Calibration Laboratory of
 Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

 S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 S Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client
PC Test
Certificate No: ES3-3347. Mar18
CALIBRATION CERTIFICATE

Object
ES3DV3 - SN:3347

Calibration procedure(s)
QA CAL-01,v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:
March 27, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Catibration
Power meter NRP	SN: 104778	$04-A p r-17$ (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	$04-$ Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	$04-A p r-17$ (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	$07-A p r-17$ (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21 -Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by; \quad Name

[^0]
Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
NORMx,y,z
ConvF
DCP
CF
A, B, C, D
Polarization φ
Polarization ϑ
Connector Angle
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $f>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $\operatorname{NORM}(f) x, y, z=N O R M x, y, z$ * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; \vee R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $\mathrm{f} \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z *ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3347

Manufactured: March 15, 2012

Repaired:
Calibrated:

March 15, 2018
March 27, 2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	1.15	1.18	1.21	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	101.9	105.1	102.9	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}^{\mathbf{E}}$ $\mathbf{k}=\mathbf{2})$
0	CW	X	0.0	0.0	1.0	0.00	201.8	$\pm 3.3 \%$
		Y	0.0	0.0	1.0		203.9	
		Z	0.0	0.0	1.0		204.8	

Note: For details on UID parameters see Appendix.
Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{-\mathbf{1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s . \mathbf { V } ^ { - 1 }}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	52.41	376.6	35.43	28.01	1.852	5.10	0.578	0.488	1.008
Y	42.65	300.9	34.31	25.12	1.310	5.10	1.279	0.204	1.011
Z	48.12	344.8	35.26	27.10	1.587	5.10	0.868	0.385	1.009

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.
${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
${ }^{\mathrm{B}}$ Numerical linearization parameter: uncertainty not required.
${ }^{\text {E }}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathbf{f (M H z) ^ { \mathbf { C } }}$	Relative Permittivity $^{\mathbf{F}}$	Conductivity $(\mathbf{S} / \mathrm{m})^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha $^{\mathbf{G}}$	Depth $(\mathbf{m m})$	Unc $(\mathbf{k}=\mathbf{2})$
750	41.9	0.89	6.77	6.77	6.77	0.65	1.32	$\pm 12.0 \%$
835	41.5	0.90	6.41	6.41	6.41	0.40	1.64	$\pm 12.0 \%$
1750	40.1	1.37	5.58	5.58	5.58	0.54	1.42	$\pm 12.0 \%$
1900	40.0	1.40	5.36	5.36	5.36	0.80	1.16	$\pm 12.0 \%$
2300	39.5	1.67	5.11	5.11	5.11	0.74	1.29	$\pm 12.0 \%$
2450	39.2	1.80	4.81	4.81	4.81	0.80	1.24	$\pm 12.0 \%$
2600	39.0	1.96	4.66	4.66	4.66	0.75	1.25	$\pm 12.0 \%$

[^1]
DASYIEASY - Parameters of Probe: ES3DV3 - SN:3347

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	$\begin{gathered} \text { Relative } \\ \text { Permittivity } \\ \hline \end{gathered}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvFY	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (\mathrm{k}=2) \end{aligned}$
750	55.5	0.96	6.59	6.59	6.59	0.77	1.22	$\pm 12.0 \%$
835	55.2	0.97	6.37	6.37	6.37	0.80	1.17	$\pm 12.0 \%$
1750	53.4	1.49	5.17	5.17	5.17	0.49	1.59	$\pm 12.0 \%$
1900	53.3	1.52	4.94	4.94	4.94	0.52	1.49	$\pm 12.0 \%$
2300	52.9	1.81	4.74	4.74	4.74	0.80	1.25	$\pm 12.0 \%$
2450	52.7	1.95	4.64	4.64	4.64	0.75	1.20	$\pm 12.0 \%$
2600	52.5	2.16	4.49	4.49	4.49	0.80	1.20	$\pm 12.0 \%$

[^2]Frequency Response of E-Field (TEM-Cell:ifif110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-fieid: $\pm 6.3 \%(k=2)$

(TEM cell , feyal $=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm 0.6 \%(k=2)$

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error $(\phi, \vartheta), f=900 \mathrm{MHz}$

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3347

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$)	-16.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{aligned} & A \\ & d B \end{aligned}$	$\begin{gathered} B \\ d B \cup \mu \mathrm{~V} \end{gathered}$	C	$\begin{gathered} \hline \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	Max Unc $^{\mathrm{E}}$ $(k=2)$
0	CW	X	0.00	0.00	1.00	0.00	201.8	$\pm 3.3 \%$
		Y	0.00	0.00	1.00		203.9	
		Z	0.00	0.00	1.00		204.8	
$\begin{aligned} & 10010- \\ & \text { CAA } \\ & \hline \end{aligned}$	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	X	7.57	78.06	17.49	10.00	25.0	± 9.6 \%
		Y	9.85	82.39	18.69		25.0	
		Z	7.35	77.81	17.08		25.0	
$\begin{aligned} & 10011- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (WCDMA)	X	0.93	66,02	14.08	0.00	150.0	$\pm 9.6 \%$
		Y	0.97	66.67	14.52		150.0	
		Z	0.93	66.21	14.17		150.0	
$\begin{aligned} & \hline 10012- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.22	64.40	15.16	0.41	150.0	± 9.6 \%
		Y	1.24	64.68	15.35		150.0	
		Z	1.21	64.49	15.23		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	5.02	67.09	17.26	1.46	150.0	$\pm 9.6 \%$
		Y	4.93	67.32	17.31		150.0	
		Z	4.97	67.16	17.27		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	91.36	118.07	31.34	9.39	50.0	± 9.6 \%
		Y	100.00	119.30	31.14		50.0	
		Z	100.00	118.75	31.10		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	58.54	111.16	29.65	9.57	50.0	± 9.6 \%
		Y	100.00	119.20	31.14		50.0	
		Z	100.00	118.71	31.13		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	115.85	28.82	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	116.32	28.70		60.0	
		Z	100.00	115.26	28.36		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	19.84	109.66	41.73	12.57	50.0	± 9.6 \%
		Y	49.03	143.08	53.86		50.0	
		Z	21.37	113.26	43.24		50.0	
$\begin{aligned} & 10026- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.22	106.46	36.65	9.56	60.0	$\pm 9.6 \%$
		Y	31.58	119.85	41.69		60.0	
		Z	22.56	108.96	37.62		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	114.36	27.28	4.80	80.0	± 9.6 \%
		Y	100.00	115.58	27.56		80.0	
		Z	100.00	113.91	26.92		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	113.86	26.30	3.55	100.0	± 9.6 \%
		Y	100.00	115.98	27.02		100.0	
		Z	100.00	113.53	26.01		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	12.94	95.02	31.64	7.80	80.0	$\pm 9.6 \%$
		Y	14.07	99.40	33.81		80.0	
		Z	12.89	95.72	32.02		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	113.99	27.43	5.30	70.0	$\pm 9.6 \%$
		Y	100.00	114.60	27.41		70.0	
		Z	100.00	113.38	26.98		70.0	
$\begin{aligned} & 10031- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	111.77	23.93	1.88	100.0	± 9.6 \%
		Y	100.00	115.39	25.33		100.0	
		Z	100.00	111.26	23.59		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	111.85	22.94	1.17	100.0	± 9.6 \%
		Y	100.00	118.40	25.59		100.0	
		Z	100.00	111.34	22.62		100.0	
$\begin{aligned} & 10033- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH1)	X	23.91	101.19	27.41	5.30	70.0	± 9.6 \%
		Y	36.18	107.81	28.88		70.0	
		Z	30.63	104.89	28.18		70.0	
$\begin{aligned} & 10034- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	6.24	84.08	20.44	1.88	100.0	± 9.6 \%
		Y	7.24	85.92	20.55		100.0	
		Z	6.85	85.19	20.50		100.0	
$\begin{aligned} & \text { 10035- } \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH5)	X	3.29	76.95	17.63	1.17	100.0	$\pm 9.6 \%$
		Y	3.58	78.09	17.57		100.0	
		Z	3.42	77.43	17.51		100.0	
$\begin{aligned} & 10036- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	32.79	106.39	28.91	5.30	70.0	± 9.6 \%
		Y	55.24	114.58	30.68		70.0	
		Z	45.73	111.34	29.95		70.0	
$\begin{aligned} & 10037- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	5.86	83.28	20.13	1.88	100.0	± 9.6 \%
		Y	6.54	84.66	20.12		100.0	
		Z	6.31	84.13	20.12		100.0	
$\begin{aligned} & 10038- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.39	77.59	17.96	1.17	100.0	± 9.6 \%
		Y	3.66	78.64	17.87		100.0	
		Z	3.53	78.11	17.85		100.0	
$\begin{aligned} & 10039- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	1.52	69.16	14.18	0.00	150.0	± 9.6 \%
		Y	1.40	68.90	13.55		150.0	
		Z	1.46	69.03	13.83		150.0	
$\begin{aligned} & 10042- \\ & \text { CAB } \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Halfrate)	X	100.00	114.62	28.47	7.78	50.0	$\pm 9.6 \%$
		Y	100.00	114.70	28.14		50.0	
		Z	100.00	113.88	27.92		50.0	
$10044-$$\mathrm{CAA}$	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	121.88	0.68	0.00	150.0	± 9.6 \%
		Y	0.00	97.83	1.91		150.0	
		Z	0.01	122.55	0.35		150.0	
$\begin{aligned} & 10048- \\ & \mathrm{CAA} \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	17.94	92.17	26.06	13.80	25.0	$\pm 9.6 \%$
		Y	42.19	107.21	29.95		25.0	
		Z	24.74	97.63	27.36		25.0	
$\begin{aligned} & 10049- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	22.69	96.29	25.94	10.79	40.0	$\pm 9.6 \%$
		Y	68.20	113.74	30.23		40.0	
		Z	32.65	101.85	27.19		40.0	
$\begin{aligned} & 10056- \\ & \text { CAA } \end{aligned}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	16.99	92.79	25.84	9.03	50.0	± 9.6 \%
		Y	27.63	101.84	28.34		50.0	
		Z	20.13	95.81	26.57		50.0	
$\begin{aligned} & 10058- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	9.12	87.95	28.36	6.55	100.0	$\pm 9.6 \%$
		Y	8.98	89.45	29.43		100.0	
		Z	8.90	88.06	28.51		100.0	
$\begin{aligned} & 10059- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.37	66.39	16.16	0.61	110.0	$\pm 9.6 \%$
		Y	1.38	66.59	16.33		110.0	
		Z	1.36	66.49	16.23		110.0	
$\begin{aligned} & 10060- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	128.08	31.98	1.30	110.0	± 9.6 \%
		Y	100.00	131.22	33.31		110.0	
		Z	100.00	128.65	32.15		110.0	

$\begin{aligned} & 10061- \\ & C A B \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	9.25	94.71	26.12	2.04	110.0	± 9.6 \%
		Y	9.59	96.73	27.06		110.0	
		Z	10.28	96.95	26.85		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.74	66.85	16.53	0.49	100.0	± 9.6 \%
		Y	4.66	67.04	16.57		100.0	
		Z	4.70	66.90	16.54		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.78	67.00	16.67	0.72	100.0	± 9.6 \%
		Y	4.69	67.19	16.70		100.0	
		Z	4.73	67.05	16.68		100.0	
$\begin{aligned} & 10064- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.09	67.32	16.93	0.86	100.0	± 9.6 \%
		Y	4.97	67.46	16.94		100.0	
		Z	5.03	67.35	16.93		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.99	67.34	17.10	1.21	100.0	± 9.6 \%
		Y	4.88	67.46	17.11		100.0	
		Z	4.93	67.36	17.10		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 24 Mbps)	X	5.05	67.46	17.33	1.46	100.0	± 9.6 \%
		Y	4.92	67.57	17.33		100.0	
		Z	4.98	67.48	17.32		100.0	
10067-CAC	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36 Mbps)	X	5.36	67.67	17.81	2.04	100.0	± 9.6 \%
		Y	5.25	67.92	17.88		100.0	
		Z	5.30	67.73	17.82		100.0	
$\begin{aligned} & 10068- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.48	67.95	18.15	2.55	100.0	± 9.6 \%
		Y	5.33	68.04	18.16		100.0	
		Z	5.40	67.94	18.13		100.0	
10069-CAC	IEEE 802,11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.56	67.94	18.35	2.67	100.0	± 9.6 \%
		Y	5.42	68.11	18.40		100.0	
		Z	5.49	67.96	18.34		100.0	
$\begin{array}{\|l\|} \hline 10071- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.16	67.32	17.64	1.99	100.0	± 9.6 \%
		Y	5.07	67.53	17.70		100.0	
		Z	5.11	67.37	17.65		100.0	
$\begin{aligned} & 10072- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.20	67.83	17.95	2.30	100.0	± 9.6 \%
		Y	5.09	67.99	18.00		100.0	
		Z	5.14	67.86	17.96		100.0	
$\begin{aligned} & 10073- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.32	68.17	18.37	2.83	100.0	± 9.6 \%
		Y	5.22	68.36	18.44		100.0	
		Z	5.26	68.20	18.38		100.0	
$\begin{array}{\|l\|} \hline 10074- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.35	68.22	18.60	3.30	100.0	± 9.6 \%
		Y	5.26	68.43	18.68		100.0	
		Z	5.29	68.25	18.61		100.0	
$\begin{aligned} & \hline 10075- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.48	68.62	19.07	3.82	90.0	± 9.6 \%
		Y	5.35	68.73	19.11		90.0	
		Z	5.40	68.60	19.05		90.0	
$\begin{aligned} & 10076- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.50	68.45	19.21	4.15	90.0	$\pm 9.6 \%$
		Y	5.40	68.64	19.31		90.0	
		Z	5.44	68.46	19.21		90.0	
$\begin{aligned} & 10077- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.54	68.54	19.31	4.30	90.0	$\pm 9.6 \%$
		Y	5.44	68.76	19.43		90.0	
		Z	5.48	68.56	19.32		90.0	

10112- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \\ & \hline \end{aligned}$	X	2.98	67.08	15.57	0.00	150.0	± 9.6 \%
		Y	2.92	67.27	15.62		150.0	
		Z	2.94	67.13	15.58		150.0	
10113-CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	2.70	67.76	15.81	0.00	150.0	$\pm 9.6 \%$
		Y	2.63	68.07	15.78		150.0	
		Z	2.66	67.92	15.82		150.0	
10114CAC	IEEE 802.11 n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.13	67.22	16.34	0.00	150.0	± 9.6 \%
		Y	5.06	67.35	16.39		150.0	
		Z	5.10	67.28	16.37		150.0	
10115CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.46	67.47	16.48	0.00	150.0	± 9.6 \%
		Y	5.32	67.42	16.43		150.0	
		Z	5.39	67.43	16.46		150.0	
$\begin{aligned} & 10116- \\ & \mathrm{CAC} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.25	67.46	16.39	0.00	150.0	± 9.6 \%
		Y	5.15	67.53	16.41		150.0	
		Z	5.20	67.47	16.40		150.0	
10117-CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.10	67.11	16.30	0.00	150.0	± 9.6 \%
		Y	5.03	67.22	16.34		150.0	
		Z	5.06	67.11	16.31		150.0	
$\begin{aligned} & 10118- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.56	67.71	16.61	0.00	150.0	± 9.6 \%
		Y	5.40	67.63	16.55		150.0	
		Z	5.48	67.67	16.59		150.0	
10119-CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64QAM)	X	5.22	67.39	16.37	0.00	150.0	$\pm 9.6 \%$
		Y	5.13	67.49	16.40		150.0	
		Z	5.18	67.42	16.38		150.0	
$\begin{array}{\|l\|} \hline 10140- \\ \text { CAD } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	3.35	67.28	15.66	0.00	150.0	± 9.6 \%
		Y	3.29	67.41	15.73		150.0	
		Z	3.31	67.30	15.68		150.0	
$\begin{array}{\|l\|} \hline 10141- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.47	67.38	15.84	0.00	150.0	± 9.6 \%
		Y	3.41	67.52	15.90		150.0	
		Z	3.43	67.42	15.86		150.0	
$\begin{array}{\|l\|} \hline 10142- \\ \hline \\ \hline \end{array}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	1.91	67.75	15.10	0.00	150.0	± 9.6 \%
		Y	1.84	68.07	15.11		150.0	
		Z	1.87	67.86	15.08		150.0	
$\begin{array}{\|l} \hline 10143- \\ \text { CAD } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.37	68.04	15.25	0.00	150.0	± 9.6 \%
		Y	2.29	68.28	15.02		150.0	
		Z	2.33	68.17	15.16		150.0	
$\begin{aligned} & 10144- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz}, \\ & \text { 64-QAM) } \\ & \hline \end{aligned}$	X	2.20	66.14	13.84	0.00	150.0	± 9.6 \%
		Y	2.08	66.17	13.48		150.0	
		Z	2.13	66.11	13.65		150.0	
$\begin{aligned} & 10145- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.17	64.40	11.32	0.00	150.0	± 9.6 \%
		Y	0.99	63.23	9.93		150.0	
		Z	1.08	63.80	10.61		150.0	
$\begin{aligned} & 10146- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.07	66.79	12.08	0.00	150.0	± 9.6 \%
		Y	1.74	65.46	10.58		150.0	
		Z	1.93	66.25	11.43		150.0	
$\begin{aligned} & 10147- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	2.41	68.68	13.11	0.00	150.0	± 9.6 \%
		Y	2.02	67.13	11.50		150.0	
		Z	2.26	68.13	12.45		150.0	

$\begin{aligned} & \text { 10149- } \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	2.87	67.13	15.54	0.00	150.0	± 9.6 \%
		Y	2.81	67.29	15.59		150.0	
		Z	2.83	67.17	15.55		150.0	
$\begin{aligned} & 10150- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	2.99	67.13	15.61	0.00	150.0	$\pm 9.6 \%$
		Y	2.93	67.31	15.66		150.0	
		Z	2.95	67.18	15.62		150.0	
$\begin{aligned} & 10151- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	9.21	81.33	22.45	3.98	65.0	$\pm 9.6 \%$
		Y	9.55	83.12	23.24		65.0	
		Z	9.38	82.15	22.79		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 16-QAM)	X	7.89	77.12	21.32	3.98	65.0	$\pm 9.6 \%$
		Y	7.75	77.78	21.62		65.0	
		Z	7.80	77.32	21.39		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	8.33	78.05	22.06	3.98	65.0	± 9.6 \%
		Y	8.20	78.76	22.36		65.0	
		Z	8.27	78.34	22.17		65.0	
10154- CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	2.19	68.34	15.77	0.00	150.0	$\pm 9.6 \%$
		Y	2.13	68.58	15.88		150.0	
		Z	2.15	68.43	15.80		150.0	
10155-CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.54	67.61	15.66	0.00	150.0	± 9.6 \%
		Y	2.49	67.93	15.66		150.0	
		Z	2.51	67.76	15.67		150.0	
$\begin{aligned} & 10156- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	1.75	67.70	14.83	0.00	150.0	± 9.6 \%
		Y	1.67	67.86	14.67		150.0	
		Z	1.70	67.75	14.73		150.0	
10157-CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	2.01	66.49	13.77	0.00	150.0	± 9.6 \%
		Y	1.89	66.41	13.28		150.0	
		Z	1.95	66.44	13.53		150.0	
10158- CAE	$\underset{\text { 64-QAM }}{ }$ LSE-FDD (SC-FDA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$,	X	2.70	67.82	15.85	0.00	150.0	± 9.6 \%
		Y	2.64	68.13	15.83		150.0	
		Z	2.67	67.98	15.86		150.0	
10159CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	2.11	66.90	14.04	0.00	150.0	± 9.6 \%
		Y	1.98	66.74	13.50		150.0	
		Z	2.04	66.83	13.79		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	2.69	68.21	15.87	0.00	150.0	± 9.6 \%
		Y	2.64	68.50	16.02		150.0	
		Z	2.66	68.34	15.93		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	2.88	67.04	15.53	0.00	150.0	± 9.6 \%
		Y	2.82	67.25	15.56		150.0	
		Z	2.84	67.11	15.53		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$,	X	2.99	67.17	15.64	0.00	150.0	± 9.6 \%
		Y	2.93	67.43	15.68		150.0	
		Z	2.96	67.27	15.66		150.0	
$\begin{aligned} & 10166- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	3.67	69.76	19.07	3.01	150.0	± 9.6 \%
		Y	3.59	70.61	19.72		150.0	
		Z	3.64	70.17	19.36		150.0	
10167CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	4.60	72.78	19.56	3.01	150.0	± 9.6 \%
		Y	4.59	74.59	20.58		150.0	
		Z	4.60	73.54	19.97		150.0	

$\begin{aligned} & 10168- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.10	75.00	20.86	3.01	150.0	± 9.6 \%
		Y	5.17	77.15	22.00		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \end{aligned}$		Z	5.18	76.08	21.41		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	3.14	69.82	19.09	3.01	150.0	± 9.6 \%
		Y	2.99	70.11	19.57		150.0	
$\begin{aligned} & 10170- \\ & \text { CAD } \end{aligned}$		Z	3.08	69.99	19.30		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , 16-QAM)	X	4.48	76.11	21.47	3.01	150.0	± 9.6 \%
		Y	4.42	77.92	22.61		150.0	
10171 AAD		Z	4.51	77.09	22.03		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , 64-QAM)	X	3.64	71.74	18.65	3.01	150.0	± 9.6 \%
		Y	3.56	73.31	19.70		150.0	
$\begin{array}{\|l} \hline 10172- \\ \text { CAD } \end{array}$		Z	3.59	72.29	19.01		150.0	
	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	21.10	104.74	32.18	6.02	65.0	$\pm 9.6 \%$
		Y	44.31	124.23	38.59		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \\ & \hline \end{aligned}$		Z	24.87	109.58	33.89		65.0	
	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16-QAM)	X	37.36	109.91	31.76	6.02	65.0	± 9.6 \%
		Y	100.00	131.53	37.83		65.0	
		Z	66,45	121.49	34.95		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	28.71	103.81	29.50	6.02	65.0	± 9.6 \%
		Y	93.12	128.22	36.43		65.0	
		Z	36.57	109.34	31.20		65.0	
$\begin{aligned} & 10175- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	3.10	69.50	18.83	3.01	150.0	± 9.6 \%
		Y	2.96	69.84	19.35		150.0	
		Z	3.04	69.66	19.04		150.0	
10176- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.49	76.13	21.48	3.01	150.0	± 9.6 \%
		Y	4.43	77.95	22.63		150.0	
		Z	4.52	77.11	22.04		150.0	
10177-CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	X	3.13	69.65	18.93	3.01	150.0	± 9.6 \%
		Y	2.98	69.97	19.42		150.0	
		Z	3.07	69.81	19.14		150.0	
$\begin{aligned} & 10178 \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16QAM)	X	4.43	75.88	21.35	3.01	150.0	± 9.6 \%
		Y	4.39	77.75	22.52		150.0	
		Z	4.47	76.86	21.91		150.0	
$\begin{aligned} & 10179- \\ & \mathrm{CAE} \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.01	73.75	19.90	3.01	150.0	± 9.6 \%
		Y	3.96	75.54	21.04		150.0	
		Z	4.01	74.52	20.37		150.0	
$\begin{aligned} & 10180- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64QAM)	X	3.63	71.66	18.60	3.01	150.0	± 9.6 \%
		Y	3.55	73.25	19.66		150.0	
		Z	3.59	72.21	18.96		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	3.13	69.64	18.92	3.01	150.0	$\pm 9.6 \%$
		Y	2.98	69.95	19.42		150.0	
		Z	3.06	69.80	19.13		150.0	
$\begin{aligned} & \text { 10182- } \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.42	75.86	21.34	3.01	150.0	± 9.6 \%
		Y	4.38	77.72	22.51		150.0	
		Z	4.46	76.83	21.90		150.0	
$\begin{aligned} & 10183- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , 64-QAM)	X	3.62	71.63	18.59	3.01	150.0	± 9.6 \%
		Y	3.55	73.22	19.65		150.0	
		Z	3.58	72.19	18.94		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , QPSK)	X	3.14	69.68	18.95	3.01	150.0	± 9.6 \%
		Y	2.99	69.99	19.44		150.0	
		Z	3.07	69.84	19.16		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 16-$ QAM)	X	4.45	75.93	21.38	3.01	150.0	± 9.6 \%
		Y	4.40	77.80	22.55		150.0	
		Z	4.48	76.92	21.94		150.0	
$\begin{aligned} & 10186- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	3.64	71.70	18.62	3.01	150.0	± 9.6 \%
		Y	3.56	73.30	19.69		150.0	
		Z	3.60	72.26	18.98		150.0	
$\begin{aligned} & 10187- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	3.15	69.73	19.01	3.01	150.0	± 9.6 \%
		Y	3.00	70.06	19.51		150.0	
		Z	3.08	69.90	19.22		150.0	
$\begin{aligned} & 10188- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.60	76.65	21.77	3.01	150.0	± 9.6 \%
		Y	4.55	78.49	22.93		150.0	
		Z	4.65	77.69	22.36		150.0	
$\begin{aligned} & 10189- \\ & \text { AAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.72	72.15	18.90	3.01	150.0	± 9.6 \%
		Y	3.65	73.76	19.97		150.0	
		Z	3.69	72.74	19.28		150.0	
$\begin{aligned} & 10193- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.52	66.58	16.02	0.00	150.0	± 9.6 \%
		Y	4.45	66.79	16.05		150.0	
		Z	4.48	66.63	16.03		150.0	
$\begin{aligned} & 10194- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.70	66.91	16.15	0.00	150.0	± 9.6 \%
		Y	4.60	67.08	16.18		150.0	
		Z	4.65	66.95	16.16		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.74	66.94	16.17	0.00	150.0	± 9.6 \%
		Y	4.65	67.11	16.20		150.0	
		Z	4.69	66.98	16.18		150.0	
$\begin{aligned} & 10196- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.53	66.65	16.05	0.00	150.0	± 9.6 \%
		Y	4.44	66.83	16.06		150.0	
		Z	4.48	66.69	16.05		150.0	
$\begin{aligned} & 10197- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.72	66.93	16.16	0.00	150.0	± 9.6 \%
		Y	4.62	67.10	16.19		150.0	
		Z	4.66	66.97	16.17		150.0	
$\begin{aligned} & 10198- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.75	66.96	16.18	0.00	150.0	± 9.6 \%
		Y	4.64	67.13	16.21		150.0	
		Z	4.69	67.00	16.19		150.0	
$\begin{aligned} & 10219- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.48	66.66	16.00	0.00	150.0	± 9.6 \%
		Y	4.39	66.84	16.01		150.0	
		Z	4.43	66.70	16.00		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.71	66.91	16.16	0.00	150.0	± 9.6 \%
		Y	4.61	67.06	16.18		150.0	
		Z	4.66	66.94	16.16		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.1 ln (HT Mixed, 72.2 Mbps, 64QAM)	X	4.76	66.89	16.17	0.00	150.0	± 9.6 \%
		Y	4.65	67.06	16.20		150.0	
		Z	4.70	66.93	16.18		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	5.08	67.11	16.29	0.00	150.0	± 9.6 \%
		Y	5.00	67.21	16.33		150.0	
		Z	5.03	67.12	16.30		150.0	

$\begin{aligned} & 10223- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.40	67.34	16.44	0.00	150.0	± 9.6 \%
		Y	5.30	67.47	16.48		150.0	
$\begin{aligned} & 10224- \\ & \text { CAC } \\ & \hline \end{aligned}$		Z	5.35	67.37	16.45		150.0	
	IEEE 802.11n (HT Mixed, 150 Mbps, 64QAM)	X	5.12	67.22	16.27	0.00	150.0	± 9.6 \%
		Y	5.04	67.32	16.31		150.0	
$\begin{aligned} & 10225- \\ & \text { CAB } \end{aligned}$		Z	5.08	67.23	16.28		150.0	
	UMTS-FDD (HSPA+)	X	2.77	65.87	15.07	0.00	150.0	± 9.6 \%
		Y	2.71	66.11	14.95		150.0	
$\begin{array}{\|l\|} \hline 10226- \\ \text { CAA } \\ \hline \end{array}$		Z	2.73	65.95	15.01		150.0	
	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz}_{\text {, }} \\ & \text { 16-QAM) } \end{aligned}$	X	40.90	111.69	32.33	6.02	65.0	± 9.6 \%
		Y	100.00	131.74	37.97		65.0	
		Z	76.08	124.13	35.71		65.0	
$\begin{aligned} & 10227- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	32.04	105.79	30.14	6.02	65.0	± 9.6 \%
		Y	100.00	129.20	36.63		65.0	
		Z	56.03	116.66	33.17		65.0	
$\begin{array}{\|l\|} \hline 10228- \\ \text { CAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	32.49	113.40	34.73	6.02	65.0	± 9.6 \%
		Y	63.93	131.79	40.55		65.0	
		Z	42.68	120.45	36.94		65.0	
$\begin{aligned} & 10229- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16 QAM)	X	37.48	109.96	31.78	6.02	65.0	± 9.6 \%
		Y	100.00	131.51	37.84		65.0	
		Z	66.68	121.54	34.97		65.0	
$\begin{aligned} & 10230- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	29.78	104.42	29.68	6.02	65.0	± 9.6 \%
		Y	100.00	129.07	36.54		65.0	
		Z	50.21	114.61	32.57		65.0	
$\begin{aligned} & 10231-1 \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	30.12	111.79	34.20	6.02	65.0	± 9.6 \%
		Y	57.30	129.38	39.87		65.0	
		Z	38.78	118.39	36.30		65.0	
$\begin{aligned} & 10232- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	37.48	109.97	31.78	6.02	65.0	$\pm 9.6 \%$
		Y	100.00	131.53	37.84		65.0	
		Z	66.72	121.56	34.98		65.0	
$\begin{aligned} & 10233- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64- QAM)	X	29.77	104.42	29.68	6.02	65.0	$\pm 9.6 \%$
		Y	100.00	129.09	36.55		65.0	
		Z	50.19	114.62	32.57		65.0	
$\begin{aligned} & 10234- \\ & C A D \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	X	28.05	110.17	33.63	6.02	65.0	$\pm 9.6 \%$
		Y	51.99	127.09	39.16		65.0	
		Z	35.54	116.41	35.65		65.0	
$\begin{aligned} & 10235- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	37.64	110.05	31.80	6.02	65.0	± 9.6 \%
		Y	100.00	131.54	37.84		65.0	
		Z	67.18	121.70	35.01		65.0	
$\begin{aligned} & 10236- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	x	30.09	104.58	29.72	6.02	65.0	$\pm 9.6 \%$
		Y	100.00	129.03	36.52		65.0	
		Z	50.96	114.84	32.62		65.0	
$\begin{aligned} & 10237- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	30.42	112.00	34.26	6.02	65.0	± 9.6 \%
		Y	58.39	129.80	39.98		65.0	
		Z	39.25	118.66	36.38		65.0	
$\begin{aligned} & 10238- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	37.48	109.98	31.78	6.02	65.0	± 9.6 \%
		Y	100.00	131.54	37.84		65.0	
		Z	66.77	121.59	34.98		65.0	

$\begin{aligned} & 10239- \\ & \text { CAD } \\ & \hline \end{aligned}$	```LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)```	X	29.75	104.43	29.68	6.02	65.0	± 9.6 \%
		Y	100.00	129.11	36.55		65.0	
		Z	50.17	114.63	32.57		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 15 \mathrm{MHz}$, QPSK) QPSK)	X	30.30	111.94	34.24	6.02	65.0	± 9.6 \%
		Y	58.14	129.72	39.96		65.0	
		Z	39.09	118.59	36.36		65.0	
$\begin{aligned} & 10241- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	11.80	86.80	27.35	6.98	65.0	± 9.6 \%
		Y	13.67	92.53	29.81		65.0	
		Z	12.27	88.56	28.08		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM)	X	10.15	83.59	26.03	6.98	65.0	± 9.6 \%
		Y	12.26	90.20	28.90		65.0	
		Z	10.49	85.23	26.75		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	8.15	80.45	25.67	6.98	65.0	± 9.6 \%
		Y	9.07	85.16	28.03		65.0	
		Z	8.20	81.43	26.18		65.0	
$\begin{aligned} & 10244- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.77	79.58	20.12	3.98	65.0	± 9.6 \%
		Y	8.68	79.98	19.73		65.0	
		Z	8.93	80.10	20.07		65.0	
$\begin{aligned} & 10245- \\ & \text { CAB } \end{aligned}$	```LTE-TDD (SC-FDMA, 50% RB, 3 MHZ, 64-QAM)```	X	8.56	78.94	19.83	3.98	65.0	± 9.6 \%
		Y	8.27	79.00	19.30		65.0	
		Z	8.60	79.28	19.71		65.0	
$\begin{aligned} & 10246- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	9.05	82.96	21.42	3.98	65.0	$\pm 9.6 \%$
		Y	8.67	82.79	20.89		65.0	
		Z	9.07	83.18	21.25		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.31	77.47	20.01	3.98	65.0	± 9.6 \%
		Y	6.88	77.10	19.42		65.0	
		Z	7.16	77.42	19.78		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \end{aligned}$	```LTE-TDD (SC-FDMA, 50% RB, 5 MHz,```	X	7.23	76.85	19.75	3.98	65.0	± 9.6 \%
		Y	6.75	76.40	19.13		65.0	
		Z	7.04	76.72	19.48		65.0	
$\begin{aligned} & \text { 10249- } \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	10.55	85.88	23.24	3.98	65.0	± 9.6 \%
		Y	11.23	87.71	23.62		65.0	
		Z	11.08	87.02	23.49		65.0	
$\begin{aligned} & 10250- \\ & \mathrm{CAD} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.37	79.97	22.44	3.98	65.0	± 9.6 \%
		Y	8.25	80.64	22.58		65.0	
		Z	8.37	80.40	22.54		65.0	
$\begin{aligned} & 10251- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	7.79	77.55	21.17	3.98	65.0	± 9.6 \%
		Y	7.62	78.12	21.26		65.0	
		Z	7.71	77.78	21.18		65.0	
$\begin{aligned} & 10252- \\ & \text { CAD } \end{aligned}$	```LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)```	X	10.26	85.03	23.77	3.98	65.0	± 9.6 \%
		Y	11.07	87.53	24.67		65.0	
		Z	10.72	86.30	24.20		65.0	
$\begin{aligned} & 10253- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.69	76.53	21.09	3.98	65.0	± 9.6 \%
		Y	7.57	77.22	21.35		65.0	
		Z	7.61	76.75	21.15		65.0	
$\begin{aligned} & 10254- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	8.11	77.42	21.76	3.98	65.0	± 9.6 \%
		Y	7.99	78.11	22.01		65.0	
		Z	8.04	77.70	21.84		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	8.87	80.90	22.51	3.98	65.0	± 9.6 \%
		Y	9.18	82.66	23.26		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \end{aligned}$		Z	9.01	81.69	22.82		65.0	
	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16$-QAM)	X	7.19	76.04	17.83	3.98	65.0	$\pm 9.6 \%$
		Y	6.37	74.72	16.60		65.0	
		Z	6.91	75.63	17.34		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM})$	X	6.95	75.20	17.41	3.98	65.0	± 9.6 \%
		Y	6.01	73.59	16.03		65.0	
		Z	6.60	74.62	16.84		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	7.08	78.57	19.08	3.98	65.0	$\pm 9.6 \%$
		Y	5.96	76.36	17.58		65.0	
		Z	6.63	77.70	18.41		65.0	
$\begin{aligned} & 10259- \\ & \text { CAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.72	78.37	20.87	3.98	65.0	$\pm 9.6 \%$
		Y	7.43	78.48	20.58		65.0	
		Z	7.64	78.54	20.77		65.0	
$\begin{aligned} & 10260- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	7.71	78.04	20.75	3.98	65.0	± 9.6 \%
		Y	7.37	78.04	20.41		65.0	
		Z	7.60	78.14	20.63		65.0	
$\begin{aligned} & 10261- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	9.91	84.71	23.20	3.98	65.0	± 9.6 \%
		Y	10.51	86.66	23.72		65.0	
		Z	10.31	85.78	23.47		65.0	
$\begin{aligned} & 10262- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.35	79.91	22.40	3.98	65.0	$\pm 9.6 \%$
		Y	8.23	80.57	22.53		65.0	
		Z	8.35	80.33	22.49		65.0	
$\begin{aligned} & 10263- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	7.78	77.53	21.17	3.98	65.0	$\pm 9.6 \%$
		Y	7.61	78.09	21.25		65.0	
		Z	7.70	77.76	21.18		65.0	
$\begin{aligned} & 10264- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK)	X	10.16	84.83	23.68	3.98	65.0	$\pm 9.6 \%$
		Y	10.94	87.30	24.57		65.0	
		Z	10.60	86.08	24.10		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	7.89	77.12	21.33	3.98	65.0	$\pm 9.6 \%$
		Y	7.75	77.78	21.62		65.0	
		Z	7.80	77.33	21.40		65.0	
$\begin{aligned} & 10266- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	8.32	78.04	22.05	3.98	65.0	± 9.6 \%
		Y	8.20	78.75	22.36		65.0	
		Z	8.26	78.33	22.16		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz , QPSK)	X	9.19	81.29	22.44	3.98	65.0	$\pm 9.6 \%$
		Y	9.53	83.07	23.22		65.0	
		Z	9.36	82.10	22.77		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	8.37	76.65	21.54	3.98	65.0	$\pm 9.6 \%$
		Y	8.20	77.22	21.85		65.0	
		Z	8.27	76.83	21.63		65.0	
$\begin{aligned} & \hline 10269- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 $\mathrm{MHz}, 64-\mathrm{QAM})$	X	8.29	76.22	21.43	3.98	65.0	$\pm 9.6 \%$
		Y	8.13	76.76	21.72		65.0	
		Z	8.20	76.38	21.51		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, ~$ QPSK	X	8.55	78.25	21.44	3.98	65.0	$\pm 9.6 \%$
		Y	8.58	79.32	21.98		65.0	
		Z	8.56	78.72	21.66		65.0	

10274CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.53	66.08	14.88	0.00	150.0	± 9.6 \%
		Y	2.52	66.54	14.91		150.0	
		Z	2.51	66.24	14.87		150.0	
$\begin{aligned} & 10275- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.51	66.90	14.72	0.00	150.0	$\pm 9.6 \%$
		Y	1.52	67.44	14.98		150.0	
		Z	1.50	67.06	14.77		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	4.49	67.07	11.86	9.03	50.0	± 9.6 \%
		Y	3.76	65.67	10.51		50.0	
		Z	4.09	66.15	11.03		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	8.37	78.55	19.37	9.03	50.0	$\pm 9.6 \%$
		Y	7.19	76.56	17.89		50.0	
		Z	7.75	77.39	18.52		50.0	
10279-CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	8.51	78.75	19.47	9.03	50.0	± 9.6 \%
		Y	7.31	76.76	18.01		50.0	
		Z	7.88	77.58	18.63		50.0	
$\begin{aligned} & 10290- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	1.28	66.85	12.83	0.00	150.0	± 9.6 \%
		Y	1.15	66.36	12.07		150.0	
		Z	1.21	66.57	12.40		150.0	
$\begin{aligned} & 10291- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	0.73	64.15	11.20	0.00	150.0	± 9.6 \%
		Y	0.69	64.04	10.71		150.0	
		Z	0.69	63.98	10.82		150.0	
$\begin{aligned} & 10292- \\ & \mathrm{AAB} \end{aligned}$	CDMA2000, RC3, SO32, Fuil Rate	X	0.85	66.79	12.92	0.00	150.0	± 9.6 \%
		Y	0.83	67.15	12.67		150.0	
		Z	0.82	66.81	12.63		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	1.14	70.77	15.25	0.00	150.0	$\pm 9.6 \%$
		Y	1.22	72.07	15.35		150.0	
		Z	1.16	71.38	15.20		150.0	
$\begin{aligned} & 10295- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.92	86.64	24.71	9.03	50.0	± 9.6 \%
		Y	15.63	91.98	26.09		50.0	
		Z	13.21	88.61	25.13		50.0	
$\begin{aligned} & 10297- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	2.66	69.01	16.01	0.00	150.0	$\pm 9.6 \%$
		Y	2.60	69.22	16.21		150.0	
		Z	2.62	69.08	16.08		150.0	
$\begin{aligned} & 10298- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	1.46	66.51	13.33	0.00	150.0	$\pm 9.6 \%$
		Y	1.32	65.99	12.56		150.0	
		Z	1.39	66.26	12.94		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.70	69.70	14.37	0.00	150.0	± 9.6 \%
		Y	2.67	70.31	14.00		150.0	
		Z	2.72	70.11	14.27		150.0	
$\begin{aligned} & 10300- \\ & \text { AAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.09	65.56	11.69	0.00	150.0	± 9.6 \%
		Y	1.84	65.02	10.77		150.0	
		Z	1.98	65.35	11.29		150.0	
10301 AAA	IEEE 802.16e WiMAX ($29: 18,5 \mathrm{~ms}$, 10 MHz, QPSK, PUSC)	X	5.46	67.87	18.50	4.17	80.0	$\pm 9.6 \%$
		Y	5.32	68.03	18.43		80.0	
		Z	5.39	67.94	18.48		80.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WIMAX ($29: 18,5 \mathrm{~ms}$, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.85	67.98	18.95	4.96	80.0	± 9.6 \%
		Y	5.80	68.69	19.24		80.0	
		Z	5.75	67.96	18.88		80.0	

$\begin{array}{\|l\|} \hline 10303- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.16 e WiMAX ($31: 15,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	5.66	67.92	18.92	4.96	80.0	± 9.6 \%
		Y	5.61	68.61	19.19		80.0	
$\begin{aligned} & 10304- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.56	67.86	18.83		80.0	
	IEEE 802.16e WiMAX (29:18, 5ms, 10MHZ, 64QAM, PUSC)	X	5.35	67.35	18.18	4.17	80.0	± 9.6 \%
		Y	5.30	68.04	18.43		80.0	
$\begin{aligned} & 10305- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.26	67.36	18.12		80.0	
	IEEE 802.16 e WIMAX $(31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}, 15$ symbols)	X	7.05	76.99	23.82	6.02	50.0	± 9.6 \%
		Y	7.19	78.32	24.16		50.0	
		Z	6.80	76.50	23.43		50.0	
10306-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.82	69.84	20.44	6.02	50.0	± 9.6 \%
		Y	5.84	70.99	20.86		50.0	
		Z	6.02	71.90	21.62		50.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX ($29: 18$, 10ms, $10 \mathrm{MHz}, \mathrm{QPSK}, \mathrm{PUSC}, 18$ symbols)	X	6.31	73.07	22.13	6.02	50.0	± 9.6 \%
		Y	5.83	71.38	20.88		50.0	
		Z	6.11	72.72	21.84		50.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC}$)	X	6.39	73.64	22.41	6.02	50.0	$\pm 9.6 \%$
		Y	5.90	71.88	21.13		50.0	
		Z	6.20	73.31	22.13		50.0	
$\begin{aligned} & 10309- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WIMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	5.91	70.12	20.60	6.02	50.0	$\pm 9.6 \%$
		Y	5.91	71.23	21.02		50.0	
		Z	6.11	72.19	21.79		50.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WIMAX (29:18, 10ms, 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	6.22	72.50	21.95	6.02	50.0	± 9.6 \%
		Y	5.84	71.19	20.88		50.0	
		Z	6.05	72.25	21.70		50.0	
$\begin{array}{\|l} 10311- \\ \text { AAC } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK $)$	X	3.00	68.33	15.71	0.00	150.0	± 9.6 \%
		Y	2.96	68.52	15.89		150.0	
		Z	2.97	68.38	15.77		150.0	
10313-AAA	IDEN 1:3	X	6.99	77.76	18.02	6.99	70.0	± 9.6 \%
		Y	8.29	81.34	19.42		70.0	
		Z	7.24	78.54	18.23		70.0	
$\begin{aligned} & 10314- \\ & \text { AAA } \end{aligned}$	iDEN 1:6	X	10.49	86.54	23.63	10.00	30.0	± 9.6 \%
		Y	12.83	91.81	25.63		30.0	
		Z	11.85	89.04	24.41		30.0	
10315- AAB	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.08	63.85	14.84	0.17	150.0	± 9.6 \%
		Y	1.11	64.19	15.04		150.0	
		Z	1.08	63.97	14.91		150.0	
$\begin{aligned} & 10316- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.62	66.77	16.25	0.17	150.0	± 9.6 \%
		Y	4.54	66.97	16.29		150.0	
		Z	4.57	66.82	16.26		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.62	66.77	16.25	0.17	150.0	$\pm 9.6 \%$
		Y	4.54	66.97	16.29		150.0	
		Z	4.57	66.82	16.26		150.0	
$\begin{aligned} & 10400- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, 64-QAM, $99 p \mathrm{duty}$ cycle)	X	4.70	66.97	16.15	0.00	150.0	± 9.6 \%
		Y	4.59	67.15	16.19		150.0	
		Z	4.64	67.01	16.16		150.0	
$\begin{aligned} & 10401- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.41	67.24	16.37	0.00	150.0	± 9.6 \%
		Y	5.32	67.38	16.42		150.0	
		Z	5.38	67.33	16.41		150.0	

$\begin{aligned} & \text { 10402- } \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99 pc duty cycle)	X	5.66	67.55	16.37	0.00	150.0	± 9.6 \%
		Y	5.56	67.58	16.37		150.0	
		Z	5.60	67.52	16.36		150.0	
$\begin{aligned} & 10403- \\ & A A B \end{aligned}$	CDMA2000 (1xEV-DO, Rev. 0)	X	1.28	66.85	12.83	0.00	115.0	± 9.6 \%
		Y	1.15	66.36	12.07		115.0	
		Z	1.21	66.57	12.40		115.0	
$\begin{aligned} & 10404- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. A)	X	1.28	66.85	12.83	0.00	115.0	± 9.6 \%
		Y	1.15	66.36	12.07		115.0	
		Z	1.21	66.57	12.40		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, SCH0, Full Rate	X	31.97	105.65	26.52	0.00	100.0	± 9.6 \%
		Y	100.00	119.11	28.78		100.0	
		Z	100.00	120.25	29.60		100.0	
$\begin{aligned} & 10410- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	100.00	119.16	29.68	3.23	80.0	± 9.6 \%
		Y	100.00	122.81	30.98		80.0	
		Z	100.00	120.19	29.97		80.0	
10415AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.96	62.46	13.98	0.00	150.0	± 9.6 \%
		Y	0.99	62.90	14.23		150.0	
		Z	0.95	62.59	14.06		150.0	
$\begin{aligned} & 10416- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (ERPOFDM, 6 Mbps , 99 pc duty cycle)	X	4.53	66.62	16.09	0.00	150.0	± 9.6 \%
		Y	4.45	66.83	16.13		150.0	
		Z	4.48	66.68	16.10		150.0	
$\begin{aligned} & 10417- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99 pc duty cycle)	X	4.53	66.62	16.09	0.00	150.0	± 9.6 \%
		Y	4.45	66.83	16.13		150.0	
		Z	4.48	66.68	16.10		150.0	
10418AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle, Long preambule)	X	4.51	66.76	16.09	0.00	150.0	± 9.6 \%
		Y	4.44	67.00	16.16		150.0	
		Z	4.47	66.83	16.12		150.0	
10419AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99 pc duty cycle, Short preambule)	X	4.54	66.72	16.10	0.00	150.0	± 9.6 \%
		Y	4.46	66.94	16.15		150.0	
		Z	4.49	66.78	16.12		150.0	
10422-AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps , BPSK)	X	4.66	66.73	16.13	0.00	150.0	± 9.6 \%
		Y	4.57	66.94	16.17		150.0	
		Z	4.61	66.79	16.14		150.0	
10423-$A A B$	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.83	67.07	16.25	0.00	150.0	± 9.6 \%
		Y	4.72	67.22	16.28		150.0	
		Z	4.77	67.10	16.25		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.75	67.01	16.22	0.00	150.0	± 9.6 \%
		Y	4.64	67.18	16.25		150.0	
		Z	4.69	67.05	16.23		150.0	
$10425-$ AAB	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	X	5.37	67.43	16.45	0.00	150.0	$\pm 9.6 \%$
		Y	5.26	67.46	16.45		150.0	
		Z	5.32	67.43	16.46		150.0	
10426-$A A B$	IEEE 802.11 n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.37	67.44	16.46	0.00	150.0	± 9.6 \%
		Y	5.28	67.55	16.49		150.0	
		Z	5.33	67.49	16.49		150.0	

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.38	67.41	16.44	0.00	150.0	$\pm 9.6 \%$
		Y	5.27	67.46	16.44		150.0	
$\begin{aligned} & 10430- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	Z	5.33	67.43	16.45		150.0	
		X	4.17	70.27	17.81	0.00	150.0	$\pm 9.6 \%$
		Y	4.03	70.48	17.58		150.0	
		Z	4.14	70.57	17.85		150.0	
10431-AAB	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	4.21	67.11	16.05	0.00	150.0	± 9.6 \%
		Y	4.09	67.33	16.03		150.0	
		Z	4.15	67.18	16.04		150.0	
$\begin{aligned} & 10432- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1)	X	4.51	67.03	16.15	0.00	150.0	± 9.6 \%
		Y	4.40	67.23	16.17		150.0	
	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1)	Z	4.46	67.08	16.15		150.0	
$\begin{aligned} & 10433- \\ & \text { AAB } \end{aligned}$		X	4.76	67.04	16.24	0.00	150.0	± 9.6 \%
		Y	4.66	67.21	16.27		150.0	
	W-CDMA (BS Test Model 1, 64 DPCH)	Z	4.71	67.08	16.24		150.0	
$\begin{aligned} & 10434- \\ & \text { AAA } \end{aligned}$		X	4.23	70.97	17.72	0.00	150.0	± 9.6 \%
		Y	4.07	71.14	17.40		150.0	
		Z	4.21	71.31	17.74		150.0	
$\begin{aligned} & 10435- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	118.98	29.60	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	122.59	30.87		80.0	
		Z	100.00	119.99	29.88		80.0	
$\begin{aligned} & 10447- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, $5 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$, Clipping 44\%)	X	3.49	66.99	15.32	0.00	150.0	$\pm 9.6 \%$
		Y	3.34	67.16	15.09		150.0	
		Z	3.41	67.04	15.22		150.0	
$\begin{aligned} & 10448- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	4.04	66.88	15.90	0.00	150.0	$\pm 9.6 \%$
		Y	3.94	67.12	15.89		150.0	
		Z	3.99	66.95	15.89		150.0	
$\begin{aligned} & 10449- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, $15 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$, Cliping 44\%)	X	4.32	66.84	16.03	0.00	150.0	$\pm 9.6 \%$
		Y	4.23	67.04	16.06		150.0	
		Z	4.27	66.90	16.04		150.0	
$\begin{aligned} & 10450- \\ & \mathrm{AAB} \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.51	66.79	16.08	0.00	150.0	$\pm 9.6 \%$
		Y	4.44	66.97	16.11		150.0	
		Z	4.47	66.83	16.09		150.0	
$\begin{aligned} & 10451- \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1,64 DPCH, Clipping 44\%)	X	3.37	67.12	14.92	0.00	150.0	$\pm 9.6 \%$
		Y	3.19	67.13	14.54		150.0	
		Z	3.28	67.11	14.76		150.0	
$\begin{aligned} & 10456- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99 pc duty cycle)	X	6.23	67.99	16.62	0.00	150.0	$\pm 9.6 \%$
		Y	6.17	68.10	16.67		150.0	
		Z	6.19	67.99	16.63		150.0	
$\begin{aligned} & \text { 10457- } \\ & \text { AAA } \end{aligned}$	UMTS-FDD (DC-HSDPA)	X	3.77	65.25	15.79	0.00	150.0	± 9.6 \%
		Y	3.75	65.50	15.83		150.0	
		Z	3.75	65.32	15.80		150.0	
$\begin{aligned} & 10458- \\ & \text { AAA } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.87	70.16	17.10	0.00	150.0	± 9.6 \%
		Y	3.71	70.34	16.66		150.0	
		Z	3.84	70.49	17.05		150.0	
$\begin{aligned} & 10459- \\ & \text { AAA } \end{aligned}$	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.00	67.94	17.87	0.00	150.0	± 9.6 \%
		Y	4.81	68.13	17.56		150.0	
		Z	4.96	68.23	17.89		150.0	

$\begin{aligned} & 10460- \\ & \text { AAA } \end{aligned}$	UMTS-FDD (WCDMA, AMR)	X	0.79	66.34	14.61	0.00	150.0	± 9.6 \%
		Y	0.84	67.16	15.15		150.0	
		Z	0.79	66.65	14.76		150.0	
10461-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	122.59	31.33	3.29	80.0	± 9.6 \%
		Y	100.00	128.70	33.71		80.0	
		Z	100.00	124.88	32.17		80.0	
10462-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	21.46	90.49	19.92	3.23	80.0	± 9.6 \%
		Y	100.00	107.87	23.85		80.0	
		Z	100.00	106.49	23.49		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.25	74.65	14.70	3.23	80.0	± 9.6 \%
		Y	19.71	88.51	18.38		80.0	
		Z	7.19	78.06	15.56		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.34	30.14	3.23	80.0	± 9.6 \%
		Y	100.00	126.35	32.46		80.0	
		Z	100.00	122.50	30.92		80.0	
$\begin{aligned} & 10465- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.73	83.97	18.05	3.23	80.0	± 9.6 \%
		Y	100.00	107.24	23.55		80.0	
		Z	41.80	97.17	21.26		80.0	
10466-AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.09	72.04	13.74	3.23	80.0	± 9.6 \%
		Y	8.97	80.87	16.24		80.0	
		Z	4.77	73.97	14.19		80.0	
$\begin{aligned} & 10467- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.57	30.24	3.23	80.0	± 9.6 \%
		Y	100.00	126.64	32.58		80.0	
		Z	100.00	122.76	31.03		80.0	
$\begin{aligned} & 10468- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	13.52	85.52	18.51	3.23	80.0	± 9.6 \%
		Y	100.00	107.47	23.65		80.0	
		Z	60.78	101.09	22.20		80.0	
$\begin{aligned} & \hline 10469- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.11	72.11	13.77	3.23	80.0	± 9.6 \%
		Y	9.29	81.22	16.33		80.0	
		Z	4.83	74.11	14.24		80.0	
$\begin{array}{\|l} \hline 10470- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.59	30.24	3.23	80.0	± 9.6 \%
		Y	100.00	126.67	32.59		80.0	
		Z	100.00	122.78	31.03		80.0	
10471 AAC	L.TE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	13.37	85.38	18.46	3.23	80.0	± 9.6 \%
		Y	100.00	107.40	23.62		80.0	
		Z	59.33	100.79	22.11		80.0	
$10472-$ AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.08	72.03	13.72	3.23	80.0	± 9.6 \%
		Y	9.15	81.05	16.27		80.0	
		Z	4.78	73.98	14.18		80.0	
$\begin{aligned} & 10473- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.56	30.23	3.23	80.0	± 9.6 \%
		Y	100.00	126.64	32.58		80.0	
		Z	100.00	122.75	31.02		80.0	
10474AAC	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	13.19	85.24	18.42	3.23	80.0	± 9.6 \%
		Y	100.00	107.40	23.61		80.0	
		Z	57.55	100.49	22.04		80.0	
10475AAC	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.06	71.97	13.71	3.23	80.0	± 9.6 \%
		Y	8.99	80.90	16.23		80.0	
		Z	4.73	73.90	14.15		80.0	

$\begin{aligned} & 10477- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.86	84.06	18.05	3.23	80.0	± 9.6 \%
		Y	100.00	107.19	23.51		80.0	
$\begin{aligned} & 10478- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	43.65	97.56	21.32		80.0	
	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.02	71.87	13.66	3.23	80.0	± 9.6 \%
		Y	8.76	80.61	16.13		80.0	
		Z	4.66	73.74	14.09		80.0	
$\begin{aligned} & \text { 10479- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	14.17	93.60	25.28	3.23	80.0	± 9.6 \%
		Y	63.86	118.32	31.85		80.0	
		Z	30.71	105.97	28.68		80.0	
$\begin{aligned} & 10480- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	12.48	86.47	21.39	3.23	80.0	$\pm 9.6 \%$
		Y	53.06	106.13	26.31		80.0	
		Z	23.73	95.20	23.69		80.0	
$\begin{aligned} & 10481- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	9.79	82.49	19.78	3.23	80.0	± 9.6 \%
		Y	26.62	95.88	23.20		80.0	
		Z	15.46	88.60	21.40		80.0	
$\begin{aligned} & \text { 10482- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.76	76.35	18.33	2.23	80.0	± 9.6 \%
		Y	4.38	75.77	17.66		80.0	
		Z	4.74	76.54	18.16		80.0	
$\begin{aligned} & 10483- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, $16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	6.86	78.09	18.71	2.23	80.0	± 9.6 \%
		Y	7.58	79.80	18.72		80.0	
		Z	7.91	80.19	19.17		80.0	
$\begin{aligned} & 10484- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	6.29	76.73	18.22	2.23	80.0	± 9.6 \%
		Y	6.51	77.64	17.97		80.0	
		Z	6.95	78.27	18.51		80.0	
$\begin{aligned} & 10485- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.21	77.92	19.79	2.23	80.0	± 9.6 \%
		Y	5.14	78.56	19.82		80.0	
		Z	5.34	78.68	19.95		80.0	
$\begin{aligned} & 10486- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.30	72.12	17.19	2.23	80.0	± 9.6 \%
		Y	4.02	71.85	16.65		80.0	
		Z	4.23	72.22	17.03		80.0	
$\begin{aligned} & 10487- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.25	71.63	16.98	2.23	80.0	± 9.6 \%
		Y	3.95	71.26	16.39		80.0	
		Z	4.16	71.66	16.79		80.0	
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.17	76.41	19.90	2.23	80.0	$\pm 9.6 \%$
		Y	5.01	76.93	20.15		80.0	
		Z	5.17	76.91	20.10		80.0	
$\begin{aligned} & 10489- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.47	71.61	18.14	2.23	80.0	± 9.6 \%
		Y	4.30	71.84	18.12		80.0	
		Z	4.42	71.84	18.19		80.0	
$\begin{aligned} & 10490- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.53	71.33	18.05	2.23	80.0	$\pm 9.6 \%$
		Y	4.36	71.56	18.01		80.0	
		Z	4.48	71.55	18.09		80.0	
$\begin{aligned} & 10491- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.06	74.04	19.16	2.23	80.0	± 9.6 \%
		Y	4.88	74.37	19.37		80.0	
		Z	5.01	74.33	19.30		80.0	
$\begin{aligned} & 10492- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, $15 \mathrm{MH} H$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.71	70.55	18.02	2.23	80.0	± 9.6 \%
		Y	4.54	70.71	18.05		80.0	
		Z	4.64	70.68	18.06		80.0	

$\begin{aligned} & 10493- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.76	70.36	17.96	2.23	80.0	± 9.6 \%
		Y	4.58	70.52	17.98		80.0	
		Z	4.69	70.49	18.00		80.0	
10494AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.60	75.75	19.64	2.23	80.0	± 9.6 \%
		Y	5.37	76.02	19.87		80.0	
		Z	5.56	76.06	19.81		80.0	
$\begin{array}{\|l\|} \hline 10495- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.78	71.03	18.23	2.23	80.0	± 9.6 \%
		Y	4.59	71.11	18.27		80.0	
		Z	4.71	71.14	18.28		80.0	
10496AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.83	70.65	18.12	2.23	80.0	$\pm 9.6 \%$
		Y	4.64	70.74	18.15		80.0	
		Z	4.75	70.76	18.17		80.0	
$\begin{aligned} & \text { 10497- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.37	71.45	15.57	2.23	80.0	± 9.6 \%
		Y	2.72	69.17	13.95		80.0	
		2	3.09	70.50	14.83		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.40	64.81	11.76	2.23	80.0	± 9.6 \%
		Y	1.75	62.03	9.60		80.0	
		Z	2.07	63.39	10.68		80.0	
$\begin{aligned} & 10499- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	2.32	64.18	11.33	2.23	80.0	± 9.6 \%
		Y	1.68	61.41	9.14		80.0	
		Z	1.99	62.76	10.23		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.05	76.85	19.69	2.23	80.0	± 9.6 \%
		Y	4.98	77.59	19.85		80.0	
		Z	5.12	77.53	19.88		80.0	
$\begin{aligned} & 10501- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.38	71.91	17.55	2.23	80.0	± 9.6 \%
		Y	4.19	72.01	17.27		80.0	
		Z	4.33	72.13	17.50		80.0	
$\begin{aligned} & 10502- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.41	71.66	17.40	2.23	80.0	± 9.6 \%
		Y	4.21	71.71	17.09		80.0	
		Z	4.36	71.85	17.33		80.0	
10503-AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.10	76.19	19.80	2.23	80.0	± 9.6 \%
		Y	4.94	76.71	20.05		80.0	
		Z	5.10	76.67	19.99		80.0	
10504-AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.44	71.51	18.08	2.23	80.0	± 9.6 \%
		Y	4.28	71.74	18.06		80.0	
		Z	4.39	71.73	18.13		80.0	
10505-AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.51	71.23	18.00	2.23	80.0	± 9.6 \%
		Y	4.34	71.46	17.96		80.0	
		Z	4.45	71.44	18.03		80.0	
$\begin{aligned} & 10506- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.55	75.59	19.57	2.23	80.0	± 9.6 \%
		Y	5.33	75.87	19.80		80.0	
		Z	5.51	75.90	19.73		80.0	
$10507-$AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.76	70.96	18.19	2.23	80.0	± 9.6 \%
		Y	4.57	71.05	18.23		80.0	
		Z	4.69	71.07	18.24		80.0	

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.81	70.58	18.08	2.23	80.0	± 9.6 \%
		Y	4.62	70.68	18.11		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	4.73	70.68	18.12		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.59	73.58	18.84	2.23	80.0	± 9.6 \%
		Y	5.39	73.76	19.02		80.0	
		Z	5.53	73.76	18.95		80.0	
$\begin{aligned} & 10510- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.20	70.42	18.08	2.23	80.0	± 9.6 \%
		Y	4.99	70.43	18.12		80.0	
		Z	5.11	70.45	18.12		80.0	
$\begin{aligned} & 10511- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.22	70.10	18.00	2.23	80.0	± 9.6 \%
		Y	5.03	70.13	18.04		80.0	
		Z	5.14	70.14	18.03		80.0	
$\begin{aligned} & 10512- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.02	75.44	19.39	2.23	80.0	± 9.6 \%
		Y	5.78	75.56	19.57		80.0	
		Z	5.97	75.65	19.51		80.0	
$\begin{aligned} & 10513- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.12	70.82	18.23	2.23	80.0	± 9.6 \%
		Y	4.91	70.75	18.25		80.0	
		Z	5.03	70.83	18.26		80.0	
$\begin{aligned} & 10514- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.09	70.31	18.08	2.23	80.0	± 9.6 \%
		Y	4.90	70.27	18.11		80.0	
		Z	5.01	70.33	18.11		80.0	
10515-$A A A$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, $99 p \mathrm{~d}$ duty cycle)	X	0.92	62.60	13.99	0.00	150.0	± 9.6 \%
		Y	0.95	63.05	14.27		150.0	
		Z	0.91	62.72	14.07		150.0	
10516-AAA	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.48	67.26	14.71	0.00	150.0	± 9.6 \%
		Y	0.54	68.48	15.75		150.0	
		Z	0.49	67.82	15.05		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.75	64.05	14.24	0.00	150.0	± 9.6 \%
		Y	0.79	64.60	14.65		150.0	
		Z	0.75	64.23	14.37		150.0	
$\begin{aligned} & \hline 10518- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.52	66.69	16.06	0.00	150.0	± 9.6 \%
		Y	4.44	66.90	16.10		150.0	
		Z	4.47	66.75	16.07		150.0	
$\begin{array}{\|l\|} \hline 10519- \\ A A B \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.71	66.95	16.20	0.00	150.0	$\pm 9.6 \%$
		Y	4.60	67.11	16.21		150.0	
		Z	4.65	66.98	16.20		150.0	
$\begin{aligned} & 10520- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.56	66.90	16.11	0.00	150.0	$\pm 9.6 \%$
		Y	4.46	67.05	16.12		150.0	
		Z	4.50	66.93	16.11		150.0	
$\begin{aligned} & 10521- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.49	66.89	16.09	0.00	150.0	$\pm 9.6 \%$
		Y	4.39	67.03	16.11		150.0	
		Z	4.44	66.91	16.09		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.55	66.96	16.17	0.00	150.0	± 9.6 \%
		Y	4.45	67.16	16.21		150.0	
		Z	4.50	67.02	16.19		150.0	

$\begin{aligned} & 10523- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.43	66.81	16.00	0.00	150.0	± 9.6 \%
		Y	4.35	67.05	16.07		150.0	
		Z	4.38	66.88	16.02		150.0	
$\begin{aligned} & 10524- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.50	66.89	16.14	0.00	150.0	± 9.6 \%
		Y	4.39	67.08	16.18		150.0	
		Z	4.44	66.94	16.15		150.0	
$\begin{aligned} & \text { 10525- } \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCSO}$, 99pc duty cycle)	X	4.47	65.92	15.72	0.00	150.0	± 9.6 \%
		Y	4.40	66.15	15.78		150.0	
		Z	4.43	65.98	15.74		150.0	
$\begin{aligned} & 10526= \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.65	66.29	15.87	0.00	150.0	± 9.6 \%
		Y	4.55	66.47	15.91		150.0	
		Z	4.59	66.34	15.88		150.0	
$\begin{aligned} & 10527- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCS2, 99pc duty cycle)	X	4.57	66.25	15.81	0.00	150.0	± 9.6 \%
		Y	4.47	66.43	15.85		150.0	
		Z	4.52	66.29	15.82		150.0	
$\begin{aligned} & 10528- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, $99 p \mathrm{duty}$ cycle)	x	4.58	66.27	15.84	0.00	150.0	$\pm 9.6 \%$
		Y	4.49	66.45	15.88		150.0	
		Z	4.53	66.31	15.85		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.58	66.27	15.84	0.00	150.0	± 9.6 \%
		Y	4.49	66.45	15.88		150.0	
		Z	4.53	66.31	15.85		150.0	
$\begin{aligned} & 10531- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS6}$, 99pc duty cycle)	X	4.58	66.38	15.85	0.00	150.0	± 9.6 \%
		Y	4.46	66.51	15.87		150.0	
		Z	4.52	66.40	15.86		150.0	
$\begin{aligned} & \hline 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99 pc duty cycle)	X	4.44	66.22	15.78	0.00	150.0	± 9.6 \%
		Y	4.33	66.36	15.80		150.0	
		Z	4.38	66.25	15.78		150.0	
$\begin{aligned} & 10533- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99 pc duty cycle)	X	4.59	66.30	15.83	0.00	150.0	± 9.6 \%
		Y	4.49	66.51	15.88		150.0	
		Z	4.54	66.36	15.84		150.0	
$\begin{aligned} & 10534- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 99pc duty cycle)	X	5.13	66.43	15.94	0.00	150.0	± 9.6 \%
		Y	5.04	66.54	15.97		150.0	
		Z	5.08	66.45	15.95		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.20	66.61	16.01	0.00	150.0	± 9.6 \%
		Y	5.10	66.71	16.05		150.0	
		Z	5.15	66.64	16.04		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99 pc duty cycle)	X	5.06	66.54	15.96	0.00	150.0	± 9.6 \%
		Y	4.98	66.67	16.01		150.0	
		Z	5.01	66.57	15.98		150.0	
$\begin{aligned} & 10537- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99 pc duty cycle)	X	5.12	66.52	15.95	0.00	150.0	± 9.6 \%
		Y	5.03	66.63	15.99		150.0	
		Z	5.07	66.54	15.97		150.0	
$\begin{aligned} & 10538- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, $99 p c$ duty cycle)	X	5.22	66.56	16.02	0.00	150.0	± 9.6 \%
		Y	5.11	66.64	16.04		150.0	
		Z	5.16	66.56	16.02		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.14	66.57	16.03	0.00	150.0	± 9.6 \%
		Y	5.04	66.62	16.05		150.0	
		Z	5.10	66.60	16.05		150.0	

$\begin{aligned} & 10541- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 99 pc duty cycle)	X	5.11	66.43	15.96	0.00	150.0	± 9.6 \%
		Y	5.02	66.51	15.98		150.0	
$\begin{aligned} & 10542- \\ & \text { AAB } \end{aligned}$		Z	5.07	66.45	15.97		150.0	
	IEEE 802.11ac WiFi (40MHz, MCS8, 99 pc duty cycle)	X	5.27	66.51	16.02	0.00	150.0	± 9.6 \%
		Y	5.18	66.61	16.04		150.0	
		Z	5.22	66.53	16.03		150.0	
$\begin{aligned} & 10543- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99 pc duty cycle)	X	5.36	66.57	16.06	0.00	150.0	± 9.6 \%
		Y	5.24	66.63	16.08		150.0	
		Z	5.30	66.57	16.07		150.0	
$\begin{aligned} & 10544- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.43	66.55	15.94	0.00	150.0	± 9.6 \%
		Y	5.37	66.65	15.97		150.0	
		Z	5.40	66.56	15.95		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS1, 99 pc duty cycle)	X	5.64	67.00	16.11	0.00	150.0	± 9.6 \%
		Y	5.55	67.08	16.15		150.0	
		Z	5.60	67.02	16.13		150.0	
$\begin{aligned} & 10546- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.50	66.78	16.02	0.00	150.0	± 9.6 \%
		Y	5.41	66.80	16.02		150.0	
		Z	5.46	66.76	16.01		150.0	
$\begin{aligned} & 10547- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (80 MHz , MCS3, 99pc duty cycle)	X	5.58	66.83	16.03	0.00	150.0	± 9.6 \%
		Y	5.49	66.87	16.05		150.0	
		Z	5.53	66.81	16.03		150.0	
$\begin{aligned} & 10548- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.89	67.94	16.56	0.00	150.0	± 9.6 \%
		Y	5.69	67.68	16.43		150.0	
		Z	5.80	67.83	16.51		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS6, 99 pc duty cycle)	X	5.53	66.79	16.03	0.00	150.0	± 9.6 \%
		Y	5.46	66.91	16.08		150.0	
		Z	5.49	66.81	16.05		150.0	
$\begin{aligned} & 10551- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 99 pc duty cycle)	X	5.53	66.82	16.01	0.00	150.0	± 9.6 \%
		Y	5.44	66.85	16.02		150.0	
		Z	5.49	66.83	16.02		150.0	
$\begin{aligned} & 10552- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS8, 99pc duty cycle)	X	5.44	66.61	15.91	0.00	150.0	± 9.6 \%
		Y	5.38	66.72	15.95		150.0	
		Z	5.40	66.62	15.92		150.0	
$\begin{aligned} & 10553- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.53	66.66	15.96	0.00	150.0	± 9.6 \%
		Y	5.45	66.72	15.99		150.0	
		Z	5.48	66.65	15.97		150.0	
$\begin{aligned} & 10554- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 0$, $99 p c$ duty cycle)	X	5.84	66.93	16.04	0.00	150.0	± 9.6 \%
		Y	5.78	67.01	16.06		150.0	
		Z	5.81	66.94	16.05		150.0	
$\begin{array}{\|l} \hline 10555- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS1, 99pc duty cycle)	X	5.98	67.25	16.17	0.00	150.0	± 9.6 \%
		Y	5.90	67.29	16.19		150.0	
		Z	5.94	67.25	16.18		150.0	
$\begin{aligned} & 10556- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.1 1ac WiFi (160 MHz , MCS2, 99pc duty cycle)	X	6.00	67.29	16.19	0.00	150.0	$\pm 9.6 \%$
		Y	5.93	67.35	16.21		150.0	
		Z	5.96	67.30	16.20		150.0	
$\begin{aligned} & \hline 10557- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802:1 1 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 3$, 99pc duty cycle)	X	5.96	67.20	16.16	0.00	150.0	± 9.6 \%
		Y	5.88	67.23	16.17		150.0	
		Z	5.92	67.18	16.16		150.0	

$\begin{array}{\|l\|} \hline 10558- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.01	67.37	16.26	0.00	150.0	± 9.6 \%
		Y	5.92	67.38	16.26		150.0	
		Z	5.97	67.35	16.26		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 99pc duty cycle)	X	6.01	67.21	16.22	0.00	150.0	± 9.6 \%
		Y	5.92	67.24	16.23		150.0	
		Z	5.96	67.19	16.22		150.0	
$\begin{aligned} & 10561- \\ & A A C \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 99pc duty cycle)	X	5.93	67.18	16.25	0.00	150.0	± 9.6 \%
		Y	5.85	67.23	16.26		150.0	
		Z	5.89	67.18	16.25		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.07	67.61	16.46	0.00	150.0	± 9.6 \%
		Y	5.94	67.50	16.40		150.0	
		Z	6.01	67.54	16.43		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 99 pc duty cycle)	X	6.39	68.16	16.69	0.00	150.0	± 9.6 \%
		Y	6.02	67.41	16.31		150.0	
		Z	6.19	67.71	16.48		150.0	
$\begin{aligned} & \text { 10564- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps, $99 p \mathrm{duty}$ cycle)	X	4.86	66.83	16.26	0.46	150.0	± 9.6 \%
		Y	4.78	67.03	16.31		150.0	
		Z	4.81	66.87	16.27		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	5.09	67.28	16.58	0.46	150.0	± 9.6 \%
		Y	4.98	67.43	16.60		150.0	
		Z	5.03	67.31	16.59		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	4.93	67.13	16.40	0.46	150.0	± 9.6 \%
		Y	4.82	67.27	16.42		150.0	
		Z	4.87	67.15	16.40		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, 99 pc duty cycle)	X	4.95	67.50	16.74	0.46	150.0	± 9.6 \%
		Y	4.84	67.61	16.74		150.0	
		Z	4.90	67.52	16.74		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , $99 p \mathrm{duty}$ cycle)	X	4.85	66.93	16.19	0.46	150.0	± 9.6 \%
		Y	4.74	67.12	16.24		150.0	
		Z	4.79	66.97	16.19		150.0	
10569- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, $99 p \mathrm{duty}$ cycle)	X	4.91	67.57	16.79	0.46	150.0	± 9.6 \%
		Y	4.82	67.76	16.84		150.0	
		Z	4.86	67.64	16.82		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps, 99 pc duty cycle)	X	4.94	67.43	16.73	0.46	150.0	± 9.6 \%
		Y	4.84	67.60	16.77		150.0	
		Z	4.89	67.48	16.75		150.0	
$\begin{aligned} & \text { 10571- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.25	65.19	15.53	0.46	130.0	± 9.6 \%
		Y	1.27	65.45	15.71		130.0	
		Z	1.24	65.29	15.60		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90 pc duty cycle)	X	1.27	65.79	15.87	0.46	130.0	± 9.6 \%
		Y	1.28	66.03	16.05		130.0	
		Z	1.26	65.90	15.96		130.0	
10573-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90 pc duty cycle)	X	2.61	85.52	21.81	0.46	130.0	± 9.6 \%
		Y	2.97	88.51	23.34		130.0	
		Z	3.01	88.05	22.71		130.0	
$\begin{aligned} & 10574- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.44	71.64	18.59	0.46	130.0	± 9.6 \%
		Y	1.44	71.68	18.74		130.0	
		Z	1.45	72.00	18.80		130.0	

$10575-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 90 pc duty cycle)	X	4.68	66.71	16.37	0.46	130.0	± 9.6 \%
		Y	4.59	66.91	16.41		130.0	
$\begin{array}{\|l} \hline 10576- \\ \text { AAA } \\ \hline \end{array}$		Z	4.63	66.76	16.38		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.70	66.86	16.43	0.46	130.0	± 9.6 \%
		Y	4.61	67.07	16.47		130.0	
10577-$A A A$		Z	4.65	66.92	16.44		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	4.91	67.16	16.60	0.46	130.0	± 9.6 \%
		Y	4.79	67.31	16.62		130.0	
$10578-$ AAA		Z	4.85	67.20	16.60		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.81	67.32	16.69	0.46	130.0	± 9.6 \%
		Y	4.69	67.44	16.70		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \end{aligned}$		Z	4.75	67.35	16.70		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, 90 pc duty cycle)	X	4.58	66.65	16.03	0.46	130.0	± 9.6 \%
		Y	4.47	66.80	16.06		130.0	
10580-AAA		Z	4.52	66.66	16.02		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 90 pc duty cycle)	X	4.63	66.68	16.05	0.46	130.0	± 9.6 \%
		Y	4.52	66.87	16.11		130.0	
$\begin{aligned} & 10581- \\ & \text { AAA } \end{aligned}$		Z	4.57	66.71	16.05		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, 90 pc duty cycle)	X	4.71	67.36	16.64	0.46	130.0	± 9.6 \%
		Y	4.60	67.52	16.66		130.0	
		Z	4.65	67.41	16.65		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.53	66.42	15.83	0.46	130.0	± 9.6 \%
		Y	4.41	66.60	15.88		130.0	
		Z	4.4.6	66.43	15.82		130.0	
$\begin{aligned} & 10583- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.68	66.71	16.37	0.46	130.0	± 9.6 \%
		Y	4.59	66.91	16.41		130.0	
$\begin{aligned} & \text { 10584- } \\ & \text { AAB } \end{aligned}$		Z	4.63	66.76	16.38		130.0	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90 pc duty cycle)	X	4.70	66.86	16.43	0.46	130.0	± 9.6 \%
		Y	4.61	67.07	16.47		130.0	
		Z	4.65	66.92	16.44		130.0	
$\begin{aligned} & 10585= \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.91	67.16	16.60	0.46	130.0	± 9.6 \%
		Y	4.79	67.31	16.62		130.0	
		Z	4.85	67.20	16.60		130.0	
$\begin{aligned} & 10586- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.81	67.32	16.69	0.46	130.0	± 9.6 \%
		Y	4.69	67.44	16.70		130.0	
		Z	4.75	67.35	16.70		130.0	
$\begin{aligned} & 10587- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duity cycle)	X	4.58	66.65	16.03	0.46	130.0	± 9.6 \%
		Y	4.47	66.80	16.06		130.0	
		Z	4.52	66.66	16.02		130.0	
$\begin{array}{\|l\|} \hline 10588- \\ A A B \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.63	66.68	16.05	0.46	130.0	± 9.6 \%
		Y	4.52	66.87	16.11		130.0	
		Z	4.57	66.71	16.05		130.0	
$\begin{aligned} & 10589- \\ & A A B \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.71	67.36	16.64	0.46	130.0	± 9.6 \%
		Y	4.60	67.52	16.66		130.0	
		Z	4.65	67.41	16.65		130.0	
$\begin{aligned} & 10590- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.53	66.42	15.83	0.46	130.0	± 9.6 \%
		Y	4.41	66.60	15.88		130.0	
		Z	4.46	66.43	15.82		130.0	

$\begin{aligned} & 10591- \\ & A A B \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCSO, 90pc duty cycle)	X	4.83	66.77	16.47	0.46	130.0	± 9.6 \%
		Y	4.74	66.96	16.50		130.0	
		Z	4.78	66.82	16.48		130.0	
$\begin{aligned} & \text { 10592- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.98	67.10	16.60	0.46	130.0	± 9.6 \%
		Y	4.87	67.27	16.63		130.0	
		Z	4.93	67.14	16.61		130.0	
$\begin{aligned} & \hline 10593- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.91	67.02	16.48	0.46	130.0	± 9.6 \%
		Y	4.80	67.17	16.51		130.0	
		Z	4.85	67.05	16.49		130.0	
$\begin{aligned} & 10594- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz MCS3, 90pc duty cycle)	X	4.96	67.18	16.63	0.46	130.0	± 9.6 \%
		Y	4.85	67.33	16.66		130.0	
		Z	4.90	67.22	16.64		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.93	67.14	16.53	0.46	130.0	± 9.6 \%
		Y	4.82	67.31	16.57		130.0	
		Z	4.87	67.18	16.54		130.0	
$\begin{aligned} & 10596- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.87	67.14	16.54	0.46	130.0	$\pm 9.6 \%$
		Y	4.76	67.30	16.57		130.0	
		Z	4.81	67.18	16.54		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.82	67.05	16.42	0.46	130.0	± 9.6 \%
		Y	4.71	67.19	16.44		130.0	
		Z	4.76	67.07	16.42		130.0	
10598- AAB	IEEE 802.11 n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.80	67.28	16.68	0.46	130.0	± 9.6 \%
		Y	4.69	67.37	16.67		130.0	
		Z	4.74	67.29	16.67		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCSO, 90pc duty cycle)	X	5.50	67.33	16.69	0.46	130.0	± 9.6 \%
		Y	5.40	67.43	16.72		130.0	
		Z	5.46	67.38	16.72		130.0	
$\begin{aligned} & 10600 \times \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90 pc duty cycle)	X	5.67	67.87	16.93	0.46	130.0	± 9.6 \%
		Y	5.53	67.86	16.92		130.0	
		Z	5.61	67.87	16.94		130.0	
$\begin{aligned} & 10601- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.54	67.56	16.79	0.46	130.0	± 9.6 \%
		Y	5.42	67.61	16.80		130.0	
		Z	5.48	67.56	16.80		130.0	
10602- AAB	IEEE 802.11 n (HT Mixed, 40 MHz , MCS3, 90pc duty cycle)	X	5.63	67.58	16.72	0.46	130.0	± 9.6 \%
		Y	5.55	67.79	16.82		130.0	
		Z	5.59	67.64	16.76		130.0	
$\begin{aligned} & 10603- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.71	67.86	16.99	0.46	130.0	± 9.6 \%
		Y	5.61	68.00	17.05		130.0	
		Z	5.65	67.89	17.01		130.0	
$\begin{aligned} & 10604- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.50	67.29	16.70	0.46	130.0	± 9.6 \%
		Y	5.49	67.68	16.88		130.0	
		Z	5.47	67.39	16.75		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS6, 90pc duty cycle)	X	5.63	67.69	16.90	0.46	130.0	± 9.6 \%
		Y	5.53	67.80	16.94		130.0	
		Z	5.59	67.74	16.92		130.0	
$\begin{aligned} & 10606- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz MCS7, 90pc duty cycle)	X	5.39	67.07	16.45	0.46	130.0	± 9.6 \%
		Y	5.27	67.10	16.45		130.0	
		Z	5.31	66.99	16.41		130.0	

$\begin{aligned} & 10607- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCSO, 90 pc duty cycle)	X	4.65	66.04	16.07	0.46	130.0	± 9.6 \%
		Y	4.58	66.26	16.12		130.0	
$\begin{aligned} & 10608- \\ & A A B \end{aligned}$		Z	4.61	66.10	16.08		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	4.85	66.45	16.23	0.46	130.0	± 9.6 \%
		Y	4.74	66.63	16.28		130.0	
		Z	4.79	66.50	16.25		130.0	
$\begin{aligned} & 10609- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.74	66.30	16.07	0.46	130.0	± 9.6 \%
		Y	4.63	66.48	16.11		130.0	
		Z	4.68	66.35	16.08		130.0	
$\begin{aligned} & 10610- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.79	66.46	16.23	0.46	130.0	± 9.6 \%
		Y	4.68	66.63	16.27		130.0	
		Z	4.73	66.50	16.25		130.0	
$\begin{array}{\|l} \hline 10611- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.70	66.28	16.09	0.46	130.0	$\pm 9.6 \%$
		Y	4.60	66.45	16.12		130.0	
		Z	4.65	66.31	16.10		130.0	
$\begin{array}{\|l\|} \hline 10612- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.72	66.43	16.13	0.46	130.0	± 9.6 \%
		Y	4.60	66.61	16.18		130.0	
		Z	4.66	66.47	16.14		130.0	
10613-AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.72	66.33	16.02	0.46	130.0	± 9.6 \%
		Y	4.60	66.47	16.05		130.0	
		Z	4.66	66.35	16.02		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.66	66.50	16.24	0.46	130.0	± 9.6 \%
		Y	4.55	66.62	16.25		130.0	
		Z	4.60	66.53	16.25		130.0	
$\begin{aligned} & 10615- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 90 pc duty cycle)	X	4.71	66.12	15.87	0.46	130.0	± 9.6 \%
		Y	4.60	66.33	15.93		130.0	
		Z	4.65	66.16	15.88		130.0	
$\begin{array}{\|l\|} \hline 10616- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	5.31	66.56	16.28	0.46	130.0	± 9.6 \%
		Y	5.21	66.65	16.31		130.0	
		Z	5.26	66.57	16.29		130.0	
10617 AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.38	66.74	16.35	0.46	130.0	$\pm 9.6 \%$
		Y	5.29	66.86	16.39		130.0	
		Z	5.34	66.79	16.37		130.0	
$\begin{aligned} & \hline 10618- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.26	66.74	16.36	0.46	130.0	± 9.6 \%
		Y	5.18	66.87	16.40		130.0	
		Z	5.22	66.77	16.38		130.0	
$\begin{array}{\|l} \hline 10619- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	5.29	66.59	16.22	0.46	130.0	$\pm 9.6 \%$
		Y	5.19	66.67	16.25		130.0	
		Z	5.23	66.58	16.22		130.0	
$\begin{aligned} & 10620- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 90 pc duty cycle)	X	5.38	66.62	16.29	0.46	130.0	$\pm 9.6 \%$
		Y	5.27	66.70	16.31		130.0	
		Z	5.32	66.62	16.29		130.0	
$10621-$$A A B$	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duty cycle)	X	5.37	66.71	16.45	0.46	130.0	$\pm 9.6 \%$
		Y	5.27	66.80	16.47		130.0	
		Z	5.32	66.74	16.47		130.0	
$\begin{aligned} & 10622- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.39	66.89	16.53	0.46	130.0	± 9.6 \%
		Y	5.29	66.97	16.55		130.0	
		Z	5.34	66.92	16.55		130.0	

$\begin{aligned} & 10623-1 \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	5.26	66.41	16.17	0.46	130.0	± 9.6 \%
		Y	5.16	66.51	16.20		130.0	
		Z	5.21	66.44	16.19		130.0	
$\begin{array}{\|l\|} \hline 10624- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.45	66.63	16.34	0.46	130.0	± 9.6 \%
		Y	5.35	66.71	16.36		130.0	
		Z	5.40	66.64	16.35		130.0	
$\begin{aligned} & 10625- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.87	67.75	16.95	0.46	130.0	± 9.6 \%
		Y	5.59	67.32	16.72		130.0	
		Z	5.77	67.62	16.89		130.0	
$\begin{aligned} & 10626- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCSO, 90pc duty cycle)	X	5.59	66.61	16.24	0.46	130.0	± 9.6 \%
		Y	5.53	66.71	16.27		130.0	
		Z	5.56	66.63	16.25		130.0	
$\begin{array}{\|l\|} \hline 10627- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.86	67.23	16.51	0.46	130.0	$\pm 9.6 \%$
		Y	5.77	67.31	16.54		130.0	
		Z	5.82	67.26	16.53		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WIFi (80MHz, MCS2, 90 pc duty cycle)	X	5.64	66.75	16.20	0.46	130.0	± 9.6 \%
		Y	5.54	66.76	16.20		130.0	
		Z	5.59	66.73	16.20		130.0	
$\begin{aligned} & 10629- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.74	66.86	16.25	0.46	130.0	± 9.6 \%
		Y	5.63	66.85	16.25		130.0	
		Z	5.67	66.78	16.22		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS4, 90 pc duty cycle)	X	6.27	68.62	17.13	0.46	130.0	± 9.6 \%
		Y	5.98	68.12	16.89		130.0	
		Z	6.16	68.44	17.05		130.0	
$\begin{aligned} & 10631 \text { - } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS5, 90 pc duty cycle)	X	6.08	68.18	17.10	0.46	130.0	± 9.6 \%
		Y	5.89	67.92	16.96		130.0	
		Z	6.00	68.07	17.05		130.0	
$\begin{aligned} & 10632- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS6, 90 pc duty cycle)	X	5.81	67.25	16.65	0.46	130.0	± 9.6 \%
		Y	5.73	67.36	16.70		130.0	
		Z	5.78	67.29	16.68		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS7, 90 pc duty cycle)	X	5.70	66.88	16.30	0.46	130.0	± 9.6 \%
		Y	5.61	66.94	16.32		130.0	
		Z	5.64	66.86	16.29		130.0	
$\begin{aligned} & 10634- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS8, 90 pc duty cycle)	X	5.68	66.90	16.36	0.46	130.0	± 9.6 \%
		Y	5.59	66.94	16.37		130.0	
		Z	5.63	66.89	16.36		130.0	
$\begin{aligned} & 10635- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.57	66.28	15.80	0.46	130.0	$\pm 9.6 \%$
		Y	5.47	66.33	15.83		130.0	
		Z	5.52	66.25	15.79		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	6.01	67.00	16.34	0.46	130.0	± 9.6 \%
		Y	5.95	67.08	16.37		130.0	
		Z	5.98	67.00	16.35		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS1, 90 pc duty cycle)	X	6.18	67.41	16.53	0.46	130.0	± 9.6 \%
		Y	6.10	67.45	16.54		130.0	
		Z	6.14	67.41	16.54		130.0	
$\begin{aligned} & 10638 \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 90 pc duty cycle)	X	6.18	67.38	16.49	0.46	130.0	± 9.6 \%
		Y	6.10	67.42	16.51		130.0	
		Z	6.14	67.38	16.50		130.0	

$\begin{aligned} & 10639- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS3, 90 pc duty cycle)	X	6.15	67.32	16.51	0.46	130.0	± 9.6 \%
		Y	6.07	67.34	16.50		130.0	
$10640-$ AAC		Z	6.11	67.30	16.50		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS4, 90 pc duty cycle)	X	6.17	67.36	16.47	0.46	130.0	± 9.6 \%
		Y	6.07	67.36	16.47		130.0	
		Z	6.11	67.32	16.45		130.0	
$\begin{array}{\|l\|} \hline 10641- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS5, 90 pc duty cycle)	X	6.20	67.22	16.42	0.46	130.0	± 9.6 \%
		Y	6.14	67.34	16.48		130.0	
		Z	6.17	67.26	16.44		130.0	
$\begin{array}{\|l} \hline 10642- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 90 pc duty cycle)	X	6.24	67.47	16.71	0.46	130.0	± 9.6 \%
		Y	6.15	67.50	16.71		130.0	
		Z	6.19	67.46	16.71		130.0	
$\begin{array}{\|l} \hline 10643- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 90 pc duty cycle)	X	6.08	67.18	16.46	0.46	130.0	± 9.6 \%
		Y	6.01	67.25	16.50		130.0	
		Z	6.04	67.18	16.47		130.0	
10644-$A A C$	IEEE 802.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.27	67.76	16.77	0.46	130.0	± 9.6 \%
		Y	6.11	67.57	16.67		130.0	
		Z	6.19	67.64	16.72		130.0	
10645-$A A C$	IEEE 802.11ac WiFi (160MHZ, MCS9, 90 pc duty cycle)	X	6.75	68.75	17.22	0.46	130.0	± 9.6 \%
		Y	6.24	67.62	16.66		130.0	
		Z	6.47	68.11	16.92		130.0	
$\begin{aligned} & \hline 10646- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	46.96	124.69	40.77	9.30	60.0	± 9.6 \%
		Y	100.00	148.37	48.20		60.0	
		Z	67.01	134.85	43.85		60.0	
$10647$$\mathrm{AAC}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	46.42	125.36	41.11	9.30	60.0	± 9.6 \%
		Y	100.00	149.72	48.78		60.0	
		Z	63.71	134.73	44.00		60.0	
$\begin{aligned} & 10648- \\ & \text { AAA } \end{aligned}$	CDMA2000 (1x Advanced)	X	0.63	62.54	9.79	0.00	150.0	± 9.6 \%
		Y	0.58	62.24	9.19		150.0	
		Z	0.59	62.30	9.35		150.0	
$\begin{aligned} & 10652- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 5 MHz , E-TM 3.1, Clipping 44\%)	X	4.19	68.34	17.06	2.23	80.0	$\pm 9.6 \%$
		Y	4.08	68.62	17.03		80.0	
		Z	4.14	68.48	17.06		80.0	
$\begin{aligned} & 10653- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	4.68	67.61	17.18	2.23	80.0	± 9.6 \%
		Y	4.56	67.77	17.19		80.0	
		Z	4.62	67.66	17.19		80.0	
$\begin{aligned} & 10654- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44%)	X	4.63	67.27	17.19	2.23	80.0	± 9.6 \%
		Y	4.54	67.39	17.21		80.0	
		Z	4.58	67.31	17.20		80.0	
$\begin{aligned} & 10655- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.69	67.27	17.23	2.23	80.0	$\pm 9.6 \%$
		Y	4.60	67.35	17.25		80.0	
		Z	4.64	67.28	17.23		80.0	
10658-AAA	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	19.17	92.59	24.24	10.00	50.0	± 9.6 \%
		Y	41.94	104.68	27.26		50.0	
		Z	24.50	96.17	24.98		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200 Hz , 20\%)	X	100.00	114.36	28.32	6.99	60.0	± 9.6 \%
		Y	100.00	114.20	27.89		60.0	
		Z	100.00	113.56	27.75		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	100.00	111.43	25.50	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	112.46	25.73		80.0	
$10661-$ AAA	Pulse Waveform $(200 \mathrm{~Hz}, 60 \%)$	Z	100.00	110.79	25.07		80.0	
		Y	100.00	110.47	23.74	2.22	100.0	$\pm 9.6 \%$
		Z	100.00	113.00	109.90	24.78		100.0
$10662-$ AAA	Pulse Waveform (200Hz, $80 \%)$	X	100.00	107.83	20.38		100.0	
		Y	100.00	115.39	23.98		12.07	120.0
	$\pm 9.6 \%$							

${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

 Schmid \& PartnerEngineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client PC Test

Certificate No: ES3-3287_Sep17

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3287

Catibration procedure(s)
QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

September 18, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidily $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name Leif Klysner	Function Laboratory Technician
Calibrated by:	Katja Pokovlc	Technical Manager
Approved by:		
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	Issued: September 19, 2017	

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S	Schweizerischer Kalibrierdienst
C	Service suisse d'étalonnage
S	Servizio svizzero di taratura
	Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORMx, y , z
ConvF
DCP
CF
A, B, C, D
Polarization φ
tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
Polarization $\vartheta \quad \vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $9=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORM x, y, z : Assessed for E-field polarization $9=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $f>1800 \mathrm{MHz}$: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M X, y, z *$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; $B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe ES3DV3

SN:3287

Manufactured: June 7, 2010
Calibrated: September 18, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc $(\mathbf{k}=\mathbf{2)}$
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.87	0.98	1.00	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	107.7	103.1	105.0	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c} \mathbf{U n}_{\mathbf{E}}^{\mathbf{(k = 2)}}$
0	$\mathbf{C W}$	\mathbf{X}	0.0	0.0	$\mathbf{1 . 0}$	0.00	191.5	$\pm 3.3 \%$
		Y	0.0	0.0	1.0		198.9	
	Z	0.0	0.0	1.0		180.8		

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} . \mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 2}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	54.28	378.7	33.99	28.46	2.430	5.072	1.313	0.408	1.009
Y	59.16	422.2	35.13	29.85	3.583	5.094	0.041	0.732	1.008
Z	43.70	307.8	34.40	28.00	2.236	5.100	1.282	0.347	1.010

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^3]
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	$\begin{aligned} & \text { Conductivity } \\ & (\mathrm{S} / \mathrm{m})^{F} \end{aligned}$	ConvF X	ConvFY	ConvF z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (\mathbf{k}=2) \end{aligned}$
750	41.9	0.89	7.00	7.00	7.00	0.26	1.80	± 12.0 \%
835	41.5	0.90	6.70	6.70	6.70	0.56	1.23	± 12.0 \%
1750	40.1	1.37	5.57	5.57	5.57	0.53	1.28	± 12.0 \%
1900	40.0	1.40	5.34	5.34	5.34	0.41	1.52	± 12.0 \%
2300	39.5	1.67	4.94	4.94	4.94	0.42	1.57	$\pm 12.0 \%$
2450	39.2	1.80	4.64	4.64	4.64	0.55	1.39	± 12.0 \%
2600	39.0	1.96	4.44	4.44	4.44	0.58	1.43	$\pm 12.0 \%$

[^4]
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {C }}$	Relative Permittivity ${ }^{F}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	Depth ${ }^{\text {G }}$ (mm)	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
750	55.5	0.96	6.71	6.71	6.71	0.45	1.38	± 12.0 \%
835	55.2	0.97	6.56	6.56	6.56	0.80	1.05	$\pm 12.0 \%$
1750	53.4	1.49	5.19	5.19	5.19	0.37	1.73	$\pm 12.0 \%$
1900	53.3	1.52	5.00	5.00	5.00	0.47	1.51	$\pm 12.0 \%$
2300	52.9	1.81	4.66	4.66	4.66	0.59	1.36	$\pm 12.0 \%$
2450	52.7	1.95	4.47	4.47	4.47	0.55	1.20	$\pm 12.0 \%$
2600	52.5	2.16	4.28	4.28	4.28	0.50	1.20	$\pm 12.0 \%$

[^5]Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%(\mathbf{k}=\mathbf{2})$

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

Dynamic Range $f\left(\mathbf{S A R}_{\text {head }}\right)$

(TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm 0.6 \%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid
Error $(\phi, \vartheta), \mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3287

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle ${ }^{\circ}$)	89.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\underset{d B \sqrt{\mu} V}{ }$	C	$\begin{gathered} \hline \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \text { VR } \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{\text {Unc }^{E}} \end{aligned}$ $(\mathrm{k}=2)$
0	CW	X	0.00	0.00	1.00	0.00	191.5	$\pm 3.3 \%$
		Y	0.00	0.00	1.00		198.9	
		Z	0.00	0.00	1.00		180.8	
$10010-$ CAA	SAR Validation (Square, 100ms, 10ms)	X	10.31	82.54	19.92	10.00	25.0	± 9.6 \%
		Y	9.70	81.57	20.65		25.0	
		Z	13.02	86.61	21.44		25.0	
$\begin{aligned} & 10011- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (WCDMA)	X	1.65	76.64	20.39	0.00	150.0	$\pm 9.6 \%$
		Y	1.11	68.31	15.89		150.0	
		Z	1.20	70.53	17.08		150.0	
$\begin{aligned} & 10012- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.42	67.62	17.77	0.41	150.0	± 9.6 \%
		Y	1.35	65.44	16.09		150.0	
		Z	1.35	66.18	16.60		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	5.13	67.63	17.69	1.46	150.0	± 9.6 \%
		Y	5.21	67.37	17.49		150.0	
		Z	5.05	67.67	17.63		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	36.11	104.66	28.70	9.39	50.0	± 9.6 \%
		Y	17.06	92.75	26.26		50.0	
		Z	74.47	117.68	32.39		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	29.01	100.99	27.69	9.57	50.0	± 9.6 \%
		Y	15.70	91.12	25.76		50.0	
		Z	50.86	111.27	30.76		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	118.25	30.37	6.56	60.0	± 9.6 \%
		Y	79.14	117.46	31.45		60.0	
		Z	100.00	119.51	30.92		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	18.01	104.77	39.73	12.57	50.0	± 9.6 \%
		Y	13.85	93.70	35.01		50.0	
		Z	19.28	108.70	41.83		50.0	
$\begin{aligned} & 10026- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	22.37	106.73	36.71	9.56	60.0	± 9.6 \%
		Y	15.21	95.13	32.50		60.0	
		Z	23.85	109.99	38.29		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	117.60	29.16	4.80	80.0	± 9.6 \%
		Y	100.00	119.86	30.73		80.0	
		Z	100.00	118.96	29.76		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.56	28.79	3.55	100.0	± 9.6 \%
		Y	100.00	119.98	29.90		100.0	
		Z	100.00	119.90	29.38		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	14.79	97.42	32.53	7.80	80.0	± 9.6 \%
		Y	11.52	89.75	29.55		80.0	
		Z	14.18	97.61	32.99		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	116.89	29.16	5.30	70.0	± 9.6 \%
		Y	100.00	119.53	30.94		70.0	
		Z	100.00	118.05	29.66		70.0	
$10031-$ CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	122.60	28.99	1.88	100.0	± 9.6 \%
		Y	100.00	121.51	28.91		100.0	
		Z	100.00	122.48	28.93		100.0	

$\begin{aligned} & 10061- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	54.02	125.97	35.38	2.04	110.0	± 9.6 \%
		Y	8.96	93.29	26.14		110.0	
		Z	19.56	108.50	30.84		110.0	
$\begin{aligned} & 10062- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.87	67.49	17.06	0.49	100.0	± 9.6 \%
		Y	4.91	67.10	16.78		100.0	
		Z	4.75	67.38	16.89		100.0	
$\begin{aligned} & 10063- \\ & \text { CAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.91	67.64	17.19	0.72	100.0	± 9.6 \%
		Y	4.96	67.27	16.93		100.0	
		Z	4.80	67.55	17.03		100.0	
$\begin{aligned} & 10064- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.22	67.92	17.42	0.86	100.0	± 9.6 \%
		Y	5.29	67.61	17.19		100.0	
		Z	5.08	67.80	17.26		100.0	
$\begin{aligned} & 10065- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.13	67.94	17.58	1.21	100.0	± 9.6 \%
		Y	5.21	67.67	17.37		100.0	
		Z	5.00	67.84	17.45		100.0	
$\begin{aligned} & 10066- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.18	68.06	17.79	1.46	100.0	± 9.6 \%
		Y	5.27	67.81	17.60		100.0	
		Z	5.05	67.98	17.68		100.0	
$\begin{aligned} & 10067- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.49	68.19	18.21	2.04	100.0	± 9.6 \%
		Y	5.60	67.98	18.05		100.0	
		Z	5.39	68.30	18.20		100.0	
$\begin{aligned} & 10068- \\ & \text { CAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.62	68.50	18.55	2.55	100.0	± 9.6 \%
		Y	5.76	68.37	18.43		100.0	
		Z	5.50	68.48	18.50		100.0	
$\begin{aligned} & 10069- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.69	68.44	18.72	2.67	100.0	± 9.6 \%
		Y	5.84	68.31	18.60		100.0	
		Z	5.58	68.54	18.73		100.0	
$\begin{aligned} & 10071- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.27	67.84	18.05	1.99	100.0	± 9.6 \%
		Y	5.37	67.63	17.89		100.0	
		Z	5.20	67.92	18.02		100.0	
$\begin{aligned} & 10072- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.34	68.42	18.38	2.30	100.0	± 9.6 \%
		Y	5.45	68.23	18.22		100.0	
		Z	5.25	68.45	18.35		100.0	
$\begin{aligned} & \hline 10073- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.47	68.76	18.79	2.83	100.0	± 9.6 \%
		Y	5.61	68.62	18.66		100.0	
		Z	5.40	68.87	18.81		100.0	
$\begin{aligned} & 10074- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.51	68.83	19.02	3.30	100.0	± 9.6 \%
		Y	5.66	68.73	18.92		100.0	
		Z	5.46	68.99	19.07		100.0	
$\begin{aligned} & 10075- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.65	69.27	19.49	3.82	90.0	± 9.6 \%
		Y	5.85	69.26	19.43		90.0	
		Z	5.60	69.37	19.53		90.0	
$\begin{aligned} & 10076- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.67	69.08	19.61	4.15	90.0	± 9.6 \%
		Y	5.87	69.08	19.56		90.0	
		Z	5.65	69.30	19.73		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.72	69.19	19.72	4.30	90.0	$\pm 9.6 \%$
		Y	5.92	69.19	19.67		90.0	
		Z	5.70	69.44	19.85		90.0	

$\begin{aligned} & 10081- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	2.28	81.48	20.27	0.00	150.0	± 9.6 \%
		Y	1.00	67.64	14.10		150.0	
		Z	1.04	69.66	14.21		150.0	
$\begin{aligned} & 10082- \\ & \text { CAB } \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Fullrate)	X	2.13	64.08	8.83	4.77	80.0	± 9.6 \%
		Y	2.57	65.34	10.16		80.0	
		Z	2.13	64.35	9.02		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	118.32	30.42	6.56	60.0	± 9.6 \%
		Y	75.01	116.70	31.30		60.0	
		Z	100.00	119.58	30.97		60.0	
$\begin{aligned} & 10097- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	UMTS-FDD (HSDPA)	X	2.20	71.50	18.09	0.00	150.0	± 9.6 \%
		Y	1.90	67.97	16.04		150.0	
		Z	1.97	69.50	16.62		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	2.16	71.55	18.11	0.00	150.0	$\pm 9.6 \%$
		Y	1.86	67.93	16.01		150.0	
		Z	1.93	69.49	16.61		150.0	
$\begin{aligned} & 10099- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	22.24	106.54	36.64	9.56	60.0	± 9.6 \%
		Y	15.16	95.02	32.46		60.0	
		Z	23.72	109.80	38.22		60.0	
$\begin{aligned} & 10100- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.77	73.97	18.60	0.00	150.0	± 9.6 \%
		Y	3.32	71.02	16.99		150.0	
		Z	3.27	71.57	17.41		150.0	
$\begin{aligned} & 10101- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHz, } 16 \text {-QAM) } \end{aligned}$	X	3.50	69.24	17.00	0.00	150.0	± 9.6 \%
		Y	3.39	67.99	16.16		150.0	
		Z	3.29	68.22	16.35		150.0	
$\begin{aligned} & 10102- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	3.59	69.07	17.02	0.00	150.0	± 9.6 \%
		Y	3.49	67.92	16.24		150.0	
		Z	3.39	68.14	16.41		150.0	
$\begin{aligned} & 10103- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHz, QPSK) } \end{aligned}$	X	9.27	79.88	21.95	3.98	65.0	± 9.6 \%
		Y	8.43	77.27	20.93		65.0	
		Z	9.22	80.33	22.26		65.0	
$\begin{aligned} & 10104- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	8.81	77.80	21.97	3.98	65.0	± 9.6 \%
		Y	8.62	76.41	21.37		65.0	
		Z	8.59	77.82	22.06		65.0	
$\begin{aligned} & 10105- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	8.19	76.36	21.65	3.98	65.0	± 9.6 \%
		Y	7.71	74.18	20.67		65.0	
		Z	7.86	76.00	21.56		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 $\mathrm{MHz}, ~ Q P S K$)	X	3.29	73.14	18.47	0.00	150.0	± 9.6 \%
		Y	2.93	70.22	16.82		150.0	
		Z	2.85	70.87	17.28		150.0	
10109 CAE	LTE-FDD (SC-FDMA, 100\% RB, 10 MHz , 16-QAM)	X	3.18	69.27	17.05	0.00	150.0	± 9.6 \%
		Y	3.05	67.82	16.11		150.0	
$\begin{aligned} & 10110- \\ & \mathrm{CAE} \\ & \hline \end{aligned}$		Z	2.94	68.18	16.29		150.0	
	LTE-FDD (SC-FDMA, 100\% RB, 5 MHz , QPSK)	X	2.72	72.52	18.35	0.00	150.0	± 9.6 \%
		Y	2.40	69.28	16.49		150.0	
		Z	2.33	70.22	16.99		150.0	
10111CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM)	X	2.96	70.65	17.72	0.00	150.0	± 9.6 \%
		Y	2.76	68.51	16.45		150.0	
		Z	2.69	69.33	16.67		150.0	

10112- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	3.29	69.10	17.02	0.00	150.0	± 9.6 \%
		Y	3.17	67.76	16.14		150.0	
		Z	3.06	68.15	16.32		150.0	
$\begin{aligned} & 10113- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	3.11	70.58	17.73	0.00	150.0	± 9.6 \%
		Y	2.92	68.59	16.56		150.0	
		Z	2.83	69.41	16.76		150.0	
$\begin{aligned} & 10114- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.26	67.86	16.86	0.00	150.0	± 9.6 \%
		Y	5.25	67.40	16.53		150.0	
		Z	5.14	67.65	16.68		150.0	
$\begin{aligned} & 10115- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.60	68.11	16.98	0.00	150.0	± 9.6 \%
		Y	5.62	67.73	16.70		150.0	
		Z	5.40	67.70	16.71		150.0	
10116-CAB	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.38	68.12	16.91	0.00	150.0	± 9.6 \%
		Y	5.38	67.68	16.59		150.0	
		Z	5.23	67.82	16.70		150.0	
10117-CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.24	67.79	16.84	0.00	150.0	± 9.6 \%
		Y	5.25	67.40	16.55		150.0	
		Z	5.10	67.49	16.62		150.0	
$\begin{aligned} & 10118- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 81 Mbps , 16QAM)	X	5.68	68.30	17.08	0.00	150.0	± 9.6 \%
		Y	5.70	67.92	16.80		150.0	
		Z	5.48	67.91	16.83		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.35	68.04	16.89	0.00	150.0	$\pm 9.6 \%$
		Y	5.35	67.63	16.58		150.0	
		Z	5.21	67.79	16.69		150.0	
$\begin{aligned} & 10140- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15$ $\mathrm{MHz}, 16-\mathrm{QAM})$	X	3.63	69.06	16.93	0.00	150.0	± 9.6 \%
		Y	3.53	67.92	16.17		150.0	
		Z	3.42	68.16	16.33		150.0	
$\begin{aligned} & 10141- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM)	X	3.75	69.06	17.04	0.00	150.0	± 9.6 \%
		Y	3.65	67.98	16.31		150.0	
		Z	3.54	68.23	16.48		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , QPSK)	X	2.58	73.34	18.51	0.00	150.0	$\pm 9.6 \%$
		Y	2.18	69.29	16.31		150.0	
		Z	2.13	70.56	16.73		150.0	
$\begin{aligned} & 10143- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.01	72.46	18.03	0.00	150.0	± 9.6 \%
		Y	2.65	69.32	16.38		150.0	
		Z	2.60	70.44	16.44		150.0	
$\begin{aligned} & 10144- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.64	69.45	16.13	0.00	150.0	± 9.6 \%
		Y	2.44	67.23	14.90		150.0	
		Z	2.30	67.73	14.62		150.0	
$10 \overline{145-}$ CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, \text { QPSK) } \end{aligned}$	X	2.19	73.84	16.83	0.00	150.0	± 9.6 \%
		Y	1.54	67.56	13.92		150.0	
		Z	1.24	66.10	11.96		150.0	
10146CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	6.00	80.94	18.56	0.00	150.0	$\pm 9.6 \%$
		Y	2.97	71.15	15.11		150.0	
		Z	2.39	68.87	12.55		150.0	
10147-CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM})$	X	13.14	91.59	22.17	0.00	150.0	± 9.6 \%
		Y	3.76	74.52	16.70		150.0	
		Z	3.21	72.37	14.16		150.0	

$\begin{aligned} & 10149- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.19	69.34	17.10	0.00	150.0	± 9.6 \%
		Y	3.06	67.89	16.15		150.0	
$\begin{aligned} & 10150- \\ & \text { CAD } \\ & \hline \end{aligned}$		Z	2.95	68.25	16.34		150.0	
	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.29	69.16	17.06	0.00	150.0	± 9.6 \%
		Y	3.18	67.81	16.18		150.0	
		Z	3.07	68,20	16.36		150.0	
$\begin{aligned} & 10151- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	10.08	82.65	23.10	3.98	65.0	± 9.6 \%
		Y	9.04	79.65	21.96		65.0	
		Z	10.06	83.26	23.42		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.50	78.17	21.88	3.98	65.0	± 9.6 \%
		Y	8.23	76.54	21.20		65.0	
		Z	8.27	78.18	21.88		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	8.91	78.99	22.55	3.98	65.0	± 9.6 \%
		Y	8.60	77.29	21.85		65.0	
		Z	8.71	79.10	22.58		65.0	
$\begin{aligned} & 10154- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	2.81	73.15	18.70	0.00	150.0	± 9.6 \%
		Y	2.46	69.77	16.80		150.0	
		Z	2.38	70.62	17.23		150.0	
$\begin{aligned} & 10155- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.96	70.66	17.73	0.00	150.0	± 9.6 \%
		Y	2.76	68.51	16.46		150.0	
		Z	2.69	69.35	16.69		150.0	
$\begin{aligned} & 10156- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	2.55	74.52	18.86	0.00	150.0	± 9.6 \%
		Y	2.05	69.58	16.30		150.0	
		Z	2.00	70.89	16.58		150.0	
$\begin{aligned} & 10157- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.62	71.06	16.72	0.00	150.0	± 9.6 \%
		Y	2.30	67.95	15.09		150.0	
		Z	2.17	68.55	14.74		150.0	
$\begin{aligned} & 10158- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	3.11	70.65	17.78	0.00	150.0	± 9.6 \%
		Y	2.92	68.65	16.60		150.0	
		Z	2.84	69.48	16.81		150.0	
10159-CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	2.77	71.67	17.06	0.00	150.0	± 9.6 \%
		Y	2.42	68.44	15.40		150.0	
		Z	2.27	68.98	14.99		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	$\bar{\chi}$	3.14	71.31	17.89	0.00	150.0	± 9.6 \%
		Y	2.90	69.12	16.57		150.0	
		Z	2.85	69.90	17.00		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.19	69.15	17.05	0.00	150.0	± 9.6 \%
		Y	3.08	67.73	16.13		150.0	
		Z	2.97	68.19	16.30		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 64-QAM)	X	3.30	69.19	17.10	0.00	150.0	± 9.6 \%
		Y	3.18	67.80	16.21		150.0	
		Z	3.08	68.34	16.41		150.0	
$\overline{10166-}$CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	4.14	72.27	20.63	3.01	150.0	± 9.6 \%
		Y	3.92	70.06	19.35		150.0	
		Z	3.85	71.64	20.32		150.0	
$10167-$CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.70	76.91	21.68	3.01	150.0	± 9.6 \%
		Y	4.94	72.92	19.80		150.0	
		Z	5.14	76.11	21.32		150.0	

10168- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	\bar{X}	6.50	79.76	23.17	3.01	150.0	$\pm 9.6 \%$
		Y	5.42	74.94	21.01		150.0	
		Z	5.85	78.93	22.82		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	3.88	74.16	21.49	3.01	150.0	± 9.6 \%
		Y	3.53	70.80	19.64		150.0	
		Z	3.37	71.79	20.43		150.0	
$\begin{aligned} & 10170- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.14	85.17	25.38	3.01	150.0	± 9.6 \%
		Y	5.02	76.66	21.81		150.0	
		Z	5.41	80.65	23.72		150.0	
$\begin{aligned} & 10171- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , 64-QAM)	X	5.21	78.32	21.78	3.01	150.0	± 9.6 \%
		Y	4.13	72.50	19.15		150.0	
		Z	4.25	75.40	20.64		150.0	
$\begin{aligned} & 10172- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, }$ QPSK)	X	82.16	130.26	39.09	6.02	65.0	± 9.6 \%
		Y	17.62	97.94	29.93		65.0	
		Z	65.78	128.99	39.45		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	91.21	124.95	35.70	6.02	65.0	± 9.6 \%
		Y	19.75	96.35	28.03		65.0	
		Z	100.00	129.35	37.29		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64-QAM)	X	55.61	114.43	32.46	6.02	65.0	$\pm 9.6 \%$
		Y	16.76	92.45	26.36		65.0	
		Z	70.56	121.14	34.65		65.0	
$\begin{aligned} & 10175- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	3.81	73.71	21.19	3.01	150.0	± 9.6 \%
		Y	3.48	70.45	19.37		150.0	
		Z	3.32	71.46	20.19		150.0	
10176- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.15	85.21	25.39	3.01	150.0	± 9.6 \%
		Y	5.03	76.68	21.82		150.0	
		Z	5.42	80.68	23.74		150.0	
$\begin{aligned} & 10177- \\ & \text { CAG } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	X	3.85	73.93	21.31	3.01	150.0	± 9.6 \%
		Y	3.51	70.63	19.48		150.0	
		Z	3.35	71.61	20.27		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	7.01	84.77	25.21	3.01	150.0	$\pm 9.6 \%$
		Y	4.96	76.40	21.67		150.0	
		Z	5.36	80.45	23.62		150.0	
$\begin{aligned} & 10179- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	6.07	81.52	23.41	3.01	150.0	± 9.6 \%
		Y	4.53	74.41	20.33		150.0	
		Z	4.79	77.92	22.06		150.0	
$\begin{aligned} & 10180- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	5.18	78.18	21.70	3.01	150.0	$\pm 9.6 \%$
		Y	4.12	72.40	19.09		150.0	
		Z	4.24	75.33	20.60		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	3.84	73.91	21.30	3.01	150.0	$\pm 9.6 \%$
		Y	3.51	70.61	19.47		150.0	
		Z	3.35	71.60	20.27		150.0	
$\begin{aligned} & 10182- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	6.99	84.74	25.19	3.01	150.0	± 9.6 \%
		Y	4.95	76.38	21.66		150.0	
		Z	5.35	80.42	23.61		150.0	
10183- AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	5.17	78.15	21.69	3.01	150.0	$\pm 9.6 \%$
		Y	4.11	72.38	19.08		150.0	
		Z	4.23	75.30	20.59		150.0	

$\begin{aligned} & \text { 10184- } \\ & \text { CAD } \end{aligned}$	$\text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 3 \mathrm{MHz} \text {, }$ QPSK)	X	3.86	73.96	21.33	3.01	150.0	± 9.6 \%
		Y	3.52	70.65	19.50		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$		Z	3.36	71.64	20.29		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 16 QAM)	X	7.04	84.85	25.24	3.01	150.0	± 9.6 \%
		Y	4.98	76.45	21.70		150.0	
		Z	5.38	80.50	23.65		150.0	
$\begin{array}{\|l\|} \hline 10186- \\ \text { AAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	5.20	78.24	21.73	3.01	150.0	± 9.6 \%
		Y	4.13	72.45	19.11		150.0	
		Z	4.25	75.38	20.62		150.0	
$\begin{aligned} & 10187- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	3.87	74.02	21.39	3.01	150.0	± 9.6 \%
		Y	3.53	70.69	19.55		150.0	
		Z	3.37	71.71	20.36		150.0	
$\begin{aligned} & 10188- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	7.44	86.01	25.76	3.01	150.0	± 9.6 \%
		Y	5.15	77.16	22.09		150.0	
		Z	5.58	81.30	24.05		150.0	
$\begin{aligned} & 10189- \\ & \text { AAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	5.39	78.94	22.10	3.01	150.0	± 9.6 \%
		Y	4.22	72.89	19.39		150.0	
		Z	4.36	75.91	20.93		150.0	
$\begin{aligned} & 10193- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.67	67.32	16.65	0.00	150.0	± 9.6 \%
		Y	4.67	66.82	16.30		150.0	
		Z	4.53	67.11	16.38		150.0	
$\begin{aligned} & 10194- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.85	67.66	16.76	0.00	150.0	± 9.6 \%
		Y	4.86	67.18	16.41		150.0	
		Z	4.69	67.40	16.51		150.0	
$\begin{aligned} & 10195- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.89	67.68	16.77	0.00	150.0	± 9.6 \%
		Y	4.90	67.20	16.42		150.0	
		Z	4.73	67.43	16.52		150.0	
$\begin{aligned} & 10196- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 6.5 Mbps , BPSK)	X	4.68	67.41	16.68	0.00	150.0	± 9.6 \%
		Y	4.68	66.91	16.33		150.0	
		Z	4.52	67.15	16.39		150.0	
$\begin{aligned} & 10197- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps, 16QAM)	X	4.87	67.69	16.78	0.00	150.0	± 9.6 \%
		Y	4.88	67.20	16.42		150.0	
		Z	4.70	67.42	16.52		150.0	
$\begin{aligned} & 10198- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.90	67.70	16.79	0.00	150.0	± 9.6 \%
		Y	4.91	67.21	16.43		150.0	
		Z	4.73	67.45	16.54		150.0	
$\begin{aligned} & 10219- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.63	67.43	16.65	0.00	150.0	± 9.6 \%
		Y	4.63	66.93	16.29		150.0	
		Z	4.47	67.18	16.36		150.0	
$\begin{aligned} & 10220- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.86	67.66	16.77	0.00	150.0	± 9.6 \%
		Y	4.88	67.19	16.42		150.0	
		Z	4.69	67.38	16.50		150.0	
$\begin{aligned} & 10221 \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps , 64QAM)	X	4.90	67.62	16.76	0.00	150.0	± 9.6 \%
		Y	4.91	67.14	16.42		150.0	
		Z	4.74	67.37	16.52		150.0	
$\begin{aligned} & 10222- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.22	67.81	16.85	0.00	150.0	± 9.6 \%
		Y	5.23	67.42	16.55		150.0	
		Z	5.08	67.50	16.62		150.0	

$\begin{aligned} & 10223- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.53	67.97	16.94	0.00	150.0	± 9.6 \%
		Y	5.59	67.74	16.73		150.0	
		Z	5.38	67.75	16.76		150.0	
$\begin{aligned} & 10224- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	5.26	67.91	16.83	0.00	150.0	$\pm 9.6 \%$
		Y	5.27	67.51	16.52		150.0	
		Z	5.12	67.61	16.60		150.0	
$\begin{aligned} & 10225- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (HSPA+)	X	3.00	67.51	16.39	0.00	150.0	± 9.6 \%
		Y	2.93	66.39	15.65		150.0	
		Z	2.82	66.88	15.63		150.0	
$\begin{aligned} & 10226- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	100.00	126.81	36.25	6.02	65.0	$\pm 9.6 \%$
		Y	20.60	97.21	28.37		65.0	
		Z	100.00	129.54	37.41		65.0	
$\begin{aligned} & 10227- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	65.64	117.49	33.34	6.02	65.0	± 9.6 \%
		Y	18.22	94.00	26.93		65.0	
		Z	85.61	124.65	35.59		65.0	
10228- CAA	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	79.85	130.36	39.26	6.02	65.0	$\pm 9.6 \%$
		Y	20.21	101.07	31.01		65.0	
		Z	65.84	129.47	39.67		65.0	
$\begin{aligned} & 10229- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16QAM)	X	91.11	124.93	35.70	6.02	65.0	± 9.6 \%
		Y	19.80	96.38	28.04		65.0	
		Z	100.00	129.35	37.29		65.0	
$\begin{aligned} & 10230- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	60.15	115.83	32.84	6.02	65.0	± 9.6 \%
		Y	17.60	93.31	26.65		65.0	
		Z	77.12	122.67	-35.03		65.0	
$\begin{aligned} & 10231- \\ & \text { CAB } \\ & \hline \end{aligned}$	```LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)```	X	72.28	128.22	38.64	6.02	65.0	± 9.6 \%
		Y	19.39	100.17	30.67		65.0	
		Z	59.87	127.39	39.07		65.0	
$\begin{aligned} & 10232- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	91.25	124.96	35.71	6.02	65.0	± 9.6 \%
		Y	19.78	96.37	28.04		65.0	
		Z	100.00	129.36	37.30		65.0	
$\begin{aligned} & 10233- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	60.26	115.87	32.85	6.02	65.0	$\pm 9.6 \%$
		Y	17.59	93.32	26.66		65.0	
		Z	77.19	122.70	35.04		65.0	
$\begin{aligned} & 10234- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	X	65.41	125.97	37.96	6.02	65.0	± 9.6 \%
		Y	18.62	99.23	30.29		65.0	
		Z	54.84	125.34	38.42		65.0	
$\begin{aligned} & 10235- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	91.93	125.11	35.75	6.02	65.0	$\pm 9.6 \%$
		Y	19.81	96.41	28.05		65.0	
		Z	100.00	129.37	37.30		65.0	
$\begin{aligned} & \hline 10236- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	61.00	116.05	32.90	6.02	65.0	± 9.6 \%
		Y	17.69	93.40	26.68		65.0	
		Z	78.43	122.94	35.10		65.0	
$\begin{aligned} & 10237- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	73.61	128.60	38.74	6.02	65.0	$\pm 9.6 \%$
		Y	19.49	100.29	30.70		65.0	
		Z	60.90	127.76	39.16		65.0	
$\begin{aligned} & 10238- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	91.47	125.02	35.72	6.02	65.0	± 9.6 \%
		Y	19.78	96.38	28.04		65.0	
		Z	100.00	129.37	37.30		65.0	

September 18, 2017

$\begin{aligned} & 10239- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	60.36	115.92	32.87	6.02	65.0	± 9.6 \%
		Y	17.58	93.32	26.66		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \end{aligned}$		Z	77.24	122.72	35.05		65.0	
	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	73.31	128.53	38.72	6.02	65.0	± 9.6 \%
		Y	19.44	100.25	30.69		65.0	
		Z	60.69	127.70	39.15		65.0	
$\begin{aligned} & 10241- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	14.22	90.30	28.70	6.98	65.0	± 9.6 \%
		Y	11.91	84.78	26.56		65.0	
		Z	15.04	92.96	29.82		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	12.20	86.96	27.37	6.98	65.0	± 9.6 \%
		Y	11.04	83.09	25.82		65.0	
		Z	14.66	92.40	29.55		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	9.46	83.32	26.91	6.98	65.0	± 9.6 \%
		Y	9.15	80.79	25.71		65.0	
		Z	10.96	87.97	28.96		65.0	
$\begin{aligned} & 10244- \\ & \text { CAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	10.76	82.68	21.60	3.98	65.0	± 9.6 \%
		Y	9.17	79.37	20.74		65.0	
		Z	9.65	80.90	20.36		65.0	
$\begin{aligned} & 10245- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM)	X	10.44	81.95	21.29	3.98	65.0	± 9.6 \%
		Y	9.07	78.96	20.54		65.0	
		Z	9.24	79.99	19.97		65.0	
$\begin{aligned} & 10246- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	11.35	86.57	23.09	3.98	65.0	± 9.6 \%
		Y	8.94	81.85	21.69		65.0	
		Z	10.01	84.49	21.88		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.24	79.27	21.01	3.98	65.0	± 9.6 \%
		Y	7.74	77.28	20.43		65.0	
		Z	7.64	78.13	20.10		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	8.11	78.56	20.72	3.98	65.0	± 9.6 \%
		Y	7.73	76.82	20.23		65.0	
		Z	7.48	77.39	19.79		65.0	
$\begin{aligned} & 10249- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	12.62	88.79	24.56	3.98	65.0	± 9.6 \%
		Y	9.64	83.20	22.76		65.0	
		Z	12.16	88.40	24.15		65.0	
$\begin{aligned} & 10250- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16-QAM)	X	9.13	81.24	23.10	3.98	65.0	± 9.6 \%
		Y	8.50	78.84	22.20		65.0	
		Z	8.86	81.11	22.89		65.0	
$\begin{aligned} & 10251- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	8.47	78.74	21.83	3.98	65.0	± 9.6 \%
		Y	8.10	76.89	21.13		65.0	
		Z	8.20	78.63	21.61		65.0	
$\begin{aligned} & 10252- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	11.59	86.92	24.65	3.98	65.0	± 9.6 \%
		Y	9.53	82.29	23.01		65.0	
		Z	11.63	87.60	24.87		65.0	
$\begin{aligned} & 10253- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	8.27	77.55	21.65	3.98	65.0	± 9.6 \%
		Y	8.04	76.02	21.02		65.0	
$\begin{aligned} & 10254- \\ & \text { CAD } \end{aligned}$		Z	8.09	77.65	21.62		65.0	
	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	8.67	78.35	22.26	3.98	65.0	± 9.6 \%
		Y	8.41	76.75	21.61		65.0	
		Z	8.50	78.49	22.25		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 15 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	9.69	82.20	23.16	3.98	65.0	± 9.6 \%
		Y	8.77	79.29	22.03		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \end{aligned}$		Z	9.70	82.84	23.45		65.0	
	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	9.10	79.45	19.54	3.98	65.0	± 9.6 \%
		Y	8.28	77.46	19.27		65.0	
		Z	7.50	76.38	17.64		65.0	
$\begin{aligned} & 10257- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	8.71	78.44	19.07	3.98	65.0	$\pm 9.6 \%$
		Y	8.14	76.86	18.96		65.0	
		Z	7.10	75.27	17.09		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	9.16	82.49	20.98	3.98	65.0	± 9.6 \%
		Y	7.92	79.54	20.28		65.0	
		Z	7.29	78.75	18.94		65.0	
$\begin{aligned} & 10259- \\ & \text { CAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.59	79.95	21.73	3.98	65.0	± 9.6 \%
		Y	8.03	77.80	21.03		65.0	
		Z	8.13	79.27	21.11		65.0	
$\begin{aligned} & 10260- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz, 64-QAM)	X	8.53	79.55	21.59	3.98	65.0	± 9.6 \%
		Y	8.06	77.57	20.96		65.0	
		Z	8.06	78.82	20.93		65.0	
$\begin{aligned} & 10261- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, 100\% RB, } 3 \mathrm{MHz} \text {, }$ QPSK)	X	11.51	87.11	24.32	3.98	65.0	± 9.6 \%
		Y	9.26	82.24	22.68		65.0	
		Z	11.28	87.12	24.13		65.0	
$\begin{aligned} & 10262- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, 100\% RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	9.12	81.19	23.06	3.98	65.0	$\pm 9.6 \%$
		Y	8.49	78.79	22.16		65.0	
		Z	8.84	81.05	22.85		65.0	
$\begin{aligned} & 10263- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	8.46	78.73	21.82	3.98	65.0	± 9.6 \%
		Y	8.09	76.88	21.13		65.0	
		Z	8.19	78.61	21.60		65.0	
$\begin{aligned} & 10264- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	11.49	86.74	24.57	3.98	65.0	$\pm 9.6 \%$
		Y	9.47	82.16	22.94		65.0	
		Z	11.51	87.39	24.78		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	8.50	78.18	21.88	3.98	65.0	± 9.6 \%
		Y	8.22	76.54	21.21		65.0	
		Z	8.27	78.18	21.88		65.0	
$\begin{aligned} & 10266- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	8.90	78.98	22.54	3.98	65.0	± 9.6 \%
		Y	8.60	77.28	21.84		65.0	
		Z	8.71	79.09	22.57		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, \mathrm{QPSK}$)	X	10.06	82.61	23.09	3.98	65.0	± 9.6 \%
		Y	9.03	79.62	21.95		65.0	
		Z	10.04	83.22	23.41		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	8.87	77.45	21.95	3.98	65.0	± 9.6 \%
		Y	8.72	76.18	21.40		65.0	
		Z	8.67	77.54	22.05		65.0	
$\begin{aligned} & 10269- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	8.77	76.99	21.83	3.98	65.0	± 9.6 \%
		Y	8.66	75.80	21.31		65.0	
		Z	8.60	77.10	21.92		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	9.16	79.20	21.93	3.98	65.0	$\pm 9.6 \%$
		Y	8.71	77.35	21.19		65.0	
		Z	9.06	79.57	22.19		65.0	

$\begin{aligned} & 10303- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (31:15, 5 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC)	X	6.02	69.32	19.87	4.96	80.0	± 9.6 \%
		Y	6.26	69.22	19.66		80.0	
		Z	6.09	70.04	19.96		80.0	
$\begin{aligned} & 10304- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX ($29: 18,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	5.67	68.65	19.09	4.17	80.0	± 9.6 \%
		Y	5.85	68.42	18.82		80.0	
		Z	5.71	69.28	19.12		80.0	
$\begin{aligned} & 10305- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX $(31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}, 15$ symbols)	X	9.13	83.00	26.75	6.02	50.0	± 9.6 \%
		Y	11.08	85.83	27.58		50.0	
		Z	11.97	88.64	28.23		50.0	
$\begin{aligned} & 10306- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz , 64QAM, PUSC, 18 symbols)	X	6.47	72.26	21.90	6.02	50.0	± 9.6 \%
		Y	6.84	72.27	21.68		50.0	
		Z	6.81	73.77	22.17		50.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz, QPSK, PUSC, 18 symbols)	X	6.58	73.04	22.08	6.02	50.0	± 9.6 \%
		Y	8.34	78.37	24.64		50.0	
		Z	6.92	74.46	22.29		50.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.66	73.56	22.34	6.02	50.0	± 9.6 \%
		Y	8.60	79.30	25.04		50.0	
		Z	7.08	75.16	22.62		50.0	
$\begin{aligned} & \text { 10309- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WIMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC 2×3, 18 symbols)	X	6.58	72.60	22.09	6.02	50.0	± 9.6 \%
		Y	6.95	72.58	21.85		50.0	
		Z	6.90	74.05	22.35		50.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	6.50	72.56	21.95	6.02	50.0	± 9.6 \%
		Y	6.87	72.52	21.70		50.0	
		Z	6.86	74.10	22.23		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, \mathrm{QPSK}$)	X	3.70	72.28	18.01	0.00	150.0	± 9.6 \%
		Y	3.30	69.61	16.53		150.0	
		Z	3.23	70.11	16.90		150.0	
$\begin{aligned} & 10313- \\ & \text { AAA } \end{aligned}$	iDEN 1:3	X	9.18	81.61	19.86	6.99	70.0	± 9.6 \%
		Y	7.64	78.40	19.13		70.0	
		Z	9.78	83.14	20.58		70.0	
10314- AAA	IDEN 1:6	X	13.83	90.60	25.32	10.00	30.0	± 9.6 \%
		Y	9.35	83.01	23.15		30.0	
		Z	14.01	91.81	25.99		30.0	
$\begin{aligned} & 10315- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96 pc duty cycle)	X	1.27	67.24	17.67	0.17	150.0	± 9.6 \%
		Y	1.20	64.93	15.83		150.0	
		Z	1.21	65.68	16.36		150.0	
$\begin{aligned} & 10316- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.76	67.47	16.83	0.17	150.0	$\pm 9.6 \%$
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
$\begin{aligned} & 10317- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, $\overline{6}$ Mbps, 96 pc duty cycle)	X	4.76	67.47	16.83	0.17	150.0	± 9.6 \%
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
$\begin{aligned} & 10400- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , 64-QAM, $99 p c$ duty cycle)	X	4.86	67.74	16.77	0.00	150.0	± 9.6 \%
		Y	4.87	67.24	16.40		150.0	
		Z	4.68	67.47	16.52		150.0	
10401- AAC	IEEE 802.11 ac $\mathrm{WiFi}(40 \mathrm{MHz}, 64-\mathrm{QAM}$, 99pc duty cycle)	X	5.51	67.76	16.81	0.00	150.0	± 9.6 \%
		Y	5.52	67.36	16.52		150.0	
		Z	5.41	67.67	16.70		150.0	

$\begin{aligned} & 10402- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycie)	X	5.79	68.18	16.86	0.00	150.0	$\pm 9.6 \%$
		Y	5.81	67.85	16.61		150.0	
10403- AAB		Z	5.64	67.83	16.63		150.0	
	CDMA2000 (1xEV-DO, Rev. 0)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 \%
		Y	1.73	70.44	15.45		115.0	
		Z	1.75	72.09	15.26		115.0	
$\begin{array}{\|l} \hline 10404- \\ \text { AAB } \\ \hline \end{array}$	CDMA2000 (1xEV-DO, Rev. A)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 \%
		Y	1.73	70.44	15.45		115.0	
		Z	1.75	72.09	15.26		115.0	
$\begin{aligned} & \text { 10406- } \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.57	31.18	0.00	100.0	± 9.6 \%
		Y	18.35	99.60	26.20		100.0	
		Z	100.00	120.33	29.78		100.0	
$\begin{aligned} & 10410- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.29	30.51	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	120.68	31.13		80.0	
		Z	100.00	122.62	31.38		80.0	
$\begin{aligned} & 10415- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.09	65.33	16.67	0.00	150.0	± 9.6 \%
		Y	1.03	63.31	14.91		150.0	
		Z	1.05	64.05	15.43		150.0	
$10416-$AAA	IEEE 802.11g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 \%
		Y	4.67	66.86	16.34		150.0	
		Z	4.53	67.14	16.45		150.0	
$\begin{aligned} & 10417- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 \%
		Y	4.67	66.86	16.34		150.0	
		\underline{Z}	4.53	67.14	16.45		150.0	
10418-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.66	67.53	16.73	0.00	150.0	± 9.6 \%
		Y	4.66	67.00	16.35		150.0	
		Z	4.52	67.33	16.49		150.0	
$\begin{aligned} & 10419- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.68	67.47	16.73	0.00	150.0	± 9.6 \%
		Y	4.68	66.95	16.36		150.0	
		Z	4.54	67.26	16.48		150.0	
10422-AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps , BPSK)	X	4.80	67.45	16.73	0.00	150.0	± 9.6 \%
		Y	4.81	66.96	16.37		150.0	
		Z	4.65	67.24	16.49		150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.99	67.80	16.85	0.00	150.0	± 9.6 \%
		Y	5.00	67.33	16.51		150.0	
		Z	4.80	67.54	16.59		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.90	67.76	16.83	0.00	150.0	± 9.6 \%
		Y	4.91	67.27	16.47		150.0	
		Z	4.73	67.50	16.57		150.0	
$\overline{10425-}$AAA	IEEE 802.11n (HT Greenfield, 15 Mbps , BPSK)	X	5.49	68.02	16.94	0.00	150.0	± 9.6 \%
		Y	5.50	67.62	16.64		150.0	
		Z	5.34	67.73	16.73		150.0	
10426-AAA	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.49	68.02	16.94	0.00	150.0	± 9.6 \%
		Y	5.51	67.65	16.65		150.0	
		Z	5.36	67.83	16.78		150.0	

$10427-$ AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.50	68.00	16.93	0.00	150.0	$\pm 9.6 \%$
		Y	5.52	67.64	16.64		150.0	
$10430-$ AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	Z	S	4.36	67.74	16.73		150.0

$10460-$ AAA	UMTS-FDD (WCDMA, AMR)	X	1.62	80.44	22.68	0.00	150.0	± 9.6 \%
		Y	0.96	69.05	16.73		150.0	
		Z	1.09	72.04	18.32		150.0	
$\begin{aligned} & 10461- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	125.40	32.90	3.29	80.0	± 9.6 \%
		Y	100.00	122.42	32.02		80.0	
		Z	100.00	127.89	33.84		80.0	
$\begin{aligned} & 10462- \\ & \text { AAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM, UL Subframe }=2,3,4,7,8,9 \text {) } \end{aligned}$	X	100.00	109.25	25.21	3.23	80.0	± 9.6 \%
		Y	100.00	110.42	26.29		80.0	
		Z	100.00	110.45	25.54		80.0	
$\begin{aligned} & 10463- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	106.10	23.70	3.23	80.0	± 9.6 \%
		Y	31.87	95.11	22.04		80.0	
		Z	100.00	107.01	23.88		80.0	
$\begin{aligned} & 10464- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.48	31.85	3.23	80.0	± 9.6 \%
		Y	100.00	120.78	31.11		80.0	
		Z	100.00	125.94	32.77		80.0	
$\begin{aligned} & 10465- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , $16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	108.73	24.95	3.23	80.0	± 9.6 \%
		Y	57.38	103.50	24.59		80.0	
		Z	100.00	109.93	25.28		80.0	
$\begin{aligned} & 10466- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	105.62	23.47	3.23	80.0	± 9.6 \%
		Y	19.30	89.18	20.39		80.0	
		Z	100.00	106.51	23.65		80.0	
$\begin{aligned} & 10467- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.71	31.96	3.23	80.0	± 9.6 \%
		Y	100.00	120.96	31.19		80.0	
		Z	100.00	126.19	32.89		80.0	
$\begin{aligned} & 10468- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	$\bar{\chi}$	100.00	108.89	25.03	3.23	80.0	± 9.6 \%
		Y	68.69	105.73	25.14		80.0	
		Z	100.00	110.12	25.37		80.0	
$\begin{aligned} & 10469- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	105.63	23.47	3.23	80.0	± 9.6 \%
		Y	19.75	89.45	20.46		80.0	
		Z	100.00	106.53	23.66		80.0	
$\begin{aligned} & 10470- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.74	31.96	3.23	80.0	± 9.6 \%
		Y	100.00	120.98	31.20		80.0	
		Z	100.00	126.22	32.89		80.0	
$\begin{aligned} & 10471- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	108.84	25.00	3.23	80.0	± 9.6 \%
		Y	69.00	105.75	25.13		80.0	
		Z	100.00	110.07	25.35		80.0	
$\begin{aligned} & 10472- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	105.58	23.44	3.23	80.0	± 9.6 \%
		Y	19.79	89.46	20.45		80.0	
		Z	100.00	106.47	23.62		80.0	
$\begin{aligned} & 10473- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.71	31.95	3.23	80.0	± 9.6 \%
		Y	100.00	120.96	31.18		80.0	
		Z	100.00	126.20	32.88		80.0	
10474AAC	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	108.85	25.00	3.23	80.0	± 9.6 \%
		Y	67.79	105.55	25.09		80.0	
		Z	100.00	110.08	25.35		80.0	
10475AAC	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 64-$ QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.59	23.45	3.23	80.0	± 9.6 \%
		Y	19.52	89.31	20.41		80.0	
		Z	100.00	106.49	23.63		80.0	

$10477-$ AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	\bar{X}	100.00	108.68	24.92	3.23	80.0	± 9.6 \%
		Y	60.00	104.00	24.69		80.0	
		Z	100.00	109.90	25.26		80.0	
$\begin{aligned} & 10478- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	105.53	23.42	3.23	80.0	± 9.6 \%
		Y	19.24	89.12	20.35		80.0	
		Z	100.00	106.43	23.60		80.0	
$\begin{aligned} & 10479- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	94.50	124.14	33.84	3.23	80.0	$\pm 9.6 \%$
		Y	12.50	90.83	25.02		80.0	
		Z	100.00	124.95	33.67		80.0	
$\begin{aligned} & \text { 10480- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$ 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	95.67	115.16	29.54	3.23	80.0	± 9.6 \%
		Y	12.83	86.63	22.28		80.0	
		Z	100.00	114.83	28.84		80.0	
$\begin{aligned} & 10481- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, $64-Q A M$, UL Subframe $=2,3,4,7,8,9$)	X	58.64	107.02	27.16	3.23	80.0	± 9.6 \%
		Y	11.35	84.25	21.22		80.0	
		Z	80.09	110.11	27.23		80.0	
$\begin{aligned} & 10482- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	12.89	91.14	23.86	2.23	80.0	± 9.6 \%
		Y	6.25	79.51	20.15		80.0	
		Z	8.39	84.42	21.05		80.0	
$\begin{aligned} & 10483- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	18.92	92.85	24.00	2.23	80.0	± 9.6 \%
		Y	8.58	80.90	20.47		80.0	
		Z	13.62	87.31	21.48		80.0	
$\begin{array}{\|l} \hline 10484- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	15.36	89.71	23.07	2.23	80.0	$\pm 9.6 \%$
		Y	7.99	79.65	20.04		80.0	
		Z	10.91	84.16	20.49		80.0	
$\begin{aligned} & 10485- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe=2,3,4,7,8,9)	X	10.83	89.50	24.25	2.23	80.0	± 9.6 \%
		Y	6.29	79.77	20.91		80.0	
		Z	8.35	85.48	22.54		80.0	
$\begin{aligned} & 10486- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	6.33	78.08	19.97	2.23	80.0	± 9.6 \%
		Y	5.11	73.82	18.38		80.0	
		Z	5.40	75.74	18.50		80.0	
$10487-$ AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.09	77.15	19.61	2.23	80.0	$\pm 9.6 \%$
		Y	5.06	73.33	18.18		80.0	
		Z	5.20	74.88	18.15		80.0	
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.97	83.54	22.89	2.23	80.0	± 9.6 \%
		Y	6.02	77.67	20.60		80.0	
		Z	6.66	81.06	21.92		80.0	
10489- AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.54	75.17	19.93	2.23	80.0	± 9.6 \%
		Y	5.05	72.55	18.77		80.0	
		Z	5.10	74.15	19.29		80.0	
$\begin{aligned} & 10490- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.52	74.58	19.72	2.23	80.0	± 9.6 \%
		Y	5.10	72.20	18.66		80.0	
		Z	5.11	73.70	19.12		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK, UL Subframe=2,3,4,7,8,9)	X	6.68	78.67	21.27	2.23	80.0	± 9.6 \%
		Y	5.75	75.05	19.71		80.0	
		Z	5.90	77.08	20.64		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.47	73.05	19.35	2.23	80.0	± 9.6 \%
		Y	5.22	71.31	18.50		80.0	
		Z	5.12	72.35	18.92		80.0	

$10493-$ AAC	LTE-TDD (SC-FDMA, 50\% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.48	72.72	19.22	2.23	80.0	$\pm 9.6 \%$
		Y	5.27	71.08	18.43		80.0	
$10494-$ AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9)$	Z	X	7.15	72.07	18.82		80.0

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.55	73.01	19.36	2.23	80.0	± 9.6 \%
		Y	5.33	71.35	18.55		80.0	
		Z	5.19	72.24	18.95		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.03	77.40	20.60	2.23	80.0	± 9.6 \%
		Y	6.25	74.54	19.35		80.0	
		Z	6.27	75.89	20.05		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.86	72.49	19.18	2.23	80.0	± 9.6 \%
		Y	5.70	71.14	18.49		80.0	
		Z	5.51	71.73	18.83		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.83	72.01	19.03	2.23	80.0	± 9.6 \%
		Y	5.71	70.79	18.40		80.0	
		Z	5.52	71.35	18.71		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	8.18	80.50	21.58	2.23	80.0	± 9.6 \%
		Y	6.82	76.59	19.98		80.0	
		Z	6.97	78.23	20.79		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.86	73.15	19.44	2.23	80.0	$\pm 9.6 \%$
		Y	5.65	71.64	18.67		80.0	
		Z	5.45	72.18	19.02		80.0	
$\begin{array}{\|l\|} \hline 10514- \\ \text { AAC } \end{array}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.75	72.41	19.20	2.23	80.0	± 9.6 \%
		Y	5.60	71.07	18.51		80.0	
		Z	5.40	71.58	18.82		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.06	65.76	16.90	0.00	150.0	± 9.6 \%
		Y	1.00	63.51	14.99		150.0	
		Z	1.02	64.32	15.55		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	5.87	117.81	35.86	0.00	150.0	± 9.6 \%
		Y	0.66	71.85	18.17		150.0	
		Z	0.94	79.02	21.78		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	1.03	70.61	19.18	0.00	150.0	$\pm 9.6 \%$
		Y	0.86	65.67	15.75		150.0	
		Z	0.90	67.08	16.71		150.0	
$\begin{aligned} & \text { 10518- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.67	67.45	16.69	0.00	150.0	$\pm 9.6 \%$
		Y	4.67	66.94	16.33		150.0	
		Z	4.52	67.23	16.44		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.87	67.70	16.81	0.00	150.0	± 9.6 \%
		Y	4.88	67.22	16.46		150.0	
		Z	4.69	67.43	16.54		150.0	
$\begin{aligned} & 10520- \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.72	67.70	16.76	0.00	150.0	± 9.6 \%
		Y	4.73	67.19	16.39		150.0	
		Z	4.54	67.39	16.47		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.66	67.72	16.76	0.00	150.0	± 9.6 \%
		Y	4.66	67.20	16.38		150.0	
		Z	4.48	67.38	16.46		150.0	
$\begin{aligned} & 10522- \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.71	67.76	16.82	0.00	150.0	± 9.6 \%
		Y	4.71	67.20	16.42		150.0	
		Z	4.54	67.51	16.56		150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.59	67.65	16.68	0.00	150.0	± 9.6 \%
		Y	4.58	67.09	16.28		150.0	
$\begin{aligned} & 10524- \\ & \text { AAA } \end{aligned}$		Z	4.43	67.41	16.42		150.0	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.66	67.69	16.79	0.00	150.0	± 9.6 \%
		Y	4.66	67.15	16.40		150.0	
		Z	4.48	67.43	16.53		150.0	
$\begin{aligned} & 10525- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.63	66.73	16.38	0.00	150.0	± 9.6 \%
		Y	4.62	66.18	15.99		150.0	
		Z	4.49	66.49	16.12		150.0	
$\begin{aligned} & 10526- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	4.82	67.13	16.53	0.00	150.0	± 9.6 \%
		Y	4.82	66.58	16.14		150.0	
		Z	4.64	66.83	16.26		150.0	
$10527-$AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99 pc duty cycle)	X	4.74	67.11	16.49	0.00	150.0	± 9.6 \%
		Y	4.73	66.55	16.09		150.0	
		Z	4.57	66.80	16.20		150.0	
$\begin{aligned} & \text { 10528- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 99 pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 \%
		Y	4.75	66.57	16.12		150.0	
		Z	4.58	66.81	16.23		150.0	
$\begin{aligned} & 10529- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 4$, 99pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 \%
		Y	4.75	66.57	16.12		150.0	
		Z	4.58	66.81	16.23		150.0	
$\overline{10531-}$ AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99 pc duty cycle)	X	4.77	67.27	16.55	0.00	150.0	± 9.6 \%
		Y	4.76	66.71	16.15		150.0	
		Z	4.56	66.89	16.24		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99 pc duty cycle)	X	4.62	67.15	16.50	0.00	150.0	± 9.6 \%
		Y	4.61	66.57	16.09		150.0	
		Z	4.43	66.75	16.17		150.0	
$\begin{aligned} & 10533- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99 pc duty cycle)	X	4.77	67.17	16.50	0.00	150.0	± 9.6 \%
		Y	4.76	66.59	16.10		150.0	
		Z	4.59	66.88	16.23		150.0	
$\begin{aligned} & \hline 10534- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 99pc duty cycle)	X	5.27	67.15	16.50	0.00	150.0	± 9.6 \%
		Y	5.27	66.72	16.17		150.0	
		Z	5.12	66.84	16.26		150.0	
$\begin{aligned} & 10535- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99 pc duty cycle)	\bar{X}	5.34	67.31	16.57	0.00	150.0	± 9.6 \%
		Y	5.34	66.86	16.23		150.0	
		Z	5.19	67.03	16.35		150.0	
$\begin{aligned} & 10536- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	67.31	16.55	0.00	150.0	± 9.6 \%
		Y	5.21	66.84	16.21		150.0	
		Z	5.06	66.99	16.32		150.0	
$\begin{aligned} & 10537- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99 pc duty cycle)	X	5.27	67.26	16.52	0.00	150.0	± 9.6 \%
		Y	5.28	66.82	16.20		150.0	
		Z	5.12	66.94	16.29		150.0	
$\begin{aligned} & 10538- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.37	67.28	16.57	0.00	150.0	± 9.6 \%
		Y	5.39	66.89	16.27		150.0	
		Z	5.20	66.94	16.33		150.0	
$\begin{aligned} & 10540- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, $99 p \mathrm{duty}$ cycle)	X	5.29	67.28	16.59	0.00	150.0	± 9.6 \%
		Y	5.29	66.84	16.26		150.0	
		Z	5.13	66.94	16.35		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.26	67.15	16.52	0.00	150.0	± 9.6 \%
		Y	5.27	66.73	16.20		150.0	
		Z	5.11	66.82	16.27		150.0	
$\begin{aligned} & 10542- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, $99 p \mathrm{duty}$ cycle)	X	5.42	67.19	16.55	0.00	150.0	± 9.6 \%
		Y	5.42	66.79	16.25		150.0	
		Z	5.26	66.90	16.33		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99 pc duty cycle)	X	5.49	67.21	16.57	0.00	150.0	± 9.6 \%
		Y	5.51	66.80	16.27		150.0	
		Z	5.32	66.91	16.36		150.0	
$\begin{aligned} & 10544- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS0, 99 pc duty cycle)	X	5.57	67.22	16.46	0.00	150.0	± 9.6 \%
		Y	5.56	66.82	16.16		150.0	
		Z	5.45	66.92	16.24		150.0	
10545 AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99 pc duty cycle)	X	5.77	67.65	16.61	0.00	150.0	± 9.6 \%
		Y	5.78	67.25	16.32		150.0	
		Z	5.64	67.38	16.42		150.0	
$\begin{aligned} & 10546- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99 pc duty cycle)	X	5.65	67.48	16.55	0.00	150.0	± 9.6 \%
		Y	5.65	67.10	16.26		150.0	
		Z	5.50	67.09	16.30		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.73	67.53	16.56	0.00	150.0	± 9.6 \%
		Y	5.74	67.18	16.29		150.0	
		Z	5.57	67.16	16.32		150.0	
$\begin{aligned} & \text { 10548- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.02	68.59	17.06	0.00	150.0	± 9.6 \%
		Y	6.08	68.34	16.83		150.0	
		Z	5.80	68.04	16.74		150.0	
$\begin{aligned} & 10550- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99 pc duty cycle)	X	5.67	67.46	16.54	0.00	150.0	± 9.6 \%
		Y	5.67	67.06	16.25		150.0	
		Z	5.54	67.19	16.36		150.0	
$\begin{aligned} & 10551- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.68	67.52	16.53	0.00	150.0	± 9.6 \%
		Y	5.69	67.13	16.25		150.0	
		Z	5.53	67.15	16.30		150.0	
10552- AAA	FEEE 802.11ac WiFi (80MHz, MCS8, 99 pc duty cycle)	X	5.59	67.30	16.44	0.00	150.0	± 9.6 \%
		Y	5.59	66.90	16.14		150.0	
		Z	5.46	67.00	16.23		150.0	
$\begin{aligned} & 10553- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99 pc duty cycle)	X	5.68	67.34	16.48	0.00	150.0	± 9.6 \%
		Y	5.68	66.95	16.20		150.0	
		Z	5.53	67.00	16.26		150.0	
$\begin{aligned} & 10554- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 99pc duty cycle)	X	5.97	67.57	16.52	0.00	150.0	± 9.6 \%
		Y	5.97	67.21	16.26		150.0	
		Z	5.86	67.27	16.32		150.0	
$\begin{aligned} & 10555- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.11	67.88	16.66	0.00	150.0	± 9.6 \%
		Y	6.11	67.54	16.39		150.0	
		Z	5.98	67.57	16.45		150.0	
$\begin{aligned} & 10556- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 99pc duty cycle)	X	6.13	67.93	16.67	0.00	150.0	± 9.6 \%
		Y	6.13	67.56	16.40		150.0	
		Z	6.01	67.63	16.48		150.0	
$\begin{aligned} & \text { 10557- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS 3 , 99 pc duty cycle)	X	6.10	67.85	16.65	0.00	150.0	± 9.6 \%
		Y	6.11	67.51	16.40		150.0	
		Z	5.97	67.50	16.43		150.0	

$\begin{array}{\|l\|} \hline 10558- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.16	68.03	16.76	0.00	150.0	± 9.6 \%
		Y	6.17	67.70	16.50		150.0	
$\begin{aligned} & \overline{10560-} \\ & \text { AAB } \end{aligned}$		Z	6.01	67.66	16.53		150.0	
	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.15	67.86	16.71	0.00	150.0	± 9.6 \%
		Y	6.16	67.52	16.45		150.0	
		Z	6.00	67.50	16.49		150.0	
$\begin{aligned} & 10561- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7$, 99 pc duty cycle)	X	6.06	67.83	16.73	0.00	150.0	± 9.6 \%
		Y	6.07	67.48	16.47		150.0	
		Z	5.94	67.50	16.52		150.0	
$\begin{aligned} & 10562- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.21	68.28	16.96	0.00	150.0	± 9.6 \%
		Y	6.23	67.97	16.72		150.0	
		Z	6.03	67.79	16.67		150.0	
$\begin{aligned} & 10563- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 99 pc duty cycle)	X	6.55	68.85	17.19	0.00	150.0	± 9.6 \%
		Y	6.59	68.58	16.96		150.0	
		Z	6.12	67.71	16.59		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps , 99 pc duty cycle)	X	4.99	67.50	16.82	0.46	150.0	± 9.6 \%
		Y	5.01	67.06	16.50		150.0	
		Z	4.85	67.32	16.61		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps , 99 pc duty cycle)	X	5.24	67.95	17.13	0.46	150.0	± 9.6 \%
		Y	5.26	67.54	16.83		150.0	
		Z	5.06	67.72	16.90		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	5.07	67.84	16.98	0.46	150.0	± 9.6 \%
		Y	5.10	67.41	16.66		150.0	
		Z	4.90	67.58	16.73		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 99 pc duty cycle)	X	5.11	68.24	17.33	0.46	150.0	± 9.6 \%
		Y	5.13	67.80	17.01		150.0	
		Z	4.93	67.94	17.07		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 99 pc duty cycle)	X	4.99	67.61	16.75	0.46	150.0	± 9.6 \%
		Y	5.01	67.15	16.42		150.0	
		Z	4.83	67.42	16.55		150.0	
$\begin{aligned} & 10569- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 99 pc duty cycle)	X	5.06	68.33	17.39	0.46	150.0	± 9.6 \%
		Y	5.07	67.85	17.05		150.0	
		Z	4.91	68.11	17.17		150.0	
10570- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99pc duty cycle)	X	5.09	68.14	17.31	0.46	150.0	± 9.6 \%
		Y	5.11	67.68	16.98		150.0	
		Z	4.92	67.93	17.09		150.0	
10571-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.50	68.95	18.38	0.46	130.0	± 9.6 \%
		Y	1.40	66.38	16.51		130.0	
		Z	1.40	67.23	17.09		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.55	69.98	18.93	0.46	130.0	± 9.6 \%
		Y	1.43	67.06	16.91		130.0	
		Z	1.44	67.99	17.53		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	153.35	41.94	0.46	130.0	± 9.6 \%
		Y	5.15	96.81	26.53		130.0	
		Z	50.11	136.49	37.17		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.59	83.81	24.92	0.46	130.0	± 9.6 \%
		Y	1.75	74.27	20.26		130.0	
		Z	1.86	76.56	21.49		130.0	

$\begin{aligned} & \hline 10575- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.81	67.37	16.92	0.46	130.0	± 9.6 \%
		Y	4.84	66.96	16.62		130.0	
		Z	4.68	67.23	16.73		130.0	
$\begin{aligned} & 10576- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.84	67.54	16.99	0.46	130.0	± 9.6 \%
		Y	4.86	67.12	16.68		130.0	
		Z	4.71	67.40	16.79		130.0	
$\begin{aligned} & 10577- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps , 90 pc duty cycle)	X	5.05	67.83	17.14	0.46	130.0	± 9.6 \%
		Y	5.09	67.44	16.86		130.0	
		Z	4.89	67.64	16.94		130.0	
$\begin{aligned} & 10578- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 90 pc duty cycle)	X	4.96	68.04	17.27	0.46	130.0	± 9.6 \%
		Y	4.99	67.62	16.97		130.0	
		Z	4.79	67.80	17.04		130.0	
$\begin{aligned} & \text { 10579- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90 pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	± 9.6 \%
		Y	4.76	66.96	16.31		130.0	
		Z	4.57	67.14	16.40		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 90 pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	± 9.6 \%
		Y	4.80	66.94	16.31		130.0	
		Z	4.61	67.21	16.43		130.0	
$\begin{aligned} & 10581- \\ & \text { AAA } \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 90 pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 \%
		Y	4.89	67.70	16.92		130.0	
		Z	4.70	67.90	17.02		130.0	
$\begin{aligned} & \text { 10582- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 90 pc duty cycie)	X	4.67	67.12	16.41	0.46	130.0	± 9.6 \%
		Y	4.71	66.71	16.10		130.0	
		Z	4.51	66.92	16.20		130.0	
$\begin{aligned} & 10583- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.81	67.37	16.92	0.46	130.0	± 9.6 \%
		Y	4.84	66.96	16.62		130.0	
		Z	4.68	67.23	16.73		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.84	67.54	16.99	0.46	130.0	$\pm 9.6 \%$
		Y	4.86	67.12	16.68		130.0	
		Z	4.71	67.40	16.79		130.0	
$\begin{aligned} & \text { 10585- } \\ & \text { AAA } \end{aligned}$	FEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90 pc duty cycle)	X	5.05	67.83	17.14	0.46	130.0	± 9.6 \%
		Y	5.09	67.44	16.86		130.0	
		Z	4.89	67.64	16.94		130.0	
$\begin{aligned} & 10586- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90 pc duty cycle)	X	4.96	68.04	17.27	0.46	130.0	± 9.6 \%
		Y	4.99	67.62	16.97		130.0	
		Z	4.79	67.80	17.04		130.0	
$\begin{aligned} & \text { 10587- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90 pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	± 9.6 \%
		Y	4.76	66.96	16.31		130.0	
		Z	4.57	67.14	16.40		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90 pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	$\pm 9.6 \%$
		Y	4.80	66.94	16.31		130.0	
		Z	4.61	67.21	16.43		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 \%
		Y	4.89	67.70	16.92		130.0	
		Z	4.70	67.90	17.02		130.0	
$\begin{aligned} & 10590- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90 pc duty cycle)	X	4.67	67.12	16.41	0.46	130.0	± 9.6 \%
		Y	4.71	66.71	16.10		130.0	
		Z	4.51	66.92	16.20		130.0	

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCSO, 90pc duty cycle)	X	4.95	67.39	16.99	0.46	130.0	± 9.6 \%
		Y	4.98	67.01	16.71		130.0	
$\begin{aligned} & 10592- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.83	67.26	16.81		130.0	
	IEEE 802.11п (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.12	67.74	17.12	0.46	130.0	± 9.6 \%
		Y	5.15	67.35	16.84		130.0	
		Z	4.97	67.58	16.94		130.0	
$\begin{aligned} & 10593- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCS2, 90pc duty cycle)	X	5.04	67.68	17.02	0.46	130.0	± 9.6 \%
		Y	5.08	67.30	16.74		130.0	
		Z	4.89	67.49	16.82		130.0	
$\begin{aligned} & 10594- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.10	67.84	17.17	0.46	130.0	± 9.6 \%
		Y	5.14	67.45	16.88		130.0	
		Z	4.94	67.65	16.97		130.0	
$\begin{aligned} & 10595- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.07	67.81	17.07	0.46	130.0	$\pm 9.6 \%$
		Y	5.11	67.42	16.78		130.0	
		Z	4.91	67.63	16.88		130.0	
$\begin{aligned} & \hline 10596- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.01	67.82	17.09	0.46	130.0	± 9.6 \%
		Y	5.05	67.42	16.79		130.0	
		Z	4.85	67.64	16.90		130.0	
10597AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.96	67.75	16.98	0.46	130.0	± 9.6 \%
		Y	5.00	67.35	16.69		130.0	
		Z	4.80	67.53	16.77		130.0	
$\begin{aligned} & 10598- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.95	68.01	17.26	0.46	130.0	± 9.6 \%
		Y	4.98	67.61	16.96		130.0	
		Z	4.78	67.73	17.01		130.0	
$\begin{aligned} & 10599- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCSO, 90pc duty cycle)	X	5.60	67.86	17.12	0.46	130.0	± 9.6 \%
		Y	5.66	67.61	16.91		130.0	
		Z	5.48	67.70	16.99		130.0	
$\begin{aligned} & 10600- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.78	68.39	17.36	0.46	130.0	± 9.6 \%
		Y	5.85	68.19	17.17		130.0	
		Z	5.62	68.16	17.20		130.0	
$\begin{aligned} & \text { 10601- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.65	68.09	17.22	0.46	130.0	± 9.6 \%
		Y	5.71	67.83	17.01		130.0	
		Z	5.51	67.89	17.08		130.0	
$\begin{aligned} & 10602- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.73	68.07	17.13	0.46	130.0	± 9.6 \%
		Y	5.79	67.82	16.93		130.0	
		Z	5.63	68.04	17.07		130.0	
10603- AAA	TEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	X	5.82	68.41	17.43	0.46	130.0	± 9.6 \%
		Y	5.87	68.11	17.19		130.0	
		Z	5.69	68.27	17.32		130.0	
$\begin{aligned} & 10604- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS5, 90pc duty cycle)	X	5.61	67.82	17.13	0.46	130.0	± 9.6 \%
		Y	5.66	67.56	16.91		130.0	
$\begin{aligned} & 10605- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.56	67.91	17.12		130.0	
	IEEE 802.11n (HT Mixed, 40 MHz , MCS6, 90pc duty cycle)	X	5.73	68.17	17.30	0.46	130.0	± 9.6 \%
		Y	5.77	67.87	17.07		130.0	
		Z	5.62	68.08	17.21		130.0	
10606- AAA	IEEE 802.11 n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.50	67.62	16.90	0.46	130.0	± 9.6 \%
		Y	5.53	67.31	16.65		130.0	
		Z	5.35	67.34	16.70		130.0	

$\begin{aligned} & 10607- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 90 pc duty cycle)	X	4.80	66.75	16.64	0.46	130.0	± 9.6 \%
		Y	4.81	66.30	16.32		130.0	
		Z	4.67	66.60	16.45		130.0	
10608- AAA	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 1$, 90pc duty cycle)	X	5.00	67.18	16.81	0.46	130.0	± 9.6 \%
		Y	5.02	66.72	16.48		130.0	
		Z	4.84	66.98	16.61		130.0	
$\begin{aligned} & \text { 10609- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.89	67.06	16.67	0.46	130.0	± 9.6 \%
		Y	4.91	66.60	16.34		130.0	
		Z	4.73	66.84	16.45		130.0	
10610- AAA	IEEE 802.11ac WiFi (20 MHz , MCS3, 90 pc duty cycle)	X	4.94	67.21	16.82	0.46	130.0	$\pm 9.6 \%$
		Y	4.96	66.76	16.50		130.0	
		Z	4.78	66.99	16.61		130.0	
$\begin{aligned} & 10611- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCS4, 90 pc duty cycle)	X	4.86	67.03	16.68	0.46	130.0	$\pm 9.6 \%$
		Y	4.89	66.59	16.36		130.0	
		Z	4.70	66.81	16.46		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.88	67.21	16.74	0.46	130.0	± 9.6 \%
		Y	4.90	66.74	16.40		130.0	
		Z	4.71	66.99	16.53		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.89	67.11	16.63	0.46	130.0	± 9.6 \%
		Y	4.91	66.65	16.30		130.0	
		Z	4.71	66.83	16.39		130.0	
$\begin{aligned} & 10614- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.83	67.31	16.87	0.46	130.0	± 9.6 \%
		Y	4.85	66.84	16.53		130.0	
		Z	4.66	67.02	16.61		130.0	
10615- AAA	IEEE 802.11ac WiFi (20 MHz , MCS8, 90 pc duty cycle)	X	4.86	66.85	16.46	0.46	130.0	± 9.6 \%
		Y	4.89	66.40	16.13		130.0	
		Z	4.70	66.67	16.26		130.0	
$\begin{aligned} & \text { 10616- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS0, 90 pc duty cycle)	X	5.44	67.18	16.77	0.46	130.0	± 9.6 \%
		Y	5.47	66.84	16.51		130.0	
		Z	5.30	66.94	16.59		130.0	
$\begin{aligned} & 10617- \\ & \text { AAA } \end{aligned}$	JEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.50	67.33	16.81	0.46	130.0	± 9.6 \%
		Y	5.52	66.94	16.53		130.0	
		Z	5.38	67.17	16.68		130.0	
$\begin{aligned} & 10618- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.40	67.39	16.87	0.46	130.0	± 9.6 \%
		Y	5.42	67.02	16.59		130.0	
		Z	5.27	67.18	16.70		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	5.42	67.21	16.71	0.46	130.0	± 9.6 \%
		Y	5.44	66.85	16.44		130.0	
		Z	5.28	66.96	16.53		130.0	
$\begin{aligned} & 10620- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.51	67.25	16.78	0.46	130.0	± 9.6 \%
		Y	5.56	66.94	16.53		130.0	
		Z	5.36	66.98	16.59		130.0	
$10621-$ AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duty cycle)	X	5.50	67.33	16.93	0.46	130.0	$\pm 9.6 \%$
		Y	5.53	67.00	16.68		130.0	
		Z	5.36	67.10	16.76		130.0	
$\begin{aligned} & 10622- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.51	67.50	17.01	0.46	130.0	± 9.6 \%
		Y	5.53	67.13	16.73		130.0	
		Z	5.38	67.30	16.85		130.0	

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	5.39	67.03	16.66	0.46	130.0	± 9.6 \%
		Y	5.41	66.69	16.40		130.0	
10624-AAA		Z	5.25	66.80	16.48		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.58	67.21	16.80	0.46	130.0	± 9.6 \%
		Y	5.61	66.88	16.56		130.0	
		Z	5.44	66.99	16.64		130.0	
$\begin{array}{\|l} \hline 10625- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.99	68.31	17.39	0.46	130.0	± 9.6 \%
		Y	6.04	68.02	17.17		130.0	
		Z	5.71	67.69	17.04		130.0	
$\begin{array}{\|l} \hline 10626- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90 pc duty cycle)	X	5.71	67.19	16.69	0.46	130.0	± 9.6 \%
		Y	5.72	66.86	16.44		130.0	
		Z	5.61	66.97	16.54		130.0	
$\begin{aligned} & \text { 10627- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS1, 90 pc duty cycle)	X	5.96	67.77	16.93	0.46	130.0	± 9.6 \%
		Y	5.99	67.46	16.69		130.0	
		Z	5.86	67.59	16.81		130.0	
$\begin{aligned} & 10628- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	5.76	67.34	16.66	0.46	130.0	± 9.6 \%
		Y	5.79	67.03	16.42		130.0	
		Z	5.63	67.03	16.47		130.0	
$\begin{aligned} & 10629- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.85	67.42	16.69	0.46	130.0	± 9.6 \%
		Y	5.87	67.09	16.44		130.0	
		Z	5.71	67.12	16.51		130.0	
$\begin{aligned} & 10630- \\ & \text { AAA } \\ & \hline \end{aligned}$	JEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	6.37	69.15	17.55	0.46	130.0	± 9.6 \%
		Y	6.48	69.04	17.41		130.0	
		Z	6.10	68.51	17.21		130.0	
$\begin{aligned} & 10631- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.23	68.84	17.58	0.46	130.0	± 9.6 \%
		Y	6.30	68.64	17.40		130.0	
		Z	6.00	68.26	17.26		130.0	
$\begin{aligned} & 10632- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.93	67.81	17.09	0.46	130.0	± 9.6 \%
		Y	5.96	67.50	16.85		130.0	
		Z	5.82	67.64	16.97		130.0	
$\begin{aligned} & 10633- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.83	67.50	16.76	0.46	130.0	± 9.6 \%
		Y	5.88	67.25	16.56		130.0	
		Z	5.69	67.21	16.59		130.0	
10634-AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.81	67.52	16.84	0.46	130.0	± 9.6 \%
		Y	5.85	67.23	16.61		130.0	
		Z	5.67	67.21	16.64		130.0	
$\begin{aligned} & 10635- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.70	66.87	16.25	0.46	130.0	± 9.6 \%
		Y	5.74	66.58	16.02		130.0	
		Z	5.55	66.58	16.07		130.0	
$\begin{aligned} & 10636- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 90 pc duty cycle)	X	6.12	67.55	16.76	0.46	130.0	± 9.6 \%
		Y	6.14	67.26	16.54		130.0	
		Z	6.03	67.32	16.61		130.0	
$\begin{aligned} & 10637- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.28	67.94	16.93	0.46	130.0	± 9.6 \%
		Y	6.31	67.65	16.72		130.0	
		Z	6.19	67.72	16.79		130.0	
$\begin{aligned} & 10638- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.28	67.91	16.90	0.46	130.0	± 9.6 \%
		Y	6.31	67.62	16.68		130.0	
		Z	6.18	67.68	16.75		130.0	

$\begin{aligned} & 10639- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS3, 90 pc duty cycle)	X	6.27	67.88	16.93	0.46	130.0	± 9.6 \%
		Y	6.30	67.62	16.73		130.0	
		Z	6.15	67.59	16.75		130.0	
$\begin{aligned} & 10640- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	6.29	67.93	16.90	0.46	130.0	± 9.6 \%
		Y	6.33	67.70	16.71		130.0	
		Z	6.15	67.62	16.71		130.0	
$\begin{aligned} & 10641- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS5, 90 pc duty cycle)	X	6.30	67.74	16.81	0.46	130.0	± 9.6 \%
		Y	6.32	67.44	16.59		130.0	
		Z	6.22	67.59	16.72		130.0	
$\begin{aligned} & 10642- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 90 pc duty cycle)	X	6.36	68.03	17.13	0.46	130.0	± 9.6 \%
		Y	6.39	67.76	16.92		130.0	
		Z	6.23	67.75	16.95		130.0	
$\begin{aligned} & 10643- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS7, 90 pc duty cycle)	X	6.19	67.72	16.88	0.46	130.0	± 9.6 \%
		Y	6.22	67.45	16.67		130.0	
		Z	6.09	67.50	16.74		130.0	
$\begin{aligned} & 10644- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.39	68.34	17.21	0.46	130.0	± 9.6 \%
		Y	6.45	68.14	17.04		130.0	
		Z	6.20	67.86	16.93		130.0	
$\begin{aligned} & 10645- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.86	69.27	17.61	0.46	130.0	± 9.6 \%
		Y	6.87	68.89	17.35		130.0	
		Z	6.34	67.93	16.93		130.0	
$\begin{aligned} & 10646- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	58.91	128.47	41.72	9.30	60.0	± 9.6 \%
	.	Y	22.23	103.66	34.19		60.0	
		Z	97.77	144.05	46.65		60.0	
$\begin{aligned} & 10647- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	62.96	130.94	42.54	9.30	60.0	± 9.6 \%
		Y	22.84	105.02	34.74		60.0	
		Z	100.00	145.78	47.28		60.0	
$\begin{aligned} & 10648- \\ & \text { AAA } \\ & \hline \end{aligned}$	CDMA2000 (1x Advanced)	X	1.21	71.90	15.83	0.00	150.0	± 9.6 \%
		Y	0.81	64.89	12.16		150.0	
		Z	0.74	65.22	11.47		150.0	
$\begin{aligned} & 10652- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, $5 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$, Clipping 44\%)	X	4.72	70.40	18.28	2.23	80.0	± 9.6 \%
		Y	4.59	69.04	17.59		80.0	
		Z	4.50	69.96	17.82		80.0	
$\begin{aligned} & 10653- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	5.05	69.01	18.05	2.23	80.0	± 9.6 \%
		Y	5.03	68.18	17.58		80.0	
		Z	4.88	68.67	17.76		80.0	
$\begin{aligned} & 10654- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, $15 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$, Clipping 44\%)	X	4.97	68.58	18.01	2.23	80.0	± 9.6 \%
		Y	4.96	67.84	17.57		80.0	
		\underline{Z}	4.83	68.24	17.75		80.0	
$\begin{aligned} & 10655- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	5.02	68.56	18.04	2.23	80.0	± 9.6 \%
		Y	5.02	67.86	17.60		80.0	
		Z	4.89	68.17	17.77		80.0	

[^6]Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
\mathbf{S} Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Client PCTest

Cerificate No: ES3-3319. Mar18

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3319	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	
Calibration date:	March 13, 2018	

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660 Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Issued: March 15, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
NORMx,y,z
ConvF
DCP
CF
A, B, C, D
Polarization φ
Polarization ϑ

```
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORM \(x, y, z\) diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters \(\varphi\) rotation around probe axis \(\vartheta\) rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., \(\vartheta=0\) is normal to probe axis
Connector Angle information used in DASY system to align probe sensor \(X\) to the robot coordinate system
```


Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM(f) $x, y, z=$ NORM M, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe ES3DV3

SN:3319

Manufactured: January 10, 2012
Calibrated: \quad March 13,2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	1.08	1.05	1.12	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	104.0	103.0	104.0	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{~} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}^{\mathbf{E}}$ $\mathbf{(k = 2)}$
0	CW	X	0.0	0.0	1.0	0.00	197.9	$\pm 3.8 \%$
		Y	0.0	0.0	$\mathbf{1 . 0}$		198.2	
		Z	0.0	0.0	1.0		200.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s} . \mathbf{V}^{-1}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T} 4$ $\mathbf{V}^{-\mathbf{2}}$	$\mathbf{T} 5$ \mathbf{V}^{-1}	$\mathbf{T 6}$
X	60.52	430.8	35.08	29.64	3.011	5.10	0.615	0.538	1.010
Y	55.79	400.8	35.48	29.01	2.492	5.10	0.600	0.518	1.009
Z	63.98	455.3	34.93	29.72	3.442	5.10	0.679	0.571	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^7]
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\mathrm{C}}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Unc } \\ (\mathrm{k}=2) \end{gathered}$
750	41.9	0.89	6.70	6.70	6.70	0.80	1.21	$\pm 12.0 \%$
835	41.5	0.90	6.44	6.44	6.44	0.80	1.17	$\pm 12.0 \%$
1750	40.1	1.37	5.49	5.49	5.49	0.65	1.43	$\pm 12.0 \%$
1900	40.0	1.40	5.29	5.29	5.29	0.76	1.30	± 12.0 \%
2300	39.5	1.67	5.06	5.06	5.06	0.72	1.29	$\pm 12.0 \%$
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.30	± 12.0 \%
2600	39.0	1.96	4.55	4.55	4.55	0.80	1.31	$\pm 12.0 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{\sigma} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
750	55.5	0.96	6.32	6.32	6.32	0.65	1.26	$\pm 12.0 \%$
835	55.2	0.97	6.20	6.20	6.20	0.80	1.14	$\pm 12.0 \%$
1750	53.4	1.49	5.05	5.05	5.05	0.76	1.27	$\pm 12.0 \%$
1900	53.3	1.52	4.84	4.84	4.84	0.55	1.56	$\pm 12.0 \%$
2300	52.9	1.81	4.63	4.63	4.63	0.80	1.30	$\pm 12.0 \%$
2450	52.7	1.95	4.51	4.51	4.51	0.80	1.25	$\pm 12.0 \%$
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.20	$\pm 12.0 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncerlainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (E and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of Enfield: $\pm 6.3 \%(k=2)$

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

$\mathrm{f}=600 \mathrm{MHz}$,TEM

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22$

Uncertainty of Axial Isotropy Assessment: $\pm \mathbf{0 . 5 \%}(\mathrm{k}=2$)

Dynamic Range f(SAR head $)$
 (TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\mathbf{\pm 0 . 6 \%}$ ($\mathbf{k = 2}$)

Conversion Factor Assessment

Error (ϕ, ϑ), f=900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	60.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$		C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \operatorname{Max}^{\text {Unc }} \\ & (\mathrm{k}=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	197.9	$\pm 3.8 \%$
		Y	0.00	0.00	1.00		198.2	
		Z	0.00	0.00	1.00		200.6	
$\begin{aligned} & 10010- \\ & \text { CAA } \end{aligned}$	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	X	9.56	81.28	19.98	10.00	25.0	$\pm 9.6 \%$
		Y	8.09	78.70	18.35		25.0	
		Z	8.70	79.52	19.57		25.0	
$\begin{aligned} & 10011- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (WCDMA)	X	1.34	72.37	18.08	0.00	150.0	± 9.6 \%
		Y	0.99	67.12	14.82		150.0	
		Z	1.12	68.87	16.00		150.0	
$\begin{aligned} & 10012- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.37	66.58	17.00	0.41	150.0	$\pm 9.6 \%$
		Y	1.25	64.92	15.59		150.0	
		Z	1.32	65.58	16.11		150.0	
$\begin{aligned} & 10013- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	5.18	67.48	17.64	1.46	150.0	± 9.6 \%
		Y	5.08	67.20	17.36		150.0	
		Z	5.20	67.32	17.47		150.0	
$10021-$ DAC	GSM-FDD (TDMA, GMSK)	X	20.40	95.52	26.57	9.39	50.0	± 9.6 \%
		Y	29.46	101.11	27.60		50.0	
		Z	14.66	89.52	24.83		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	18.37	93.61	26.02	9.57	50.0	± 9.6 \%
		Y	24.41	97.95	26.72		50.0	
		Z	13.84	88.39	24.49		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	119.56	31.31	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	117.39	29.93		60.0	
		Z	47.21	108.31	28.71		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	21.09	108.48	41.18	12.57	50.0	± 9.6 \%
		Y	17.11	102.80	38.82		50.0	
		Z	18.44	103.12	38.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.59	105.09	36.25	9.56	60.0	± 9.6 \%
		Y	18.95	102.20	35.03		60.0	
		Z	18.49	100.22	34.38		60.0	
10027DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.49	29.83	4.80	80.0	$\pm 9.6 \%$
		Y	100.00	115.83	28.28		80.0	
		Z	100.00	118.30	29.89		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.84	29.14	3.55	100.0	$\pm 9.6 \%$
		Y	100.00	115.36	27.25		100.0	
		Z	100.00	118.10	28.92		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	15.08	97.16	32.49	7.80	80.0	$\pm 9.6 \%$
		Y	12.90	93.80	31.06		80.0	
		Z	13.60	93.82	31.09		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	118.11	30.01	5.30	70.0	$\pm 9.6 \%$
		Y	100.00	115.58	28.50		70.0	
		Z	100.00	118.16	30.20		70.0	
10031CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	121.01	28.44	1.88	100.0	± 9.6 \%
		Y	100.00	114.03	25.11		100.0	
		Z	100.00	118.73	27.54		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	127.26	29.88	1.17	100.0	± 9.6 \%
		Y	100.00	114.89	24.38		100.0	
		Z	100.00	122.11	27.79		100.0	
$\begin{aligned} & 10033- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	21.21	99.84	27.91	5.30	70.0	± 9.6 \%
		Y	19.09	97.43	26.61		70.0	
		Z	13.98	92.26	25.56		70.0	
$\begin{aligned} & 10034- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	14.93	98.23	25.94	1.88	100.0	$\pm 9.6 \%$
		Y	7.46	86.71	21.62		100.0	
		Z	7.45	87.10	22.42		100.0	
$\begin{aligned} & 10035- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH5)	X	7.98	90.77	23.49	1.17	100.0	± 9.6 \%
		Y	3.97	79.58	18.90		100.0	
		Z	4.48	81.52	20.27		100.0	
$\begin{aligned} & 10036- \\ & \mathrm{CAA} \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	26.12	103.52	29.04	5.30	70.0	± 9.6 \%
		Y	24.16	101.42	27.84		70.0	
		Z	15.99	94.67	26.38		70.0	
$\begin{aligned} & 10037- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	14.25	97.55	25.70	1.88	100.0	± 9.6 \%
		Y	7.04	85.92	21.32		100.0	
		Z	7.24	86.72	22.25		100.0	
$\begin{aligned} & 10038- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	8.53	92.07	23.99	1.17	100.0	± 9.6 \%
		Y	4.13	80.37	19.27		100.0	
		Z	4.65	82.31	20.62		100.0	
$\begin{aligned} & 10039- \\ & \text { CAB } \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	2.96	79.09	19.43	0.00	150.0	$\pm 9.6 \%$
		Y	1.75	71.10	15.36		150.0	
		Z	2.10	73.23	16.92		150.0	
$\begin{aligned} & 10042- \\ & \mathrm{CAB} \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, Pl/4DQPSK, Halfrate)	X	53.77	109.05	28.70	7.78	50.0	± 9.6 \%
		Y	79.10	112.95	28.86		50.0	
		Z	23.46	96.42	25.41		50.0	
$\begin{aligned} & 10044- \\ & \text { CAA } \end{aligned}$	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	123.18	1.26	0.00	150.0	± 9.6 \%
		Y	0.02	127.84	0.07		150.0	
		Z	0.00	110.77	4.52		150.0	
$\begin{aligned} & 10048- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	11.41	83.11	24.20	13.80	25.0	± 9.6 \%
		Y	12.66	85.48	24.49		25.0	
		Z	10.45	80.79	23.56		25.0	
$\begin{aligned} & 10049 \text { - } \\ & \text { CAA } \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	13.41	87.55	24.40	10.79	40.0	± 9.6 \%
		Y	15.25	89.77	24.55		40.0	
		Z	11.61	84.53	23.55		40.0	
$\begin{aligned} & 10056- \\ & \text { CAA } \end{aligned}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	13.37	87.98	25.03	9.03	50.0	± 9.6 \%
		Y	13.72	88.51	24.74		50.0	
		Z	11.72	85.02	24.05		50.0	
$\begin{aligned} & 10058- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	11.14	91.28	29.72	6.55	100.0	± 9.6 \%
		Y	9.52	87.98	28.26		100.0	
		Z	10.41	88.91	28.62		100.0	
$\begin{aligned} & 10059- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.60	69.38	18.31	0.61	110.0	± 9.6 \%
		Y	1.43	67.15	16.67		110.0	
		Z	1.53	67.97	17.25		110.0	
$\begin{aligned} & 10060- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.15	34.60	1.30	110.0	$\pm 9.6 \%$
		Y	100.00	128.63	32.36		110.0	
		Z	100.00	130.16	33.31		110.0	

$\begin{aligned} & 10061- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	24.68	111.64	31.63	2.04	110.0	± 9.6 \%
		Y	11.26	97.49	27.04		110.0	
		Z	10.95	96.57	26.98		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.90	67.24	16.94	0.49	100.0	± 9.6 \%
		Y	4.79	66.94	16.63		100.0	
		Z	4.90	67.05	16.74		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.95	67.42	17.09	0.72	100.0	± 9.6 \%
		Y	4.84	67.10	16.77		100.0	
		Z	4.95	67.23	16.89		100.0	
10064CAC	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 12 Mbps)	X	5.28	67.75	17.35	0.86	100.0	± 9.6 \%
		Y	5.16	67.43	17.04		100.0	
		Z	5.30	67.59	17.17		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps)	X	5.19	67.81	17.53	1.21	100.0	$\pm 9.6 \%$
		Y	5.07	67.47	17.22		100.0	
		Z	5.21	67.65	17.35		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.25	67.95	17.76	1.46	100.0	$\pm 9.6 \%$
		Y	5.12	67.61	17.44		100.0	
		Z	5.27	67.80	17.59		100.0	
$\begin{aligned} & 10067- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36	X	5.57	68.10	18.21	2.04	100.0	$\pm 9.6 \%$
		Y	5.44	67.80	17.92		100.0	
		Z	5.60	67.97	18.05		100.0	
10068- CAC	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 48 Mbps)	X	5.73	68.50	18.60	2.55	100.0	$\pm 9.6 \%$
		Y	5.58	68.13	18.28		100.0	
		Z	5.77	68.41	18.46		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 54 Mbps)	X	5.81	68.43	18.78	2.67	100.0	± 9.6 \%
		Y	5.66	68.09	18.46		100.0	
		Z	5.84	68.33	18.64		100.0	
$\begin{aligned} & 10071- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.34	67.73	18.04	1.99	100.0	$\pm 9.6 \%$
		Y	5.22	67.44	17.75		100.0	
		Z	5.35	67.60	17.87		100.0	
$\begin{aligned} & \hline 10072- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.42	68.35	18.39	2.30	100.0	$\pm 9.6 \%$
		Y	5.29	68.00	18.07		100.0	
		Z	5.44	68.21	18.22		100.0	
$\begin{aligned} & 10073- \\ & C A B \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.57	68.74	18.83	2.83	100.0	± 9.6 \%
		Y	5.42	68.36	18.50		100.0	
		Z	5.60	68.62	18.66		100.0	
$\begin{array}{\|l\|} \hline 10074- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.61	68.84	19.10	3.30	100.0	± 9.6 \%
		Y	5.46	68.44	18.75		100.0	
		Z	5.65	68.74	18.95		100.0	
$\begin{aligned} & 10075- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.79	69.40	19.63	3.82	90.0	± 9.6 \%
		Y	5.61	68.91	19.24		90.0	
		Z	5.85	69.35	19.51		90.0	
$\begin{array}{\|l} \hline 10076- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.80	69.20	19.75	4.15	90.0	± 9.6 \%
		Y	5.64	68.73	19.37		90.0	
		Z	5.86	69.15	19.63		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.84	69.30	19.86	4.30	90.0	$\pm 9.6 \%$
		Y	5.68	68.82	19.47		90.0	
		Z	5.90	69.25	19.74		90.0	

$\begin{aligned} & 10081- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	1.29	72.14	16.36	0.00	150.0	± 9.6 \%
		Y	0.81	65.51	12.24		150.0	
		Z	0.99	67.68	14.05		150.0	
$\begin{aligned} & 10082- \\ & \text { CAB } \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Fullrate)	X	2.36	64.73	9.48	4.77	80.0	$\pm 9.6 \%$
		Y	1.97	63.15	8.18		80.0	
		Z	2.45	64.78	9.67		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	119.65	31.37	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	117.49	29.99		60.0	
		Z	45.52	107.81	28.61		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	2.00	69.44	16.95	0.00	150.0	± 9.6 \%
		Y	1.78	67.32	15.42		150.0	
		Z	1.87	67.93	15.97		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.97	69.46	16.95	0.00	150.0	± 9.6 \%
		Y	1.74	67.28	15.38		150.0	
		Z	1.84	67.91	15.95		150.0	
$\begin{array}{\|l} \hline 10099- \\ \text { DAC } \\ \hline \end{array}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	21.45	104.88	36.18	9.56	60.0	$\pm 9.6 \%$
		Y	18.89	102.07	34.98		60.0	
		Z	18.39	100.05	34.32		60.0	
$\begin{aligned} & 10100- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	3.55	72.46	17.74	0.00	150.0	± 9.6 \%
		Y	3.14	70.29	16.48		150.0	
		Z	3.35	71.19	16.95		150.0	
$\begin{aligned} & 10101- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.45	68.62	16.57	0.00	150.0	$\pm 9.6 \%$
		Y	3.26	67.61	15.85		150.0	
		Z	3.39	68.08	16.14		150.0	
$\begin{aligned} & 10102- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	3.54	68.46	16.61	0.00	150.0	$\pm 9.6 \%$
		Y	3.37	67.56	15.95		150.0	
		Z	3.49	67.97	16.20		150.0	
$\begin{aligned} & 10103- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	8.98	78.82	21.57	3.98	65.0	$\pm 9.6 \%$
		Y	8.50	78.15	21.17		65.0	
		Z	8.60	77.58	20.95		65.0	
$\begin{aligned} & 10104- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	8.85	77.44	21.89	3.98	65.0	± 9.6 \%
		Y	8.45	76.83	21.49		65.0	
		Z	8.72	76.72	21.48		65.0	
$\begin{aligned} & 10105- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHZ, } 64-Q A M) \end{aligned}$	X	8.33	76.23	21.66	3.98	65.0	$\pm 9.6 \%$
		Y	7.79	75.22	21.09		65.0	
		Z	7.71	74.28	20.69		65.0	
10108-CAE	LTE-FDD (SC-FDMA, 100\% RB, 10 MHz, QPSK)	X	3.11	71.64	17.59	0.00	150.0	± 9.6 \%
		Y	2.75	69.54	16.32		150.0	
		Z	2.95	70.37	16.78		150.0	
10109CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16-\mathrm{QAM} \text {) } \end{aligned}$	X	3.12	68.50	16.56	0.00	150.0	$\pm 9.6 \%$
		Y	2.92	67.41	15.75		150.0	
		Z	3.06	67.87	16.07		150.0	
10110-CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	2.56	70.84	17.38	0.00	150.0	$\pm 9.6 \%$
		Y	2.24	68.61	15.94		150.0	
		Z	2.42	69.44	16.48		150.0	
10111 CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, $16-\mathrm{QAM})$	X	2.84	69.29	16.96	0.00	150.0	± 9.6 \%
		Y	2.62	68.02	15.99		150.0	
		Z	2.75	68.36	16.33		150.0	

10112- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	3.23	68.35	16.55	0.00	150.0	± 9.6 \%
		Y	3.05	67.38	15.81		150.0	
		Z	3.18	67.77	16.10		150.0	
$\begin{aligned} & 10113- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.98	69.28	17.01	0.00	150.0	± 9.6 \%
		Y	2.77	68.14	16.13		150.0	
		Z	2.90	68.40	16.43		150.0	
$\begin{aligned} & 10114- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.25	67.55	16.67	0.00	150.0	$\pm 9.6 \%$
		Y	5.16	67.27	16.41		150.0	
		Z	5.23	67.36	16.47		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.62	67.87	16.84	0.00	150.0	± 9.6 \%
		Y	5.53	67.61	16.59		150.0	
		Z	5.61	67.68	16.64		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.38	67.84	16.74	0.00	150.0	± 9.6 \%
		Y	5.28	67.54	16.47		150.0	
		Z	5.37	67.64	16.53		150.0	
10117CAC	IEEE 802.11 n (HT Mixed, 13.5 Mbps , BPSK)	X	5.26	67.57	16.70	0.00	150.0	± 9.6 \%
		Y	5.15	67.22	16.40		150.0	
		Z	5.24	67.39	16.51		150.0	
$\begin{array}{\|l} \hline 10118- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.70	68.05	16.94	0.00	150.0	$\pm 9.6 \%$
		Y	5.61	67.82	16.70		150.0	
		Z	5.67	67.81	16.71		150.0	
10119CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.36	67.79	16.73	0.00	150.0	± 9.6 \%
		Y	5.26	67.48	16.45		150.0	
		Z	5.34	67.59	16.52		150.0	
$\begin{aligned} & 10140- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	3.59	68.46	16.53	0.00	150.0	± 9.6 \%
		Y	3.41	67.56	15.87		150.0	
		Z	3.54	67.97	16.13		150.0	
$\begin{aligned} & 10141- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.70	68.46	16.65	0.00	150.0	± 9.6 \%
		Y	3.53	67.64	16.03		150.0	
		Z	3.65	67.99	16.26		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , QPSK)	X	2.36	71.08	17.31	0.00	150.0	$\pm 9.6 \%$
		Y	2.01	68.49	15.62		150.0	
		Z	2.20	69.37	16.30		150.0	
$\begin{aligned} & 10143- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM)	X	2.76	70.34	17.00	0.00	150.0	$\pm 9.6 \%$
		Y	2.47	68.62	15.73		150.0	
		Z	2.62	69.02	16.23		150.0	
$\begin{aligned} & 10144- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	2.54	68.16	15.50	0.00	150.0	$\pm 9.6 \%$
		Y	2.28	66.60	14.27		150.0	
		Z	2.46	67.23	14.93		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, \mathrm{QPSK}$)	X	1.75	69.86	15.18	0.00	150.0	± 9.6 \%
		Y	1.29	65.55	12.27		150.0	
		Z	1.55	67.61	14.05		150.0	
10146-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	4.07	76.05	17.30	0.00	150.0	$\pm 9.6 \%$
		Y	2.52	69.20	13.62		150.0	
		Z	3.50	73.50	16.33		150.0	
$\begin{aligned} & \hline 10147- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	5.72	80.95	19.32	0.00	150.0	± 9.6 \%
		Y	3.13	72.10	15.05		150.0	
		Z	4.43	76.91	17.88		150.0	

$\begin{aligned} & 10149- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$,	X	3.13	68.56	16.60	0.00	150.0	± 9.6 \%
		Y	2.93	67.47	15.80		150.0	
		Z	3.07	67.93	16.12		150.0	
$\begin{array}{\|l} \hline 10150- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM)	X	3.24	68.40	16.59	0.00	150.0	± 9.6 \%
		Y	3.05	67.43	15.85		150.0	
		Z	3.18	67.82	16.13		150.0	
$\begin{aligned} & 10151- \\ & \mathrm{CAD} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	9.59	81.21	22.61	3.98	65.0	± 9.6 \%
		Y	9.21	80.79	22.27		65.0	
		Z	9.05	79.62	21.87		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \end{aligned}$	\qquad 16-QAM)	X	8.53	77.77	21.82	3.98	65.0	± 9.6 \%
		Y	8.07	77.03	21.32		65.0	
		Z	8.36	76.93	21.37		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM)	X	8.87	78.41	22.41	3.98	65.0	± 9.6 \%
		Y	8.48	77.88	22.02		65.0	
		Z	8.68	77.54	21.94		65.0	
$\begin{aligned} & 10154- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	2.63	71.34	17.67	0.00	150.0	± 9.6 \%
		Y	2.29	69.04	16.21		150.0	
		Z	2.48	69.88	16.75		150.0	
10155- CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.84	69.30	16.97	0.00	150.0	± 9.6 \%
		Y	2.62	68.03	16.00		150.0	
		Z	2.75	68.36	16.34		150.0	
$\begin{aligned} & 10156- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.26	71.67	17.44	0.00	150.0	$\pm 9.6 \%$
		Y	1.86	68.59	15.46		150.0	
		Z	2.07	69.64	16.29		150.0	
10157-CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	2.42	69.16	15.83	0.00	150.0	$\pm 9.6 \%$
		Y	2.11	67.12	14.31		150.0	
		Z	2.30	67.87	15.10		150.0	
10158-CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	2.99	69.33	17.05	0.00	150.0	± 9.6 \%
		Y	2.78	68.20	16.17		150.0	
		Z	2.90	68.44	16.46		150.0	
10159CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.55	69.60	16.11	0.00	150.0	± 9.6 \%
		Y	2.22	67.56	14.60		150.0	
		Z	2.41	68.28	15.37		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	3.02	70.16	17.19	0.00	150.0	± 9.6 \%
		Y	2.77	68.66	16.17		150.0	
		Z	2.91	69.14	16.50		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	3.13	68.32	16.54	0.00	150.0	$\pm 9.6 \%$
		Y	2.95	67.34	15.78		150.0	
		Z	3.07	67.70	16.08		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	3.23	68.35	16.60	0.00	150.0	± 9.6 \%
		Y	3.06	67.45	15.88		150.0	
		Z	3.18	67.74	16.14		150.0	
$\begin{aligned} & 10166- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	4.02	71.10	20.08	3.01	150.0	$\pm 9.6 \%$
		Y	3.79	70.19	19.37		150.0	
		Z	4.03	70.69	19.72		150.0	
$\begin{aligned} & 10167- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	5.24	74.71	20.79	3.01	150.0	$\pm 9.6 \%$
		Y	4.82	73.39	19.92		150.0	
		Z	5.25	74.14	20.39		150.0	

$\begin{aligned} & 10168- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.76	76.76	21.96	3.01	150.0	± 9.6 \%
		Y	5.36	75.66	21.24		150.0	
		Z	5.73	75.99	21.47		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	3.69	72.72	20.82	3.01	150.0	± 9.6 \%
		Y	3.33	70.78	19.63		150.0	
		Z	3.78	72.61	20.53		150.0	
$\begin{aligned} & 10170- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.76	80.54	23.62	3.01	150.0	± 9.6 \%
		Y	4.94	77.74	22.22		150.0	
		Z	5.83	79.90	23.09		150.0	
$10171 \text { - }$ AAD	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	4.61	75.69	20.76	3.01	150.0	± 9.6 \%
		Y	3.94	72.92	19.25		150.0	
		Z	4.70	75.28	20.35		150.0	
$\begin{aligned} & 10172- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	36.99	114.19	35.08	6.02	65.0	± 9.6 \%
		Y	22.97	105.21	32.24		65.0	
		Z	26.68	106.36	32.56		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	41.01	110.69	32.32	6.02	65.0	± 9.6 \%
		Y	35.83	108.35	31.36		65.0	
		Z	28.00	102.66	29.85		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	30.73	104.07	29.95	6.02	65.0	± 9.6 \%
		Y	27.27	102.14	29.08		65.0	
		Z	22.20	97.35	27.81		65.0	
10175- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.64	72.35	20.56	3.01	150.0	$\pm 9.6 \%$
		Y	3.28	70.42	19.36		150.0	
		Z	3.72	72.25	20.28		150.0	
10176- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.77	80.56	23.63	3.01	150.0	± 9.6 \%
		Y	4.95	77.76	22.23		150.0	
		Z	5.84	79.92	23.10		150.0	
10177- CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	3.67	72.53	20.66	3.01	150.0	$\pm 9.6 \%$
		Y	3.31	70.60	19.46		150.0	
		Z	3.76	72.42	20.38		150.0	
$\begin{aligned} & 10178- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	5.68	80.23	23.47	3.01	150.0	± 9.6 \%
		Y	4.88	77.46	22.08		150.0	
		Z	5.74	79.60	22.95		150.0	
10179- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	5.14	77.96	22.04	3.01	150.0	$\pm 9.6 \%$
		Y	4.38	75.13	20.57		150.0	
		Z	5.21	77.41	21.56		150.0	
$\begin{aligned} & 10180- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	4.59	75.59	20.70	3.01	150.0	$\pm 9.6 \%$
		Y	3.92	72.83	19.19		150.0	
		Z	4.68	75.18	20.29		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.66	72.51	20.66	3.01	150.0	± 9.6 \%
		Y	3.30	70.58	19.46		150.0	
		Z	3.75	72.41	20.37		150.0	
$\begin{aligned} & 10182- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	5.67	80.21	23.46	3.01	150.0	$\pm 9.6 \%$
		Y	4.87	77.43	22.07		150.0	
		Z	5.73	79.57	22.94		150.0	
10183- AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.58	75.56	20.68	3.01	150.0	± 9.6 \%
		Y	3.92	72.80	19,18		150.0	
		Z	4.67	75.15	20.27		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , QPSK)	X	3.68	72.56	20.68	3.01	150.0	± 9.6 \%
		Y	3.32	70.63	19.48		150.0	
		Z	3.77	72.45	20.39		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16QAM)	X	5.70	80.29	23.50	3.01	150.0	$\pm 9.6 \%$
		Y	4.90	77.51	22.11		150.0	
		Z	5.76	79.65	22.97		150.0	
$\begin{aligned} & 10186- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64QAM)	X	4.61	75.64	20.72	3.01	150.0	± 9.6 \%
		Y	3.94	72.88	19.21		150.0	
		Z	4.69	75.23	20.31		150.0	
$\begin{array}{\|l} \hline 10187- \\ \text { CAE } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.69	72.61	20.73	3.01	150.0	± 9.6 \%
		Y	3.33	70.68	19.54		150.0	
		Z	3.77	72.50	20.44		150.0	
10188-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	5.93	81.11	23.91	3.01	150.0	± 9.6 \%
		Y	5.09	78.33	22.53		150.0	
		Z	5.99	80.44	23.37		150.0	
10189- AAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.73	76.16	21.02	3.01	150.0	± 9.6 \%
		Y	4.04	73.37	19.51		150.0	
		Z	4.82	75.73	20.60		150.0	
10193-CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.67	66.99	16.47	0.00	150.0	± 9.6 \%
		Y	4.56	66.66	16.13		150.0	
		Z	4.66	66.78	16.26		150.0	
$\begin{aligned} & 10194- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.87	67.36	16.58	0.00	150.0	± 9.6 \%
		Y	4.75	67.00	16.25		150.0	
		Z	4.87	67.15	16.37		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.1 1n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.91	67.37	16.59	0.00	150.0	$\pm 9.6 \%$
		Y	4.79	67.03	16.27		150.0	
		Z	4.91	67.16	16.38		150.0	
$10196$$\mathrm{CAC}$	IEEE 802.11 n (HT Mixed, 6.5 Mbps , BPSK)	X	4.69	67.10	16.51	0.00	150.0	$\pm 9.6 \%$
		Y	4.58	66.74	16.16		150.0	
		Z	4.69	66.88	16.30		150.0	
$\begin{array}{\|l} \hline 10197- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.89	67.38	16.59	0.00	150.0	± 9.6 \%
		Y	4.77	67.03	16.26		150.0	
		Z	4.88	67.17	16.38		150.0	
10198-CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.92	67.39	16.60	0.00	150.0	± 9.6 \%
		Y	4.80	67.05	16.28		150.0	
		Z	4.91	67.18	16.39		150.0	
$\begin{array}{\|l} \hline 10219- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.64	67.11	16.47	0.00	150.0	± 9.6 \%
		Y	4.53	66.75	16.12		150.0	
		Z	4.64	66.90	16.26		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11 n (HT Mixed, 43.3 Mbps , 16QAM)	X	4.88	67.37	16.59	0.00	150.0	± 9.6 \%
		Y	4.76	67.01	16.26		150.0	
		Z	4.88	67.17	16.38		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.92	67.32	16.59	0.00	150.0	± 9.6 \%
		Y	4.80	66.98	16.27		150.0	
		Z	4.92	67.11	16.38		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	5.23	67.59	16.70	0.00	150.0	± 9.6 \%
		Y	5.12	67.23	16.39		150.0	
		Z	5.22	67.42	16.51		150.0	

$10223-$ CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.61	67.92	16.89	0.00	150.0	$\pm 9.6 \%$
		Y	5.46	67.48	16.54		150.0	
$10224-$								
CAC	lEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.61	67.78	16.72		150.0	
		Y	5.17	67.68	16.67	0.00	150.0	$\pm 9.6 \%$
$10225-$ CAB	UMTS-FDD (HSPA+)	Z	5.27	67.52	16.37		16.48	

$\begin{aligned} & 10239- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	31.24	104.44	30.08	6.02	65.0	± 9.6 \%
		Y	28.46	102.92	29.32		65.0	
		Z	22.74	97.82	27.96		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	42.83	117.47	36.01	6.02	65.0	± 9.6 \%
		Y	31.56	111.62	34.09		65.0	
		Z	28.94	108.32	33.17		65.0	
$\begin{aligned} & 10241- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	13.21	88.13	28.12	6.98	65.0	± 9.6 \%
		Y	12.19	86.75	27.34		65.0	
		Z	12.93	86.92	27.56		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 64-QAM)	X	11.82	85.64	27.08	6.98	65.0	± 9.6 \%
		Y	11.88	86.18	27.05		65.0	
		Z	11.71	84.70	26.62		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	9.69	83.18	27.04	6.98	65.0	± 9.6 \%
		Y	8.48	80.58	25.71		65.0	
		Z	9.71	82.55	26.66		65.0	
$\begin{aligned} & 10244- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM)	X	10.16	81.71	21.73	3.98	65.0	$\pm 9.6 \%$
		Y	9.31	80.28	20.70		65.0	
		Z	9.66	80.44	21.31		65.0	
$\begin{aligned} & \hline 10245- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM)	X	9.99	81.19	21.49	3.98	65.0	± 9.6 \%
		Y	9.12	79.71	20.44		65.0	
		Z	9.56	80.04	21.12		65.0	
$\begin{aligned} & 10246- \\ & C A B \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	10.26	84.67	22.74	3.98	65.0	± 9.6 \%
		Y	9.22	82.91	21.64		65.0	
		Z	9.02	82.03	21.79		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	8.13	78.66	21.05	3.98	65.0	± 9.6 \%
		Y	7.56	77.60	20.25		65.0	
		Z	7.81	77.51	20.59		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	8.10	78.15	20.84	3.98	65.0	± 9.6 \%
		Y	7.50	77.03	20.01		65.0	
		Z	7.84	77.14	20.44		65.0	
$\begin{aligned} & 10249- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	11.10	86.20	23.88	3.98	65.0	± 9.6 \%
		Y	10.38	85.15	23.14		65.0	
		Z	9.69	83.27	22.77		65.0	
$\begin{aligned} & 10250- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$,	X	8.90	80.26	22.85	3.98	65.0	$\pm 9.6 \%$
		Y	8.50	79.72	22.41		65.0	
		Z	8.55	78.98	22.26		65.0	
$\begin{aligned} & 10251- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	$\pm 9.6 \%$
		Y	7.97	77.44	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
$\begin{aligned} & 10252- \\ & C A D \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	10.55	84.69	23.95	3.98	65.0	± 9.6 \%
		Y	10.10	84.18	23.52		65.0	
		Z	9.56	82.30	22.95		65.0	
$\begin{aligned} & 10253- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	8.29	77.16	21.61	3.98	65.0	± 9.6 \%
		Y	7.87	76.45	21.11		65.0	
		Z	8.15	76.38	21.20		65.0	
$\begin{aligned} & 10254- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$,	X	8.65	77.83	22.17	3.98	65.0	± 9.6 \%
		Y	8.27	77.28	21.75		65.0	
		Z	8.49	77.01	21.74		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	X	9.28	80.86	22.71	3.98	65.0	± 9.6 \%
		Y	8.89	80.40	22.35		65.0	
		Z	8.80	79.34	21.99		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	9.13	79.62	20.18	3.98	65.0	± 9.6 \%
		Y	7.96	77.38	18.74		65.0	
		Z	8.84	78.74	19.97		65.0	
$\begin{aligned} & 10257- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 1.4$ $\mathrm{MHz}, 64-\mathrm{QAM})$	X	8.90	78.86	19.81	3.98	65.0	± 9.6 \%
		Y	7.73	76.58	18.34		65.0	
		Z	8.71	78.17	19.67		65.0	
$\begin{aligned} & \text { 10258- } \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	8.90	81.94	21.19	3.98	65.0	± 9.6 \%
		Y	7.60	79.37	19.69		65.0	
		Z	8.10	80.01	20.54		65.0	
$\begin{aligned} & 10259- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.43	79.20	21.67	3.98	65.0	± 9.6 \%
		Y	7.92	78.34	21.01		65.0	
		Z	8.11	78.01	21.17		65.0	
$\begin{aligned} & 10260- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 3 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	8.43	78.91	21.57	3.98	65.0	± 9.6 \%
		Y	7.92	78.05	20.91		65.0	
		Z	8.14	77.80	21.11		65.0	
$\begin{aligned} & 10261- \\ & \mathrm{CAB} \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$,, , ${ }^{\text {QPSK }}$ (X	10.44	84.93	23.72	3.98	65.0	± 9.6 \%
		Y	9.81	84.03	23.07		65.0	
		Z	9.35	82.40	22.71		65.0	
$\begin{aligned} & 10262- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM)	X	8.89	80.23	22.82	3.98	65.0	± 9.6 \%
		Y	8.49	79.67	22.37		65.0	
		Z	8.55	78.95	22.23		65.0	
$\begin{aligned} & \text { 10263- } \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	± 9.6 \%
		Y	7.96	77.43	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
$\begin{aligned} & 10264- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK)	X	10.49	84.56	23.88	3.98	65.0	± 9.6 \%
		Y	10.02	84.01	23.44		65.0	
		Z	9.51	82.19	22.89		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	8.52	77.77	21.82	3.98	65.0	$\pm 9.6 \%$
		Y	8.07	77.03	21.32		65.0	
		Z	8.36	76.93	21.38		65.0	
$\begin{aligned} & 10266- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-Q A M) \end{aligned}$	X	8.87	78.41	22.40	3.98	65.0	± 9.6 \%
		Y	8.48	77.88	22.01		65.0	
		Z	8.68	77.54	21.94		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 $\mathrm{MHz}, ~ Q P S K$)	X	9.58	81.18	22.60	3.98	65.0	± 9.6 \%
		Y	9.19	80.75	22.26		65.0	
		Z	9.04	79.59	21.85		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & M H z, 16-Q A M) \\ & \hline \end{aligned}$	X	8.91	77.09	21.88	3.98	65.0	± 9.6 \%
		Y	8.54	76.56	21.51		65.0	
		Z	8.80	76.43	21.50		65.0	
$\begin{aligned} & 10269- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	8.82	76.67	21.78	3.98	65.0	± 9.6 \%
		Y	8.46	76.15	21.41		65.0	
		Z	8.73	76.06	21.42		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	8.97	78.33	21.62	3.98	65.0	± 9.6 \%
		Y	8.64	77.97	21.34		65.0	
		Z	8.71	77.32	21.10		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.72	67.23	15.95	0.00	150.0	± 9.6 \%
		Y	2.57	66.31	15.13		150.0	
		Z	2.65	66.56	15.46		150.0	
$\begin{aligned} & 10275- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.89	70.77	17.26	0.00	150.0	± 9.6 \%
		Y	1.58	67.67	15.25		150.0	
		Z	1.72	68.75	16.01		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	6.00	70.47	14.76	9.03	50.0	± 9.6 \%
		Y	5.21	68.57	13.21		50.0	
		Z	6.28	70.88	15.27		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.55	80.33	21.17	9.03	50.0	± 9.6 \%
		Y	8.72	78.79	19.97		50.0	
		Z	9.29	79.51	21.06		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.72	80.54	21.26	9.03	50.0	$\pm 9.6 \%$
		Y	8.86	78.97	20.05		50.0	
		Z	9.46	79.72	21.15		50.0	
$\begin{aligned} & 10290- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	2.18	74.40	17.31	0.00	150.0	$\pm 9.6 \%$
		Y	1.44	68.27	13.81		150.0	
		Z	1.72	70.30	15.40		150.0	
$\begin{aligned} & \text { 10291- } \\ & A A B \\ & \hline \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	1.24	71.68	16.15	0.00	150.0	± 9.6 \%
		Y	0.80	65.30	12.12		150.0	
		Z	0.97	67.39	13.90		150.0	
$\begin{aligned} & 10292- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	2.10	80.68	20.23	0.00	150.0	± 9.6 \%
		Y	0.98	68.86	14.25		150.0	
		Z	1.23	71.77	16.34		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	4.35	92.52	24.81	0.00	150.0	± 9.6 \%
		Y	1.43	74.29	17.12		150.0	
		Z	1.75	77.17	19.08		150.0	
$\begin{aligned} & \hline 10295- \\ & A A B \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr .	X	11.19	84.61	24.64	9.03	50.0	± 9.6 \%
		Y	11.12	84.62	24.20		50.0	
		Z	10.33	82.52	23.91		50.0	
$\begin{aligned} & 10297- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	3.13	71.75	17.66	0.00	150.0	± 9.6 \%
		Y	2.77	69.64	16.38		150.0	
		Z	2.96	70.46	16.84		150.0	
$\begin{aligned} & 10298- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	2.07	71.56	16.68	0.00	150.0	± 9.6 \%
		Y	1.59	67.63	14.15		150.0	
		Z	1.84	69.13	15.41		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.44	77.05	18.50	0.00	150.0	$\pm 9.6 \%$
		Y	3.17	71.89	15.69		150.0	
		Z	3.89	74.52	17.46		150.0	
$\begin{aligned} & 10300- \\ & A A C \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.98	70.18	14.87	0.00	150.0	$\pm 9.6 \%$
		Y	2.33	66.80	12.64		150.0	
		Z	2.88	69.22	14.45		150.0	
$\begin{aligned} & 10301- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10MHZ, QPSK, PUSC)	X	5.88	68.71	19.12	4.17	80.0	± 9.6 \%
		Y	5.67	68.35	18.79		80.0	
		Z	5.96	68.70	19.05		80.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.49	69.93	20.23	4.96	80.0	$\pm 9.6 \%$
		Y	6.06	68.48	19.24		80.0	
		Z	6.58	69.96	20.17		80.0	

10303- AAA	IEEE 802.16 e WiMAX ($31: 15,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	6.38	70.18	20.37	4.96	80.0	± 9.6 \%
		Y	5.90	68.52	19.27		80.0	
		Z	6.49	70.27	20.35		80.0	
$\begin{aligned} & 10304- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5 ms , 10MHz, 64QAM, PUSC)	X	5.94	69.20	19.41	4.17	80.0	± 9.6 \%
		Y	5.55	67.84	18.48		80.0	
		Z	6.02	69.19	19.33		80.0	
10305- AAA	IEEE 802.16 e WiMAX ($31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	8.63	79.84	25.16	6.02	50.0	$\pm 9.6 \%$
		Y	8.50	80.74	25.49		50.0	
		Z	9.07	80.51	25.38		50.0	
10306- AAA	IEEE 802.16 e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbols)	X	7.19	74.26	22.98	6.02	50.0	± 9.6 \%
		Y	6.24	70.98	21.03		50.0	
		Z	7.44	74.65	23.11		50.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX ($29: 18$, 10ms, 10 MHz, QPSK, PUSC, 18 symbols)	X	7.43	75.32	23.26	6.02	50.0	$\pm 9.6 \%$
		Y	7.08	75.34	23.24		50.0	
		Z	7.71	75.76	23.39		50.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \end{aligned}$	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC}$)	X	7.56	75.95	23.55	6.02	50.0	± 9.6 \%
		Y	7.22	76.07	23.58		50.0	
		Z	7.85	76.40	23.68		50.0	
$\begin{aligned} & 10309- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	7.34	74.67	23.20	6.02	50.0	$\pm 9.6 \%$
		Y	6.34	71.28	21.21		50.0	
		Z	7.59	75.05	23.31		50.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX (29:18, 10 ms , 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	7.26	74.63	23.05	6.02	50.0	± 9.6 \%
		Y	6.24	71.19	21.04		50.0	
		Z	7.51	75.03	23.17		50.0	
10311- AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \text { MHz, QPSK) } \end{aligned}$	X	3.50	70.87	17.20	0.00	150.0	$\pm 9.6 \%$
		Y	3.12	68.92	16.05		150.0	
		Z	3.32	69.72	16.47		150.0	
10313- AAA	iDEN 1:3	X	8.27	79.76	19.38	6.99	70.0	± 9.6 \%
		Y	7.09	77.48	18.12		70.0	
		Z	7.27	77.42	18.52		70.0	
$\begin{aligned} & \text { 10314- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IDEN 1:6	X	10.52	85.41	23.73	10.00	30.0	$\pm 9.6 \%$
		Y	9.80	84.47	23.05		30.0	
		Z	8.56	81.26	22.24		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.21	66.04	16.76	0.17	150.0	± 9.6 \%
		Y	1.11	64.36	15.28		150.0	
		Z	1.16	64.99	15.81		150.0	
10316- $A A B$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.78	67.20	16.69	0.17	150.0	$\pm 9.6 \%$
		Y	4.67	66.87	16.36		150.0	
		Z	4.78	67.00	16.48		150.0	
$\begin{aligned} & 10317- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.20	16.69	0.17	150.0	± 9.6 \%
		Y	4.67	66.87	16.36		150.0	
		Z	4.78	67.00	16.48		150.0	
$\begin{aligned} & \hline 10400- \\ & \text { AAD } \end{aligned}$	IEEE 802.11 ac WiFi (20 MHz , 64-QAM, 99pc duty cycle)	X	4.88	67.44	16.59	0.00	150.0	± 9.6 \%
		Y	4.75	67.07	16.25		150.0	
		Z	4.88	67.23	16.38		150.0	
$\begin{aligned} & \hline 10401- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.52	67.51	16.67	0.00	150.0	± 9.6 \%
		Y	5.43	67.26	16.42		150.0	
		Z	5.50	67.29	16.46		150.0	

$\begin{aligned} & 10402- \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.81	67.99	16.74	0.00	150.0	± 9.6 \%
		Y	5.71	67.67	16.46		150.0	
		Z	5.80	67.83	16.56		150.0	
10403-AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.18	74.40	17.31	0.00	115.0	± 9.6 \%
		Y	1.44	68.27	13.81		115.0	
		Z	1.72	70.30	15.40		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.18	74.40	17.31	0.00	115.0	$\pm 9.6 \%$
		Y	1.44	68.27	13.81		115.0	
		Z	1.72	70.30	15.40		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CDMA2000, RC3, SO32, SCH0, Full } \\ & \text { Rate } \end{aligned}$	X	100.00	125.34	32.57	0.00	100.0	$\pm 9.6 \%$
		Y	100.00	122.30	30.90		100.0	
		Z	100.00	123.59	31.86		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	100.00	121.08	31.14	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	119.39	30.03		80.0	
		Z	100.00	119.84	30.69		80.0	
$\begin{array}{\|l} \hline 10415- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.04	64.21	15.75	0.00	150.0	± 9.6 \%
		Y	0.96	62.81	14.37		150.0	
		Z	1.00	63.31	14.86		150.0	
$\begin{aligned} & 10416- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps, 99 pc duty cycle)	X	4.68	67.03	16.52	0.00	150.0	± 9.6 \%
		Y	4.57	66.70	16.19		150.0	
		Z	4.67	66.81	16.30		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.68	67.03	16.52	0.00	150.0	± 9.6 \%
		Y	4.57	66.70	16.19		150.0	
		Z	4.67	66.81	16.30		150.0	
10418-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99 pc duty cycle, Long preambule)	X	4.66	67.18	16.53	0.00	150.0	± 9.6 \%
		Y	4.55	66.84	16.19		150.0	
		Z	4.65	66.94	16.30		150.0	
10419- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 99pc duty cycle, Short preambule)	X	4.69	67.13	16.53	0.00	150.0	± 9.6 \%
		Y	4.58	66.80	16.20		150.0	
		Z	4.68	66.91	16.31		150.0	
10422-AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps , BPSK)	X	4.81	67.13	16.54	0.00	150.0	± 9.6 \%
		Y	4.70	66.81	16.22		150.0	
		Z	4.80	66.92	16.33		150.0	
$\begin{aligned} & 10423- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.01	67.51	16.68	0.00	150.0	± 9.6 \%
		Y	4.89	67.16	16.35		150.0	
		Z	5.01	67.31	16.47		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.1 1 n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.92	67.45	16.65	0.00	150.0	± 9.6 \%
		Y	4.80	67.10	16.32		150.0	
		Z	4.92	67.24	16.43		150.0	
$\begin{aligned} & 10425- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	X	5.50	67.77	16.79	0.00	150.0	± 9.6 \%
		Y	5.41	67.50	16.53		150.0	
		Z	5.49	67.58	16.59		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.51	67.80	16.80	0.00	150.0	$\pm 9.6 \%$
		Y	5.41	67.51	16.53		150.0	
		Z	5.50	67.62	16.60		150.0	

$\begin{aligned} & 10427- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.53	67.79	16.79	0.00	150.0	± 9.6 \%
		Y	5.42	67.48	16.51		150.0	
		Z	5.52	67.63	16.61		150.0	
$10430-$	LTE-FDD (OFDMA, 5 MHz , E-TM 3.1)	X	4.38	70.70	18.40	0.00	150.0	± 9.6 \%
		Y	4.25	70.46	18.05		150.0	
		Z	4.31	70.02	17.98		150.0	
$\begin{aligned} & 10431- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	4.42	67.67	16.62	0.00	150.0	± 9.6 \%
		Y	4.27	67.23	16.20		150.0	
		Z	4.41	67.37	16.37		150.0	
$\begin{aligned} & 10432- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1)	X	4.70	67.52	16.63	0.00	150.0	± 9.6 \%
		Y	4.57	67.13	16.26		150.0	
		Z	4.70	67.28	16.40		150.0	
$\begin{aligned} & 10433- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, $20 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	X	4.94	67.50	16.67	0.00	150.0	± 9.6 \%
		Y	4.82	67.14	16.34		150.0	
		Z	4.94	67.29	16.46		150.0	
$\begin{aligned} & \text { 10434- } \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.49	71.52	18.43	0.00	150.0	± 9.6 \%
		Y	4.34	71.22	18.01		150.0	
		Z	4.39	70.68	17.96		150.0	
$\begin{array}{\|l} \hline 10435- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.92	31.06	3.23	80.0	± 9.6 \%
		Y	100.00	119.22	29.95		80.0	
		Z	100.00	119.70	30.62		80.0	
10447-AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.75	67.86	16.21	0.00	150.0	± 9.6 \%
		Y	3.56	67.20	15.57		150.0	
		Z	3.73	67.41	15.90		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	4.24	67.45	16.49	0.00	150.0	$\pm 9.6 \%$
		Y	4.10	67.00	16.05		150.0	
		Z	4.22	67.14	16.23		150.0	
10449AAB	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	4.49	67.35	16.53	0.00	150.0	$\pm 9.6 \%$
		Y	4.37	66.95	16.16		150.0	
		Z	4.48	67.09	16.30		150.0	
$\begin{aligned} & \hline 10450- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.67	67.26	16.53	0.00	150.0	± 9.6 \%
		Y	4.56	66.89	16.18		150.0	
		Z	4.66	67.04	16.31		150.0	
10451- AAA	W-CDMA (BS Test Model 1,64 DPCH, Clipping 44\%)	X	3.69	68.21	15.98	0.00	150.0	$\pm 9.6 \%$
		Y	3.47	67.39	15.23		150.0	
		Z	3.66	67.69	15.67		150.0	
$\begin{array}{\|l\|} \hline 10456- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.36	68.35	16.93	0.00	150.0	± 9.6 \%
		Y	6.27	68.07	16.69		150.0	
		Z	6.35	68.21	16.77		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.86	65.66	16.26	0.00	150.0	± 9.6 \%
		Y	3.78	65.32	15.90		150.0	
		Z	3.84	65.45	16.04		150.0	
$\begin{array}{\|l\|} \hline 10458- \\ \text { AAA } \\ \hline \end{array}$	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.10	70.68	17.90	0.00	150.0	± 9.6 \%
		Y	3.95	70.36	17.40		150.0	
		Z	3.98	69.73	17.40		150.0	
$\begin{array}{\|l} \hline 10459- \\ \text { AAA } \\ \hline \end{array}$	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.16	67.87	18.15	0.00	150.0	± 9.6 \%
		Y	5.08	67.96	18.01		150.0	
		Z	5.12	67.39	17.86		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.21	74.36	19.56	0.00	150.0	$\pm 9.6 \%$
		Y	0.84	67.73	15.53		150.0	
		Z	0.96	69.69	16.87		150.0	
10461-$A A A$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	124.72	32.88	3.29	80.0	± 9.6 \%
		Y	100.00	122.71	31.63		80.0	
		Z	100.00	122.27	31.89		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.81	26.22	3.23	80.0	± 9.6 \%
		Y	100.00	107.68	24.48		80.0	
		Z	100.00	109.58	25.81		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	108.02	24.88	3.23	80.0	± 9.6 \%
		Y	17.57	87.04	18.79		80.0	
		Z	57.71	101.03	23.21		80.0	
10464 AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	122.99	31.92	3.23	80.0	± 9.6 \%
		Y	100.00	120.66	30.52		80.0	
		Z	100.00	120.59	30.96		80.0	
$10465-$ AAA	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.36	26.00	3.23	80.0	± 9.6 \%
		Y	69.93	103.37	23.39		80.0	
		Z	100.00	109.17	25.60		80.0	
$\begin{aligned} & \text { 10466- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.59	24.67	3.23	80.0	± 9.6 \%
		Y	10.32	81.39	17.12		80.0	
		Z	32.56	94.43	21.51		80.0	
10467-AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.18	32.01	3.23	80.0	± 9.6 \%
		Y	100.00	120.88	30.62		80.0	
		Z	100.00	120.77	31.04		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.50	26.06	3.23	80.0	± 9.6 \%
		Y	95.55	106.84	24.20		80.0	
		Z	100.00	109.30	25.66		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.60	24.67	3.23	80.0	± 9.6 \%
		Y	10.51	81.58	17.17		80.0	
		Z	33.51	94.76	21.58		80.0	
10470-AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.21	32.02	3.23	80.0	± 9.6 \%
		Y	100.00	120.90	30.62		80.0	
		Z	100.00	120.79	31.05		80.0	
$\begin{aligned} & 10471- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , $16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.46	26.04	3.23	80.0	$\pm 9.6 \%$
		Y	94.56	106.68	24.14		80.0	
		Z	100.00	109.26	25.63		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.56	24.64	3.23	80.0	$\pm 9.6 \%$
		Y	10.43	81.48	17.13		80.0	
		Z	33.64	94.78	21.58		80.0	
10473-AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.19	32.00	3.23	80.0	± 9.6 \%
		Y	100.00	120.87	30.61		80.0	
		Z	100.00	120.77	31.03		80.0	
$\begin{aligned} & 10474- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.47	26.04	3.23	80.0	$\pm 9.6 \%$
		Y	92.06	106.40	24.08		80.0	
		Z	100.00	109.26	25.64		80.0	
$\begin{aligned} & 10475- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.57	24.65	3.23	80.0	± 9.6 \%
		Y	10.30	81.37	17.09		80.0	
		Z	33.12	94.61	21.54		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.32	25.97	3.23	80.0	± 9.6 \%
		Y	73.47	103.85	23.47		80.0	
		Z	100.00	109.13	25.57		80.0	
10478AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.52	24.63	3.23	80.0	± 9.6 \%
		Y	10.13	81.17	17.03		80.0	$\pm 9.6 \%$
10479-AAA		Z	32.56	94.40	21.47		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	23.24	102.02	28.60	3.23	80.0	
		Y	17.72	96.96	26.53		80.0	± 9.6 \%
10480- AAA		Z	12.62	91.31	25.32		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	23.79	96.38	25.31	3.23	80.0	
		Y	16.50	90.35	22.90		80.0	± 9.6 \%
10481-AAA		Z	13.56	87.65	22.71		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	19.64	92.74	23.93	3.23	80.0	
		Y	13.10	86.39	21.35		80.0	± 9.6 \%
10482-AAA		Z	12.05	85.29	21.66		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	8.49	84.69	22.05	2.23	80.0	
		Y	5.66	78.52	19.36		80.0	± 9.6 \%
$\begin{aligned} & \text { 10483- } \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	6.07	79.11	20.05		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.70	86.22	22.45	2.23	80.0	
		Y	8.73	81.47	20.24		80.0	± 9.6 \%
10484- AAA		Z	8.71	81.39	20.85		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	10.50	84.41	21.86	2.23	80.0	
		Y	7.92	79.90	19.71		80.0	
$10485-$$\mathrm{AAC}$		Z	8.18	80.26	20.46		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	8.12	84.44	22.68	2.23	80.0	
		Y	5.95	79.56	20.54		80.0	± 9.6 \%
10486-AAC		Z	6.24	79.61	20.83		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.60	75.72	19.25	2.23	80.0	
		Y	4.71	73.16	17.81		80.0	± 9.6 \%
		Z	5.00	73.46	18.29		80.0	
$\begin{aligned} & 10487- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.48	75.06	18.99	2.23	80.0	
		Y	4.65	72.64	17.60		80.0	± 9.6 \%
		Z	4.96	73.01	18.11		80.0	
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.06	80.88	21.92	2.23	80.0	
		Y	5.70	77.55	20.40		80.0	± 9.6 \%
		Z	6.08	77.77	20.57		80.0	
$\begin{aligned} & 10489- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16 -QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.31	73.88	19.45	2.23	80.0	
		Y	4.75	72.25	18.50		80.0	± 9.6 \%
		Z	5.02	72.44	18.71		80.0	
$10490-$ AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.32	73.40	19.28	2.23	80.0	
		Y	4.80	71.92	18.39		80.0	
		Z	5.07	72.08	18.60		80.0	± 9.6 \%
10491- AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.29	77.08	20.62	2.23	80.0	
		Y	5.44	74.84	19.51		80.0	
		Z	5.78	75.12	19.66		80.0	
$\begin{array}{\|l\|} \hline 10492- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.38	72.26	19.03	2.23	80.0	$\pm 9.6 \%$
		Y	4.95	71.03	18.29		80.0	
		Z	5.22	71.29	18.47		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.41	71.97	18.93	2.23	80.0	$\pm 9.6 \%$
		Y	4.99	70.82	18.22		80.0	
		Z	5.27	71.06	18.40		80.0	
$\begin{aligned} & 10494- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.26	79.46	21.31	2.23	80.0	± 9.6 \%
		Y	6.08	76.70	20.04		80.0	
		Z	6.47	77.03	20.19		80.0	
$\begin{aligned} & 10495- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.52	72.92	19.28	2.23	80.0	± 9.6 \%
		Y	5.04	71.57	18.51		80.0	
		Z	5.33	71.88	18.69		80.0	
10496-AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.51	72.36	19.10	2.23	80.0	± 9.6 \%
		Y	5.07	71.15	18.38		80.0	
		Z	5.35	71.43	18.55		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.84	81.16	20.14	2.23	80.0	± 9.6 \%
		Y	4.18	74.07	16.91		80.0	
		Z	4.97	76.21	18.38		80.0	
$\begin{aligned} & \text { 10498- } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	4.23	71.63	15.72	2.23	80.0	$\pm 9.6 \%$
		Y	2.88	66.72	12.99		80.0	
		Z	3.81	69.89	15.10		80.0	
$\begin{aligned} & \text { 10499- } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.07	70.79	15.25	2.23	80.0	$\pm 9.6 \%$
		Y	2.78	66.03	12.55		80.0	
		Z	3.73	69.33	14.75		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.25	82.07	22.09	2.23	80.0	± 9.6 \%
		Y	5.64	78.16	20.30		80.0	
		Z	5.95	78.24	20.53		80.0	
$\begin{array}{\|l} \hline 10501- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.43	74.78	19.24	2.23	80.0	± 9.6 \%
		Y	4.72	72.72	18.04		80.0	
		Z	4.99	72.91	18.39		80.0	
$\begin{aligned} & 10502- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.43	74.40	19.05	2.23	80.0	± 9.6 \%
		Y	4.75	72.45	17.89		80,0	
		Z	5.01	72.63	18.25		80.0	
$\begin{aligned} & 10503- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.96	80.64	21.82	2.23	80.0	± 9.6 \%
		Y	5.62	77.31	20.29		80.0	
		Z	6.00	77.58	20.48		80.0	
$\begin{aligned} & 10504- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.28	73.79	19.40	2.23	80.0	± 9.6 \%
		Y	4.72	72.15	18.44		80.0	
		Z	5.00	72.37	18.67		80.0	
$\begin{array}{\|l\|} \hline 10505- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.30	73.31	19.23	2.23	80.0	± 9.6 \%
		Y	4.78	71.81	18.34		80.0	
		Z	5.05	72.00	18.55		80.0	
$\begin{aligned} & 10506- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.19	79.29	21.23	2.23	80.0	$\pm 9.6 \%$
		Y	6.02	76.53	19.97		80.0	
		Z	6.42	76.89	20.13		80.0	
$\begin{aligned} & 10507- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.49	72.85	19.25	2.23	80.0	± 9.6 \%
		Y	5.02	71.50	18.47		80.0	
		Z	5.31	71.82	18.66		80.0	

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.49	72.29	19.06	2.23	80.0	± 9.6 \%
		Y	5.05	71.07	18.34		80.0	
		Z	5.33	71.37	18.52		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.71	76.12	20.06	2.23	80.0	$\pm 9.6 \%$
		Y	5.94	74.25	19.13		80.0	
		Z	6.28	74.57	19.27		80.0	
$10510-$ AAC	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.84	71.95	18.94	2.23	80.0	± 9.6 \%
		Y	5.42	70.86	18.30		80.0	
		Z	5.71	71.20	18.47		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.82	71.51	18.81	2.23	80.0	± 9.6 \%
		Y	5.44	70.51	18.21		80.0	
		Z	5.71	70.83	18.37		80.0	
10512- $A A C$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.61	78.80	20.90	2.23	80.0	± 9.6 \%
		Y	6.48	76.29	19.75		80.0	
		Z	6.88	76.71	19.92		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.82	72.58	19.18	2.23	80.0	$\pm 9.6 \%$
		Y	5.36	71.33	18.47		80.0	
		Z	5.67	71.74	18.66		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.73	71.89	18.96	2.23	80.0	± 9.6 \%
		Y	5.32	70.77	18.31		80.0	
		Z	5.61	71.15	18.49		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.00	64.53	15.90	0.00	150.0	± 9.6 \%
		Y	0.92	62.98	14.41		150.0	
		Z	0.96	63.54	14.94		150.0	
$\begin{aligned} & 10516- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	1.68	91.06	26.34	0.00	150.0	± 9.6 \%
		Y	0.55	69.99	16.34		150.0	
		Z	0.73	74.56	19.01		150.0	
$\begin{aligned} & 10517- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.92	68.12	17.45	0.00	150.0	± 9.6 \%
		Y	0.77	64.83	14.89		150.0	
		Z	0.84	65.95	15.79		150.0	
$\begin{aligned} & 10518- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.67	67.12	16.50	0.00	150.0	± 9.6 \%
		Y	4.56	66.77	16.17		150.0	
		Z	4.66	66.89	16.28		150.0	
$\begin{aligned} & 10519- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 12 Mbps, 99pc duty cycle)	X	4.89	67.40	16.64	0.00	150.0	± 9.6 \%
		Y	4.77	67.04	16.30		150.0	
		Z	4.89	67.19	16.43		150.0	
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFI 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.74	67.39	16.57	0.00	150.0	± 9.6 \%
		Y	4.61	67.01	16.22		150.0	
		Z	4.74	67.17	16.35		150.0	
$\begin{aligned} & 10521- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.67	67.41	16.56	0.00	150.0	$\pm 9.6 \%$
		Y	4.55	67.00	16.20		150.0	
		Z	4.67	67.18	16.34		150.0	
10522- AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.72	67.39	16.60	0.00	150.0	± 9.6 \%
		Y	4.60	67.04	16.27		150.0	
		Z	4.71	67.14	16.36		150.0	

$\begin{aligned} & 10523- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 48 Mbps, 99pc duty cycle)	X	4.59	67.29	16.46	0.00	150.0	± 9.6 \%
		Y	4.47	66.91	16.11		150.0	
		Z	4.58	67.04	16.22		150.0	
$\begin{array}{\|l\|} \hline 10524- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.67	67.35	16.59	0.00	150.0	± 9.6 \%
		Y	4.55	66.98	16.24		150.0	
		Z	4.67	67.11	16.36		150.0	
$\begin{aligned} & 10525- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 99pc duty cycle)	X	4.63	66.37	16.17	0.00	150.0	± 9.6 \%
		Y	4.52	66.01	15.83		150.0	
		Z	4.62	66.13	15.94		150.0	
$\begin{aligned} & \hline 10526- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.83	66.78	16.32	0.00	150.0	± 9.6 \%
		Y	4.70	66.40	15.97		150.0	
		Z	4.82	66.54	16.09		150.0	
$\begin{aligned} & \hline 10527- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99 pc duty cycle)	X	4.75	66.76	16.27	0.00	150.0	$\pm 9.6 \%$
		Y	4.62	66.36	15.92		150.0	
		Z	4.74	66.51	16.04		150.0	
$\begin{aligned} & 10528- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 99 pc duty cycle)	X	4.77	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.64	66.38	15.95		150.0	
		Z	4.76	66.54	16.08		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.77	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.64	66.38	15.95		150.0	
		Z	4.76	66.54	16.08		150.0	
$\begin{aligned} & 10531- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.78	66.93	16.34	0.00	150.0	± 9.6 \%
		Y	4.64	66.50	15.97		150.0	
		Z	4.77	66.69	16.10		150.0	
$\begin{aligned} & 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99 pc duty cycle)	X	4.63	66.80	16.29	0.00	150.0	± 9.6 \%
		Y	4.49	66.35	15.90		150.0	
		Z	4.62	66.56	16.05		150.0	
$\begin{array}{\|l\|} \hline 10533- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99 pc duty cycle)	X	4.78	66.80	16.29	0.00	150.0	± 9.6 \%
		Y	4.65	66.41	15.94		150.0	
		Z	4.77	66.55	16.05		150.0	
$\begin{aligned} & 10534- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{ac} \mathrm{WiFi} \mathrm{(40MHz}, \mathrm{MCSO}$, 99pc duty cycle)	X	5.28	66.88	16.33	0.00	150.0	$\pm 9.6 \%$
		Y	5.17	66.53	16.03		150.0	
		Z	5.27	66.70	16.13		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40 MHz , MCS1, 99 pc duty cycle)	X	5.35	67.03	16.39	0.00	150.0	± 9.6 \%
		Y	5.24	66.69	16.10		150.0	
		Z	5.34	66.84	16.18		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	67.03	16.37	0.00	150.0	± 9.6 \%
		Y	5.10	66.65	16.06		150.0	
		Z	5.21	66.83	16.16		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.29	67.00	16.36	0.00	150.0	$\pm 9.6 \%$
		Y	5.17	66.63	16.05		150.0	
		Z	5.27	66.80	16.15		150.0	
$\begin{aligned} & 10538- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99 pc duty cycle)	X	5.40	67.06	16.43	0.00	150.0	± 9.6 \%
		Y	5.27	66.69	16.12		150.0	
		Z	5.39	66.88	16.23		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99 pc duty cycle)	X	5.30	67.01	16.42	0.00	150.0	$\pm 9.6 \%$
		Y	5.19	66.66	16.12		150.0	
		Z	5.29	66.82	16.22		150.0	

$\begin{aligned} & \hline 10541- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS7, 99pc duty cycle)	X	5.28	66.90	16.36	0.00	150.0	± 9.6 \%
		Y	5.16	66.53	16.05		150.0	
		Z	5.27	66.74	16.17		150.0	
$\begin{aligned} & \text { 10542- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.43	66.95	16.40	0.00	150.0	± 9.6 \%
		Y	5.32	66.61	16.11		150.0	
		Z	5.42	66.77	16.20		150.0	
$\begin{array}{\|l\|} \hline 10543- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.51	66.95	16.41	0.00	150.0	± 9.6 \%
		Y	5.40	66.65	16.14		150.0	
		Z	5.51	66.78	16.22		150.0	
$\begin{aligned} & 10544- \\ & \text { AAB } \end{aligned}$	IEEE 802,11ac WiFi ($80 \mathrm{MHZ}, \mathrm{MCSO}$, 99pc duty cycle)	X	5.56	66.97	16.30	0.00	150.0	± 9.6 \%
		Y	5.46	66.64	16.02		150.0	
		Z	5.54	66.80	16.11		150.0	
$\begin{aligned} & \text { 10545- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS1, 99pc duty cycle)	X	5.78	67.41	16.46	0.00	150.0	± 9.6 \%
		Y	5.68	67.09	16.19		150.0	
		Z	5.76	67.21	16.25		150.0	
$\begin{aligned} & \text { 10546- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.66	67.27	16.41	0.00	150.0	± 9.6 \%
		Y	5.55	66.90	16.11		150.0	
		Z	5.65	67.10	16.22		150.0	
$\begin{aligned} & \text { 10547- } \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS3, 99 pc duty cycle)	X	5.75	67.34	16.43	0.00	150.0	± 9.6 \%
		Y	5.64	66.99	16.14		150.0	
		Z	5.73	67.16	16.24		150.0	
$\begin{aligned} & \hline 10548- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS4, 99pc duty cycle)	X	6.10	68.57	17.02	0.00	150.0	± 9.6 \%
		Y	5.97	68.15	16.70		150.0	
		Z	6.06	68.30	16.78		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.68	67.21	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.57	66.88	16.11		150.0	
		Z	5.66	67.04	16.20		150.0	
$\begin{aligned} & \text { 10551- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 99 pc duty cycle)	X	5.70	67.30	16.39	0.00	150.0	± 9.6 \%
		Y	5.58	66.93	16.09		150.0	
		Z	5.68	67.15	16.21		150.0	
$\begin{aligned} & 10552- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 8$, 99pc duty cycle)	X	5.59	67.05	16.28	0.00	150.0	± 9.6 \%
		Y	5.48	66.70	15.99		150.0	
		Z	5.58	66.90	16.10		150.0	
$\begin{aligned} & \text { 10553- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.69	67.10	16.33	0.00	150.0	± 9.6 \%
		Y	5.57	66.76	16.05		150.0	
		Z	5.67	66.95	16.15		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCSO, 99pc duty cycle)	X	5.97	67.34	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.87	67.02	16.12		150.0	
		Z	5.94	67.19	16.21		150.0	
10555- AAC	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS}$, 99pc duty cycle)	X	6.12	67.69	16.53	0.00	150.0	± 9.6 \%
		Y	6.01	67.35	16.26		150.0	
		Z	6.10	67.54	16.36		150.0	
$\begin{aligned} & \hline 10556- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.71	16.53	0.00	150.0	± 9.6 \%
		Y	6.03	67.38	16.27		150.0	
		Z	6.11	67.54	16.35		150.0	
$\begin{aligned} & 10557- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 99pc duty cycle)	X	6.12	67.66	16.53	0.00	150.0	± 9.6 \%
		Y	6.00	67.31	16.25		150.0	
		Z	6.10	67.52	16.36		150.0	

$\begin{aligned} & 10558- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS4, 99pc duty cycle)	X	6.18	67.86	16.65	0.00	150.0	± 9.6 \%
		Y	6.06	67.49	16.36		150.0	
		Z	6.16	67.71	16.47		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS6, $99 p c$ duty cycle)	X	6.16	67.67	16.59	0.00	150.0	± 9.6 \%
		Y	6.05	67.32	16.31		150.0	
		Z	6.15	67.54	16.42		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 99 pc duty cycle)	X	6.08	67.64	16.61	0.00	150.0	$\pm 9.6 \%$
		Y	5.97	67.29	16.33		150.0	
		Z	6.06	67.49	16.44		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS8, 99 pc duty cycle)	X	6.25	68.16	16.88	0.00	150.0	± 9.6 \%
		Y	6.13	67.77	16.57		150.0	
		Z	6.23	68.01	16.70		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99 pc duty cycle)	X	6.60	68.73	17.10	0.00	150.0	$\pm 9.6 \%$
		Y	6.50	68.45	16.86		150.0	
		Z	6.53	68.43	16.86		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	5.01	67.24	16.68	0.46	150.0	$\pm 9.6 \%$
		Y	4.90	66.90	16.36		150.0	
		Z	5.01	67.05	16.49		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 99 p \mathrm{c}$ duty cycle)	X	5.27	67.70	16.99	0.46	150.0	± 9.6 \%
		Y	5.15	67.37	16.68		150.0	
		Z	5.27	67.52	16.80		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	5.11	67.60	16.84	0.46	150.0	± 9.6 \%
		Y	4.98	67.23	16.50		150.0	
		Z	5.11	67.41	16.64		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $24 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	5.13	67.96	17.16	0.46	150.0	$\pm 9.6 \%$
		Y	5.01	67.61	16.84		150.0	
		Z	5.13	67.75	16.95		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 99pc duty cycle)	X	5.02	67.36	16.62	0.46	150.0	$\pm 9.6 \%$
		Y	4.90	67.01	16.28		150.0	
		Z	5.02	67.16	16.41		150.0	
10569AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 99 pc duty cycle)	X	5.07	67.97	17.18	0.46	150.0	$\pm 9.6 \%$
		Y	4.96	67.67	16.89		150.0	
		Z	5.06	67.76	16.96		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99 pc duty cycle)	X	5.11	67.83	17.12	0.46	150.0	± 9.6 \%
		Y	5.00	67.52	16.83		150.0	
		Z	5.11	67.61	16.91		150.0	
$10571-$AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90 pc duty cycle)	X	1.43	67.78	17.55	0.46	130.0	$\pm 9.6 \%$
		Y	1.29	65.83	16.01		130.0	
		Z	1.37	66.57	16.56		130.0	
$10572-$AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.47	68.62	18.01	0.46	130.0	± 9.6 \%
		Y	1.32	66.50	16.39		130.0	
		Z	1.40	67.26	16.95		130.0	
$\begin{array}{\|l\|} \hline 10573- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	147.77	39.50	0.46	130.0	$\pm 9.6 \%$
		Y	5.11	95.86	25,26		130.0	
		Z	11.46	108.94	29.46		130.0	
$\begin{aligned} & \text { 10574- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90 pc duty cycle)	X	2.11	79.07	22.64	0.46	130.0	$\pm 9.6 \%$
		Y	1.59	73.49	19.59		130.0	
		Z	1.75	74.78	20.34		130.0	

10575- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 \%
		Y	4.72	66.80	16.47		130.0	
		Z	4.83	66.93	16.59		130.0	
10576- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps , 90 pc duty cycle)	X	4.86	67.28	16.85	0.46	130.0	± 9.6 \%
		Y	4.75	66.95	16.53		130.0	
		Z	4.86	67.08	16.65		130.0	
10577- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	5.09	67.60	17.02	0.46	130.0	± 9.6 \%
		Y	4.97	67.26	16.71		130.0	
		Z	5.10	67.41	16.83		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.43	16.80		130.0	
		Z	4.99	67.57	16.91		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	± 9.6 \%
		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $36 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.81	67.17	16.53	0.46	130.0	± 9.6 \%
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
10581- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 \%
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps, 90 pc duty cycle)	X	4.73	66.96	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.53	15.94		130.0	
		Z	4.73	66.78	16.14		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 \%
		Y	4.72	66.80	16.47		130.0	
		Z	4.83	66.93	16.59		130.0	
$\begin{aligned} & 10584- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.86	67.28	16.85	0.46	130.0	± 9.6 \%
		Y	4.75	66.95	16.53		130.0	
		Z	4.86	67.08	16.65		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.09	67.60	17.02	0.46	130.0	± 9.6 \%
		Y	4.97	67.26	16.71		130.0	
		Z	5.10	67.41	16.83		130.0	
10586- $A A B$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 18 Mbps, 90pc duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.43	16.80		130.0	
		Z	4.99	67.57	16.91		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	$\pm 9.6 \%$
		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.17	16.53	0.46	130.0	$\pm 9.6 \%$
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
$\begin{aligned} & 10589- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 \%
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87		130.0	
$\begin{aligned} & 10590- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.73	66.96	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.53	15.94		130.0	
		Z	4.73	66.78	16.14		130.0	

$\begin{aligned} & 10591- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS0,90pc duty cycle)	X	4.98	67.15	16.87	0.46	130.0	± 9.6 \%
		Y	4.87	66.85	16.57		130.0	
		Z	4.98	66.97	16.68		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.15	67.50	16.99	0.46	130.0	± 9.6 \%
		Y	5.04	67.19	16.69		130.0	
		Z	5.16	67.32	16.80		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS2, 90pe duty cycle)	X	5.09	67.46	16.91	0.46	130.0	± 9.6 \%
		Y	4.96	67.12	16.59		130.0	
		Z	5.09	67.29	16.72		130.0	
$\begin{array}{\|l\|} \hline 10594- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.14	67.60	17.04	0.46	130.0	± 9.6 \%
		Y	5.02	67.28	16.73		130.0	
		Z	5.14	67.42	16.84		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.11	67.58	16.95	0.46	130.0	± 9.6 \%
		Y	4.99	67.24	16.64		130.0	
		Z	5.12	67.40	16.76		130.0	
$\begin{aligned} & 10596 \ldots \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.05	67.59	16.96	0.46	130.0	± 9.6 \%
		Y	4.93	67.24	16.64		130.0	
		Z	5.06	67.40	16.76		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.00	67.53	16.87	0.46	130.0	$\pm 9.6 \%$
		Y	4.88	67.16	16.53		130.0	
		Z	5.01	67.35	16.68		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.98	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.40	16.79		130.0	
		Z	4.99	67.58	16.92		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCSO, 90pc duty cycle)	X	5.65	67.74	17.05	0.46	130.0	± 9.6 \%
		Y	5.54	67.42	16.77		130.0	
		Z	5.65	67.58	16.87		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	5.86	68.37	17.35	0.46	130.0	± 9.6 \%
		Y	5.74	68.03	17.05		130.0	
		Z	5.87	68.25	17.19		130.0	
$\begin{aligned} & 10601- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.71	67.99	17.17	0.46	130.0	± 9.6 \%
		Y	5.59	67.67	16.88		130.0	
		Z	5.71	67.84	16.99		130.0	
$\begin{aligned} & 10602- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90 pc duty cycle)	X	5.80	67.99	17.09	0.46	130.0	$\pm 9.6 \%$
		Y	5.68	67.66	16.80		130.0	
$\begin{array}{\|l\|} \hline 10603- \\ \text { AAB } \\ \hline \end{array}$		Z	5.80	67.87	16.93		130.0	
	IEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	X	5.88	68.27	17.35	0.46	130.0	$\pm 9.6 \%$
		Y	5.76	67.95	17.07		130.0	
		Z	5.91	68.22	17.22		130.0	
$\begin{aligned} & 10604- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	67.69	17.05	0.46	130.0	$\pm 9.6 \%$
		Y	5.55	67.38	16.78		130.0	
		Z	5.65	67.55	16.88		130.0	
$\begin{array}{\|l\|} \hline 10605- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.77	68.03	17.23	0.46	130.0	± 9.6 \%
		Y	5.67	67.75	16.97		130.0	
		Z	5.76	67.86	17.04		130.0	
$\begin{aligned} & \hline 10606-1 \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.54	67.48	16.82	0.46	130.0	± 9.6 \%
		Y	5.42	67.14	16.52		130.0	
		Z	5.54	67.37	16.67		130.0	

$\begin{aligned} & 10607- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 90 pc duty cycle)	X	4.81	66.46	16.48	0.46	130.0	± 9.6 \%
		Y	4.70	66.13	16.17		130.0	
$\begin{aligned} & 10608- \\ & A A B \\ & \hline \end{aligned}$		Z	4.81	66.25	16.27		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	5.03	66.90	16.65	0.46	130.0	± 9.6 \%
		Y	4.90	66.55	16.34		130.0	
		Z	5.02	66.68	16.44		130.0	
$\begin{aligned} & 10609- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.92	66.79	16.52	0.46	130.0	± 9.6 \%
		Y	4.79	66.41	16.18		130.0	
		Z	4.92	66.57	16.31		130.0	
10610-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.97	66.94	16.67	0.46	130.0	± 9.6 \%
		Y	4.84	66.57	16.34		130.0	
		Z	4.97	66.72	16.46		130.0	
10611- AAB	IEEE 802.11ac WiFi (20 MHz , MCS4, 90 pc duty cycle)	X	4.89	66.78	16.54	0.46	130.0	± 9.6 \%
		Y	4.76	66.39	16.20		130.0	
		Z	4.89	66.57	16.33		130.0	
10612-AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.92	66.95	16.59	0.46	130.0	$\pm 9.6 \%$
		Y	4.78	66.55	16.24		130.0	
		Z	4.91	66.73	16.37		130.0	
$\begin{array}{\|l} \hline 10613- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.93	66.87	16.50	0.46	130.0	± 9.6 \%
		Y	4.79	66.46	16.14		130.0	
		Z	4.93	66.66	16.28		130.0	
10614-$A A B$	IEEE 802.11ac WiFi (20 MHz , MCS7, 90pc duty cycle)	X	4.85	67.03	16.71	0.46	130.0	± 9.6 \%
		Y	4.72	66.63	16.36		130.0	
		Z	4.85	66.82	16.49		130.0	
$\begin{aligned} & \text { 10615- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 90 pc duty cycle)	X	4.90	66.61	16.33	0.46	130.0	± 9.6 \%
		Y	4.76	66.22	15.98		130.0	
		Z	4.90	66.40	16.12		130.0	
$\begin{array}{\|l} \hline 10616- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	5.47	66.98	16.66	0.46	130.0	± 9.6 \%
		Y	5.36	66.66	16.38		130.0	
		Z	5.46	66.82	16.47		130.0	
$\begin{array}{\|l\|} \hline 10617- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.52	67.09	16.68	0.46	130.0	$\pm 9.6 \%$
		Y	5.42	66.80	16.41		130.0	
		Z	5.52	66.93	16.49		130.0	
$\begin{array}{\|l} 10618- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.42	67.18	16.74	0.46	130.0	± 9.6 \%
		Y	5.31	66.84	16.45		130.0	
		2	5.41	67.00	16.54		130.0	
$\begin{aligned} & \hline 10619- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	5.45	67.00	16.59	0.46	130.0	± 9.6 \%
		Y	5.34	66.68	16.31		130.0	
		Z	5.44	66.82	16.40		130.0	
$\begin{aligned} & \hline 10620- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 90 pc duty cycle)	X	5.56	67.11	16.69	0.46	130.0	$\pm 9.6 \%$
		Y	5.44	66.75	16.39		130.0	
		Z	5.56	66.95	16.51		130.0	
$\begin{aligned} & 10621- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.53	67.13	16.81	0.46	130.0	± 9.6 \%
		Y	5.42	66.81	16.54		130.0	
		Z	5.53	66.98	16.63		130.0	
10622-AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.53	67.27	16.87	0.46	130.0	± 9.6 \%
		Y	5.43	66.97	16.61		130.0	
		Z	5.52	67.09	16.67		130.0	

$\begin{aligned} & 10623- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	5.42	66.86	16.56	0.46	130.0	± 9.6 \%
		Y	5.30	66.51	16.26		130.0	
		Z	5.42	66.73	16.39		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.61	67.03	16.70	0.46	130.0	± 9.6 \%
		Y	5.50	66.72	16.43		130.0	
		Z	5.60	66.86	16.51		130.0	
$\begin{aligned} & 10625- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	6.05	68.19	17.33	0.46	130.0	± 9.6 \%
		Y	5.94	67.90	17.07		130.0	
		Z	6.01	67.90	17.08		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90 pc duty cycle)	X	5.72	66.99	16.57	0.46	130.0	$\pm 9.6 \%$
		Y	5.63	66.69	16.31		130.0	
		Z	5.71	66.84	16.40		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.99	67.59	16.82	0.46	130.0	± 9.6 \%
		Y	5.90	67.32	16.58		130.0	
		Z	5.97	67.39	16.62		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS2, 90 pc duty cycle)	X	5.80	67.20	16.57	0.46	130.0	± 9.6 \%
		Y	5.69	66.85	16.29		130.0	
		Z	5.79	67.05	16.40		130.0	
$\begin{aligned} & 10629- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.1 1ac WiFi (80 MHz , MCS3, 90 pc duty cycle)	X	5.88	67.25	16.59	0.46	130.0	$\pm 9.6 \%$
		Y	5.77	66.92	16.31		130.0	
		Z	5.87	67.12 '	16.43		130.0	
$\begin{aligned} & \text { 10630- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	6.51	69.31	17.62	0.46	130.0	± 9.6 \%
		Y	6.37	68.86	17.28		130.0	
		Z	6.46	69.04	17.39		130.0	
$\begin{aligned} & 10631- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	6.31	68.81	17.54	0.46	130.0	± 9.6 \%
		Y	6.17	68.39	17.24		130.0	
		Z	6.30	68.62	17.35		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.95	67.61	16.96	0.46	130.0	± 9.6 \%
		Y	5.85	67.34	16.73		130.0	
		Z	5.94	67.45	16.78		130.0	
$\begin{aligned} & 10633- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 90 pc duty cycle)	X	5.89	67.42	16.71	0.46	130.0	± 9.6 \%
		Y	5.75	67.01	16.39		130.0	
		Z	5.89	67.32	16.56		130.0	
$\begin{array}{\|l\|} \hline 10634- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS8, 90 pc duty cycle)	X	5.85	67.37	16.74	0.46	130.0	± 9.6 \%
		Y	5.73	67.02	16.46		130.0	
		Z	5.86	67.27	16.59		130.0	
$\begin{aligned} & 10635- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	5.75	66.78	16.20	0.46	130.0	± 9.6 \%
		Y	5.62	66.39	15.89		130.0	
		Z	5.75	66.67	16.05		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 90 pc duty cycle)	X	6.13	67.38	16.66	0.46	130.0	$\pm 9.6 \%$
		Y	6.05	67.09	16.42		130.0	
		Z	6.12	67.24	16.50		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS1, 90 pc duty cycle)	X	6.31	67.79	16.85	0.46	130.0	± 9.6 \%
		Y	6.21	67.50	16.60		130.0	
		Z	6.29	67.65	16.68		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.1 fac WiFi (160 MHz , MCS2, 90 pc duty cycle)	X	6.31	67.76	16.81	0.46	130.0	± 9.6 \%
		Y	6.21	67.47	16.56		130.0	
		Z	6.29	67.60	16.64		130.0	

$\begin{array}{\|l} \hline 10639- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, MCS3, 90 pc duty cycle)	X	6.30	67.76	16.86	0.46	130.0	± 9.6 \%
		Y	6.20	67.43	16.59		130.0	
$\begin{aligned} & 10640- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	6.29	67.63	16.70		130.0	
	IEEE 802.1 1ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	6.34	67.87	16.86	0.46	130.0	± 9.6 \%
		Y	6.22	67.50	16.57		130.0	
$\begin{aligned} & 10641- \\ & \text { AAC } \end{aligned}$		Z	6.33	67.75	16.70		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS5, 90 pc duty cycle)	X	6.33	67.58	16.73	0.46	130.0	± 9.6 \%
		Y	6.23	67.29	16.48		130.0	
10642- AAC		Z	6.31	67.45	16.57		130.0	
	IEEE 802.11ac WiFi (160 MHz , MCS6, 90 pc duty cycle)	X	6.39	67.88	17.04	0.46	130.0	± 9.6 \%
		Y	6.28	67.58	16.79		130.0	
10643- AAC		Z	6.38	67.76	16.88		130.0	
	IEEE 802.11ac WiFi (160 MHz , MCS7, 90pc duty cycle)	X	6.22	67.60	16.81	0.46	130.0	± 9.6 \%
		Y	6.12	67.28	16.54		130.0	
		Z	6.21	67.48	16.65		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.47	68.34	17.21	0.46	130.0	± 9.6 \%
		Y	6.34	67.93	16.89		130.0	
		Z	6.46	68.22	17.05		130.0	
$\begin{array}{\|l} \hline 10645- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 90pe duty cycle)	X	6.86	69.01	17.48	0.46	130.0	± 9.6 \%
		Y	6.84	68.95	17.35		130.0	
		Z	6.77	68.66	17.21		130.0	
$\begin{aligned} & \hline 10646- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,7$)	X	39.97	118.78	39.16	9.30	60.0	± 9.6 \%
		Y	36.64	117.33	38.51		60.0	
		Z	28.19	109.42	36.13		60.0	
10647AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	43.22	121.45	40.07	9.30	60.0	± 9.6 \%
		Y	37.61	118.78	39.06		60.0	
		Z	29.77	111.44	36.87		60.0	
10648AAA	CDMA2000 (1x Advanced)	X	0.92	67.44	13.60	0.00	150.0	± 9.6 \%
		Y	0.67	63.31	10.51		150.0	
		Z	0.80	64.88	12.09		150.0	
$\begin{array}{\|l\|} \hline 10652- \\ \mathrm{AAB} \\ \hline \end{array}$	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	4.65	69.66	17.99	2.23	80.0	± 9.6 \%
		Y	4.35	68.72	17.32		80.0	
		Z	4.56	68.93	17.55		80.0	
$\begin{aligned} & 10653- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	5.05	68.61	17.89	2.23	80.0	$\pm 9.6 \%$
		Y	4.81	67.90	17.37		80.0	
		Z	5.01	68.17	17.57		80.0	
10654-AAB	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	4.97	68.24	17.87	2.23	80.0	± 9.6 \%
		Y	4.75	67.55	17.37		80.0	
		Z	4.94	67.85	17.56		80.0	
$\begin{aligned} & 10655- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44\%)	X	5.03	68.27	17.91	2.23	80.0	± 9.6 \%
		Y	4.81	67.56	17.41		80.0	
		Z	4.99	67.90	17.61		80.0	
10658-AAA	Pulse Waveform (200Hz, 10\%)	X	13.25	86.83	23.62	10.00	50.0	± 9.6 \%
		Y	14.38	88.09	23.44		50.0	
		Z	11.47	83.98	22.82		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \\ & \hline \end{aligned}$	Pulse Waveform (200Hz, 20\%)	X	55.89	109.63	28.77	6.99	60.0	± 9.6 \%
		Y	73.21	111.71	28.47		60.0	
		Z	23.49	96.54	25.38		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	100.00	116.44	28.38	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	113.18	26.58		80.0	
		Z	100.00	116.19	28.39		80.0	
$10661-$ AAA	Pulse Waveform $(200 \mathrm{~Hz}, 60 \%)$	X	100.00	118.35	27.71	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	112.59	24.89		100.0	
		Z	100.00	116.83	27.13		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	100.00	126.67	29.16	0.97	120.0	$\pm 9.6 \%$
		Y	100.00	111.31	22.51		120.0	
		Z	100.00	120.40	26.63		120.0	

[^8]Calibration Laboratory of Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client PCTest
Certificate No: EX3-7357 Apr18

CALIBRATION CERTIFICATE

Object
EX3DV4 - SN:7357

Calibration procedure(s)

Calibration date:

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Apil 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
		Check Date (in house)	
Secondary Standards	ID	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585		

Calibrated by: \quad Claudio Leubler,

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzeriand

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORM x, y, z
ConvF
DCP
CF
A, B, C, D
Polarization φ
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORM x, y, z diode compression point crest factor ($1 /$ duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis
Polarization $\vartheta \quad \vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $9=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M x, y, z *$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy ($3 D$ deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EX3DV4

SN:7357

Manufactured: February 5, 2015
Calibrated:
April 18, 2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.37	0.48	0.40	$\pm 10.1 \%$
DCP $(\mathrm{mV})^{\mathrm{B}}$	89.1	99.1	96.4	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \boldsymbol{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}^{\mathbf{E}}$ $(\mathbf{k}=\mathbf{2})$
0	CW	X	0.0	0.0	1.0	0.00	151.5	$\pm 2.7 \%$
		\mathbf{Y}	0.0	0.0	1.0		139.1	
		Z	0.0	0.0	1.0		158.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s} . \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	37.91	303.3	40.25	6.413	0.832	4.998	0.00	0.454	1.006
Y	48.33	363.1	36.01	10.58	0.113	5.100	0.00	0.458	1.004
Z	39.38	305.2	38.03	5.76	0.610	5.046	0.00	0.461	1.008

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^9]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Unc } \\ (k=2) \end{gathered}$
64	54.2	0.75	14.92	14.92	14.92	0.00	1.00	$\pm 13.3 \%$
150	52.3	0.76	13.49	13.49	13.49	0.00	1.00	$\pm 13.3 \%$
300	45.3	0.87	12.37	12.37	12.37	0.08	1.20	$\pm 13.3 \%$
450	43.5	0.87	11.17	11.17	11.17	0.14	1.20	$\pm 13.3 \%$
750	41.9	0.89	10.50	10.50	10.50	0.45	0.85	$\pm 12.0 \%$
835	41.5	0.90	10.11	10.11	10.11	0.37	0.93	$\pm 12.0 \%$
1750	40.1	1.37	8.80	8.80	8.80	0.38	0.86	$\pm 12.0 \%$
1900	40.0	1.40	8.47	8.47	8.47	0.18	0.83	$\pm 12.0 \%$
2300	39.5	1.67	7.83	7.83	7.83	0.33	0.86	± 12.0 \%
2450	39.2	1.80	7.43	7.43	7.43	0.37	0.89	$\pm 12.0 \%$
2600	39.0	1.96	7.13	7.13	7.13	0.27	0.98	$\pm 12.0 \%$
5250	35.9	4.71	5.62	5.62	5.62	0.35	1.80	± 13.1 \%
5600	35.5	5.07	4.93	4.93	4.93	0.40	1.80	± 13.1 \%
5750	35.4	5.22	5.23	5.23	5.23	0.40	1.80	± 13.1 \%

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (E and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (E and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{G} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
150	61.9	0.80	12.99	12.99	12.99	0.00	1.00	$\pm 13.3 \%$
300	58.2	0.92	12.08	12.08	12.08	0.05	1.20	± 13.3 \%
450	56.7	0.94	11.52	11.52	11.52	0.08	1.20	$\pm 13.3 \%$
750	55.5	0.96	10.37	10.37	10.37	0.47	0.85	$\pm 12.0 \%$
835	55.2	0.97	10.17	10.17	10.17	0.37	0.93	± 12.0 \%
1750	53.4	1.49	8.43	8.43	8.43	0.37	0.86	$\pm 12.0 \%$
1900	53.3	1.52	8.08	8.08	8.08	0.36	0.83	$\pm 12.0 \%$
2300	52.9	1.81	7.74	7.74	7.74	0.38	0.85	± 12.0 \%
2450	52.7	1.95	7.60	7.60	7.60	0.35	0.88	$\pm 12.0 \%$
2600	52.5	2.16	7.44	7.44	7.44	0.33	0.93	± 12.0 \%
5250	48.9	5.36	4.78	4.78	4.78	0.50	1.80	± 13.1 \%
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.80	± 13.1 \%
5750	48.3	5.94	4.21	4.21	4.21	0.50	1.80	$\pm 13.1 \%$

[^10]
Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%(k=2)$

Receiving Pattern $(\phi), \vartheta=0^{\circ}$

Dynamic Range $f\left(S_{\text {A }}^{\text {head }}\right.$) (TEM cell, $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}(\mathbf{k = 2)}$

Conversion Factor Assessment

Error $(\phi, \vartheta), \mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$)	11.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\underset{d B \cup \mu v}{B}$	C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \text { VR } \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \operatorname{Unc}^{E} \\ & (k=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	151.5	$\pm 2.7 \%$
		Y	0.00	0.00	1.00		139.1	
		Z	0.00	0.00	1.00		158.4	
$\begin{aligned} & 10010- \\ & \text { CAA } \end{aligned}$	SAR Validation (Square, 100 $\mathrm{ms}, 10 \mathrm{~ms}$)	X	1.67	61.93	7.65	10.00	20.0	± 9.6 \%
		Y	2.82	69.17	11.50		20.0	
		Z	1.68	62.20	7.72		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	0.91	67.36	14.64	0.00	150.0	± 9.6 \%
		Y	1.03	67.52	15.32		150.0	
		Z	0.87	67.00	14.33		150.0	
$\begin{aligned} & 10012- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.03	63.20	14.83	0.41	150.0	$\pm 9.6 \%$
		Y	1.15	63.79	15.34		150.0	
		Z	1.01	63.27	14.81		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	4.63	66.39	16.96	1.46	150.0	± 9.6 \%
		Y	4.87	66.69	17.19		150.0	
		Z	4.64	66.53	16.99		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	3.67	70.27	12.79	9.39	50.0	± 9.6 \%
		Y	100.00	116.17	27.83		50.0	
		Z	17.04	87.58	18.77		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	3.48	69.40	12.45	9.57	50.0	± 9.6 \%
		Y	100.00	115.39	27.52		50.0	
		Z	8.91	80.25	16.55		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	1.80	66.18	9.84	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	120.19	28.55		60.0	
		Z	100.00	103.30	20.82		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.42	64.49	22.34	12.57	50.0	± 9.6 \%
		Y	6.04	85.62	35.55		50.0	
		Z	3.44	65.04	22.85		50.0	
$\begin{aligned} & \hline 10026- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	6.25	83.47	29.08	9.56	60.0	± 9.6 \%
		Y	9.24	95.88	35.47		60.0	
		Z	6.56	85.41	30.17		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	0.96	63.24	7.67	4.80	80.0	± 9.6 \%
		Y	100.00	125.59	30.06		80.0	
		Z	100.00	100.14	18.62		80.0	
$\begin{array}{\|l} \hline 10028- \\ \text { DAC } \\ \hline \end{array}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	0.48	60.36	5.50	3.55	100.0	± 9.6 \%
		Y	100.00	132.37	32.13		100.0	
		Z	99.97	95.45	15.98		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	4.19	75.28	24.64	7.80	80.0	± 9.6 \%
		Y	5.35	81.78	28.49		80.0	
		Z	4.26	76.21	25.31		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	1.09	63.09	7.76	5.30	70.0	± 9.6 \%
		Y	100.00	120.14	28.06		70.0	
		Z	4.93	76.05	12.90		70.0	
$\begin{aligned} & 10031- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.27	60.00	3.17	1.88	100.0	± 9.6 \%
		Y	100.00	135.00	31.47		100.0	
		Z	0.26	60.00	3.07		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	27.08	314.20	3.36	1.17	100.0	± 9.6 \%
		Y	100.00	149.06	35.68		100.0	
		Z	1.21	330.96	55.77		100.0	
$\begin{aligned} & 10033- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH1)	X	3.08	73.10	16.00	5.30	70.0	± 9.6 \%
		Y	100.00	136.30	37.75		70.0	
		Z	7.37	86.92	21.69		70.0	
$\begin{array}{\|l\|} \hline 10034- \\ \text { CAA } \\ \hline \end{array}$	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH3)	X	1.25	65.91	11.39	1.88	100.0	$\pm 9.6 \%$
		Y	5.27	87.77	22.72		100.0	
		Z	1.70	70.42	13.93		100.0	
10035-CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH5)	X	0.99	64.64	10.52	1.17	100.0	± 9.6 \%
		Y	2.59	77.96	18.88		100.0	
		Z	1.19	67.26	12.19		100.0	
$\begin{aligned} & 10036- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	3.48	74.91	16.77	5.30	70.0	± 9.6 \%
		Y	100.00	136.90	38.02		70.0	
		Z	11.33	93.27	23.71		70.0	
$\begin{array}{\|l\|} \hline 10037- \\ \text { CAA } \\ \hline \end{array}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.18	65.50	11.18	1.88	100.0	± 9.6 \%
		Y	4.66	86.12	22.16		100.0	
		Z	1.56	69.56	13.55		100.0	
$10038-$CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.00	64.92	10.78	1.17	100.0	$\pm 9.6 \%$
		Y	2.61	78.41	19.18		100.0	
		Z	1.21	67.70	12.52		100.0	
$\begin{aligned} & 10039- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	0.95	64.99	10.40	0.00	150.0	± 9.6 \%
		Y	1.84	72.12	15.71		150.0	
		Z	1.02	65.84	10.98		150.0	
$\begin{aligned} & 10042- \\ & \text { CAB } \\ & \hline \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Halfrate)	X	1.77	64.37	9.09	7.78	50.0	± 9.6 \%
		Y	100.00	113.16	25.71		50.0	
		Z	2.56	68.32	10.93		50.0	
10044-CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.31	133.81	11.51	0.00	150.0	± 9.6 \%
		Y	0.00	104.03	5.27		150.0	
		Z	0.33	142.49	0.98		150.0	
$\begin{aligned} & \text { 10048- } \\ & \text { CAA } \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	4.01	66.51	12.74	13.80	25.0	$\pm 9.6 \%$
		Y	100.00	110.91	26.95		25.0	
		Z	5.44	70.40	14.40		25.0	
$\begin{array}{\|l} \hline 10049- \\ \text { CAA } \\ \hline \end{array}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	3.70	68.56	12.33	10.79	40.0	± 9.6 \%
		Y	100.00	112.50	26.54		40.0	
		Z	5.22	72.87	14.17		40.0	
$\begin{array}{\|l\|} \hline 10056- \\ \text { CAA } \\ \hline \end{array}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	6.09	76.95	17.81	9.03	50.0	± 9.6 \%
		Y	100.00	128.62	35.43		50.0	
		Z	13.22	89.10	22.41		50.0	
$\begin{array}{\|l\|} \hline 10058- \\ \text { DAC } \\ \hline \end{array}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.39	71.63	22.33	6.55	100.0	± 9.6 \%
		Y	4.14	76.10	25.11		100.0	
		Z	3.42	72.27	22.83		100.0	
$\begin{aligned} & 10059- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.03	63.98	15.22	0.61	110.0	$\pm 9.6 \%$
		Y	1.18	64.90	16.05		110.0	
		Z	1.02	64.18	15.34		110.0	
$\begin{aligned} & 10060- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	5.25	93.28	23.11	1.30	110.0	± 9.6 \%
		Y	100.00	145.92	38.93		110.0	
		Z	39.44	123.36	31.22		110.0	

$\begin{aligned} & 10061- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.80	74.31	19.24	2.04	110.0	$\pm 9.6 \%$
		Y	3.02	83.93	24.56		110.0	
		Z	2.14	78.36	21.37		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6	X	4.44	66.41	16.45	0.49	100.0	$\pm 9.6 \%$
		Y	4.68	66.67	16.57		100.0	
		Z	4.45	66.51	16.42		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.45	66.48	16.52	0.72	100.0	$\pm 9.6 \%$
		Y	4.69	66.78	16.69		100.0	
		Z	4.46	66.59	16.51		100.0	
$\begin{aligned} & 10064- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.70	66.70	16.72	0.86	100.0	$\pm 9.6 \%$
		Y	4.99	67.05	16.93		100.0	
		Z	4.72	66.83	16.73		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.56	66.53	16.77	1.21	100.0	$\pm 9.6 \%$
		Y	4.85	66.96	17.05		100.0	
		Z	4.58	66.69	16.81		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 24 Mbps)	X	4.57	66.51	16.90	1.46	100.0	$\pm 9.6 \%$
		Y	4.87	66.98	17.22		100.0	
		Z	4.60	66.69	16.96		100.0	
$\begin{aligned} & 10067- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.86	66.77	17.36	2.04	100.0	± 9.6 \%
		Y	5.15	67.13	17.68		100.0	
		Z	4.89	66.94	17.44		100.0	
$\begin{aligned} & 10068- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 48 Mbps)	X	4.88	66.65	17.49	2.55	100.0	± 9.6 \%
		Y	5.20	67.19	17.93		100.0	
		Z	4.91	66.87	17.60		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFI 5 GHz (OFDM, 54 Mbps)	X	4.95	66.72	17.70	2.67	100.0	$\pm 9.6 \%$
		Y	5.28	67.17	18.11		100.0	
		Z	4.99	66.91	17.80		100.0	
$\begin{aligned} & 10071- \\ & C A B \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.71	66.43	17.22	1.99	100.0	± 9.6 \%
		Y	4.96	66.77	17.51		100.0	
		Z	4.73	66.59	17.28		100.0	
$\begin{aligned} & 10072- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.67	66.65	17.37	2.30	100.0	± 9.6 \%
		Y	4.94	67.10	17.75		100.0	
		Z	4.69	66.85	17.47		100.0	
$\begin{aligned} & 10073- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.72	66.79	17.66	2.83	100.0	± 9.6 \%
		Y	4.99	67.24	18.08		100.0	
		Z	4.75	67.01	17.79		100.0	
$\begin{aligned} & 10074- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.72	66.70	17.78	3.30	100.0	± 9.6 \%
		Y	4.95	67.09	18.23		100.0	
		Z	4.74	66.91	17.92		100.0	
$\begin{aligned} & 10075- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.74	66.71	18.01	3.82	90.0	± 9.6 \%
		Y	4.98	67.20	18,56		90.0	
		Z	4.76	66.94	18.18		90.0	
$\begin{aligned} & 10076- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.77	66.58	18.17	4.15	90.0	± 9.6 \%
		Y	4.98	66.93	18.66		90.0	
		Z	4.79	66.78	18.33		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.80	66.66	18.27	4.30	90.0	± 9.6 \%
		Y	5.00	66.98	18.75		90.0	
		Z	4.82	66.86	18.43		90.0	

$\begin{aligned} & 10081- \\ & \text { CAB } \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	0.45	61.00	7.50	0.00	150.0	± 9.6 \%
		Y	0.83	65.94	12.49		150.0	
		Z	0.46	61.34	7.83		150.0	
$\begin{aligned} & 10082- \\ & \mathrm{CAB} \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Fullrate)	X	0.68	60.00	3.10	4.77	80.0	$\pm 9.6 \%$
		Y	0.78	61.11	4.54		80.0	
		Z	0.72	60.00	2.85		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	1.84	66.30	9.91	6.56	60.0	± 9.6 \%
		Y	100.00	120,24	28.59		60.0	
		Z	100.00	103.44	20.90		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	1.71	67.90	15.28	0.00	150.0	$\pm 9.6 \%$
		Y	1.82	67.70	15.69		150.0	
		Z	1.68	67.71	15.15		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.67	67.85	15.26	0.00	150.0	$\pm 9.6 \%$
		Y	1.79	67.66	15.66		150.0	
		Z	1.64	67.65	15.11		150.0	
$\begin{aligned} & \text { 10099- } \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6.29	83.56	29.10	9.56	60.0	± 9.6 \%
		Y	9.34	96.14	35.56		60.0	
		Z	6.61	85.53	30.21		60.0	
$\begin{aligned} & 10100- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.90	69.76	16.53	0.00	150.0	$\pm 9.6 \%$
		Y	3.14	70.37	16.71		150.0	
		Z	2.89	69.82	16.39		150.0	
$\begin{aligned} & 10101- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 20$ $\mathrm{MHz}, 16-\mathrm{QAM})$	X	3.04	67.08	15.83	0.00	150.0	$\pm 9.6 \%$
		Y	3.24	67.51	15.94		150.0	
		Z	3.03	67.13	15.70		150.0	
$\begin{aligned} & 10102- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	3.15	67.10	15.95	0.00	150.0	$\pm 9.6 \%$
		Y	3.34	67.47	16.02		150.0	
		Z	3.13	67.15	15.83		150.0	
$\begin{aligned} & 10103- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	4.81	72.04	18.88	3.98	65.0	$\pm 9.6 \%$
		Y	6.41	77.25	21.56		65.0	
		Z	5.14	73.67	19.73		65.0	
$\begin{aligned} & 10104- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 20 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	5.09	70.84	19.13	3.98	65.0	$\pm 9.6 \%$
		Y	5.94	73.69	20.83		65.0	
		Z	5.16	71.44	19.51		65.0	
$\begin{aligned} & 10105- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20$ $\mathrm{MHz}, 64-\mathrm{QAM})$	X	4.78	69.37	18.75	3.98	65.0	$\pm 9.6 \%$
		Y	5.83	73.15	20.89		65.0	
		Z	4.90	70.20	19.25		65.0	
$\begin{aligned} & 10108- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.51	69.24	16.41	0.00	150.0	$\pm 9.6 \%$
		Y	2.74	69.60	16.54		150.0	
		Z	2.49	69.21	16.24		150.0	
$\begin{aligned} & 10109- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 10$ $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.68	67.06	15.67	0.00	150.0	$\pm 9.6 \%$
		Y	2.89	67.36	15.84		150.0	
		Z	2.67	67.07	15.55		150.0	
$\begin{aligned} & 10110- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	1.99	68.49	15.84	0.00	150.0	± 9.6 \%
		Y	2.22	68.71	16.15		150.0	
		Z	1.98	68.38	15.68		150.0	
$\begin{aligned} & 10111- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM)	X	2.41	68.19	15.80	0.00	150.0	$\pm 9.6 \%$
		Y	2.61	68.17	16.11		150.0	
		Z	2.40	68.17	15.74		150.0	

April 18, 2018

10112CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	2.81	67.12	15.76	0.00	150.0	± 9.6 \%
		Y	3.02	67.35	15.89		150.0	
		Z	2.80	67.12	15.64		150.0	
$\begin{aligned} & 10113- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.56	68.40	15.97	0.00	150.0	$\pm 9.6 \%$
		Y	2.76	68.30	16.24		150.0	
		Z	2.55	68.39	15.92		150.0	
10114-CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.95	66.96	16.54	0.00	150.0	$\pm 9.6 \%$
		Y	5.12	67.17	16.44		150.0	
		Z	4.92	66.97	16.39		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.23	67.14	16.63	0.00	150.0	± 9.6 \%
		Y	5.41	67.31	16.52		150.0	
		Z	5.18	67.06	16.45		150.0	
$\begin{aligned} & \text { 10116- } \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.04	67.18	16.57	0.00	150.0	± 9.6 \%
		Y	5.22	67.37	16.47		150.0	
		Z	5.01	67.18	16.42		150.0	
10117CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps , BPSK)	X	4.94	66.92	16.53	0.00	150.0	± 9.6 \%
		Y	5.09	67.03	16.39		150.0	
		Z	4.91	66.91	16.38		150.0	
10118CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.34	67.47	16.81	0.00	150.0	$\pm 9.6 \%$
		Y	5.50	67.52	16.63		150.0	
		Z	5.27	67.32	16.58		150.0	
10119-CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.06	67.24	16.61	0.00	150.0	± 9.6 \%
		Y	5.20	67.31	16.45		150.0	
		Z	5.01	67.18	16.43		150.0	
$\begin{aligned} & 10140- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.17	67.11	15.85	0.00	150.0	± 9.6 \%
		Y	3.38	67.48	15.94		150.0	
		Z	3.16	67.15	15.73		150.0	
$\begin{aligned} & \hline 10141- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	3.30	67.28	16.06	0.00	150.0	± 9.6 \%
		Y	3.50	67.57	16.11		150.0	
		Z	3.29	67.32	15.94		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	1.73	68.17	14.94	0.00	150.0	± 9.6 \%
		Y	2.00	68.71	15.82		150.0	
		Z	1.72	68.11	14.89		150.0	
$\begin{aligned} & \hline 10143- \\ & \text { CAD } \\ & \hline \end{aligned}$		X	2.15	68.15	14.63	0.00	150.0	± 9.6 \%
		Y	2.47	68.91	15.82		150.0	
		Z	2.17	68.32	14.76		150.0	
$\begin{array}{\|l\|} \hline 10144- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	1.86	65.26	12.63	0.00	150.0	± 9.6 \%
		Y	2.24	66.62	14.22		150.0	
		Z	1.88	65.43	12.77		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	0.67	60.16	6.91	0.00	150.0	± 9.6 \%
		Y	1.22	65.11	11.80		150.0	
		Z	0.71	60.61	7.39		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHZ}, 16-\mathrm{QAM}$)	X	0.95	60.06	6.44	0.00	150.0	± 9.6 \%
		Y	1.65	64.56	10.76		150.0	
		Z	1.07	61.07	7.44		150.0	
10147-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	0.99	60.33	6.68	0.00	150.0	± 9.6 \%
		Y	1.85	65.94	11.59		150.0	
		Z	1.13	61.55	7.80		150.0	

$\begin{aligned} & \hline 10149- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	2.69	67.13	15.72	0.00	150.0	± 9.6 \%
		Y	2.90	67.42	15.88		150.0	
		Z	2.68	67.14	15.60		150.0	
$\begin{aligned} & 10150- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	2.82	67.19	15.80	0.00	150.0	± 9.6 \%
		Y	3.03	67.40	15.93		150.0	
		Z	2.81	67.19	15.69		150.0	
$\begin{aligned} & 10151 \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	5.01	74.56	19.93	3.98	65.0	± 9.6 \%
		Y	6.65	79.71	22.70		65.0	
		Z	5.36	76.27	20.86		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	4.60	70.61	18.55	3.98	65.0	$\pm 9.6 \%$
		Y	5.50	73.80	20.64		65.0	
		Z	4.69	71.33	19.06		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	4.95	71.72	19.46	3.98	65.0	± 9.6 \%
		Y	5.84	74.66	21.37		65.0	
		Z	5.05	72.49	19.99		65.0	
$10154-$CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	2.04	68.92	16.11	0.00	150.0	± 9.6 \%
		Y	2.27	69.12	16.41		150.0	
		Z	2.03	68.83	15.96		150.0	
10155- CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.41	68.23	15.84	0.00	150.0	± 9.6 \%
		Y	2.61	68.18	16.13		150.0	
		Z	2.40	68.21	15.77		150.0	
10156-CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	1.51	67.60	14.13	0.00	150.0	± 9.6 \%
		Y	1.84	68.81	15.61		150.0	
		Z	1.52	67.67	14.19		150.0	
10157CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	1.63	65.15	12.07	0.00	150.0	± 9.6 \%
		Y	2.08	67.20	14.25		150.0	
		Z	1.66	65.43	12.31		150.0	
$\begin{aligned} & 10158-1 \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM)	X	2.57	68.50	16.04	0.00	150.0	± 9.6 \%
		Y	2.77	68.36	16.29		150.0	
		Z	2.56	68.48	15.98		150.0	
$\begin{aligned} & 10159- \\ & \mathrm{CAE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	1.70	65.38	12.24	0.00	150.0	± 9.6 \%
		Y	2.19	67.65	14.54		150.0	
		Z	1.74	65.76	12.53		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	X	2.62	68.99	16.41	0.00	150.0	± 9.6 \%
		Y	2.74	68.65	16.32		150.0	
		Z	2.56	68.70	16.16		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	2.71	67.15	15.66	0.00	150.0	± 9.6 \%
		Y	2.92	67.34	15.86		150.0	
		Z	2.70	67.15	15.57		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 64-QAM)	X	2.82	67.38	15.82	0.00	150.0	$\pm 9.6 \%$
		Y	3.03	67.49	15.97		150.0	
		Z	2.81	67.37	15.72		150.0	
$\begin{aligned} & 10166- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	3.14	68.82	18.96	3.01	150.0	± 9.6 \%
		Y	3.40	68.62	18.58		150.0	
		Z	3.24	69.38	19.21		150.0	
$\begin{aligned} & 10167- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	3.68	71.26	19.14	3.01	150.0	± 9.6 \%
		Y	4.01	70.93	18.84		150.0	
		Z	3.86	71.98	19.46		150.0	

April 18, 2018

$\begin{aligned} & 10168- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM)	X	4.20	74.21	20.88	3.01	150.0	± 9.6 \%
		Y	4.39	72.91	20.06		150.0	
		Z	4.45	75.16	21.28		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	2.49	66.95	18.11	3.01	150.0	$\pm 9.6 \%$
		Y	2.73	67.59	18.14		150.0	
		Z	2.58	67.69	18.47		150.0	
$\begin{aligned} & \text { 10170- } \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.17	72.06	20.27	3.01	150.0	± 9.6 \%
		Y	3.45	72,20	20.01		150.0	
		Z	3.40	73.44	20.89		150.0	
$\begin{aligned} & 10171- \\ & \text { AAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.61	67.98	17.29	3.01	150.0	± 9.6 \%
		Y	2.93	68.85	17.54		150.0	
		Z	2.74	68.83	17.69		150.0	
$\begin{aligned} & 10172- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.59	76.79	22.90	6.02	65.0	± 9.6 \%
		Y	7.70	92.12	29.64		65.0	
		Z	4.50	82.04	25.61		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.40	81.69	22.80	6.02	65.0	± 9.6 \%
		Y	14.31	100.07	30.15		65.0	
		Z	8.60	91.21	26.84		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.41	73.68	19.23	6.02	65.0	± 9.6 \%
		Y	12.55	96.17	28.30		65.0	
		Z	5.50	82.57	23.30		65.0	
10175-CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	2.47	66.66	17.85	3.01	150.0	$\pm 9.6 \%$
		Y	2.70	67.34	17.92		150.0	
		Z	2.55	67.36	18.19		150.0	
10176-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.18	72.09	20.28	3.01	150.0	$\pm 9.6 \%$
		Y	3.46	72.22	20.02		150.0	
		Z	3.41	73.46	20.90		150.0	
$\begin{aligned} & 10177- \\ & \mathrm{CAG} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.48	66.79	17.93	3.01	150.0	$\pm 9.6 \%$
		Y	2.72	67.46	18.00		150.0	
		Z	2.57	67.51	18.28		150.0	
$\begin{aligned} & 10178- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16QAM)	X	3.15	71.92	20.18	3.01	150.0	$\pm 9.6 \%$
		Y	3.43	72.05	19.92		150.0	
		Z	3.38	73.25	20.78		150.0	
10179-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.85	69.85	18.61	3.01	150.0	$\pm 9.6 \%$
		Y	3.17	70.44	18.65		150.0	
		Z	3.03	70.94	19.12		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	2.61	67.94	17.25	3.01	150.0	$\pm 9.6 \%$
		Y	2.92	68.79	17.50		150.0	
		Z	2.74	68.78	17.65		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	2.48	66.77	17.93	3.01	150.0	± 9.6 \%
		Y	2.71	67.45	18.00		150.0	
		Z	2.56	67.49	18.28		150.0	
$\begin{aligned} & 10182- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , 16-QAM)	X	3.15	71.89	20.17	3.01	150.0	± 9.6 \%
		Y	3.42	72.03	19.91		150.0	
		Z	3.37	73.22	20.77		150.0	
$\begin{aligned} & 10183- \\ & \text { AAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.60	67.92	17.24	3.01	150.0	$\pm 9.6 \%$
		Y	2.92	68.77	17.49		150.0	
		Z	2.73	68.75	17.64		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.49	66.81	17.95	3.01	150.0	± 9.6 \%
		Y	2.72	67.49	18.02		150.0	
		Z	2.57	67.53	18.30		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 16QAM)	X	3.16	71.97	20.21	3.01	150.0	$\pm 9.6 \%$
		Y	3.44	72.09	19.94		150.0	
		Z	3.39	73.31	20.81		150.0	
10186-AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	2.62	67.98	17.28	3.01	150.0	$\pm 9.6 \%$
		Y	2.93	68.83	17.52		150.0	
		Z	2.74	68.82	17.67		150.0	
10187-CAE	LTE-FDD (SC-FDMA, 1RB, 1.4 MHz, QPSK)	X	2.50	66.88	18.03	3.01	150.0	± 9.6 \%
		Y	2.73	67.53	18.08		150.0	
		Z	2.58	67.61	18.38		150.0	
$\begin{aligned} & 10188- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1RB, 1.4 MHz, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.26	72.60	20.60	3.01	150.0	± 9.6 \%
		Y	3.53	72.62	20.27		150.0	
		Z	3.51	74.04	21.24		150.0	
$10189-$$\mathrm{AAE}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.67	68.35	17.55	3.01	150.0	± 9.6 \%
		Y	2.99	69.18	17.77		150.0	
		Z	2.80	69.24	17.97		150.0	
10193-CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.32	66.50	16.16	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.59	16.14		150.0	
		Z	4.31	66.50	16.05		150.0	
$\begin{array}{\|l\|} \hline 10194- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11 n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.47	66.75	16.31	0.00	150.0	$\pm 9.6 \%$
		Y	4.69	66.90	16.27		150.0	
		Z	4.46	66.77	16.19		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.51	66.78	16.33	0.00	150.0	± 9.6 \%
		Y	4.73	66.93	16.28		150.0	
		Z	4.50	66.80	16.21		150.0	
10196"CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.31	66.51	16.16	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.65	16.16		150.0	
		Z	4.30	66.52	16.05		150.0	
$\begin{aligned} & 10197- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps, 16QAM)	X	4.48	66.77	16.32	0.00	150.0	$\pm 9.6 \%$
		Y	4.70	66.92	16.28		150.0	
		Z	4.47	66.78	16.20		150.0	
$\begin{aligned} & 10198- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps , 64QAM)	X	4.50	66.79	16.33	0.00	150.0	$\pm 9.6 \%$
		Y	4.73	66.95	16.30		150.0	
		Z	4.49	66.81	16.22		150.0	
$\begin{aligned} & 10219- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.26	66.54	16.13	0.00	150.0	± 9.6 \%
		Y	4.47	66.66	16.12		150.0	
		Z	4.25	66.55	16.01		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.47	66.73	16.30	0.00	150.0	± 9.6 \%
		Y	4.70	66.89	16.27		150.0	
		Z	4.46	66.74	16.19		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.51	66.73	16.32	0.00	150.0	± 9.6 \%
		Y	4.74	66.87	16.28		150.0	
		Z	4.51	66.74	16.20		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	4.91	66.89	16.51	0.00	150.0	± 9.6 \%
		Y	5.06	67.05	16.39		150.0	
		Z	4.88	66.88	16.36		150.0	

April 18, 2018

$\begin{aligned} & 10223- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.21	67.18	16.67	0.00	150.0	± 9.6 \%
		Y	5.37	67.24	16.51		150.0	
		Z	5.17	67.14	16.51		150.0	
$\begin{array}{\|l\|} \hline 10224- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	4.95	66.99	16.48	0.00	150.0	± 9.6 \%
		Y	5.11	67.16	16.37		150.0	
		Z	4.91	66.98	16.33		150.0	
$\begin{array}{\|l} \hline 10225- \\ \mathrm{CAB} \\ \hline \end{array}$	UMTS-FDD (HSPA+)	X	2.57	65.87	14.82	0.00	150.0	± 9.6 \%
		Y	2.79	66.10	15.32		150.0	
		Z	2.57	65.89	14.81		150.0	
$\begin{aligned} & \text { 10226- } \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.70	82.73	23.27	6.02	65.0	± 9.6 \%
		Y	15.45	101.64	30.73		65.0	
		Z	9.36	92.89	27.50		65.0	
$\begin{array}{\|l\|} \hline 10227- \\ \text { CAA } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & 64-\mathrm{QAM} \text {) } \end{aligned}$	X	5.51	81.11	22.01	6.02	65.0	± 9.6 \%
		Y	15.16	99.52	29.37		65.0	
		Z	9.33	91.39	26.29		65.0	
$\begin{array}{\|l} \hline 10228- \\ \text { CAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	4.37	80.87	24.58	6.02	65.0	$\pm 9.6 \%$
		Y	8.06	93.39	30.16		65.0	
		Z	5.51	86.54	27.40		65.0	
$\begin{aligned} & 10229- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16 QAM)	X	5.43	81.78	22.83	6.02	65.0	± 9.6 \%
		Y	14.43	100.19	30.19		65.0	
		Z	8.67	91.34	26.89		65.0	
$\begin{array}{\|l} \hline 10230- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	5.22	80.18	21.60	6.02	65.0	$\pm 9.6 \%$
		Y	14.07	98.09	28.85		65.0	
		Z	8.56	89.82	25.70		65.0	
$\begin{aligned} & 10231- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	4.21	80.08	24.19	6.02	65.0	± 9.6 \%
		Y	7.72	92.42	29.75		65.0	
		Z	5.25	85.50	26.93		65.0	
$\begin{array}{\|l} \hline 10232- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	5.42	81.76	22.83	6.02	65.0	± 9.6 \%
		Y	14.40	100.18	30.19		65.0	
		Z	8.65	91.31	26.89		65.0	
$\begin{aligned} & 10233- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64QAM)	X	5.21	80.16	21.59	6.02	65.0	± 9.6 \%
		Y	14.03	98.05	28.84		65.0	
		Z	8.53	89.78	25.69		65.0	
$\begin{aligned} & 10234- \\ & \text { CAD } \\ & \hline \end{aligned}$	```lome-TDD (SC-FDMA, 1 RB, 5 MHz,```	X	4.09	79.41	23.80	6.02	65.0	± 9.6 \%
		Y	7.46	91.57	29.34		65.0	
		Z	5.06	84.64	26.49		65.0	
$\begin{aligned} & 10235- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.43	81.79	22.84	6.02	65.0	± 9.6 \%
		Y	14.42	100.22	30.20		65.0	
		Z	8.66	91.36	26.90		65.0	
$\begin{aligned} & 10236- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	5.25	80.28	21.63	6.02	65.0	± 9.6 \%
		Y	14.26	98.30	28.91		65.0	
		Z	8.64	89.96	25.74		65.0	
$\begin{aligned} & 10237- \\ & \text { CAD } \\ & \hline \end{aligned}$	```L.TE-TDD (SC-FDMA, 1RB, 10 MHz, QPSK)```	X	4.21	80.11	24.20	6.02	65.0	± 9.6 \%
		Y	7.73	92.49	29.78		65.0	
		Z	5.25	85.54	26.95		65.0	
$\begin{aligned} & 10238- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.41	81.74	22.82	6.02	65.0	± 9.6 \%
		Y	14.37	100.15	30.18		65.0	
		Z	8.63	91.28	26.88		65.0	

$\begin{aligned} & 10239- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.19	80.13	21.58	6.02	65.0	± 9.6 \%
		Y	13.97	98.01	28.83		65.0	
		Z	8.50	89.73	25.67		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	4.20	80.08	24.19	6.02	65.0	± 9.6 \%
		Y	7.71	92.44	29.76		65.0	
		Z	5.24	85.50	26.94		65.0	
10241 CAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	6.28	77.75	23.74	6.98	65.0	$\pm 9.6 \%$
		Y	7.17	79.66	25.20		65.0	
		Z	6.62	79.11	24.64		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 1.4 MHz, 64-QAM)	X	5.61	75.51	22.71	6.98	65.0	± 9.6 \%
		Y	7.01	79.22	24.95		65.0	
		Z	6.04	77.21	23.74		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	4.77	72.80	22.43	6.98	65.0	± 9.6 \%
		Y	5.72	75.84	24.40		65.0	
		Z	4.99	73.88	23.19		65.0	
$\begin{aligned} & 10244- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.08	66.71	12.88	3.98	65.0	± 9.6 \%
		Y	5.65	76.51	19.16		65.0	
		Z	3.79	70.31	15.20		65.0	
$\begin{array}{\|l\|} \hline 10245- \\ \text { CAB } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.05	66.35	12.65	3.98	65.0	± 9.6 \%
		Y	5.47	75.72	18.77		65.0	
		Z	3.68	69.62	14.83		65.0	
$\begin{aligned} & 10246- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	2.73	68.50	14.10	3.98	65.0	± 9.6 \%
		Y	6.90	84.10	22.59		65.0	
		Z	3.38	72.30	16.31		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	3.32	68.16	14.83	3.98	65.0	± 9.6 \%
		Y	5.00	75.29	19.75		65.0	
		Z	3.63	70.11	16.18		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	3.35	67.83	14.68	3.98	65.0	± 9.6 \%
		Y	4.95	74.49	19.36		65.0	
		Z	3.62	69.55	15.90		65.0	
$\begin{aligned} & 10249- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	3.90	73.79	17.79	3.98	65.0	± 9.6 \%
		Y	7.87	86.63	24.46		65.0	
		Z	4.87	78.17	20.05		65.0	
$\begin{aligned} & 10250- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHZ}$,,$~$ 16-QAM)	X	4.46	72.43	19.10	3.98	65.0	± 9.6 \%
		Y	5.61	76.63	21.92		65.0	
		Z	4.70	73.89	20.05		65.0	
$\begin{array}{\|l} \hline 10251- \\ \text { CAD } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	4.27	70.46	17.79	3.98	65.0	$\pm 9.6 \%$
		Y	5.36	74.41	20.57		65.0	
		Z	4.43	71.53	18.56		65.0	
$\begin{aligned} & 10252- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	4.80	76.28	20.36	3.98	65.0	± 9.6 \%
		Y	7.12	83.67	24.31		65.0	
		Z	5.40	79.04	21.81		65.0	
$\begin{array}{\|l\|} \hline 10253- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	4.54	70.25	18.29	3.98	65.0	± 9.6 \%
		Y	5.37	73.18	20.35		65.0	
		Z	4.62	70.94	18.80		65.0	
$\begin{aligned} & \text { 10254- } \\ & \hline \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	4.85	71.22	19.07	3.98	65.0	± 9.6 \%
		Y	5.69	74.00	21.02		65.0	
		Z	4.94	71.96	19.60		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	4.83	74.07	19.88	3.98	65.0	± 9.6 \%
		Y	6.20	78.60	22.49		65.0	
		Z	5.10	75.57	20.75		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.29	63.25	9.85	3.98	65.0	± 9.6 \%
		Y	4.33	72.34	16.30		65.0	
		Z	2.61	65.28	11.48		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	2.28	62.96	9.60	3.98	65.0	$\pm 9.6 \%$
		Y	4.16	71.35	15.76		65.0	
		Z	2.56	64.75	11.10		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	1.96	64.07	10.75	3.98	65.0	± 9.6 \%
		Y	4.97	78.32	19.50		65.0	
		Z	2.22	66.21	12.33		65.0	
$\begin{array}{\|l} \hline 10259- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM)	X	3.77	69.86	16.44	3.98	65.0	± 9.6 \%
		Y	5.26	75.82	20.54		65.0	
		Z	4.07	71.70	17.67		65.0	
$\begin{array}{\|l} \hline 10260- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	3.81	69.66	16.35	3.98	65.0	± 9.6 \%
		Y	5.26	75.42	20.36		65.0	
		Z	4.10	71.41	17.53		65.0	
10261-CAB	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	4.13	74.31	18.63	3.98	65.0	± 9.6 \%
		Y	6.91	83.89	23.89		65.0	
		Z	4.85	77.73	20.46		65.0	
$\begin{array}{\|l} \hline 10262- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 16-QAM)	X	4.45	72.36	19.04	3.98	65.0	± 9.6 \%
		Y	5.60	76.58	21.88		65.0	
		Z	4.68	73.81	19.99		65.0	
$\begin{array}{\|l} \hline 10263- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	4.26	70.44	17.79	3.98	65.0	± 9.6 \%
		Y	5.34	74.38	20.56		65.0	
		Z	4.42	71.51	18.55		65.0	
$\begin{array}{\|l\|} \hline 10264- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	4.75	76.08	20.25	3.98	65.0	$\pm 9.6 \%$
		Y	7.04	83.44	24.20		65.0	
		Z	5.33	78.79	21.68		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	4.60	70.61	18.56	3.98	65.0	± 9.6 \%
		Y	5.50	73.80	20.64		65.0	
		Z	4.69	71.34	19.07		65.0	
$\begin{aligned} & \text { 10266- } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-Q A M) \end{aligned}$	X	4.95	71.71	19.45	3.98	65.0	± 9.6 \%
		Y	5.83	74.64	21.36		65.0	
		Z	5.05	72.48	19.97		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \text { MHz, QPSK) } \end{aligned}$	X	5.01	74.52	19.91	3.98	65.0	± 9.6 \%
		Y	6.63	79.66	22.68		65.0	
		Z	5.35	76.22	20.84		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16$-QAM)	X	5.27	70.89	19.25	3.98	65.0	± 9.6 \%
		Y	6.07	73.43	20.81		65.0	
		Z	5.33	71.43	19.60		65.0	
$\begin{aligned} & \hline 10269- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 64$-QAM)	X	5.29	70.58	19.15	3.98	65.0	± 9.6 \%
		Y	6.04	72.94	20.64		65.0	
		Z	5.34	71.06	19.47		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK	X	5.17	72.58	19.33	3.98	65.0	$\pm 9.6 \%$
		Y	6.28	76.09	21.29		65.0	
		Z	5.35	73.62	19.93		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.41	66.43	14.82	0.00	150.0	$\pm 9.6 \%$
		Y	2.58	66.48	15.24		150.0	
		Z	2.39	66.38	14.76		150.0	
$\begin{aligned} & 10275- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.45	67.76	15.04	0.00	150.0	± 9.6 \%
		Y	1.61	67.98	15.58		150.0	
		Z	1.42	67.56	14.85		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	1.74	59.75	5.31	9.03	50.0	± 9.6 \%
		Y	1.81	61.19	6.71		50.0	
		Z	1.73	59.88	5.41		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	2.71	64.14	10.09	9.03	50.0	± 9.6 \%
		Y	10.58	86.01	20.92		50.0	
		Z	2.95	65.66	11.11		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	2.77	64.34	10.25	9.03	50.0	± 9.6 \%
		Y	10.86	86.33	21.10		50.0	
		Z	3.03	65.92	11.30		50.0	
$\begin{aligned} & 10290- \\ & \mathrm{AAB} \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	0.78	62.91	9.04	0.00	150.0	± 9.6 \%
		Y	1.44	68.67	13.91		150.0	
		Z	0.82	63.50	9.52		150.0	
$\begin{aligned} & 10291- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	0.44	60.90	7.41	0.00	150.0	$\pm 9.6 \%$
		Y	0.81	65.70	12.35		150.0	
		Z	0.46	61.22	7.73		150.0	
$\begin{aligned} & 10292- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	0.52	62.90	8.81	0.00	150.0	$\pm 9.6 \%$
		Y	1.08	70.34	14.96		150.0	
		Z	0.54	63.47	9.26		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	0.85	67.98	11.75	0.00	150.0	± 9.6 \%
		Y	1.81	77.73	18.47		150.0	
		Z	0.93	69.19	12.44		150.0	
$\begin{aligned} & 10295- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.59	83.36	20.91	9.03	50.0	$\pm 9.6 \%$
		Y	13.63	95.28	28.15		50.0	
		Z	12.33	87.48	22.99		50.0	
$\begin{aligned} & 10297- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	2.52	69.36	16.49	0.00	150.0	$\pm 9.6 \%$
		Y	2.75	69.70	16.61		150.0	
		Z	2.51	69.33	16.32		150.0	
$\begin{aligned} & 10298- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	1.02	63.71	10.46	0.00	150.0	$\pm 9.6 \%$
		Y	1.56	67.65	14.07		150.0	
		Z	1.06	64.21	10.86		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	1.41	63.10	9.49	0.00	150.0	$\pm 9.6 \%$
		Y	2.20	67.48	13.20		150.0	
		Z	1.66	65.04	10.89		150.0	
$\begin{aligned} & 10300- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	1.19	60.99	7.64	0.00	150.0	± 9.6 \%
		Y	1.75	63.96	10.73		150.0	
		Z	1.30	61.89	8.49		150.0	
$\begin{aligned} & 10301- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5 ms , 10 MHz, QPSK, PUSC)	X	4.40	65.21	17.25	4.17	50.0	$\pm 9.6 \%$
		Y	4.79	65.64	17.57		50.0	
		Z	4.51	65.62	17.36		50.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz , QPSK, PUSC, 3 CTRL symbols)	X	4.89	66.01	18.10	4.96	50.0	± 9.6 \%
		Y	5.23	66.10	18.21		50.0	
		Z	4.90	65.76	17.79		50.0	

$10303-$ AAA	IEEE 802.16 e WIMAX ($31: 15,5 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.65	65.68	17.92	4.96	50.0	± 9.6 \%
		Y	4.97	65.72	18.04		50.0	
		Z	4.66	65.38	17.59		50.0	
10304- AAA	IEEE 802.16e WiMAX ($29: 18$, 5 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.43	65.21	17.19	4.17	50.0	$\pm 9.6 \%$
		Y	4.78	65.59	17.51		50.0	
		Z	4.47	65.30	17.12		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	4.15	67.54	18.96	6.02	35.0	$\pm 9.6 \%$
		Y	4.30	67.06	19.45		35.0	
		Z	4.22	67.78	19.08		35.0	
$\begin{aligned} & 10306- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbols)	X	4.43	66.43	18.72	6.02	35.0	± 9.6 \%
		Y	4.66	66.30	19.12		35.0	
		Z	4.49	66.64	18.78		35.0	
10307- AAA	IEEE 802.16 e WiMAX ($29: 18,10 \mathrm{~ms}$, 10 MHz, QPSK, PUSC, 18 symbols)	X	4.32	66.52	18.64	6.02	35.0	$\pm 9.6 \%$
		Y	4.55	66.42	19.07		35.0	
		Z	4.38	66.74	18.71		35.0	
$\begin{aligned} & \text { 10308- } \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.30	66.75	18.79	6.02	35.0	± 9.6 \%
		Y	4.52	66.60	19.20		35.0	
		Z	4.37	66.98	18.86		35.0	
10309- AAA	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	4.46	66.55	18.83	6.02	35.0	± 9.6 \%
		Y	4.72	66.54	19.28		35.0	
		Z	4.52	66.77	18.90		35.0	
$\begin{array}{\|l} \hline 10310- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz, QPSK, AMC $2 \times 3,18$ symbols)	X	4.39	66.51	18.71	6.02	35.0	$\pm 9.6 \%$
		Y	4.60	66.34	19.08		35.0	
		Z	4.45	66.72	18.77		35.0	
10311" AAC	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	2.88	68.46	16.13	0.00	150.0	± 9.6 \%
		Y	3.11	68.97	16.25		150.0	
		Z	2.86	68.50	15.98		150.0	
10313-	IDEN 1:3	X	1.87	66.02	12.37	6.99	70.0	± 9.6 \%
		Y	5.52	82.21	20.17		70.0	
		Z	2.06	67.90	13.38		70.0	
$\begin{aligned} & \text { 10314- } \\ & \text { AAA } \end{aligned}$	iDEN 1:6	X	2.66	70.48	16.99	10.00	30.0	± 9.6 \%
		Y	9.77	95.91	27.98		30.0	
		Z	4.14	77.84	20.07		30.0	
$\begin{aligned} & 10315- \\ & \text { AAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.95	63.27	14.86	0.17	150.0	± 9.6 \%
		Y	1.06	63.68	15.21		150.0	
		Z	0.93	63.28	14.78		150.0	
$\begin{aligned} & 10316- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.35	66.42	16.23	0.17	150.0	± 9.6 \%
		Y	4.58	66.66	16.32		150.0	
		Z	4.34	66.49	16.17		150.0	
$\begin{aligned} & 10317- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.35	66.42	16.23	0.17	150.0	± 9.6 \%
		Y	4.58	66.66	16.32		150.0	
		Z	4.34	66.49	16.17		150.0	
$\begin{aligned} & 10400- \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.44	66.78	16.30	0.00	150.0	± 9.6 \%
		Y	4.68	66.96	16.27		150.0	
		Z	4.43	66.80	16.17		150.0	
$\begin{aligned} & 10401 ~ \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99 pc duty cycle)	X	5.15	66.76	16.42	0.00	150.0	± 9.6 \%
		Y	5.39	67.16	16.44		150.0	
		Z	5.17	66.92	16.36		150.0	

$\begin{aligned} & \text { 10402- } \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, $99 p \mathrm{c}$ duty cycle)	X	5.46	67.17	16.51	0.00	150.0	± 9.6 \%
		Y	5.63	67.44	16.43		150.0	
		Z	5.43	67.19	16.37		150.0	
$\begin{aligned} & 10403- \\ & A A B \end{aligned}$	CDMA2000 (1xEV-DO, Rev. 0)	X	0.78	62.91	9.04	0.00	115.0	± 9.6 \%
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
$\begin{aligned} & 10404- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. A)	X	0.78	62.91	9.04	0.00	115.0	$\pm 9.6 \%$
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	119.25	28.40	0.00	100.0	± 9.6 \%
		Y	9.50	91.59	22.98		100.0	
		Z	100.00	122.00	29,77		100.0	
$\begin{aligned} & 10410- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	3.12	77.42	16.90	3.23	80.0	± 9.6 \%
		Y	100.00	127.40	32.46		80.0	
		Z	100.00	125.01	30.73		80.0	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, $99 p$ duty cycle)	X	0.90	62.74	14.48	0.00	150.0	± 9.6 \%
		Y	1.00	62.96	14.62		150.0	
		Z	0.88	62.66	14.28		150.0	
10416AAA	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.32	66.51	16.25	0.00	150.0	± 9.6 \%
		Y	4.52	66.62	16.21		150.0	
		Z	4.30	66.52	16.13		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.32	66.51	16.25	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.62	16.21		150.0	
		Z	4.30	66.52	16.13		150.0	
$10418-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle, Long preambule)	X	4.31	66.71	16.30	0.00	150.0	± 9.6 \%
		Y	4.51	66.79	16.23		150.0	
		Z	4.30	66.71	16.18		150.0	
$10419-$AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99 pc duty cycle, Short preambule)	X	4.33	66.64	16.29	0.00	150.0	$\pm 9.6 \%$
		Y	4.53	66.73	16.23		150.0	
		Z	4.32	66.65	16.17		150.0	
10422-AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.44	66.62	16.30	0.00	150.0	± 9.6 \%
		Y	4.65	66.73	16.25		150.0	
		Z	4.43	66.63	16.18		150.0	
$10423-$ AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.57	66.89	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	4.81	67.05	16.36		150.0	
		Z	4.56	66.90	16.28		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64 -QAM)	X	4.50	66.84	16.37	0.00	150.0	± 9.6 \%
		Y	4.73	67.00	16.33		150.0	
		Z	4.49	66.86	16.25		150.0	
$\begin{aligned} & 10425- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	X	5.17	67.18	16.65	0.00	150.0	± 9.6 \%
		Y	5.33	67.30	16.51		150.0	
		Z	5.13	67.14	16.48		150.0	
$\begin{aligned} & 10426- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.23	67.40	16.76	0.00	150.0	± 9.6 \%
		Y	5.34	67.33	16.52		150.0	
		Z	5.16	67.27	16.54		150.0	

$\begin{aligned} & 10427- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.16	67.07	16.58	0,00	150.0	± 9.6 \%
		Y	5.35	67.30	16.51		150.0	
		Z	5.13	67.07	16.44		150.0	
$\begin{aligned} & 10430- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 5 MHz , E-TM 3.1)	X	4.20	72.13	18.43	0.00	150.0	± 9.6 \%
		Y	4.22	70.70	18.10		150.0	
		Z	4.22	72.19	18.46		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	3.93	67.10	16.09	0.00	150.0	$\pm 9.6 \%$
		Y	4.20	67.18	16.20		150.0	
		Z	3.93	67.10	16.01		150.0	
$\begin{aligned} & 10432- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, $15 \mathrm{MHz}, \mathrm{E}$-TM 3.1)	X	4.26	66.93	16.28	0.00	150.0	± 9.6 \%
		Y	4.50	67.05	16.28		150.0	
		Z	4.25	66.94	16.17		150.0	
10433- $A A B$	LTE-FDD (OFDMA, $20 \mathrm{MHz}, \mathrm{E}$-TM 3.1)	X	4.52	66.87	16.39	0.00	150.0	± 9.6 \%
		Y	4.75	67.03	16.35		150.0	
		Z	4.51	66.89	16.27		150.0	
$\begin{aligned} & 10434- \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.28	72.84	18.10	0.00	150.0	± 9.6 \%
		Y	4.33	71.56	18.07		150.0	
		Z	4.34	73.06	18.24		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.96	76.73	16.60	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	127.17	32.36		80.0	
		Z	100.00	124.69	30.58		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.15	66.77	14.81	0.00	150.0	$\pm 9.6 \%$
		Y	3.49	67.18	15.50		150.0	
		Z	3.17	66.84	14.85		150.0	
$\begin{aligned} & 10448- \\ & A A B \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	3.79	66.88	15.96	0.00	150.0	± 9.6 \%
		Y	4.04	66.96	16.06		150.0	
		Z	3.79	66.88	15.87		150.0	
$\begin{aligned} & \text { 10449- } \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	4.09	66.75	16.17	0.00	150.0	± 9.6 \%
		Y	4.31	66.88	16.18		150.0	
		Z	4.08	66.77	16.07		150.0	
$\begin{aligned} & 10450- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.31	66.64	16.24	0.00	150.0	$\pm 9.6 \%$
		Y	4.51	66.80	16.21		150.0	
		Z	4.30	66.66	16.12		150.0	
$\begin{aligned} & 10451- \\ & \text { AAA } \\ & \hline \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44\%)	X	2.94	66.45	13.98	0.00	150.0	$\pm 9.6 \%$
		Y	3.38	67.33	15.10		150.0	
		Z	2.98	66.61	14.10		150.0	
$\begin{aligned} & 10456- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, 64$-QAM, 99 pc duty cycle)	X	6.17	67.89	16.91	0.00	150.0	± 9.6 \%
		Y	6.20	67.84	16.66		150.0	
		Z	6.10	67.86	16.74		150.0	
10457 AAA	UMTS-FDD (DC-HSDPA)	X	3.65	65.21	15.97	0.00	150.0	$\pm 9.6 \%$
		Y	3.78	65.27	15.92		150.0	
		Z	3.63	65.21	15.85		150.0	
$\begin{array}{\|l\|} \hline 10458- \\ \text { AAA } \\ \hline \end{array}$	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev, B, } 2 \\ & \text { carriers) } \end{aligned}$	X	3.63	70.67	16.50	0.00	150.0	$\pm 9.6 \%$
		Y	3.97	70.83	17.45		150.0	
		Z	3.75	71.23	16.87		150.0	
$\begin{aligned} & \text { 10459- } \\ & \text { AAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 3 \\ & \text { carriers) } \end{aligned}$	X	4.91	69.28	18.19	0.00	150.0	± 9.6 \%
		Y	5.06	68.34	18.09		150.0	
		Z	4.97	69.44	18.31		150.0	

$10460-$ AAA	UMTS-FDD (WCDMA, AMR)	X	0.82	68.91	15.77	0.00	150.0	± 9.6 \%
		Y	0.90	68.29	16.15		150.0	
		Z	0.77	68.38	15.37		150.0	
10461AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.32	75.39	17.14	3.29	80.0	± 9.6 \%
		Y	100.00	131.59	34.49		80.0	
		Z	100.00	129.59	32.92		80.0	
$\begin{array}{\|l} \hline 10462- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.09	3.23	80.0	± 9.6 \%
		Y	4.63	77.57	16.00		80.0	
		Z	0.74	60.00	7.79		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.50	3.23	80.0	± 9.6 \%
		Y	1.49	65.34	10.90		80.0	
		Z	0.76	60.00	7.16		80.0	
$10464-$AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.48	69.57	14.21	3.23	80.0	± 9.6 \%
		Y	100.00	128.72	32.98		80.0	
		Z	100.00	125.35	30.81		80.0	
$\begin{aligned} & 10465- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.02	3.23	80.0	± 9.6 \%
		Y	2.92	72.75	14.31		80.0	
		Z	0.74	60.00	7.72		80.0	
$\begin{aligned} & 10466- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.46	3.23	80.0	$\pm 9.6 \%$
		Y	1.30	63.97	10.25		80.0	
		Z	0.76	60.00	7.11		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL. Subframe $=2,3,4,7,8,9$)	X	1.57	70.35	14.56	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	129.06	33.13		80.0	
		Z	100.00	125.82	31.02		80.0	
$\begin{aligned} & 10468- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.04	3.23	80.0	$\pm 9.6 \%$
		Y	3.25	73.90	14.73		80.0	
		Z	0.74	60.00	7.74		80.0	
$\begin{aligned} & 10469- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.46	3.23	80.0	± 9.6 \%
		Y	1.30	64.00	10.26		80.0	
		Z	0.76	60.00	7.11		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.56	70.33	14.55	3.23	80.0	± 9.6 \%
		Y	100.00	129.11	33.14		80.0	
		Z	100.00	125.84	31.01		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 16 QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.03	3.23	80.0	± 9.6 \%
		Y	3.21	73.75	14.66		80.0	
		Z	0.74	60.00	7.73		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.44	3.23	80.0	± 9.6 \%
		Y	1.29	63.92	10.21		80.0	
		Z	0.76	60.00	7.09		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.56	70.28	14.52	3.23	80.0	± 9.6 \%
		Y	100.00	129.06	33.12		80.0	
		Z	100.00	125.78	30.99		80.0	
$\begin{aligned} & \hline 10474- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 16 QAM, UL. Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.02	3.23	80.0	$\pm 9.6 \%$
		Y	3.17	73.64	14.62		80.0	
		Z	0.74	60.00	7.73		80.0	
$10475-$ AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.78	60.00	6.45	3.23	80.0	± 9.6 \%
		Y	1.29	63.89	10.20		80.0	
		Z	0.76	60.00	7.09		80.0	

10477 AAC	LTE-TDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, 16$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.00	3.23	80.0	$\pm 9.6 \%$
		Y	2.91	72.72	14.27		80.0	
		Z	0.74	60.00	7.70		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.43	3.23	80.0	± 9.6 \%
		Y	1.28	63.82	10.16		80.0	
		Z	0.76	60.00	7.08		80.0	± 9.6 \%
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.36	78.87	19.25	3.23	80.0	
		Y	6.72	85.93	23.37		80.0	
10480-AAA		Z	31.53	108.71	28.80		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.01	65.44	11.92	3.23	80.0	
		Y	7.23	81.86	20.03		80.0	$\pm 9.6 \%$
10481- AAA		Z	6.32	79.43	17.87		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.64	62.93	10.36	3.23	80.0	
		Y	5.72	78.02	18.32		80.0	± 9.6 \%
10482- AAA		Z	3.41	71.49	14.62		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.29	62.41	10.80	2.23	80.0	
		Y	3.64	76.21	18.93		80.0	± 9.6 \%
10483-AAA		Z	1.66	65.83	12.91		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.52	61.14	9.55	2.23	80.0	
		Y	4.09	73.43	17.03		80.0	± 9.6 \%
		Z	2.32	66.35	12.70		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.52	60.89	9.42	2.23	80.0	
		Y	3.80	72.18	16.53		80.0	± 9.6 \%
10485-$A A C$		Z	2.19	65.41	12.27		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.96	67.14	14.58	2.23 .	80.0	
		Y	3.64	76.20	19.95		80.0	± 9.6 \%
		Z	2.47	70.93	16.63		80.0	
$\begin{aligned} & 10486- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.93	63.65	12.21	2.23	80.0	
		Y	3.34	71.00	17.20		80.0	± 9.6 \%
		Z	2.25	65.99	13.71		80.0	
$\begin{array}{\|l\|} \hline 10487- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.95	63.41	12.07	2.23	80.0	
		Y	3.31	70.45	16.94		80.0	
		Z	2.25	65.61	13.50		80.0	± 9.6 \%
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.57	68.84	16.72	2.23	80.0	
		Y	3.64	73.87	19.67		80.0	± 9.6 \%
		Z	2.88	71.05	17.92		80.0	
10489- $A A C$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16 -QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.71	66.42	15.54	2.23	80.0	
		Y	3.41	69.51	17.78		80.0	
		Z	2.89	67.77	16.40		80.0	± 9.6 \%
$\begin{aligned} & \hline 10490- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.80	66.35	15.53	2.23	80.0	
		Y	3.50	69.28	17.68		80.0	
		Z	2.97	67.63	16.34		80.0	± 9.6 \%
$10491 \text { - }$ AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.93	68.13	16.75	2.23	80.0	
		Y	3.79	71.78	18.88		80.0	
		Z	3.14	69.61	17.57		80.0	
10492-AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.14	66.26	16.05	2.23	80.0	± 9.6 \%
		Y	3.72	68.46	17.58		80.0	
		Z	3.26	67.14	16.60		80.0	

$\begin{array}{\|l\|} \hline 10493- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.20	66.19	16.02	2.23	80.0	± 9.6 \%
		Y	3.78	68.30	17.52		80.0	
		Z	3.32	67.03	16.55		80.0	
$\begin{array}{\|l} \hline 10494- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.09	69.16	17.09	2.23	80.0	± 9.6 \%
		Y	4.18	73.66	19.49		80.0	
		Z	3.38	70.96	18.01		80.0	
10495-AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.16	66.52	16.26	2.23	80.0	± 9.6 \%
		Y	3.75	68.86	17.79		80.0	
		Z	3.28	67.44	16.81		80.0	
10496-AAC	L.TE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL. Subframe $=2,3,4,7,8,9$)	X	3.25	66.39	16.25	2.23	80.0	$\pm 9.6 \%$
		Y	3.82	68.54	17.67		80.0	
		Z	3.36	67.23	16.76		80.0	
10497AAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	0.98	60.00	8.08	2.23	80.0	± 9.6 \%
		Y	2.67	71.65	16.05		80.0	
		Z	0.96	60.00	8.56		80.0	
$\begin{aligned} & 10498- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.18	60.00	7.01	2.23	80.0	$\pm 9.6 \%$
		Y	1.73	63.28	11.10		80.0	
		Z	1.15	60.00	7.42		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.20	60.00	6.87	2.23	80.0	$\pm 9.6 \%$
		Y	1.65	62.50	10.55		80.0	
		Z	1.17	60.00	7.27		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.22	67.95	15.51	2.23	80.0	± 9.6 \%
		Y	3.54	74.72	19.65		80.0	
		Z	2.63	70.95	17.16		80.0	
$\begin{aligned} & \text { 10501- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM, UL. Subframe $=2,3,4,7,8,9$)	X	2.29	65.10	13.66	2.23	80.0	± 9.6 \%
		Y	3.38	70.39	17.41		80.0	
		Z	2.58	67.13	14.94		80.0	
$\begin{aligned} & \text { 10502~ } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.32	64.94	13.52	2.23	80.0	$\pm 9.6 \%$
		Y	3.43	70.21	17.27		80.0	
		Z	2.61	66.92	14.77		80.0	
10503- AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.54	68.66	16.62	2.23	80.0	± 9.6 \%
		Y	3.60	73.66	19.57		80.0	
		Z	2.84	70.82	17.80		80.0	
10504-$A A C$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.69	66.32	15.48	2.23	80.0	± 9.6 \%
		Y	3.40	69.42	17.73		80.0	
		Z	2.87	67.65	16.32		80.0	
$\begin{aligned} & 10505- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.78	66.26	15.46	2.23	80.0	± 9.6 \%
		Y	3.48	69.19	17.63		80.0	
		Z	2.96	67.52	16.27		80.0	
$\begin{array}{\|l} \hline 10506- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.07	69.03	17.01	2.23	80.0	± 9.6 \%
		Y	4.15	73.51	19.42		80.0	
		Z	3.35	70.80	17.93		80.0	
$\begin{aligned} & 10507- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.15	66.46	16.22	2.23	80.0	± 9.6 \%
		Y	3.73	68.80	17.76		80.0	
		Z	3.26	67.37	16.77		80.0	

April 18, 2018

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.24	66.32	16.20	2.23	80.0	± 9.6 \%
		Y	3.81	68.47	17.63		80.0	
		Z	3.35	67.15	16.71		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.51	68.36	16.83	2.23	80.0	$\pm 9.6 \%$
		Y	4.41	71.84	18.68		80.0	
10510- AAC		Z	3.72	69.67	17.51		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.65	66.40	16.44	2.23	80.0	
		Y	4.20	68.42	17.64		80.0	± 9.6 \%
10511- AAC		Z	3.74	67.11	16.83		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.72	66.27	16.42	2.23	80.0	
		Y	4.25	68.13	17.55		80.0	± 9.6 \%
10512- AAC		Z	3.81	66.92	16.79		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.53	69.27	17.06	2.23	80.0	
		Y	4.71	73.81	19.35		80.0	± 9.6 \%
10513- AAC		Z	3.83	70.97	17.89		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.53	66.49	16.47	2.23	80.0	
		Y	4.09	68.73	17.78		80.0	± 9.6 \%
$\begin{aligned} & 10514- \\ & \text { AAC } \end{aligned}$		Z	3.62	67.27	16.91		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.58	66.23	16.41	2.23	80.0	
		Y	4.11	68.25	17.62		80.0	± 9.6 \%
		Z	3.67	66.92	16.81		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.86	62.95	14.53	0.00	150.0	
		Y	0.96	63.14	14.68		150.0	± 9.6 \%
		2	0.84	62.85	14.32		150.0	
$\begin{array}{\|l} \text { 10516- } \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.68	75.09	17.93	0.00	150.0	
		Y	0.60	70.79	17.39		150.0	± 9.6 \%
		Z	0.59	73.58	17.02		150.0	
10517- $A A A$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.71	65.13	15.13	0.00	150.0	
		Y	0.81	65.08	15.31		150.0	
$\begin{aligned} & 10518- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	0.69	64.87	14.81		150.0	± 9.6 \%
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.31	66.61	16.23	0.00	150.0	
		Y	4.51	66.70	16.19		150.0	± 9.6 \%
		Z	4.30	66.61	16.12		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.46	66.79	16.33	0.00	150.0	
		Y	4.69	66.93	16.31		150.0	
		Z	4.45	66.80	16.22		150.0	± 9.6 \%
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.32	66.72	16.24	0.00	150.0	
		Y	4.55	66.89	16.23		150.0	
		Z	4.31	66.74	16.13		150.0	± 9.6 \%
$\begin{aligned} & 10521- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.25	66.68	16.22	0.00	150.0	
		Y	4.48	66.88	16.21		150.0	
		Z	4.24	66.71	16.11		150.0	
$\begin{aligned} & 10522- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.30	66.84	16.33	0.00	150.0	± 9.6 \%
		Y	4.54	66.98	16.30		150.0	
		Z	4.30	66.85	16.22		150.0	

$\begin{aligned} & 10523- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.22	66.79	16.22	0.00	150.0	± 9.6 \%
		Y	4.42	66.85	16.15		150.0	
		Z	4.21	66.79	16.10		150.0	
$\begin{aligned} & 10524- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.25	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.48	66.90	16.27		150.0	
		Z	4.24	66.79	16.19		150.0	
$\begin{aligned} & 10525- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.28	65.85	15.93	0.00	150.0	± 9.6 \%
		Y	4.47	65.95	15.86		150.0	
		Z	4.27	65.86	15.81		150.0	
$\begin{aligned} & 10526- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	4.41	66.15	16.05	0.00	150.0	$\pm 9.6 \%$
		Y	4.64	66.31	16.00		150.0	
		Z	4.40	66.17	15.93		150.0	
$\begin{aligned} & 10527- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99 pc duty cycle)	X	4.34	66.11	15.98	0.00	150.0	± 9.6 \%
		Y	4.56	66.27	15.95		150.0	
		Z	4.33	66.13	15.87		150.0	
$\begin{aligned} & 10528- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11 ac WiFi $(20 \mathrm{MHz}, \mathrm{MCS} 3$, 99pc duty cycle)	X	4.35	66.13	16.02	0.00	150.0	$\pm 9.6 \%$
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.35	66.13	16.02	0.00	150.0	± 9.6 \%
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
$\begin{aligned} & 10531- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, $99 p c$ duty cycle)	X	4.32	66.16	16.00	0.00	150.0	$\pm 9.6 \%$
		Y	4.57	66.39	15.99		150.0	
		Z	4.31	66.19	15.89		150.0	
$\begin{aligned} & 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.20	66.01	15.92	0.00	150.0	$\pm 9.6 \%$
		Y	4.43	66.24	15.92		150.0	
		Z	4.19	66.04	15.81		150.0	
$\begin{aligned} & \hline 10533- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.36	66.21	16.02	0.00	150.0	$\pm 9.6 \%$
		Y	4.59	66.34	15.97		150.0	
		Z	4.35	66.22	15.90		150.0	
$\begin{aligned} & 10534- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS0, 99 pc duty cycle)	X	4.94	66.18	16.13	0.00	150.0	$\pm 9.6 \%$
		Y	5.11	66.38	16.03		150.0	
		Z	4.91	66.20	15.99		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99 pc duty cycle)	X	4.99	66.35	16.21	0.00	150.0	$\pm 9.6 \%$
		Y	5.18	66.56	16.12		150.0	
		Z	4.97	66.36	16.07		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99 pc duty cycle)	X	4.87	66.32	16.17	0.00	150.0	± 9.6 \%
		Y	5.05	66.51	16.07		150.0	
		Z	4.85	66.34	16.04		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS} 3$, 99 pc duty cycle)	X	4.94	66.34	16.18	0.00	150.0	$\pm 9.6 \%$
		Y	5.10	66.48	16.06		150.0	
		Z	4.91	66.31	16.03		150.0	
$\begin{aligned} & 10538- \\ & A A B \\ & \hline \end{aligned}$	```IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)```	X	5.01	66.30	16.21	0.00	150.0	± 9.6 \%
		Y	5.19	66.49	16.11		150.0	
		Z	4.98	66.30	16.06		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.93	66.22	16.18	0.00	150.0	± 9.6 \%
		Y	5.13	66.52	16.13		150.0	
		Z	4.91	66.26	16.06		150.0	

April 18, 2018

$\begin{aligned} & 10541- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	4.90	66.09	16.10	0.00	150.0	± 9.6 \%
		Y	5.10	66.38	16.06		150.0	
		Z	4.88	66.13	15.98		150.0	
$\begin{aligned} & \hline 10542- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 99 pc duty cycle)	X	5.07	66.24	16.19	0.00	150.0	± 9.6 \%
		Y	5.25	66.45	16.11		150.0	
		Z	5.04	66.26	16.06		150.0	
$\begin{aligned} & \text { 10543- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.16	66.37	16.29	0.00	150.0	± 9.6 \%
		Y	5.33	66.48	16.14		150.0	
		Z	5.12	66.32	16.12		150.0	
$\begin{aligned} & \hline 10544- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 99 pc duty cycle)	X	5.28	66.21	16.10	0.00	150.0	$\pm 9.6 \%$
		Y	5.42	66.50	16.03		150.0	
		Z	5.25	66.26	15.98		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac Wifi (80 MHz , MCS1. 99pc duty cycle)	X	5.51	66.84	16.38	0.00	150.0	± 9.6 \%
		Y	5.61	66.90	16.18		150.0	
		Z	5.45	66.77	16.19		150.0	
$\begin{array}{\|l\|} \hline 10546- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (80 MHz , MCS2, 99 pc duty cycle)	X	5.32	66.36	16.14	0.00	150.0	± 9.6 \%
		Y	5.48	66.70	16.10		150.0	
		Z	5.29	66.40	16.02		150.0	
$\begin{array}{\|l\|} \hline 10547- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11ac WiFi (80 MHz , MCS3, 99pc duty cycle)	X	5.43	66.58	16.25	0.00	150.0	± 9.6 \%
		Y	5.55	66.74	16.11		150.0	
		Z	5.37	66.52	16.07		150.0	
$\begin{aligned} & 10548- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, $99 p \mathrm{duty}$ cycle)	X	5.67	67.49	16.67	0.00	150.0	± 9.6 \%
		Y	5.79	67.62	16.52		150.0	
		Z	5.59	67.37	16.46		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.44	66.73	16.35	0.00	150.0	± 9.6 \%
		Y	5.51	66.72	16.12		150.0	
		Z	5.36	66.62	16.14		150.0	
$\begin{aligned} & 10551- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS7, 99pc duty cycle)	X	5.31	66.31	16.10	0.00	150.0	$\pm 9.6 \%$
		Y	5.52	66.76	16.10		150.0	
		Z	5.30	66.41	15.99		150.0	
$\begin{aligned} & \hline 10552- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.28	66.30	16.09	0.00	150.0	± 9.6 \%
		Y	5.44	66.57	16.01		150.0	
		Z	5.25	66.34	15.96		150.0	
$\begin{aligned} & 10553- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.34	66.26	16.10	0.00	150.0	± 9.6 \%
		Y	5.52	66.60	16.06		150.0	
		Z	5.31	66.32	15.98		150.0	
10554- AAC	IEEE 802.11ac WiFi (160 MHz , MCS0, 99pc duty cycle)	X	5.72	66.58	16.20	0.00	150.0	$\pm 9.6 \%$
		Y	5.83	66.86	16.12		150.0	
		Z	5.67	66.61	16.06		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.84	66.90	16.34	0.00	150.0	± 9.6 \%
		Y	5.95	67.15	16.24		150.0	
		Z	5.79	66.90	16.19		150.0	
$\begin{aligned} & \text { 10556- } \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 99pc duty cycle)	X	5.87	66.98	16.38	0.00	150.0	± 9.6 \%
		Y	5.98	67.20	16.26		150.0	
		Z	5.82	66.99	16.23		150.0	
10557- AAC	IEEE 802.11ac WiFi (160 MHz , MCS3, 99pc duty cycle)	X	5.81	66.79	16.30	0.00	150.0	± 9.6 \%
		Y	5.94	67.10	16.23		150.0	
		Z	5.77	66.83	16.17		150.0	

$\begin{aligned} & 10558- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 4$, $99 p \mathrm{duty}$ cycle)	X	5.82	66.86	16.35	0.00	150.0	± 9.6 \%
		Y	5.99	67.26	16.33		150.0	
		Z	5.79	66.94	16.24		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 99 pc duty cycle)	X	5.84	66.78	16.35	0.00	150.0	± 9.6 \%
		Y	5.98	67.11	16.29		150.0	
		Z	5.80	66.82	16.22		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 99pc duty cycle)	X	5.78	66.81	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.91	67.08	16.31		150.0	
		Z	5.74	66.84	16.26		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.83	66.94	16.46	0.00	150.0	$\pm 9.6 \%$
		Y	6.02	67.44	16.49		150.0	
		Z	5.80	67.03	16.35		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99pc duty cycle)	X	5.98	67.08	16.50	0.00	150.0	$\pm 9.6 \%$
		Y	6.21	67.62	16.54		150.0	
		Z	5.91	67.01	16.31		150.0	
$\begin{aligned} & \text { 10564- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.63	66.62	16.36	0.46	150.0	± 9.6 \%
		Y	4.84	66.79	16.36		150.0	
		Z	4.61	66.63	16.24		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.83	67.05	16.69	0.46	150.0	$\pm 9.6 \%$
		Y	5.06	67.22	16.67		150.0	
		Z	4.82	67.07	16.58		150.0	
$\begin{aligned} & \text { 10566- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	4.66	66.85	16.48	0.46	150.0	± 9.6 \%
		Y	4.90	67.07	16.49		150.0	
		Z	4.65	66.88	16.38		150.0	
$\begin{aligned} & 10567 \text { - } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, $99 p \mathrm{duty}$ cycle)	X	4.70	67.27	16.87	0.46	150.0	$\pm 9.6 \%$
		Y	4.93	67.45	16.84		150.0	
		Z	4.69	67.33	16.78		150.0	
$\begin{aligned} & \text { 10568- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 99 pc duty cycle)	X	4.56	66.58	16.20	0.46	150.0	$\pm 9.6 \%$
		Y	4.81	66.86	16.28		150.0	
		Z	4.55	66.62	16.10		150.0	
$\begin{aligned} & \text { 10569- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.68	67.48	17.00	0.46	150.0	± 9.6 \%
		Y	4.88	67.55	16.91		150.0	
		Z	4.67	67.53	16.91		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99 pc duty cycle)	X	4.69	67.30	16.91	0.46	150.0	$\pm 9.6 \%$
		Y	4.92	67.39	16.83		150.0	
		Z	4.68	67.31	16.79		150.0	
$\begin{aligned} & 10571- \\ & \mathrm{AAA} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.00	63.45	14.91	0.46	130.0	$\pm 9.6 \%$
		Y	1.13	64.20	15.58		130.0	
		Z	0.98	63.57	14.96		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.01	64.01	15.28	0.46	130.0	$\pm 9.6 \%$
		Y	1.14	64.75	15.94		130.0	
		Z	0.99	64.16	15.34		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.87	85.75	21.98	0.46	130.0	$\pm 9.6 \%$
		Y	1.92	86.55	24.04		130.0	
		Z	2.25	89.51	23.31		130.0	
$\begin{aligned} & 10574- \\ & \mathrm{AAA} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.08	70.06	18.36	0.46	130.0	$\pm 9.6 \%$
		Y	1.22	70.33	18.86		130.0	
		Z	1.09	70.58	18.62		130.0	

April 18, 2018

$\begin{aligned} & 10575- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.39	66.32	16.32	0.46	130.0	± 9.6 \%
		Y	4.62	66.58	16.43		130.0	
		Z	4.39	66.40	16.27		130.0	
10576AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps, 90 pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 \%
		Y	4.65	66.74	16.49		130.0	
		Z	4.42	66.60	16.36		130.0	
10577-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	± 9.6 \%
		Y	4.85	67.03	16.66		130.0	
		Z	4.59	66.86	16.52		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 90 pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	± 9.6 \%
		Y	4.74	67.18	16.75		130.0	
		Z	4.50	67.02	16.64		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90 pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	± 9.6 \%
		Y	4.51	66.48	16.08		130.0	
		Z	4.24	66.15	15.83		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 90 pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	$\pm 9.6 \%$
		Y	4.56	66.53	16.11		130.0	
		Z	4.29	66.22	15.86		130.0	
$10581-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, 90 pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 \%
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.17	65.84	15.66	0.46	130.0	± 9.6 \%
		Y	4.45	66.25	15.88		130.0	
		Z	4.18	65.90	15.60		130.0	
$\begin{aligned} & \text { 10583- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6 Mbps, 90 pc duty cycle)	X	4.39	66.32	16.32	0.46	130.0	± 9.6 \%
		Y	4.62	66.58	16.43		130.0	
		Z	4.39	66.40	16.27		130.0	
$\begin{array}{\|l\|} \hline 10584- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 \%
		Y	4.65	66.74	16.49		130.0	
		Z	4.42	66.60	16.36		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90 pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	± 9.6 \%
		Y	4.85	67.03	16.66		130.0	
		Z	4.59	66.86	16.52		130.0	
$\begin{array}{\|l\|} \hline 10586- \\ A A B \\ \hline \end{array}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	$\pm 9.6 \%$
		Y	4.74	67.18	16.75		130.0	
		Z	4.50	67.02	16.64		130.0	
$\begin{aligned} & \hline 10587- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	± 9.6 \%
		Y	4.51	66.48	16.08		130.0	
		Z	4.24	66.15	15.83		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	$\pm 9.6 \%$
		Y	4.56	66.53	16.11		130.0	
		Z	4.29	66.22	15.86		130.0	
$\begin{aligned} & 10589-1 \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 \%
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
$\begin{aligned} & \hline 10590- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.17	65.84	15.66	0.46	130.0	$\pm 9.6 \%$
		Y	4.45	66.25	15.88		130.0	
		Z	4.18	65.90	15.60		130.0	

$\begin{aligned} & 10591- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90 pc duty cycle)	X	4.55	66.42	16.46	0.46	130.0	± 9.6 \%
		Y	4.78	66.64	16.53		130.0	
		Z	4.55	66.49	16.40		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS1, 90pc duty cycle)	X	4.67	66.72	16.59	0.46	130.0	± 9.6 \%
		Y	4.93	66.98	16.66		130.0	
		Z	4.68	66.80	16.53		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.59	66.59	16.43	0.46	130.0	± 9.6 \%
		Y	4.85	66.88	16.54		130.0	
		Z	4.59	66.67	16.38		130.0	
$\begin{aligned} & 10594- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.64	66.77	16.61	0.46	130.0	± 9.6 \%
		Y	4.90	67.05	16.69		130.0	
		Z	4.65	66.86	16.56		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.61	66.75	16.51	0.46	130.0	± 9.6 \%
		Y	4.87	67.00	16.59		130.0	
		Z	4.61	66.82	16.45		130.0	
$\begin{aligned} & 10596- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.54	66.71	16.50	0.46	130.0	± 9.6 \%
		Y	4.80	67.00	16.60		130.0	
		Z	4.54	66.79	16.44		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.49	66.57	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.75	66.90	16.48		130.0	
		Z	4.49	66.65	16.29		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS7, 90pc duty cycle)	X	4.48	66.81	16.63	0.46	130.0	± 9.6 \%
		Y	4.73	67.12	16.73		130.0	
		Z	4.49	66.91	16.58		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS0, 90pc duty cycle)	X	5.31	67.13	16.85	0.46	130.0	$\pm 9.6 \%$
		Y	5.45	67.20	16.74		130.0	
		Z	5.25	67.05	16.69		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	5.48	67.76	17.14	0.46	130.0	$\pm 9.6 \%$
		Y	5.57	67.58	16.91		130.0	
		Z	5.39	67.54	16.90		130.0	
$\begin{aligned} & 10601- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.31	67.28	16.91	0.46	130.0	$\pm 9.6 \%$
		Y	5.47	67.34	16.80		130.0	
		Z	5.27	67.22	16.76		130.0	
$\begin{aligned} & 10602- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS3, 90pc duty cycle)	X	5.43	67.41	16.89	0.46	130.0	$\pm 9.6 \%$
		Y	5.56	67.39	16.75		130.0	
		Z	5.40	67.36	16.75		130.0	
$\begin{aligned} & 10603- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	X	5.54	67.82	17.25	0.46	130.0	$\pm 9.6 \%$
		Y	5.64	67.67	17.02		130.0	
		Z	5.49	67.76	17.09		130.0	
$\begin{aligned} & 10604- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS5, 90pe duty cycle)	X	5.42	67.47	17.05	0.46	130.0	± 9.6 \%
		Y	5.46	67.19	16.76		130.0	
		Z	5.37	67.38	16.88		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS6, 90pc duty cycle)	X	5.43	67.47	17.04	0.46	130.0	$\pm 9.6 \%$
		Y	5.56	67.49	16.91		130.0	
		Z	5.37	67.38	16.87		130.0	
$\begin{aligned} & 10606- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.17	66.77	16.54	0.46	130.0	± 9.6 \%
		Y	5.31	66.83	16.45		130.0	
		Z	5.12	66.68	16.37		130.0	

$10607-$ AAB	IEEE 802.11ac WiFi (20MHz, MCSO, 90 pc duty cycle)	X	4.40	65.75	16.09	0.46	130.0	± 9.6 \%
		Y	4.62	65.97	16.16		130.0	
$\begin{aligned} & 10608- \\ & \text { AAB } \end{aligned}$		Z	4.40	65.83	16.04		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	4.54	66.09	16.24	0.46	130.0	± 9.6 \%
		Y	4.80	66.37	16.32		130.0	
$\begin{aligned} & 10609- \\ & \text { AAB } \end{aligned}$		Z	4.55	66.18	16.20		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.43	65.91	16.05	0.46	130.0	± 9.6 \%
		Y	4.69	66.22	16.16		130.0	
		Z	4.44	66.00	16.00		130.0	
$\begin{aligned} & 10610- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS3}$, 90 pc duty cycle)	X	4.49	66.09	16.23	0.46	130.0	± 9.6 \%
		Y	4.74	66.38	16.32		130.0	
		Z	4.49	66.18	16.19		130.0	
$\begin{aligned} & 10611- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 4$, 90pc duty cycle)	X	4.40	65.88	16.06	0.46	130.0	± 9.6 \%
		Y	4.66	66.19	16.17		130.0	
		Z	4.40	65.97	16.02		130.0	
10612-AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.39	66.01	16.10	0.46	130.0	± 9.6 \%
		Y	4.66	66.35	16.22		130.0	
		Z	4.40	66.10	16.06		130.0	
10613-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.38	65.82	15.94	0.46	130.0	± 9.6 \%
		Y	4.67	66.22	16.10		130.0	
		Z	4.39	65.92	15.90		130.0	
10614-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.35	66.06	16.21	0.46	130.0	± 9.6 \%
		Y	4.61	66.40	16.32		130.0	
		Z	4.36	66.17	16.17		130.0	
10615AAB	IEEE 802.11ac WiFi (20 MHz , MCS8, 90 pc duty cycle)	X	4.39	65.69	15.81	0.46	130.0	± 9.6 \%
		Y	4.66	66.03	15.96		130.0	
		Z	4.39	65.77	15.76		130.0	
$\begin{aligned} & 10616- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($40 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	5.07	66.15	16.34	0.46	130.0	± 9.6 \%
		Y	5.27	66.44	16.35		130.0	
		Z	5.05	66.21	16.25		130.0	
$\begin{aligned} & 10617- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.14	66.37	16.43	0.46	130.0	± 9.6 \%
		Y	5.34	66.62	16.41		130.0	
		Z	5.12	66.42	16.33		130.0	
$\begin{aligned} & 10618- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.03	66.38	16.45	0.46	130.0	± 9.6 \%
		Y	5.22	66.62	16.43		130.0	
		Z	5.02	66.45	16.36		130.0	
$\begin{aligned} & 10619- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS} 3$, 90 pc duty cycle)	X	5.07	66.24	16.31	0.46	130.0	$\pm 9.6 \%$
		Y	5.24	66.43	16.27		130.0	
		Z	5.03	66.23	16.18		130.0	
$\begin{array}{\|l\|} \hline 10620- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40 MHz , MCS4, 90 pc duty cycle)	X	5.13	66.23	16.35	0.46	130.0	± 9.6 \%
		Y	5.33	66.47	16.34		130.0	
		Z	5.11	66.25	16.24		130.0	
$\begin{aligned} & 10621- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duty cycle)	X	5.12	66.28	16.51	0.46	130.0	± 9.6 \%
		Y	5.33	66.60	16.51		130.0	
		Z	5.11	66.38	16.44		130.0	
$\begin{aligned} & 10622- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.11	66.38	16.55	0.46	130.0	± 9.6 \%
		Y	5.34	66.76	16.59		130.0	
		Z	5.11	66.50	16.49		130.0	

$\begin{aligned} & 10623- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS7, 90 pc duty cycle)	X	4.99	65.86	16.14	0.46	130.0	$\pm 9.6 \%$
		Y	5.22	66.30	16.24		130.0	
		Z	4.98	65.96	16.08		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.20	66.20	16.38	0.46	130.0	$\pm 9.6 \%$
		Y	5.41	66.49	16.39		130.0	
		Z	5.19	66.26	16.30		130.0	
$\begin{aligned} & 10625- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.30	66.37	16.54	0.46	130.0	± 9.6 \%
		Y	5.75	67.41	16.90		130.0	
		Z	5.33	66.58	16.52		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90 pc duty cycle)	X	5.40	66.14	16.28	0.46	130.0	$\pm 9.6 \%$
		Y	5.57	66.51	16.31		130.0	
		Z	5.38	66.23	16.21		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.71	67.03	16.70	0.46	130.0	± 9.6 \%
		Y	5.80	67.06	16.54		130.0	
		Z	5.65	66.96	16.54		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	5.40	66.15	16.18	0.46	130.0	± 9.6 \%
		Y	5.60	66.59	16.25		130.0	
		Z	5.38	66.23	16.10		130.0	
$\begin{aligned} & 10629- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.55	66.49	16.35	0.46	130.0	$\pm 9.6 \%$
		Y	5.67	66.64	16.26		130.0	
		Z	5.49	66.42	16.19		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (80 MHz , MCS4, 90 pc duty cycle)	X	5.95	67.89	17.05	0.46	130.0	± 9.6 \%
		Y	6.08	68.07	16.98		130.0	
		Z	5.84	67.71	16.83		130.0	
$\begin{aligned} & 10631- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	5.77	67.48	17.05	0.46	130.0	± 9.6 \%
		Y	5.99	67.89	17.07		130.0	
		Z	5.74	67.53	16.95		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.72	67.25	16.96	0.46	130.0	± 9.6 \%
		Y	5.77	67.11	16.70		130.0	
		Z	5.64	67.12	16.77		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS7. 90 pc duty cycle)	X	5.44	66.28	16.29	0.46	130.0	± 9.6 \%
		Y	5.66	66.76	16.36		130.0	
		Z	5.44	66.43	16.24		130.0	
$\begin{aligned} & 10634- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS8, 90 pc duty cycle)	X	5.44	66.38	16.39	0.46	130.0	$\pm 9.6 \%$
		Y	5.64	66.78	16.43		130.0	
		Z	5.43	66.48	16.32		130.0	
$\begin{aligned} & 10635- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.30	65.61	15.72	0.46	130.0	± 9.6 \%
		Y	5.53	66.14	15.85		130.0	
		Z	5.29	65.70	15.64		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 90pc duty cycle)	X	5.86	66.55	16.40	0.46	130.0	$\pm 9.6 \%$
		Y	5.98	66.87	16.39		130.0	
		Z	5.82	66.61	16.30		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 1$, 90 pc duty cycle)	X	6.02	66.98	16.61	0.46	130.0	± 9.6 \%
		Y	6.13	67.25	16.56		130.0	
		Z	5.97	67.00	16.48		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 90 pc duty cycle)	X	6.03	67.01	16.60	0.46	130.0	$\pm 9.6 \%$
		Y	6.13	67.22	16.53		130.0	
		Z	5.97	67.00	16.46		130.0	

$\begin{array}{\|l\|} \hline 10639- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 90 pc duty cycle)	X	5.96	66.80	16.53	0.46	130.0	± 9.6 \%
		Y	6.11	67.17	16.55		130.0	
		Z	5.93	66.87	16.44		130.0	
$\begin{aligned} & 10640- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	5.92	66.70	16.42	0.46	130.0	± 9.6 \%
		Y	6.12	67.19	16.50		130.0	
		Z	5.91	66.82	16.35		130.0	
$10641-$ AAC	IEEE 802.11ac WiFi (160 MHz , MCS5, 90 pc duty cycle)	X	6.06	66.91	16.55	0.46	130.0	± 9.6 \%
		Y	6.16	67.10	16.47		130.0	
		Z	6.01	66.89	16.41		130.0	
$\begin{aligned} & 10642- \\ & \text { AAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IEEE } 802.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}, \mathrm{MCS} 6 \text {, } \\ & 90 \mathrm{pc} \text { duty cycle) } \end{aligned}$	X	6.04	66.98	16.76	0.46	130.0	± 9.6 \%
		Y	6.20	67.33	16.75		130.0	
		Z	6.02	67.07	16.68		130.0	
10643- AAC	IEEE 802.11ac WiFi (160 MHz , MCS7, 90 pc duty cycle)	X	5.90	66.69	16.50	0.46	130.0	± 9.6 \%
		Y	6.04	67.03	16.51		130.0	
		Z	5.87	66.78	16.42		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (160 MHz , MCS8, 90 pc duty cycle)	X	5.95	66.86	16.60	0.46	130.0	± 9.6 \%
		Y	6.19	67.50	16.76		130.0	
		Z	5.94	66.99	16.54		130.0	
$\begin{aligned} & 10645- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 90 pc duty cycle)	X	6.44	67.99	17.14	0.46	130.0	± 9.6 \%
		Y	6.47	67.94	16.94		130.0	
		Z	6.16	67.33	16.68		130.0	
$\begin{aligned} & 10646- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	7.50	90.48	30.44	9.30	60.0	± 9.6 \%
		Y	17.43	112.38	39.34		60.0	
		Z	9.26	96.56	33.29		60.0	
10647-$A A C$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	6.74	88.72	29.93	9.30	60.0	± 9.6 \%
		Y	14.54	108.61	38.31		60.0	
		Z	8.10	94.14	32.60		60.0	
$\begin{aligned} & \text { 10648- } \\ & \text { AAA } \\ & \hline \end{aligned}$	CDMA2000 (1x Advanced)	X	0.39	60.00	6.32	0.00	150.0	± 9.6 \%
		Y	0.67	63.31	10.55		150.0	
		Z	0.38	60.00	6.43		150.0	
$\begin{aligned} & 10652- \\ & \mathrm{A} A \mathrm{~B} \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 5 MHz , E-TM 3.1, Clipping 44\%)	X	3.10	65.49	15.51	2.23	80.0	± 9.6 \%
		Y	3.52	66.85	16.73		80.0	
		Z	3.18	66.07	15.91		80.0	
10653-AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44\%)	X	3.70	65.11	16.04	2.23	80.0	± 9.6 \%
		Y	4.03	66.07	16.78		80.0	
		Z	3.73	65.44	16.24		80.0	
$\begin{array}{\|l\|} \hline 10654- \\ \text { AAB } \\ \hline \end{array}$	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	3.73	64.77	16.12	2.23	80.0	± 9.6 \%
		Y	4.00	65.69	16.76		80.0	
		Z	3.74	65.07	16.28		80.0	
$10655-$$\mathrm{AAB}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	3.81	64.71	16.17	2.23	80.0	± 9.6 \%
		Y	4.06	65.68	16.79		80.0	
		Z	3.81	65.01	16.32		80.0	
$\begin{array}{\|l\|} \hline 10658- \\ \text { AAA } \\ \hline \end{array}$	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	3.06	66.59	11.16	10.00	50.0	± 9.6 \%
		Y	100.00	111.68	26.09		50.0	
		Z	3.93	69.81	12.66		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \\ & \hline \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	X	1.63	63.81	8.65	6.99	60.0	± 9.6 \%
		Y	100.00	113.13	25.67		60.0	
		Z	2.52	68.36	10.82		60.0	

10660- AAA	Pulse Waveform (200Hz, 40\%)	X	0.57	60.00	5.26	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	118.24	26.52		80.0	
		Z	0.68	61.70	6.30		80.0	
$10661-$ AAA	Pulse Waveform (200Hz, 60\%)	X	0.32	60.00	3.83	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	125.46	28.15		100.0	
		Z	0.29	60.00	3.83		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	7.43	367.15	53.93	0.97	120.0	$\pm 9.6 \%$
		Y	100.00	135.73	30.13		120.0	

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the fieid value.

Calibration Laboratory of
 Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D750V3-1161_Jul16

CALIBRATION CERTIFICATE

Object
D750V3 - SN:1161
Calibration procedure(s)

QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
July 13,2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	O6-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	O6-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	O7-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name Claudio Leubler Laboratory Technician
Approved by:	Katja Pokovic

[^11]Issued: July 13, 2016

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:
TSL
ConvF
N/A

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)$ ", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.9	$0.89 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.9 \pm 6 \%$	$0.91 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	$\ldots--$

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$2.09 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 . 1 7} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$1.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$5.39 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.5	$0.96 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$55.1 \pm 6 \%$	$0.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	$\ldots--$

SAR result with Body TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$2.16 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$8.43 \mathrm{~W} / \mathbf{k g} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	250 mW input power	$1.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$5.53 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.6 \Omega-0.9 \mathrm{j} \Omega$
Return Loss	-25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.2 \Omega-4.0 \mathrm{j} \Omega$
Return Loss	-28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2015

DASY5 Validation Report for Head TSL
Date: 13.07.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3 - SN:1161
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.91 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 5 m m} /$ Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=58.07 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.13 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.09 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.80 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.99 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=56.33 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.22 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.16 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.41 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.87 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

 testing certuza4i.01

Certification of Calibration

Object
Calibration procedure(s)
Calibration date:
Description:

D750V3 - SN: 1161
Procedure for Calibration Extension for SAR Dipoles.
July 12, 2017
SAR Validation Dipole at 750 MHz .

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	$3 / 31 / 2017$	Biennial	$3 / 31 / 2019$	170232394
Control Company	4352	Ultra Long Stem Thermometer	$5 / 2 / 2017$	Biennial	$5 / 2 / 2019$	170330156
Amplifier Research	$15 S 1 G 6$	Amplifier	CBT	N/A	CBT	433971
Narda	$4772-3$	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	$85033 E$	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	$6 / 1 / 2017$	Annual	$6 / 1 / 2018$	MY53401181
Agilent	$8753 E S$	S-Parameter Network Analyzer	$10 / 26 / 2016$	Annual	$10 / 26 / 2017$	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N / A
SPEAG	DAE4	Dasy Data Acquisition Electronics	$3 / 8 / 2017$	Annual	$3 / 8 / 2018$	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	$6 / 14 / 2017$	Annual	$6 / 14 / 2018$	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	$5 / 10 / 2017$	Annual	$5 / 10 / 2018$	1070
SPEAG	ES3DV3	SAR Probe	$11 / 15 / 2016$	Annual	$11 / 15 / 2017$	3334
SPEAG	ES3DV3	SAR Probe	$3 / 14 / 2017$	Annual	$3 / 14 / 2018$	3319
Anritsu	MA2411B	Pulse Power Sensor	$2 / 10 / 2017$	Annual	$2 / 10 / 2018$	1207364
Anritsu	MA2411B	Pulse Power Sensor	$2 / 10 / 2017$	Annual	$2 / 10 / 2018$	1339018
Anritsu	ML2495A	Power Meter	$10 / 16 / 2015$	Biennial	$10 / 16 / 2017$	941001
Agilent	N5182A	MXG Vector Signal Generator	$2 / 28 / 2017$	Annual	$2 / 28 / 2018$	MY47420800
Seekonk	NC-100	Torque Wrench	$11 / 6 / 2015$	Biennial	$11 / 6 / 2017$	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty $= \pm 23 \%(k=2)$

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ZNV

Object: D750V3 - SN: 1161	Date Issued: $07 / 12 / 2017$	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.
The following dipole was checked to pass the above 3 requirements to have 2 -year calibration period from the calibration date:

Object:	Date Issued:	Page 2 of 4
D750V3 - SN: 1161	$07 / 12 / 2017$	Pag

Impedance \& Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:
D750V3 - SN: 1161	$07 / 12 / 2017$

Impedance \& Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:
D750V3 - SN: 1161	$07 / 12 / 2017$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multiateral Agreement for the recognition of callbration certificates

Client PCTest

CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.9 \pm 6 \%$	$0.92 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\cdots	$\ldots--$

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$2.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 5 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g) ~ o f ~ H e a d ~ T S L ~}$	condition	
SAR measured	250 mW input power	$1.57 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 . 1 9 \mathrm { W } / \mathrm { kg } \pm 1 6 . 5 \% (k = 2)}$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.2	$0.97 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$53.8 \pm 6 \%$	$0.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Body TSL

SAR averaged over $\left.1 \mathrm{~cm}^{3} \mathbf{(1 ~ g}\right)$ of Body TSL	Condition	
SAR measured	250 mW input power	$2.44 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{9 . 5 6} \mathbf{W} / \mathrm{kg} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0 ~ g})$ of Body TSL	condition	
SAR measured	250 mW input power	$1.59 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{6 . 2 6 \mathrm { W } / \mathrm { kg } \pm 1 6 . 5 \% (k = 2)}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.0 \Omega+0.6 \mathrm{j} \Omega$
Return Loss	-38.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.1 \Omega-3.3 \mathrm{j} \Omega$
Return Loss	-26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.389 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

DASY5 Validation Report for Head TSL

Date: 10.04.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.92 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 5 m m} /$ Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=62.85 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.74 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.43 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.57 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=3.29 \mathrm{~W} / \mathrm{kg}$

$$
0 \mathrm{~dB}=3.29 \mathrm{~W} / \mathrm{kg}=5.17 \mathrm{dBW} / \mathrm{kg}
$$

Impedance Measurement Plot for Head TSL

CH 2 S

DASY5 Validation Report for Body TSL

Date: 10.04.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathbf{f}=835 \mathrm{MHz} ; \sigma=0.99 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=53.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, $\mathbf{d = 1 5 m m}$ /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=60.52 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.64 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 4 4} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.59 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.24 \mathrm{~W} / \mathrm{kg}$

Calibration Laboratory of Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzeriand

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service

Client PC Test
 CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type- N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
			Issued: April 19, 2018

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Schweizerischer Kalibrierdienst
C
S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.1	$1.37 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.2 \pm 6 \%$	$1.35 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$9.10 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 6 . 5} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}(\mathbf{1 0} \mathbf{g})$ of Head TSL	condition	
SAR measured	250 mW input power	$4.82 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{1 9 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.4	$1.49 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$52.4 \pm 6 \%$	$1.46 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Body TSL	Condition	
SAR measured	250 mW input power	$9.21 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{3 7 . 2} \mathrm{~W} / \mathbf{k g} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g)}$ of Body TSL	condition	
SAR measured	250 mW input power	$4.94 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{1 9 . 9} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.7 \Omega+2.5 \mathrm{j} \Omega$
Return Loss	-30.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.6 \Omega+1.3 \mathrm{j} \Omega$
Return Loss	-31.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 19, 2010

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051
Communication System: UID 0 - CW; Frequency: 1750 MHz
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.35 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; $\operatorname{ConvF}(8.5,8.5,8.5)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=107.3 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=16.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=4.82 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=14.0 \mathrm{~W} / \mathrm{kg}$

DASY5 Validation Report for Body TSL

Date: 19.04.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1750 MHz ; Type: D1750V2; Serial: D1750V2 - SN:1051
Communication System: UID 0 - CW; Frequency: 1750 MHz
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.46 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=99.30 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=16.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{9 . 2 1} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=4.94 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=13.3 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client PC Test

Certilicate No: D1900V2-5d141 Apr18

CALIBRATION CERTIFICATE

Object
Calibration proce
Calibration date:

D1900V2 - SN:5d141

QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz

April 12, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastratl	Laboratory Techniclan	
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 13, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S
C
S
Service suisse d'étalonnage
Servizio svizzero dl taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$41.1 \pm 6 \%$	$1.35 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$9.55 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 9 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$5.05 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 0 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.3	$1.52 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$55.3 \pm 6 \%$	$1.47 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$--{ }^{\circ}$	---

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 ~ g)}$ of Body TSL	Condition	
SAR measured	250 mW input power	$9.73 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{4 0 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g)}$ of Body TSL	condition	
SAR measured	250 mW input power	$5.20 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 2} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.4 \Omega+5.9 \mathrm{j} \Omega$
Return Loss	-23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.8 \Omega+7.2 \mathrm{j} \Omega$
Return Loss	-22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 12.04.2018
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.35 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - $\operatorname{SN7349;} \operatorname{ConvF}(8.18,8.18,8.18)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=108.9 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=17.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.55 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{5 . 0 5} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=14.7 \mathrm{~W} / \mathrm{kg}$

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathbf{f}=1900 \mathrm{MHz} ; \sigma=1.47 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 $\mathbf{m W}$, $\mathbf{d = 1 0 m m / Z o o m ~ S c a n ~ (7 x 7 x 7) / C u b e ~ 0 : ~}$

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=103.8 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.73 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.2 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=14.5 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

S Servizio svizzero di taratura
Swiss Calibration Service

CALIBRATION CERTIFICATE
Object
Calibration procedure(s)
D2450V2 - SN:882

QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: February 07, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed Jaboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Callibrated by:	Claudio Leubler	Laboratory Technician	$1 \square$
Approved by:	Katja Pokovic	Technical Manager	106

Issued: February 7, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C
S
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.9 \pm 6 \%$	$1.87 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.4 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 2 . 2} \mathrm{~W} / \mathbf{k g} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$6.22 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 5} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.7	$1.95 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.4 \pm 6 \%$	$2.04 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	$-\cdots$

SAR result with Body TSL

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { 3 } (\mathbf { 1 g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$12.9 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 0 . 2} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	250 mW input power	$5.98 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.0 \Omega+1.3 \mathrm{j} \Omega$
Return Loss	-32.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.8 \Omega+3.7 \mathrm{j} \Omega$
Return Loss	-28.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:882
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.87 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; $\operatorname{ConvF}(7.88,7.88,7.88)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathrm{d}=10 \mathrm{~mm} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=112.2 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.4 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.22 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=21.6 \mathrm{~W} / \mathrm{kg}$

Impedance Neasurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:882
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=2.04 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; $\operatorname{ConvF}(8.01,8.01,8.01)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=107.8 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=25.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=12.9 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{5 . 9 8} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=21.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

7 Feb 2018 15:38:06
EH1 E11 1 U FS
1: $48.536 \Omega \quad 3.7051 \Omega \quad 240.69 \mathrm{FH} \quad 2450.606606 \mathrm{MHz}$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Callibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No:: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2600V2-1004_Apr18

CALIBRATION CERTIFICATE

Calibration procedure(s)

Calibration date:

QA CAL-05.v10
Calibration procedure for dipole validation kits above 700 MHz

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z.91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_..Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator F\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by:

Approved by:
Katla Pokovic
Technical Manager

Issued: April 12, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratur
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.8 \pm 6 \%$	$2.03 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL

SAR averaged over $\mathbf{1 ~ c m}{ }^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$14.3 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 5 . 9} \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	250 mW input power	$6.35 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 1} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.5	$2.16 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$52.1 \pm 6 \%$	$2.19 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$-\ldots-$	----

SAR result with Body TSL

SAR averaged over $1 \mathbf{c m}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$13.8 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$54.8 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g)}$ of Body TSL	condition	
SAR measured	250 mW input power	$6.20 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$47.7 \Omega-5.7 \mathrm{j} \Omega$
Return Loss	-24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.0 \Omega-3.8 \mathrm{j} \Omega$
Return Loss	-24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

DASY5 Validation Report for Head TSL

Date: 11.04.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.03 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=118.5 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.3 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.35 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=23.9 \mathrm{~W} / \mathrm{kg}$

H2 S11 L06 $\quad 5 \mathrm{~dB} / \mathrm{REF}-20 \mathrm{~dB} \quad 1:-24.073 \mathrm{~dB} \quad 2500.000900 \mathrm{MHz}$

CA

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.19 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{f}}=52.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=108.5 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=28.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.8 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.2 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=22.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid \& Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the slgnatories to the EA Multilateral Agreement for the recognition of callbration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service

Accreditation No.: SCS 0108

Client
PC Test
Certificate No: D5GHzV2-1057_Jan18

CALIBRATION CERTIFICATE

Object	D5GHzV2-SN:1057
Calibration procedure(s)	QA CAL-22.v2 Calibration procedure for dipole validation kits between $3-6 \mathrm{GHz}$

Calibration date:
January 16, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperalure $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Cerlificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuaior	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: $5047.2 / 06327$	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18

Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name		

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
tissue simulating liquid
N/A sensitivity in TSL / NORM x, y, z not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz$)^{\prime}$, July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$5200 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5250 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$36.2 \pm 6 \%$	$4.55 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at 5250 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$7.91 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$79.2 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.28 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to TW	$22.8 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.8 \pm 6 \%$	$4.90 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	$\ldots-$

SAR result with Head TSL at 5600 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1} \mathrm{g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 4 . 1} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.40 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$24.0 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(k=2)$

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$5.06 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.06 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$80.5 \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 9 \% (k = 2)}$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.30 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	49.0	$5.30 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.3 \pm 6 \%$	$5.41 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots--$	\cdots

SAR result with Body TSL at 5200 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$73.1 \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 9 \%}(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0 ~ g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.06 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$20.4 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=\mathbf{2})$

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.9	$5.36 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.2 \pm 6 \%$	$5.48 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL at 5250 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.64 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$75.9 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0 ~ g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.13 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$21.1 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.5	$5.77 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.6 \pm 6 \%$	$5.94 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots--$	$\ldots--$

SAR result with Body TSL at 5600 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$8.05 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$79.9 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.25 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 2 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.3	$5.94 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.3 \pm 6 \%$	$6.15 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.72 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 6 . 7} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 2 \mathrm { W } / \mathrm { kg } \pm 1 9 . 5 \% (k = 2)}$

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.2	$6.00 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.2 \pm 6 \%$	$6.22 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$--\cdots$	----

SAR result with Body TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.68 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$76.3 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0 ~ g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.13 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 1} \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$50.0 \Omega-5.5 \mathrm{j} \Omega$
Return Loss	-25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$54.7 \Omega-2.1 \mathrm{j} \Omega$
Return Loss	-26.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$52.7 \Omega+0.0 \mathrm{j} \Omega$
Return Loss	-31.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	$49.3 \Omega-6.7 \mathrm{j} \Omega$
Return Loss	-23.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	$48.4 \Omega-3.9 \mathrm{j} \Omega$
Return Loss	-27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$55.3 \Omega-1.6 \mathrm{j} \Omega$
Return Loss	-25.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$52.6 \Omega+1.1 \mathrm{j} \Omega$
Return Loss	-31.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$51.8 \Omega-0.4 \mathrm{j} \Omega$
Return Loss	-34.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions ($\mathrm{f}=\mathbf{5 2 0 0} \mathbf{~ M H z}$)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	$\mathbf{1 0 0 ~ \mathrm { mW }}$ input power	$8.24 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 2 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.35 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$23.6 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=2)$

SAR result with SAM Head (Mouth)

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.54 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 5 . 6} \mathbf{W} / \mathrm{kg} \pm \mathbf{2 0 . 3} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0 ~ g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 7} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 9} \%(\mathrm{k}=\mathbf{2})$

SAR result with SAM Head (Neck)

SAR averaged over $\mathbf{1 ~ \mathrm { cm } ^ { 3 } (1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 1 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0 ~ g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 3 . 7} \mathrm{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR result with SAM Head (Ear)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$5.16 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$51.7 \mathrm{~W} / \mathrm{kg} \pm \mathbf{2 0 . 3} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$1.76 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$17.7 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

Measurement Conditions ($f=5800 \mathrm{MHz}$)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.62 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$86.3 \mathrm{~W} / \mathrm{kg} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=2)$

SAR result with SAM Head (Mouth)

SAR averaged over $\mathbf{1 \mathrm { cm } ^ { 3 } (1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.88 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 8 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.44 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$24.4 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR result with SAM Head (Neck)

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$83.4 \mathrm{~W} / \mathrm{kg} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.35 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$23.5 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Ear)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$5.68 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 6 . 8} \mathrm{~W} / \mathrm{kg} \pm \mathbf{2 0 . 3} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$1.89 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$18.9 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=2)$

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057
Communication System: UID 0 - CW; Frequency: 5250 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.55 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.9 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.06 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 - modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 x 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.54 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.91 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.28 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.77 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=32.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.41 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.4 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.93 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=31.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.06 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.3 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057
Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5600
MHz , Frequency: 5750 MHz , Frequency: 5800 MHz
Medium parameters used:f = $5200 \mathrm{MHz} ; \sigma=5.41 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=5.48 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=5.94 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=6.15 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=6.22 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12 .2017 , $\operatorname{ConvF}(4.65,4.65,4.65)$; Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, f=5200 \mathrm{MHz} / Z o o m$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.05 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 3 6} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.06 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.53 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.64 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.13 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.9 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.09 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR (extrapolated) $=34.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.05 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.25 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.5 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, $f=5750 \mathrm{MHz} / \mathbf{Z o o m}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=63.45 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=32.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.72 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 1 4} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=63.14 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.68 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.13 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=18.9 \mathrm{~W} / \mathrm{kg}=12.76 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057
Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.59 \mathrm{~S} / \mathrm{m} ; \varepsilon \mathrm{cr}=36.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$, Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.28 \mathrm{~S} / \mathrm{m} ; \varepsilon \mathrm{cr}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, $\mathrm{dy}=4 \mathrm{~mm}$, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.99 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=30.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.24 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.7 \mathrm{~W} / \mathrm{kg}$
SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=73.00 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=36.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.62 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.41 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=21.9 \mathrm{~W} / \mathrm{kg}$
SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.79 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=29.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.54 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.7 \mathrm{~W} / \mathrm{kg}$

SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=71.69 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=34.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.88 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.44 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=23.0 \mathrm{~W} / \mathrm{kg}$
SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.48 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.14 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=19.3 \mathrm{~W} / \mathrm{kg}$
SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.90 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.33 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=21.8 \mathrm{~W} / \mathrm{kg}$
SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=54.68 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=16.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=5.16 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.76 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=11.1 \mathrm{~W} / \mathrm{kg}$
SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=56.96 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=21.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{5 . 6 8} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.89 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=13.8 \mathrm{~W} / \mathrm{kg}$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of callbration certificates

PC Test
Certificate No: D750V3-1003_Jan18

CALIBRATION CERTIFICATE

S Schweizerischer Kalibrierdienst
C
S Service suisse d'étalonnage Servizio svizzero dl taratura Swisss Calibration Service

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5.0 \mathrm{~mm}$	
Frequency	$750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.9	$0.89 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.9 \pm 6 \%$	$0.90 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	\ldots

SAR result with Head TSL

SAR averaged over $\left.1 \mathrm{~cm}^{\mathbf{3}} \mathbf{1} \mathrm{g}\right)$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.10 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 . 2 8} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 . 4 2} \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.5	$0.96 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$55.0 \pm 6 \%$	$0.96 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $\mathbf{1 \mathrm { cm } ^ { \mathbf { 3 } } (1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$2.15 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{8 . 5 8} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 0} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Body TSL	condition	
SAR measured	250 mW input power	$1.43 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$5.71 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.8 \Omega-2.1 \mathrm{j} \Omega$
Return Loss	-27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.2 \Omega-6.2 \mathrm{j} \Omega$
Return Loss	-24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3 .

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$1.98 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$7.94 \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0 \mathrm { g })}$ of Head TSL	condition	
SAR measured	250 mW input power	$1.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 . 3 2 \mathrm { W } / \mathrm { kg } \pm 1 6 . 9 \% (k = 2)}$

SAR result with SAM Head (Mouth)

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.05 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 . 2 2} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 7 . 5} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.38 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$5.52 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Neck)

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$2.01 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 . 0 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 5} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0 ~ g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.38 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$5.52 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Ear)

SAR averaged over $\left.1 \mathbf{c m}^{3} \mathbf{(1 ~ g}\right)$ of Head TSL	Condition	
SAR measured	250 mW input power	$1.67 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.70 \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 5} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.15 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$4.60 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=\mathbf{2})$

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3 - SN:1003
Communication System: UID $0-\mathrm{CW}$; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.9 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=59.11 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.15 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.80 \mathrm{~W} / \mathrm{kg}$

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3 - SN:1003
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.96 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=57.31 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.17 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.15 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.43 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.83 \mathrm{~W} / \mathrm{kg}$

DASY5 Validation Report for SAM Head

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3 - SN:1003
Communication System: UID 0 - CW; Frequency: 750 MHz
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.9 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=44.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, dz=5mm
Reference Value $=56.79 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=2.89 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=1.98 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.33 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=2.58 \mathrm{~W} / \mathrm{kg}$
SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=56.85 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=2.94 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.05 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.38 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.62 \mathrm{~W} / \mathrm{kg}$
SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$ Reference Value $=56.29 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=2.78 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.01 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.38 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.56 \mathrm{~W} / \mathrm{kg}$
SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=51.01 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=2.31 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=1.67 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.15 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.11 \mathrm{~W} / \mathrm{kg}$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
PC Test
Cerificate No: D835V2-4d132_Jan18
CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d132
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
January 15, 2018
01-25-2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environmenl temperalure $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Ocl-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	dfyl
Approved by:	Katja Pokovic	Technical Manager	7
This calibration certificate shall not be reproduced except in full without writen approval of the laboratory.			

S Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
S
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5.0 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.7 \pm 6 \%$	$0.92 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.39 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$9.36 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.55 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.10 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.2	$0.97 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$54.8 \pm 6 \%$	$0.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	----

SAR result with Body TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$2.47 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$9.71 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	250 mW input power	$1.62 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$6.39 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.8 \Omega-2.9 \mathrm{j} \Omega$
Return Loss	-29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.4 \Omega-5.7 \mathrm{j} \Omega$
Return Loss	-23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3 .

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.40 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$9.41 \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 5} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.58 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.21 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Mouth)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.47 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 6 9 \mathrm { W } / \mathrm { kg } \pm 1 7 . 5 \% (\mathbf { k } = 2)}$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.64 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.45 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Neck)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.35 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 2 2} \mathrm{~W} / \mathrm{kg} \pm 17.5 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.59 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.25 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

SAR result with SAM Head (Ear)

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.03 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 . 9 6} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 7 . 5} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$1.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$5.39 \mathrm{~W} / \mathrm{kg} \pm 16.9 \%(\mathrm{k}=2)$

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.92 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=63.23 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.64 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.39 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.55 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.22 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.01.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz ; Type: D835V2; Serial: D835V2 - SN:4d132
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.99 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=54.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=60.55 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.66 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.62 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.24 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.94 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=44.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=61.00 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.56 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.4 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.58 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.16 \mathrm{~W} / \mathrm{kg}$
SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=60.99 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.65 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.64 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.19 \mathrm{~W} / \mathrm{kg}$
SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=59.20 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=3.33 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.59 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.04 \mathrm{~W} / \mathrm{kg}$
SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=55.03 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=2.90 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.03 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.37 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=2.61 \mathrm{~W} / \mathrm{kg}$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Object
Calibration procedures)

D1900V2 - SN:5d148

QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
February 07, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Issued: February 7, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z
not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.7 \pm 6 \%$	$1.39 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$--\mathrm{-}$	$-\mathrm{-}-$

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$9.95 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{4 0 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	250 mW input power	$5.22 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 1 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.3	$1.52 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$55.2 \pm 6 \%$	$1.48 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Body TSL	Condition	
SAR measured	250 mW input power	$9.68 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{3 9 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	250 mW input power	$5.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 0 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.1 \Omega+5.8 \mathrm{j} \Omega$
Return Loss	-24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.8 \Omega+6.5 j \Omega$
Return Loss	-23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL
Date: 07.02.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz ; Type: D1900V2; Serial: D1900V2 - SN:5d148
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.39 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; $\operatorname{ConvF}(8.18,8.18,8.18)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=109.6 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=18.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.95 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{5 . 2 2} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=15.3 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.02.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.48 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m}$ /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=103.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=17.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.68 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.14 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=14.4 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Object
D5GHzV2 - SN:1237

Calibration procedure(s)
QA CAL-22.v2
Calibration procedure for dipole validation kits between $3-6 \mathrm{GHz}$

Calibration date:
August 15, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S1).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (AM\&TE critical for calibration)

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z not applicable or not measured

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$5250 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.7 \pm 6 \%$	$4.49 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots--$	$\ldots--$

SAR result with Head TSL at 5250 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.14 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$80.7 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$23.0 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.2 \pm 6 \%$	$4.84 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at 5600 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 9)}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{8 2 . 5} \mathrm{W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.38 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$23.5 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.0 \pm 6 \%$	$4.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\cdots-\cdots$	----

SAR result with Head TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.10 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 0 . 2} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 9 . 9 \% (k = 2)}$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.31 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$22.8 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5250 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.9	$5.36 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.0 \pm 6 \%$	$5.46 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots \ldots$	$\ldots .$.

SAR result with Body TSL at 5250 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.75 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$76.9 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.17 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$21.5 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=\mathbf{2})$

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.5	$5.77 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.4 \pm 6 \%$	$5.93 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-$.	$\ldots .$.

SAR result with Body TSL at 5600 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}}(\mathbf{1} \mathbf{g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.91 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$78.5 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.23 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$22.1 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5750 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.3	$5.94 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.2 \pm 6 \%$	$6.13 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	$\ldots--$

SAR result with Body TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.77 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$77.1 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.16 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$21.4 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$49.9 \Omega-5.3 \mathrm{j} \Omega$
Return Loss	-25.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$51.9 \Omega+2.3 \mathrm{j} \Omega$
Return Loss	-30.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$55.6 \Omega-0.5 \mathrm{j} \Omega$
Return Loss	-25.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	$46.9 \Omega-4.2 \mathrm{j} \Omega$
Return Loss	-25.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$50.2 \Omega+3.0 \mathrm{j} \Omega$
Return Loss	-30.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$53.4 \Omega+0.2 \mathrm{j} \Omega$
Return Loss	-29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237
Communication System: UID 0 - CW; Frequency: 5250 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.49 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.84 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=4.99 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.08 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=30.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.14 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.33 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.2 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $\mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube $0:$ Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.04 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=32.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.33 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 8} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.8 \mathrm{~W} / \mathrm{kg}$

[^12]

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.08.2017
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237
Communication System: UID 0 - CW; Frequency: 5250 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=5.46 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=5.93 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=6.13 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; $\operatorname{ConvF}(5.14,5.14,5.14)$; Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, f=5250 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.87 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.75 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.17 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.4 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.11 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.23 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=63.64 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.77 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.16 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.1 \mathrm{~W} / \mathrm{kg}$

APPENDIX D:SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

1) The network analyzer and probe system was configured and calibrated.
2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
3) The complex admittance with respect to the probe aperture was measured
4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$
Y=\frac{j 2 \omega \varepsilon_{r} \varepsilon_{0}}{[\ln (b / a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos \phi^{\prime} \frac{\exp \left[-j \omega r\left(\mu_{0} \varepsilon_{r}^{\prime} \varepsilon_{0}\right)^{1 / 2}\right]}{r} d \phi^{\prime} d \rho^{\prime} d \rho
$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^{2}=\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \phi^{\prime}, \omega$ is the angular frequency, and $j=\sqrt{-1}$.

Table D-I
Composition of the Tissue Equivalent Matter

Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450	$\begin{gathered} 5200- \\ 5800 \end{gathered}$	$\begin{gathered} 5200- \\ 5800 \end{gathered}$
Tissue	Head	Body										
Ingredients (\% by weight)												
Bactericide	See page2-3	$\begin{gathered} \text { See page } \\ 2 \end{gathered}$	0.1	0.1					See page 4		See page 5	
DGBE					47	31	44.92	29.44		26.7		
HEC			1	1								
NaCl			1.45	0.94	0.4	0.2	0.18	0.39		0.1		
Sucrose			57	44.9								
Polysorbate (Tween) 80												20
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		80

FCC ID: A3LSMN960F	CVPTEST	SAR EVALUATION REPORT	snmsuns	Approved by: Quality Manager
Test Dates: 06/06/18-06/24/18	DUT Type: Portable Handset			APPENDIX D: Page 1 of 5
2018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.10 \mathrm{M} \\ 05 / 18 / 2018 \end{array}$

2 Composition / Information on ingredients The Item is composed of the following ingredients:	
$\mathrm{H}_{2} \mathrm{O}$	Water, 35-58\%
Sucrose	Sugar, white, refined, $40-60 \%$
NaCl	Sodium Chloride, 0-6\%
Hydroxyethyl-cellulose	Medium Viscosity (CAS\# 9004-62-0), <0.3\%
Preventol-D7	Preservative: aqueous preparation, (CAS\# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.7\% Relevant for safety; Refer to the respective Safety Data Sheet ${ }^{*}$

Figure D-1
Composition of 750 MHz Head and Body Tissue Equivalent Matter
Note: 750 MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.
Schmid \& Partner Engineering AG S O © \& O

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +4144245 9700, Fax +41442459779
into@speag.com, http://www. speag.com

Measurement Certificate / Material Test

Figure D-2
750MHz Body Tissue Equivalent Matter

FCC ID: A3LSMN960F	SAR EVALUATION REPORT	PCTEST	Approved by:
Test Dates:	DUT Type:	Quality Manager	
$06 / 06 / 18-06 / 24 / 18$	Portable Handset	APPENDIX D:	
2018 PCTEST Engineering Laboratory, Inc.	Page 2 of 5		

Schmid \& Partner Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +4144245 9700, Fax +41 442459779
info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

$\begin{array}{\|l} \hline \text { Item Name } \\ \text { Product No. } \\ \text { Manufacturer } \\ \hline \end{array}$	Head Tissue Simulating Liquid (HSL750V2) SLAAH 075 AA (Batch: 170612-4) SPEAG
Measurement Method	
TSL dielectric parameters measured using calibrated DAK probe.	
Setup Validation	
Validation results were within $\pm 2.5 \%$ towards the target values of Methanol.	
Target Parameters	
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.	
Test Condition	
Ambient TSL Temperature Test Date Operator	Environment temperatur $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$. $22^{\circ} \mathrm{C}$ 20-Jun-17 CL

Figure D-3
750MHz Head Tissue Equivalent Matter

FCC ID: A3LSMN960F	CPCTEST	SAR EVALUATION REPORT	snmsuns	Approved by: Quality Manager
Test Dates: $06 / 06 / 18-06 / 24 / 18$	DUT Type: Portable Handset			APPENDIX D: Page 3 of 5
018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV 20.10 M } \\ 05 / 18 / 2018 \end{array}$

Water	$50-73 \%$	
Non-ionic detergents	25-50\%	polyoxyethylenesorbitan monolaurate
NaCl	0-2\%	
Preservative	0.05-0.1\%	Preventol-D7
Safety relevant ingredients:		
CAS-No. 55965-84-9	<0.1 \%	aqueous preparation, containing 5 -chloro-2-methyl-3(2H). isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50\%	polyoxyethylenesorbitan monolaurate

According to international guidelines, the product is not a dangerous mixture and therefore not required to be marked by symbols.

Figure D-4
Composition of 2.4 GHz Head Tissue Equivalent Matter
Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-5
2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMN960F	PVCTEST	SAR EVALUATION REPORT	snmsuns	Approved by: Quality Manager
Test Dates: 06/06/18-06/24/18	DUT Type: Portable Handset			APPENDIX D: Page 4 of 5
2018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.10 \mathrm{M} \\ 05 / 18 / 2018 \end{array}$

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water	$50-65 \%$
Mineral oil	$10-30 \%$
Emulsifiers	$8-25 \%$
Sodium salt	$0-1.5 \%$

Figure D-6
Composition of 5 GHz Head Tissue Equivalent Matter
Note: 5 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-7
5GHz Head Tissue Equivalent Matter

FCC ID: A3LSMN960F	G) PCTEST	SAR EVALUATION REPORT	simsuns	Approved by: Quality Manager
Test Dates: $06 / 06 / 18-06 / 24 / 18$	DUT Type: Portable Handset			APPENDIX D: Page 5 of 5
© 2018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.10 \mathrm{M} \\ 05 / 18 / 2018 \end{array}$

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-1
SAR System Validation Summary - $\mathbf{1 g}$

$\begin{array}{\|c\|} \hline \text { SAR } \\ \text { SYSTEM } \\ \# \\ \hline \end{array}$	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT		COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
							(σ)	(عr)	SENSITIVITY	PROBE LINEARITY	$\begin{gathered} \text { PROBE } \\ \text { ISOTROPY } \end{gathered}$	$\begin{aligned} & \hline \text { MOD. } \\ & \text { TYPE } \end{aligned}$	DUTY FACTOR	PAR
E	750	3/11/2018	3213	ES3DV3	750	Head	0.890	40.788	PASS	PASS	PASS	N/A	N/A	N/A
E	835	3/5/2018	3213	ES3DV3	835	Head	0.925	43.335	PASS	PASS	PASS	GMSK	PASS	N/A
E	1750	3/2/2018	3213	ES3DV3	1750	Head	1.397	38.415	PASS	PASS	PASS	N/A	N/A	N/A
E	1900	5/22/2018	3213	ES3DV3	1900	Head	1.447	38.909	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	10/16/2017	3332	ES3DV3	2450	Head	1.880	38.615	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
G	2600	10/16/2017	3332	ES3DV3	2600	Head	2.051	38.039	PASS	PASS	PASS	TDD	PASS	N/A
H	5250	1/31/2018	3589	EX3DV4	5250	Head	4.516	36.066	PASS	PASS	PASS	OFDM	N/A	PASS
H	5600	1/31/2018	3589	EX3DV4	5600	Head	4.869	35.597	PASS	PASS	PASS	OFDM	N/A	PASS
H	5750	1/31/2018	3589	EX3DV4	5750	Head	5.112	35.351	PASS	PASS	PASS	OFDM	N/A	PASS
J	750	5/24/2018	3347	ES3DV3	750	Body	0.951	55.133	PASS	PASS	PASS	N/A	N/A	N/A
J	835	5/26/2018	3347	ES3DV3	835	Body	0.973	54.458	PASS	PASS	PASS	GMSK	PASS	N/A
1	1750	3/12/2018	3287	ES3DV3	1750	Body	1.462	52.350	PASS	PASS	PASS	N/A	N/A	N/A
1	1900	5/21/2018	3287	ES3DV3	1900	Body	1.575	51.758	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	10/10/2017	3332	ES3DV3	2450	Body	2.040	51.023	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-2
SAR System Validation Summary - $\mathbf{1 0 g}$

$\begin{array}{\|c\|} \hline \text { SAR } \\ \text { SYSTEM } \\ \# \end{array}$	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT		COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
							(σ)	(عr)	SENSITIVITY	PROBE LINEARITY	$\begin{gathered} \text { PROBE } \\ \text { ISOTROPY } \end{gathered}$	$\begin{aligned} & \hline \text { MOD. } \\ & \text { TYPE } \end{aligned}$	DUTY FACTOR	PAR
1	1750	3/12/2018	3287	ES3DV3	1750	Body	1.462	52.350	PASS	PASS	PASS	N/A	N/A	N/A
1	1900	5/21/2018	3287	ES3DV3	1900	Body	1.575	51.758	PASS	PASS	PASS	GMSK	PASS	N/A
K	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A3LSMN960F	CPCTEST	SAR EVALUATION REPORT	snmsuns	Approved by: Quality Manager
Test Dates: $06 / 06 / 18-06 / 24 / 18$	DUT Type: Portable Handset			APPENDIX E: Page 1 of 1
PCTEST Engineering Labo				$\begin{array}{r} \hline \text { REV 20.10 M } \\ 05 / 18 / 2018 \end{array}$

APPENDIX G: POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

1.1 Power Verification Procedure

The power verification was performed according to the following procedure:

1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

1.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

| FCC ID: A3LSMN960F | ReTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :---: | :---: |
| Quality Manager | | | |

1.3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

Mechanism(s)	Mode/Band	Power Measurements (dBm)		
		Un-triggered (Max)	Mechanism \#1 (Reduced)	Mechanism \#2 (Reduced)
Hotspot On	UMTS B4	23.86	20.85	
Hotspot On	UMTS B2	23.72	20.74	
Hotspot On	LTE B66	23.71	20.74	
Hotspot On	LTE B4	23.64	20.73	
Hotspot On	LTE B2	23.65	20.45	
Hotspot On	LTE B25	23.55	20.41	
Hotspot On	LTE B7	23.83	19.87	
Hotspot On	LTE B38	23.15	20.12	
Hotspot On	LTE B41	23.61	20.64	
Grip	UMTS B4	23.87	20.84	
Grip	UMTS B2	23.7	20.57	
Grip	LTE B66	23.69	20.69	
Grip	LTE B4	23.45	20.42	
Grip	LTE B2	23.62	20.49	
Grip	LTE B25	23.57	20.22	
Grip	LTE B7	23.82	19.68	
Grip	LTE B38	23.14	20.05	
Grip	LTE B41	23.59	20.71	
Hotspot On, the Grip	UMTS B4	23.85	20.83	20.83
Hotspot On, the Grip	UMTS B2	23.73	20.61	20.55
Hotspot On, the Grip	LTE B66	23.72	20.78	20.72
Hotspot On, the Grip	LTE B4	23.66	20.61	20.56
Hotspot On, the Grip	LTE B2	23.59	20.53	20.53
Hotspot On, the Grip	LTE B25	23.54	20.5	20.48
Hotspot On, the Grip	LTE B7	23.74	19.69	19.58
Hotspot On, the Grip	LTE B38	23.12	20.05	19.97
Hotspot On, the Grip	LTE B41	23.6	20.69	20.68
Grip, the Hotspot On	UMTS B4	23.86	20.87	20.85
Grip, the Hotspot On	UMTS B2	23.74	20.6	20.6
Grip, the Hotspot On	LTE B66	23.71	20.68	20.68
Grip, the Hotspot On	LTE B4	23.63	20.59	20.63
Grip, the Hotspot On	LTE B2	23.62	20.44	20.38
Grip, the Hotspot On	LTE B25	23.55	20.45	20.4
Grip, the Hotspot On	LTE B7	23.71	19.63	19.62
Grip, the Hotspot On	LTE B38	23.2	20.05	20.03
Grip, the Hotspot On	LTE B41	23.64	20.72	20.76

FCC ID: A3LSMN960F	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX G:	
06/06/18 - 06/24/18	Portable Handset	Page 2 of 3	
© 2018 PCTEST Engineering Laboratory, Inc.	REV 20.05 M		

Table G-2
Distance Measurement Verification for Main Antenna

Mechanism(s)	Exposure Condition	Mode/Band	Distance Measurements (mm)		Minimum Distance per
			Moving Toward	Moving Away	
Grip	Phablet - Back Side	Mid	12	15	
Grip	Phablet - Back Side	High	11	11	
Grip	Phablet - Front Side	Mid	9	14	11
Grip	Phablet - Front Side	High	9	12	6
Grip	Phablet - Bottom Edge	Mid	13	12	6
Grip	Phablet - Bottom Edge	High	13	16	13

*Note: Mid band refers to: UMTS B2/4, LTE B2/4/25/66; High band refers to: LTE B7/B38/41

1.4 WIFI Verification Summary

Table G-3
Power Measurement Verification WIFI

Mechanism(s)	Mode/Band	Conducted Power (dBm)			
		Un-triggered (Max)	Max Allowed Target	Mechanism \#1 (Reduced)	Max Allowed Target
Held-to-Ear	802.11b	18.94	19	15.99	16
Held-to-Ear	802.11a	16.69	17	12.36	13
Held-to-Ear	802.11 n ($5 \mathrm{GHz}, 20 \mathrm{MHz} \mathrm{BW}$)	16.73	17	12.53	13
Held-to-Ear	$802.11 \mathrm{ac}(20 \mathrm{MHz} \mathrm{BW})$	15.97	17	11.51	13
Held-to-Ear	802.11n (5GHz, 40MHz BW)	14.45	15	12.58	13
Held-to-Ear	$802.11 \mathrm{ac}(40 \mathrm{MHz} \mathrm{BW})$	14.42	15	12.56	13
Held-to-Ear	802.11ac (80MHz BW)	12.73	14	12.37	13

Table G-4
Distance Measurement Verification for WIFI

Mechanism(s)	Exposure Condition	Mode/Band	Distance Measurements (mm)		Minimum Distance per
			Moving Toward	Moving Away	Manufacturer (mm)
Held-to-Ear	Head - Right Cheek	802.11 b	64	>85	50
Held-to-Ear	Head - Right Cheek	802.11 a	65	>85	
Held-to-Ear	Head - Left Cheek	802.11 b	71	>85	50
Held-to-Ear	Head - Left Cheek	802.11 a	70	>85	50

FCC ID: A3LSMN960F	(1)PCTEST	SAR EVALUATION REPORT	snmsum:	Reviewed by: Quality Manager
Test Dates: \|06/06/18 - 06/24/18	DUT Type: Portable Handset			APPENDIX G: Page 3 of 3
© 2018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.05 \mathrm{M} \\ 11 / 15 / 2017 \end{array}$

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per FCC Guidance, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4×4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 - Example of Exclusion Table for SISO Configurations

Table 2 - Example of Exclusion Table for 4x4 Downlink MIMO Configurations

Note: [CC] indicates component carrier with 4×4 DL MIMO antenna configuration

| FCC ID: A3LSMN960F | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |
| Test Dates: | DUT Type: | APPENDIX H | |
| O6/06/18 - 06/24/18 | Portable Handset | | Page 1 of 6 |

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by FCC Guidance, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

LTE Downlink Carrier Aggregaton was fully addressed in the original filing. Per FCC Guidance, only combiantions that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M1804040063-01.A3L for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.
- When a device supports LTE capabilities with overlapping transmission frequency ranges, the standalone powers from the band with a larger transmission frequency range can be used to select measurement configurations for the band with the fully covered transmission frequency range.

Figure 1
SISO CA Power Measurement Setup

| FCC ID: A3LSMN960F | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |

Figure 2
4x4 DL MIMO CA Power Measurement Setup

1.3 SISO Downlink Carrier Aggregation RF Conducted Powers

1.3.1 Two Component Carrier

Table 1
Maximum Output Powers

	PCC									SCC				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	$\left\lvert\, \begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}\right.$	Modulation	$\begin{aligned} & \text { PCC UL\# } \\ & \text { RB } \end{aligned}$	PCC UL RB Offset	$\left\|\begin{array}{c} \text { PCC (DL) } \\ \text { Ch. } \end{array}\right\|$	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	$\begin{gathered} \mathrm{SCC}(\mathrm{DL}) \\ \text { Ch. } \end{gathered}$	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B7	20	3204	2665.4	24.18	24.19
CA_7A-7A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B7	20	2850	2630	24.25	24.19

Table 2
Reduced Output Powers

	PCC									SCC				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	$\left\lvert\, \begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}\right.$	Modulation	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	PCC UL RB Offset	$\begin{gathered} \text { PCC (DL) } \\ \text { Ch. } \end{gathered}$	PCC (DL) Freq. [MHz]	SCC Band	SCC BW $[M H z]$	$\begin{array}{\|c} \text { SCC (DL) } \\ \text { Ch. } \end{array}$	SCC (DL) Freq. [MHz]	LTE Tx. Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B7	20	2944	2639.4	20.24	20.45
CA_7A-7A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B7	20	3350	2680	20.24	20.45

| FCC ID: A3LSMN960F | PCTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |

1.4 4x4 Downlink MIMO RF Conduction Powers

This device supports downlink 4×4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4×4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4×4 DL MIMO inactive. Additionally, SAR for 4×4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4×4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4×4 MIMO Downlink and downlink carrier aggregation inactive.

1.4.1 LTE 4×4 DL MIMO Standalone Powers

Table 3
Maximum Output Powers

LTE Band	Bandwidth [MHz]	Channel	Frequency $[\mathrm{MHz}]$	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power $[d B m]$
7	15	21375	2562.5	QPSK	1	74	24.18	24.19

Table 4
Reduced Output Powers

LTE Band	Bandwidth $[\mathrm{MHz}]$	Channel	Frequency $[\mathrm{MHz}]$	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power $[\mathrm{dBm}]$	Single Antenna Tx. Power $[\mathrm{dBm}]$
7	10	20800	2505	16QAM	1	25	20.48	20.45

1.4.2 Two Component Carrier

Table 5
Maximum Output Powers

	PCC										SCC					Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	$\left\|\begin{array}{c} \text { PCC UL } \\ \text { RB Offset } \end{array}\right\|$	PCC (DL) Channel	PCC (DL) Frequency [MHz]	DLAnt. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx. Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_[7C] (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4X4 MIMO	LTE B7	20	3204	2665.4	$4 \times 4 \mathrm{MIMO}$	24.22	24.19
CA_[7A]-[7A] (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4X4 MIMO	LTE B7	20	2850	2630	4×4 MIMO	24.35	24.19

Table 6
Reduced Output Powers

	PCC										ScC					Power	
Combination	PCC Band	Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	PCCUL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_[7C] (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4X4 MIMO	LTE B7	20	2944	2639.4	4×4 MIMO	20.35	20.45
CA_[7A]-[7A] (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4×4 MIMO	LTE B7	20	3350	2680	4×4 MIMO	20.41	20.45

FCC ID: A3LSMN960F	PCTEST	SAR EVALUATION REPORT	Reviewed by:
Quality Manager			
Test Dates:	DUT Type:	APPENDIX H	
O6/06/18 - 06/24/18	Portable Handset		Page 4 of 6

1.5 LAA Downlink Carrier Aggregation

This device supports LAA with downlink carrier aggregation only. It uses carrier aggregation in the downlink to combine LTE in the unlicensed spectrum (i.e. LTE Band 46) with LTE in the licensed band (served as PCC). All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive. Due to the wide downlink bandwidth, each Band 46 sub-band, represented by subscripts A, B, C, and D, was evaluated independently. The general test selection and setup procedures described in Section 1.2 were applied.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

1.5.1 SISO LAA Downlink Carrier Aggregation RF Conducted Powers

Table 7
Maximum Output Powers

	PCC									scc 1				SCC2				Scc 3				Power	
Combination	PCC Band	$\begin{gathered} \text { PCC BW } \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \mathrm{PCC}(\mathrm{UL}) \\ \mathrm{Ch} . \end{gathered}$	PCC (UL) Freq. [MHz]	Mod.	$\begin{gathered} \text { PCC ULA } \\ \text { RB } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PCC UL } \\ \text { RB Offset } \end{array}$	$\left\|\begin{array}{cc} \mathrm{PCC}(\mathrm{DL}) \\ \mathrm{Ch} . \end{array}\right\|$	PCC (DL) Freq. [MHz]	SCC Band		$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{Ch} . \end{gathered}$	scC (DL) Freq. [MHz]	ScC Band	$\begin{gathered} \mathrm{scc} \mathrm{sw} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{Ch.} \end{gathered}$	SCC (DL) Freq. [MHz]	ScC Band	$\begin{gathered} \text { scc Bw } \\ \text { [MHz] } \end{gathered}$	$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{Ch} . \end{gathered}$	$\begin{gathered} \mathrm{scc}(\mathrm{DLL}) \\ \text { Freq. } \\ {[\mathrm{MHz]}} \\ \hline \end{gathered}$	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46AA 1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46a	20	47290	5200	-	-	-	-					24.23	24.19
CA_ $7 \mathrm{~A}-46 \mathrm{6}$ A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 ${ }^{\text {a }}$	20	48290	5300	-	-	-			-	-		24.25	24.19
CA_7A-46A A 1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46c	20	51290	5600	-	-	-	-	-	-	-		24.24	24.19
CA $7 \mathrm{~A}-46 \mathrm{~b}_{0} \mathrm{~A}(1)$	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B460	20	53140	5785	-		-		-	.	-		24.24	24.19
CA_7A-46AC (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46A	20	47290	5200	LTE B46A	20	47488	5219.8	-	.	.	-	24.22	24.19
CA_7A-468C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 ${ }_{\text {B }}$	20	48290	5300	LTE $846{ }^{\text {B }}$	20	48488	5319.8	-	.	.		24.17	24.19
CA_7A-46CC (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46c	20	51290	5600	LTE B46C	20	51488	5619.8	.	.	-	.	24.16	24.19
CA-7A-460 $\mathrm{C}^{\text {c (1) }}$	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B460	20	53140	5785	LTE B460	20	53338	5804.8	-	.	-	-	24.20	24.19
CA $7 \mathrm{~A}-46 \mathrm{~A}_{\mathrm{A}} \mathrm{D}$ (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46A	20	47290	5200	LTE B46A	20	47488	5219.8	LTE B46A	20	47092	5180.2	24.34	24.19
CA_7A-468D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 ${ }_{\text {B }}$	20	48290	5300	LTE B46 ${ }^{\text {b }}$	20	48488	5319.8	LTE B46 ${ }^{\text {B }}$	20	48092	5280.2	24.32	24.19
CA_7A-46CD (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46c	20	51290	5600	LTE B46c	20	51488	5619.8	LTE B46c	20	51092	5580.2	24.33	24.19
CA_7A-460 ${ }^{\text {d }}$ (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B460	20	53140	5785	LTE B460	20	53338	5804.8	LTE B46.	20	52942	5765.2	24.28	24.19

Table 8
Reduced Output Powers

Combination	PCC									scc 1				SCC 2				Scc 3				Power	
	PCC Band	$\begin{gathered} \mathrm{pcc} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \mathrm{PCC}(\mathrm{UL}) \\ \mathrm{Ch} . \end{gathered}$	PCC (UL) Freq. [MHz]	Mod.	$\left\lvert\, \begin{gathered} \text { PCC UL\# } \\ \text { RB } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { PCC UL } \\ \text { RB Offset } \end{array}\right\|$	$\begin{gathered} \text { PCC (DL) } \\ \text { Ch. } \end{gathered}$	PCC (DL) Freq. [MHz]	ScC Band	$\left.\begin{gathered} \mathrm{scc} \text { Bw } \\ {[\mathrm{MHz}]} \end{gathered} \right\rvert\,$	$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{ch} . \end{gathered}$	$\begin{array}{\|l\|l\|l} \hline \text { ScC (DL) } \\ \text { Freq. } \\ \text { [MHz] } \end{array}$	SCC Band	$\left.\begin{gathered} \mathrm{SCC} \text { BW } \\ {[\mathrm{MHz}]} \end{gathered} \right\rvert\,$	$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{ch} . \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{SCC}(\mathrm{DL}) \\ \text { Freq. } \\ {[\mathrm{MHz]}} \end{array}$	SCC Band	$\begin{array}{\|c} \mathrm{SCC} \text { BW } \\ {[\mathrm{MHz]}} \end{array}$	$\begin{gathered} \operatorname{scc}(\mathrm{DL}) \\ \mathrm{ch} . \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{SCC} \text { (DL) } \\ \text { Freq. } \\ {[\mathrm{MHz}]} \end{array}$	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_ 7 A-46aA (1)	LTE 87	10	20800	2505	160AM	1	25	2800	2625	LTE B46A	20	47290	5200		-	-	-			.		20.44	20.45
CA_7A-468 ${ }^{\text {a }}$ (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B46 ${ }^{\text {B }}$	20	48290	5300	-	-	-	-		-	.	-	20.47	20.45
CA_7A-46A A (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B46c	20	51290	5600	-	-	-	-	-	.	.	.	20.40	20.45
CA $7 \mathrm{~A}-46 \mathrm{c}_{\mathrm{a}} \mathrm{A}(1)$	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B460	20	53140	5785	-	.	-	.	.	-	-	-	20.49	20.45
CA-7A-464C ${ }^{\text {c }}$ (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B46A	20	47290	5200	LTE B46A	20	47488	5219.8	.	-	-	-	20.31	20.45
	LTE B7	10	20800	2505	160AM	1	25	2800	2625		20	48290	5300	LTE B46 ${ }^{\text {B }}$	20	48488	5319.8	-	-	-	-	20.32	20.45
CA_7A-46C (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B46c	20	51290	5600	LTE B46c	20	51488	5619.8	.	-	-	.	20.28	20.45
CA-7A-460C (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B460	20	53140	5785	LTE B46。	20	53338	5804.8	-	.	-	-	20.25	20.45
CA 7 7 $4-46 \mathrm{~A}$ D (1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B46A	20	47290	5200	LTE B46A	20	47488	5219.8	LTE E46A	20	47092	5180.2	20.39	20.45
CA $7 \mathrm{~A}-46_{6} \mathrm{D}$ (1)	LTE 87	10	20800	2505	160AM	1	25	2800	2625	LTE B46 ${ }_{\text {B }}$	20	48290	5300	LTE B46 ${ }_{\text {B }}$	20	48488	5319.8	LTE B46	20	48092	5280.2	20.44	20.45
CA 7 A-46CD (1)	LTE 87	10	20800	2505	160AM	1	25	2800	2625	LTE B46C	20	51290	5600	LTE B46c	20	51488	5619.8	LTE B46c	20	51092	5580.2	20.38	20.45
CA_7A-460 ${ }^{\text {(1) }}$	LTE B7	10	20800	2505	160AM	1	25	2800	2625	LTE B460	20	53140	5785	LTE B460	20	53338	5804.8	LTE B460	20	52942	5765.2	20.37	20.45

1.5.2 4x4 DL MIMO LAA Downlink Carrier Aggregation RF Conducted Powers

Table 9
Maximum Output Powers

Combmion	${ }^{\text {cctanam }}$		-		mod.	recuum				${ }_{\text {oreme }}^{\substack{\text { orame } \\ \text { comb }}}$	sctand		$\substack{\text { scciol } \\ \text { che }}$		${ }_{\text {coseme }}^{\substack{\text { orane } \\ \text { come }}}$	scctand	${ }_{\substack{\text { scemen }}}^{\substack{\text { cemat }}}$	(cc)		${ }_{\substack{\text { orane } \\ \text { come }}}^{\substack{\text { a }}}$	scctand		sscole		${ }_{\substack{\text { orane } \\ \text { come }}}^{\substack{\text { cose }}}$		
		${ }_{15}^{15}$	${ }_{\text {2173 }}^{2135}$	${ }_{\text {2525 }}^{2525}$	${ }_{\text {aspx }}^{\text {ask }}$	$\stackrel{1}{1}$	${ }_{14}^{19}$	${ }_{\substack{335 \\ 335}}^{\substack{\text { a }}}$	${ }_{2}^{2025}$	asmme	${ }_{\text {Lexeacs }}$	$\frac{20}{20}$														${ }^{\frac{2}{2435}}$	
		15	$\underbrace{\substack{2135}}_{\text {21375 }}$	${ }^{252}$	${ }_{\text {asese }}^{\text {asx }}$		${ }_{\text {la }}^{\frac{12}{44}}$	$\underbrace{}_{\substack{3375 \\ 375}}$	$\underbrace{\substack{205}}_{\substack{2025 \\ 2025}}$	$\xrightarrow{\text { commmo }}$	Itats	$\stackrel{\substack{20 \\ 20}}{ }$	S340	${ }^{\text {sess }}$													
$)^{(1)}$	$\underbrace{\text { Liter }}$	15	$\frac{2375}{2135}$	${ }_{20}^{205}$	${ }_{\text {asese }}^{\text {ase }}$	$\stackrel{1}{1}$	$\stackrel{14}{74}$	${ }^{3} 75$		mammo	$)^{\text {Lteaba }}$	$\stackrel{\substack{20 \\ 20}}{ }$	20290	${ }_{\substack{\text { 5200 } \\ 5300}}$	22 mano	${ }_{\text {¢ }}$	${ }^{20}$			${ }^{2}$						$\underset{\substack{2238 \\ 223}}{ }$	
		${ }^{15}$	$\frac{2135}{2195}$	${ }_{2}^{2525}{ }_{2}^{2025}$	${ }_{\text {asse }}^{\text {ask }}$	1	${ }^{7}$	${ }_{\text {l }}^{3375}$	${ }_{2}^{2825}$	sathmo	${ }_{\text {Lexeme }}$	20	4839		2 zammo	${ }_{\text {Lemen }}$	${ }_{20}^{20}$	seas	5198	22 mano						${ }_{223}$	${ }^{2.19}$
a^{4}	Utiter	${ }^{15}$	${ }_{2}^{2135}$	${ }_{2 \text { 2025 }}$	Osx	1	$\stackrel{7}{14}$	${ }^{3375}$	${ }_{2}$	asmmo	${ }^{\text {Uratag }}$	${ }_{20}^{20}$	Sinc	${ }_{5}^{585}$	${ }^{2} 22 \mathrm{mmmo}$	1 tream	${ }_{20}^{20}$	${ }^{\text {S338 }}$	Smas	220 mV						$2{ }^{245}$	
	${ }_{\text {Liter }}^{\text {UTEP }}$	${ }_{15}^{15}$	${ }^{2375}$	${ }^{25255}$	${ }_{\text {assx }}^{\text {ask }}$	$\frac{1}{1}$	${ }_{17}^{17}$	${ }_{\substack{375 \\ 375}}$	${ }_{\substack{2025 \\ 2825}}$	${ }_{\text {asammo }}^{\text {asammo }}$	Lieat	${ }^{\frac{20}{20}}$	${ }_{\text {a }}^{\text {ane }}$		$\frac{220 \mathrm{M}}{2 \times 2 \mathrm{M}}$	${ }_{\text {cteg }}$	$\frac{20}{20}$			$\frac{202 m \mathrm{Ma}}{22 \mathrm{MMN}}$	$\frac{\text { Lex }}{\text { Ufe }}$	$\frac{20}{20}$	${ }_{\text {atios }}$	$\frac{\text { sixe }}{\substack{\text { seo }}}$		${ }_{\text {2433 }}^{242}$	
(1)		${ }_{15}^{15}$	${ }_{\substack{2375 \\ 2375}}$	${ }^{\frac{2}{2525} 5}$			14	${ }_{\substack{375 \\ 335}}$	$\xrightarrow{2 \times 25}$	asame		$\xrightarrow{20}$		${ }_{5}^{5000}$	$\frac{223 \mathrm{mmo}}{2 \times 2 \mathrm{mmmo}}$		$\stackrel{20}{20}$		coict	$\xrightarrow{2 \text { 2amwo }}$ 2nmwo	${ }_{\text {Hemem }}$	-			退	${ }^{\frac{2,46}{2434}}$	${ }_{\text {24, }}^{24}$

Table 10
Reduced Output Powers

Combination	PCC										scc 1					scce 2					scc 3					Power	
	PCC Band	$\begin{array}{\|c\|c\|} \hline \mathrm{PCC} \text { BW } \\ \text { [MHz2] } \end{array}$	$\left.\left\lvert\, \begin{array}{c} \mathrm{Pcc}(\mathrm{UL}) \\ \mathrm{Ch} \end{array}\right.\right)$		Mod.	$\underset{\mathrm{RB}}{\mathrm{PCCOL}}$	$\begin{gathered} \text { PCC UL } \\ \text { RB offset } \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} \mathrm{PCC}(\mathrm{DOL} \\ \mathrm{Ch} \end{array}\right.\right)$		DL Ant. Config.	scc Band	$\begin{gathered} \mathrm{scc} \mathrm{cw} \\ \text { [MHz] } \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} \operatorname{scc}(D) \\ \mathrm{Ch} \end{array}\right.\right)$		DL Ant Config.	ScC Band	$\left\lvert\, \begin{gathered} \mathrm{scc} \mathrm{cw} \\ \text { [MHz] } \end{gathered}\right.$	$\left.\left\lvert\, \begin{array}{c} \operatorname{scc}(\mathrm{DLL} \\ \mathrm{Ch} \end{array}\right.\right)$	$\begin{gathered} \hline \operatorname{scc}(\mathrm{Clu}) \\ \text { freq. } \\ \text { [MHz] } \end{gathered}$	DL Ant. Config.	SCC Band	$\begin{aligned} & \mathrm{scc} \text { sw } \\ & \text { [MHzz] } \end{aligned}$	$\begin{gathered} \operatorname{scc}(D) \\ \text { ch. } \end{gathered}$	$\operatorname{scc}(D L)$ Freq. $[M H z]$	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	
CA_[7A]-46, ${ }^{\text {a }}$ (1)	LTE B7	10	20800	2505	160am	1	25	2800	2625	4xa M1M0	LTE E46,	20	47290	5200	$2 \times 2 \mathrm{MIMO}$											0.31	20.45
CA_[7A) $46_{\text {a }} A_{\text {A }}(1)$	LTE B7	10	20800	2505	160AM	1	25	2800	2625	4x4 M1MO	LTE EA6 $6^{\text {a }}$	20	48290	5300	222M1MO		.	.								20.28	20.45
CA_[7A] $46 \mathrm{E}_{\text {A }}(1)$	LTE B7	10	20800	2505	160AM	1	25	2800	2625	4×4 M1M0	LTE B46c	20	51290	5600	$2 \times 2 \mathrm{MIMO}$.	.	.								20.26	20.45
	LTE B7	10	20800	2505	160AM	1	25	2800	2625	4×4 M1MO	$\underline{L T E A 46}$	20	53140	5785	$2 \times 2 \mathrm{MIMO}$	-	.	,	.	,		.				20.31	20.45
CA_[7A]-46, ${ }_{\text {c }}(1)$	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4×4 M1MO	$\underline{L T E A 46}{ }_{\text {A }}$	20	47290	5200	222 M1MO	${ }_{\text {LTE } 846 a}$	20	47488	5219.8	$2 \times 2 \mathrm{MIMO}$.		.		.	20.27	20.45
CA_[7A]-46 ${ }_{\text {c }}(1)$	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4х4 М1мо	LTE E46 ${ }_{\text {B }}$	20	48290	5300	2×2 M1M0	LTE 846 ${ }^{\text {a }}$	20	48488	5319.8	$2 \times 2 \mathrm{MIMO}$.	.	.			20.33	20.45
CA_[77] -46C [1]	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4x4 M1MO	LTE E46c	20	51290	5600	$2 \times 2 \mathrm{MIMO}$	${ }^{\text {LTE E } 866_{c}}$	20	51488	5619.8	222M1MO	20.37	20.45
CA_[7A) $46_{0} \mathrm{C}$ (1)	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4×4 M1MO	LTE E46 ${ }_{\text {¢ }}$	20	53140	5785	2x2 M1MO		20	53338	5804.8	$2 \times 2 \mathrm{MIMO}$	20.22	20.45
CA $/[7 A) \cdot 46_{0}(1)$	LTE 87	10	20800	2505	160AM	1	25	2800	2625	$4 \times 4 \mathrm{MIMO}$	LTE E46.	20	47290	5200	$2 \times 2 \mathrm{MIMO}$	LTE 846a	20	47788	5219.8	$2 \times 2 \mathrm{MIMO}$	LTE B46a	20	47092	5180.2	$2 \times 2 \mathrm{M1M0}$	20.21	20.45
	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4x4 M1M0	LTE EA6 $6_{\text {B }}$	20	48290	5300	222M1M0	LTE 846 ${ }^{\text {a }}$	20	48488	5319.8	$2 \times 2 \mathrm{MIMO}$	LTE 846 ${ }_{\text {a }}$	20	48992	5280.2	$2 \times 2 \mathrm{M1MO}$	20.24	20.45
CA_[77) $46 . \mathrm{C}$ (1 ($)$	LTE B7	10	20800	2505	160AM	1	25	2800	2625	4x4 MIMO	LTEB46c	20	51290	5600	$2 \times 2 \mathrm{MIMO}$	LTE E46c	20	51488	5619.8	$2 \times 2 \mathrm{MIMO}$	LTE 846c	20	51092	5580.2	$2 \times 2 \mathrm{MIMO}$	20.27	20.45
CA $[77)^{-460}$ (1)	LTE 87	10	20800	2505	160AM	1	25	2800	2625	4×4 M1MO	LTE E460	20	5340	5785	$2 \times 2 \mathrm{M1M0}$	LTE P460	20	53338	5804.8	$2 \times 2 \mathrm{M1MO}$	LTE E460	20	52942	5765.2	$2 \times 2 \mathrm{MmO}$	20.22	20.45

[^0]: This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

[^1]: ${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncerdainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{\mathrm{G}}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^2]: ${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (s and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^3]: ${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
 ${ }^{9}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^4]: ${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }_{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip
 diameter from the boundary.

[^5]: ${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainly for indicated target tissue parameters
 ${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip
 diameter from the boundary.

[^6]: ${ }^{\text {E }}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^7]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6)
 ${ }^{B}$ Numerical linearization parameter: uncertainty not required.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^8]: ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^9]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6)
 ${ }^{8}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^10]: ${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^11]: This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

[^12]: Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 x 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
 Reference Value $=69.11 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
 Peak SAR $($ extrapolated $)=32.4 \mathrm{~W} / \mathrm{kg}$
 $\operatorname{SAR}(1 \mathrm{~g})=8.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}$
 Maximum value of SAR (measured) $=19.6 \mathrm{~W} / \mathrm{kg}$

