$		5 76	+06%
10110	CAG	LTE-FDU (30-FDIWA, 100% RD, 31WHZ, QF3R)			19.0 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-EDD (SC-EDMA 100% BB 5 MHz 64-OAM)	ITE-EDD	6.62	+96%
40444	0/10	LEFE 000 44n (LE Oreenfeld 42 5 Mine DDOV)		0.02	+06%
10114	CAC	TEEE 802.11n (FT Greenlieid, 13.5 Mbps, BPSK)	VVLAIN	0.10	<u>± 9.0 %</u>
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802 11n (HT Mixed 13.5 Mbps BPSK)	WI AN	8.07	+96%
40440		IEEE 002.11 m (ITT Mixed, 04 Mbps, DI OKY		0.50	1069/
10118	CAC	TEEE 802.1 In (HT MIXED, 81 MOPS, TO-QAM)	VVLAIN	0.09	<u>± 9.0 %</u>
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-EDD (SC-EDMA 100% BB 15 MHz 64-0AM)		6.53	+96%
40440		LTE FDD (00 FDMA, 400% DD, 2 Mile OD0//)		5.00	+06%
10142	CAE	LTE-FDD (30-FDIVIA, 100% RD, 3 WINZ, QF3K)		-0.75	± 9.0 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6,35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6 %
10145	CAF	LTE-EDD (SC-EDMA 100% RB 14 MHz OPSK)	I TE-EDD	5.76	+9.6%
40146		LTE EDD (00 FDMA, 100/0 RD, 1.4 MHz, 46 OAM)		6.11	+06%
10146		LTE-FDD (SC-FDIVIA, 100% RD, 1.4 IVIA2, 10-QAIVI)		0.41	± 9.0 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LIE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150	CAE	I TE-EDD (SC-EDMA 50% RB 20 MHz 64-OAM)	I TE-EDD	6.60	+96%
10154		1 TE TOD (00 FDMA, 50% DD 20 MH- ODOK)		0.00	+96%
		LIE-IDD (OU-FDWA, OU% RD, 20 WITZ, WPOR)		3 ,20	± 5.0 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LIE-IDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6 %
10154	CAG	LTE-EDD (SC-EDMA 50% RB 10 MHz OPSK)	LTE-FDD	5.75	±9.6 %
10104		LTE FDD (COFDMA, 50% PR 10 MHz, 46 OAM)		6.43	+06%
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, TU MHZ, TO-QAM)		0.43	±9.0 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10158	CAG	LTE-EDD (SC-EDMA 50% RB 10 MHz 64-OAM)	I TE-EDD	6.62	+96%
10100		LTE FDD (CC FDMA, 60% PD, FMAL, CA OAM)		6 56	106%
10159	CAG	LTE-PDD (SC-FDMA, 50% RB, 5 MHZ, 64-QAW)		0.00	190%
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, <u>15 MHz, QPSK)</u>	LTE-FDD	5.82	±9.6%
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10162	CAE	LTE-EDD (SC-EDMA 50% RB 15 MHz 64-QAM)	ITE-FDD	6.58	+9.6%
10102		$\frac{1}{1} = \frac{1}{2} \frac{1}{1} $		5.00	+96%
10100		LTE-FDD (30-FDIMA, 30% RD, 1.4 MITZ, QF3K)		0.40	1 9.0 %
10167		LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)		6.21	±9.6%
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10170	CAE	LTE-EDD (SC-EDMA 1 RB 20 MHz 16-OAM)		6.52	+96%
10170				6.40	+0.6%
10171	AAE	LTE-FDD (SC-FDMA, TRB, 20 MHZ, 64-QAM)	LIE-FUD	0.49	±9.0 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-EDMA 1 RB 20 MHz 64-QAM)	I TE-TDD	10.25	+9.6%
10175				5.72	+96%
10175	CAG			0.12	10.0%
10176	CAG	LIE-FUD (SU-FUMA, 1 KB, 10 MHZ, 16-QAM)		0.02	I 9.0 %
10177	CAL	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10170	CAG	LTE-EDD (SC-EDMA 1 RB 10 MHz 64-OAM)	I TE-EDD	6.50	± 9.6 %
40400				6 50	+0.6%
10180	LAG			0.00	± 9.0 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6%
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183		LTE-EDD (SC-EDMA_1 RB_15 MHz_64-OAM)	LTE-FDD	6.50	±9,6%
10100		$\frac{1}{1} = \frac{1}{1} = \frac{1}$		5.00 F 70	-0.0 /0 - 0.0 +
10184		LIE-FUD (OC-FUMA, IKB, 3 MIZ, QFOK)		0.73	
10185		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LIE-FDD	6.51	±9.6%
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, OPSK)	LTE-FDD	5.73	±9.6 %
10100	1 CAE	ITE EDD (SC EDMA 1 PR 1 / MU - 16 OAM)		6.52	+96%
10100				0.04	10.0 %
10189	AA⊁	LIE-FDD (SC-FDMA, 1 KB, 1.4 MHZ, 64-QAM)	LIE-PDD	0.50	<u><u> </u></u>
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps. 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802 11n (HT Greenfield 65 Mbps 64-OAM)	WIAN	8.21	± 9.6 %
10100		IEEE 002 14n /UT Mixed & 5 Mbas DBOV		Q 10	+06%
10196	LOAU			0.10	<u> </u>
10197		IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	VVLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

			r		
10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6 %
10221	CAC	IEEE 802 11n (HT Mixed 72.2 Mbns 64-0AM)	WIAN	8.27	+9.6%
10222		IEEE 902 11n (IT Mixed, 15 Mbrs, BDSK)		8.06	+96%
10222	CAU			0.00	1 9,0 %
10223	CAC	TEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAB	LTE-TDD (SC-EDMA 1 RB 1 4 MHz 16-OAM)	I TE-TDD	949	+96%
10220	CAD	1 TE TDD (00 FDMA A DD A MUz, 10 Q/M)		10.06	+06%
10227	CAB	LTE-TDD (SC-FDWA, TRB, 1.4 MITZ, 04-QAW)		10.20	± 9.0 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10230	CAD	LTE-TDD (SC-EDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231				0.10	+96%
10231	CAD			9.19	1 9.0 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHZ, 16-QAM)	LIE-IDD	9.48	± 9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6%
10235	CAG	LTE-TOD (SC-EDMA 1 RB 10 MHz 16-0AM)		948	+96%
10200		LTE TDD (CC EDMA 4 DD 40 MU = C4 OAM)		10.95	+0.6 %
10236	CAG	LTE-TDD (SC-FDMA, TRB, TUMHZ, 64-QAM)	LIE-IDD	10.25	<u> </u>
10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LIE-IDD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAE	LTE-TOD (SC-EDMA 1 RB 15 MHz 64-QAM)	I TE-TDD	10.25	+9.6%
10200		LTE TOD (CO FDMA, 1 PD, 10 MHZ, OP WAR)		0.21	+06%
10240	CAF			9.21	± 9.0 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LIE-IDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6 %
10244	CAD	LTE-TDD (SC-EDMA 50% BB 3 MHz 16-OAM)	I TE-TOD	10.06	+96%
10244		LTE TOD (004 DMA, 50% DD 2 MUE, 10-QAM)		10.00	+0.0%
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHZ, 64-QAM)		10.06	± 9.0 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LITE-TOD (SC-EDMA 50% BB 5 MHz 64-OAM)	I TE-TDD	10.09	+9.6%
10240		$LTE TOD (CO FDMA, 50% DD 5 MH_{2} ODCV)$		0.20	+06%
10249		LTE-TDD (SC-PDIMA, 50% RD, 5 MITZ, QPSK)		9.29	<u> </u>
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LIE-IDD	9.81	±9.6%
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6 %
10252	CAG	LTE-TDD (SC-EDMA, 50% RB, 10 MHz, OPSK)	LTE-TDD	9.24	±9.6 %
10252	CAE	LTE TOD (SC EDMA 50% PB 15 MHz 16 OAM)		9.90	+96%
10200		LTE TOD (30-FDWA, 50% PD 45 MUL 04 QAM)		40.44	
10254		LTE-TDD (SC-FDMA, 50% RB, 15 MHZ, 64-QAM)	LIE-IDD	10.14	±9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAB	LTE-TOD (SC-EDMA_100% RB_1.4 MHz_64-OAM)	I TE-TOD	10.08	+9.6%
10207		LTE TOD (00-FDMA, 100% RD, 1.4 MHz, 04 Q/M)		0.24	+06%
10258	LAB	LTE-TOD (SC-FDIMA, 100% RB, 1.4 MHZ, QPSK)		9.34	±9.0 %
10259		LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LIE-IDD	9.98	±9.6%
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6 %
10261	CAD	LTE-TDD (SC-EDMA_100% RB_3 MHz_QPSK)	LTE-TDD	9.24	±9.6 %
10262	CAG	1 TE TOD (SC EDMA 100% RB 5 MHz 16.0AM)		0.83	+96%
10202		LTE-TDD (30-FDIVA, 100% (ND, 31VI12, 10-QAW)		3.05	
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHZ, 64-QAM)		10.16	± 9.0 %
10264	CAG	LIE-IDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LIE-TDD	9.23	±9.6%
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TOD (SC-EDMA 100% RB 10 MHz OPSK)	I TE-TOD	9 30	+96%
40000				10.00	+06%
10268		LTE-TUD (SC-FUMA, 100% KB, 15 MHZ, 16-QAM)		10.00	<u> </u>
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6%
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6%
10274	CAR	LIMTS-EDD (HSUPA Subtest 5, 3GPP Rel8 10)	WCDMA	4.87	±9.6 %
10275			WCDMA	206	+06%
102/0			DUO	44.04	- 0.0 /0
10277		PHS (QPSK)	PHS	11,81	±9.0%
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10200	AAR	CDMA2000 RC1 S055 Full Rate	CDMA2000	3.91	+9.6%
10200		CDMA2000, PC2, CO55, Full Data	CDMA2000	2 / 6	+0.6.0/
10291	AAB			0.40	± 3.0 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6%
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAR	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6 %
10207		LTE-EDD (SC-EDMA 50% RB 20 MH- OPSK)		5.81	+96%
10231		LTE EDD (00 EDMA 60% DD 0 MUL OD010)		E 70	+0.6 %
10298	AAD	LIE-FUD (SU-FUMA, SU% KB, 3 MHZ, QPSK)		0.12	<u> </u>
10299	I AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	I LTE-FDD	1 6.39	1 ± 9,6 %

40000	A		I THE PART	6.00	10001
10300	AAD	LTE-FUD (SC-FDMA, 50% KB, 3 MHz, 64-QAM)	LIE-FUD	0,60	±9.6%
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	<u>12.0</u> 3	<u>±9.6</u> %
10302	AAA	IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRI	WIMAX	12.57	± 9.6 %
		symbols)			
10202	٨٨٨	IEEE 202 160 WIMAY (21:15 Ema 40MUz CAOAM DUCO)	10/10/07	10 60	+060/
10303	AAA	TEEE 002.100 WININA (01.10, 0HIS, TUNIEZ, 040/AM, PUOU)		12.02	10.0 %
10304	AAA	LEE 802.166 WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	± 9.6 %
10305	AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	Wimax	15.24	± 9.6 %
		symbols)			
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 640AM, PUSC, 18	WIMAX	14.67	± 9.6 %
10000	1000	evenhole)	11110 01	,	_ 0.0 /0
40007	0.00			14.40	+0.6.0/
10307	AAA	1222 102.106 WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	VANNAX	14.49	I 9.0 %
		symbols)			
10308	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6 %
10309	AAA	IEEE 802,16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WIMAX	14.58	±9.6%
		symbols)			
10310		IEEE 802 160 WIMAX (20:18 10ms 10MHz OPSK AMC 2v3 18	λ/inda χ	14 57	+96%
10010		aumhala)	V 11 1 1 1 1 1 1 1	14,07	10.0 /0
10011	L	Symbols)		0.00	
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)		6.06	±9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	±9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6 %
10315	AAR	IEEE 802 11h WIEi 2 4 GHz (DSSS 1 Mbns 96nc duty cycle)	WIAN	1.71	±9.6 %
10246		IEEE 802 11a MiEi 2 4 GHz (EPD OEDM & Mbre, 06no duty cycle)		8.26	+96%
10310				0.00	± 9.0 %
10317		IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6%
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6 %
10354		Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6%
10255		Pulso Wayoform (200Hz, 60%)	Generic	2.00	+ 9 6 %
10355				4.22	10.0%
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±90%
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6%
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6%
10396	ΔΔΔ	64-OAM Waveform 100 kHz	Generic	6.27	+96%
40200		64 OAM Moustorm 40 Mills	Gonorio	6 27	+06%
10399				0.41	
10400		IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.3/	±9.0%
10401	<u> AA</u> D	IEEE 802.11ac WIFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6%
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3,76	±9.6 %
10404			CDMA2000	3 77	+96%
10404		ODWA2000 DO2 0000 0000 E-0 D-4	0010172000	E 00	±0.0 /0
10406		UDIVIAZUUU, KU3, SU32, SUHU, FUII KATE		0.22	I 9.0 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LIE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9, Subframe Conf=4)			
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	±9.6%
10415	ΔΔΔ	IEEE 802 11h WIEL2 4 GHz (DSSS 1 Mbns 99nc duty cycle)	WIAN	1 54	+9.6%
10410	1 1 1 1	IEEE 202 11a M/IEI 2 A CHa (EDD OEDM & Mhaa Oona duty avala)		2 22	+0.6%
10410				0.23	± 3,0 %
10417		ILEE 802.11a/n WIFI 5 GHZ (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	0.23	±9.0%
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.14	± 9.6 %
1		Long preambule)			
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM. 6 Mbps. 99pc duty cycle.	WLAN	8,19	± 9.6 %
		Short preambule)			
40400		IEEE 002 14p /UT Croonfold 7.2 Minos DDOV		8 2 2	+0604
10422	AAB			0.32	1 3.0 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802,11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426		IEEE 802 11n (HT Greenfield 90 Mbns 16-04M)	WIAN	845	+96%
10420		IFFE 002.1111 (IT Oreganized 450 Miles 64 OAM)		0.70	10.0 %
10427	AAB	IEEE 602.110 (F1 Greenileid, 150 Mbps, 64-QAM)		0.41	<u> </u>
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LIE-FDD	8.28	±9.6%
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10422				8 34	+96%
10433				0.04	10.0 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)		0.00	<u>±9.0%</u>
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
1	1	Subframe=2,3,4,7,8,9)		1	<u> </u>
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10440	AAD	$ITE_EDD (OEDMA 10 MHz E_TM 3.1 Clipping 44%)$		7 52	+96%
10440		$\frac{1}{1} = \frac{1}{10} \frac{1}{10} \frac{1}{100} \frac{1}{1$		7 51	+0.0 /0
10449	AAC	LIE-FUD (OFDIMA, 15 MHZ, E-1M 3.1, Cliping 44%)			<u> </u>
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LIE-FDD	1.48	±9.6%

10454			14/00144	7 50	1000
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)		7,59	<u>±9.6 %</u>
10453	AAD	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAR	JEEE 802 11ac WIEI (160MHz 64-OAM 99oc duty cycle)	WI AN	8.63	+96%
10400				6.60	106%
10457	AAA		WODIVIA	0.02	± 9.0 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	A A A			230	+96%
10400	- AAAA			2.53	10.0 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LIE-IDD	7.82	±9.6%
		Subframe=2.3.4.7.8.9)			
10462	AAR	LTE TOD (SC EDMA 1 PB 14 MHz 16 OAM 11)		830	+96%
10402				0.50	1 0.0 %
		Subtrame=2,3,4,7,8,9)			
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.6 %
		Subframe=2 3 4 7 8 9)			
10404				7.00	1069/
10464	AAC	LTE-TUD (SC-FDIWA, TRB, 3 MHZ, QPSK, UL	LIE-IDD	1.02	±9.0 %
		Subframe=2,3,4,7,8,9)			
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2.3.4.7.8.9			
40400				0.57	1000
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHZ, 64-QAM, UL		8.57	±9.6%
		Subframe=2,3,4,7,8,9)			
10467	AAF	LTE-TDD (SC-EDMA 1 RB 5 MHz OPSK UI	I TE-TDD	7 82	+9.6%
10401	1	$E_{1} = 100 (0010 mm, 110, 000 mm, 2, 0, 010, 02)$		1.02	- 0.0 /0
		Subiraine-2,3,4,7,0,9)			
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6 %
		Subframe=2,3,4,7,8,9)	1		
10469		LTE-TOD (SC-EDMA 1 RB 5 MHz 64-0AM LIL		8.56	+96%
10405				0.00	2 0.0 70
		Subtrame=2,3,4,7,8,9)			
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
		Subframe=2 3 4 7 8 9)			
40474				0.22	1069/
10471		LTE-TUD (SC-FUMA, TRB, TUMHZ, TO-QAM, UL	LIE-IDD	0.32	I9.0 %
		Subframe=2,3,4,7,8,9)			
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6 %
		Subframe= 234780		1	
10.170	L			7 00	1000
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHZ, QPSK, UL		7.8Z	±9.0 %
		Subframe=2,3,4,7,8,9)			
10474	AAF	LTE-TDD (SC-EDMA, 1 RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6 %
10171		Subfromo=2.2.4.7.9.0)			
				0.57	1000
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LIE-IDD	8.57	±96%
		Subframe=2,3,4,7,8,9)			
10477	ΔΔΕ	LTE-TOD (SC-EDMA 1 BB 20 MHz 16-OAM LIL	I TE-TDD	8.32	+96%
10477	1.0.1	Cubfrom = 2.2.4.7.9.0)			2010 /0
		Subirame=2,3,4,7,8,9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-IDD	8.57	±9.6%
		Subframe=2,3,4,7,8,9)			
10470		LTE TOD (SC EDMA 50% PB 14 MHz OPSK III		7 74	+96%
10475				'.' -	10.0 /0
		Subtrame=2,3,4,7,8,9)			
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	±9.6 %
		Subframe=2.3.4.7.8.9)			
10/91		LTE-TOD (SC-EDMA 50% RB 1 4 MHz 64-0AM LI		8.45	+96%
10401		r = r = -700 (00-1 Divin, 00/8 ND, 1.4 WH2, 04-QAW, 0L		0.40	- 0.0 /0
	<u> </u>	Subtrame=2,3,4,7,8,9)		ļ	
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL	LTE-TDD	7.71	±9.6 %
		Subframe=2.3.4.7.8.9)		1	
10400	1 440			0.20	+06%
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHZ, 16-QAM, UL		0.39	±9.0%
		Subframe=2,3,4,7,8,9)			
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.47	± 9.6 %
	1	Subframe= 234789			
10105				7.50	100%
10485	AA⊢	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LIE-IDD	7.59	±9.0%
		Subframe=2,3,4,7,8,9)			
10486	AAF	LTE-TOD (SC-EDMA 50% RB 5 MHz 16-OAM U	I TE-TDD	8.38	$\pm 9.6\%$
10400	1			0.00	
		Subitanie-2,3,4,7,0,9)			
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LIE-IDD	8.60	±9.6%
		Subframe=2,3,4,7,8,9)			
10499		LTE-TOD (SC-EDMA 50% RB 10 MHz OPSK 11		7 70	+96%
10400				'.''	- 0.0 /0
l		Subtrame=2,3,4,7,8,9)			
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
		Subframe=2 3 4 7 8 9)			
40400	1			0 54	+060/
10490	AAH	LIE-IDD (SC-FDMA, SU% KB, TU MHZ, 64-QAM, UL		0.54	I 9.0 %
1		Subframe=2,3,4,7,8,9)	1	1	

10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.41	± 9.6 %
10100		Subframe=2,3,4,7,8,9)		0.55	
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LIE-IDD	8.55	±9.6%
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
40405	A A E	Subframe=2,3,4,7,8,9)		0.27	
10495		Subframe=2.3.4.7.8.9)		0.37	I9.0 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
40407		Subframe=2,3,4,7,8,9)		7 67	+06%
10497		Subframe=2.3.4.7.8.9)		1.01	I9.0 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	±9.6 %
10400		Subframe=2,3,4,7,8,9)		8.68	+96%
10455		Subframe=2,3,4,7,8,9)		0.00	20.070
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL	LTE-TDD	7.67	±9.6 %
10501	AAC	Subframe=2,3,4,7,8,9)		8 4 4	+96%
10001		Subframe=2,3,4,7,8,9)		0.11	20.0 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.52	± 9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL	LTE-TDD	7.72	±9.6 %
		Subframe=2,3,4,7,8,9)			
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.31	±9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.74	±9.6%
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.36	± 9.6 %
10000		Subframe=2,3,4,7,8,9)		0.55	
10508	AA⊦ 	LTE-TDD (SC-FDMA, 100% RB, 10 MHZ, 64-QAM, 0L Subframe=2.3.4.7.8.9)	LIE-IDD	8.55	±9.0%
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL	LTE-TDD	7.99	±9.6 %
10510		Subframe=2,3,4,7,8,9)		8 40	+96%
10510		Subframe=2,3,4,7,8,9)		0.45	1 3.0 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.51	±9.6 %
10512		Subframe=2,3,4,7,8,9)		7 74	+96%
10512		Subframe=2,3,4,7,8,9)	E12-100	1.14	10.0 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.42	± 9.6 %
10514	AAF	Subtrame=2,3,4,7,8,9)	I TE-TDD	8.45	± 9.6 %
	, , , ,	Subframe=2,3,4,7,8,9)			
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	$\pm 9.6\%$
10516		IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)		1.57	$\pm 9.6\%$
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6%
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521		IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)		0.97	±9.6%
10522		IEEE 802.11a/n WIFI 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)		8.45	+96%
10523		IFEE 802 11a/h WIFI 5 GHz (OFDM, 40 Mbps, 33pc duty cycle)	W/LAN	8 27	+96%
10524	AAR	IEEE 802 11ac WiFi (20MHz MCS0 99nc duty cycle)	WLAN	8.36	$\pm 9.6\%$
10526	AAR	IEEE 802.11ac WiFi (20MHz, MCS1, 99nc duty cycle)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 %

EUmmWV3 - SN: 9420

10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10533	ΔΔΒ	IEEE 802 11ac WiEi (20MHz, MCS8, 99pc duty cycle)	W/LAN	8.38	+96%
10000				0.00	
10534	AAB	TEEE 802.11ac WIFI (40MHZ, MCSU, 99pc duty cycle)	VVLAN	8.45	±9.0 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6 %
10536	AAB	IEEE 802,11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10537	ΔΔΒ	IEEE 802 11ac WiEi (40MHz, MCS3, 99pc duty cycle)	ΜΙ ΔΝ	8 44	+96%
10007				0.44	+ 0.0 %
10538	AAR	IEEE 802.11ac WIFI (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6 %
10541	AAB	IEEE 802 11ac WiEi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	+9.6 %
10542		IEEE 902 11 too M/Ei (40MHz, MCS9, 00po duty oyolo)		9.65	+06%
10042	AAD		WLAN	0.00	19.0 %
10543	I AAB	IEEE 802.11ac WIFI (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802 11ac WiEi (80MHz, MCS1, 99pc duty cycle)	WI AN	8.55	+96%
40546				0.00	10.0 %
10040	AAD	IEEE 802.11ac WIFI (80/MHZ, MCS2, 99pc duty cycle)	WLAN	6.35	±9.0 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6 %
10548	AAB	IEEE 802,11ac WIFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6 %
10550	AAR	IEEE 802 11ac WiEi (80MHz, MCS6, 00nc duty cyclo)		8.38	+96%
10000				0.50	10.0 %
10551	AAB	IEEE 802.11ac WIFI (80MHZ, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6 %
10553	AAB	IEEE 802 11ac WiEi (80MHz, MCS9, 99nc duty cycle)	WLAN	8 4 5	+96%
10000		IFFF 902 44 ap WiFi (460MHz, MOCO, 00pp duty cycle)		0.10	+06%
10554	AAU		VVLAIN	0.40	<u>19.0%</u>
10555		IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6%
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6 %
10557	AAC	IEEE 802 11ac WiEi (160MHz MCS3, 99nc duty cycle)	WIAN	8.52	+96%
10507	100			0.02	
10558	AAC	IEEE OUZ.TTAC WIFT (TOUIVIPIZ, WIUS4, 99pc duty cycle)	VVLAIN	0.01	±9.0 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6 %
10561	AAC	IEEE 802,11ac WiEi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802 11 ac W/Ei (160MHz, MCS8, 99 ac duty cyclo)		8.60	+06%
10002	1 ANO			0.03	1 3.0 %
10563		IEEE 802.11ac WIFI (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6%
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty	WLAN	8.25	±9.6%
		cvcle)			
10565	0.00	IEEE 900 44a WEE 0 4 CUm (DECE OEDM 40 Mbns, 00ns duty	14/1 A N1	9.46	+06%
10505	AAA		WLAN	0,40	19.0 %
		Cýcle)			
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty	WLAN	8.13	±9.6 %
		cvcle)			
10567	A A A	IEEE 802 11a WiEi 2 4 CHz (DSSS-OEDM 24 Mbps, 90pc duty		8.00	+96%
10307		TEEE 002. Hg Wil 12.4 GHz (D000-01 DW, 24 Mops, oope duty	AACVIA	0.00	10.0 %
		Cycle)			
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	±9.6 %
	ļ	cvcle)			
10560		IEEE 802 11a WiEi 2 4 GHz (DSSS-OEDM 48 Mbps, 99pc duty	ΜΙ ΔΝ	8 10	+96%
10000			TTE U	0.10	1 0.0 /0
		Cycle)			
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	±9.6 %
		cvcle)			
10571		IEEE 802 11h WiEi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	W/LAN	1 99	+96%
10571		IEEE 002.115 WIT12.4 OTI2 (D000, 1 Mbps, 00pc daty cycle)		1.00	10.0%
10572	AAA	IEEE 802.110 WIFI 2.4 GHZ (DSSS, 2 Mops, Supc auty cycle)	VVLAN	1.99	±9.0%
10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10574	AAA	IEEE 802,11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10575		IEEE 802 11a W/IEI 2 A CHz (DSSS OEDM 6 Mbps 00ps duty	ΜΙ ΔΝ	8 50	+96%
10070				0.55	- 0.0 /0
		cycie)			
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty	WLAN	8.60	±9.6%
1		cvcle)		ļ	
10577	۸۸۸	IEEE 802 11a WiEi 2 4 GHz (DSSS-OEDM 12 Mbps, 90pc duty	WLAN	870	+96%
10377	1 1111	TEEE 602. TIG WIFI 2.4 GHZ (DOGO-OFDIN, 12 Mohs, solid duty	IV LAIN	0.70	1 3.0 %
L		cycie)			
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8.49	± 9.6 %
1	1	cycle)		1	
10570	ΔΔΔ	IEEE 802 11a WiEi 2 4 GHz (DSSS-OEDM 24 Mbps, 90pc duty		8 36	+96%
10010			**	0.00	10.0 /0
		cycle)			
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	±9.6 %
		cycle)			
10591		JEEE 802 11g WiEi 2 4 GHz (DSSS-OEDM 48 Mbps, 90pc duty	WI AN	8 35	+96%
10001	1 ~~~~		11-11	0.00	
		Cycle)			
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	± 9.6 %
		cycle)		-	1
10583	AAR	IEEE 802.11a/h WiEi 5 GHz (OEDM_6 Mbps_90pc duty cycle)	WLAN	8 59	±9.6 %
10500		IFFF 902 14 a/b MiFi 5 OHz (OFDM, 0 Mbps, 00ps duty syste)		0.00	+06%
10084	I AAB	THELE OVAL TRAIN WIFLD GITZ (OF DIVI, 9 WIDPS, 90PC OUTY CYCIE)		j 0.00	1 2 3 0 70

EUmmWV3 - SN: 9420

February 14, 2020

· · · · · · · · · · · · · · · · · · ·				(
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802 11a/h WiEi 5 GHz (OEDM 24 Mbns 90nc duty cycle)	WLAN	8.36	+9.6%
10588		IEEE 802 11 2/h WIEI 5 GHz (OEDM 36 Mbps, 00pc duty cycle)		8 76	+96%
10500				0.70	10.0%
10589	AAB	TEEE 802.11a/h WIFI 5 GHZ (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	± 9.6 %
10592	AAR	IEEE 802 11n (HT Mixed 20MHz MCS1 90nc duty cycle)	WI AN	8 7 9	+96%
10502		IEEE 002.11n (IT Mixed, 20MUr, MCC1, 00p0 duty cycle)		9.64	+06%
10595	AAD		VVLAIN	0,04	<u>19.0 %</u>
10594	AAB	TEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6 %
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6 %
10597	AAB	IEEE 802 11n (HT Mixed 20MHz MCS6 90nc duty cycle)	WIAN	872	+96%
10507		IEEE 002.11n (ITT Mixed, 20MHz, MCCC, 00pc duty cycle)		8.50	+06%
10590	AAD			0.00	1 9.0 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6%
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10602	ΔΔΒ	IEEE 802 11n (HT Mixed 40MHz MCS3 90nc duty cycle)	WI AN	8.94	+96%
10002		IEEE 002.11m (ITT Mixed, 40MHz, MOOd, 50pb duty bysic)		0.01	+0.6 %
10003	AAD .			0.00	1 3 0 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6%
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6 %
10606	AAB	IEEE 802,11n (HT Mixed, 40MHz, MCS7, 90nc duty cycle)	WLAN	8.82	±9.6 %
10607		IEEE 802 11ac WiEi (20MHz, MCS0, 90nc duty cycle)	ΜΙ ΔΝ	8.6/	+96%
10007				0.04	1000
80001	AAB	IEEE OUZ. I TAC WIFT (ZUMITZ, MUST, 90pc duty cycle)	VVLAIN	0.11	I9.0%
10609		IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WIFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6 %
10611	AAB	IEEE 802 11ac WIEI (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6 %
10612	AAB	IEEE 802 11ac WiEi (20MHz MCS5, 90pc duty cycle)	ΜΙ ΔΝΙ	8 77	+96%
10012				0.77	100%
10613	AAB	I LEE 802.11ac WIFI (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.0 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10616	AAB	IEEE 802,11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6 %
10617	ΔΔR	IEEE 802 11ac WiEi (40MHz, MCS1, 90pc duity cycle)	WI AN	8.81	+96%
10017		IEEE 002, 11de Will (40Mile, MOS2, 00pe duty cycle)		0.01	±0.0%
10018	AAB			0.00	19070
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6%
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6 %
10621	AAB	IEEE 802,11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6 %
10622	AAR	IEEE 802 11ac WiEi (40MHz, MCS6, 90nc duty cycle)	WIAN	8.68	+9.6%
10622		IEEE 802 11cc WiEi (40MHz, MCS7, 90pc duty cyclo)		8.82	+96%
10025				0.02	19.0 %
10624	AAB	IEEE 802.11ac WIFI (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	± 9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8,96	±9.6 %
10626	AAB	IEEE 802.11ac WIFI (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6 %
10627	AAR	IEEE 802.11ac WIEi (80MHz, MCS1_90nc duty cycle)	WLAN	8,88	±9.6 %
10629		IEEE 802 11ac W/IEI (80MHz, MCS2, 90pc duty cyclo)	ΜΙ ΔΝ	8 71	+96%
10020				0.71	1069/
10629	AAB	IEEE OUZ.TTAC WIFT (OUMITZ, MUS3, SUPC OUTY CYCIE)	WLAN	0.00	<u>190%</u>
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6%
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802.11ac WIFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6 %
10633	AAR	IEEE 802 11ac WIEi (80MHz_MCS7_90nc duty cycle)	WLAN	8.83	+96%
10033				0.00	10.0 %
10634	AAB			0.00	<u> </u>
10635		IEEE 802.11ac WIFI (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6%
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cvcle)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802 11ac WiEi (160MHz_MCS2_90nc duty cycle)	WIAN	8,86	+9.6%
10630		IEEE 802 11ac W/iEi (160MHz MCS2 00pc duty cyclo)		2.00 2.25	+06%
10039	I AAC			0.00	10.0 %
10640	AAC	IEEE 802.11ac WIFI (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.0%
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	<u>±9.6 %</u>
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802 11ac WiEi (160MHz, MCS7, 90nc duty cycle)	WLAN	8.89	±9.6 %
10644		IEEE 802 11ac WiFi (160MHz, MCS9, 00pc duty cyclo)		Q.00	+96%
10044				0.00	<u></u>
10645	AAC	IEEE 802.11ac WIFI (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	19.0%
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.7)	LTE-TDD	11.96	±9.6 %
		CDMA2000 (4x Advanced)	CDMA2000	3.45	±06%

		·	*		
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAF	LTE-TOD (OEDMA 10 MHz E-TM 3.1 Clipping 44%)	I TE-TOD	7 4 2	+96%
10000				0.00	10.0%
10654		LTE-TOD (OFDIVIA, TS MITZ, E-TWI 3.1, Clipping 44%)	LIE-IDD	0.90	±9.0%
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6 %
10658	AAA	Pulse Waveform (200Hz 10%)	Test	10.00	+96%
10650		Pulse Mayoform (200Hz, 209()	Toot	6.00	+06%
10059	~~~		Test	0.99	± 9.0 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662		Pulse Waveform (200Hz 80%)	Toet	0.97	+96%
10002				0.07	10.0 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6%
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9.09	± 9.6 %
10672	ΔΔΔ	IEEE 802 11ax (20MHz_MCS1_90nc duty cycle)	WIAN	8 57	+96%
10672	<u> </u>	IEEE 002 11 av (20MHz, MCC2, 00pc duty cyclo)		0.70	+06%
10073	AAA		VVLAIN	0.70	<u>± 9.0 %</u>
10674	AAA	EEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6 %
10675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10676		IFEE 802 11ax (20MHz_MCS5_90pc duty cycle)	ΜΙ ΔΝ	8 77	+96%
40077				0.70	10.0%
10677	AAA	TEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	± 9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802,11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10690		IEEE 902 11av (2014Hz MCSO, 00pp duty cyclo)		0 00	106%
10000	- AAAA			0.00	1 3.0 %
10681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6%
10682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6 %
10683	ΔΔΔ	IEEE 802 11ax (20MHz_MCS0_99nc duty cycle)	WLAN	8 4 2	±9.6 %
10004		IEEE 002 11 av (20MUz MOC4 Office duty cyclo)	11.11 AN1	0.12	+060/
10084	AAA		WLAN	0.20	I9.0 %
10685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6 %
10686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	± 9.6 %
10697		IEEE 802 11av (20MHz, MCS4, 99pc duty cyclo)	M/LAN	8.45	+96%
10007				0.45	1 9.0 %
10688	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6%
10689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6%
10690	AAA	IEEE 802 11ax (20MHz_MCS7_99nc duty cycle)	WLAN	8.29	+9.6%
10000		IEEE 002.110x (20MI Iz, MOCP, 00po duty 0y00)		0.20	1069/
10091			VVLAN	0.20	<u> </u>
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6 %
10693	AAA	IEEE 802,11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6 %
10694	ΔΔΔ	IEEE 802 11ax (20MHz_MCS11_99pc duty cycle)	Μ/Ι ΔΝΙ	8 57	+96%
10004				0.07	
10695		IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6%
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	± 9.6 %
10608		IEEE 802 11ov (40MHz, MCS3, 90pc duty cyclo)		8.80	+96%
10030	-			0.03	1 3.0 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6 %
10701	AAA	IEEE 802 11ax (40MHz_MCS6_90pc duty cycle)	WIAN	8.86	+9.6%
10702	<u> </u>	IEEE 902 11 day (40MHz, MCCG7, 00pc duty cyclo)		9 70	106%
10702	- AAA			0.70	± 9.0 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6%
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6 %
10705	AAA	IEEE 802,11ax (40MHz, MCS10, 90nc duty cycle)	WLAN	8.69	±9.6 %
10706	1 1 1 1	IEEE 902 11 ox (40MHz MCS11 00no duty oyolo)		22.0	+96%
10700	AAA			0.00	1 3.0 %
10707		IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10709	ΔΔΔ	IFFE 802 11ax (40MHz_MCS2_99nc duty cycle)	WIAN	8.33	+96%
40740		IFFE 000 14 ov (40MHz MCC2, 00po duty oyolo)		0.00	106%
10/10	AAA			0.29	190%
10711	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6 %
10712	AAA	IEEE 802,11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6 %
10712	ΔΔΛ	IFEE 802 11ax (40MHz MCS6 99nc duty cycle)	ΜΙ ΔΝ	8 33	+96%
40711				0.00	
10/14	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	± 9.0 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10716	AAA	IEEE 802,11ax (40MHz, MCS9, 99nc duty cycle)	WLAN	8.30	±9.6 %
10717		IEEE 802 11ax (ANAHz, MCS10, ODea duty availa)		01.9	+0.6.0/
	AAA			0.40	± 9.0 %
10718		IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	± 9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cvcle)	WLAN	8.81	± 9.6 %
10720	ΔΔΔ	IEEE 802.11ax (80MHz, MCS1, 90nc duty cycle)	WLAN	8.87	±9.6%
40704		IEEE 002.11 ov (00Milz, MOC2, 00pp duty ovoid)	10/1 A NI	0.70	100%
10721	AAA		VVLAIN	0.70	190%
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6%
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cvcle)	WLAN	8.70	±9.6 %
h	1	UFFF 202 14 av (2011) - MORE 202 a duty avairable	10/1 A NI	0.00	1000

EUmmWV3 - SN: 9420

10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6%
10726	ΔΔΔ	IEEE 802 11ax (80MHz_MCS7_90nc duty cycle)	WIAN	8.72	+96%
10727		IEEE 802 11ax (80MHz, MCS8, 90pc duty cyclo)		8.66	+96%
10720		IEEE 002.11ax (00MHz, MCSO, 00pc duty cycle)		0.00	106%
10720				0.00	+0.6.0/
10729				0.04	<u>±9.0%</u>
10730			VVLAIN	0.07	±9.0 %
10731	AAA	TEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)	VVLAN	8.42	± 9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6 %
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6%
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	± 9.6 %
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6 %
10738	AAA	IEEE 802,11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6%
10740	AAA	IEEE 802 11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6%
10741		IEEE 802 11ax (80MHz_MCS10_99pc duty cycle)	WLAN	8.40	+9.6%
10742		IEEE 802 11ax (80MHz, MCS11, 99pc duty cycle)	WIAN	8 43	+96%
10743		IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)		8 94	+96%
10743		IEEE 002.11ax (160MHz, MCC0, Sope duty cycle)		0.16	+06%
10744		IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)		0.10	+06%
40740				0.90	1000
10/40			VVLAIN	9.11	
10/4/		TIELE 802.TTax (Touwitz, MUS4, 90pc duty cycle)	VVLAN	9.04	± 9.0 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	VVLAN	8.93	± 9.6 %
10749	AAA	LIEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6 %
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	± 9.6 %
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6 %
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6 %
10756	AAA	IEEE 802,11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10757	AAA	IEEE 802,11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6%
10758	AAA	IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6%
10759	AAA	IEEE 802 11ax (160MHz_MCS4_99pc duty cycle)	WLAN	8 58	+9.6%
10760		IEEE 802 11ax (160MHz, MCS5, 99pc duty cycle)	WLAN	8 4 9	+96%
10761		IEEE 802 11ax (160MHz, MCS6, 99pc duty cycle)	WLAN	8.58	+96%
10762		IEEE 802 11ax (160MHz, MCC37, 99pc duty cycle)		8 4 9	+96%
10762		EEE 002.11ax (160MHz, MCS8, 99pc duty cycle)		8.53	$\pm 0.0\%$
10703		EEE 802.11ax (100MHz, MCS0, 99pc duty cycle)		0.00	106%
10704				0.04	± 9.0 %
10765	AAA	IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6 %
10/66		IEEE 802.11ax (160MHZ, MCS11, 99pc duty cycle)	WLAN	8.51	± 9.0 %
10767	AAB	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	7.99	± 9.6 %
L	<u> </u>				
10768	AAB	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	± 9.6 %
L	ļ		TDD		
10769	AAB	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	±9.6 %
L	1		TDD		
10770	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
			TDD		<u> </u>
10771	AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	± 9.6 %
			TDD		
10772	AAB	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.23	± 9.6 %
			TDD		
10773	AAB	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1	8.03	± 9.6 %
1			TDD		
10774	AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.02	±9.6 %
			TDD		
10776	AAB	5G NR (CP-OEDM, 50% RB, 10 MHz, OPSK, 15 kHz)	5G NR FR1	8.30	±9.6 %
			TDD		
10778	AAR	5G NR (CP-OEDM 50% RB 20 MHz OPSK 15 kHz)	5G NR FR1	8.34	±9.6%
	,			0.01	_ 0.0 /0
10780		5G NR (CP-OEDM 50% RB 30 MHz OPSK 15 kHz)	5G NR FR1	8 38	+96%
	'""				

.

10781	AAB	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAB	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.43	± 9.6 %
10783	AAB	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	8.31	±9.6 %
10784	AAB	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.29	± 9.6 %
10785	AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1	8.40	± 9.6 %
10786	AAB	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.35	±9.6 %
10787	AAB	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10788	AAB	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6 %
10789	AAB	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6 %
10790	AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6 %
10791	AAB	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAB	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6 %
10793	AAB	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6 %
10794	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6 %
10796	AAB	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAB	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAB	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6 %
10801	AAB	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6 %
10802	AAB	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAB	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAB	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6 %
10809	AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAB	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAB	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAB	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10818	AAB	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10819	AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6 %
10820	AAB	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9,6 %
10821	AAB	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %

10822	AAB	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1	8.41	± 9.6 %
10823	AAB	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.36	± 9.6 %
10824	AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1	8.39	± 9.6 %
10825	AAB	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	8.41	± 9.6 %
10827	ΔΔΒ	5G NR (CP.OEDM 100% RB 80 MHz OPSK 30 kHz)	TDD 5G NR ER1	8.42	+96%
10027			TDD	0.42	10.0 %
10828		5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)	TDD	8.43	±9.6%
10829	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6 %
10830	AAB	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1	7.63	±9.6 %
10831	AAB	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	7.73	± 9.6 %
10832	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	7.74	± 9.6 %
10833	AAB	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10834	AAB	5G NR (CP-OEDM, 1 RB, 30 MHz, OPSK, 60 kHz)	TDD 5G NR FR1	7 75	+96%
10925			TDD	7.70	10.6 %
10035	AAD		TDD	7.70	±9.0 %
10836	AAB	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6 %
10837	AAB	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1	7.68	± 9.6 %
10839	AAB	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1	7.70	± 9.6 %
10840	AAB	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1	7.67	± 9.6 %
10841	ААВ	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1	7.71	± 9.6 %
10843	AAB	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	8.49	±9.6 %
10844	AAB	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	8.34	±9.6 %
10846	AAB	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1	8.41	± 9.6 %
10854	AAB	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1	8.34	± 9.6 %
10855	AAB	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAB	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAB	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6 %
10858	AAB	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAB	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAB	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10861	AAB	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAB	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10864	AAB	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,37	± 9.6 %
10865	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6 %

10866	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAB	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2	5.86	± 9.6 %
10871	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2	5.75	± 9.6 %
10872	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2	6.52	± 9.6 %
10873	AAC	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2	6.61	± 9.6 %
10874	AAC	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2	6.65	± 9.6 %
10875	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2	7.78	± 9.6 %
10876	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2	8.39	± 9.6 %
10877	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2	7.95	± 9.6 %
10878	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2	8.41	± 9,6 %
10879	AAC	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2	8.12	± 9,6 %
10880	AAC	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2	8.38	± 9.6 %
10881	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2	5.75	± 9.6 %
10882	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: 5G-Veri30-1035_Feb20

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION C	ERTIFICATE					
Object	5G Verification Se	ource 30 GHz - SN: 1035	Mr. al			
Calibration procedure(s)	QA CAL-45.v2 Calibration procedure for sources in air above 6 GHz					
Calibration date:	February 12, 2020					
This calibration certificate documer The measurements and the uncerta All calibrations have been conducte	nts the traceability to nation ainties with confidence pr ad in the closed laboratory	onal standards, which realize the physical units of obability are given on the following pages and are y facility: environment temperature $(22 \pm 3)^{\circ}$ C and	measurements (SI). e part of the certificate. d humidity < 70%.			
Calibration Equipment used (M&TE	critical for calibration)					
Primary Standards		Cal Date (Certificate No.)	Schoolulad Calibration			
Reference Probe EUmmWV3	SN: 9374	31-Dec-19 (No. EUmmWV3-9374 Dec19)				
DAE4ip	SN: 1602	01-Oct-19 (No. DAE4ip-1602_Oct19)	Oct-20			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
	Name	Function	Signature			
Calibrated by:	Jeton Kastrati	Laboratory Technician	. 1/-			
		\sim	ZEVP			
Approved by:	Katja Pokovic	Technical Manager				
			July			
	he reproduced	6. H	Issued: February 18, 2020			
This calibration certificate shall not	be reproduced except in t	rull without written approval of the laboratory.				

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

Methods Applied and Interpretation of Parameters

- *Coordinate System:* z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- *Measurement Conditions: (1) 10 GHz:* The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz. The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- *Horn Positioning:* The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- *Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

Local peak E-field (V/m) and peak values of the total and normal component of the poynting vector |Re{S}| and n.Re{S} averaged over the surface area of 1 cm² (pS_{tot}avg1cm² and pS_navg1cm²) and 4cm² (pS_{tot}avg4cm² and pS_navg4cm²) at the nominal operational frequency of the verification source.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	cDASY6 Module mmWave	V2.0
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 2.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	30 GHz ± 10 MHz	

Calibration Parameters, 30 GHz

Distance Horn Aperture to Measured Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density n.Re{S}, Re{S} (W/m2)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	29.0	126	1.27 dB	36.5, 36.9	32.1, 32.5	1.28 dB

¹ derived from far-field data

DASY Report

Measurement Report for 5G Verification Source 30 GHz, UID 0 -, Channel 30000 (30000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm	Dimensions [mm]		MEI DUT Type	
So vernication source so o	HZ 100.0 X 100.0 X 1	100.0	SN: 1035	-	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	5.55 mm	Validation band	CW	30000.0, 30000	1.0
Hardware Setup Phantom mmWave Phantom - 1002	Medium Air		Probe, Calib EUmmWV3 2019-12-31	ration Date - SN9374_F1-78GHz,	DAE, Calibration Date DAE4ip 5n1602, 2019-10-01
Scan Setup			Measuren	nent Results	

Grid Extents (mm) Grid Steps (lambda] Sensor Surface (mm) MAIA 5G Scan 60.0 x 60.0 0.25 x 0.25 5.55 MAIA not used Date Avg. Area [cm²] pS_{Lot} avg [W/m²] pS_n avg [W/m²] E_{Peak} [V/m] Power Drift [dB] 5G Scan 2020-02-12, 08:14 1.00 36.9 36.5 126 -0.05

