

FCC CFR47 PART 15 SUBPART C

ANT+

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+, NFC and WPT

MODEL NUMBER: SM-N975F/DS, SM-N975F, SM-N975X

FCC ID: A3LSMN975F

REPORT NUMBER: 4789067225-E10V2

ISSUE DATE: JUN 28, 2019

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by
UL Korea, Ltd.
26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	06/27/19	Initial issue	Junwhan Lee
V2	06/28/19	Updated to address TCB's question	Junwhan Lee

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
1.	.1.	INTRODUCTION OF TEST DATA REUSE	5
1.	2.	DIFFERENCE	5
1.	.3.	SPOT CHECK VERIFICATION DATA	5
1.	4.	REFERENCE DETAIL	6
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	7
4.	СА	LIBRATION AND UNCERTAINTY	7
4.	.1.	MEASURING INSTRUMENT CALIBRATION	7
4.	2.	SAMPLE CALCULATION	7
4.	3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
5.	1.	DESCRIPTION OF EUT	8
5.	2.	MAXIMUM E-FIELD STRENGTH	8
5.	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.	4.	WORST-CASE CONFIGURATION AND MODE	8
5.	5.	DESCRIPTION OF TEST SETUP	9
6.	TE	ST AND MEASUREMENT EQUIPMENT	11
7.	LIN	MITS AND RESULTS	12
7.	1.	99% BANDWIDTH	12
7.	2.	TRANSMITTER RADIATED EMISSIONS	
	7.2		16
	–	.1. FUNDAMENTAL FIELD STRENGTH LEVEL	
		.3. HARMONICS AND SPURIOUS EMISSIONS	
		.4. SPURIOUS BELOW 1 GHz	
8.	AC	POWER LINE CONDUCTED EMISSIONS	35
۵	SE	THE PHOTOS	38

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

1. ATTESTATION OF TEST RESULTS

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+,

NFC and WPT

MODEL NUMBER: SM-N975F/DS, SM-N975F, SM-N975X

SERIAL NUMBER: R3CM506PPMB (CONDUCTED, Original)

cea741c773197e35, R3CM506Q9KN (RADIATED, Original);

R38M50ASH5W(Spot check)

DATE TESTED: MAY 30, 2019 – JUN 17, 2019 (Original);

JUN 21, 2019 - JUN 28, 2019 (Spot check);

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Korea, Ltd. By:

Tested By:

SungGil Park Suwon Lab Engineer UL Korea, Ltd. Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

Page 4 of 43

DATE: JUN 28, 2019

1.1. INTRODUCTION OF TEST DATA REUSE

This report referenced from the FCC ID: A3LSMN976B DXX ANT+(FCC CFR 47 Part 15C). And the applicant takes full responsibility that the test data as referenced in this report represent compliance for this FCC ID.

1.2. DIFFERENCE

The FCC ID: A3LSMN975F shares the same enclosure and circuit board as FCC ID: A3LSMN976B. The ANT+ antennas and surrounding circuitry and layout are identical between these two units.

After confirming through preliminary radiated emissions that the performance of the FCC ID: A3LSMN976B remains representative of FCC ID: A3LSMN975F. The test data of FCC ID: A3LSMN976B being submitted for this application to cover ANT+ features.

1.3. SPOT CHECK VERIFICATION DATA

(Worst case of the radiated spurious and band edge emissions)

				Original model	Spot check model		
Mode	Test Item	Test Item Fundamental Frequency		SM-N976B SM-N975F,		Deviation	Remark
		. ,		FCC ID : A3LSMN976B	FCC ID : A3LSMN975F		
	Fundamental	2480 MHz	114 dBuV/m	96.97 dBuV/m	98.71 dBuV/m	1.74 dB	
ANT+	Band Edge	2402 MHz	74 dBuV/m	57.14 dBuV/m	56.65 dBuV/m	-0.49 dB	
	RSE	2480 MHz	74 dBuV/m	40.57 dBuV/m	39.07 dBuV/m	-1.50 dB	Noise floor level

Comparison of two models, upper deviation is within 3dB range and all test results are under FCC Technical Limits.

DATE: JUN 28, 2019

1.4. REFERENCE DETAIL

Reference application that contains the reused reference data in the individual test reports:

Equipment	Reference FCC	Application	Reference Test	Exhibit	Variant Test	Data	
Class	ID (Parent)	Type	report number	Type	Report Number	Re-used	
PCE	A3LSMN976B	Original	4789009800-E2	Test Report	4789067225-E2	All	
FOL	ASESIVINGTOB	Grant	4789009800-E3	Test Report	4789067225-E3	All	
			4789009800-E5	Test	4789067225-E5	All	
			(802.11b/g/n)	Report	(802.11b/g/n)	All	
DTS	A3LSMN976B	Original	4789009800-E6	Test	4789067225-E6	All	
013	ASLSIVIN9/0D	Grant	(802.11ax)	Report	(802.11ax)	All	
			4789009800-E4	Test	4789067225-E4	ΛII	
			Bluetooth LE	Report	Bluetooth LE	All	
DSS	A3LSMN976B	Original	4789009800-E7	Test	4789067225-E7	All	
DSS	ASLSIVIN9/0D	Grant	(Bluetooth)	Report	(Bluetooth)	All	
			4789009800-E8	Test	4789067225-E8	All	
NII	A3LSMN976B	Original	(802.11a/n/ac)	Report	(802.11a/n/ac)	All	
INII	ASLSIVIN9/0D	Grant	4789009800-E9	Test	4789067225-E9	All	
			(802.11ax)	Report	(802.11ax)	All	
			4789009800-E10	Test	4789067225-E10	All	
DVV	A OL CMANOZED	Original	(ANT+)	Report	(ANT+)	All	
DXX	A3LSMN976B	Grant	4789009800-E11	Test	4789067225-E11	All	
			(NFC)	Report	(NFC)	All	
DCD	A 21 CMANOZED	Original	4789009800-E12	Test	4789067225-E12	All	
DCD	A3LSMN976B	Grant	(WPT)	Report	(WPT)	AII	

For this application the data reuse is summarized below for each equipment class:

Equipment Class	Reference FCC ID (Parent)	Application Type	Data Re-used
PCE	A3LSMN976B	Original	All except SAR (full test), HAC (full test)
		Grant	All except SAR (full test), HAC (full test) All except SAR (full test), HAC (full test)
DTS	A3LSMN976B Original Grant		All except SAR (full test), HAC (full test)
			All
DSS	A3LSMN976B	Original Grant	All except SAR (full test)
NII	A3LSMN976B Original		All except SAR (full test), HAC (full test)
1411	Grant		All except SAR (full test), HAC (full test)
DXX	A3LSMN976B	Original	All
DAA	ASLSIVIN9/0D	Grant	All
DCD	A3LSMN976B	Original Grant	All except RF exposure

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 15.
- 3. ANSI C63.10-2013.
- 4. KDB 484596 D01 Referencing Test Data v01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro				
☐ Chamber 1				
☐ Chamber 2				
☐ Chamber 3				

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, 30 MHz to 1 GHz	3.86 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.97 dB
Radiated Disturbance, 18 GHz to 40 GHz	5.57 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 43

DATE: JUN 28, 2019

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, ANT+, NFC and WPT. This test report addresses the ANT+ operational mode.

5.2. MAXIMUM E-FIELD STRENGTH

The ANT+ mode has maximum output fundamental field strength as follows:

Frequency Range	requency Range Mode		Avg E-field Strength	Distance
[MHz]		[dBuV/m]	[dBuV/m]	[m]
2402 - 2480	ANT +	96.97	66.76	3.00

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of -6.11 dBi

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emission above 1GHz was performed with the EUT set to transmit low/mid/high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Note: All radiated and power line conducted tests were performed attached with travel adapter for the worst case condition mode.

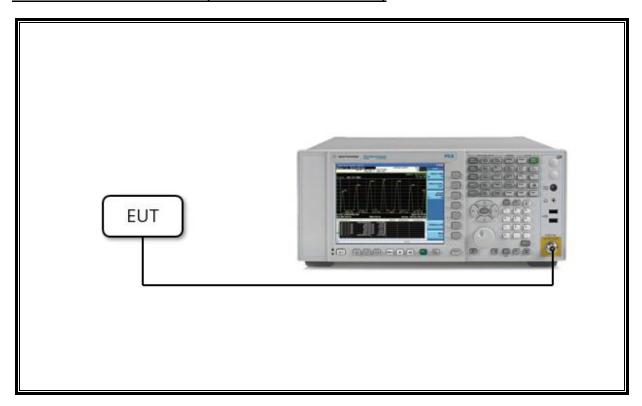
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

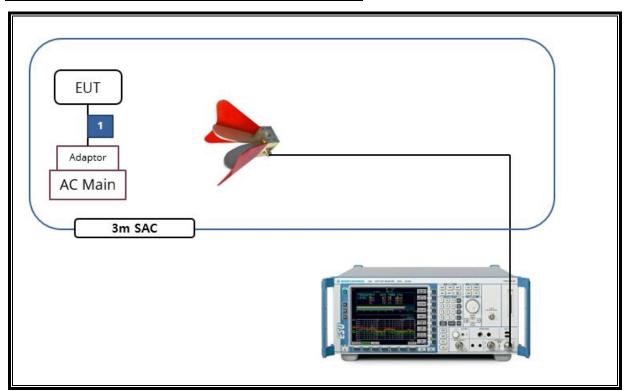
Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Charger	SAMSUNG	EP-TA800	R37M4PW4FW1SE3	N/A		
Data Cable SAMSUNG		EP-DG977	N/A	N/A		

I/O CABLE

I/O Cable List						
Cable No Port # of identical ports Connector Type Cable Type Cable Length (m) Remark					Remarks	
1	DC Power	1	C Type	Shielded	1.0m	N/A


TEST SETUP

The EUT is set to continuously transmit in ANT + test mode.


Test software in hidden menu exercised the EUT to enable ANT+ mode.

This EUT is able to equipped with S-pen on the inside. Spot check were performed both inserted and removed condition. Because there is no deviation between the two data, all tests were performed under equipped with the S-pen.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equipment List							
Description	Manufacturer	Model	S/N	New Cal Due				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-04-20				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-04-20				
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-04-20				
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-26-19				
Antenna, Horn, 18 GHz	ETS	3115	00167211	08-04-20				
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00168724	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-04-20				
Antenna, Horn, 18 GHz	ETS	3117	00205959	08-04-20				
Antenna, Horn, 40 GHz	ETS	3116C	00166155	08-14-20				
Antenna, Horn, 40 GHz	ETS	3116C	00168645	12-04-19				
Antenna, Horn, 40 GHz	ETS	3116C-PA	00168841	08-09-19				
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-07-19				
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-07-19				
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-07-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-07-19				
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-07-19				
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	08-07-19				
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-06-19				
Spectrum Analyzer, 43.5 GHz	R&S	FSW43	104089	08-06-19				
Average Power Sensor	Agilent / HP	U2000	MY54270007	08-07-19				
Attenuator	PASTERNACK	PE7087-10	A001	08-08-19				
Attenuator	PASTERNACK	PE7087-10	A008	08-08-19				
Attenuator	PASTERNACK	PE7004-10	2	08-07-19				
Attenuator	PASTERNACK	PE7087-10	A009	08-08-19				
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-06-19				
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-06-19				
EMI Test Receive, 44 GHz	R&S	ESW44	101590	08-06-19				
EMI Test Receive, 3 GHz	R&S	ESR3	101832	08-06-19				
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	009	08-07-19				
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	015	08-07-19				
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	020	08-06-19				
High Pass Filter 3GHz	Micro-Tronics	HPM17543	010	08-07-19				
High Pass Filter 3GHz	Micro-Tronics	HPM17543	015	08-07-19				
High Pass Filter 3GHz	Micro-Tronics	HPM17543	020	08-06-19				
High Pass Filter 6GHz	Micro-Tronics	HPS17542	009	08-07-19				
High Pass Filter 6GHz	Micro-Tronics	HPS17542	016	08-07-19				
High Pass Filter 6GHz	Micro-Tronics	HPS17542	021	08-06-19				
LISN	R&S	ENV-216	101837	08-09-19				
	Ü	L Software						
Description	Manufacturer	Model	Ve	rsion				
Radiated software	UL	UL EMC	Ve	er 9.5				
AC Line Conducted software	UL	UL EMC	Ve	er 9.5				

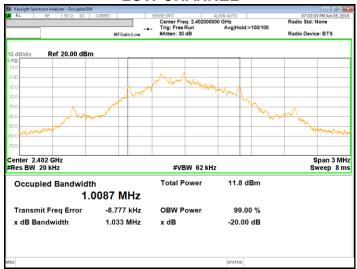
7. LIMITS AND RESULTS

7.1. 99% BANDWIDTH

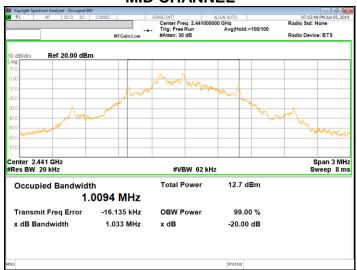
LIMITS

None; for reporting purposes only.

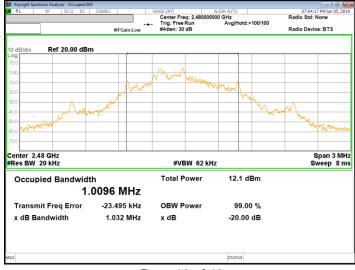
TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency	99% Bandwidth	20 dB Bandwidth
Chamilei	[MHz]	[kHz]	[kHz]
Low	2402	1008.7	1033.0
Mid	2441	1009.4	1033.0
High	2480	1009.6	1032.0
Worst		1009.6	1033.0

99% BANDWIDTH PLOTS


LOW CHANNEL

MID CHANNEL

HIGH CHANNEL

Page 13 of 43

7.2. TRANSMITTER RADIATED EMISSIONS

TEST PROCEDURE

ANSI C63.10: 2013

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150 cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and add duty cycle factor for average measurements.

Pre-scans to detect harmonic and spurious emissions, the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

LIMIT

FCC §15.249

Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

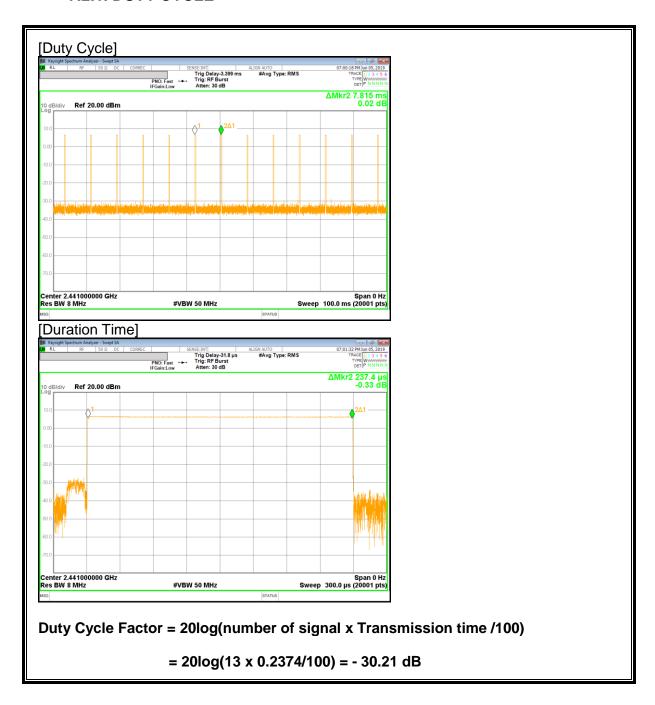
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.
- (e) As shown in Sec. 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

FCC §15.205 and §15.209

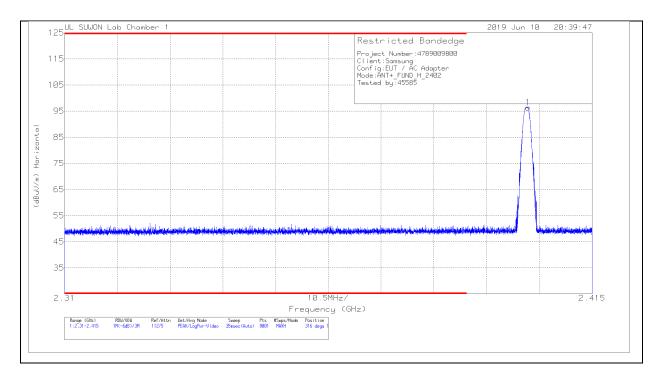
Limits for radiated disturbance of an intentional radiator							
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)					
0.009 - 0.490	2400 / F (kHz)	300					
0.490 – 1.705	24000 / F (kHz)	30					
1.705 – 30.0	30	30					
30 – 88	100**	3					
88 - 216	150**	3					
216 – 960	200**	3					
Above 960	500	3					

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241.


Note: Emission was pre-scanned from 9KHz to 30MHz; No emissions were detected which was at least 20dB below the specification limit (consider distance correction factor). Per FCC part 15.31(o), test results were not reported.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open are test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the one of tests made in an open field based on KDB 414788.


RESULTS

7.2.1. DUTY CYCLE

7.2.1. FUNDAMENTAL FIELD STRENGTH LEVEL

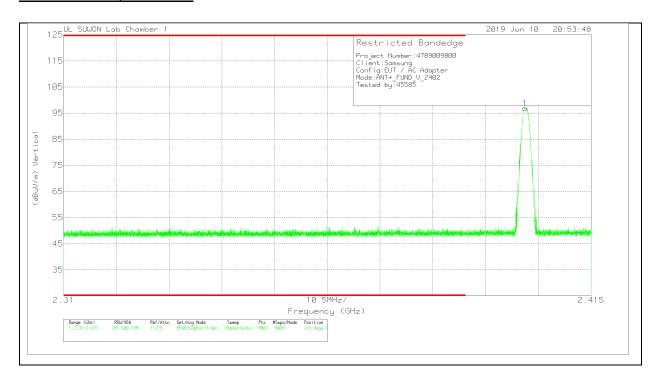
LOW CHANNEL, HORIZONTAL

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	Corrected	Azimuth	Height	Polarity
	(GHz)	Reading				Reading	(Degs)	(cm)	
		(dBuV)				(dBuV/m)			
1	2.40226	90.04	Pk	31.7	-25.4	96.34	316	154	Н

Pk - Peak detector

*	Peak reading	Limit	Margin		
	(dBuV/m)	(dBuV/m)	(dB)		
	96.34	114	17.66		


^{**} For marker 1 used the following method to do averaging:

DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

= 96.34 + -30.21 = 66.13 dBu/Vm AVG Limit : 94 dBu/Vm, Margin 27.87 dB]

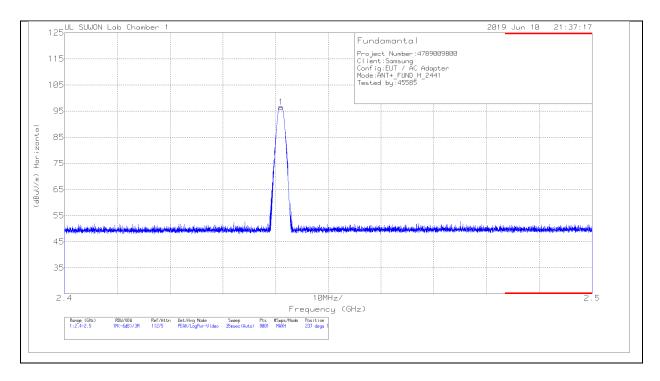
LOW CHANNEL, VERTICAL

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	3117_00168717	10dB[dB]	Corrected Reading	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)			
1	2.40185	90.51	Pk	31.7	-25.4	96.81	121	170	V

Pk - Peak detector

*	Peak reading	Limit	Margin		
	(dBuV/m)	(dBuV/m)	(dB)		
	96.81	114	17.19		


^{**} For marker 1 used the following method to do averaging:

DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

= 96.81 + -30.21 = 66.6 dBu/Vm AVG Limit : 94 dBu/Vm, Margin 27.4 dB]

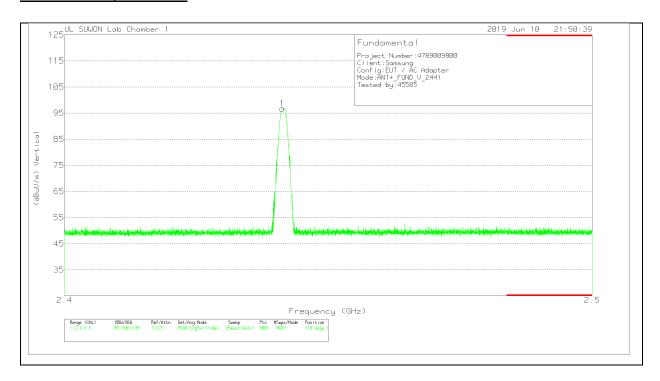
MID CHANNEL, HORIZONTAL

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	Corrected Reading (dBuV/m)	Azimuth (Degs)	Height (cm)	Polarity
1	2.44105	90.02	Pk	31.8	-25.3	96.52	237	174	Н

Pk - Peak detector

*	Peak reading	Limit	Margin		
	(dBuV/m)	(dBuV/m)	(dB)		
	96.52	114	17.48		


^{**} For marker 1 used the following method to do averaging:

DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

= 96.52 + -30.21 = 66.31 dBu/Vm AVG Limit : 94 dBu/Vm, Margin 27.69 dB]

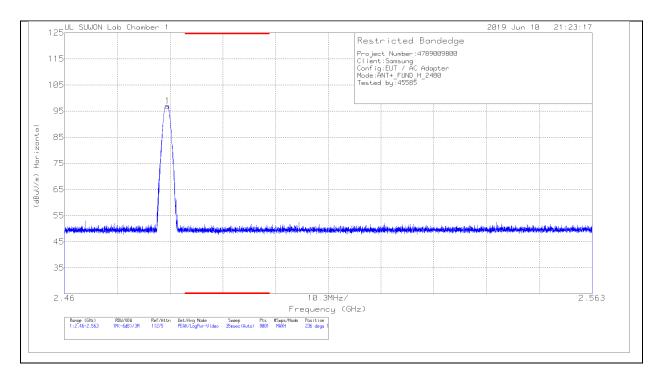
MID CHANNEL, VERTICAL

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	3117_00168717	10dB[dB]	Corrected Reading	Azimuth (Degs)	Height (cm)	Polarity
	(0.12)	(dBuV)				(dBuV/m)	(2090)	(611.)	
1	2.44079	90.35	Pk	31.8	-25.4	96.75	110	181	V

Pk - Peak detector

*	Peak reading	Limit	Margin		
	(dBuV/m)	(dBuV/m)	(dB)		
	96.75	114	17.25		


** For marker 1 used the following method to do averaging:

DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

96.75 + -30.21 = 66.54 dBu/Vm, AVG Limit: 94 dBu/Vm, Margin 27.46 dB]

HIGH CHANNEL, HORIZONTAL

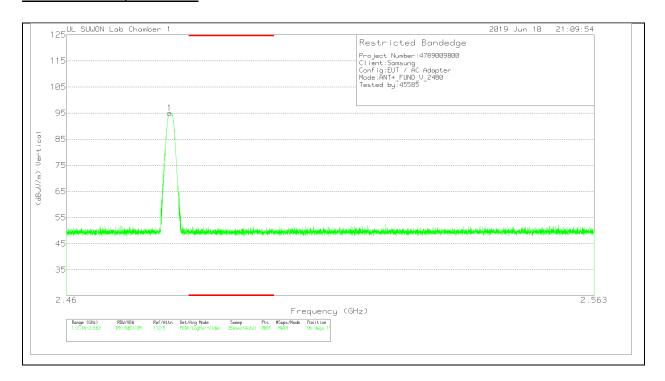
Trace Markers

	Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	Corrected Reading (dBuV/m)	Azimuth (Degs)	Height (cm)	Polarity
İ	1	2.48014	90.37	Pk	31.9	-25.3	96.97	236	162	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

*	Peak reading	Limit	Margin		
	(dBuV/m)	(dBuV/m)	(dB)		
	96.97	114	17.03		


** For marker 1 used the following method to do averaging:

DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

96.97 + -30.21 = 66.76 dBu/Vm AVG Limit : 94 dBu/Vm, Margin 27.24 dB]

HIGH CHANNEL, VERTICAL

Trace Markers

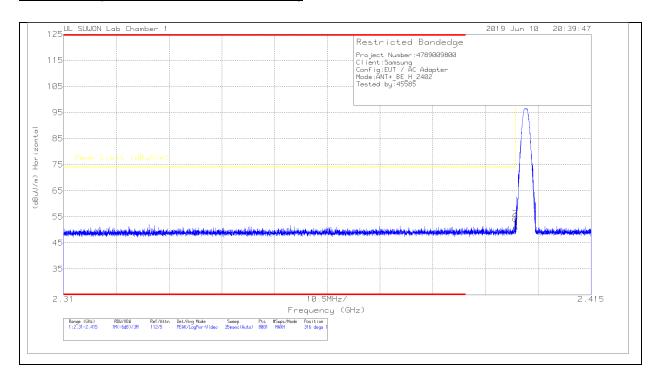
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	Corrected Reading (dBuV/m)	Azimuth (Degs)	Height (cm)	Polarity	
1	2.47982	88.41	Pk	31.9	-25.3	95.01	96	156	V	1

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

*	Peak reading	Limit	Margin
	(dBuV/m)	(dBuV/m)	(dB)
	95.01	114	18.99

^{**} For marker 1 used the following method to do averaging:


DCCF = -30.21

Corrected AV reading = Peak Reading + DCCF

= 95.01 + -30.21 = 64.8 dBu/Vm AVG Limit : 94 dBu/Vm, Margin 29.2 dB]

7.2.2. TRANSMITTER BAND EDGES

BANDEDGE (LOW CHANNEL, HORIZONTAL)

HORIZONTAL DATA

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	Corrected	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading				Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)			-		
1	2.4	44.77	Pk	31.7	-25.5	50.97	74	-23.03	316	154	Н
2	2.39988	48.12	Pk	31.7	-25.5	54.32	74	-19.68	316	154	Н

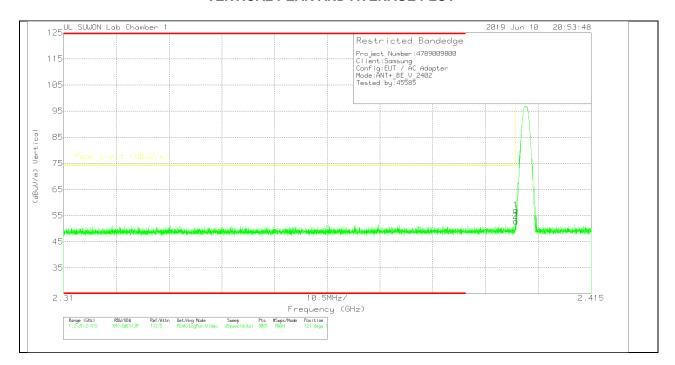
Pk - Peak detector

* For marker 1 used the following method to do averaging:

DCCF = -30.21 / Peak Reading = $\underline{}$ 50.97 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

= 50.97 + -30.21 = 20.76 dBu/Vm AVG Limit : 54 dBu/Vm, Margin 33.24 dB]


* For marker 2 used the following method to do averaging:

DCCF = -30.21 / Peak Reading = 54.32 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

= 54.32 + -30.21 = 24.11 dBu/Vm AVG Limit : 54 dBu/Vm, Margin 29.89 dB]

VERTICAL PEAK AND AVERAGE PLOT

VERTICAL DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.4	50.94	Pk	31.7	-25.5	57.14	74	-16.86	121	170	V
2	2.39999	46.6	Pk	31.7	-25.5	52.8	74	-21.2	121	170	V

Pk - Peak detector

* For marker 1 used the following method to do averaging:

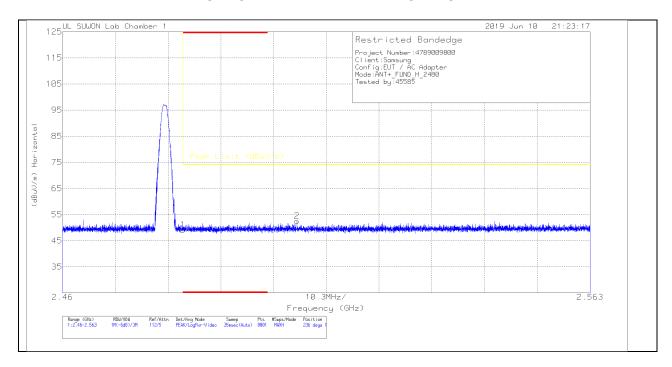
DCCF = -30.21 / Peak Reading = 57.14 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

57.14 + -30.21 = 26.93 dBu/Vm AVG Limit: 54 dBu/Vm, Margin 27.07 dB]

* For marker 2 used the following method to do averaging:

/ Peak Reading = DCCF = -30.21 52.8 dBu/Vm


Corrected AV reading = Peak Reading + DCCF

+ -30.21 = 22.59 dBu/Vm AVG Limit: 54 dBu/Vm, Margin 31.41 dB]

DATE: JUN 28, 2019

AUTHORIZED BANDEDGE (HIGH CHANNEL)

HORIZONTAL PEAK AND AVERAGE PLOT

HORIZONTAL DATA

Trace Markers

M	1arker	Frequency	Meter	Det	3117_00168717	10dB[dB]	Corrected	Peak Limit	PK Margin	Azimuth	Height	Polarity
		(GHz)	Reading				Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
			(dBuV)				(dBuV/m)					
	1	* 2.48351	42.55	Pk	31.9	-25.3	49.15	74	-24.85	236	162	Н
	2	2.50576	45.71	Pk	32	-25.2	52.51	74	-21.49	236	162	Н

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

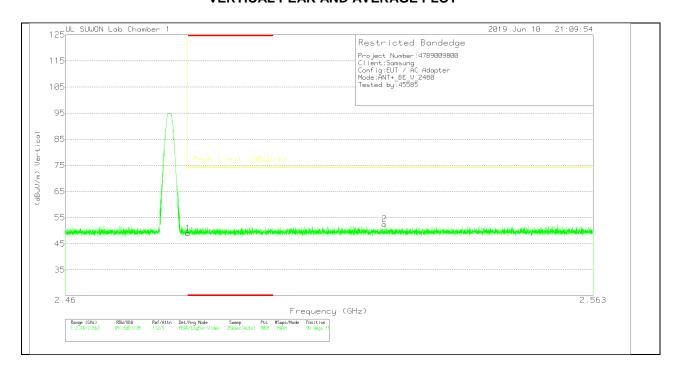
Pk - Peak detector

* For marker 1 used the following method to do averaging:

DCCF = -30.21/ Peak Reading = 49.15 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

+ -30.21 = 18.94 dBu/Vm AVG Limit: 54 dBu/Vm, Margin 35.06 dB]


* For marker 2 used the following method to do averaging:

DCCF = -30.21 / Peak Reading = 52.51 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

+ -30.21 = 22.3 dBu/Vm AVG Limit: 54 dBu/Vm, Margin 31.7 dB]

VERTICAL PEAK AND AVERAGE PLOT

VERTICAL DATA

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	Corrected	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading				Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	* 2.48351	42.45	Pk	31.9	-25.3	49.05	74	-24.95	96	156	V
2	2.52176	45.73	Pk	32	-25.2	52.53	74	-21.47	96	156	V

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

* For marker 1 used the following method to do averaging:

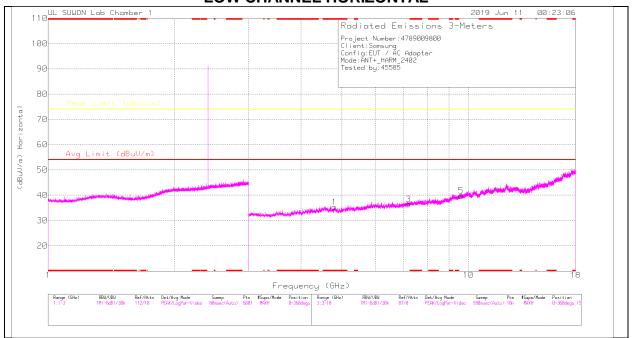
DCCF = -30.21 / Peak Reading = 49.05 dBu/Vm

Corrected AV reading = Peak Reading + DCCF

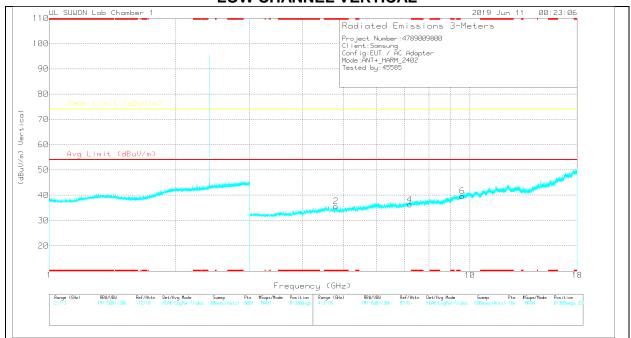
+ -30.21 = 18.84 dBu/Vm AVG Limit: 54 dBu/Vm, Margin 35.16 dB]

* For marker 2 used the following method to do averaging:

/ Peak Reading = 52.53 dBu/Vm DCCF = -30.21


Corrected AV reading = Peak Reading + DCCF

+ -30.21 = 22.32 dBu/Vm AVG Limit : 54 dBu/Vm, Margin 31.68 dB]


DATE: JUN 28, 2019

7.2.3. HARMONICS AND SPURIOUS EMISSIONS

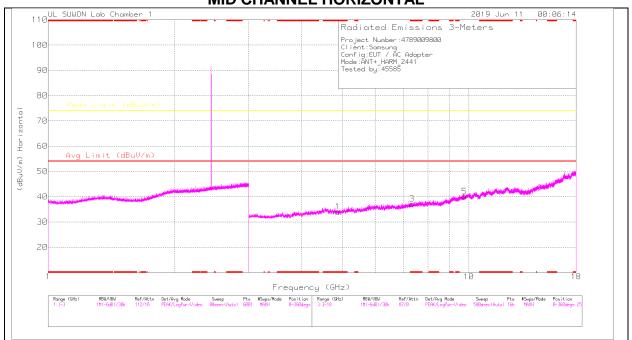
LOW CHANNEL HORIZONTAL

LOW CHANNEL VERTICAL

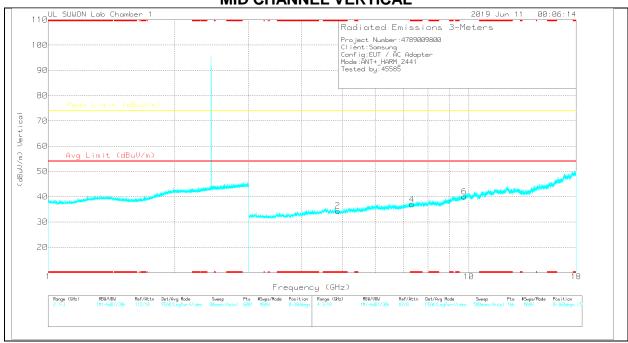
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

DATE: JUN 28, 2019

LOW CHANNEL DATA


Trace Markers

Marker	Frequency	Meter	Det	3117_0016871	3GHz_HP[dB]	Corrected	Avg Limit	Margin	Peak Limit	Margin	Azimuth	Height	Polarity
	(GHz)	Reading		7		Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
1	* 4.80082	32.49	PK	34.2	-31.4	35.29	-	-	74	-38.71	0-360	250	Н
3	7.20724	28.48	PK	35.8	-27.9	36.38	-	-	74	-37.62	0-360	250	Н
5	9.60896	25.85	PK	37	-23.1	39.75	-	-	74	-34.25	0-360	250	Н
2	* 4.80457	32.79	PK	34.2	-31.4	35.59	-	-	74	-38.41	0-360	250	V
4	7.20724	28.38	PK	35.8	-27.9	36.28	-	-	74	-37.72	0-360	150	V
6	9.60802	25.71	PK	37	-23.1	39.61	-	-	74	-34.39	0-360	150	V


^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector

Note: Only peak measurement was performed. Because peak measurement result of unwanted emission is less than average limit (54dBuV/m).

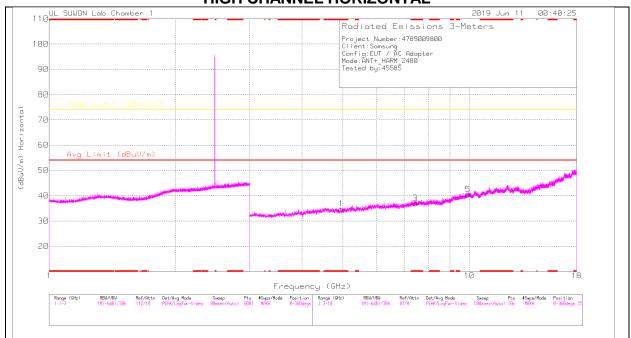
MID CHANNEL HORIZONTAL

MID CHANNEL VERTICAL

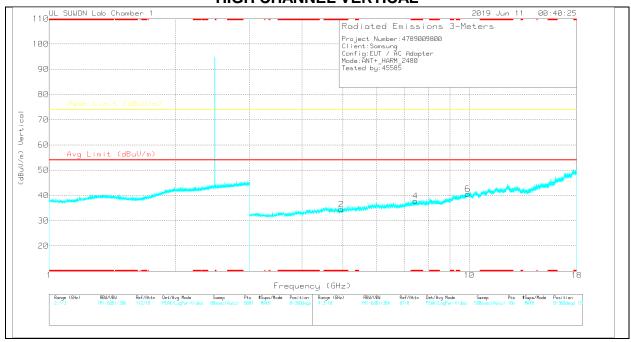
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

DATE: JUN 28, 2019

MID CHANNEL DATA


Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_0016871 7	3GHz_HP[dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.88144	31.33	PK	34.2	-31.5	34.03	-	-	74	-39.97	0-360	250	Н
3	* 7.32348	28.62	PK	35.8	-27.3	37.12	-	-	74	-36.88	0-360	150	Н
5	9.76457	26.77	PK	37.2	-23.9	40.07	-	-	74	-33.93	0-360	250	Н
2	* 4.88332	31.67	PK	34.2	-31.5	34.37	-	-	74	-39.63	0-360	150	V
4	* 7.32348	28.42	PK	35.8	-27.3	36.92	-	-	74	-37.08	0-360	250	V
6	9.76176	26.74	PK	37.2	-23.9	40.04	-	-	74	-33.96	0-360	150	V


^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector

Note: Only peak measurement was performed. Because peak measurement result of unwanted emission is less than average limit (54dBuV/m).

HIGH CHANNEL HORIZONTAL

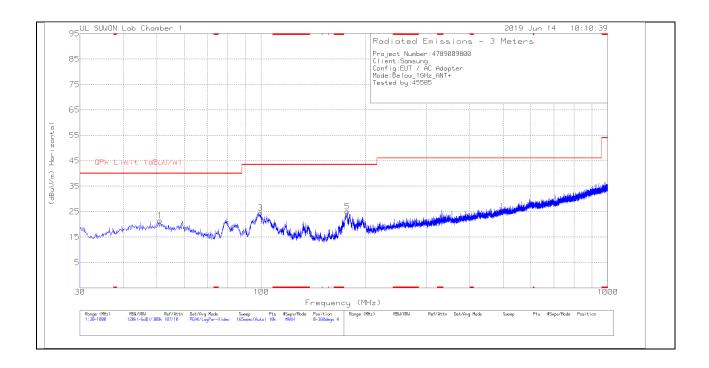
HIGH CHANNEL VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

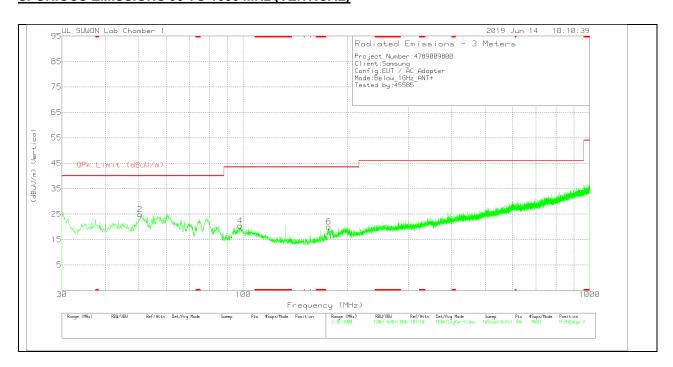
DATE: JUN 28, 2019

HIGH CHANNEL DATA

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	3117_0016871 7	3GHz_HP[dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 4.95738	31.99	PK	34.2	-31.4	34.79	-	-	74	-39.21	0-360	250	Н
3	* 7.44066	28.16	PK	35.8	-27	36.96	-	-	74	-37.04	0-360	150	Н
5	9.91457	25.3	PK	37.5	-22.3	40.5	-	-	74	-33.5	0-360	250	Н
2	* 4.96206	31.65	PK	34.2	-31.4	34.45	-	-	74	-39.55	0-360	250	V
4	* 7.43972	29	PK	35.8	-27	37.8	-	-	74	-36.2	0-360	150	V
6	9.91082	25.37	PK	37.5	-22.3	40.57	-	-	74	-33.43	0-360	250	V

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK - Peak Detector


Note: Only peak measurement was performed. Because peak measurement result of unwanted emission is less than average limit (54dBuV/m).

7.2.4. SPURIOUS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)

DATE: JUN 28, 2019

BELOW 1 GHz TABLE

Trace Markers

Marker	Frequency	Meter	Det	VULB9163_750	Below_1G[dB]	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	51.049	32.2	Pk	19.8	-30.5	21.5	40	-18.5	0-360	400	Н
3	99.549	36.47	Pk	17.8	-29.7	24.57	43.52	-18.95	0-360	300	Н
5	177.246	38.48	Pk	15.2	-28.7	24.98	43.52	-18.54	0-360	100	Н
2	50.467	35.65	Pk	19.7	-30.5	24.85	40	-15.15	0-360	100	V
4	97.997	32.5	Pk	17.7	-29.7	20.5	43.52	-23.02	0-360	100	V
6	176.761	33.56	Pk	15.2	-28.7	20.06	43.52	-23.46	0-360	200	V

Pk - Peak detector

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

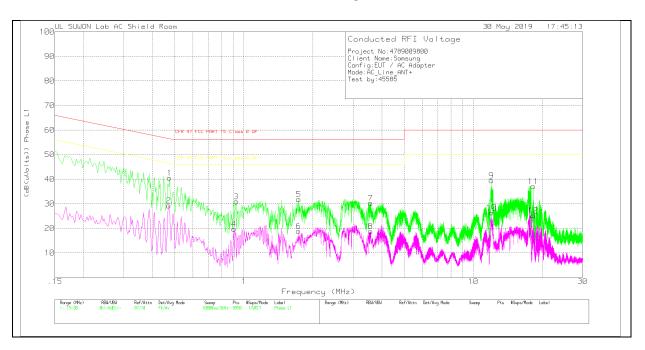
FCC §15.207 (a)

	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

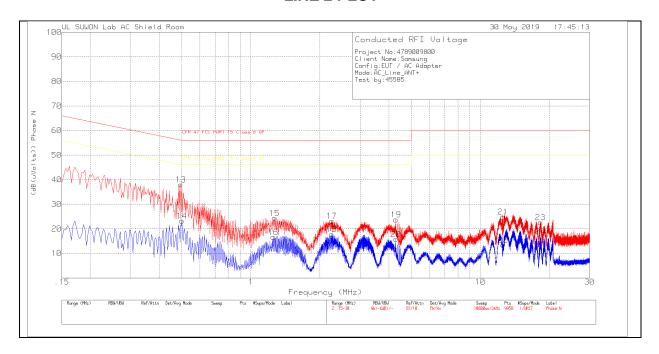
RESULTS

6 WORST EMISSIONS

LINE 1 PLOT

LINE 1 RESULTS

Trace Markers


Range 1: Phase L1 .15 - 30MHz

U										
Marker	Frequency	Meter	Det	ENV216_10183	CABLELOSS(dB)	Corrected	CFR 47 FCC	Margin	CFR 47 FCC	Margin
	(MHz)	Reading		6_With ex-		Reading	PART 15 Class B	(dB)	PART 15 Class B	(dB)
		(dBuV)		cord_L1		(dB(uVolts))	QP		AV	
1	.474	30.45	Pk	9.9	.2	40.55	56.44	-15.89	-	-
2	.471	19.17	Av	9.9	.2	29.27	-	-	46.5	-17.23
3	.927	20.81	Pk	9.8	.3	30.91	56	-25.09	-	-
4	.906	9.62	Av	9.8	.3	19.72	-	-	46	-26.28
5	1.734	21.72	Pk	9.8	.3	31.82	56	-24.18	-	-
6	1.731	8.74	Av	9.8	.3	18.84	-	-	46	-27.16
7	3.57	20.11	Pk	9.9	.3	30.31	56	-25.69	-	-
8	3.57	8.58	Av	9.9	.3	18.78	-	-	46	-27.22
9	12	29.04	Pk	10.1	.3	39.44	60	-20.56	-	-
10	12.006	15.96	Av	10.1	.3	26.36	-	-	50	-23.64
11	18.264	26.24	Pk	10.4	.4	37.04	60	-22.96	-	-
12	18.252	14.4	Av	10.4	.4	25.2	-	-	50	-24.8

Pk - Peak detector

Av - Average detection

LINE 2 PLOT

LINE 2 RESULTS

Trace Markers

Range 2: Phase N .15 - 30MHz

- 0-										
Marker	Frequency	Meter	Det	ENV216_10183	CABLELOSS(dB)	Corrected	CFR 47 FCC	Margin	CFR 47 FCC	Margin
	(MHz)	Reading		6_With ex-		Reading	PART 15 Class B	(dB)	PART 15 Class B	(dB)
		(dBuV)		cord_N		(dB(uVolts))	QP		AV	
13	.495	27.92	Pk	9.9	.2	38.02	56.08	-18.06	-	-
14	.501	13.08	Av	9.9	.2	23.18	-	-	46	-22.82
15	1.269	14.25	Pk	9.8	.3	24.35	56	-31.65	-	-
16	1.254	6.56	Av	9.8	.3	16.66	-	-	46	-29.34
17	2.25	13.18	Pk	9.7	.3	23.18	56	-32.82	-	-
18	2.25	7.78	Av	9.7	.3	17.78	-	-	46	-28.22
19	4.287	13.66	Pk	9.8	.3	23.76	56	-32.24	-	-
20	4.29	5.68	Av	9.8	.3	15.78	-	-	46	-30.22
21	12.558	14.5	Pk	10.1	.3	24.9	60	-35.1	-	-
22	12.573	3.14	Av	10.1	.3	13.54	-	-	50	-36.46
23	18.3	11.82	Pk	10.4	.4	22.62	60	-37.38	-	-
24	18.324	6.05	Av	10.4	.4	16.85	-	-	50	-33.15

Pk - Peak detector

Av - Average detection