Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3347_Mar18

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3347	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	vois
Calibration date:	March 27, 2018	
	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been cone	fucted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.	
Calibration Equipment used (N	I&TE critical for calibration)	

Scheduled Calibration Primary Standards ID Cal Date (Certificate No.) Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Apr-18 Power sensor NRP-Z91 04-Apr-17 (No. 217-02525) SN: 103245 Apr-18 Reference 20 dB Attenuator SN: S5277 (20x) 07-Apr-17 (No. 217-02528) Reference Probe ES3DV2 SN: 3013 30-Dec-17 (No. ES3-3013_Dec17) Dec-18 DAE4 SN: 660 21-Dec-17 (No. DAE4-660_Dec17) Dec-18 Scheduled Check Check Date (in house) Secondary Standards ID Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-16) In house check: Jun-18 06-Apr-16 (in house check Jun-16) In house check: Jun-18 Power sensor E4412A SN: MY41498087 SN: 000110210 06-Apr-16 (in house check Jun-16) In house check: Jun-18 Power sensor E4412A In house check: Jun-18 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			<u>11.11225</u>
Approved by:	Katja Pokovic	Technical Manager	10 M
			10000
			Issued: March 27, 2018
This calibration certificat	e shall not be reproduced except in full	without written approval of the lab	oratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3347

Manufactured: Repaired: Calibrated:

March 15, 2012 March 15, 2018 March 27, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.15	1.18	1.21	± 10.1 %
DCP (mV) ^B	101.9	105.1	102.9	

Modulation Calibration Parameters

UID	Communication System Name	***	A dB	B dB√μV	С	D dB	VR mV	Unc [≞] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	201.8	±3.3 %
		Y	0,0	0.0	1.0		203.9	
		Z	0.0	0.0	1.0		204.8	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V ⁻¹	Т6
X	52.41	376.6	35.43	28.01	1.852	5.10	0.578	0.488	1.008
Y	42.65	300.9	34.31	25.12	1.310	5.10	1.279	0.204	1.011
Z	48.12	344.8	35.26	27.10	1.587	5.10	0.868	0.385	1.009

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.77	6.77	6.77	0.65	1.32	± 12.0 %
835	41.5	0.90	6.41	6.41	6.41	0.40	1.64	± 12.0 %
1750	40.1	1.37	5.58	5.58	5.58	0.54	1.42	± 12.0 %
1900	40.0	1.40	5.36	5.36	5.36	0.80	1.16	± 12.0 %
2300	39.5	1.67	5.1 1	5.11	5.11	0.74	1.29	± 12.0 %
2450	39.2	1.80	4.81	4.81	4.81	0.80	1.24	± 12.0 %
2600	39.0	1.96	4.66	4.66	4.66	0.75	1.25	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.59	6.59	6.59	0.77	1.22	± 12.0 %
835	55.2	0.97	6.37	6.37	6.37	0.80	1.17	± 12.0 %
1750	53.4	1.49	5.17	5.17	5.17	0.49	1.59	± 12.0 %
1900	53.3	1.52	4.94	4.94	4.94	0.52	1.49	± 12.0 %
2300	52.9	1.81	4.74	4.74	4.74	0.80	1.25	± 12.0 %
2450	52.7	1.95	4.64	4.64	4.64	0.75	1.20	± 12.0 %
2600	52.5	2.16	4.49	4.49	4.49	0.80	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

The ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-16.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

X.

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	201.8	± 3.3 %
		Y	0.00	0.00	1.00		203.9	
10010-		Z	0.00	0.00	1.00		204.8	
CAA	SAR Validation (Square, 100ms, 10ms)	X	7.57	78.06	17.49	10.00	25.0	± 9.6 %
		Y	9.85	82.39	18.69		25.0	
10011-	UMTS-FDD (WCDMA)	Z	7.35	77.81	17.08		25.0	
CAB		X	0.93	66,02	14.08	0.00	150.0	± 9.6 %
		Y	0.97	66.67	14.52		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z	0.93	66.21	14.17		150.0	
CAB	Mbps)	X	1.22	64.40	15.16	0.41	150.0	± 9.6 %
		Y	1.24	64.68	15.35		150.0	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	1.21	64.49	15.23	4.40	150.0	
CAB	OFDM, 6 Mbps)	×	5.02	67.09	17.26	1.46	150.0	± 9.6 %
		Y	4.93	67.32	17.31	ļ	150,0	
10021-	GSM-FDD (TDMA, GMSK)	ZX	4.97	67.16	17.27		150.0	
DAC			91.36	118.07	31.34	9.39	50.0	± 9.6 %
		Y	100.00	119.30	31.14	ļ	50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z X	100.00	118.75	31.10	0.57	50.0	100%
DAC			58.54	111.16	29.65	9.57	50.0	± 9.6 %
		Y Z	100.00	119.20	31.14		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	118.71 115.85	31.13 28.82	6.56	50.0 60.0	± 9.6 %
0/10		Y	100.00	116.32	28.70		60.0	
		Z	100.00	115.26	28.36		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	19.84	109.66	41.73	12.57	50.0	±9.6 %
		Y	49.03	143.08	53.86		50.0	
		Z	21.37	113.26	43.24		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.22	106.46	36.65	9.56	60.0	± 9.6 %
		Y	31.58	119.85	41.69		60.0	
40007		Z	22.56	108.96	37.62		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	114.36	27.28	4.80	80.0	±9.6 %
		Y	100.00	115.58	27.56		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	113.91 113.86	26.92 26.30	3.55	80.0 100.0	± 9.6 %
DAC						L		
		Y	100.00	115.98	27.02	 	100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z	100.00	113.53	26.01	7.00	100.0	+0.0 %
DAC		X	12.94	95.02	31.64	7.80	80.0	± 9.6 %
		Y Z	14.07	99.40	33.81	 	80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	12.89 100.00	95.72 113.99	32.02 27.43	5.30	80.0 70.0	± 9.6 %
UAA		Y	100.00	114.60	27.41	<u> </u>	70.0	
		Z	100.00	113.38	26.98		70.0	1
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	111.77	23.93	1.88	100.0	± 9.6 %
		Y	100.00	115.39	25.33	1	100.0	
		Z	100.00	111.26	23.59		100.0	

40022	IFFF 002 15 1 Plustooth (CESK DUS)	Х	400.00	111.85	22.94	1.17	100.0	± 9.6 %
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	^	100.00	CO.III	22,94	1.17	100.0	19.0 %
		Y	100.00	118.40	25.59		100.0	
		Ζ	100.00	111.34	22.62		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Х	23.91	101.19	27.41	5.30	70.0	±9.6 %
		Y	36.18	107.81	28.88		70.0	
		Ζ	30.63	104.89	28.18		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	6.24	84.08	20.44	1.88	100.0	±9.6 %
		Υ	7.24	85.92	20.55		100.0	
		Ζ	6.85	85.19	20.50		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	3.29	76.95	17.63	1.17	100.0	± 9.6 %
		Y	3.58	78.09	17.57		100.0	
		Z	3,42	77.43	17.51		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	32.79	106.39	28.91	5.30	70.0	±9.6 %
		Y	55.24	114.58	30.68	L	70.0	
40007		Z	45.73	111.34	29.95	<u> </u>	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	5.86	83.28	20.13	1.88	100.0	± 9.6 %
		Y	6.54	84.66	20.12		100.0	
40000		Z	6.31	84.13	20.12		100.0	100%
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.39	77.59	17.96	1.17	100.0	±9.6 %
		Y	3.66	78.64	17.87		100.0	
		Z	3.53	78.11	17.85		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.52	69.16	14.18	0.00	150.0	±9.6 %
		Y	1.40	68.90	13.55		150.0	
		Z	1.46	69.03	13.83		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	114.62	28.47	7.78	50.0	± 9.6 %
		Y	100.00	114.70	28.14		50.0	
		Z	100.00	113.88	27.92		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.01	121.88	0.68	0.00	150.0	± 9.6 %
		Y	0.00	97.83	1.91		150.0	
		Z	0.01	122.55	0.35		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	×	17.94	92.17	26.06	13.80	25.0	± 9.6 %
		Y	42.19	107.21	29.95		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	Z X	24.74 22.69	97.63 96.29	27.36 25.94	10.79	25.0 40.0	± 9.6 %
		Y	68.20	113.74	30.23		40.0	
		Z	32.65	101.85	27.19	+	40.0	<u> </u>
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	x	16.99	92.79	25.84	9.03	50.0	± 9.6 %
		Y	27.63	101.84	28.34		50.0	
		Z	20.13	95.81	26.57		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	9.12	87.95	28.36	6.55	100.0	± 9.6 %
		Y	8.98	89.45	29.43		100.0	
		Z	8.90	88.06	28.51		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	×	1.37	66.39	16.16	0.61	110.0	± 9.6 %
		Y	1.38	66.59	16.33		110.0	
		Z	1.36	66.49	16.23		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	128.08	31.98	1.30	110.0	± 9.6 %
		Y	100.00	131.22	33.31		110.0	1
		Z	100.00	128.65	32.15		110.0	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	9.25	94.71	26.12	2.04	110.0	± 9.6 %
		Y	9.59	96.73	27.06		110.0	
10000		Z	10.28	96.95	26.85		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.74	66.85	16.53	0.49	100.0	± 9.6 %
		Y	4.66	67.04	16.57		100.0	
		Z	4.70	66.90	16.54		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.78	67.00	16.67	0.72	100.0	± 9.6 %
		Y	4.69	67.19	16.70		100.0	· · · · · · · · · · · · · · · · · · ·
10001		Z	4.73	67.05	16.68		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.09	67.32	16.93	0.86	100.0	± 9.6 %
	······································	Y	4.97	67.46	16.94		100.0	
		Z	5.03	67.35	16.93		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.99	67.34	17.10	1.21	100.0	± 9.6 %
		Y	4.88	67.46	17.11		100.0	[
		Z	4.93	67.36	17.10	-	100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.05	67.46	17.33	1.46	100.0	±9.6 %
		Y	4.92	67.57	17.33		100.0	
		Z	4.98	67.48	17.32		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.36	67.67	17.81	2.04	100.0	± 9.6 %
		Y	5.25	67.92	17.88		100.0	
		Z	5.30	67.73	17.82		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.48	67.95	18.15	2.55	100.0	± 9.6 %
		Y	5.33	68.04	18.16		100.0	
		Z	5.40	67.94	18.13		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.56	67.94	18.35	2.67	100.0	±9.6 %
		Y	5.42	68.11	18.40		100.0	
		Z	5.49	67.96	18.34		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.16	67.32	17.64	1.99	100.0	± 9.6 %
		Y	5.07	67.53	17.70		100.0	
		Z	5.11	67.37	17.65		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.20	67.83	17.95	2.30	100.0	± 9.6 %
		Y	5.09	67.99	18.00		100.0	
		Z	5.14	67.86	17.96		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.32	68.17	18.37	2.83	100.0	±9.6 %
	•	Y	5.22	68.36	18.44		100.0	
		Ż	5.26	68.20	18.38		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.35	68.22	18.60	3.30	100.0	± 9.6 %
		Y	5.26	68.43	18.68		100.0	
		Z	5.29	68.25	18.61		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.48	68.62	19.07	3.82	90.0	± 9.6 %
		Y	5.35	68.73	19.11		90.0	
40070		Z	5.40	68.60	19.05		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.50	68.45	19.21	4.15	90.0	± 9.6 %
		Y	5.40	68.64	19.31		90.0	
100000		Z	5.44	68.46	19.21		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.54	68.54	19.31	4.30	90.0	±9.6 %
		Y	5,44	68.76	19.43		90.0	
		Z	5.48	68.56	19.32		90.0	

10081-	CDMA2000 (1xRTT, RC3)	x	0.74	64.32	11.31	0.00	150.0	± 9.6 %
CAB		Y	0.70	64.20	10.81		150.0	
		T Z	0.70	64.15	10.92		150.0	
10082-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-	X	1.69	62.26	7.32	4.77	80.0	± 9.6 %
CAB	DQPSK, Fullrate)	- <u>v</u>	1.49	62.02	6.99		80.0	
		Y	and the second				80.0	
		Z	1.55	61.83	6.90	0.50		1069/
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	×	100.00	115.94	28.89	6.56	60.0	± 9.6 %
		Y	100.00	116.39	28.75		60.0	
		Z	100.00	115.35	28.42		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.73	66.76	14.97	0.00	150.0	± 9.6 %
		Y	1.76	67.41	15.16		150.0	
		Ζ	1.72	67.00	15.02		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	х	1.69	66.71	14.93	0.00	150.0	± 9.6 %
		Y	1.72	67.36	15.13		150.0	
		Ζ	1.69	66.94	14.98		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Х	21.17	106.37	36.62	9.56	60.0	± 9,6 %
		Y	31.53	119.75	41.66		60.0	
		Z	22.53	108.88	37.59		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	3.02	69.66	16.13	0.00	150.0	± 9.6 %
		Y	2.98	69.86	16.33	1	150.0	
		Z	2.99	69.71	16.19		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.20	67.30	15.63	0.00	150.0	± 9.6 %
		Y	3.15	67.42	15.72		150.0	
		z	3.17	67.31	15.65		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.31	67.28	15.74	0.00	150.0	± 9.6 %
		Y	3.26	67.39	15,81		150.0	
		Z	3.27	67.30	15.76		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.39	78.42	21.27	3.98	65.0	±9.6 %
0.0		Υ	8.55	79.75	21.92		65.0	
		z	8.43	78.92	21.50		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.28	76.92	21.52	3.98	65.0	± 9.6 %
		Y	8.11	77.48	21.85		65.0	
		z	8.18	77.09	21.61		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.63	75.31	21.13	3.98	65.0	± 9.6 %
0.0		Y	7.72	76.48	21.73		65.0	
		Z	7.57	75.55	21.26		65.0	1
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.65	68.92	15.95	0.00	150.0	± 9.6 %
		Y	2.59	69.14	16.15		150.0	1
		Ż	2.61	68.99	16.01		150.0	1
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.86	67.08	15.50	0.00	150.0	± 9.6 %
		Y	2.80	67.24	15.55		150.0	
		Z	2.82	67.11	15.51		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	×	2.15	67.97	15.52	0.00	150.0	± 9.6 %
~		Y	2.09	68.27	15.68	İ	150.0	
		Ż	2.11	68.06	15.56		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	x	2.54	67.60	15.65	0.00	150.0	± 9.6 %
UNE		Y	2.49	67.90	15.64		150.0	
	1		1 2	01.00	1 10.0-7	1	1 .00.0	1

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.98	67.08	15.57	0.00	150.0	±9.6 %
	1	Y	2.92	67.27	15.62		150.0	·
	······································	Z	2.94	67.13	15.58		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.70	67.76	15.81	0.00	150.0	± 9.6 %
		Y	2.63	68.07	15.78		150.0	
		Z	2.66	67.92	15.82		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.13	67.22	16.34	0.00	150.0	± 9.6 %
		Y	5.06	67.35	16.39		150.0	
10//7		Z	5.10	67.28	16.37		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.46	67.47	16.48	0.00	150.0	±9.6 %
		Y	5.32	67.42	16.43		150.0	
40440		Z	5.39	67.43	16.46		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.25	67.46	16.39	0.00	150.0	± 9.6 %
		Y	5.15	67.53	16.41		150.0	
40447		Z	5.20	67.47	16.40		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.10	67.11	16.30	0.00	150.0	± 9.6 %
		Y	5.03	67.22	16.34		150.0	
40440		Z	5.06	67.11	16.31		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.56	67.71	16.61	0.00	150.0	± 9.6 %
		Y	5.40	67.63	16.55		150.0	
40440		Z	5.48	67.67	16.59		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.22	67.39	16.37	0.00	150.0	± 9.6 %
		Y	5.13	67.49	16.40		150.0	
		Z	5.18	67.42	16.38		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.35	67.28	15.66	0.00	150.0	± 9.6 %
		Y	3.29	67.41	15.73		150.0	
		Z	3.31	67.30	15.68		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.47	67.38	15.84	0.00	150.0	±9.6 %
		Y	3.41	67.52	15.90		150.0	
		Z	3.43	67.42	15.86		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.91	67.75	15.10	0.00	150.0	± 9.6 %
		Y	1.84	68.07	15.11		150.0	
		Z	1.87	67.86	15.08		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.37	68.04	15.25	0.00	150.0	± 9.6 %
		Y	2.29	68.28	15.02		150.0	
10414		Z	2.33	68.17	15.16	<u> </u>	150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.20	66.14	13.84	0.00	150.0	± 9.6 %
		Y	2.08	66.17	13.48		150.0	
40445		Z	2.13	66.11	13.65		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.17	64.40	11.32	0.00	150.0	± 9.6 %
		Y	0.99	63.23	9.93	<u> </u>	150.0	
40440		Z	1.08	63.80	10.61		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	2.07	66.79	12.08	0.00	150.0	± 9.6 %
		Y	1.74	65.46	10.58		150.0	
404/		Z	1.93	66.25	11.43		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	2.41	68.68	13.11	0.00	150.0	± 9.6 %
		Y	2.02	67.13	11.50		150.0	
	1	Z	2.26	68.13	12.45		150.0	

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.87	67.13	15.54	0.00	150.0	±9.6 %
		Y	2.81	67.29	15.59		150.0	
		z	2.83	67.17	15.55		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	2.99	67.13	15.61	0.00	150.0	±9.6 %
		Y	2,93	67.31	15.66		150.0	
		Z	2,95	67.18	15.62		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.21	81.33	22.45	3.98	65.0	±9.6 %
		Y	9.55	83.12	23.24		65.0	
		Z	9.38	82.15	22.79		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	7.89	77.12	21.32	3.98	65.0	±9.6 %
		Y	7.75	77.78	21.62		65.0	
		Z	7.80	77.32	21.39		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	8.33	78.05	22.06	3.98	65.0	± 9.6 %
		Y	8.20	78.76	22.36		65.0	
		Z	8.27	78.34	22.17		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.19	68.34	15.77	0.00	150.0	±9.6 %
		Y	2.13	68.58	15.88		150.0	
		Z	2.15	68.43	15.80		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	×	2.54	67.61	15.66	0.00	150.0	± 9.6 %
		Y	2.49	67.93	15.66	t	150.0	
		Ζ	2.51	67.76	15.67		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.75	67.70	14.83	0.00	150.0	± 9.6 %
		Y	1.67	67.86	14.67		150.0	
		Z	1.70	67.75	14.73		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	2.01	66.49	13.77	0.00	150.0	± 9.6 %
		Y	1.89	66.41	13.28		150.0	
		Z	1,95	66.44	13.53		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.70	67.82	15.85	0.00	150.0	± 9.6 %
		Y	2.64	68.13	15.83		150.0	
		Z	2.67	67.98	15.86		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.11	66.90	14.04	0.00	150.0	±9.6 %
		Y	1.98	66.74	13.50		150.0	
		Z	2.04	66.83	13.79		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.69	68.21	15.87	0.00	150.0	± 9.6 %
		Y	2.64	68.50	16.02		150.0	
		Ζ	2.66	68.34	15.93		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.88	67.04	15.53	0.00	150.0	± 9.6 %
		Y	2.82	67.25	15.56		150.0	
		Z	2.84	67.11	15.53		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	×	2.99	67.17	15.64	0.00	150.0	± 9.6 %
	·····	Y	2.93	67.43	15.68		150.0	
		Z	2.96	67.27	15.66		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.67	69.76	19.07	3.01	150.0	± 9.6 %
		Y	3.59	70.61	19.72		150.0	
		Z	3.64	70.17	19.36		150,0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.60	72.78	19.56	3.01	150.0	± 9.6 %
		Y	4.59	74.59	20.58		150.0	
		Z	4.60	73.54	19.97		150.0	İ

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.10	75.00	20.86	3.01	150.0	± 9.6 %
		Y	5.17	77.15	22.00		150.0	
		Z	5.18	76.08	21.41		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.14	69.82	19.09	3.01	150.0	± 9.6 %
		Y	2,99	70.11	19.57		150.0	
		Z	3.08	69.99	19.30		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	4.48	76.11	21.47	3.01	150.0	± 9.6 %
		Υ	4.42	77.92	22.61		150.0	T
40474		Z	4.51	77.09	22.03		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	3.64	71.74	18.65	3.01	150.0	± 9.6 %
	a ang ang ang ang ang ang ang ang ang an	Y	3.56	73.31	19.70		150.0	
10172-		Z	3.59	72.29	19.01		150.0	
CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	21.10	104.74	32.18	6.02	65.0	± 9.6 %
		Y	44.31	124.23	38.59		65.0	
10470		Z	24.87	109.58	33.89		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	×	37.36	109.91	31.76	6.02	65.0	± 9.6 %
<u> </u>		Y	100.00	131.53	37.83		65.0	
10174-		Z	66,45	121.49	34.95		65.0	
CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	28.71	103.81	29.50	6.02	65.0	± 9.6 %
		Y	93.12	128.22	36.43		65.0	
40475		Z	36.57	109.34	31.20		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	3.10	69.50	18.83	3.01	150.0	±9.6 %
		Y	2.96	69.84	19.35		150.0	
40470		Z	3.04	69.66	19.04		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.49	76.13	21.48	3.01	150.0	± 9.6 %
·····		Υ	4.43	77.95	22.63		150.0	
40477		Z	4.52	77.11	22.04		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.13	69.65	18.93	3.01	150.0	± 9.6 %
		Y	2.98	69.97	19.42		150.0	
		Z	3.07	69.81	19.14		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	Х	4.43	75.88	21.35	3.01	150.0	± 9.6 %
		Y	4.39	77.75	22.52		150.0	
		Z	4.47	76.86	21.91		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	4.01	73.75	19.90	3.01	150.0	± 9.6 %
		Y	3.96	75.54	21.04		150.0	
40400		Z	4.01	74.52	20.37		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.63	71.66	18.60	3.01	150.0	± 9.6 %
		Y	3.55	73.25	19.66		150.0	
40404		Z	3.59	72.21	18.96		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.13	69.64	18.92	3.01	150.0	± 9.6 %
		Y	2.98	69.95	19.42		150.0	
40402		Z	3.06	69.80	19.13		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	4.42	75.86	21.34	3.01	150.0	±9.6 %
		Y	4.38	77.72	22.51		150.0	
		Z	4.46	76.83	21.90		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.62	71.63	18.59	3.01	150.0	± 9.6 %
		Y	3.55	73.22	19.65		150.0	
		Z	3.58	72.19	18.94		150.0	

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	х	3.14	69.68	18.95	3.01	150.0	± 9.6 %
0,10		Y	2.99	69.99	19.44		150.0	
		ż	3.07	69.84	19.16		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	4.45	75.93	21.38	3.01	150.0	± 9.6 %
		Y	4.40	77.80	22.55		150.0	
		Ζ	4.48	76.92	21.94		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	х	3.64	71.70	18.62	3.01	150.0	± 9.6 %
		Y	3.56	73.30	19.69		150.0	
		Ζ	3.60	72.26	18.98		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	Х	3,15	69.73	19.01	3.01	150.0	± 9.6 %
		Y	3.00	70.06	19.51		150.0	
		Ζ	3.08	69.90	19.22		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	х	4.60	76.65	21.77	3.01	150.0	± 9.6 %
		Y	4.55	78.49	22.93		150.0	
		Ζ	4.65	77.69	22.36		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	х	3.72	72.15	18.90	3.01	150.0	±9.6 %
		Y	3.65	73.76	19.97		150.0	
		Ζ	3.69	72.74	19.28		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	х	4.52	66.58	16.02	0.00	150.0	±9.6 %
		Y	4.45	66.79	16.05		150.0	
		Z	4.48	66.63	16.03		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	х	4.70	66.91	16.15	0.00	150.0	± 9.6 %
		Y	4.60	67.08	16.18		150.0	
		Ζ	4.65	66.95	16.16		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	Х	4.74	66.94	16.17	0.00	150.0	± 9.6 %
		Y	4.65	67.11	16.20		150.0	
		Ζ	4.69	66.98	16.18		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.53	66.65	16.05	0.00	150.0	±9.6 %
		Y	4.44	66.83	16.06		150.0	
		Z	4.48	66.69	16.05		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.72	66.93	16.16	0.00	150.0	± 9.6 %
		Y	4.62	67.10	16.19		150.0	
		Z	4.66	66.97	16.17		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.75	66.96	16.18	0.00	150.0	± 9.6 %
		Y	4.64	67.13	16.21		150.0	
		Z	4.69	67.00	16.19	1	150.0	ļ
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	Х	4.48	66.66	16.00	0.00	150.0	± 9.6 %
		Y	4.39	66.84	16.01		150.0	
		Z	4.43	66.70	16.00		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.71	66.91	16.16	0.00	150.0	± 9.6 %
		Y	4.61	67.06	16.18		150.0	
		Z	4.66	66.94	16.16		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.76	66.89	16.17	0.00	150.0	± 9.6 %
		Y	4.65	67.06	16.20		150.0	
		Z	4.70	66.93	16.18		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.08	67.11	16.29	0.00	150.0	± 9.6 %
		Y	5.00	67.21	16.33	1	150.0	
1	1							

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.40	67.34	16.44	0.00	150.0	± 9.6 %
		Y	5.30	67.47	16.48		150.0	· · · · · · · · · · · · · · · · · · ·
		Z	5.35	67.37	16.45	<u> </u>	150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.12	67.22	16.27	0.00	150.0	± 9.6 %
		Y	5.04	67.32	16.31		150.0	
		Z	5.08	67.23	16.28		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.77	65.87	15.07	0.00	150.0	± 9.6 %
		Y	2.71	66.11	14.95		150.0	
10000		Z	2.73	65.95	15.01		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	40.90	111.69	32.33	6.02	65.0	±9.6 %
		Y	100.00	131.74	37.97		65.0	
40007		Z	76.08	124.13	35.71		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	32.04	105.79	30.14	6.02	65.0	± 9.6 %
	····	Y	100.00	129.20	36.63		65.0	
10228-		Z	56.03	116.66	33.17		65.0	
CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	32.49	113.40	34.73	6.02	65.0	± 9.6 %
		Y	63.93	131.79	40.55		65.0	
40000		Z	42.68	120.45	36.94		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	37.48	109.96	31.78	6.02	65.0	± 9.6 %
		Y	100.00	131.51	37.84	********	65.0	
10230-		Z	66.68	121.54	34.97		65.0	
CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	29.78	104.42	29.68	6.02	65.0	± 9.6 %
		Y	100.00	129.07	36.54		65.0	
40004		Z	50.21	114.61	32.57		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	30.12	111.79	34.20	6.02	65.0	± 9.6 %
		Y	57.30	129.38	39.87		65.0	
40000		Z	38.78	118.39	36.30		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	37.48	109.97	31.78	6.02	65.0	±9.6 %
		Y	100.00	131.53	37.84		65.0	
10000		Z	66.72	121.56	34.98		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	29.77	104.42	29.68	6.02	65.0	± 9.6 %
		Y	100.00	129.09	36.55		65.0	
10001		Z	50.19	114.62	32.57		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	28.05	110.17	33.63	6.02	65.0	± 9.6 %
		Y	51.99	127.09	39.16		65.0	
10005		Z	35.54	116.41	35.65		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	37.64	110.05	31.80	6.02	65.0	±9.6 %
		Y	100.00	131,54	37.84		65.0	,
10236-		Z	67.18	121.70	35.01		65.0	
CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	30.09	104.58	29.72	6.02	65.0	± 9.6 %
		Y	100.00	129.03	36.52		65.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X	50.96 30.42	114.84 112.00	<u>32.62</u> 34.26	6.02	65.0 65.0	± 9.6 %
CAD	QPSK)		<u> </u>	400.00				
*****		Y	58.39	129.80	39.98		65.0	
10220		Z	39.25	118.66	36.38		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	37.48	109.98	31.78	6.02	65.0	±9.6 %
••••••••••••••••••••••••••••••••••••••		Y	100.00	131.54	37,84		65.0	
		Z	66.77	121.59	34.98		65.0	

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	х	29.75	104.43	29.68	6.02	65.0	± 9.6 %
		Y	100.00	129.11	36.55		65.0	
		Ζ	50.17	114.63	32.57		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	30.30	111.94	34.24	6.02	65.0	± 9.6 %
		Y	58.14	129.72	39.96		65.0	
		Z	39.09	118.59	36.36		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	11.80	86.80	27.35	6.98	65.0	±9.6 %
		Y	13.67	92.53	29.81		65.0	
		Z	12.27	88.56	28.08		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	10.15	83.59	26.03	6.98	65.0	± 9.6 %
		Y	12.26	90.20	28.90		65.0	
		Z	10.49	85.23	26.75	0.00	65.0	1000
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	8.15	80.45	25.67	6.98	65.0	± 9.6 %
		Y	9.07	85.16	28.03		65.0	
		Z	8.20	81.43	26.18	0.00	65.0	100%
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	8.77	79.58	20.12	3.98	65.0	± 9.6 %
		Y	8.68	79.98	19.73		65.0	
		Z	8.93	80.10	20.07		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	8.56	78.94	19.83	3.98	65.0	± 9.6 %
		Y	8,27	79.00	19.30		65.0	
	······	Z	8.60	79.28	19.71		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	×	9.05	82.96	21.42	3.98	65.0	±9.6 %
		Y	8.67	82.79	20.89		65.0	
		Z	9.07	83.18	21.25		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.31	77.47	20.01	3.98	65.0	± 9.6 %
		Y	6,88	77.10	19.42		65.0	
	······································	Z	7.16	77.42	19,78		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.23	76.85	19.75	3.98	65.0	± 9.6 %
		Y	6.75	76.40	19.13		65.0	
		Z	7.04	76.72	19.48		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	10.55	85.88	23.24	3.98	65.0	±9.6 %
		Υ	11.23	87.71	23.62		65.0	
		Z	11.08	87.02	23.49		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.37	79.97	22.44	3.98	65.0	± 9.6 %
		Y	8.25	80.64	22.58		65.0	
		Z	8.37	80.40	22.54		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.79	77.55	21.17	3.98	65.0	± 9.6 %
		Y	7.62	78.12	21.26		65.0	
		Z	7.71	77.78	21.18		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.26	85.03	23.77	3.98	65.0	± 9.6 %
		Y	11.07	87.53	24.67		65.0	
		Z	10.72	86.30	24.20		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	7.69	76.53	21.09	3.98	65.0	± 9.6 %
		Y	7.57	77.22	21.35		65.0	
		Z	7,61	76.75	21.15		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.11	77.42	21.76	3.98	65.0	±9.6 %
-		Y	7.99	78.11	22.01		65.0	
Į		Z	8.04	77.70	21.84	1	65.0	

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.87	80.90	22.51	3.98	65.0	± 9.6 %
		Y	9.18	82.66	23.26		65.0	1
		Z	9.01	81.69	22.82		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	7.19	76.04	17.83	3.98	65.0	± 9.6 %
		Y	6.37	74.72	16.60		65.0	
		Z	6.91	75.63	17.34		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	6.95	75.20	17.41	3.98	65.0	± 9.6 %
		Y	6.01	73.59	16.03		65.0	
40050		Z	6.60	74.62	16.84		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	7.08	78.57	19.08	3.98	65.0	± 9.6 %
	······································	Y	5.96	76.36	17.58		65.0	
10259-		Z	6.63	77.70	18.41		65.0	
CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	7.72	78.37	20.87	3.98	65.0	± 9.6 %
		Y	7.43	78.48	20.58		65.0	
40000		Z	7.64	78.54	20.77		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	7.71	78.04	20.75	3.98	65.0	± 9.6 %
		Y	7.37	78.04	20.41		65.0	
10004		Z	7.60	78.14	20.63		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.91	84.71	23.20	3.98	65.0	± 9.6 %
		Y	10.51	86.66	23.72		65.0	
40000		Ζ	10.31	85.78	23.47		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.35	79.91	22.40	3.98	65.0	± 9.6 %
		Y	8.23	80.57	22.53		65.0	
		Z	8.35	80.33	22.49		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.78	77.53	21.17	3.98	65.0	± 9.6 %
		Y	7.61	78.09	21.25		65.0	
		Z	7.70	77.76	21.18		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.16	84.83	23.68	3.98	65.0	± 9.6 %
		Y	10.94	87.30	24.57		65.0	
		Z	10.60	86.08	24.10		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	7.89	77.12	21.33	3.98	65.0	± 9.6 %
		Y	7.75	77.78	21.62		65.0	
		Z	7.80	77.33	21.40		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.32	78.04	22.05	3.98	65.0	± 9.6 %
		Y	8.20	78.75	22.36		65.0	
105		Z	8.26	78.33	22.16		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.19	81.29	22.44	3.98	65.0	± 9.6 %
		Y	9.53	83.07	23.22		65.0	
1000-		Z	9.36	82.10	22.77		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.37	76.65	21.54	3.98	65.0	± 9.6 %
		Y	8.20	77.22	21.85		65.0	
1000-		Z	8.27	76.83	21.63		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.29	76.22	21.43	3.98	65.0	± 9.6 %
		Y	8.13	76.76	21.72		65.0	
		Z	8.20	76.38	21.51		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.55	78.25	21.44	3.98	65.0	±9.6 %
		Y	8.58	79.32	21.98		65.0	
		Z	8.56	78.72	21.66		65.0	<u>†</u>

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	х	2.53	66.08	14.88	0.00	150.0	± 9.6 %
		Y	2.52	66.54	14.91		150.0	
		z	2.51	66.24	14.87		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	×	1.51	66.90	14.72	0.00	150.0	± 9.6 %
		Y	1.52	67.44	14.98		150.0	
		Z	1.50	67.06	14.77		150.0	
10277- CAA	PHS (QPSK)	х	4.49	67.07	11.86	9.03	50.0	± 9.6 %
		Y	3.76	65.67	10.51		50.0	
		Z	4.09	66.15	11.03		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	×	8.37	78.55	19.37	9.03	50.0	± 9.6 %
		Y	7.19	76.56	17.89		50.0	
		Z	7.75	77.39	18.52		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	8.51	78.75	19.47	9.03	50.0	± 9.6 %
		Y	7.31	76.76	18.01		50.0	
		Ζ	7.88	77.58	18.63		50.0	0.0.0/
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.28	66.85	12.83	0.00	150.0	±9.6 %
		Y	1.15	66.36	12.07		150.0	
		Ζ	1.21	66.57	12.40		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	0.73	64.15	11.20	0.00	150.0	±9.6 %
		Y	0.69	64.04	10.71		150.0	
		Z	0.69	63.98	10.82		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.85	66.79	12.92	0.00	150.0	±9.6 %
		Y	0.83	67.15	12.67		150.0	
		Z	0.82	66.81	12.63		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	1.14	70.77	15.25	0.00	150.0	± 9.6 %
		Y	1.22	72.07	15.35		150.0	
		Z	1.16	71.38	15.20		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.92	86.64	24.71	9.03	50.0	± 9.6 %
		Y	15.63	91.98	26.09		50.0	
		Z	13.21	88.61	25,13		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.66	69.01	16.01	0.00	150.0	± 9.6 %
		Y	2.60	69.22	16.21		150.0	
		Z	2.62	69.08	16.08		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.46	66.51	13.33	0.00	150.0	± 9.6 %
		Y	1.32	65.99	12.56		150.0	
		Z	1.39	66.26	12.94		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.70	69.70	14.37	0.00	150.0	± 9.6 %
		Y	2.67	70.31	14.00		150.0	
		Z	2.72	70.11	14.27	ļ.,	150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.09	65.56	11.69	0.00	150.0	± 9.6 %
		Y	1.84	65.02	10.77		150.0	
		Z	1.98	65.35	11.29		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.46	67.87	18.50	4.17	80.0	±9.6 %
		Y	5.32	68.03	18.43		80.0	
		Z	5.39	67. 9 4	18.48		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.85	67.98	18.95	4.96	80.0	±9.6 %
		Y	5.80	68.69	19.24		80.0	
	····	Z	5.75	67.96	18.88	1	80.0	1

10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.66	67.92	18.92	4.96	80.0	± 9.6 %
		Y	5.61	68.61	19.19		80.0	<u> </u>
		Z	5.56	67.86	18.83		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.35	67.35	18.18	4.17	80.0	± 9.6 %
		Y	5.30	68.04	18.43		80.0	
	······································	Z	5.26	67.36	18.12		80.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	7.05	76.99	23.82	6.02	50.0	± 9.6 %
		Y	7.19	78.32	24.16		50.0	
		Z	6.80	76.50	23.43	·····	50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.82	69.84	20.43	6.02	50.0	± 9.6 %
		Y	5.84	70.99	20.86	· · · · · · · · · · · · · · · · · · ·	50.0	
		Z	6.02	71.90	21.62		50.0	<u> </u>
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	6.31	73.07	22.13	6.02	50.0	± 9.6 %
		Y	5.83	71.38	20.88		50.0	
		Z	6.11	72.72	21.84		50.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.39	73.64	22.41	6.02	50.0	± 9.6 %
	······	Y	5.90	71.88	21.13		50.0	
		Z	6.20	73.31	22.13		50.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	5.91	70.12	20.60	6.02	50.0	± 9.6 %
		Y	5.91	71.23	21.02		50.0	
		Z	6.11	72.19	21.79		50.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	6.22	72.50	21.95	6.02	50.0	± 9.6 %
		Y	5.84	71.19	20.88		50.0	
		Z	6.05	72.25	21.70		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.00	68.33	15.71	0.00	150.0	± 9.6 %
		Y	2.96	68.52	15.89		150.0	
		Z	2.97	68.38	15.77		150.0	
10313- AAA	IDEN 1:3	X	6.99	77.76	18.02	6.99	70.0	± 9.6 %
		Y	8.29	81.34	19.42		70.0	
		Z	7.24	78.54	18.23		70.0	
10314- AAA	iDEN 1:6	X	10.49	86.54	23.63	10.00	30.0	± 9.6 %
		Y	12.83	91.81	25.63		30.0	
		Z	11.85	89.04	24.41		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	Х	1.08	63.85	14.84	0.17	150.0	± 9.6 %
		Y	1.11	64.19	15.04		150.0	
		Z	1.08	63.97	14.91		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.62	66.77	16.25	0.17	150.0	± 9.6 %
	·······	Y	4.54	66.97	16.29		150.0	
		Z	4.57	66.82	16.26		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.62	66.77	16.25	0.17	150.0	± 9.6 %
		Y	4.54	66.97	16.29		150.0	
		Z	4.57	66,82	16.26		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.70	66,97	16.15	0.00	150.0	± 9.6 %
	·	Y	4.59	67.15	16.19		150.0	
		Z	4.64	67.01	16.16		150.0	······
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.41	67.24	16.37	0.00	150.0	± 9.6 %
		Y	5.32	67.38	16.42		150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	х	5.66	67.55	16.37	0.00	150.0	± 9.6 %
AAD	99pc duty cycle)	Y	5.56	67 50	16.37		150.0	
		Y Z		67.58 67.52	16.37		150.0	
40.400		X	5.60 1.28	66.85	12.83	0.00	115.0	± 9.6 %
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)					0.00		1 0.0 %
		Y	1.15	66.36	12.07		115.0	
		Ζ	1.21	66.57	12.40		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.28	66.85	12.83	0.00	115.0	±9.6 %
		Y	1.15	66.36	12.07		115.0	
		Ζ	1.21	66.57	12.40		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	31.97	105.65	26.52	0.00	100.0	±9.6 %
		Y	100.00	119.11	28.78		100.0	
		Z	100.00	120.25	29.60		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	119.16	29.68	3.23	80.0	±9.6 %
		Y	100.00	122.81	30.98		80.0	
		Ζ	100.00	120.19	29.97		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.96	62.46	13.98	0.00	150.0	±9.6 %
<u></u>		Y	0.99	62.90	14.23		150.0	
		Ż	0.95	62.59	14.06		150.0	
10416-	IEEE 802.11g WiFi 2.4 GHz (ERP-	X	4.53	66.62	16.09	0.00	150.0	±9.6 %
AAA	OFDM, 6 Mbps, 99pc duty cycle)		1100	0000				
		Y	4.45	66.83	16.13		150.0	
		Z	4.48	66.68	16.10		150.0	
10417-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6	X	4.53	66.62	16.09	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)	Y	4.45	66.83	16.13		150.0	
		Z	4.48	66.68	16.10		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.51	66.76	16.09	0.00	150.0	± 9.6 %
		Y	4.44	67.00	16.16		150.0	1
		Z	4.47	66.83	16.12		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.54	66.72	16.10	0.00	150.0	± 9.6 %
		Y	4.46	66.94	16.15		150.0	1
		Z	4.49	66.78	16.12	1	150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.66	66.73	16.13	0.00	150.0	± 9.6 %
		Y	4.57	66.94	16.17	-	150.0	
		Ż	4.61	66.79	16.14	1	150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.83	67.07	16.25	0.00	150.0	± 9.6 %
		Y	4.72	67.22	16.28	1	150.0	
		Z	4.77	67.10	16.25		150.0	1
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.75	67.01	16.22	0,00	150.0	± 9.6 %
		Y	4.64	67.18	16.25		150.0	
		Z	4.69	67.05	16.23		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.37	67.43	16.45	0.00	150.0	± 9.6 %
		Y	5.26	67.46	16.45		150.0	
		Z	5.32	67.43	16.46		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.37	67.44	16.46	0.00	150.0	± 9.6 %
		Y	5.28	67.55	16.49	1	150.0	
		4 4	,					

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.38	67.41	16.44	0.00	150.0	± 9.6 %
		Y	5.27	67.46	16.44		150.0	
		Z	5.33	67.43	16.45		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.17	70.27	17.81	0.00	150.0	± 9.6 %
		Y	4.03	70.48	17.58		150.0	
40404		Z	4.14	70.57	17.85		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.21	67.11	16.05	0.00	150.0	± 9.6 %
		Y	4.09	67.33	16.03		150.0	
10432-		Z	4.15	67.18	16.04		150.0	
AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.51	67.03	16.15	0.00	150.0	± 9.6 %
		Y	4.40	67.23	16.17		150.0	
10433-	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	Z	4.46	67.08	16.15		150.0	
AAB		X	4.76	67.04	16.24	0.00	150.0	± 9.6 %
		Y	4.66	67.21	16.27		150.0	
10434-	W-CDMA (BS Test Model 1, 64 DPCH)	Z	4.71	67.08	16.24		150.0	
AAA	W-CDWA (BS Test Wodel 1, 64 DPCH)	X	4.23	70.97	17.72	0.00	150.0	± 9,6 %
····		Y	4.07	71.14	17.40		150.0	
10435-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	4.21	71.31	17.74		150.0	
AAC	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.98	29.60	3.23	80.0	± 9.6 %
		Y	100.00	122.59	30.87		80.0	
10447-		Z	100.00	119.99	29.88		80.0	
AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	Х	3.49	66.99	15.32	0.00	150.0	± 9.6 %
		Y	3.34	67.16	15.09		150.0	
40440		Ζ	3.41	67.04	15.22		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.04	66.88	15.90	0.00	150.0	± 9.6 %
		Y	3.94	67.12	15.89		150.0	
		Z	3.99	66.95	15.89		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.32	66.84	16.03	0.00	150.0	±9.6 %
		Y	4.23	67.04	16.06		150.0	
10.100		Ζ	4.27	66.90	16.04		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Х	4.51	66.79	16.08	0.00	150.0	±9.6 %
		Y	4.44	66.97	16.11		150.0	
40454		Z	4.47	66.83	16.09		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.37	67.12	14.92	0.00	150.0	±9.6 %
		Y	3.19	67.13	14.54		150.0	
10150		Ζ	3.28	67.11	14.76		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.23	67.99	16.62	0.00	150.0	± 9.6 %
·····		Y	6.17	68.10	16.67		150.0	
40457		Z	6.19	67.99	16.63		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	Х	3.77	65.25	15.79	0.00	150.0	± 9.6 %
		Y	3.75	65.50	15.83		150.0	
10450		Z	3.75	65.32	15.80		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.87	70.16	17.10	0.00	150.0	± 9.6 %
		Y	3.71	70.34	16.66		150.0	
10175		Ζ	3.84	70.49	17.05		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	х	5.00	67.94	17.87	0.00	150.0	± 9.6 %
		Y	4.81	68.13	17.56		150.0	
		Z	4.96	68.23	17.89		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	Х	0.79	66.34	14.61	0.00	150.0	±9.6 %
AAA		Y	0.84	67.16	15.15		150.0	
		Z	0.84	66.65	14.76		150.0	
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	100.00	122.59	31.33	3.29	80.0	± 9.6 %
AAA	QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	100.00	128.70	33.71		80.0	
		Ζ	100.00	124.88	32.17		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	21.46	90.49	19.92	3.23	80.0	± 9.6 %
		Y	100.00	107.87	23.85		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 5.25	106.49 74.65	23.49 14.70	3.23	80.0 80.0	±9.6 %
AAA	04-QAW, OL Sabirane-2,3,4,7,0,3)	Y	19.71	88.51	18.38		80.0	
		Z	7.19	78.06	15.56		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.34	30.14	3.23	80.0	± 9.6 %
/001		Y	100.00	126.35	32.46		80.0	
		Z	100.00	122.50	30.92		80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	11.73	83.97	18.05	3.23	80.0	± 9.6 %
		Y	100.00	107.24	23.55		80.0	
		Z	41.80	97.17	21.26		80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	4.09	72.04	13.74	3.23	80.0	± 9.6 %
		Y	8.97	80.87	16.24		80.0	
		Z	4.77	73.97	14.19		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.57	30.24	3.23	80.0	±9.6 %
		Y	100.00	126.64	32.58		80.0	ļ
		Z	100.00	122.76	31.03		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	13.52	85.52	18.51	3.23	80.0	± 9.6 %
		Y	100.00	107.47	23.65		80.0	
		Z	60.78	101.09	22.20		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	4.11	72.11	13.77	3.23	80.0	± 9.6 %
		<u>Y</u>	9.29	81.22	16.33		80.0	
		Z	.4.83	74.11	14.24	2.02	80.0	+06%
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.59	30.24	3.23	80.0	± 9.6 %
·····		Y	100.00	126.67	32.59		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 13.37	122.78 85.38	31.03 18.46	3.23	80.0 80.0	± 9.6 %
		Y	100.00	107.40	23.62	1	80.0	1
······································		Z	59.33	100.79	22.11		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	4.08	72.03	13.72	3.23	80.0	± 9.6 %
		Y	9.15	81.05	16.27		80.0	
		Z	4.78	73.98	14.18		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120,56	30.23	3.23	80.0	± 9.6 %
		Y	100.00	126.64	32.58		80.0	
		Z	100.00	122.75	31.02		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	13.19	85.24	18.42	3.23	80.0	± 9.6 %
		Y	100.00	107.40	23.61		80.0	
		Z	57.55	100.49	22.04		80.0	<u> </u>
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	4.06	71.97	13.71	3.23	80.0	± 9.6 %
		Y	8.99	80.90	16.23		80.0	
1		Z	4.73	73.90	14.15		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	11.86	84.06	18.05	3.23	80.0	± 9.6 %
L		Y	100.00	107.19	23.51		80.0	
40.470		Ζ	43.65	97.56	21.32		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	4.02	71.87	13.66	3.23	80.0	± 9.6 %
		<u>Y</u>	8.76	80.61	16.13		80.0	
40470		Z	4.66	73.74	14.09		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	14.17	93.60	25.28	3.23	80.0	± 9.6 %
		Y	63.86	118.32	31.85		80.0	
10480-	LTE TOD (CO EDMA FOR DE 4 ANT)	Z	30.71	105.97	28.68		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	12.48	86.47	21.39	3.23	80.0	± 9.6 %
*******		<u> Y</u>	53.06	106.13	26.31		80.0	
10481-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	Z	23.73	95.20	23.69		80.0	
AAA	64-QAM, UL Subframe=2,3,4,7,8,9)	X	9.79	82.49	19.78	3.23	80.0	± 9.6 %
		Y	26.62	95.88	23.20	·	80.0	
10482-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	Z	15.46	88.60	21.40		80.0	
AAA	QPSK, UL Subframe=2,3,4,7,8,9)	X	4.76	76.35	18.33	2.23	80.0	±9.6 %
	······	Y	4.38	75.77	17.66		80.0	
10483-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	Z	4.74	76.54	18.16		80.0	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.86	78.09	18.71	2.23	80.0	± 9.6 %
		Y	7.58	79.80	18,72		80.0	
10484-	ITE TOD (SC EDMA 500/ DD 2 MIL	Z	7.91	80.19	19.17		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	6.29	76.73	18.22	2.23	80.0	± 9.6 %
		Y	6.51	77.64	17.97		80.0	
10485-		Z	6.95	78.27	18.51		80.0	
AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.21	77.92	19.79	2.23	80.0	± 9.6 %
		Y	5.14	78.56	1 9 .82		80.0	
40400		Z	5.34	78.68	19.95		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.30	72.12	17.19	2.23	80.0	± 9.6 %
		Y	4.02	71.85	16.65		80.0	
40407		Z	4.23	72.22	17.03		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.25	71.63	16.98	2.23	80.0	± 9.6 %
		Y	3.95	71.26	16.39		80.0	
40.400		Z	4.16	71.66	16.79		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.17	76.41	19.90	2.23	80.0	± 9.6 %
	<u> </u>	Y	5.01	76.93	20.15		80.0	
10/00		Z	5.17	76.91	20.10		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.47	71.61	18.14	2.23	80.0	±9.6 %
····-		Y	4.30	71.84	18.12		80.0	
10400		Z	4.42	71.84	18.19		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.53	71.33	18.05	2.23	80.0	± 9.6 %
		Y	4.36	71.56	18.01		80.0	
40404		Z	4.48	71.55	18.09		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.06	74.04	19.16	2.23	80.0	± 9.6 %
		Y	4.88	74.37	19.37		80.0	
10102		Ζ	5.01	74.33	19.30		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.71	70.55	18.02	2.23	80.0	± 9.6 %
		Y	4.54	70.71	18.05		80.0	
		Z	4.64	70.68	18.06		80.0	

40400		хT	4.76	70.36	17.96	2.23	80.0	± 9.6 %
10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		4.70	70.30		2.23		1 3.0 %
		Y	4.58	70,52	17.98		80.0	
		Z	4.69	70.49	18.00		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.60	75.75	19.64	2.23	80.0	± 9.6 %
		Y	5.37	76.02	19.87		80.0	
		Z	5.56	76.06	19.81		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	х	4.78	71.03	18.23	2.23	80.0	±9.6 %
······		Y	4.59	71.11	18.27		[`] 80.0	
		Z	4.71	71.14	18,28		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.83	70.65	18.12	2.23	80.0	± 9.6 %
		Y	4.64	70.74	18.15		80.0	
		Z	4.75	70.76	18.17		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	3,37	71.45	15.57	2,23	80.0	± 9.6 %
		Y	2.72	69.17	13.95		80.0	
		Z	3.09	70.50	14.83		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	2.40	64.81	11.76	2.23	80.0	± 9.6 %
		Y	1.75	62.03	9.60		80.0	
		Z	2.07	63.39	10.68		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	х	2.32	64.18	11.33	2.23	80.0	± 9.6 %
		Y	1.68	61.41	9.14		80.0	
		Z	1.99	62.76	10.23		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.05	76.85	19.69	2.23	80.0	± 9.6 %
		Y	4.98	77.59	19.85		80.0	
		Z	5.12	77,53	19.88		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.38	71.91	17.55	2.23	80.0	±9.6 %
		Y	4.19	72.01	17.27	<u>]</u>	80.0	
		Z	4.33	72.13	17.50		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.41	71.66	17.40	2.23	80.0	± 9.6 %
		Υ	4.21	71,71	17.09		80.0	
		Z	4.36	71.85	17.33		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.10	76.19	19.80	2.23	80.0	± 9.6 %
		Y	4.94	76.71	20.05		80.0	
	·······	Z	5.10	76.67	19.99		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.44	71.51	18.08	2.23	80.0	± 9.6 %
		Y	4.28	71.74	18.06		80.0	
		Z	4.39	71.73	18.13	1	80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.51	71.23	18.00	2.23	80.0	± 9.6 %
		Y	4.34	71.46	17.96	1	80.0	1
		Z	4.45	71.44	18.03		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.55	75.59	19.57	2.23	80.0	± 9.6 %
		Y	5.33	75.87	19.80		80.0	
		Z	5.51	75.90	19.73		80.0	
10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	X	4.76	70.96	18.19	2.23	80.0	± 9.6 %
,,,,,	Subframe=2.3.4.7.8.9)					1	1	1
	Subframe=2,3,4,7,8,9)	Y	4.57	71.05	18.23		80.0	

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.81	70.58	18.08	2.23	80.0	± 9.6 %
		Y	4.62	70.68	18.11		80.0	
		Z	4.73	70.68	18.12		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.59	73.58	18.84	2.23	80.0	± 9.6 %
		Y	5.39	73.76	19.02		80.0	
10210		Z	5.53	73.76	18.95		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.20	70.42	18.08	2.23	80.0	± 9.6 %
		Y	4.99	70.43	18.12		80.0	
40544		Z	5.11	70.45	18.12		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.22	70.10	18.00	2.23	80.0	± 9.6 %
		Y	5.03	70.13	18.04		80.0	
40540		Z	5.14	70.14	18.03		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.02	75.44	19.39	2.23	80.0	± 9.6 %
		Y	5.78	75.56	19.57		80.0	
10513-		Z	5.97	75.65	19.51		80.0	
AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe≃2,3,4,7,8,9)	X	5.12	70.82	18.23	2.23	80.0	± 9.6 %
		Y	4.91	70.75	18.25		80.0	
10514-	LTC TOD (00 COMA 400% DD 00	Z	5.03	70.83	18.26		80.0	
AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.09	70.31	18.08	2.23	80.0	± 9.6 %
		Y	4.90	70.27	18.11		80.0	
10548		Z	5.01	70.33	18.11		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.92	62.60	13.99	0.00	150.0	± 9.6 %
		<u> </u>	0.95	63.05	14.27		150.0	
10516-		Z	0.91	62.72	14.07		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.48	67.26	14.71	0.00	150.0	±9.6 %
		Y Z	0.54	68.48	15.75		150.0	
10517-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	0.49	67.82 64.05	15.05	0.00	150.0	
AAA	Mbps, 99pc duty cycle)	Y	0.75	64.60	14.24 14.65	0.00	150.0	± 9.6 %
		Z	0.75	64.23	14.05		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.52	66.69	16.06	0.00	150.0	± 9.6 %
		Y	4,44	66.90	16.10		150.0	
		Z	4.47	66.75	16.07		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.71	66.95	16.20	0.00	150.0	± 9.6 %
		Y	4.60	67.11	16.21		150.0	
40500		Z	4.65	66.98	16.20		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.56	66.90	16.11	0.00	150.0	± 9.6 %
		Y	4.46	67.05	16.12		150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	<u>4.50</u> 4.49	66.93 66.89	16.11 16.09	0.00	150.0 150.0	± 9.6 %
		Y	4.39	67.03	16.11		150.0	
		Z	4.44	66.91	16.09		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.55	66.96	16.17	0.00	150.0	± 9.6 %
		Υ	4.45	67.16	16.21		150.0	
		Z	4.50	67.02	16.19		150.0	

40500	IFFF 000 44-15 MIFE F OLD OFDM 49	X	4,43	66.81	16.00	0.00	150.0	± 9.6 %
10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)		4,40	00.01	10.00	0.00	150.0	± 3.0 /u
		Y	4.35	67.05	16.07		150.0	
		Z	4.38	66.88	16.02		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.50	66.89	16,14	0.00	150.0	± 9.6 %
		Y	4.39	67.08	16.18		150.0	
		Z	4.44	66.94	16.15		150.0	
10525- AAB	IEEE 802.11ac WIFI (20MHz, MCS0, 99pc duty cycle)	X	4.47	65.92	15.72	0.00	150.0	± 9.6 %
		Y	4.40	66.15	15.78		150.0	
		Z	4.43	65.98 66.29	15.74 15.87	0.00	150.0 150.0	± 9.6 %
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.65	66.47	15.91	0.00	150.0	1 3.0 %
		Y Z	<u>4.55</u> 4.59	66.34	15.91		150.0	
10527-	IEEE 802.11ac WiFi (20MHz, MCS2,	X	4.57	66.25	15.81	0.00	150.0	±9.6 %
AAB	99pc duty cycle)	Y	4.57	66.43	15.85	0.00	150.0	20.0 //
		Z	4.47	66.29	15.82		150.0	
10528- AAB	IEEE 802.11ac WIFi (20MHz, MCS3, 99pc duty cycle)	X	4.58	66.27	15.84	0.00	150.0	± 9.6 %
10163		Y	4.49	66.45	15.88		150.0	
		Z	4.53	66.31	15.85		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	Х	4.58	66.27	15.84	0.00	150.0	±9.6 %
		Y	4.49	66.45	15.88		150.0	
		Z	4.53	66.31	15.85		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.58	66.38	15.85	0.00	150.0	± 9.6 %
		Y	4.46	66.51	15.87		150.0	
		Z	4.52	66.40	15.86		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.44	66.22	15.78	0.00	150.0	± 9.6 %
		Y	4.33	66.36	15.80		150.0	
10533-	IEEE 802.11ac WiFi (20MHz, MCS8,	Z X	4.38 4.59	66.25 66.30	15.78 15.83	0.00	150.0 150.0	± 9.6 %
AAB	99pc duty cycle)	Y	4.49	66.51	15.88		150.0	
		Z	4.54	66.36	15.84		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.13	66.43	15.94	0.00	150.0	±9.6 %
		Y	5.04	66.54	15.97		150.0	
		Z	5.08	66.45	15.95		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.20	66.61	16.01	0.00	150.0	± 9.6 %
		Y	5.10	66.71	16.05		150,0	<u> </u>
		Z	5.15	66.64	16.04	0.00	150.0	+0.0.9/
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.06	66.54	15.96	0.00	150.0	± 9.6 %
		Y	4.98	66.67	16.01 15.98	<u> </u>	150.0 150.0	
10507		Z	5.01 5.12	66.57 66.52	15.98	0.00	150.0	± 9.6 %
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)			66.63	15.95	0.00	150.0	2 0.0 70
		Z	5.03 5.07	66.54	15.99		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.07	66.56	16.02	0.00	150.0	± 9.6 %
ערעי		Y	5.11	66.64	16.04	1	150.0	-
		Z	5.16	66.56	16.02	1	150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.14	66.57	16.03	0.00	150.0	± 9.6 %
		Y	5.04	66.62	16.05		150.0	
		Z	5.10	66.60	16.05		150.0	

10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.11	66.43	15.96	0.00	150.0	±9.6 %
		Y	5.02	66.51	15.98		150.0	
		Ż	5.07	66.45	15.97		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.27	66.51	16.02	0.00	150.0	± 9.6 %
		Y	5.18	66.61	16.04		150.0	
		Z	5.22	66.53	16.03		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.36	66.57	16.06	0.00	150.0	± 9.6 %
		Y	5.24	66.63	16.08		150.0	
10544-		Z	5.30	66.57	16.07		150.0	
AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.43	66.55	15.94	0.00	150.0	± 9.6 %
		Y	5.37	66.65	15.97	<u> </u>	150.0	ļ
10545-	IEEE 802.11ac WiFi (80MHz, MCS1,	Z	5.40	66.56	15.95		150.0	
AAB	99pc duty cycle)	X Y	5.64	67.00	16.11	0.00	150.0	± 9.6 %
			5.55	67.08	16.15		150.0	· · ·····
10546-	IEEE 802.11ac WiFi (80MHz, MCS2,	Z	5.60	67.02	16.13	<u> </u>	150.0	
AAB	99pc duty cycle)	X	5.50	66.78	16.02	0.00	150.0	±9.6 %
		Y	5.41	66.80	16.02		150.0	L
10547-	IEEE 802.11ac WiFi (80MHz, MCS3,	Z X	5.46	66.76	16.01	0.00	150.0	
AAB	99pc duty cycle)		5.58	66.83	16.03	0.00	150.0	±9.6 %
		Y	5.49	66.87	16.05		150.0	
10548-	IEEE 802.11ac WiFi (80MHz, MCS4,	z X	5.53	66.81	16.03	<u> </u>	150.0	
AAB	99pc duty cycle)		5.89	67.94	16.56	0.00	150.0	±9.6 %
		Y	5.69	67.68	16.43		150.0	
10550-	IEEE 802.11ac WiFi (80MHz, MCS6,	ZX	5.80	67.83	16.51		150.0	
AAB	99pc duty cycle)		5.53	66.79	16.03	0.00	150.0	±9.6 %
		Y	5.46	66.91	16.08		150.0	
10551-	IEEE 802.11ac WiFi (80MHz, MCS7,	Z	5.49	66.81	16.05	0.00	150.0	
AAB	99pc duty cycle)	X	5.53	66.82	16.01	0.00	150.0	±9.6 %
······		Y	5.44	66.85	16.02		150.0	
10552-	1666 802 44 co) 4/161 (80 MU - MOOD	Z	5.49	66.83	16.02		150.0	
AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X Y	5.44	66.61	15.91	0.00	150.0	± 9.6 %
	····		5.38	66.72	15.95		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	Z X	<u>5.40</u> 5.53	66.62 66.66	15.92 15.96	0.00	150.0 150.0	± 9.6 %
	······································	Y	5.45	66.72	15.99	L	150.0	······
		Z	5.48	66.65	15.97		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.84	66.93	16.04	0.00	150.0	± 9.6 %
		Y	5.78	67.01	16.06		150.0	
		Z	5.81	66.94	16.05		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.98	67.25	16.17	0.00	150.0	±9.6 %
		Y	5.90	67.29	16.19		150.0	
40555		Z	5.94	67.25	16.18		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.00	67.29	16.19	0.00	150.0	±9.6 %
		Y	5.93	67.35	16.21		150.0	
(000		Z	5.96	67.30	16.20		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	5.96	67.20	16.16	0.00	150.0	±9.6 %
		Y	5.88	67.23	16.17		150.0	
		Z	5.92	67.18	16.16		150.0	

10558-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	6.01	67.37	16.26	0.00	150,0	± 9.6 %
AAC	99pc duty cycle)		0.01	07.57	10.20	0.00	100.0	1 0.0 70
		Y	5.92	67.38	16.26		150.0	
······		Z	5.97	67.35	16.26		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	Х	6.01	67.21	16.22	0.00	150.0	± 9.6 %
		Y	5.92	67.24	16.23		150.0	
		Z	5.96	67.19	16.22		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.93	67.18	16.25	0.00	150.0	± 9.6 %
		Y	5.85	67.23	16.26		150.0	
		Z	5.89	67.18	16.25		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.07	67.61	16.46	0.00	150.0	±9.6 %
		Y	5.94	67.50	16.40		150.0	
		Z	6.01	67.54	16.43		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.39	68.16	16.69	0.00	150.0	±9.6 %
		Y	6.02	67.41	16.31		150.0	
		Z	6.19	67.71	16.48		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	Х	4.86	66.83	16.26	0.46	150.0	±9.6 %
		Y	4.78	67.03	16.31		150.0	
		Z	4.81	66.87	16.27		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.09	67.28	16.58	0.46	150.0	± 9.6 %
		Y	4.98	67.43	16.60		150.0	
		Z	5.03	67.31	16.59		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.93	67,13	16.40	0.46	150.0	±9.6 %
<u> </u>		Y	4.82	67.27	16.42		150.0	
		Z	4.87	67.15	16.40		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.95	67.50	16.74	0.46	150.0	±9.6 %
		Y	4.84	67.61	16.74		150.0	
		Z	4.90	67.52	16.74		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.85	66.93	16.19	0.46	150.0	± 9.6 %
		Y	4.74	67.12	16.24		150.0	
		Z	4.79	66.97	16.19	1	150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.91	67.57	16.79	0.46	150.0	± 9.6 %
		Y	4.82	67.76	16.84		150.0	
		Z	4.86	67.64	16.82		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.94	67.43	16.73	0.46	150.0	± 9.6 %
		Υ	4.84	67.60	16.77		150.0	
		Z	4.89	67.48	16.75		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	1.25	65.19	15.53	0.46	130.0	± 9.6 %
		Y	1.27	65.45	15.71		130.0	
		Z	1.24	65.29	15.60		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.27	65.79	15.87	0.46	130.0	± 9.6 %
		Υ	1.28	66.03	16.05		130.0	
		Z	1.26	65.90	15.96		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	2.61	85.52	21.81	0.46	130.0	± 9.6 %
		Y	2.97	88.51	23.34		130.0	
		Z	3.01	88.05	22.71	[130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.44	71.64	18.59	0.46	130.0	± 9.6 %
		Y	1.44	71.68	18.74		130.0	
•		Z	1.45	72.00	18.80	+	130.0	1

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.68	66.71	16.37	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)	<u> </u>						
		Y	4.59	66.91	16.41		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.63	66.76	16.38		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)	X	4.70	66.86	16.43	0.46	130.0	±9.6 %
	······································	Y	4.61	67.07	16.47		130.0	
10577-		Z	4.65	66.92	16.44		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.91	67.16	16.60	0.46	130.0	± 9.6 %
		<u>Y</u>	4.79	67.31	16.62		130.0	
10578-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.85	67.20	16.60		130.0	
AAA	OFDM, 18 Mbps, 90pc duty cycle)	X	4.81	67.32	16.69	0.46	130.0	± 9.6 %
		Y	4.69	67.44	16.70		130.0	
10579-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.75	67.35	16.70		130.0	
AAA	OFDM, 24 Mbps, 90pc duty cycle)	X	4.58	66.65	16.03	0.46	130.0	± 9.6 %
	······································	Y	4.47	66.80	16.06		130.0	
10580-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.52	66.66	16.02		130.0	
AAA	OFDM, 36 Mbps, 90pc duty cycle)		4.63	66.68	16.05	0.46	130.0	± 9.6 %
		Y	4.52	66.87	16.11		130.0	
10581-		Z	4.57	66.71	16.05		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.71	67.36	16.64	0.46	130.0	± 9.6 %
		Y	4.60	67.52	16.66		130.0	
10582-		Z	4.65	67.41	16.65		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.53	66.42	15.83	0.46	130.0	± 9.6 %
		Y	4.41	66.60	15.88		130.0	
10500		Z	4.46	66.43	15.82		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.68	66.71	16.37	0.46	130.0	± 9.6 %
		Y	4.59	66.91	16.41		130.0	
		Z	4.63	66.76	16.38		130,0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.70	66.86	16.43	0.46	130.0	± 9.6 %
		Y	4.61	67.07	16.47		130.0	
		Z	4.65	66.92	16.44		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.91	67.16	16.60	0.46	130.0	± 9.6 %
		Y	4.79	67.31	16.62		130.0	
		Z	4.85	67.20	16.60		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.81	67.32	16.69	0.46	130.0	± 9.6 %
		Y	4.69	67.44	16.70		130.0	
		Ζ	4.75	67.35	16.70		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.58	66.65	16.03	0.46	130.0	± 9.6 %
	······································	Y	4.47	66.80	16.06		130.0	
		Ζ	4.52	66.66	16.02	····	130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.63	66.68	16.05	0.46	130.0	± 9.6 %
		Y	4.52	66.87	16.11		130.0	
10000		Z	4.57	66.71	16.05		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.71	67.36	16.64	0.46	130.0	±9.6 %
		Y	4.60	67.52	16.66		130.0	
••••••		Z	4.65	67.41	16.65		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.53	66.42	15.83	0.46	130.0	± 9.6 %
		Y	4.41	66.60	15.88		400.0	····-
		1 1 1	4,41	00,00 1	10.00		130.0	

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.83	66.77	16.47	0.46	130.0	±9.6 %
	mood, oope daty byolog	Y	4.74	66.96	16.50		130.0	
		Z	4.78	66.82	16.48		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.98	67.10	16.60	0.46	130.0	±9.6 %
	Moot, cope addy cyclor	Y	4.87	67.27	16.63		130.0	
		Z	4.93	67.14	16.61		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.91	67.02	16.48	0.46	130.0	± 9.6 %
7010		Y	4.80	67.17	16.51		130.0	
		Z	4.85	67.05	16.49		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.96	67.18	16.63	0.46	130.0	± 9.6 %
		Y	4.85	67.33	16.66		130.0	
		Z	4.90	67.22	16.64		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.93	67.14	16.53	0.46	130.0	±9.6 %
		Y	4.82	67.31	16.57		130.0	
		Z	4.87	67.18	16.54		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.87	67.14	16.54	0.46	130.0	±9.6 %
		Y	4.76	67.30	16.57		130.0	
		Z	4.81	67.18	16.54		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.82	67.05	16.42	0.46	130.0	± 9.6 %
		Y	4.71	67.19	16.44		130.0	
		Z	4.76	67.07	16.42		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.80	67.28	16.68	0.46	130.0	± 9.6 %
70.0		Y	4.69	67.37	16.67		130.0	
		Z	4.74	67.29	16.67		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	Х	5.50	67.33	16.69	0.46	130.0	± 9.6 %
		Y	5.40	67.43	16.72		130.0	
		Z	5.46	67.38	16.72		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.67	67,87	16.93	0.46	130.0	±9.6 %
		Y	5.53	67.86	16.92		130.0	
		Z	5.61	67.87	16.94		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.54	67.56	16.79	0.46	130.0	± 9.6 %
		Y	5.42	67.61	16.80		130.0	
		Z	5.48	67.56	16.80		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.63	67.58	16.72	0.46	130.0	± 9.6 %
		Y	5.55	67.79	16.82		130.0	
	······································	Z	5.59	67.64	16.76		130.0	<u> </u>
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	Х	5.71	67.86	16.99	0.46	130.0	± 9.6 %
		Y	5.61	68.00	17.05		130.0	1
		Z	5.65	67.89	17.01		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.50	67.29	16.70	0.46	130.0	± 9.6 %
		Y	5.49	67.68	16.88		130.0	
		Z	5.47	67.39	16.75		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.63	67.69	16.90	0.46	130.0	± 9.6 %
		Y	5.53	67.80	16.94		130.0	
		Z	5.59	67.74	16.92		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.39	67.07	16.45	0,46	130.0	± 9.6 %
		Y	5.27	67.10	16.45		130.0	
		Z	5.31	66.99	16.41		130.0	

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.65	66.04	16.07	0.46	130.0	± 9.6 %
·····		Y	4.58	66.26	16.12		130.0	
		Z	4.61	66.10	16.08		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.85	66.45	16.23	0.46	130.0	± 9.6 %
		Y	4.74	66.63	16.28		130.0	
		Z	4.79	66.50	16.25		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.74	66.30	16.07	0.46	130.0	± 9.6 %
		Y	4.63	66.48	16.11		130.0	
10610-		Z	4.68	66.35	16.08		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.79	66.46	16.23	0.46	130.0	± 9.6 %
		Y	4.68	66.63	16.27		130.0	
10611-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.73	66.50	16.25		130.0	
AAB	90pc duty cycle)	X	4.70	66.28	16.09	0.46	130.0	± 9.6 %
·····		Y	4.60	66.45	16.12		130.0	
10612-	IEEE 802.11ac WiFi (20MHz, MCS5,	Z	4.65	66.31	16.10		130.0	
AAB	90pc duty cycle)	X	4.72	66.43	16.13	0.46	130.0	± 9.6 %
		Y	4.60	66.61	16.18	ļ	130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.66	66.47	16.14		130.0	
AAB	90pc duty cycle)	X	4.72	66.33	16.02	0.46	130.0	± 9.6 %
		Y	4.60	66.47	16.05		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	Z X	4.66	66.35 66.50	16.02 16.24	0.46	130.0 130.0	± 9.6 %
1010		Y	4 55	66.60	40.05		400.0	
			<u>4.55</u> 4.60	66.62	16.25		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.71	66.53 66.12	16.25 15.87	0.46	130.0 130.0	± 9.6 %
		Y	4.60	66.33	15.93		130.0	
		Z	4.65	66.16	15.88		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.31	66.56	16.28	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.21	66.65	16.31		130.0	
		Z	5.26	66.57	16.29		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.38	66.74	16.35	0.46	130.0	± 9.6 %
		Y	5.29	66.86	16.39		130.0	
		Z	5.34	66.79	16.37		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.26	66.74	16.36	0.46	130.0	± 9.6 %
		Y	5.18	66.87	16.40		130.0	
		Z	5.22	66.77	16.38		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.29	66.59	16.22	0.46	130.0	±9.6 %
		Y	5.19	66.67	16.25		130,0	
100		Z	5.23	66.58	16.22		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.38	66.62	16.29	0.46	130.0	±9.6 %
		Y	5.27	66.70	16.31		130.0	
10001		Z	5.32	66.62	16.29		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.37	66.71	16.45	0.46	130.0	± 9.6 %
w		Y	5.27	66.80	16.47		130.0	
1000-		Z	5.32	66.74	16.47		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.39	66.89	16.53	0.46	130.0	± 9.6 %
		Y	5.29	66.97	16.55		130.0	
		Z	5.34	66.92	16.55		130.0	

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.26	66.41	16.17	0.46	130.0	±9.6 %
		Y	5,16	66.51	16.20		130.0	
		Z	5.21	66.44	16.19		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.45	66.63	16.34	0.46	130.0	± 9.6 %
		Y	5,35	66.71	16.36		130.0	
		Z	5.40	66.64	16.35		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.87	67.75	16.95	0.46	130.0	±9.6 %
		Y	5.59	67.32	16.72		130.0	
		Z	5.77	67.62	16.89		130.0	
	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.59	66.61	16.24	0.46	130.0	±9.6 %
		Y	5.53	66.71	16.27		130.0	
		Z	5.56	66.63	16.25		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.86	67.23	16.51	0.46	130.0	±9.6 %
		Y	5.77	67.31	16.54		130.0	
		Z	5.82	67.26	16.53		130.0	
	IEEE 802.11ac WIFi (80MHz, MCS2, 90pc duty cycle)	X	5.64	66.75	16.20	0.46	130.0	± 9.6 %
		Y	5.54	66.76	16.20		130.0	
		Z	5.59	66.73	16.20		130.0	
	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.74	66.86	16.25	0.46	130.0	± 9.6 %
		Y	5.63	66.85	16.25		130.0	
		Z	5.67	66.78	16.22		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.27	68.62	17.13	0.46	130.0	± 9.6 %
		Y	5.98	68.12	16.89		130.0	
		Z	6.16	68.44	17.05		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.08	68.18	17.10	0.46	130.0	± 9.6 %
		Y	5.89	67.92	16.96		130.0	
		Z	6.00	68.07	17.05		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.81	67.25	16.65	0.46	130.0	± 9.6 %
		Y	5.73	67.36	16.70		130.0	
		Z	5.78	67.29	16.68		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.70	66.88	16.30	0.46	130.0	±9.6 %
		Y	5.61	66.94	16.32		130.0	
		Z	5.64	66.86	16.29		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.68	66.90	16.36	0.46	130.0	± 9.6 %
		Y	5.59	66.94	16.37		130.0	
		Z	5.63	66.89	16.36		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.57	66.28	15.80	0.46	130.0	± 9.6 %
		Y	5.47	66.33	15.83		130.0	
		Z	5.52	66.25	15.79		130.0	1
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.01	67.00	16.34	0.46	130.0	± 9.6 %
		Y	5.95	67.08	16.37		130.0	[
		Z	5.98	67.00	16.35		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.18	67.41	16.53	0.46	130.0	± 9.6 %
·····		Y	6.10	67.45	16.54		130.0	
		Z	6.14	67.41	16.54		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.18	67.38	16.49	0.46	130.0	± 9.6 %
		Y	6.10	67.42	16.51		130.0	

March 27, 2018

10639- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6,15	67.32	16.51	0.46	130.0	± 9.6 %
		Y	6.07	67.34	16.50	<u> </u>	130.0	<u> </u>
		Z	6.11	67.30	16.50	ŀ	130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.17	67.36	16.47	0.46	130.0	± 9.6 %
		Y	6.07	67.36	16.47		130.0	
		Z	6.11	67.32	16.45		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.20	67.22	16.42	0.46	130.0	± 9.6 %
		Y	6.14	67.34	16.48		130.0	
40040		Z	6.17	67.26	16.44		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.24	67.47	16.71	0.46	130.0	± 9.6 %
· · · · ·	······································	Y	6.15	67.50	16.71		130.0	
10643-		Z	6.19	67.46	16.71		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.08	67.18	16.46	0.46	130.0	± 9.6 %
·····		Y	6.01	67.25	16.50		130.0	
10644-		Z	6.04	67.18	16.47		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.27	67.76	16.77	0.46	130.0	± 9.6 %
		Y	6.11	67.57	16.67		130.0	
10645-		Z	6.19	67.64	16.72		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.75	68.75	17.22	0.46	130.0	± 9.6 %
		<u>Y</u>	6.24	67.62	16.66		130.0	
10646-		Z	6.47	68.11	16.92		130.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	46.96	124.69	40.77	9.30	60.0	± 9.6 %
		Y	100.00	148.37	48.20		60.0	
40047		Z	67.01	134.85	43.85		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	46.42	125.36	41.11	9.30	60.0	± 9.6 %
		Y	100.00	149.72	48.78		60.0	
10010		Z	63.71	134.73	44.00		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.63	62.54	9.79	0.00	150.0	± 9.6 %
		Y	0.58	62.24	9.19		150.0	
		Z	0.59	62.30	9.35		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.19	68.34	17.06	2.23	80.0	± 9.6 %
		Y	4.08	68.62	17.03		80.0	
40050		Z	4.14	68.48	17.06		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.68	67.61	17.18	2.23	80.0	±9.6 %
		Y	4.56	67.77	17.19		80.0	
10054		Z	4.62	67.66	17.19		80,0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.63	67.27	17.19	2.23	80.0	± 9.6 %
		Y	4.54	67.39	17.21		80.0	
10005		Z	4.58	67.31	17.20		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.69	67.27	17.23	2.23	80.0	± 9.6 %
		Y	4.60	67.35	17.25		80.0	
10050		Z	4.64	67.28	17.23		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	19.17	92.59	24.24	10.00	50.0	± 9.6 %
		Y	41.94	104.68	27.26		50.0	
40000		Z	24.50	96.17	24.98		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	100.00	114.36	28.32	6.99	60.0	± 9.6 %
		Y	100.00	114.20	27.89		60.0	
	1	Z	100.00	113.56	27.75		60.0	

,

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	111.43	25.50	3.98	80.0	± 9.6 %
		Y	100.00	112.46	25.73		80.0	
		Z	100.00	110.79	25.07		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	110.47	23.74	2.22	100.0	± 9.6 %
		Y	100.00	113.22	24.78		100.0	
		Z	100.00	109.90	23.38		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	Х	100.00	107.83	20.92	0.97	120.0	± 9.6 %
		Y	100.00	115.39	23.98		120.0	
		Z	100.00	107.00	20.48		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3287_Sep17

Client PC Test

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3287	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	SC 10/03/20/1
Calibration date:	September 18, 2017	
This calibration certificate doci	uments the traceability to national standards, which realize the physical units of measurements (SI).	

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards		Check Date (in house)	Sahadulad Oh
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	Scheduled Check
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:	Name Leif Klysner	Function La bo ratory Technician	Signature Seef Hilps
Approved by:	Katja Pokovic	Technical Manager	h Slef
		na san ƙasar Ingila. Tan	Issued: September 19, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

e e

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization & 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

.

Probe ES3DV3

SN:3287

Manufactured: Calibrated: June 7, 2010 September 18, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.87	0.98	1.00	± 10.1 %
DCP (mV) ^H	107.7	103.1	105.0	

Modulation Calibration Parameters

UID	Communication System Name		A	В	c		VR	Unc ^E
			dB	dBõV	-	dB	mV	(k=2)
<u> </u>		X	0.0	0.0	1.0	0.00	191.5	±3.3 %
		Y	0.0	0.0	1.0	F	198.9	
		Z	0.0	0.0	1.0		180.8	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

, . . .

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V ⁻¹	Т6
<u> </u>	54.28	378.7	33.99	28.46	2.430	5.072	1.313	0.408	1.009
<u> Y </u>	59.16	422.2	35.13	29.85	3.583	5.094	0.041	0.732	1.008
<u> </u>	43.70	307.8	34.40	28.00	2.236	5.100	1.282	0.347	1.010

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^aNumerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

<u>f (MHz)</u> ^C	Relative <u>Permittivity</u> ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)	
750	41.9	0.89	7.00	7.00	7.00	0.26	1.80	± 12.0 %	
835	41.5	0.90	6.70	6.70	6.70	0.56	1.23	± 12.0 %	
1750	40.1	1.37	5.57	5.57	5.57	0.53	1.28	± 12.0 %	
1900	40.0	1.40	5.34	5.34	5.34	0.41	1.52	± 12.0 %	
2300	39.5	1.67	4.94	4.94	4.94	0.42	1.57	± 12.0 %	
2450	39.2	1.80	4.64	4.64	4.64	0.55	1.39	± 12.0 %	
2600	39.0	1.96	4.44	4.44	4.44	0.58	1.43	± 12.0 %	

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)		
750	55.5	0.96	6.71	6.71	6.71	0.45	1.38	± 12.0 %		
835	55.2	0.97	6.56	6.56	6.56	0.80	1.05	± 12.0 %		
1750	53.4	1.49	5.19	5.19	5.19	0.37	1.73	± 12.0 %		
1900	53.3	1.52	5.00	5.00	5.00	0.47	1.51	± 12.0 %		
2300	52.9	1.81	4.66	4.66	4.66	0.59	1.36	± 12.0 %		
2450	52.7	1.95	4.47	4.47	4.47	0.55	1.20	± 12.0 %		
2600	52.5	2.16	4.28	4.28	4.28	0.50	1.20	± 12.0 %		

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	89.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	
Probe Overall Length	337 mm
Probe Body Diameter	
Tip Length	
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

. 22 ; ; ; ;

`

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	191.5	± 3.3 %
		Y	0.00	0.00	1.00		198.9	
10010-		Z	0.00	0.00	1.00		180.8	
<u>CAA</u>	SAR Validation (Square, 100ms, 10ms)	X	10.31	82.54	19.92	10.00	25.0	± 9.6 %
		Y	9.70	81.57	20.65		25.0	
10011-	UMTS-FDD (WCDMA)	ZX	13.02 1.65	86.61 76.64	21.44 20.39	0.00	25.0 150.0	
CAB						0.00		± 9.6 %
	<u>+-</u>	Y Z	1.11	68.31	15.89		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	X	1.42	70.53 67.62	17.08 17.77	0.41	150.0 150.0	± 9.6 %
CAB	Mbps)					0.41		19.0%
		Y	1.35	65.44	16.09		<u>1</u> 50.0	
40040		Z	1.35	66.18	16.60		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.13	67.63	17.69	1.46	150.0	± 9.6 %
		Y	5.21	67.37	17.49		150.0	
10021-	GSM-FDD (TDMA, GMSK)	ZX	5.05	67.67	17.63	0.00	150.0	10.0.0
DAC			36.11	104.66	28.70	9.39	50.0	± 9.6 %
		Y	17.06	92.75	26.26		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	74.47	117.68	32.39	0.53	50.0	
DAC		x	29.01	100.99	27.69	9.57	50.0	±9.6 %
		۲ <u>۲</u>	15.70	91.12	25.76		50.0	
10024-	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z X	50.86 100.00	111.27	30.76	0.50	50.0	10.0.0/
DAC					30.37	6.56	60.0	±9.6 %
		Y	79.14	117.46	31.45		60.0	
10025-		Z	100.00	119.51	30.92	10 53	60.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	18.01	104.77	39.73	12.57	50.0	± 9.6 %
		Y	13.85	93.70	35.01		50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Z X	19.28 22.37	108.70	41.83	0.50	50.0	100%
DAC				106.73	36.71	9.56	60.0	± 9.6 %
		Y	15.21	95.13	32.50		60.0	
10027-		Z	23.85	109.99	38.29	1.00	60.0	
DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	117.60	29.16	4.80	80.0	± 9.6 %
		Y	100.00	119.86	30.73		80.0	
10000		Z	100.00	118.96	29.76	0.55	80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.56	28.79	3.55	100.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	119.98	29.90	ļ	100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z	100.00	119.90	29.38	7.00	100.0	100%
10029- DAC		X	14.79	97.42	32.53	7.80	80.0	± 9.6 %
		Y	11.52	89.75	29.55		80.0	L
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	14.18 100.00	97.61 116.89	32.99 29.16	5.30	80.0 70.0	± 9.6 %
CAA						0.00		± 9.0 %
		Y	100.00	119.53	30.94		70.0	
10021	IEEE 802 15 1 Plustaath (OEOK, DUR)	Z	100.00	118.05	29.66	4.00	70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	122.60	28.99	1.88	100.0	± 9.6 %
	<u> </u>	Y	100.00	121.51	28.91	_	100.0	
		Z	100.00	122.48	28.93		100.0	

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	x	100.00	133.16	32.27	1.17	100.0	± 9.6 %
0//1			(00 00	100.10	<u> </u>		<u> </u>	
		Y	100.00	126.43	29.83		100.0	1
10033-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	Z X	100.00	130.02	30.96		100.0	
CAA	DH1)		32.57	106.74	29.49	5.30	70.0	± 9.6 %
		Y	13.39	91.56	25.42		70.0	
40004		Z	28.98	104.37	28.55		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	45.93	114.88	30.10	1.88	100.0	± 9.6 %
		Y	7.50	87.12	22.45		100.0	
40005		Z	20.04	100.44	25.46		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	21.96	105.92	27.68	1.17	100.0	± 9.6 %
		Y	4.51	<u>81.</u> 47	20.26		100.0	
10036-		Z	9.42	91.44	22.56		100.0	
<u>CAA</u>	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	45.23	112.33	31.05	5.30	70.0	± 9.6 %
	·	Y	15.39	94.09	26.30		70.0	
10037-		Z	38.95	109.34	29.96		70.0	
10037- _CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	39.94	112.82	29.55	1.88	100.0	± 9.6 %
	<u> </u>	Y	7.15	86.45	22.19		100.0	<u> </u>
40000		Z	17.08	98.28	24.84		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	24.74	108.13	28.38	1.17	100.0	± 9.6 %
		Ý	4.66	82.21	20.61	·	100.0	
		Z _	9.87	92.45	22.99		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	7.01	92.94	24.21	0.00	150.0	± 9.6 %
		Υ	2.15	73.76	17.15		150.0	
		Z	2.61	77.73	17.80		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	117.06	30.06	7.78	50.0	± 9.6 %
		Y	33.54	102.85	27.66		50.0	
		Z	100.00	118.08	30.50		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	127.60	2.39	0.00	150.0	± 9.6 %
		Y	0.00	96.78	0.00		150.0	
		Z	0.01	122.93	2.94		150.0	
10048- · CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	×	13.06	86.13	24.73	13.80	25.0	±9.6 %
		Y	11.09	82.14	24.36		25.0	
		Z	16.17	90.99	26.57		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	16.50	91.24	25.09	10.79	40.0	±9.6 %
		Y	12.58	86.37	24.53		40.0	<u> </u>
40050		Z	22.30	97.25	27.17		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	15.28	90.62	25.52	9.03	50.0	± 9.6 %
		Y	11.72	85.08	24.19		50.0	
10058-		Z	17.40	93.38	26.42		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	10.69	91.04	29.62	6.55	100.0	± 9.6 %
	<u>+</u>	<u>Y</u>	9.07	85.67	27.37		100.0	
10050		Z	9.88	90.10	29.57		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.68	70.66	19.16	0.61	110.0	± 9.6 %
	<u> </u>	_Y	1.55	67.69	17.16		110.0	· · · · · · · · · · · · · · · · · · ·
10000		Z	1.56	68.66	17.81		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	100.00	135.64	35.63	1.30	110.0	± 9.6 %
	Mbps)			· ·				/ 0
	Mbps)	_ <u>Y</u> _Z	100.00	131.50	34.05		110.0	

`

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	54.02	125.97	35.38	2.04	110.0	± 9.6 %
		Y	8.96	93.29	26.14		110.0	
		z	19.56	108.50	30.84		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.87	67.49	17.06	0.49	100.0	±9.6 %
		Y	4.91	67.10	16.78		100.0	
		Z	4.75	67.38	16.89		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.91	67.64	17.19	0.72	100.0	±9.6 %
		Y	4.96	67.27	16.93		100.0	
•		Z	4.80	67.55	17.03		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.22	67.92	17.42	0.86	100.0	± 9.6 %
		Y	5.29	67.61	17.19		100.0	
(Z	5.08	67.80	17.26		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.13	67.94	17.58	1.21	100.0	± 9.6 %
		Y	5.21	67.67	17.37		100.0	
10055		Z	5.00	67.84	17.45		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.18	68.06	17.79	1.46	100.0	± 9.6 %
		Y	5.27	67.81	17.60		100.0	
		Z	5.05	67.98	17.68		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.49	68.19	18.21	2.04	100.0	± 9.6 %
		Y	5.60	67.98	18.05		100.0	
		Z	5.39	68.30	18.20		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.62	68.50	18.55	2.55	100.0	± 9.6 %
		ΙY	5.76	68.37	18.43		100.0	
		Z	5.50	68.48	18.50		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.69	68.44	18.72	2.67	100.0	±9.6 %
		Y	5.84	68.31	18.60		100.0	
		Z	5.58	68.54	18.73		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.27	67.84	18.05	1.99	100.0	±9.6 %
		Y	5.37	67.63	17.89		100.0	
		Z	5.20	67.92	18.02		100.0	
10072- CAB	JEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.34	68.42	18.38	2.30	100.0	± 9.6 %
		Y	5.45	68.23	18.22		100.0	
		Z	5.25	68.45	18.35		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.47	68.76	18.79	2.83	100.0	±9.6 %
		Y	5.61	68.62	18.66		100.0	
		Z	5.40	68.87	18.81		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.51	68.83	19.02	3.30	100.0	± 9.6 %
		Y	5.66	68.73	18.92		100.0	
		Z	_ 5.46	68.99	19.07		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.65	69.27	19.49	3.82	90.0	±9.6 %
		Y	5.85	69.26	19.43		90.0	
		Z	5.60	69.37	19.53	L	90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.67	69.08	19.61	4.15	90.0	± 9.6 %
		Y	5.87	69.08	19.56		90.0	
		Z	5.65	69.30	19.73		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.72	69.19	19.72	4.30	90.0	±9.6 %
		Y	5.92	69.19	19.67		90.0	
		Z	5.70	69.44	19.85		90.0	

4 . 4 . 4 .

10081-	CDMA2000 (1xRTT, RC3)	Tx	2.28	81.48	20.27	0.00	150.0	± 9.6 %
CAB								1 0.0 %
		Y	1.00	67.64	14.10		150.0	
10082-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-		1.04	69.66	14.21		150.0	
CAB	DQPSK, Fullrate)	X	2.13	64.08	8.83	4.77	80.0	± 9.6 %
		Y	2.57	65.34	10.16		80.0	
40000		Z	<u>2.</u> 13	64.35	9.02		80.0	-
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	118.32	30.42	6.56	60.0	± 9.6 %
		<u>Y</u>	75.01	116.70	31.30		60.0	· · · · · · · · · · · · · · · · · · ·
		Z	100.00	119.58	30.97		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.20	71.50	18.09	0.00	150.0	± 9.6 %
		Y	1.90	67.97	16.04		150.0	
(0000		Z	1.97	69.50	16.62		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.16	71.55	18.11	0.00	150.0	± 9.6 %
		Y	1.86	67.93	16.01		150.0	
10000		Z	1.93	69.49	16.61		150.0	<u> </u>
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	22.24	106.54	36.64	9.56	60.0	± 9.6 %
		Y	15.16	95.02	32.46		60.0	
		Z	23.72	109.80	38.22		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.77	73.97	18.60	0.00	150.0	± 9.6 %
		Y	3.32	71.02	16.99		150.0	
		Z	3.27	71.57	17.41		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.50	69.24	17.00	0.00	150.0	± 9.6 %
		ΤY	3.39	67.99	16.16		150.0	
		Z	3.29	68.22	16.35		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Х	3.59	69.07	17.02	0.00	150.0	± 9.6 %
_		Y	3.49	67.92	16.24		150.0	
		Z	3.39	68.14	16.41		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	9.27	79.88	21.95	3.98	65.0	±9.6 %
_		Y	8.43	77.27	20.93		65.0	
		Z	9.22	80.33	22.26		65.0	
1010 <mark>4-</mark>	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.81	77.80	21.97	3.98	65.0	± 9.6 %
		Y	8.62	76.41	21.37		65.0	
		Z	8.59	77.82	22.06			<u> </u>
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.19	76.36	21.65	3.98	65.0 65.0	± 9.6 %
		Y	7.71	74.18	20.67		65.0	
	· · · · · · · · · · · · · · · · · · ·	Z	7.86	76.00	21.56		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.29	73.14	18.47	0.00	150.0	±9.6 %
		Y	2.93	70.22	16.82		150.0	
		Z	2.85	70.87	17.28		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.18	69.27	17.05	0.00	150.0	± 9.6 %
		Y	3.05	67.82	16.11		150.0	
10110		Z	2.94	68.18	16.29		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.72	72.52	18.35	0.00	150.0	± 9.6 %
		Y	2.40	69.28	16.49		150.0	
10111		Z	2.33	70.22	16.99		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.96	70.65	17.72	0.00	150.0	± 9.6 %
		Y	2.76	68.51	16.45		150.0	
		Z	2.69	69.33	16.67		0.00	

September 18, 2017

`

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.29	69.10	17.02	0.00	150.0	± 9.6 %
		Y	3.17	67.76	16.14		150.0	
		Z	3.06	68.15	16.32		150.0	<u> </u>
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.11	70.58	17.73	0.00	150.0	± 9.6 %
		Y	2.92	68.59	16.56		150.0	
		Z	2.83	69.41	16.76		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.26	67.86	16.86	0.00	150.0	± 9.6 %
		Y	5.25	67.40	16.53		150.0	
<u> </u>		Z	5.14	67.65	16.68		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.60	68.11	16.98	0.00	150.0	± 9.6 %
		Y	5.62	67.73	16.70		150.0	
		Z	5.40	67.70	16.71		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.38	68.12	16.91	0.00	150.0	±9.6 %
		Y	5.38	67.68	16.59		150.0	
		Z	5.23	67.82	16.70		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.24	67.79	16.84	0.00	150.0	± 9.6 %
		Y	5.25	67.40	16.55		150.0	
		Z	5.10	67.49	16.62		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.68	68.30	17.08	0.00	150.0	± 9.6 %
		Y	5.70	67.92	16.80		150.0	
		Z	5.48	67.91	16.83		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	Х	5.35	68.04	16.89	0.00	150.0	±9.6%
		Y	5.35	67.63	16.58	_	150.0	
		Z	5.21	67.79	16.69		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.63	69.06	16.93	0.00	150.0	± 9.6 %
		Y	3.53	67.92	16.17		150.0	
		Z	3.42	68.16	16.33		150.0	· · · ·
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.75	69.06	17.04	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.65	67.98	16.31		150.0	
		Z	3.54	68.23	16.48		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.58	73.34	18.51	0.00	150.0	± 9.6 %
		Y	2.18	69.29	16.31		150.0	
		Z	2.13	70.56	16.73		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	3.01	72.46	18.03	0.00	150.0	± 9.6 %
		Y	2.65	69.32	16.38		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	2.60	70.44	16.44		150.0	[
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.64	69.45	16.13	0.00	150.0	± 9.6 %
		Y	2.44	67.23	14.90		150.0	
		Z	2.30	67.73	14.62		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.19	73.84	16.83	0.00	150.0	± 9.6 %
		Y	1.54	67.56	13.92		150.0	
		Z	1.24	66.10	11.96		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.00	80.94	18.56	0.00	150.0	± 9.6 %
		Y	2.97	71.15	15.11		150.0	
		Z	2.39	68.87	12.55		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	13.14	91.59	22.17	0.00	150.0	± 9.6 %
		Y	3.76	74.52	16.70		150.0	<u> </u>
			0.70	14.07	1 10.70		ວບ	

.

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	3.19	69.34	17.10	0.00	150.0	± 9.6 %
		Y -	3.06	67.89	16.15		150.0	<u> </u>
		Z	2.95	68.25	16.34	-	150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.29	69.16	17.06	0.00	150.0	± 9.6 %
		Y	3.18	67.81	16.18		150.0	
		Z	3.07	68.20	16.36		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.08	82.65	23.10	3.98	65.0	± 9.6 %
		Y	9.04	79.65	21.96		65.0	
		Z	10.06	83.26	23.42		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	8.50	78.17	21.88	3.98	65.0	± 9.6 %
		Y	8.23	76.54	21.20		65.0	
10/20		Z	8.27	78.18	21.88		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.91	78.99	22.55	3.98	65.0	± 9.6 %
·		Y	8.60	77.29	21.85		65.0	
		Ζ	8.71	79.10	22.58		65.0	<u>├</u> ─────
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.81	73.15	18.70	0.00	150.0	± 9.6 %
		Y	2.46	69.77	16.80		150.0	
40455		Z	2.38	70.62	17.23		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.96	70.66	17.73	0.00	150.0	± 9.6 %
<u> </u>		Y	2.76	68.51	16.46		150.0	
		Z	2.69	69.35	16.69		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.55	74.52	18.86	0.00	150.0	± 9.6 %
		Y	2.05	69.58	16.30		150.0	
		Z	2.00	70.89	16.58		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.62	71.06	16.72	0.00	150.0	± 9.6 %
		Y	2.30	67.95	15.09		150.0	
		Z	2.17	68.55	14.74		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.11	70.65	17.78	0.00	150.0	±9.6 %
	<u> </u>	Y	2.92	68.65	16.60		150.0	
		Z	2.84	69.48	16.81		150.0	
10159- * CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.77	71.67	17.06	0.00	150.0	±9.6 %
		Y	2.42	68.44	15.40		150.0	
40402		Z	2.27	68.98	14.99		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.14	71.31	17.89	0.00	150.0	± 9.6 %
		Y	2.90	69.12	16.57		150.0	
10161-		Z	2.85	69.90	17.00		150.0	
<u>CAD</u>	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.19	69.15	17.05	0.00	150.0	± 9.6 %
		Y	3.08	<u>67.73</u>	16.13		150.0	
10160		Z	2.97	68.19	16.30		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.30	69.19	17.10	0.00	150.0	± 9.6 %
		Y	3.18	67.80	16.21		150.0	
10166		Z	3.08	68.34	16.41		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.14	72.27	20.63	3.01	150.0	± 9.6 %
		Y	3.92	70.06	19.35		150.0	
10107		Z	3.85	71.64	20.32		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.70	76.91	21.68	3.01	150.0	± 9.6 %
		Y	4.94	72.92	19.80		150.0	
		Z	5.14					

i i i i

September 18, 2017

.

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	6.50	79.76	23.17	3.01	150.0	± 9.6 %
		Ŷ	5.42	74.94	21.01		150.0	
		z	5.85	78.93	22.82		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.88	74.16	21.49	3.01	150.0	± 9.6 %
		Y	3.53	70.80	19.64		150.0	
		z	3.37	71.79	20.43		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	7.14	85.17	25.38	3.01	150.0	± 9.6 %
		Y	5.02	76.66	21.81		150.0	
	· · · · · · · · · · · · · · · · · · ·	z	5.41	80.65	23.72		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	5.21	78.32	21.78	3.01	150.0	± 9.6 %
		Y	4.13	72.50	19.15		150.0	
		Z	4.25	75.40	20.64		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	82.16	130.26	39.09	6.02	65.0	± 9.6 %
		Y	17.62	97.94	29.93		65.0	
		Ζ	65.78	128.99	39.45		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	91.21	124.95	35.70	6.02	65.0	± 9.6 %
		Y	19.75	96.35	28.03		65.0	
		Z	100.00	129.35	37.29		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	55.61	114.43	32.46	6.02	65.0	± 9.6 %
		Υ	16.76	92.45	26.36		65.0	
		Z	70.56	121.14	34.65		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.81	73.71	21.19	3.01	150.0	± 9.6 %
		Y	3.48	70.45	19.37		150.0	
		Z	3.32	71.46	20.19		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	7.15	85.21	25.39	3.01	150.0	± 9.6 %
		Υ	5.03	76.68	21.82		150.0	
		Z	5.42	80.68	23.74		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.85	73.93	21.31	3.01	150.0	± 9.6 %
		Y	3.51	70.63	19.48		150.0	
		Z	3.35	71.61	20.27		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	7.01	84.77	25.21	3.01	150.0	± 9.6 %
		Y	4.96	76.40	21.67		150.0	
		Z	5.36	80.45	23.62		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	6.07	81.52	23.41	3.01	150.0	± 9.6 %
		Y	4.53	74.41	20.33		150.0	
		Z	4.79	77.92	22.06		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.18	78.18	21.70	3.01	150.0	± 9.6 %
		Y	4.12	72.40	19.09		150.0	
		Z	4.24	75.33	20.60		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.84	73.91	21.30	3.01	150.0	± 9.6 %
		Y	3.51	70.61	19.47		150.0	
10.10-		Z	3.35	71.60	20.27		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.99	84.74	25.19	3.01	150.0	± 9.6 %
		Y.	4.95	76.38	21.66		150.0	
10100		Z	5.35	80.42	23.61		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	×	5.17	78.15	21.69	3.01	150.0	± 9.6 %
		Y	4.11	72.38	19.08		150.0	
		Z	4.23	75.30	20.59		150.0	-

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.86	73.96	21.33	3.01	150.0	± 9.6 %
		Y	3.52	70.65	19.50	<u> </u>	150.0	
		Z	3.36	71.64	20.29		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	7.04	84.85	25.24	3.01	150.0	± 9.6 %
		ΤŸ	4.98	76.45	21.70		150.0	<u> </u>
		Z	5.38	80.50	23.65		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	5.20	78.24	21.73	3.01	150.0	± 9.6 %
		Y	4.13	72.45	19.11		150.0	<u> </u>
		Z	4.25	75.38	20.62		150.0	<u>† </u>
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.87	74.02	21.39	3.01	150.0	± 9.6 %
		Γ <u>Υ</u>	3.53	70.69	19.55		150.0	
		Z	3.37	71.71	20.36		150.0	<u> </u>
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	7.44	86.01	25.76	3.01	150.0	± 9.6 %
		Y	5.15	77.16	22.09		150.0	<u> </u>
		Z	5.58	81.30	24.05		150.0	<u> </u>
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.39	78.94	22.10	3.01	150.0	± 9.6 %
		Y	4.22	72.89	19.39		150.0	
		Z	4.36	75.91	20.93		150.0	⊢—
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.67	67.32	16.65	0.00	150.0	± 9.6 %
		Y	<u>4</u> .67	66.82	16.30		150.0	
		Z	4.53	67.11	16.38		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.85	67.66	16.76	0.00	150.0	± 9.6 %
		Y	4.86	67.18	16.41		150.0	
		Z	4.69	67.40	16.51		150.0	
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.89	67.68	16.77	0.00	150.0	± 9.6 %
		Y	4.90	67.20	16.42		150.0	j
		Z	4.73	67.43	16.52		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.68	67.41	16.68	0.00	150.0	± 9.6 %
		Y	4.68	66.91	16.33		150.0	
		Z	4.52	67.15	16.39		150.0	
10197- * CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.87	67.69	16.78	0.00	150.0	± 9.6 %
		Y	4.88	67.20	16.42		150.0	
1040		Z	4.70	67.42	16.52		150.0	·
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.90	67.70	16.79	0.00	150.0	± 9.6 %
		Y	4.91	67.21	16.43	_	150.0	
40040		Z	4.73	67.45	16.54		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.63	67.43	16.65	0.00	150.0	± 9.6 %
		Y	4.63	66.93	16.29		150.0	
10000		Z	4.47	67.18	16.36		150.0	
10220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.86	67.66	16.77	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.88	67.19	16.42		150.0	
10221-		Z	4.69	67.38	16.50		150.0	
CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.90	67.62	16.76	0.00	150.0	± 9.6 %
	·	Y	4.91	67.14	16.42		150.0	
10222		Z	4.74	67.37	16.52		150.0	
0222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	х	5.22	67.81	16.85	0.00	150.0	± 9.6 %
		Y Z	5.23	67.42	16.55		150.0	

September 18, 2017

.

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	x	5.53	67.07	40.04		450.0	1000
CAB	QAM)			67.97	16.94	0.00	150.0	± 9.6 %
		Y	5.59	67.74	16.73		150.0	
10224-		Z	5.38	67.75	16.76		150.0	
	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.26	67.91	16.83	0.00	150.0	± 9.6 %
		Y	5.27	67.51	16.52		150.0	
		Z	5.12	67.61	16.60	_	150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	3.00	67.51	16.39	0.00	150.0	± 9.6 %
		Y	2.93	66.39	15.65		150.0	
		Z	2.82	66.88	15.63		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	100.00	126.81	36.25	6.02	65.0	± 9.6 %
		Υ	20.60	97.21	28.37		65.0	
		Z	100.00	129.54	37.41		65.0	
10227- <u>CA</u> A	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	65.64	117.49	33.34	6.02	65.0	± 9.6 %
		Y	18.22	94.00	26.93		65.0	
		Z	85.61	124.65	35.59		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	79.85	130.36	39.26	6.02	65.0	± 9.6 %
		Y	20.21	101.07	31.01		65.0	
		Z	65.84	129.47	39.67		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	91.11	124.93	35.70	6.02	65.0	±9.6 %
		Y	19.80	96.38	28.04		65.0	
		Z	100.00	129.35	37.29		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	60.15	115.83	32.84	6.02	65.0	±9.6 %
-		Y	17.60	93.31	26.65		65.0	
		z	77.12	122.67	35.03		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	72.28	128.22	38.64	6.02	65.0	± 9.6 %
		Y	19.39	100.17	30.67		65.0	
		z	59.87	127.39	39.07		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	91.25	124.96	35.71	6.02	65.0	± 9.6 %
		Y	19.78	96.37	28.04		65.0	
_		†- <u>'</u>	100.00	129.36	37.30		65.0	
10233- CAD	JETE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	x	60.26	115.87	32.85	6.02	65.0	± 9.6 %
		Y	17.59	93.32	26.66		65.0	
		Z	77.19	122.70	35.04		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	65.41	125.97	37.96	6.02	65.0	± 9.6 %
		Y	18.62	99.23	30.29		65.0	
		Z	54.84	125.34	38.42		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	<u>x</u>	91.93	125.11	35.75	6.02	65.0	± 9.6 %
		Y	19.81	96.41	28.05	ļ	65.0	
		Z	100.00	129.37	37.30		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	61.00	116.05	32.90	6.02	65.0	± 9.6 %
		Y	17.69	93.40	26.68		65.0	
		Z	78.43	122.94	35.10		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	73.61	128.60	38.74	6.02	65.0	±9.6 %
		Y	19.49	100.29	30.70		65.0	
		Z	60.90	127.76	39.16		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	91.47	125.02	35.72	6.02	65.0	± 9.6 %
		Y	19.78	96.38	28.04		65.0	
		Z	100.00	129.37	37.30		65.0	

CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10249- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- <t< th=""><th>-TDD (SC-FDMA, 1 RB, 15 MHz,</th><th>x</th><th>60.36</th><th>115.92</th><th>32.87</th><th>6.02</th><th>65.0</th><th>± 9.6 %</th></t<>	-TDD (SC-FDMA, 1 RB, 15 MHz,	x	60.36	115.92	32.87	6.02	65.0	± 9.6 %
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC 10243- LTE-TDD (SC 10244- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10246- LTE-TDD (SC 10247- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD 64-QAM) 10253- LTE-TDD (SC CAD 16-QAM) <td></td> <td></td> <td>17.50</td> <td>+</td> <td></td> <td></td> <td><u> </u></td> <td></td>			17.50	+			<u> </u>	
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10243- LTE-TDD (SC CAA QPSK) 10243- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB QPSK) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-		<u>Y</u>	17.58	93.32	26.66		65.0	+
CAD QPSK) 10241- LTE-TDD (SC 10242- LTE-TDD (SC 10243- LTE-TDD (SC 10243- LTE-TDD (SC 10244- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10245- LTE-TDD (SC 10246- LTE-TDD (SC 10247- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC 10248- LTE-TDD (SC CAD 64-QAM) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD 64-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10250- LTE-TDD (SC CAD 64-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD 64-QAM) 10253- LTE-TDD (SC CAD 16-QAM) <td></td> <td></td> <td>77.24</td> <td>122.72</td> <td>35.05</td> <td></td> <td>65.0</td> <td></td>			77.24	122.72	35.05		65.0	
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE	-TDD (SC-FDMA, 1 RB, 15 MHz, SK)	X	73.31	128.53	38.72	6.02	65.0	± 9.6 %
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10247- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		<u>Υ</u>	19.44	100.25	30.69		65.0	
CAA 16-QAM) 10242- LTE-TDD (SC CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Z	60.69	127.70	39.15		65.0	
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE	-TDD (SC-FDMA, 50% RB, 1.4 MHz, QAM)	X	14.22	90.30	28.70	6.98	65.0	± 9.6 %
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Y	11.91	84.78	26.56		65.0	
CAA 64-QAM) 10243- LTE-TDD (SC CAA QPSK) 10244- LTE-TDD (SC CAB 16-QAM) 10245- LTE-TDD (SC CAB G4-QAM) 10245- LTE-TDD (SC CAB QPSK) 10246- LTE-TDD (SC CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10248- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10250- LTE-TDD (SC CAD G4-QAM) 10251- LTE-TDD (SC CAD G4-QAM) 10252- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE-TDD (SC CAD G4-QAM) 10253- LTE		Z	15.04	92.96	29.82		65.0	
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC 64-QAM) 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC	-TDD (SC-FDMA, 50% RB, 1.4 MHz, DAM)	X	12.20	86.96	27.37	6.98	65.0	± 9.6 %
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC CAB 10246- CAB LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- LTE-TDD (SC		Υ	11.04	83.09	25.82		65.0	·
CAA QPSK) 10244- CAB LTE-TDD (SC 16-QAM) 10245- CAB LTE-TDD (SC 64-QAM) 10246- CAB LTE-TDD (SC 64-QAM) 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC CAD 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Z	14.66	92.40	29.55		65.0	<u> </u>
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC GAD) 10249- LTE-TDD (SC QPSK) 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD) 10251- LTE-TDD (SC CAD) 10252- LTE-TDD (SC CAD) 10252- LTE-TDD (SC CAD) 10253- LTE-TDD (SC CAD) 10254- LTE-TDD (SC CAD)	-TDD (SC-FDMA, 50% RB, 1.4 MHz, SK)	X	9.46	83.32	26.91	6.98	65.0	± 9.6 %
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC CAD 10248- LTE-TDD (SC CAD 10248- LTE-TDD (SC CAD 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	· · · · · · · · · · · · · · · · · · ·	Y	9.15	80.79	25.71		65.0	+
CAB 16-QAM) 10245- LTE-TDD (SC 64-QAM) 10246- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10247- LTE-TDD (SC QPSK) 10248- LTE-TDD (SC GAD 10248- LTE-TDD (SC QPSK) 10249- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD		Z	10.96	87.97	28.96		65.0	┼───┤
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- LTE-TDD (SC SC	-TDD (SC-FDMA, 50% RB, 3 MHz, DAM)	X	10.76	82.68	21.60	3.98	65.0	± 9.6 %
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Y	9.17	79.37	20.74		65.0	┼───┥
CAB 64-QAM) 10246- CAB LTE-TDD (SC QPSK) 10247- CAD LTE-TDD (SC CAD 10247- CAD LTE-TDD (SC CAD 10248- CAD LTE-TDD (SC G4-QAM) 10249- CAD LTE-TDD (SC CAD 10250- CAD LTE-TDD (SC QPSK) 10251- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC G4-QAM) 10252- CAD LTE-TDD (SC CAD 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10254- 10254- LTE-TDD (SC		Z	9.65	80.90	20.36		65.0	┼───┤
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)	-TDD (SC-FDMA, 50% RB, 3 MHz, DAM)	X	10.44	81.95	21.29	3.98	65.0	± 9.6 %
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)		Y	9.07	78.96	20.54		65.0	<u> </u>
CAB QPSK) 10247- LTE-TDD (SC CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC CAD 16-QAM)		Z	9.24	79.99	19.97		65.0	
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)	-TDD (SC-FDMA, 50% RB, 3 MHz, sK)	X	11.35	86.57	23.09	3.98	65.0	± 9.6 %
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)		Y	8.94	81.85	21.69		65.0	
CAD 16-QAM) 10248- LTE-TDD (SC CAD 64-QAM) 10249- LTE-TDD (SC CAD QPSK) 10250- LTE-TDD (SC CAD 10-QAM) 10250- LTE-TDD (SC CAD 10-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM)		Ż	10.01	84.49	21.88		65.0	<u> </u>
CAD 64-QAM) 10249- 2 LTE-TDD (SC QPSK) 10250- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	TDD (SC-FDMA, 50% RB, 5 MHz, DAM)	x	8.24	79.27	21.00	3.98	65.0	± 9.6 %
CAD 64-QAM) 10249- CAD QPSK) 10250- CAD LTE-TDD (SC QPSK) 10251- LTE-TDD (SC GAD G4-QAM) 10252- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC GAD 16-QAM)		TY.	7.74	77.28	20.43			
CAD 64-QAM) 10249- CAD QPSK) 10250- CAD LTE-TDD (SC QPSK) 10251- LTE-TDD (SC GAD G4-QAM) 10252- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC GAD 16-QAM)		Ż	7.64	78.13	20.43		65.0	
10249- 2 LTE-TDD (SC QPSK) 10250- LTE-TDD (SC QPSK) 10251- LTE-TDD (SC CAD 10251- LTE-TDD (SC CAD 10252- CAD 10252- LTE-TDD (SC CAD 10252- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10253- LTE-TDD (SC CAD 10254- LTE-TDD (SC CAD	TDD (SC-FDMA, 50% RB, 5 MHz,	X	8.11	78.56	20.70	3.98	65.0 65.0	± 9.6 %
CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10254- LTE-TDD (SC		ΓY-	7.73	76.82	20.23		05.0	<u> </u>
CAD QPSK) 10250- LTE-TDD (SC CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Z	7.48	77.39			65.0	
10250- CAD LTE-TDD (SC 16-QAM) 10251- CAD LTE-TDD (SC 64-QAM) 10252- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- CAD LTE-TDD (SC CAD 10253- LTE-TDD (SC 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 5 MHz, K)	X	12.62	88.79	19.79 24.56	3.98	65.0 65.0	± 9.6 %
CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Y	9.64	83.20	22.76		65.0	
CAD 16-QAM) 10251- LTE-TDD (SC CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10254- LTE-TDD (SC		Ż	12.16	88.40	24.15			<u> </u>
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	x	9.13	81.24	23.10	3.98	65.0 65.0	± 9.6 %
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC		Y	8.50	78.84	22.20		65.0	╉─────┦
CAD 64-QAM) 10252- LTE-TDD (SC CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC 10253- LTE-TDD (SC		Z	8.86	81.11	22.89		65.0	╄────┥
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	X	8.47	78.74	21.83	3.98	65.0	± 9.6 %
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC		Y	8.10	76.89	21.13		65.0	╞───┤
CAD QPSK) 10253- LTE-TDD (SC CAD 16-QAM) 10254- LTE-TDD (SC		Z	8.20	78.63	21.61		65.0	┼────┤
CAD 16-QAM) 10254- LTE-TDD (SC	TDD (SC-FDMA, 50% RB, 10 MHz, K)	X	11.59	86.92	24.65	3.98	65.0	± 9.6 %
CAD 16-QAM) 10254- LTE-TDD (SC		Y	9.53	82.29	23.01		65.0	
CAD 16-QAM) 10254- LTE-TDD (SC		Z	11.63	87.60	24.87		65.0	├────┤
	TDD (SC-FDMA, 50% RB, 15 MHz, AM)	X	8.27	77.55	21.65	3.98	65.0	± 9.6 %
\		Y	8.04	76.02	21.02		65.0	┟─────┤
		Z	8.09	77.65	21.62		65.0	<u> </u>
<u>CAD</u> <u>64-QAM</u>)	TDD (SC-FDMA, 50% RB, 15 MHz, AM)	Х	8.67	78.35	22.26	3.98	65.0	± 9.6 %
		Y	8.41	76.75	21.61		65.0	┝────┥
		z	8.50	78.49	22.25	——	<u>65.0</u> 65.0	┝━────┤

``

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.69	82.20	23.16	3.98	65.0	±9.6 %
		Y	8.77	79.29	22.03		65.0	
		Z	9.70	82.84	23.45		65.0	<u> </u>
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	9.10	79.45	19.54	3.98	65.0	±9.6 %
		Y	8.28	77.46	19.27		65.0	
		Z	7.50	76.38	17.64		65.0	-
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.71	78.44	19.07	3.98	65.0	± 9.6 %
		Y	8.14	76.86	18.96		65.0	
		Z	7.10	75.27	17.09		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	9.16	82.49	20.98	3.98	65.0	± 9.6 %
		Y	7.92	79.54	20.28	-	65.0	
		Z	7.29	78.75	18.94		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.59	79.95	21.73	3.98	65.0	± 9.6 %
		Y	8.03	77.80	21.03		65.0	
		Z	8.13	79.27	21.11		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.53	79.55	21.59	3.98	65.0	±9.6 %
		Y	8.06	77.57	20.96		65.0	
		Z	8.06	78.82	20.93		65.0	İ
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	11.51	87.11	24.32	3.98	65.0	± 9.6 %
		Y	9.26	82.24	22.68		65.0	
		Z	11.28	87.12	24.13		65.0	t
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	9.12	81.19	23.06	3.98	65.0	± 9.6 %
		Y	8.49	78.79	22.16		65.0	
		Z	8.84	81.05	22.85		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.46	78.73	21.82	3.98	65.0	± 9.6 %
		Y	8.09	76.88	21.13		65.0	
		Z	8.19	78.61	21.60		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	11.49	86.74	24.57	3.98	65.0	± 9.6 %
		Y	9.47	82.16	22.94		65.0	
		Z	11.51	87.39	24.78		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.50	78.18	21.88	3.98	65.0	± 9.6 %
		Y	8.22	76.54	21.21		65.0	1
		Z	8.27	78.18	21.88		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.90	78.98	22.54	3.98	65.0	± 9.6 %
		Y	8.60	77.28	21.84		65.0	
		Z	8.71	79.09	22.57		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	10.06	82.61	23.09	3.98	65.0	± 9.6 %
		Ϋ́	9.03	79.62	21.95		65.0	
		Z	<u>1</u> 0.04	83.22	23.41		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.87	77.45	21.95	3.98	65.0	± 9.6 %
		Y	8.72	76.18	21.40		65.0	
		Z	8.67	77.54	22.05		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.77	76.99	21.83	3.98	65.0	± 9.6 %
		Y	8.66	75.80	21.31		65.0	
		Z	8.60	77.10	21.92		65.0	<u> </u>
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	9.16	79.20	21.93	3.98	65.0	± 9.6 %
		Y	8.71	77.35	21.19		65.0	1
		Z	9.06	79.57	22.19	[65.0	1

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.80	68.17	16.47	0.00	150.0	± 9.6 %
		Y	2.67	66.63	15.50	<u> </u>	150.0	1
		Z	2.65	67.51	15.70		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	2.12	73.27	18.65	0.00	150.0	± 9.6 %
		Y	1.72	68.53	16.00		150.0	<u> </u>
_		Z	1.76	70.05	16.72		150.0	-
10277- CAA	PHS (QPSK)	X	5.32	68.96	13.42	9.03	50.0	± 9.6 %
		Y	6.41	71.20	15.49		50.0	-
		Z	5.12	68.74	13.08		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.11	79.62	20.31	9.03	50.0	± 9.6 %
		Υ	9.22	79.31	21.03		50.0	
		Z	8.20	77.78	19.21	_	50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.25	79.80	20.39	9.03	50.0	±9.6 %
		Y	9.36	79.46	21.09		50.0	
		Z	8.30	77.91	19.28		50.0	<u> </u>
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	3.59	82.57	20.48	0.00	150.0	± 9.6 %
		Y	1.73	70.44	15.45		150.0	
		Z	1.75	72.09	15.26		150.0	<u> </u>
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	2.13	80.55	19.92	0.00	150.0	± 9.6 %
		<u>Y</u>	0.98	67.37	13.95		150.0	
		Z	1.01	69.27	14.02		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	12.02	108.71	29.17	0.00	150.0	± 9.6 %
		Y	1.26	72.03	16.54		150.0	
		Z	1.93	79.12	18.49		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	100.00	144.61	38.38	0.00	150.0	± 9.6 %
		Y	1.90	78.46	19.68		150.0	
		Z	6.64	97.19	24.86		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11,58	85.59	24.60	9.03	50.0	± 9.6 %
		_ Y	10.44	82.50	23.85		50.0	
·		Z	13.98	88.93	25.45		50.0	
10297- * AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.31	73.28	18.55	0.00	150.0	± 9.6 %
		Y	2.94	70.32	16.89		150.0	
		Z	2.86	70.97	17.35		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.53	75.50	18.42	0.00	150.0	± 9.6 %
		Y	1.83	69.14	15.39		150.0	
40000		Z	1.69	69.62	14.84		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	6.61	82.78	20.21	0.00	150.0	±9.6 %
		Y	3.43	72.67	16.51		150.0	
40000		Z	3.82	74.80	16.21		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.24	71.51	15.06	0.00	150.0	± 9.6 %
		Y	2.57	67.68	13.54		150.0	
10204		Z	2.21	66.93	12.03		150.0	
10301- <u>AAA</u>	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.62	68.28	18.87	4.17	80.0	±9.6 %
	<u> </u>	Y	5.93	68.63	18.94		80.0	
10200		Z	5.89	69.91	19.47		80.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.17	69.25	19.82	4.96	80.0	± 9.6 %
		Y	6.38	69.08	19.58		80.0	
		Z	6.23	69.95	19.93		80.0	

1 -1 -1 - 7 - 4 September 18, 2017

`

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	ĪXĪ	6.02	69.32	19.87	4.96	80.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)							
		Y.	6.26	69.22	19.66		80.0	
		Z	6.09	70.04	19.96		80.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.67	68.65	19.09	4.17	80.0	± 9.6 %
		Y	5.85	68.42	18.82		80.0	
		Z	5.71	69.28	19.12		80.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	9.13	83.00	26.75	6.02	50.0	± 9.6 %
		Y	11.08	85.83	27.58		50.0	
		Z	11.97	88.64	28.23		50.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	6.47	72.26	21.90	6.02	50.0	± 9.6 %
		Y	6.84	72.27	21.68		50.0	
		Z	6.81	73.77	22.17		50.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	6.58	73.04	22.08	6.02	50.0	± 9.6 %
		Y	8.34	78.37	24.64		50.0	
		Z	6.92	74.46	22.29		50.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.66	73.56	22.34	6.02	50.0	± 9.6 %
		Y	8.60	79.30	25.04		50.0	
		Z	7.08	75.16	22.62		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	6.58	72.60	22.09	6.02	50.0	± 9.6 %
		Y	6.95	72.58	21.85		50.0	
		Z	6.90	74.05	22.35		50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	Х	6.50	72.56	21.95	6.02	50.0	± 9.6 %
		Y	6.87	72.52	21.70		50.0	
		Z	6.86	74.10	22.23		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.70	72.28	18.01	0.00	150.0	± 9.6 %
		Y	3.30	69.61	16.53		150.0	
		Z	3.23	70.11	16.90		150.0	
10313- AAA	iDEN 1:3	X	9.18	81.61	19.86	6.99	70.0	±9.6 %
·		Y	7.64	78.40	19.13		70.0	
		Z	9.78	83.14	20.58		70.0	
10314- AAA	"iDEN 1:6	X	13.83	90.60	25.32	10.00	30.0	±9.6 %
		Y	9.35	83.01	23.15		30.0	
	·	Z	14.01	91.81	25.99		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.27	67.24	17.67	0.17	150.0	±9.6 %
		Y	1.20	64.93	15.83		150.0	
		Z	1.21	65.68	16.36		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.47	16.83	0.17	150.0	± 9.6 %
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.76	67.47	16.83	0.17	150.0	± 9.6 %
		Y	4.78	67.03	16.51		150.0	
		Z	4.63	67.31	16.62		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.86	67.74	16.77	0.00	150.0	± 9.6 %
		Y	4.87	67.24	16.40		150.0	
		Z	4.68	67.47	16.52		150.0	
10401- AAC	IEEE 802.11ac WIFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.51	67.76	16.81	0.00	150.0	± 9.6 %
		V	E E 0	67.90	16.52		450.0	
		Y Z	5.52	67.36	10.52		150.0	

AAB	11ac WiFi (80MHz, 64-QAM, cycle)	x	5.79	68.18	16.86	0.00	150.0	± 9.6 %
AAB		Y	5.81	67.85	16.61	<u> </u>	150.0	
AAB 10404- AAB 10406- CDMA2000 AAB 10406- CDMA2000 AAB Rate 10410- LTE-TDD (S AAC QPSK, UL S 10415- AAA Mbps, 99pc 10416- AAA OFDM, 6 MI I0417- AAA OFDM, 6 MI preambule) I0418- IEEE 802.17 AAA OFDM, 6 MI preambule) I0419- IEEE 802.11 AAA OFDM, 6 MI preambule) I0419- IEEE 802.11 AAA OFDM, 6 MI preambule) I0422- IEEE 802.11 AAA OFDM, 6 MI preambule) I0422- IEEE 802.11 AAA Mbps, 64-Q/ <t< td=""><td></td><td>Z</td><td>5.64</td><td>67.83</td><td>16.63</td><td></td><td>150.0</td><td></td></t<>		Z	5.64	67.83	16.63		150.0	
AAB	00 (1xEV-DO, Rev. 0)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 %
AAB		Y	1.73	70.44	15.45	<u> </u>	115.0	
AAB 10406- CDMA2000 AAB Rate 10410- LTE-TDD (S AAC QPSK, UL S 10415- AAA Mbps, 99pc 10416- AAA OFDM, 6 MI D418- IEEE 802.1* AAA OFDM, 6 MI preambule) D418- IEEE 802.1* AAA OFDM, 6 MI preambule) D419- IEEE 802.1* AAA OFDM, 6 MI preambule) D10419- IEEE 802.1* AAA OFDM, 6 MI preambule) D10422- IEEE 802.11 AAA DFSK) D10422- IEEE 802.11 AAA J0422- IEEE 802.11 AAA J0423- IEEE 802.11 AAA <td< td=""><td></td><td>Z</td><td>1.75</td><td>72.09</td><td>15.26</td><td>· · · · ·</td><td>115.0</td><td></td></td<>		Z	1.75	72.09	15.26	· · · · ·	115.0	
AAB Rate 10410- LTE-TDD (S AAC QPSK, UL S 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA OFDM, 6 MI 10418- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA Mbps, 64-Q/	00 (1xEV-DO, Rev. A)	X	3.59	82.57	20.48	0.00	115.0	± 9.6 %
AAB Rate 10410- LTE-TDD (S AAC QPSK, UL S 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA OFDM, 6 MI 10418- IEEE 802.11 AAA OFDM, 6 MI preambule) OFDM, 6 MI 10419- IEEE 802.11 AAA OFDM, 6 MI preambule) IEEE 802.11 AAA IEEE 802.11 AAA Mbps, 16-Q/ I0423- IEEE 802.11 AAA Mbps, 64-Q/ I0425- IEEE 802.11 AAA		Y	1.73	70.44	15.45		115.0	
AAB Rate 10410- LTE-TDD (S AAC QPSK, UL S 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA OFDM, 6 MI 10418- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA Mbps, 64-Q/		Z	1.75	72.09	15.26		115.0	<u> </u>
AAC QPSK, UL S 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA Mbps, 99pc 10417- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	0, RC3, SO32, SCH0, Full	X	100.00	122.57	31.18	0.00	100.0	± 9.6 %
AAC QPSK, UL s 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA Mbps, 99pc 10417- IEEE 802.11 AAA OFDM, 6 MI preambule) IEEE 802.11 AAA IEEE 802.11 AAA Mbps, 16-Q/ I0423- IEEE 802.11 AAA Mbps, 64-Q/ I0425- IEEE 802.11 AAA BPSK) <td></td> <td>Υ</td> <td>1<u>8.35</u></td> <td>99.60</td> <td>26.20</td> <td></td> <td>100.0</td> <td></td>		Υ	1 <u>8.35</u>	99.60	26.20		100.0	
AAC QPSK, UL s 10415- IEEE 802.11 AAA Mbps, 99pc 10416- IEEE 802.11 AAA OFDM, 6 MI 10417- IEEE 802.11 AAA Mbps, 99pc 10417- IEEE 802.11 AAA OFDM, 6 MI preambule) IEEE 802.11 AAA IEEE 802.11 AAA Mbps, 16-Q/ I0423- IEEE 802.11 AAA Mbps, 64-Q/ I0425- IEEE 802.11 AAA BPSK) <td></td> <td>Z</td> <td>100.00</td> <td>120.33</td> <td>29.78</td> <td></td> <td>100.0</td> <td></td>		Z	100.00	120.33	29.78		100.0	
AAA Mbps, 99pc 10416- IEEE 802.1* AAA OFDM, 6 MI 10417- IEEE 802.1* AAA Mbps, 99pc 10417- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	(SC-FDMA, 1 RB, 10 MHz, Subframe=2,3,4,7,8,9)	X	100.00	120.29	30.51	3.23	80.0	± 9.6 %
AAA Mbps, 99pc 10416- IEEE 802.1* AAA OFDM, 6 MI 10417- IEEE 802.1* AAA Mbps, 99pc 10417- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Y	100.00	120.68	31.13		80.0	
AAA Mbps, 99pc 10416- IEEE 802.1* AAA OFDM, 6 MI 10417- IEEE 802.1* AAA Mbps, 99pc 10417- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10419- IEEE 802.1* AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA OFDM, 6 MI preambule) 0 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	· · · · ·	Z	100.00	122.62	31.38		80.0	
AAA OFDM, 6 Mi 10417- IEEE 802.17 AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	11b WiFi 2.4 GHz (DSSS, 1 oc duty cycle)	X	1.09	65.33	16.67	0.00	150.0	± 9.6 %
AAA OFDM, 6 Mi 10417- IEEE 802.17 AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Y	1.03	63.31	14.91		150.0	
AAA OFDM, 6 Mi 10417- IEEE 802.17 AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10419- IEEE 802.11 AAA OFDM, 6 Mi preambule) 0FDM, 6 Mi 10422- IEEE 802.11 AAA Mbps, 16-Q/ 10423- IEEE 802.11 AAA Mbps, 64-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Z	1.05	64.05	15.43		150.0	
AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10419- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA BPSK) 10425- IEEE 802.11 AAA BPSK)	11g WiFi 2.4 GHz (ERP- Mbps, 99pc duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 %
AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10419- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA BPSK) 10425- IEEE 802.11 AAA BPSK)		Y	4.67	66.86	16.34		150.0	
AAA Mbps, 99pc 10418- IEEE 802.17 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10419- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA OFDM, 6 Mt preambule) 0FDM, 6 Mt 10422- IEEE 802.11 AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA BPSK) 10425- IEEE 802.11 AAA BPSK)		Z	4.53	67.14	16.45		150.0	
AAA OFDM, 6 Mi preambule) 10419- AAA OFDM, 6 Mi preambule) 10422- 10422- 10422- 10423- 10423- 10423- 10424- 10424- 10424- 10424- 10425- 10425- 10425- 1EEE 802.11 AAA BPSK)	11a/h WiFi 5 GHz (OFDM, 6 c duty cycle)	X	4.67	67.36	16.71	0.00	150.0	± 9.6 %
AAA OFDM, 6 Mi preambule) 10419- AAA OFDM, 6 Mi preambule) 10422- 10422- 10423- 10423- 10423- 10424- 10424- 10424- 10424- 10425- 1045- 105- 1045-		Y	4.67	66.86	16.34		150.0	
AAA OFDM, 6 Mi preambule) 10419- AAA OFDM, 6 Mi preambule) 10422- 10422- 10422- 10423- 10423- 10423- 10424- 10424- 10424- 10424- 10425- 10425- 10425- 1EEE 802.11 AAA BPSK)		Z	4.53	67.14	16.45		150.0	
AAA OFDM, 6 Mt preambule) 10422- 10422- 10423- 10423- 10423- 10424- 10424- 10424- 10424- 10425- 1045	11g WiFi 2.4 GHz (DSSS- Mbps, 99pc duty cycle, Long	X	4.66	67.53	16.73	0.00	150.0	± 9.6 %
AAA OFDM, 6 Mt preambule) 10422- 10422- 10423- 10423- 10423- 10424- 10424- 10424- 10424- 10425- 1045		Υ	4.66	67.00	16.35		150.0	
AAA OFDM, 6 Mt preambule) 10422- IEEE 802.11 AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Z	4.52	67.33	16.49		150.0	
10422- AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	11g WiFi 2.4 GHz (DSSS- //bps, 99pc duty cycle, Short)	x	4.68	67.47	16.73	0.00	150.0	± 9.6 %
AAA BPSK) 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Y	4.68	66.95	16.36		150.0	
AAA BPSK) 10423- 10423- IEEE 802.11 AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Z	4.54	67.26	16.48		150.0	
AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	11n (HT Greenfield, 7.2 Mbps,	X	4.80	67.45	16.73	0.00	150.0	± 9.6 %
AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Y	4.81	66.96	16.37		150.0	
AAA Mbps, 16-Q/ 10424- IEEE 802.11 AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		z	4.65	67.24	16.49	——		
AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)	11n (HT Greenfield, 43.3 QAM)	X	4.99	67.80	16.85	0.00	150.0 150.0	± 9.6 %
AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Y	5.00	67.33	16.51		150.0	
AAA Mbps, 64-Q/ 10425- IEEE 802.11 AAA BPSK)		Z	4.80	67.54	16.59		150.0	
AAA BPSK)	11n (HT Greenfield, 72.2 QAM)	X	4.90	67.76	16.83	0.00	150.0	± 9.6 %
AAA BPSK)		Y	4.91	67.27	16.47		150.0	
AAA BPSK)		Z	4.73	67.50	16.57		150.0	
	11n (HT Greenfield, 15 Mbps,	X	5.49	68.02	16.94	0.00	150.0	±9.6 %
		Y	5.50	67.62	16.64		150.0	
10426 JEEE 902 14		Z	5.34	67.73	16.73		150.0	
AAA <u>16-QAM)</u>	1n (HT Greenfield, 90 Mbps,	x	5.49	68.02	16.94	0.00	150.0	±9.6 %
		Y	5.51	67.65	16.65		150.0	
		z	5.36	67.83	16.78		150.0	

i i Fii Fii

September 18, 2017

.

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	x	5.50	68.00	16.93	0.00	150.0	± 9.6 %
		Y	5.52	67.64	16.64		150.0	
		Z	5.36	67.74	16.73		150.0	· · · · · · · · · · · · · · · · · · ·
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.54	72.09	19.09	0.00	150.0	± 9.6 %
		Y	4.40	70.73	18.36		150.0	
		Z	4.26	71.56	18.37		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.40	68.10	16.85	0.00	150.0	±9.6%
		Y	4.40	67.42	16.40		150.0	
		Z	4.19	67.79	16.46		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.68	67.87	16.83	0.00	150.0	± 9.6 %
		Y.	4.69	67.31	16.44		150.0	
40400		Z	4.50	67.59	16.53		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.92	67.80	16.85	0.00	150.0	± 9.6 %
		Y	4.93	67.31	16.50		150.0	
10101		Z	4.74	67.53	16.59		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.73	73.25	19.23	0.00	150.0	± 9.6 %
		<u>Y</u>	4.51	71.54	18.38		150.0	
10/05		Z	4.38	72.53	18.34		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.11	30.42	3.23	80.0	± 9.6 %
		Y	100.00	120.53	31.07		80.0	
404		<u>Z</u>	100.00	122.42	31.29		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.76	68.51	16.50	0.00	150.0	± 9.6 %
		Y	3.71	67.48	15.90		150.0	
		Z	3.49	67.91	15.73		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.23	67.89	16.73	0.00	150.0	± 9.6 %
	· ·	<u>Y</u>	4.22	67.19	16.26		150.0	
		Z	4.04	67.58	16.33		150.0	· ·
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.49	67.72	16.75	0.00	150.0	± 9.6 %
		Υ	4.48	67.13	16.34		150.0	
		Z	4.32	67.42	16.43		150.0	
10450- 	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.67	67.59	16.73	0.00	150.0	±9.6 %
		Y	4.66	67.07	16.35		150.0	
		<u>Z</u>	4.52	67.31	16.45		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.71	68.96	16.29	0.00	150.0	± 9.6 %
		Y	3.63	67.76	1 <u>5.64</u>		150.0	
40/55		Z	3.37	68.05	15.28		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.34	68.51	17.03	0.00	150.0	±9.6 %
		Y	6.36	68.23	16.81		150.0	
4045		Z	6.24	68.31	16.89		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.87	65.97	16.44	0.00	150.0	±9.6 %
		Y	3.87	65.48	16.06		150.0	
40450		Z	3.81	65.79	16. 1 7		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.35	72.54	18.72	0.00	150.0	± 9.6 %
		Y	4.10	70.59	17.78		150.0	
40450		Z	4.02	71.83	17.67		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.25	68.89	18.60	0.00	150.0	± 9.6 %
		Y	5.22	68.08	_ 18.20		150.0	
		Z	4.96	68.66	18.04		150.0	

. . . . September 18, 2017

•

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.62	80.44	22.68	0.00	150.0	± 9.6 %
		Y	0.96	69.05	16.73		150.0	<u> </u>
		Z	1.09	72.04	18.32		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	125.40	32.90	3.29	80.0	± 9.6 %
		Y	100.00	122.42	32.02	-	80.0	<u> </u>
		Z	100.00	127.89	33.84	-	80.0	· · ·
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	109.25	25.21	3.23	80.0	± 9.6 %
		Y	100.00	110.42	26.29		80.0	<u>├─</u> ──
		Ż	100.00	110.42	25.54		80.0	<u> </u>
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	106.10	23.70	3.23	80.0	± 9.6 %
		Υ	31.87	95.11	22.04		80.0	<u> </u>
		Z	100.00	107.01	23.88		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.48	31.85	3.23	80.0	± 9.6 %
		Y	100.00	120.78	31.11		80.0	<u> </u>
		Z	100.00	125.94	32.77	·	80.0	<u> </u>
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.73	24.95	3.23	80.0	±9.6 %
		Y	57.38	103.50	24.59		80.0	
		Z	100.00	109.93	25.28	·	80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.62	23.47	3.23	80.0	± 9.6 %
		Y	19.30	89.18	20.39		80.0	
		Z	100.00	106.51	23.65		80.0	· · · · · · · · · · · · · · · · · · ·
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.71	31.96	3.23	80.0	± 9.6 %
		Y	100.00	120.96	31.19		80.0	
		Z	100.00	126.19	32.89		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.89	25.03	3.23	80.0	± 9.6 %
		Y	68.69	105.73	25.14		80.0	
		Z	100.00	110.12	25.37	_	80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.63	23.47	3.23	80.0	± 9.6 %
_		Y	19.75	89.45	20.46		80.0	
		Z	100.00	106.53	23.66		80.0	
10470- * AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.74	31.96	3.23	80.0	±9.6 %
		Y	100.00	120.98	31.20		80.0	
_		Ζ	100.00	126.22	32.89		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.84	25.00	3.23	80.0	± 9.6 %
_		Y	69.00	105.75	25.13		80.0	
		Z	100.00	110.07	25.35		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.58	23.44	3.23	80.0	± 9.6 %
		Y	19.79	89.46	20.45		80.0	
40.475		Ζ	100.00	106.47	23.62		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.71	31.95	3.23	80.0	±9.6 %
	+	Y	100.00	120.96	31.18		80.0	
40474		Z	100.00	126.20	32.88		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.85	25.00	3.23	80.0	± 9.6 %
		Y	67.79	105.55	25.09		80.0	
1017-		Z	100.00	110.08	25.35		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	х	100.00	105.59	23.45	3.23	80.0	±9.6 %
		Y	19.52	89.31	20.41		80.0	
		Z		00.01	20.41	1	י טטי	

September 18, 2017

.

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.68	24.92	3.23	80.0	± 9.6 %
		Y	60.00	104.00	24.69		80.0	<u> </u>
		Z	100.00	109.90	25.26		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	105.53	23.42	3.23	80.0	± 9.6 %
		Y	19.24	89.12	20.35		80.0	
		<u>Z</u>	100.00	106.43	23.60		80.0	
10479- 	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	94.50	124.14	33.84	3.23	80.0	± 9.6 %
		<u>Y</u>	12.50	90.83	25.02		80.0	
40400		Z	100.00	124.95	33.67		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	95.67	115.16	29.54	3.23	80.0	± 9.6 %
·	<u> </u>	Y	12.83	86.63	22.28		80.0	
40404		Z	100.00	114.83	28.84		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		58.64	107.02	27.16	3.23	80.0	±9.6 %
		Y	11.35	84.25	21.22		80.0	
40400		Z	80.09	110.11	27.23		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	12.89	91.14	23.86	2.23	80.0	± 9.6 %
		Y	6.25	79.51	20.15		80.0	
10/00		Z	8.39	84.42	21.05		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	18.92	92.85	24.00	2.23	80.0	± 9.6 %
		Y	8.58	80.90	20.47		80.0	
40404		Z	13.62	87.31	21.48		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	15.36	89.71	23.07	2.23	80.0	± 9.6 %
		Y	7.99	79.65	20.04		80.0	
		<u>Z</u>	10.91	84.16	20.49		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	10.83	89.50	24.25	2.23	80.0	± 9.6 %
		Υ	6.29	79.77	20.91		80.0	
		Z	8.35	85.48	22.54		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.33	78.08	19.97	2.23	80.0	± 9.6 %
		Y	5.11	73.82	18.38		80.0	
		Z	5.40	75.74	18.50		80.0	
10487- AAC	"LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.09	77.15	19.61	2.23	80.0	± 9.6 %
		Y	5.06	73.33	18.18		80.0	
		<u>z</u>	5.20	74.88	<u>1</u> 8.15		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.97	83.54	22.89	2.23	80.0	±9.6 %
		Y_	6.02	77.67	20.60		80.0	
10.22		Z	6.66	81.06	21.92		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.54	75.17	19.93	2.23	80.0	± 9.6 %
		Y	5.05	72.55	18.77		80.0	
10.000		Z	5.10	74.15	_ 19.29		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.52	74.58	19.72	2.23	80.0	± 9.6 %
		Y	5.10	72.20	18.66		80.0	
40.000		Z	5.11	73.70	19.12		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.68	78.67	21.27	2.23	80.0	± 9.6 %
		Y	5.75	75.05	19.71		80.0	
		Z	5.90	77.08	20.64		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.47	73.05	19.35	2.23	80.0	± 9.6 %
		Y	5.22	71.31	18.50		80.0	1
		Z	5.12	72.35	18.92	·	80.0	<u>├</u> · .

; ; ; ; ; ;

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	5.48	72.72	19.22	2.23	80.0	± 9.6 %
		Y	5.27	71.08	18.43		80.0	1
10.10		Z	5.15	72.07	18.82		80.0	<u> </u>
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.90	81.45	22.09	2.23	80.0	± 9.6 %
		Y	6.41	76.92	20.25		80.0	
		Z	6.69	79.16	21.27		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.61	73.73	19.62	2.23	80.0	± 9.6 %
		Y	5.32	71.86	18.72		80.0	
10100		Z	5.21	72.81	19.16		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.57	73.09	19.41	2.23	80.0	± 9.6 %
	<u> </u>	Y -	5.35	71.43	18.59		80.0	
40.07		Z	5.21	72.31	18.99		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	10.14	86.59	21.54	2.23	80.0	± 9.6 %
		Y	5.12	76.51	18.39		80.0	
10100		Z	5.35	77.20	17.46		80.0	
10498- AAA 	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.29	72.00	15.43	2.23	80.0	± 9.6 %
		Y	3.72	69.52	14.77		80.0	
		Ζ	2.43	65.17	11.54		80.0	·
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	3.97	70.70	14.77	2.23	80.0	± 9.6 %
		Y	3.61	68.83	14.36		80.0	
		Z	2.26	64.14	10.91		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.79	85.79	23.33	2.23	80.0	± 9.6 %
		Y	5.95	78.30	20.59		80.0	
		Z	7.25	82.97	22.08		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.90	76.65	19.85	2.23	80.0	± 9.6 %
		Y	5.06	73.18	18.47		80.0	† ————
10500		Z	5.28	75.13	18.80		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.87	76.18	19.62	2.23	80.0	±9.6 %
25		Y	5.09	72.91	18.33		80.0	
		Z	5.26	74.71	18.58		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.83	83.24	22.77	2.23	80.0	± 9.6 %
		Υ	5.94	77.45	20.51		80.0	
10504		Z	6.55	80.79	21.81		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	5.51	75.05	19.87	2.23	80.0	± 9.6 %
		Y	5.02	72.46	18.72		80.0	
10505-		Z	5.07	74.04	19.23		80.0	
AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	5.49	74.47	19.66	2.23	80.0	± 9.6 %
	64-QAM, UL Subframe=2,3,4,7,8,9)	$\left \begin{array}{c} \\ \\ \\ \end{array} \right $						
		Y	5.07	72.10	18.60		80.0	
		Z	5.08	73.60	19.06		80.0 80.0	
10506-		Z X	5.08 7.81	7 <u>3.60</u> 81.23	19.06 22.00	2.23		± 9.6 %
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y	5.08 7.81 6.35	73.60 81.23 76.76	19.06 22.00 20.18	2.23	80.0	± 9.6 %
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X Y Z	5.08 7.81 6.35 6.62	73.60 81.23 76.76 78.99	19.06 22.00 20.18 21.19		80.0 80.0	± 9.6 %
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10	Z X Y	5.08 7.81 6.35	73.60 81.23 76.76	19.06 22.00 20.18	2.23	80.0 80.0 80.0	± 9.6 %
10506- AAC 10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	Z X Y Z	5.08 7.81 6.35 6.62	73.60 81.23 76.76 78.99	19.06 22.00 20.18 21.19		80.0 80.0 80.0 80.0 80.0	

、

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.55	73.01	19.36	2.23	80.0	±9.6 %
		Y	5.33	71.35	18.55		80.0	
		Z	5.19	72.24	18.95		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.03	77.40	20.60	2.23	80.0	± 9.6 %
		Y	6.25	74.54	19.35		80.0	
		Z	6.27	75.89	20.05		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.86	72.49	19.18	2.23	80.0	±9.6 %
		Y	5.70	71.14	18.49		80.0	-
		Z	5.51	71.73	18.83		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.83	72.01	19.03	2.23	80.0	± 9.6 %
		Y	5.71	70.79	18.40		80.0	
		Z	5.52	71.35	18.71		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.18	80.50	21.58	2.23	80.0	± 9.6 %
		Y_	6.82	76.59	19.98		80.0	
		Z	6.97	78.23	20.79		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.86	73.15	19.44	2.23	80.0	± 9.6 %
		Y	5.65	71.64	18.67		80.0	
		Z	5.45	72.18	19.02		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5. 75	72.41	19.20	2.23	80.0	±9.6 %
		Y	5.60	71.07	18.51		80.0	
		Z	5.40	71.58	18.82		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.06	65.76	16.90	0.00	150.0	±9.6 %
		Y	1.00	63.51	14.99		150.0	
40540		Z	1.02	64.32	15.55		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	5.87	117.81	35.86	0.00	150.0	± 9.6 %
		Y	0.66	71.85	18.17		150.0	
10517-		Z	0.94	79.02	21.78		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	1.03	70.61	19.18	0.00	150.0	± 9.6 %
	·	Y	0.86	65.67	15.75	-	150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	0.90 4.67	67.08 67.45	16.71 16.69	0.00	150.0 150.0	± 9.6 %
		Y	4.67	66.94	16.33		150.0	
		Ż	4.52	67.23	16.44	<u> </u>	150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.87	67.70	16.81	0.00	150.0	± 9.6 %
		Ý	4.88	67.22	16.46		150.0	
		Z	4.69	67.43	16.54		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.72	67.70	16.76	0.00	150.0	± 9.6 %
		Y	4.73	67.19	16.39		150.0	
40561		Z	4.54	67.39	16.47		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.66	67.72	16.76	0.00	150.0	± 9.6 %
		Y	4.66	67.20	16.38		150.0	
40500		Z	4.48	67.38	16.46		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.71	67.76	16.82	0.00	150.0	± 9.6 %
		Y	4.71	67.20	16.42		150.0	
		Z	4.54	67.51	16.56		150.0	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.59	67.65	16.68	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)					1		0.0 %
		Y	4.58	67.09	16.28		150.0	
		Z	4.43	67.41	16.42		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.66	67.69	16.79	0.00	150.0	± 9.6 %
		Y	4.66	67.15	16.40		150.0	<u> </u>
		Z	4.48	67.43	16.53		150.0	-
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	x	4.63	66.73	16.38	0.00	150.0	± 9.6 %
		Y	4.62	66.18	15.99		150.0	<u> </u>
		Z	4.49	66.49	16.12		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.82	67.13	16.53	0.00	150.0	± 9.6 %
		Y	4.82	66.58	16.14		150.0	
10527-		Z	4.64	66.83	16.26		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.74	67.11	16.49	0.00	150.0	± 9.6 %
		Y	4.73	66.55	16.09		150.0	
40500		Z	4.57	66.80	16.20		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 %
		Y	4.75	66.57	16.12		150.0	<u> </u>
40500		Z	4.58	66.81	16.23		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.76	67.13	16.52	0.00	150.0	± 9.6 %
		Y	4.75	66.57	16.12		150.0	
		Z	4.58	66.81	16.23		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.77	67.27	16.55	0.00	150.0	± 9.6 %
		Y	4.76	66.71	16.15		150.0	
		Z	4.56	66.89	16.24		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.62	67.15	16.50	0.00	150.0	± 9.6 %
		Y	4.61	66.57	16.09		150.0	
		Z	4.43	66.75	16.17		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.77	67.17	16.50	0.00	150.0	±9.6 %
		Y	4.76	66.59	16.10		150.0	
	3	Z	4.59	66.88	16.23		150.0	
10534- * AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.27	67.15	16.50	0.00	150.0	±9.6 %
		Y	5.27	66.72	16.17		150.0	
		Z	5.12	66.84	16.26		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.34	67.31	16.57	0.00	150.0	±9.6 %
		Y	5.34	66.86	16.23		150.0	
40500		Z	5.19	67.03	16.35		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	67.31	16.55	0.00	150.0	± 9.6 %
		Y	5.21	66.84	16.21		150.0	
10507		Z	5.06	66.99	16.32		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.27	67.26	16.52	0.00	150.0	± 9.6 %
	<u>+</u>	Y	5.28	66.82	16.20		150.0	
10520		Z	5.12	66.94	16.29		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.37	67.28	16.57	0.00	150.0	± 9.6 %
		Y	5.39	66.89	16.27		150.0	
10540		Z	5.20	66.94	16.33		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.29	67.28	16.59	0.00	150.0	± 9.6 %
		Y	5.29	66.84	16.26		150.0	
		Z	5.13	66.94	16.35			

×

λ.

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.26	67.15	16.52	0.00	150.0	± 9.6 %
		Y	5.27	66.73	16.20		150.0	
· _		Z						
10542-	IEEE 802.11ac WiFi (40MHz, MCS8,		5.11	66.82	16.27		150.0	
AAA	99pc duty cycle)	X	5.42	67.19	16.55	0.00	150.0	± 9.6 %
		Y	5.42	66.79	16.25		150.0	
		Z	5.26	66.90	16.33		150.0	
10543- 	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.49	67.21	16.57	0.00	150.0	±9.6 %
		Y	5.51	66.80	16.27		150.0	
		Z	5.32	66.91	16.36		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.57	67.22	16.46	0.00	150.0	±9.6 %
		Y	5.56	66.82	16.16		150.0	
		Z	5.45	66.92	16.24		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.77	67.65	16.61	0.00	150.0	± 9.6 %
		Y	5.78	67.25	16.32		150.0	· · _
		Z	5.64	67.38	16.42	1	150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.65	67.48	16.55	0.00	150.0	± 9.6 %
		Y	5.65	67.10	16.26	1	150.0	
		Ż	5.50	67.09	16.30	<u> </u>	150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	×	5.73	67.53	16.56	0.00	150.0	± 9.6 %
		Y	5.74	67.18	16.29		150.0	
		Z	5.57	67.16	16.32		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.02	68.59	17.06	0.00	150.0	± 9.6 %
		Y	6.08	68.34	16.83		150.0	
		z	5.80	68.04	16.74	·	150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.67	67.46	16.54	0.00	150.0	± 9.6 %
		Y	5.67	67.06	16.25		150.0	
		Z	5.54	67.19	16.25		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.68	67.19	16.53	0.00	150.0 150.0	± 9.6 %
/////		Y	5.69	07.40	40.05		450.0	
				67.13	16.25		150.0	
10552-		Z	5.53	67.15	16.30		150.0	
AAA	HEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.59	67.30	16.44	0.00	150.0	± 9.6 %
		Y	5.59	66.90	16.14		150.0	
10550		Z	5.46	67.00	16.23		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.68	67.34	16.48	0.00	150.0	± 9.6 %
		Y	5.68	66.95	16.20		150.0	
		Z	5.53	67.00	16.26		150.0	
10554- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.97	67.57	16.52	0.00	150.0	±9.6 %
		Y	5.97	67.21	16.26		150.0	
		Z	<u>5.</u> 86	67.27	_16.32		150.0	
10555- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.11	67.88	16.66	0.00	150.0	± 9.6 %
		Y	6.11	67.54	16.39		150.0	
		Z	5.98	67.57	16.45		150.0	
10556- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.93	16.67	0.00	150.0	±9.6 %
		Y	6.13	67.56	16.40		150.0	
		Z	6.01	67.63	16.48		150.0	
10557- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.10	67.85	16.65	0.00	150.0	±9.6 %
		Y	6.11	67.51	16.40	- ·	150.0	
		Z	5.97	67.50	16.43		150.0	
	· · · · · · · · · · · · · · · · · · ·		0.01	1 01.00	1.10.40	1	100.0	

.

September 18, 2017

``

	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	×	6.16	68.03	16.76	0.00	150.0	± 9.6 %
		Υ	6.17	67.70	16.50		150.0	┾───
		z	6.01				150.0	
10560-	IEEE 802.11ac WiFi (160MHz, MCS6,			67.66	16.53		150.0	L
AAB	99pc duty cycle)	X	6.15	67.86	16.71	0.00	150.0	± 9.6 %
		Y	6.16	67.52	16.45		150.0	
		Z	6.00	67.50	16.49	Î	150.0	
10561- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.06	67.83	16.73	0.00	150.0	± 9.6 %
		Y	6.07	67.48	16.47		150.0	
		Z	5.94	67.50	16.52		150.0	<u> </u>
10562- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.21	68.28	16.96	0.00	150.0	± 9.6 %
		Y	6.23	67.97	16.72		150.0	
		Z	6.03	67.79	16.67		150.0	<u> </u>
10563- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.55	68.85	17.19	0.00	150.0	± 9.6 %
		Y	6.59	68.58	16.96		150.0	<u> </u>
		Ż	6.12	67.71	16.59		150.0	<u> </u>
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	×	4.99	67.50	16.82	0.46	150.0	± 9.6 %
		Y	5.01	67.06	16.50		150.0	<u> </u>
		Ż	4.85	67.32	16.61		150.0	<u> </u>
10565-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	5.24	67.95	17.13	0.40		
AAA	OFDM, 12 Mbps, 99pc duty cycle)	Ŷ	5.24	67.54	16.83	0.46	150.0	± 9.6 %
							150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	Z X	5.06 5.07	67.72 67.84	16.90 16.98	0.46	<u>150.0</u> 150.0	± 9.6 %
		Y	5.10	67.41	16.66		150 0	<u> </u>
		z z	4.90				150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	$\frac{z}{x}$	<u>4.90</u> 5.11	67.58 68.24	16.73 17.33	0.46	150.0 150.0	± 9.6 %
		ŤΥ	5.13	67.80	47.04		450 0	
	··	† <mark>'</mark>	4.93		17.01		150.0	
10568-	IEEE 802.11g WiFi 2.4 GHz (DSSS-			67.94	17.07		150.0	
<u>AAA</u>	OFDM, 36 Mbps, 99pc duty cycle)	X	4.99	67.61	16.75	0.46	150.0	±9.6 %
		Y	5.01	67.15	16.42		150.0	
		Ζ	4.83	67.42	16.55		150.0	
10569- ** AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.06	68.33	17.39	0.46	150.0	± 9.6 %
		Y	5.07	67.85	17.05		150.0	
		Z	4.91	68.11	17.17		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.09	68.14	17.31	0.46	150.0	± 9.6 %
		Y	5.11	67.68	16.98	-	150.0	
		Z	4.92	67.93	17.09		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.50	68.95	18.38	0.46	130.0	±9.6 %
		Y	1.40	66.38	16.51		130.0	
		Z	1.40	67.23	17.09		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.55	69.98	18.93	0.46	130.0	± 9.6 %
		Y	1.43	67.06	16.91		130.0	
		Z	1.44	67.99	17.53		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	153.35	41.94	0.46	130.0	± 9.6 %
		Y	5.15	96.81	26.53		130.0	
		Z	50.11	136.49	37.17		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.59	83.81	24,92	0.46	130.0	± 9.6 %
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X Y	1.75	74.27	24.92	0.40	130.0	± 9.6 %

~

`

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.81	67.37	16.92	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)							
		Y	4.84	66.96	16.62		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	ZX	4.68	67.23	16.73		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)		4.84	67.54	16.99	0.46	130.0	±9.6 %
		Y Z	4.86	67.12	16.68		130.0	
10577-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	<u>4.71</u> 5.05	67.40	16.79	0.40	130.0	
AAA	OFDM, 12 Mbps, 90pc duty cycle)	Y Y	5.09	67.83	17.14	0.46	130.0	± 9.6 %
		Z	4.89	67.44 67.64	16.86 16.94		130.0 130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.96	68.04	17.27	0.46	130.0	±9.6 %
		Y	4.99	67.62	16.97		130.0	
		Z	4.79	67.80	17.04		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	±9.6 %
	<u> </u>	Y	4.76	66.96	16.31		130.0	
40500		Z	4.57	67.14	16.40		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	± 9.6 %
		Y	4.80	66.94	16.31		130.0	
10581-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.61	67.21	16.43		130.0	
AAA	OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 %
	<u> </u>	Y	4.89	67.70	16.92		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	Z X	4.70 4.67	67.90 67.12	17. <u>02</u> 16.41	0.46	130.0 130.0	±9.6 %
		Y	4.71	66.71	16.10		130.0	
		Z	4.51	66.92	16.20		130.0	
10583- AAA_	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.81	67.37	16.92	0.46	130.0	± 9.6 %
		Y	4.84	66.96	16.62		130.0	
		Z	4.68	67.23	16.73		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.84	67.54	16.99	0.46	130.0	±9.6 %
		Y	4.86	67.12	16.68		130.0	
		Z	4.71	67.40	16.79		130.0	
10585- AAA	HEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.05	67.83	17.14	0.46	130.0	± 9.6 %
		Y	5.09	67.44	16.86		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.89 4.96	67.64 68.04	16.94 17.27	0.46	130.0 130.0	± 9.6 %
		Y	4.99	67.62	16.97		130.0	
		z	4.79	67.80	17.04		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	67.38	16.62	0.46	130.0	± 9.6 %
		Y	4.76	66.96	16.31		130.0	
		Z	4.57	67.14	16.40		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	67.37	16.62	0.46	130.0	± 9.6 %
		Y	4.80	66.94	16.31		130.0	
10589-		Z	4.61	67.21	16.43	0.10	130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	68.14	17.25	0.46	130.0	± 9.6 %
		Y Z	<u>4.89</u> 4.70	67.70	16.92		130.0	·
		14	4.70	67.90	17.02		130.0	
10590-	IFFE 802 11a/b W/IE) 5 GHz (OEDM 54				16 / 4	0 40	420.0	+000
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X Y	4.67	67.12 66.71	16.41 16.10	0.46	130.0 130.0	±9.6 %

,

September 18, 2017

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.95	67.39	16.99	0.46	130.0	± 9.6 %
		Y	4.98	67.01	16.71		130.0	<u> </u>
		Z .	4.83	67.26	16.81		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.12	67.74	17.12	0.46	130.0	± 9.6 %
		Y	5.15	67.35	16.84		130.0	<u> </u>
		Z	4.97	67.58	16.94		130.0	<u> </u>
1059 3- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.04	67.68	17.02	0.46	130.0	± 9.6 %
		Y	5.08	67.30	16.74	·	130.0	<u> </u>
		Z	4.89	67.49	16.82		130.0	<u> </u>
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.10	67.84	17.17	0.46	130.0	± 9.6 %
		Y	5.14	67.45	16.88		130.0	
		Z	4.94	67.65	16.97		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.07	67.81	17.07	0.46	130.0	± 9.6 %
		Ý	5.11	67.42	16.78		130.0	
		Z	4.91	67.63	16.88		130.0	<u> </u>
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.01	67.82	17.09	0.46	130.0	± 9.6 %
		Y	5.05	67.42	16.79		130.0	<u> </u>
		Z	4.85	67.64	16.90		130.0	t
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.96	67.75	16.98	0.46	130.0	± 9.6 %
		Y	5.00	67.35	16.69		130.0	<u> </u>
		Z	4.80	67.53	16.77		130.0	<u> </u>
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	Х	4.95	68.01	17.26	0.46	130.0	± 9.6 %
		Y	4.98	67.61	16.96		130.0	
		Z	4.78	67.73	17.01		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.60	67.86	17.12	0.46	130.0	± 9.6 %
		Y	5.66	67.61	16.91		130.0	
		_ Z	5.48	67.70	16.99		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.78	68.39	17.36	0.46	130.0	± 9.6 %
		Y	5.85	68.19	17.17		130.0	
		Z	5.62	68.16	17.20		130.0	·
10601- 🥍 AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.65	68.09	17.22	0.46	130.0	± 9.6 %
		Y	5.71	67.83	17.01		130.0	
		Z	5.51	67.89	17.08		130.0	<u> </u>
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.73	68.07	17.13	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.79	67.82	16.93		130.0	
10602		<u>Z</u>	5.63	68.04	17.07		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.82	68.41	17.43	0.46	130.0	±9.6 %
	·	Y	5.87	68.11	17.19		130.0	
10604-		<u>Z</u>	5.69	68.27	17.32		130.0	
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.61	67.82	17.13	0.46	130.0	±9.6 %
		Y	5.66	67.56	16.91		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	Z X	<u>5.56</u> 5.73	<u>67.91</u> 68.17	17.12 17.30	0.46	130.0 130.0	± 9.6 %
		Y	5.77	67 07	17.07		400 -	
			5.62	67.87	17.07		130.0	
10606-	IEEE 802.11n (HT Mixed, 40MHz,	- <u> 2</u> X		68.08	17.21		130.0	
AAA	MCS7, 90pc duty cycle)	Y	5.50	67.62	16.90	0.46	130.0	±9.6 %
		- <u>Y</u>	5.53	67.31	16.65	<u> </u>	130.0	
			5.35	67.34	16.70		130.0	

,

`

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.80	66.75	16.64	0.46	130.0	± 9.6 %
		Y	4.81	66.30	16.32		130.0	<u> </u>
		Z	4.67	66.60	16.45		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.00	67.18	16.81	0.46	130.0	± 9.6 %
		Y	5.02	66.72	16.48		130.0	
		Z	4.84	66.98	16.61		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.89	67.06	16.67	0.46	130.0	± 9.6 %
		Y	4.91	66.60	16.34		130.0	
(2242		Z	4.73	66.84	16.45		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.94	67.21	16.82	0.46	130.0	± 9.6 %
		- Y	4.96	66.76	16.50		130.0	
10611-		Z	4.78	66.99	16.61		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.86	67.03	16.68	0.46	130.0	± 9.6 %
		Y	4.89	66.59	16.36		130.0	
10010		Z	4.70	66.81	16.46		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.88	67.21	16.74	0.46	130.0	±9.6 %
		- Y	4.90	66.74	16.40		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.71	66.99	16.53	0.10	130.0	
AAA	90pc duty cycle)	_ X	4.89	67.11	16.63	0.46	130.0	±9.6 %
		Y	4.91	66.65	16.30		130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7,	Z X	4.71	66.83	16.39	0.40	130.0	
AAA	90pc duty cycle)		4.83	67.31	16.87	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.85	66.84	16.53		130.0	
10615-	IEEE 802.11ac WiFi (20MHz, MCS8,	Z	4.66	67.02	16.61		130.0	
AAA	90pc duty cycle)	X	4.86	66.85	16.46	0.46	130.0	± 9.6 %
		Ý	4.89	66.40	16.13		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0,	Z X	<u>4.70</u> 5.44	66.67 67.18	16.26 16.77	0.46	130.0 130.0	± 9.6 %
AAA	90pc duty cycle)		- 4 7					
		Y	5.47	66.84	16.51		130.0	
10617-	JEEE 802.11ac WiFi (40MHz, MCS1	Z	5.30	66.94	16.59		130.0	
	90pc duty cycle)	X	5.50	67.33	16.81	0.46	130.0	± 9.6 %
		Y	5.52	66.94	16.53		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.38 5.40	67.17 67.39	16.68 16.87	0.46	130.0 130.0	± 9.6 %
		Y	5.42	67.02	16.59		130.0	
		Z	5.27	67.18	16.70		130.0	· ·
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.42	67.21	16.71	0.46	130.0	± 9.6 %
		Y	5.44	66.85	16.44		130.0	<u> </u>
		Z	5.28	66.96	16.53		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.51	67.25	16.78	0.46	130.0	±9.6 %
		Y	5.56	66.94	16.53		130.0	
		Z	5.36	66.98	16.59		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	x	5.50	67.33	16.93	0.46	130.0	±9.6%
		Y	5.53	67.00	16.68		130.0	
		Z	5.36	67.10	16.76		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.51	67.50	17.01	0.46	130.0	±9.6 %
		Y	5.53	67.13	16.73		130.0	
		Z	5.38	67.30	16.85		130.0	

J.

September 18, 2017

10623- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.39	67.03	16.66	0.46	130.0	± 9.6 %
		Y -	5.41	66.69	16.40	<u> </u>	130.0	†
		Z	5.25	66.80	16.48	<u> </u>	130.0	<u> </u>
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	x	5.58	67.21	16.80	0.46	130.0	± 9.6 %
		Y	5.61	66.88	16.56		130.0	
		Z	5.44	66.99	16.64		130.0	+
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	x	5.99	68.31	17.39	0.46	130.0	± 9.6 %
		Y	6.04	68.02	17.17		130.0	<u>+</u>
		Z	5.71	67.69	17.04		130.0	<u> </u>
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.71	67.19	16.69	0.46	130.0	± 9.6 %
		Y	5.72	66.86	16.44		130.0	
		Z	5.61	66.97	16.54		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	×	5.96	67.77	16.93	0.46	130.0	± 9.6 %
		Y	5.99	67.46	16.69		130.0	
400000		Z	5.86	67.59	16.81		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.76	67.34	16.66	0.46	130.0	± 9.6 %
		Y	5.79	67.03	16.42		130.0	
40000		Z	5.63	67.03	16.47		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	×	5.85	67.42	16.69	0.46	130.0	± 9.6 %
		Y	5.87	67.09	16.44		130.0	
40000		Z	5.71	67.12	16.51		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	×	6.37	69.15	17.55	0.46	130.0	±9.6 %
		Y	<u>6.4</u> 8	69.04	17.41		130.0	
		Z	6.10	68.51	17.21		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.23	68.84	17.58	0.46	130.0	± 9.6 %
		Y	6.30	68.64	17.40		130.0	
40000		Z	6.00	68.26	17.26		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.93	67.81	17.09	0.46	130.0	± 9.6 %
		Y	5.96	67.50	16.85		130.0	
10000		Z	5.82	67.64	16.97		130.0	
10633- * AAA	iEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.83	67.50	16.76	0.46	130.0	± 9.6 %
		Y	5.88	67.25	16.56		130.0	
10004		Z	5.69	67.21	16.59		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.81	67.52	16.84	0.46	130.0	± 9.6 %
		Y	5.85	67.23	16.61		130.0	
1000-		<u>Z</u>	5.67	67.21	16.64		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.70	66.87	16.25	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.74	66.58	16.02		130.0	
10000		Z	5.55	66.58	16.07		130.0	
10636- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.12	67.55	16.76	0.46	130.0	± 9.6 %
		Y	6.14	67.26	16.54		130.0	
10607		Z	6.03	67.32	16.61		130.0	
10637- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.28	67.94	16.93	0.46	130.0	±9.6 %
		Y	6.31	67.65	16.72		130.0	
10000		Z	6.19	67.72	16.79		130.0	
10638- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	x	6.28	67.91	16.90	0.46	130.0	± 9.6 %
		Y	6.31	67.62	16.68		400 0	
		Z	6.18	02	10.06 1		130.0	

i i i

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	6.27	67.88	16.93	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)					0.10		= 0.0 /0
		Υ	6.30	67.62	16.73		130.0	
		Z	6.15	67.59	16.75		130.0	
10640- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.29	67.93	16.90	0.46	130.0	± 9.6 %
		Y	6.33	67.70	16.71		130.0	
		Z	6.15	67.62	16.71		130.0	
10641- AAB	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.30	67.74	16.81	0.46	130.0	±9.6 %
		Y	6.32	67.44	16.59		130.0	
		Z	6.22	67.59	16.72		130.0	
10642- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty_cycle)	X	6.36	68.03	17.13	0.46	130.0	± 9.6 %
		Y	6.39	67.76	16.92	-	130.0	
		Z	6.23	67.75	16.95		130.0	
10643- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.19	67.72	16.88	0.46	130.0	± 9.6 %
		Y	6.22	67.45	16.67		130.0	
		Z	6.09	67.50	16.74		130.0	
10644- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.39	68.34	17.21	0.46	130.0	± 9.6 %
		Y	6.45	68.14	17.04		130.0	
		Z	6.20	67.86	16.93		130.0	
10645- AAB	IEEE 802.11ac WIFi (160MHz, MCS9, 90pc duty cycle)	X	6.86	69.27	17.61	0.46	130.0	± 9.6 %
		Y	6.87	68.89	17.35		130.0	
		Z	6.34	<u>67.9</u> 3	16.93		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	58.91	128.47	41.72	9.30	60.0	± 9.6 %
	ч	Y	22.23	103.66	34.19		60.0	
		Z	97.77	144.05	46.65		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	62.96	130.94	42.54	9.30	60.0	± 9.6 %
		Y	22.84	105.02	34.74		60.0	
		Z	100.00	145.78	47.28		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	1.21	71.90	15.83	0.00	150.0	± 9.6 %
		Y	0.81	64.89	12.16		150.0	
		Z	0.74	65.22	11.47		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.72	70.40	18.28	2.23	80.0	± 9.6 %
		Y	4.59	69.04	17.59		80.0	
		<u>Z</u>	4.50	69.96	17.82		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	5.05	69.01	18.05	2.23	80.0	± 9.6 %
		Y	5.03	68.18	17.58		80.0	
		Z	4.88	68.67	17.76		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.97	68.58	18.01	2.23	80.0	± 9.6 %
		Y	4.96	67.84	17.57		80.0	
		Z	4.83	68.24	17.75		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	5.02	68.56	18.04	2.23	80.0	± 9.6 %
		Y	5.02	67.86	17.60		80.0	
		Z	4,89	68.17	17.77		80.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3319_Mar18

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3319
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	March 13, 2018
	uments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	ducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-1-10
			e ge
Approved by:	Katja Pokovic	Technical Manager	alite
			10000
			Issued: March 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, v.z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide). NORMx, v,z are only intermediate values, i.e., the uncertainties of NORMx, v,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v,z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe ES3DV3

SN:3319

Manufactured: Calibrated: January 10, 2012 March 13, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.08	1.05	1.12	± 10.1 %
DCP (mV) ^B	104.0	103.0	104.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	197.9	±3.8 %
		Y	0.0	0.0	1.0		198.2	
		Z	0.0	0.0	1.0		200.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V ^{~1}	ms	V⁻²	V ⁻¹	
Х	60.52	430.8	35.08	29.64	3.011	5.10	0.615	0.538	1.010
Y	55.79	400.8	35.48	29.01	2.492	5.10	0.600	0.518	1.009
Z	63.98	455.3	34.93	29.72	3.442	5.10	0.679	0.571	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.70	6.70	6.70	0.80	1.21	± 12.0 %
835	41.5	0.90	6.44	6.44	6.44	0.80	1.17	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.65	1.43	± 12.0 %
1900	40.0	1.40	5.29	5.29	5.29	0.76	1.30	± 12.0 %
2300	39.5	1.67	5.06	5.06	5.06	0.72	1.29	± 12.0 %
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.30	± 12.0 %
2600	39.0	1.96	4.55	4.55	4.55	0.80	1.31	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

			-					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.32	6.32	6.32	0.65	1.26	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.80	1.14	± 12.0 %
1750	53.4	1.49	5.05	5.05	5.05	0.76	1.27	± 12.0 %
1900	53.3	1.52	4.84	4.84	4.84	0.55	1.56	± 12.0 %
2300	52.9	1.81	4.63	4.63	4.63	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.51	4.51	4.51	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (φ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

March 13, 2018

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

.

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	60.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	197.9	± 3.8 %
		Y	0.00	0.00	1.00		198.2	·····
10010-	SAR Validation (Square, 100ms, 10ms)	Z X	0.00 9.56	0.00 81.28	1.00	10.00	200.6	
CAA	Office validation (oquare, rooms, roms)		9.00	01.20	19.98	10.00	25.0	± 9.6 %
		Y	8.09	78.70	18.35		25.0	
		Z	8.70	79.52	19.57		25.0	
10011- CAB	UMTS-FDD (WCDMA)	X	1.34	72.37	18.08	0.00	150.0	± 9.6 %
		Y	0.99	67.12	14.82		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	1.12 1.37	68.87 66.58	16.00 17.00	0,41	150.0 150.0	± 9.6 %
CAB	Mbps)		1.01	00.50	17.00	0,41	100.0	1 9.0 %
·		Y	1.25	64.92	15.59		150.0	
		Z	1.32	65.58	16.11		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.18	67.48	17.64	1.46	150.0	±9.6 %
		<u>Y</u>	5.08	67.20	17.36		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	5.20 20.40	67.32	17.47	0.00	150.0	
DAC		^ Y	20.40	95.52 101.11	26.57 27.60	9.39	50.0	± 9.6 %
		Z	14.66	89.52	24.83		50.0 50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	18.37	93.61	26.02	9.57	50.0	± 9.6 %
		Y	24.41	97.95	26.72		50.0	
		Z	13.84	88.39	24.49		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	119.56	31.31	6.56	60.0	± 9.6 %
		Y	100.00	117.39	29.93		60.0	
10025-		Z	47.21	108.31	28.71	10.55	60.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X Y	21.09 17.11	108.48	41.18 38.82	12.57	50.0 50.0	± 9.6 %
		Z	18.44	102.80	38.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.59	105.09	36.25	9.56	60.0	±9.6 %
		Y	18.95	102.20	35.03		60.0	
		Z	18.49	100.22	34.38		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.49	29.83	4.80	80.0	± 9.6 %
		<u> Y</u>	100.00	115.83	28.28		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	118.30 118.84	29.89 29.14	3.55	80.0 100.0	± 9.6 %
2/10		Y	100.00	115.36	27.25		100.0	
		z	100.00	118.10	28.92		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	15.08	97.16	32.49	7.80	80.0	± 9.6 %
		Y	12.90	93.80	31.06		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.60 100.00	93.82 118.11	31.09 30.01	5.30	80.0 70.0	± 9.6 %
		Y	100.00	115.58	28.50		70.0	
		Z	100.00	118.16	30.20		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	121.01	28.44	1.88	100.0	± 9.6 %
		Y	100.00	114.03	25.11		100.0	
		Z	100.00	118.73	27.54		100.0	

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	100.00	127.26	29.88	1.17	100.0	± 9.6 %
		Y	100.00	114.89	24.38		100.0	
		Ż	100.00	122.11	27.79		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Х	21.21	99.84	27.91	5.30	70.0	± 9.6 %
		Y	19.09	97.43	26.61		70.0	
		Ζ	13.98	92.26	25.56		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	14.93	98.23	25.94	1.88	100.0	± 9.6 %
		Y	7.46	86.71	21.62		100.0	
		Ζ	7.45	87.10	22.42		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	7.98	90,77	23.49	1.17	100.0	±9.6 %
		Y	3.97	79.58	18.90		100.0	
10000		Ζ	4.48	81.52	20.27		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	26,12	103.52	29.04	5.30	70.0	± 9.6 %
		Y	24.16	101.42	27.84		70.0	
40007		Z	15.99	94.67	26.38	4.00	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	14.25	97.55	25.70	1.88	100.0	± 9.6 %
		Y	7.04	85.92	21.32		100.0	
40000		Z	7.24	86.72	22.25		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	8.53	92.07	23.99	1.17	100.0	± 9.6 %
		Y	4.13	80.37	19.27		100.0	
10000		Z	4.65	82.31	20.62		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	2.96	79.09	19.43	0.00	150.0	± 9.6 %
		Y	1.75	71.10	15.36		150.0	
		Z	2.10	73.23	16.92		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	53.77	109.05	28.70	7.78	50.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	79.10	112.95	28.86		50.0	
		Z	23.46	96.42	25.41		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	123.18	1.26	0.00	150.0	± 9.6 %
		Y	0.02	127.84	0.07		150.0	
1		Z	0.00	110.77	4.52		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	11.41	83.11	24.20	13.80	25.0	± 9.6 %
		Y	12.66	85.48	24.49		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	10.45 13.41	80.79 87.55	23.56 24.40	10.79	25.0 40.0	± 9.6 %
		Y	15.25	89.77	24.55		40.0	ł
		Ż	11.61	84.53	23.55		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	13.37	87.98	25.03	9.03	50.0	± 9.6 %
		Y	13.72	88.51	24.74		50.0	
		Z	11.72	85.02	24.05		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	11.14	91,28	29.72	6.55	100.0	± 9,6 %
		Y	9.52	87.98	28.26		100.0	
		Z	10.41	88.91	28.62		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.60	69.38	18.31	0.61	110.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.43	67.15	16.67		110.0	
		Z	1.53	67.97	17.25		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.15	34.60	1.30	110.0	± 9.6 %
		Y	100.00	128.63	32.36	1	110.0	1
		Z	100.00	130.16	33.31		110.0	1

10061- CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 11 Mbps)	X	24.68	111.64	31.63	2.04	110.0	± 9.6 %
	E-1	Y	11.26	97.49	27.04		110.0	
	· · · · · · · · · · · · · · · · · · ·	Z	10.95	96.57	26.98		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	Х	4.90	67.24	16.94	0.49	100.0	± 9.6 %
		Y	4.79	66.94	16.63		100.0	
40000		Z	4.90	67.05	16.74		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.95	67.42	17.09	0.72	100.0	± 9.6 %
		Y	4.84	67.10	16.77		100.0	
10064-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12	Z X	4.95	67.23	16.89	0.00	100.0	
CAC	Mbps)	Y	5.28	67.75	17.35	0.86	100.0	± 9.6 %
		Z	5.30	67.43 67.59	17.04 17.17		100.0 100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	5.19	67.81	17.53	1.21	100.0	± 9.6 %
CAC	Mbps)	Y	5.07	67.47	17.22	1.21	100.0	19.0 %
	·····	z	5.21	67.65	17.35		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.25	67.95	17.76	1.46	100.0	± 9.6 %
		Y	5.12	67.61	17.44	[100.0	
		Z	5.27	67.80	17.59		100.0	·
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	Х	5.57	68.10	18.21	2.04	100.0	± 9.6 %
		Υ	5.44	67.80	17.92		100.0	
		Z	5.60	67.97	18.05		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	5.73	68.50	18.60	2.55	100.0	± 9.6 %
		Y	5.58	68.13	18.28		100.0	
40000		Z	5.77	68.41	18.46		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.81	68.43	18.78	2.67	100.0	±9.6 %
		Y	5.66	68.09	18.46		100.0	
40074		Z	5.84	68.33	18.64		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.34	67.73	18.04	1.99	100.0	± 9.6 %
		Y	5.22	67.44	17.75		100.0	
10072-		Z	5.35	67.60	17.87		100.0	
CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.42	68.35	18.39	2.30	100.0	± 9.6 %
		Y	5.29	68.00	18.07		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.44 5.57	68.21 68.74	18.22 18.83	2.83	100.0	± 9.6 %
		Y	5.42	68.36	18.50		100.0	
		Z	5.60	68.62	18.66		100.0	
10074- САВ	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.61	68.84	19.10	3.30	100.0	± 9.6 %
		Y	5.46	68.44	18.75		100.0	
		Ζ	5.65	68.74	18.95		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.79	69.40	19.63	3.82	90.0	±9.6 %
		Y	5.61	68.91	19.24		90.0	
40070		Z	5.85	69.35	19.51		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.80	69.20	19.75	4.15	90.0	± 9.6 %
		Y	5.64	68.73	19.37		90.0	1
40077		Z	5.86	69.15	19.63		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.84	69.30	19.86	4.30	90.0	± 9.6 %
		Y	5.68	68.82	19.47		90.0	
		Z	5.90	69.25	19.74	L	90.0	

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.29	72.14	16.36	0.00	150.0	±9.6 %
		Y	0.81	65,51	12.24		150.0	
		Ż	0.99	67.68	14.05		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	2.36	64.73	9.48	4.77	80.0	± 9.6 %
		Y	1.97	63.15	8.18		80.0	
		Z	2.45	64.78	9.67		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	119.65	31.37	6.56	60.0	± 9.6 %
		Y	100.00	117.49	29.99		60.0	
40007		Z	45.52	107.81	28.61		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.00	69.44	16.95	0.00	150.0	± 9.6 %
•••		Y	1.78	67.32	15.42		150.0	
10098-		Z X	1.87	67.93	15.97	0.00	150.0	
CAB	UMTS-FDD (HSUPA, Subtest 2)		1.97	69.46	16,95	0.00	150.0	± 9.6 %
		Y	1.74	67.28	15.38		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z X	1.84 21.45	67.91	15.95	0.50	150.0	+0.0.0/
DAC	EDGE-FDD (TDIWA, OPSK, TN 0-4)			104.88	36.18	9.56	60.0	± 9.6 %
		Y Z	18.89	102.07	34.98		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20		18.39	100.05	34.32	0.00	60.0	
CAD	MHz, QPSK)	X	3.55	72.46	17.74	0.00	150.0	± 9.6 %
····		Y	3.14	70.29	16.48		150.0	
40404		Z	3.35	71.19	16.95		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.45	68.62	16.57	0.00	150.0	± 9.6 %
		Y	3.26	67.61	15.85		150.0	
40400		Z	3.39	68.08	16.14		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	×	3.54	68.46	16.61	0.00	150.0	± 9.6 %
		Y	3.37	67.56	15.95		150.0	
10100		Z	3.49	67.97	16.20		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.98	78.82	21.57	3.98	65.0	± 9.6 %
		Y	8.50	78.15	21.17		65.0	·
		Z	8.60	77.58	20.95		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.85	77.44	21.89	3.98	65.0	± 9.6 %
		Y	8.45	76.83	21.49		65.0	
10105		Z	8.72	76.72	21.48		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.33	76.23	21.66	3.98	65.0	±9.6 %
		Y	7.79	75.22	21.09		65.0	
40400		Z	7.71	74.28	20.69		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	3.11	71.64	17.59	0.00	150.0	± 9.6 %
		Y	2.75	69.54	16.32		150.0	
40400		Z	2.95	70.37	16.78		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.12	68.50	16.56	0.00	150.0	± 9.6 %
		Y	2.92	67.41	15.75		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Z X	3.06 2.56	67.87 70.84	16.07 17.38	0.00	150.0 150.0	± 9.6 %
		Y	2.04	60.04	15.04		450.0	
			2.24	68.61	15.94		150.0	
10111-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z	2.42 2.84	69.44	16.48	0.00	150.0	+0.0.00
CAE	16-QAM)			69.29	16.96	0.00	150.0	± 9.6 %
		Υ Υ	2.62	68.02	15.99		150.0	
		Z	2.75	68.36	16.33		150.0	

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.23	68.35	16.55	0.00	150.0	±9.6 %
		Y	3.05	67.38	15.81		150.0	
		Z	3.18	67.77	16.10		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.98	69.28	17.01	0.00	150.0	± 9.6 %
·····		Y	2.77	68.14	16.13		150.0	1
		Z	2.90	68.40	16.43		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.25	67.55	16.67	0.00	150.0	± 9.6 %
	·····	Y	5.16	67.27	16.41		150.0	
40445		Ζ	5.23	67.36	16.47		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.62	67.87	16.84	0.00	150.0	± 9.6 %
		Y	5.53	67.61	16.59		150.0	
40440		Z	5.61	67.68	16.64		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.38	67.84	16.74	0.00	150.0	± 9.6 %
		Υ	5.28	67.54	16.47		150.0	
40447		Z	5.37	67.64	16.53		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	×	5.26	67.57	16.70	0.00	150.0	± 9.6 %
		Y	5.15	67.22	16.40		150.0	L
40440		Z	5.24	67.39	16.51		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.70	68.05	16.94	0.00	150.0	± 9.6 %
		Y	5.61	67.82	16.70		150.0	
40440		Z	5.67	67.81	16.71		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.36	67.79	16.73	0.00	150.0	± 9.6 %
		Y	5.26	67.48	16.45		150.0	
10/10		Z	5.34	67.59	16.52		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.59	68.46	16.53	0.00	150.0	± 9.6 %
		Y	3.41	67.56	15.87		150.0	
		Z	3.54	67.97	16.13		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.70	68.46	16.65	0.00	150.0	± 9.6 %
		Y	3.53	67.64	16.03		150.0	
		Ζ	3.65	67.99	16.26		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.36	71.08	17.31	0.00	150.0	± 9.6 %
	······	Y	2.01	68.49	15.62		150.0	
		Z	2.20	69.37	16.30		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	2.76	70.34	17.00	0.00	150.0	± 9.6 %
		Y	2.47	68.62	15.73		150.0	
		Ζ	2.62	69.02	16.23		150.0	
10144- _CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	×	2.54	68.16	15.50	0.00	150.0	± 9.6 %
		Υ	2.28	66.60	14.27		150.0	
		Z	2.46	67.23	14.93		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	1.75	69.86	15.18	0.00	150.0	± 9.6 %
		Y	1.29	65.55	12.27		150.0	
		Ζ	1.55	67.61	14.05		150.0	
10146- _CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	4.07	76.05	17.30	0.00	150.0	± 9.6 %
		Y	2.52	69.20	13.62		150.0	
		Ζ	3.50	73.50	16.33		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	5.72	80.95	19.32	0.00	150.0	± 9.6 %
		Y	3.13	72.10	15.05		150.0	
		Z	4.43	76.91	17.88		150.0	

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.13	68.56	16.60	0.00	150.0	± 9.6 %
		Y	2.93	67.47	15.80		150.0	
		Z	3.07	67.93	16.12		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.24	68.40	16.59	0.00	150.0	± 9.6 %
		Y	3.05	67.43	15.85		150.0	
		Z	3.18	67.82	16.13		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.59	81.21	22.61	3.98	65.0	± 9.6 %
		Y	9.21	80.79	22.27		65.0	
		Z	9.05	79.62	21.87		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	8.53	77,77	21.82	3.98	65.0	± 9.6 %
		Y	8.07	77,03	21.32		65.0	
10150		Z	8.36	76.93	21.37		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.87	78.41	22.41	3.98	65.0	± 9.6 %
		Y	8.48	77.88	22.02		65.0	
1015		Z	8.68	77.54	21.94		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.63	71.34	17.67	0.00	150.0	± 9.6 %
		Y	2.29	69.04	16.21		150.0	
		Z	2.48	69.88	16.75		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.84	69.30	16.97	0.00	150.0	±9.6 %
		Y	2,62	68.03	16.00		150.0	
		Z	2.75	68.36	16.34		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.26	71.67	17.44	0.00	150.0	± 9.6 %
		Y	1.86	68.59	15.46		150.0	
		Z	2,07	69.64	16.29		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.42	69.16	15.83	0.00	150.0	± 9.6 %
		Y	2.11	67.12	14.31		150.0	
		Z	2.30	67.87	15.10		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.99	69.33	17.05	0.00	150.0	±9.6 %
		Y	2.78	68.20	16.17		150.0	
		Z	2.90	68.44	16.46		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.55	69.60	16.11	0,00	150.0	± 9.6 %
		Y	2.22	67.56	14.60		150.0	
		Z	2.41	68.28	15.37		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.02	70.16	17.19	0.00	150.0	± 9.6 %
		Y	2.77	68.66	16.17		150.0	
		Z	2.91	69.14	16.50		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.13	68.32	16.54	0.00	150.0	±9.6 %
		Y	2.95	67.34	15.78		150.0	
		Z	3.07	67.70	16.08		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.23	68.35	16.60	0.00	150.0	± 9.6 %
		Y	3.06	67.45	15.88		150.0	
		Z	3.18	67.74	16.14		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.02	71.10	20.08	3.01	150.0	± 9.6 %
		Y	3.79	70.19	19.37		150.0	
		Z	4.03	70.69	19.72		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.24	74.71	20.79	3.01	150.0	± 9.6 %
		Y	4.82	73.39	19.92		150.0	
		Z	5.25	74.14	20.39	·····	150.0	

40400		·						
10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.76	76.76	21.96	3.01	150.0	± 9.6 %
		Y	5.36	75.66	21.24		150.0	·
		Z	5.73	75.99	21.47		150.0	······.
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.69	72,72	20.82	3.01	150.0	± 9.6 %
		Y	3.33	70.78	19.63		150.0	
		Z	3.78	72.61	20.53		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	5.76	80.54	23.62	3.01	150.0	± 9.6 %
		Y	4.94	77.74	22.22		150.0	
	·	Z	5.83	79.90	23.09		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.61	75.69	20.76	3.01	150.0	± 9.6 %
		Y	3.94	72.92	19.25		150.0	
		Z	4.70	75.28	20.35		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	36.99	114.19	35.08	6.02	65.0	± 9.6 %
		Y	22.97	105.21	32.24		65.0	
		Z	26.68	106.36	32.56		65.0	·····
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	41.01	110.69	32.32	6.02	65.0	± 9.6 %
		Y	35.83	108.35	31.36		65.0	
		Z	28.00	102.66	29.85		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	30.73	104.07	29.95	6.02	65.0	±9.6 %
		Y	27.27	102.14	29.08		65.0	
		Z	22.20	97.35	27.81		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.64	72.35	20.56	3.01	150.0	± 9.6 %
		Y	3.28	70.42	19.36		150.0	
		Z	3.72	72.25	20.28		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5,77	80.56	23.63	3.01	150.0	± 9.6 %
		Y	4.95	77.76	22.23		150.0	
		Z	5.84	79.92	23.10		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.67	72.53	20.66	3.01	150.0	± 9.6 %
		Y	3.31	70.60	19.46		150.0	
		Z	3.76	72.42	20.38		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	5.68	80,23	23.47	3.01	150.0	± 9.6 %
		Y	4.88	77.46	22.08		150.0	
		Z	5.74	79.60	22.95		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	x	5.14	77.96	22.04	3.01	150.0	± 9.6 %
		Y	4.38	75.13	20.57		150.0	
		Z	5.21	77.41	21.56	1	150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	4.59	75.59	20.70	3.01	150.0	± 9.6 %
		Y	3.92	72.83	19.19		150.0	
		Z	4.68	75.18	20.29		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	3.66	72.51	20.66	3.01	150.0	± 9.6 %
		Y	3.30	70.58	19.46		150.0	
		Z	3.75	72.41	20.37		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.67	80.21	23.46	3.01	150.0	±9.6 %
		Υ	4.87	77.43	22.07		150.0	
		Z	5.73	79.57	22.94		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	Х	4.58	75.56	20.68	3.01	150.0	± 9.6 %
		Y	3.92	72.80	19,18		150.0	
		Ζ	4.67	75.15	20.27	i	150.0	

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.68	72.56	20.68	3.01	150.0	± 9.6 %
		Y	3.32	70.63	19.48		150.0	··································
	Anna fannan an anna an anna an anna an anna an an	Z	3.77	72.45	20.39		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	5.70	80.29	23.50	3.01	150.0	± 9.6 %
		Y	4.90	77.51	22.11		150.0	
		Ζ	5.76	79.65	22.97		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	4.61	75.64	20.72	3.01	150.0	±9.6 %
		Y	3.94	72.88	19.21		150.0	
		Z	4.69	75.23	20.31		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	х	3.69	72.61	20.73	3.01	150.0	± 9.6 %
		Y	3.33	70.68	19.54		150.0	
		Ζ	3.77	72.50	20.44		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	х	5.93	81.11	23.91	3.01	150.0	± 9.6 %
		Y	5.09	78.33	22.53		150.0	
		Z	5.99	80.44	23.37		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	Х	4.73	76.16	21.02	3.01	150.0	±9.6 %
		Y	4.04	73.37	19.51		150.0	
		Z	4.82	75.73	20.60		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.67	66.99	16.47	0.00	150.0	± 9.6 %
	······································	Y	4.56	66,66	16.13	****	150.0	
		Ζ	4.66	66.78	16.26		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	Х	4.87	67.36	16.58	0.00	150.0	± 9.6 %
		Y	4.75	67.00	16.25		150.0	
	······································	Ζ	4.87	67.15	16.37	1	150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.91	67.37	16.59	0.00	150.0	± 9.6 %
	•	Y	4.79	67.03	16.27		150.0	
		Ζ	4.91	67.16	16.38		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.69	67.10	16.51	0.00	150.0	± 9.6 %
		Υ	4.58	66.74	16.16		150.0	
		Z	4.69	66.88	16.30		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4,89	67.38	16.59	0.00	150.0	± 9.6 %
		Y	4.77	67.03	16.26		150.0	
		Z	4.88	67.17	16.38		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.92	67.39	16.60	0.00	150.0	±9.6 %
		Y	4.80	67.05	16.28		150.0	
		Z	4.91	67.18	16.39		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.64	67.11	16.47	0.00	150.0	±9.6 %
		Y	4.53	66.75	16.12		150.0	
		Ζ	4.64	66.90	16.26		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	×	4.88	67.37	16.59	0.00	150.0	± 9.6 %
		Y	4.76	67.01	16.26		150.0	
		Z	4,88	67.17	16.38		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-	X	4.92	67.32	16.59	0.00	150.0	± 9.6 %
	QAM)			1 00.00	40.07	1	150.0	1
		Y	4.80	66.98	16.27		100.0	
		Z	4.80 4.92	67.11	16.38		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)					0.00		± 9.6 %
10222-	IEEE 802.11n (HT Mixed, 15 Mbps,	Z	4.92	67.11	16.38	0.00	150.0	± 9.6 %

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.61	67.92	16.89	0.00	150.0	± 9.6 %
		Y	5.46	67.48	16.54		150.0	
		Z	5.61	67.78	16.72	· · · · · · · · · · · · · · · · · · ·	150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.28	67.68	16.67	0.00	150.0	± 9.6 %
		Y	5.17	67.32	16.37		150.0	
		Z	5.27	67.52	16.48		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.96	66.82	16.01	0.00	150.0	±9.6%
		Y	2.82	66.09	15.31		150.0	
		Z	2.93	66.33	15.63		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	43.59	111.94	32.75	6.02	65.0	± 9.6 %
		Y	38.77	109.92	31.88		65.0	
40007		Z	29.30	103.58	30.20		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	32.72	105.33	30.40	6.02	65.0	± 9.6 %
		Y	30.31	104.10	29.73		65.0	
40000		Ζ	23.58	98.50	28.23		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	45.04	118.57	36.38	6.02	65.0	± 9.6 %
		Y	33.63	112.96	34.54		65.0	
40000		Z	30.07	109.15	33.47		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	40.99	110.67	32.33	6.02	65.0	± 9.6 %
		Y	35.91	108.38	31.38		65.0	
		Z	28.02	102.65	29.86		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	31.17	104.37	30.06	6.02	65.0	± 9.6 %
		Y	28.46	102.90	29.31		65.0	
		Ζ	22.72	97.78	27.95		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	42.43	117.25	35.96	6.02	65.0	± 9.6 %
		Y	31.37	111.47	34.05		65.0	
		Z	28.77	108.18	33.13		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	40.99	110.68	32.33	6.02	65.0	± 9.6 %
		Y	35.90	108.38	31.38		65.0	
		Z	28.01	102.65	29.86		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	31.21	104.41	30.07	6.02	65.0	±9.6 %
		Y	28.46	102.91	29.32		65.0	1
		Z	22.74	97.80	27.96		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	39.80	115.77	35.45	6.02	65.0	±9.6 %
		Y	29.32	109.94	33.51		65.0	
		Z	27.42	107.07	32.71		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	41.16	110.77	32.35	6.02	65.0	±9.6 %
		Y	36.04	108.46	31.40		65.0	
		Z	28.08	102.71	29.87		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	31.50	104.54	30.10	6.02	65.0	± 9.6 %
		Y	28.73	103.05	29.35		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X	22.90 42.99	97.90 117.54	27.98 36.03	6.02	65.0 65.0	± 9.6 %
	QPSK)		04.07	444.00	04.44			
1.0.A.		Y	31.67	111.68	34.11		65.0	
10000		Z	29.03	108.38	33.18	0.00	65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	41.04	110.71	32.33	6.02	65.0	± 9.6 %
		Y	35.91	108.40	31.38		65.0	
		Z	28.02	102.67	29.86		65.0	

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	31.24	104.44	30.08	6.02	65.0	± 9.6 %
		Y	28.46	102.92	29.32		65.0	
		Z	22.74	97.82	27.96		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	42.83	117.47	36.01	6.02	65.0	±9.6 %
		Y	31.56	111.62	34.09		65.0	
		Z	28.94	108.32	33.17		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	13.21	88.13	28.12	6.98	65.0	± 9.6 %
		Y	12.19	86.75	27.34		65.0	
		Ζ	12.93	86.92	27.56		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	×	11.82	85.64	27.08	6.98	65.0	±9.6 %
		Y	11.88	86.18	27.05		65.0	
		Z	11.71	84.70	26.62		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.69	83.18	27.04	6.98	65.0	±9.6 %
		Y	8.48	80.58	25.71		65.0	
		Z	9.71	82.55	26.66		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	10.16	81.71	21.73	3.98	65.0	±9.6 %
		<u>Y</u>	9.31	80.28	20.70		65.0	
		Z	9.66	80.44	21.31		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	9.99	81.19	21.49	3.98	65.0	± 9.6 %
		Y	9.12	79.71	20.44		65.0	
		Z	9.56	80.04	21.12		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	10.26	84.67	22.74	3.98	65.0	± 9.6 %
		Y	9.22	82.91	21.64		65.0	
		Z	9.02	82.03	21.79		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	8.13	78.66	21.05	3.98	65.0	±9.6 %
		Y	7.56	77,60	20.25		65.0	
		Z	7.81	77.51	20.59		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	8.10	78.15	20.84	3.98	65.0	± 9.6 %
		Y	7.50	77.03	20.01		65.0	
		Z	7.84	77.14	20.44		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	11.10	86.20	23.88	3.98	65.0	± 9.6 %
*******		Y	10.38	85.15	23.14		65.0	
******		Z	9.69	83.27	22.77		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.90	80.26	22.85	3.98	65.0	± 9.6 %
		Y	8.50	79.72	22.41		65.0	
		Z	8.55	78.98	22.26		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	± 9.6 %
		Y	7.97	77.44	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.55	84.69	23.95	3.98	65.0	± 9.6 %
		Y	10.10	84.18	23.52	1	65.0	
		Z	9.56	82.30	22.95		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	8.29	77.16	21.61	3.98	65.0	± 9.6 %
		Y	7.87	76.45	21.11		65.0	
		Z	8.15	76.38	21.20		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.65	77.83	22.17	3.98	65.0	± 9.6 %
		Y	8.27	77.28	21.75	1	65.0	-
		1		77.01				

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.28	.80.86	22.71	3.98	65.0	± 9.6 %
		Y	8.89	80.40	22.35		65.0	
		Z	8.80	79.34	21.99		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	9.13	79.62	20.18	3.98	65.0	± 9.6 %
		Y	7.96	77.38	18.74		65.0	
		Z	8.84	78.74	19.97		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	8.90	78.86	19.81	3.98	65.0	± 9.6 %
		Y	7.73	76.58	18.34		65.0	
		Z	8.71	78.17	19.67		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	8.90	81.94	21.19	3.98	65.0	± 9.6 %
·····		Y	7.60	79.37	19.69		65.0	
		Z	8.10	80.01	20.54		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	8.43	79.20	21.67	3.98	65.0	± 9.6 %
		Y	7.92	78.34	21.01		65.0	
		Ζ	8.11	78.01	21.17		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	8.43	78.91	21.57	3.98	65.0	± 9.6 %
		Y	7.92	78.05	20.91		65.0	
		Z	8.14	77.80	21.11		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	10.44	84.93	23.72	3.98	65.0	±9.6 %
		Y	9.81	84.03	23.07		65.0	
		Z	9.35	82.40	22.71		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.89	80.23	22.82	3.98	65.0	± 9.6 %
		Y	8.49	79.67	22.37		65.0	
		Z	8.55	78.95	22.23		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	± 9.6 %
-		Y	7.96	77.43	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.49	84.56	23.88	3.98	65.0	±9.6 %
		Y	10.02	84.01	23.44		65.0	
		Z	9.51	82.19	22.89		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	8.52	77.77	21.82	3.98	65.0	± 9.6 %
		Y	8.07	77.03	21.32		65.0	
		Z	8.36	76.93	21.38		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.87	78.41	22.40	3.98	65.0	±9.6 %
		Y	8,48	77.88	22.01		65.0	
		Z	8.68	77.54	21.94		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.58	81.18	22.60	3.98	65.0	±9.6 %
		Y	9.19	80.75	22.26		65.0	
		Z	9.04	79.59	21.85		65.0	İ
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.91	77.09	21.88	3.98	65.0	± 9.6 %
		Y	8.54	76.56	21.51		65.0	
		Ζ	8.80	76.43	21.50		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.82	76.67	21.78	3.98	65.0	± 9.6 %
		Y	8.46	76.15	21.41		65.0	
		Z	8.73	76.06	21.42		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.97	78.33	21.62	3.98	65.0	± 9.6 %
		Y	8.64	77.97	21.34		65.0	
		1 1 1	0.01	11.01	2 6.04		00.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.72	67.23	15.95	0.00	150.0	±9.6 %
		Y	2.57	66.31	15.13		150.0	
		Z	2.65	66.56	15.46		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	x	1.89	70.77	17.26	0.00	150.0	± 9.6 %
		Y	1.58	67.67	15.25		150.0	
		Z	1.72	68.75	16.01		150.0	
10277- CAA	PHS (QPSK)	Х	6.00	70.47	14.76	9.03	50.0	± 9.6 %
		Y	5.21	68.57	13.21		50.0	
		Ζ	6.28	70.88	15.27		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	Х	9.55	80.33	21.17	9.03	50.0	± 9.6 %
		Y	8.72	78.79	19.97		50.0	
		Z	9.29	79.51	21.06		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	×	9.72	80.54	21.26	9.03	50.0	± 9.6 %
		Υ	8.86	78.97	20.05		50.0	
		Ζ	9.46	79.72	21.15		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	х	2.18	74.40	17.31	0.00	150.0	± 9.6 %
		Y	1.44	68.27	13.81		150.0	
		Ζ	1.72	70.30	15.40		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	1.24	71.68	16.15	0.00	150.0	± 9.6 %
		Y	0.80	65.30	12.12		150.0	
		Ζ	0.97	67,39	13.90		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	2.10	80.68	20.23	0.00	150.0	± 9.6 %
		Υ	0.98	68.86	14.25		150.0	
		Z	1.23	71.77	16.34		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	4.35	92.52	24.81	0.00	150.0	± 9.6 %
		Y	1.43	74.29	17.12		150.0	
		Z	1.75	77.17	19.08		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	Х	11.19	84.61	24.64	9.03	50.0	± 9.6 %
		Y	11.12	84.62	24.20		50.0	
		Z	10.33	82.52	23.91		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.13	71.75	17.66	0.00	150.0	± 9.6 %
		Y	2.77	69.64	16.38		150.0	
		Z	2.96	70.46	16.84		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	Х	2.07	71.56	16.68	0.00	150.0	± 9.6 %
		Y	1.59	67.63	14.15		150.0	
		Z	1.84	69.13	15.41		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.44	77.05	18.50	0.00	150.0	± 9.6 %
		Y	3.17	71.89	15.69		150.0	
		Z	3.89	74.52	17.46		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.98	70.18	14.87	0.00	150.0	± 9.6 %
		Y	2.33	66.80	12.64		150.0	
		Z	2.88	69.22	14.45		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.88	68.71	19.12	4.17	80.0	± 9.6 %
		Y	5.67	68.35	18.79		80.0	
		Z	5.96	68.70	19.05		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.49	69.93	20.23	4.96	80.0	± 9.6 %
		Y	6.06	68.48	19.24		80.0	1
		Z	6.58	69.96	20.17	*****	80.0	******

10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	x	6.38	70.18	20.37	4.96	80.0	±9.6%
		Y	5.90	68.52	19.27		80.0	}
		Z	6.49	70.27	20.35		80.0	<u>.</u>
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	5.94	69.20	19.41	4.17	80.0	± 9.6 %
	·····	Y	5.55	67.84	18.48		80.0	
10005		Z	6.02	69.19	19.33		80.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	8.63	79.84	25.16	6.02	50.0	±9.6 %
		Y	8.50	80.74	25.49		50.0	<u> </u>
40000		Z	9.07	80.51	25.38		50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	7.19	74.26	22.98	6.02	50.0	± 9.6 %
		Y	6.24	70.98	21.03		50.0	
40207		Z	7.44	74.65	23.11		50.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	7.43	75.32	23.26	6.02	50.0	±9.6 %
		Y	7.08	75.34	23.24		50.0	
40000		Z	7.71	75.76	23.39		50.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	Х	7.56	75.95	23.55	6.02	50.0	± 9.6 %
		Y	7.22	76.07	23.58		50.0	
40000		Z	7.85	76.40	23.68		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	7.34	74.67	23.20	6.02	50.0	± 9.6 %
	Ann	Y	6.34	71.28	21.21		50.0	
		Z	7.59	75.05	23.31		50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	7.26	74.63	23.05	6.02	50.0	± 9.6 %
		Y	6.24	71.19	21.04		50.0	
		Z	7.51	75.03	23.17		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.50	70.87	17.20	0.00	150.0	± 9.6 %
		Y	3.12	68.92	16.05		150.0	
		Z	3.32	69.72	16.47		150.0	
10313- AAA	iDEN 1:3	X	8.27	79.76	19.38	6.99	70.0	± 9.6 %
		Y	7.09	77.48	18.12		70.0	
		Z	7.27	77.42	18.52		70.0	
10314- AAA	IDEN 1:6	X	10.52	85.41	23.73	10.00	30.0	± 9.6 %
M		Y	9.80	84.47	23.05		30.0	
		Z	8.56	81.26	22.24		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.21	66.04	16.76	0.17	150.0	± 9.6 %
		Y	1.11	64.36	15.28		150.0	
40040		Z	1.16	64.99	15.81		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.20	16.69	0.17	150.0	± 9.6 %
		Y	4.67	66.87	16.36		150.0	
40047		Z	4.78	67.00	16.48		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.20	16.69	0.17	150.0	± 9.6 %
		Y	4.67	66.87	16.36		150.0	
10400		Z	4.78	67.00	16.48		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.88	67.44	16.59	0.00	150.0	± 9.6 %
		Y	4.75	67.07	16.25		150.0	ļ
10101		Z	4.88	67.23	16.38		150.0	ļ
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.52	67.51	16.67	0.00	150.0	± 9.6 %
		Y	5.43	67.26	16.42		150.0	
		Z	5.50	67.29	16.46]	150.0]

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.81	67.99	16.74	0.00	150.0	±9.6 %
· 17 100		Y	5.71	67.67	16.46		150.0	
		z	5.80	67.83	16.56		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.18	74.40	17.31	0.00	115.0	± 9.6 %
		Y	1.44	68.27	13.81		115.0	
		Z	1.72	70.30	15.40		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.18	74.40	17.31	0.00	115.0	± 9.6 %
		Y	1.44	68.27	13.81		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	Z X	1.72 100.00	70.30 125.34	15.40 32.57	0.00	115.0 100.0	±9.6 %
		Y	100.00	122.30	30.90		100.0	
	· · · · · · · · · · · · · · · · · · ·	Z	100.00	123.59	31.86		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	121.08	31.14	3.23	80.0	± 9.6 %
		Y	100.00	119.39	30.03		80.0	
		Z	100.00	119.84	30.69		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.04	64.21	15.75	0.00	150.0	± 9.6 %
		Y	0.96	62.81	14.37		150.0	
40440		Z	1.00	63.31	14.86		150.0	100%
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.68	67.03	16.52	0.00	150.0	± 9.6 %
		Y Z	4.57	66.70	16.19		150.0 150.0	
10417-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6	X	4.67	66.81	16.30 16.52	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)	Y	4.68	67.03 66.70	16.52	0.00	150.0	±9.0 %
		Z	4.57	66.81	16.19		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.66	67.18	16.53	0.00	150.0	± 9.6 %
		Y	4.55	66.84	16.19		150.0	
		Z	4.65	66.94	16.30		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.69	67.13	16.53	0.00	150.0	± 9.6 %
		Y	4.58	66.80	16.20		150.0	
		Z	4.68	66.91	16.31		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	×	4.81	67.13	16.54	0.00	150.0	± 9.6 %
		Y	4.70	66.81	16.22	ļ	150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	Z X	4.80 5.01	66,92 67.51	16.33 16.68	0.00	150.0 150.0	± 9.6 %
AAD		Y	4.89	67.16	16.35		150.0	
		Z	5.01	67.31	16.35		150.0	
10424-	IEEE 802.11n (HT Greenfield, 72.2	$\frac{2}{X}$	4.92	67.45	16.65	0.00	150.0	± 9.6 %
AAB	Mbps, 64-QAM)	Y	4.80	67.10	16.32		150.0	
		z	4.92	67.24	16.43	+	150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.50	67.77	16.79	0.00	150.0	± 9.6 %
	,	Y	5.41	67.50	16.53	1	150.0	1
		Z	5.49	67.58	16.59	1	150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.51	67.80	16.80	0.00	150.0	± 9.6 %
		Y	5.41	67.51	16.53		150.0	
		Z	5.50	67.62	16.60	T	150.0	1

								10, 2010
10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.53	67.79	16.79	0.00	150.0	± 9.6 %
		Y	5.42	67.48	16.51		150.0	1
40400		Z	5.52	67.63	16.61		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.38	70.70	18.40	0.00	150.0	± 9.6 %
·····		Y	4.25	70.46	18.05		150.0	
		Z	4.31	70.02	17.98		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.42	67.67	16.62	0.00	150.0	± 9.6 %
		Y	4.27	67.23	16.20		150.0	
40400		Z	4.41	67.37	16.37		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.70	67.52	16.63	0.00	150.0	± 9.6 %
		Y	4.57	67.13	16.26		150.0	
40.400		Z	4.70	67.28	16.40		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.94	67.50	16.67	0.00	150.0	± 9.6 %
		Y	4.82	67.14	16.34		150.0	
40404		Z	4.94	67.29	16.46		150.0	[
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.49	71.52	18.43	0.00	150.0	± 9.6 %
		Y	4.34	71.22	18.01		150.0	
		Z	4.39	70.68	17.96		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.92	31.06	3.23	80.0	± 9.6 %
		Y	100.00	119.22	29.95		80.0	
		Z	100.00	119.70	30.62		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.75	67.86	16.21	0.00	150.0	±9.6 %
		Y	3.56	67.20	15.57		150.0	ļ
		Z	3.73	67.41	15.90		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.24	67.45	16.49	0.00	150.0	± 9.6 %
		Y	4.10	67.00	16.05		150.0	
		Z	4.22	67.14	16.23		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.49	67.35	16.53	0.00	150.0	±9.6 %
		Y	4.37	66.95	16.16		150.0	
		Z	4,48	67.09	16.30		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.67	67.26	16.53	0.00	150.0	± 9.6 %
		Y	4.56	66.89	16.18		150.0	
	······································	Ζ	4.66	67.04	16.31		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.69	68.21	15.98	0.00	150.0	± 9.6 %
		Y	3.47	67,39	15.23		150.0	
		Z	3.66	67.69	15.67		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.36	68.35	16.93	0.00	150.0	± 9.6 %
·····		Y	6.27	68.07	16.69		150.0	
		Z	6.35	68.21	16.77		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	x	3.86	65.66	16.26	0.00	150.0	±9.6 %
		Y Z	3.78 3.84	65.32 65.45	15.90 16.04		150.0 150.0	
10458-	CDMA2000 (1xEV-DO, Rev. B, 2	X	4,10	70.68	17.90	0.00	and a state of the	100%
AAA	carriers)	Y	3.95			0.00	150.0	± 9.6 %
				70.36	17.40		150.0	
10459-	CDMA2000 (1xEV-DO, Rev. B, 3	Z	3.98	69.73	17.40		150.0	
AAA	carriers)	X	5.16	67.87	18.15	0.00	150.0	± 9.6 %
		Y	5.08	67.96	18.01		150.0	
		Z	5.12	67.39	17.86		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	Х	1.21	74.36	19.56	0.00	150.0	± 9.6 %
		Y	0.84	67.73	15.53		150.0	
		Z	0.96	69.69	16.87		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	100.00	124.72	32.88	3.29	80.0	± 9.6 %
		Y	100.00	122,71	31.63		80.0	
		Ζ	100.00	122.27	31.89		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.81	26.22	3.23	80.0	± 9.6 %
		Y	100.00	107.68	24.48		80.0	
		Z	100.00	109.58	25.81		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.02	24.88	3.23	80.0	± 9.6 %
		Y	17.57	87.04	18.79		80.0	
		Z	57.71	101.03	23.21	[80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	122.99	31.92	3.23	80.0	± 9.6 %
		Y	100.00	120.66	30.52		80.0	
		Z	100.00	120.59	30.96		80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	110.36	26.00	3.23	80.0	± 9.6 %
		Y	69.93	103.37	23.39		80.0	
		Z	100.00	109.17	25.60		80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	100.00	107.59	24.67	3.23	80.0	± 9.6 %
		Y	10.32	81.39	17.12		80.0	
		Z	32.56	94.43	21.51		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.18	32.01	3.23	80.0	± 9.6 %
		Y	100.00	120.88	30.62		80.0	
		Z	100.00	120.77	31.04		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.50	26.06	3.23	80.0	± 9.6 %
		Y	95.55	106.84	24.20		80.0	
		Z	100.00	109.30	25.66		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.60	24.67	3.23	80.0	± 9.6 %
		Y	10.51	81.58	17.17		80.0	
		Z	33.51	94,76	21.58		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.21	32.02	3.23	80.0	± 9.6 %
		Y	100.00	120.90	30.62		80.0	
		Z	100.00	120.79	31.05		80.0	1
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.46	26.04	3.23	80.0	± 9.6 %
		Y	94.56	106.68	24.14		80.0	
		Z	100.00	109.26	25.63		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.56	24.64	3.23	80.0	± 9.6 %
		Y	10.43	81.48	17.13		80.0	
		Z	33.64	94.78	21.58		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.19	32.00	3.23	80.0	± 9.6 %
		Y	100.00	120.87	30.61	1	80.0	
		Z	100.00	120.77	31.03		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.47	26.04	3.23	80.0	±9.6 %
		Y	92.06	106.40	24.08		80.0	
		Z	100.00	109.26	25.64		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.57	24.65	3.23	80.0	± 9.6 %
	,	Y	10.30	81.37	17.09	1	80.0	
		Ż	33.12	94.61	21.54	-	80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	110.32	25.97	3.23	80.0	± 9.6 %
		Y	73.47	103.85	23.47		80.0	
		Z	100.00	109.13	25.57		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	107.52	24.63	3.23	80.0	± 9.6 %
		Y	10.13	81.17	17.03		80.0	1
	-	Z	32.56	94.40	21.47		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	23.24	102.02	28,60	3.23	80.0	± 9.6 %
	·····	<u>Y</u>	17.72	96.96	26.53		80.0	
40400		Z	12.62	91.31	25.32		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	23.79	96.38	25.31	3.23	80.0	± 9.6 %
		Y	16.50	90.35	22,90		80.0	
		Z	13.56	87.65	22.71		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	19.64	92.74	23.93	3.23	80.0	± 9.6 %
		Y	13.10	86.39	21.35		80.0	
10100		Z	12.05	85.29	21.66		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.49	84.69	22.05	2.23	80.0	±9.6 %
		Y	5.66	78.52	19.36		80.0	
10.155		Z	6.07	79.11	20.05		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	11.70	86.22	22.45	2.23	80.0	± 9.6 %
		Y	8.73	81.47	20.24		80.0	
		Z	8.71	81.39	20.85		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	10.50	84.41	21.86	2.23	80.0	± 9.6 %
		Y	7.92	79.90	19.71		80.0	
		Z	8.18	80.26	20.46		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.12	84.44	22.68	2.23	80.0	±9.6 %
		Y	5.95	79.56	20.54		80.0	
		Z	6.24	79.61	20.83		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.60	75.72	19.25	2.23	80.0	± 9.6 %
		Y	4.71	73.16	17.81		80.0	
		Z	5.00	73.46	18.29		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.48	75.06	18.99	2.23	80.0	± 9.6 %
		Y	4.65	72.64	17.60		80.0	
		Z	4.96	73.01	18.11		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.06	80.88	21.92	2.23	80.0	± 9.6 %
		Y	5.70	77.55	20.40		80.0	
	· · · · · · · · · · · · · · · · · · ·	Z	6.08	77.77	20.57		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.31	73.88	19.45	2.23	80.0	± 9.6 %
		Y	4.75	72.25	18.50		80.0	
		Z	5.02	72.44	18.71		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.32	73.40	19.28	2.23	80.0	± 9.6 %
		Y	4.80	71.92	18.39		80.0	
	· · · · · · · · · · · · · · · · · · ·	Z	5.07	72.08	18.60		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.29	77.08	20.62	2.23	80.0	±9.6 %
		Y	5.44	74.84	19.51		80.0	
		Z	5.78	75.12	19.66		80.0	[
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.38	72.26	19.03	2.23	80.0	± 9.6 %
		Y	4.95	71.03	18.29	h	80.0	
		Z	5.22	71.29	18.47		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.41	71.97	18.93	2.23	80.0	±9.6 %
		Y	4.99	70.82	18.22	•••••	80.0	······
		Z	5.27	71.06	18.40		80.0	·····
10494-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	7.26	79.46	21.31	2.23	80.0	± 9.6 %
AAC	QPSK, UL Subframe=2,3,4,7,8,9)					2.20		,.
		Y	6.08	76.70	20.04		80.0	
		Z	6.47	77.03	20.19		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.52	72.92	19.28	2.23	80.0	± 9.6 %
		Y	5.04	71.57	18.51		80.0	
		Z	5.33	71.88	18.69		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.51	72.36	19.10	2.23	80.0	± 9.6 %
		Y	5.07	71.15	18.38		80.0	
		Z	5.35	71.43	18.55		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.84	81,16	20.14	2.23	80.0	± 9.6 %
		Y	4.18	74.07	16.91		80.0	
		Z	4.97	76.21	18.38		80.0	
10498-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	4.23	71.63	15.72	2.23	80.0	±9.6 %
AAA	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)					2.20	5-10	
		Y	2,88	66.72	12.99		80.0	
		Z	3,81	69.89	15.10		80.0	1
10499-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	4.07	70.79	15.25	2.23	80.0	± 9.6 %
AAA	MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)			10.70	10.20	2.20	00.0	2 0.0 %
		Υ	2.78	66.03	12.55		80.0	
		Z	3.73	69.33	14.75	}	80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.25	82.07	22.09	2.23	80.0	± 9.6 %
		Υ	5.64	78.16	20.30		80.0	
		Z	5.95	78.24	20.53		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.43	74.78	19.24	2.23	80.0	± 9.6 %
	· · ·	Y	4.72	72.72	18.04		80.0	
		Z	4.99	72.91	18.39		80.0	· · · ·
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.43	74.40	19.05	2.23	80.0	± 9.6 %
		Y	4.75	72.45	17.89		80,0	
		Z	5.01	72.63	18.25		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.96	80.64	21.82	2.23	80.0	± 9.6 %
		Y	5.62	77.31	20.29		80.0	
	***************************************	Z	6.00	77.58	20.48		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.28	73.79	19.40	2.23	80.0	± 9.6 %
		Y	4.72	72.15	18.44		80.0	
		Z	5.00	72.37	18.67		80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.30	73.31	19.23	2.23	80.0	±9.6 %
		Y	4.78	71.81	18.34	[80.0	
		Z	5.05	72.00	18.55		80.0	1
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.19	79.29	21.23	2.23	80.0	± 9.6 %
		Y	6.02	76.53	19.97		80.0	
		Z	6.42	76.89	20.13		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10	X	5.49	72.85	19.25	2.23	80.0	± 9.6 %
AAC	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		0.40		.0.20	2.20		20.070
		1			· • • · · · · · · · · · · · · · · · · ·			
		Υ	5.02	71.50	18.47		80.0	

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.49	72.29	19.06	2.23	80.0	± 9.6 %
		Y	5.05	71.07	18.34		80.0	
		Z	5.33	71.37	18.52		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	6.71	76.12	20.06	2.23	80.0	± 9.6 %
		Y	5.94	74.25	19,13		80.0	
		Z	6.28	74.57	19.27		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.84	71.95	18.94	2.23	80.0	±9.6 %
		Y	5.42	70.86	18.30		80.0	
		Z	5.71	71.20	18.47		80.0	[
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.82	71.51	18.81	2.23	80.0	± 9.6 %
		Y	5.44	70.51	18.21		80.0	
	·····	Z	5.71	70.83	18.37		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.61	78.80	20.90	2.23	80.0	± 9.6 %
		Y	6.48	76.29	19.75		80.0	
40546		Z	6.88	76.71	19.92		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.82	72.58	19.18	2.23	80.0	± 9.6 %
		Y	5.36	71.33	18.47		80.0	
10511		Z	5.67	71.74	18.66		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.73	71.89	18.96	2.23	80.0	± 9.6 %
		Υ	5.32	70.77	18.31		80.0	
		Z	5.61	71.15	18.49		80.0	
10515- AAA	IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.00	64.53	15.90	0.00	150.0	±9.6 %
		Y	0.92	62.98	14.41		150.0	
40540		Z	0.96	63.54	14.94		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	1.68	91.06	26.34	0.00	150.0	± 9.6 %
		Y	0.55	69.99	16.34		150.0	
10517-		Z	0.73	74.56	19.01		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.92	68.12	17.45	0.00	150.0	±9.6 %
		Y	0.77	64.83	14.89		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	<u>0.84</u> 4.67	65.95 67.12	15.79 16.50	0.00	150.0 150.0	±9.6 %
		Y	4.56	66.77	16.17		150.0	
		Z	4.66	66.89	16.28		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.89	67.40	16.64	0.00	150.0	± 9.6 %
		Y	4.77	67.04	16.30		150.0	
		Z	4.89	67.19	16.43		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.74	67.39	16.57	0.00	150.0	±9.6 %
		Y	4.61	67.01	16.22		150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	4.74 4.67	<u>67.17</u> 67.41	16.35 16.56	0.00	150.0 150.0	± 9.6 %
		Y	4.55	67.00	16.20		150.0	
		Z	4.55	67.18	16.20		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.72	67.39	16.60	0.00	150.0	±9.6 %
		Y	4.60	67.04	16.27		150.0	
		Z	4.71	67.14	16.36		150.0	

ES3DV3-- SN:3319

AAB Mbps, 98 pc duty cycle) Y 4.47 66.51 16.0<									
Let Let <thlet< th=""> <thlet< th=""> <thlet< th=""></thlet<></thlet<></thlet<>	10523- AAB	IEEE 802.11a/h WiFI 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.59	67.29	16.46	0.00	150.0	± 9.6 %
Image: Constraint of the constraint of the			Y	4.47	66.91	16.11		150.0	
10524 IEEE 802.11ab. WIFI 6 GHz (OFDM, 54 X 4.67 67.35 16.59 0.00 150.0 ± 5.6 % AAB Mbps, 99pc duty cycle) Y 4.56 66.36 16.24 150.0 . 10525 IEEE 802.11ac WIFI (20MHz, MCS0, X 4.63 66.37 16.17 0.00 150.0 ± 5.6 % AAB Spbc duty cycle) Y 4.52 66.01 15.83 150.0 ± 5.6 % AAB Spbc duty cycle) Y 4.52 66.01 15.83 16.00 ± 9.6 % AAB Spbc duty cycle) Y 4.70 66.42 16.37 10.00 ± 9.6 % AAB Spbc duty cycle) Y 4.70 66.76 16.27 0.00 150.0 ± 9.6 % AAB Spbc duty cycle) Y 4.62 66.36 15.92 150.0 ± 9.6 % AAB Spbc duty cycle) Y 4.64 66.35 16.31 0.00 150.0 ± 9.6 % AAB Spbc duty c									
Y 4.455 66.98 16.24 150.0 1025- AAB Sppc duty cycle) X 4.67 67.11 16.36 150.0 1025- AAB Sppc duty cycle) Y 4.52 66.01 15.83 150.0 1052- AAB Sppc duty cycle) Y 4.52 66.01 15.83 150.0 ± 9.6 % AAB Sppc duty cycle) Y 4.70 66.01 15.97 150.0 ± 9.6 % AAB Sppc duty cycle) Y 4.75 66.76 16.27 0.00 150.0 ± 9.6 % AAB Sppc duty cycle) Y 4.75 66.76 16.27 0.00 150.0 ± 9.6 % AAB Sppc duty cycle) Y 4.42 66.36 15.92 150.0 ± 9.6 % AAB Sppc duty cycle) Y 4.44 66.38 15.95 150.0 ± 9.6 % 10529- IEEE 802.11ac WIFI (20MHz, MCS4, X 4.77 66.78 16.31 0.00 150.0 ± 9							0.00		± 9.6 %
Image: Second state			Y	4.55	66.98	16.24		150.0	
10525- 99pc duty cycle) X 4.63 66.37 16.17 0.00 150.0 ± 9.6 %, AAB AAB 99pc duty cycle) Y 4.52 66.01 15.83 150.0 10525- AAB 19pc duty cycle) Y 4.82 66.74 16.32 0.00 150.0 ± 9.6 %, AAB 99pc duty cycle) Y 4.70 66.74 16.92 0.00 150.0 ± 9.6 %, AAB 10527- AAB IEEE 802.11ac WIFI (20MHz, MCS2, SPpc duty cycle) X 4.75 66.76 16.27 0.00 150.0 ± 9.6 %, AAB 10528- Bepc duty cycle) Y 4.62 66.36 15.92 150.0 ± 9.6 %, AAT 10528- Bepc duty cycle) Y 4.64 66.34 15.00 ± 9.6 %, AAB 150.0 ± 9.6 %, AAB									
AAB 99pc duty cycle) Y 4.52 66.01 15.83 150.0 10526- AAB 1EEE 802.11ac WiFI (20MHz, MCS1, AAB X 4.83 66.78 16.32 0.00 150.0 10527- AAB 99pc duty cycle) Y 4.70 66.40 15.97 150.0 10527- AAB 1EEE 802.11ac WiFI (20MHz, MCS2, AAB Y 4.72 66.36 16.92 150.0 10528- AAB 99pc duty cycle) X 4.75 66.76 16.27 0.00 150.0 10528- AAB 99pc duty cycle) X 4.77 66.78 16.31 0.00 150.0 10528- AAB 99pc duty cycle) X 4.77 66.78 16.31 0.00 150.0 2.8.6% AAB 99pc duty cycle) Y 4.64 66.34 15.05 150.0 160.0 10529- IEEE 802.11ac WiFI (20MHz, MCS4, AB 4.77 66.74 16.08 150.0 150.0 2.9.6% AB 99pc duty cycle) Y 4.64 66.69	10525-	IEEE 802,11ac WiFi (20MHz, MCS0					0.00		+96%
Image: Constraint of the constraint of the		99pc duty cycle)							- 0.0 70
10526- 99pc duty cycle) Y 4.83 4.88 96.78 966.74 16.32 165.07 0.00 150.0 150.0 150.0 AAB 99pc duty cycle) Y 4.70 4.72 66.64 16.97 166.74 150.0 10527- 10527- 10528- AAB IEEE 802.11ac WIFI (20MHz, MCS2, 99pc duty cycle) Y 4.72 4.74 66.51 66.51 16.04 150.0 10528- 10528- 10529- 10531- 10529- 10531- 10531- 10531- 10531- 10531- 10531- 10531- 10531- 10531- 10531- 10532-									
AAB 99pc duty cycle) Y 4.70 66.40 15.97 150.0 10527- AAB 12EE 802.11ac WIFI (20MHz, MCS2, AAB X 4.75 66.76 16.27 0.00 150.0 ±9.8 % 10527- AAB 99pc duty cycle) Y 4.62 66.65 16.22 150.0 ±9.8 % 10528- AAB 1EEE 802.11ac WIFI (20MHz, MCS3, AAB X 4.77 66.78 16.31 0.00 150.0 ±9.6 % 10529- 10529- 10529- 10529- 10529- 10529- 10531- 10531- 10531- 10531- 10532- 10532- 10532- 10532- 10532- 10532- 10532- 10533- 1EEE 802.11ac WIFI (20MHz, MCS6, AAB Y 4.64 66.38 15.95 150.0 ±9.6 % 10532- 10532- 10532- 10532- 10533- 10532- 10533- AAB Y 4.64 66.50 15.97 150.0 ±9.6 % 10532- 10533- AAB 99pc duty cycle) Y 4.64 66.53 16.00 150.0 ±9.6 % 10534- 0.00 150.0 Y 4.64 66.53 15.90 150.0 ±9.6 % 10534- 0.00 150.0 Y 4.64 66.53 15.90	10526						0.00		+06%
Z 4.82 66.64 16.09 150.0 AAB 99pc duty cycle) Y 4.62 66.76 16.27 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.62 66.36 15.92 150.0 ± 9.6 % 10528- IEEE 802.11ac WIFI (20MHz, MCS3, X 4.77 66.78 16.31 0.00 ± 9.6 % AAB 9pc duty cycle) Y 4.64 66.38 15.95 150.0 10529- IEEE 802.11ac WIFI (20MHz, MCS4, X 4.77 66.78 16.31 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.38 15.95 150.0 10531- IEEE 802.11ac WIFI (20MHz, MCS6, X 4.78 66.69 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.60 16.05							0.00		1 3,0 78
10527- AAB IEEE 802.11ac WiFi (20MHz, MCS2, 9pc duty cycle) X 4.75 66.76 16.27 0.00 150.0 ± 9.6 % ± 9.6 % 10528- AAB IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) X 4.77 66.76 16.31 0.00 150.0 ± 9.6 % ± 9.6 % 10528- AAB IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) Y 4.64 66.38 15.95 150.0 ± 9.6 % 10529- 10529- 000 IEEE 802.11ac WiFi (20MHz, MCS4, AAB Y 4.64 66.38 15.95 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.64 66.34 16.04 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.64 66.33 15.97 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.64 66.50 16.27 0.00 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.463 66.60 1									
AAB 99pc duty cycle) Y 4.62 66.36 15.92 150.0 10529- AAB IEEE 802.11ac WIFI (20MHz, MCS3, 99pc duty cycle) X 4.77 66.78 16.04 150.0 150.0 10529- AAB IEEE 802.11ac WIFI (20MHz, MCS4, AAB Y 4.64 66.38 15.95 150.0 10529- AAB IEEE 802.11ac WIFI (20MHz, MCS4, AAB Y 4.64 66.38 15.95 150.0 10531- 10531- 99pc duty cycle) Y 4.64 66.53 16.34 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 10531- 10531- 10532- 10533- 1EEE 802.11ac WIFI (20MHz, MCS7, AAB Y 4.64 66.50 15.97 150.0 10532- 10533- AAB IEEE 802.11ac WIFI (20MHz, MCS8, AAB Y 4.63 66.60 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.43 66.36 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle)	40507						0.00		
Z 4.74 66.51 16.04 150.0 10528- AAB S9pc duty cycle) Y 4.64 66.38 16.31 0.00 150.0 ± 9.6 % AAB S9pc duty cycle) Y 4.64 66.38 15.95 150.0 10529- AAB IEEE 802.11ac WiFI (20MHz, MCS4, AAB Y 4.64 66.38 15.95 150.0 10531- AAB Sppc duty cycle) Y 4.64 66.54 16.08 150.0 10531- AAB Sppc duty cycle) Y 4.64 66.50 16.97 150.0 10531- AAB Sppc duty cycle) Y 4.64 66.50 16.87 150.0 10532- IEEE 802.11ac WiFI (20MHz, MCS7, AB Y 4.64 66.35 15.90 150.0 10533- Bopc duty cycle) Y 4.464 66.35 15.90 150.0 150.0 10533- Bopc duty cycle) Y 4.464 66.56 16.05 150.0 150.0 10534- Bopc duty cycle) Y 4.65 66.81 15.94<							0.00		±9.6 %
10528- AAB IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) X 4.77 66.78 16.31 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.33 15.95 150.0 10529- AAB IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) X 4.77 66.78 16.31 0.00 150.0 ± 9.6 % AAB 90pc duty cycle) Y 4.64 66.38 15.95 150.0 105.0 ± 9.6 % AAB 90pc duty cycle) Y 4.64 66.54 16.08 150.0 105.0 ± 9.6 % AAB 90pc duty cycle) Y 4.64 66.50 15.97 150.0 150.0 150.0 150.0 150.0 105.0 ± 9.6 % AAB 90pc duty cycle) Y 4.63 66.80 16.29 0.00 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0									
AAB 99pc duty cycle) Y 4.64 66.38 15.95 150.0 10529- IEEE 802.11ac WIFI (20MHz, MCS4, 99pc duty cycle) X 4.76 66.78 16.31 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.38 15.95 150.0 10531- IEEE 802.11ac WIFI (20MHz, MCS6, 99pc duty cycle) X 4.77 66.64 16.08 150.0 10531- IEEE 802.11ac WIFI (20MHz, MCS7, 99pc duty cycle) X 4.78 66.80 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % AAB 99pc duty cycle) X 4.63 66.80 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) X 4.62 66.56 15.90 150.0 ± 9.6 % AAB 99pc duty cycle) X 4.78 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) X									
Intersection Z 4.76 66.54 16.08 150.0 AAB 99pc duty cycle) Y 4.64 66.38 16.31 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.38 15.95 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.33 16.34 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.42 66.56 16.05 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.62 66.56 16.05 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.65 56.6.8 16.33<							0.00		± 9.6 %
10529- AAB IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) X 4.77 66.78 16.31 0.00 150.0 ± 9.6 % 10531- AAB IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) Y 4.64 66.38 15.95 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % AAB 99pc duty cycle) Z 4.77 66.69 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) Z 4.77 66.69 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) Z 4.77 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.78 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.28 66.81 15.33 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.17 66.55 16.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AAB 99pc duty cycle) Y 4.64 66.38 15.95 150.0 10531- AAB IEEE 802.11ac WIFI (20MHz, MCS6, AAB Y 4.64 66.38 16.34 0.00 150.0 ± 9.6 % 10531- AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % 10532- AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 ± 9.6 % 10532- AAB 99pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Z 4.77 66.56 16.05 150.0 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.65 66.41 15.94 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.28 66.88 16.03 0.00 150.0 ± 9.6 % AAB			Z	4.76	66.54	16.08		150.0	
Z 4.76 66.54 16.08 150.0 10531- AAB IEEE 802.11ac WIFI (20MHz, MCS6, AAB X 4.78 66.93 16.34 0.00 150.0 ± 9.6 % 10532- AAB 9pc duty cycle) Y 4.64 66.50 16.10 150.0 ± 9.6 % 10532- AAB 9pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % 10533- AAB 9pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.49 66.36 16.29 0.00 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.65 66.641 15.90 150.0 ± 9.6 % AAB 9pc duty cycle) Y 4.65 66.41 15.94 150.0 ± 9.6 % AAB 9pc duty cycle) Y 5.28 66.83 16.03 150.0 ± 9.6 % AAB 9pc duty cycle) Y 5.17 66.53			X	4.77	66.78	16.31	0.00	150.0	± 9.6 %
Image: constraint of the second sec			Y	4.64	66.38	15.95	******	150.0	[
10531- AAB IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) X 4.78 66.93 16.34 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.64 66.50 15.97 150.0 10532- AAB IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % AAB 99pc duty cycle) Z 4.62 66.64 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.78 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.77 66.55 16.05 150.0 ± 9.6 % AAB 99pc duty cycle) X 5.28 66.88 16.33 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) X 5.34 66.53 16.03 150.0 ± 9			Z	4.76	66.54			150.0	
Y 4.64 66.50 15.97 150.0 10532- AAB IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % 10533- AAB 1EEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) Y 4.65 66.41 15.94 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.65 66.41 15.94 150.0 ± 9.6 % AAB 99pc duty cycle) X 5.28 66.88 16.33 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.17 66.53 16.03 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.24 66.89 16.10 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.24 66			X	4.78			0.00		± 9.6 %
Image: constraint of the system of			Y	4 64	66 50	15.97		150.0	
10532- AAB IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) X 4.63 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.49 66.35 15.90 150.0 ± 9.6 % 10533- AAB IEEE 802.11ac WiFi (20MHz, MCS8, AAB Y 4.65 66.41 15.94 150.0 ± 9.6 % 10534- AAB IEEE 802.11ac WiFi (40MHz, MCS0, AAB Y 4.65 66.41 15.94 150.0 ± 9.6 % 10534- AAB IEEE 802.11ac WiFi (40MHz, MCS0, AAB Y 5.28 66.88 16.33 0.00 150.0 ± 9.6 % 10535- AAB IEEE 802.11ac WiFi (40MHz, MCS1, AAB Y 5.17 66.53 16.03 150.0 ± 9.6 % 10535- AAB IEEE 802.11ac WiFi (40MHz, MCS1, AAB Y 5.17 66.63 16.01 150.0 ± 9.6 % 10536- AAB IEEE 802.11ac WiFi (40MHz, MCS2, AAB Y 5.24 66.69 16.10 150.0 ± 9.6 % <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							0.00		± 9.6 %
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				4 49	66.35	15.90		150.0	
10533- AAB IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) X 4.78 66.80 16.29 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 4.65 66.41 15.94 150.0 1 10534- AAB 1EEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) X 5.28 66.88 16.33 0.00 150.0 ± 9.6 % 10535- AAB 1EEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) Y 5.17 66.53 16.03 150.0 ± 9.6 % 10535- AAB 1EEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) Y 5.17 66.69 16.10 150.0 ± 9.6 % 10536- AAB 1EEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) Y 5.22 67.03 16.37 0.00 150.0 ± 9.6 % 10536- AAB 1EEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % 10537- AAB 1EEE 802.11ac WiFi (40MHz, MCS3, AAB X 5.29 67.00 16.36 0.00 150.0 ± 9.6 %									
Y4.65 66.41 15.94 150.0 10534- AABIEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)X 5.28 66.88 16.33 0.00 150.0 $\pm 9.6\%$ 10534- AAB99pc duty cycle)Y 5.17 66.53 16.03 150.0 $\pm 9.6\%$ 10535- AAB99pc duty cycle)Y 5.17 66.53 16.03 150.0 $\pm 9.6\%$ 10535- AAB99pc duty cycle)Y 5.17 66.63 16.03 150.0 $\pm 9.6\%$ 10535- AAB99pc duty cycle)Y 5.24 66.69 16.10 150.0 $\pm 9.6\%$ 10536- AAB99pc duty cycle)Y 5.24 66.69 16.10 150.0 $\pm 9.6\%$ 10536- AAB99pc duty cycle)Y 5.24 66.69 16.10 150.0 $\pm 9.6\%$ 10536- AABIEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)X 5.22 67.03 16.37 0.00 150.0 $\pm 9.6\%$ 10537- AABIEEE 802.11ac WiFi (40MHz, MCS3, AABX 5.29 67.00 16.36 0.00 150.0 $\pm 9.6\%$ 10538- AAB99pc duty cycle)Y 5.17 66.63 16.05 150.0 $\pm 9.6\%$ 10538- AABIEEE 802.11ac WiFi (40MHz, MCS4, AABX 5.40 67.06 16.43 0.00 150.0 $\pm 9.6\%$ 10540- AAB99pc duty cycle)Y 5.27 66.69 16.12 150.0 $\pm 9.6\%$ 105							0.00		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	4 65	66.41	15.94		150.0	
10534- AAB IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) X 5.28 66.88 16.33 0.00 150.0 ± 9.6 % 0 Y 5.17 66.53 16.03 150.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AAB 99pc duty cycle) Y 5.17 66.53 16.03 150.0 10535- AAB 1EEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) X 5.35 67.03 16.13 150.0 150.0 10535- AAB 99pc duty cycle) Y 5.27 66.70 16.13 150.0 150.0 10535- AAB 99pc duty cycle) Y 5.35 67.03 16.39 0.00 150.0 160.0 10536- AAB 1EEE 802.11ac WiFi (40MHz, MCS2, AAB X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % 10536- AAB 1EEE 802.11ac WiFi (40MHz, MCS2, AAB Y 5.10 66.65 16.06 150.0 ± 9.6 % 10537- AAB 1EEE 802.11ac WiFi (40MHz, MCS3, AB Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 99pc duty cycle) Y 5.17 66.63 16.15 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, AAB X 5.40 67.06 16.43 0.00 150.0<	10534-	IEEE 802 11ac WiEi (40MHz_MCS0					0.00		+96%
IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) Z 5.27 66.70 16.13 150.0 10535- AAB 99pc duty cycle) Y 5.35 67.03 16.39 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.24 66.69 16.10 150.0 ± 9.6 % 10536- AAB IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % 10537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) Y 5.10 66.65 16.06 150.0 ± 9.6 % 10537- AAB 1EEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, AB X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10540- AAB 99pc duty cycle) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td>1 0.0 70</td></td<>							0.00		1 0.0 70
10535- AAB IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) X 5.35 67.03 16.39 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.24 66.69 16.10 1050.0 150.0 16.30 150.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
AAB 99pc duty cycle) Y 5.24 66.69 16.10 150.0 10536- AAB IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % 10537- AAB 99pc duty cycle) Y 5.10 66.65 16.06 150.0 ± 9.6 % 10537- AAB 99pc duty cycle) Y 5.10 66.65 16.06 150.0 ± 9.6 % 10537- AAB 99pc duty cycle) Y 5.10 66.63 16.16 150.0 ± 9.6 % 10538- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.01 16.42 0.00 150.0 ± 9.6 % 10540- AAB 1EEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	40505						0.00		100%
Z 5.34 66.84 16.18 150.0 10536- AAB IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.10 66.65 16.06 150.0 ± 9.6 % IO537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % IO537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % IO538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, AAB Y 5.17 66.63 16.15 150.0 150.0 IO538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, AAB Y 5.27 66.69 16.12 150.0 150.0 IO540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB Y 5.39 66.88 16.23 150.0 150.0 IO540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB Y 5.19 66.66 16.12 1							0.00		±9.6 %
10536- AAB IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) X 5.22 67.03 16.37 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.10 66.65 16.06 150.0 1 10537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, AAB X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % 10537- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, AAB X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10540- AAB 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % 10540- AAB 1EEE 802.11ac WiFi (40MHz, MCS6, AAB X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % 10					· · · · · · · · · · · · · · · · · · ·		l		
AAB 99pc duty cycle) Y 5.10 66.65 16.06 150.0 10537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % 10537- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, AAB Y 5.17 66.60 16.15 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, AAB Y 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10538- AAB 1EEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % 10540- AAB 1EEE 802.11ac WiFi (40MHz, MCS6, AAB Y 5.30 67.01 16.42 0.00 150.0 ± 9.6 % 10540- AAB 99pc duty cycle) Y 5.19 66.66 16.12 <td>10000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	10000								
Z 5.21 66.83 16.16 150.0 10537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % IO538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % I0540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB Y 5.27 66.69 16.12 150.0 150.0 I0540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % I0540- AAB 99pc duty cycle) Y 5.19 66.66 16.12 150.0 ± 9.6 %					67.03		0.00		± 9.6 %
10537- AAB IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) X 5.29 67.00 16.36 0.00 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 ± 9.6 % MAB Y 5.17 66.63 16.05 150.0 ± 9.6 % MAB IEEE 802.11ac WiFi (40MHz, MCS4, AAB X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.39 66.88 16.23 150.0 ± 9.6 % MAB 99pc duty cycle) Y 5.19 66.66 16.12 150.0 ± 9.6 %									
AAB 99pc duty cycle) Y 5.17 66.63 16.05 150.0 10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.27 66.80 16.15 150.0 10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) Y 5.27 66.69 16.12 150.0 ± 9.6 % 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB X 5.30 67.01 16.42 0.00 150.0 ± 9.6 %									
Z 5.27 66.80 16.15 150.0 10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % V 5.27 66.69 16.12 150.0 ± 9.6 % ID500 Y 5.27 66.69 16.12 150.0 ID540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 IO540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) Y 5.19 66.66 16.12 150.0					67.00	16.36	0.00	150.0	± 9.6 %
10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % Y 5.27 66.69 16.12 150.0 ± 150.0 ± Z 5.39 66.88 16.23 150.0 ± 150.0 ± 9.6 % 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % Y 5.19 66.66 16.12 150.0 ± 9.6 %				5.17	66.63	16.05		150.0	
10538- AAB IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) X 5.40 67.06 16.43 0.00 150.0 ± 9.6 % Y 5.27 66.69 16.12 150.0 ± 150.0 ± 9.6 % IO540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, AAB Z 5.39 66.88 16.23 150.0 ± 9.6 % IO540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 ± 9.6 %				5.27	66.80	16.15		150.0	
Y 5.27 66.69 16.12 150.0 Z 5.39 66.88 16.23 150.0 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % Y 5.19 66.66 16.12 150.0 ± 9.6 %							0.00		± 9.6 %
Z 5.39 66.88 16.23 150.0 10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % Y 5.19 66.66 16.12 150.0 ± 9.6 %			Y	5.27	66.69	16.12		150.0	
10540- AAB IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) X 5.30 67.01 16.42 0.00 150.0 ± 9.6 % Y 5.19 66.66 16.12 150.0 ± 9.6 %							1		
Y 5.19 66.66 16.12 150.0							0.00		± 9.6 %
				5 10	66 66	16 12		150.0	<u> </u>
			Z	5.29	66.82	16.22	<u>+</u>	150.0	

ES3DV3- SN:3319

				-				
10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.28	66.90	16.36	0.00	150.0	± 9.6 %
		Y	5.16	66.53	16.05		150.0	
		Z	5.27	66.74	16.17		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.43	66.95	16.40	0,00	150.0	±9.6 %
		Y	5.32	66.61	16.11		150.0	
		Z	5.42	66.77	16.20		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.51	66.95	16.41	0.00	150.0	± 9.6 %
	·····	Y	5.40	66.65	16.14		150.0	
		Z	5.51	66.78	16.22		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.56	66.97	16.30	0.00	150.0	±9.6 %
1.1		Y	5.46	66.64	16.02		150.0	
		Z	5.54	66.80	16.11		150.0	[
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.78	67.41	16.46	0.00	150.0	± 9.6 %
		Y	5.68	67.09	16.19		150.0	
		Z	5.76	67.21	16.25		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.66	67.27	16.41	0.00	150.0	± 9.6 %
		Y	5.55	66.90	16.11		150.0	
		Z	5.65	67.10	16,22		150.0	
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.75	67.34	16.43	0.00	150.0	± 9.6 %
		Y	5.64	66.99	16.14		150.0	
		Z	5.73	67.16	16.24		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.10	68.57	17.02	0.00	150.0	± 9.6 %
		Y	5.97	68.15	16.70		150.0	
		Z	6.06	68.30	16.78		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.68	67.21	16.39	0,00	150.0	± 9.6 %
		Y	5.57	66.88	16.11		150.0	
	****	Ż	5.66	67.04	16.20		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.70	67.30	16.39	0.00	150.0	± 9.6 %
		Y	5.58	66.93	16.09		150.0	
		Ż	5.68	67.15	16.21		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.59	67.05	16.28	0.00	150.0	±9.6 %
		Y	5.48	66.70	15.99		150.0	
		z	5.58	66.90	16.10		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.69	67.10	16.33	0.00	150.0	± 9.6 %
		Y	5.57	66.76	16.05		150.0	
		Z	5.67	66.95	16.15		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.97	67.34	16.39	0.00	150.0	±9.6 %
		Y	5.87	67.02	16.12		150.0	······································
		Z	5.94	67.19	16.21		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.12	67.69	16.53	0.00	150.0	± 9.6 %
		Y	6.01	67.35	16.26		150.0	
		Z	6.10	67.54	16.36		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.71	16.53	0.00	150.0	±9.6 %
		Y	6.03	67.38	16.27		150.0	
		Z	6.11	67.54	16.35		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.12	67.66	16.53	0.00	150.0	± 9.6 %
		Y	6.00	67.31	16.25		150.0	
		Z	6.10	67.52	16.36		150.0	

ES3DV3-- SN:3319

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.18	67.86	16.65	0.00	150.0	± 9.6 %
		Y	6.06	67.49	16.36		150.0	
	·····	Ż	6.16	67.71	16.47		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.16	67.67	16.59	0.00	150.0	± 9.6 %
		Y	6.05	67.32	16.31		150.0	
		Z	6.15	67.54	16.42		150.0	
10561-	IEEE 802.11ac WiFi (160MHz, MCS7,	X	6.08	67.64	16.61	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)	Y	5.97	67.29	16.33	0.00	150.0	2 0.0 70
		Z	6.06	67.49	16.44		150.0	
10562-	IEEE 802.11ac WiFi (160MHz, MCS8,	X	6.25	68.16	16.88	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)					0.00		± 9.0 %
		Y	6.13	67.77	16.57		150.0	
10500		Z	6.23	68.01	16.70		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.60	68.73	17.10	0,00	150.0	± 9.6 %
		Y	6.50	68.45	16.86		150.0	
		Z	6.53	68.43	16.86		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	5.01	67.24	16.68	0.46	150.0	± 9.6 %
		Y	4.90	66.90	16.36		150.0	
		Z	5.01	67.05	16.49		150.0	
10565- AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.27	67.70	16.99	0.46	150.0	± 9.6 %
		Y	5.15	67.37	16.68		150.0	
		Z	5.27	67.52	16.80		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	5.11	67.60	16.84	0.46	150.0	± 9.6 %
1000		Y	4.98	67.23	16.50		150.0	
•		Z	5.11	67.41	16.64		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.13	67.96	17.16	0.46	150.0	± 9.6 %
		Y	5.01	67.61	16.84		150.0	
	***	Z	5.13	67.75	16.95		150.0	l
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	5.02	67.36	16.62	0.46	150.0	± 9.6 %
,		Y	4.90	67.01	16.28		150.0	
·····		Z	5.02	67.16	16.41		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.07	67.97	17.18	0.46	150.0	± 9.6 %
1000		Y	4.96	67.67	16.89		150.0	
		Ż	5.06	67.76	16.96		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.11	67.83	17.12	0.46	150.0	± 9.6 %
73773		Y	5.00	67.52	16.83		150.0	
•••		Z	5.11	67.61	16.83		150.0 150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.43	67.78	17.55	0.46	130.0	± 9.6 %
7 11 11 1		Y	1.29	65.83	16.01		130.0	
		Z	1.29	66.57	16.56		130.0	
10572-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2					0.40		1060/
10572- AAA	Mbps, 90pc duty cycle)	X	1.47	68.62	18.01	0.46	130.0	± 9.6 %
	····	Y	1.32	66.50	16.39	 	130.0	<u> </u>
10		Z	1.40	67.26	16.95	<u> </u>	130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	147.77	39.50	0.46	130.0	± 9.6 %
		Y	5.11	95.86	25,26		130.0	
		Z	11.46	108.94	29.46		130.0	
		-						
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.11	79.07	22.64	0.46	130.0	± 9.6 %
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	2.11 1.59		22.64 19.59	0.46	130.0 130.0	±9.6 %

ES3DV3-SN:3319

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 %
		Y	4.72	66.80	16.47		130.0	<u> </u>
		Z	4.83	66.93	16.59		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	Х	4.86	67.28	16.85	0.46	130.0	± 9.6 %
		Υ	4.75	66.95	16.53		130.0	[
		Z	4.86	67.08	16,65		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	Х	5.09	67.60	17.02	0.46	130.0	± 9.6 %
	·····	Y	4.97	67.26	16.71		130.0	· · · · · · · · · · · · · · · · · · ·
		Z	5.10	67.41	16.83		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 %
		Y	4.86	67.43	16.80		130.0	
10		Z	4.99	67.57	16.91		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	± 9.6 %
······		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	Х	4.81	67.17	16.53	0.46	130.0	±9.6 %
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 %
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87	****	130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	Х	4.73	66.96	16.34	0.46	130.0	± 9.6 %
		Y	4.59	66.53	15.94		130.0	
		Z	4.73	66.78	16.14		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 %
		Y	4.72	66.80	16.47		130.0	
		Z	4.83	66.93	16.59		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.86	67.28	16.85	0.46	130.0	± 9.6 %
		Y	4.75	66.95	16.53		130.0	
		Z	4.86	67.08	16.65		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.09	67.60	17.02	0.46	130.0	± 9.6 %
		Y	4.97	67.26	16.71		130.0	
		Z	5.10	67.41	16.83		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 %
		Y	4.86	67.43	16.80		130.0	[
		Z	4.99	67.57	16.91		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	±9.6 %
		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.17	16.53	0.46	130.0	± 9.6 %
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 %
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.73	66.96	16.34	0.46	130.0	± 9.6 %
		Y	4.59	66.53	15.94	L	130.0	
	······································	Ż	4.73	66.78	16.14		130.0	}

ES3DV3-- SN:3319

10591-	IEEE 802.11n (HT Mixed, 20MHz,		4.98	67.15	16.87	0.46	130.0	±9,6 %
AAB	MCS0, 90pc duty cycle)		4.07	<u></u>	40.57		420.0	
		Y	4.87	66.85 66.97	16.57 16.68		130.0 130.0	
10592-	IEEE 802.11n (HT Mixed, 20MHz,	Z	<u>4.98</u> 5.15	67.50	16.99	0.46	130.0	± 9.6 %
AAB	MCS1, 90pc duty cycle)	^	0.10	07.50	10.99	0.40	130.0	1 9.0 %
7010		Y	5.04	67.19	16.69		130.0	
		Z	5.16	67.32	16.80		130.0	
10593-	IEEE 802.11n (HT Mixed, 20MHz,	X	5.09	67.46	16.91	0.46	130.0	±9.6 %
AAB	MCS2, 90pc duty cycle)							
***************************************		Y	4.96	67.12	16.59		130.0	
		Z	5.09	67.29	16.72		130.0	
10594-	IEEE 802.11n (HT Mixed, 20MHz,	Х	5.14	67.60	17.04	0.46	130.0	± 9.6 %
AAB	MCS3, 90pc duty cycle)							
		<u>Y</u>	5.02	67.28	16.73		130.0	
		Z	5.14	67.42	16.84		130.0	
10595-	IEEE 802.11n (HT Mixed, 20MHz,	X	5.11	67.58	16.95	0.46	130.0	± 9.6 %
AAB	MCS4, 90pc duty cycle)	Y	4.00	67.04	16.64		130.0	
			4.99	67.24 67.40	16.64		130.0	
10596-	IEEE 802.11n (HT Mixed, 20MHz,	Z	<u>5.12</u> 5.05	67.59	16.96	0.46	130.0	± 9.6 %
AAB	MCS5, 90pc duty cycle)	^	0.00	01.08	10.30	0.40	100.0	- 0.0 /0
		Y	4.93	67.24	16.64		130.0	
		Ż	5.06	67.40	16.76		130.0	
10597-	IEEE 802.11n (HT Mixed, 20MHz,	X	5.00	67.53	16.87	0.46	130.0	± 9.6 %
AAB	MCS6, 90pc duty cycle)							
		Y	4.88	67.16	16.53		130.0	
		Z	5.01	67.35	16.68		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.98	67.77	17.12	0.46	130.0	± 9.6 %
		Y	4.86	67.40	16.79		130.0	
		Z	4.99	67.58	16.92		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.65	67.74	17.05	0.46	130.0	±9.6 %
		Y	5.54	67.42	16.77		130.0	
		Z	5.65	67.58	16.87		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.86	68.37	17.35	0.46	130.0	± 9.6 %
		Y	5.74	68.03	17.05	1	130.0	
****************		Z	5.87	68.25	17.19		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.71	67.99	17.17	0.46	130.0	± 9.6 %
		Y	5.59	67.67	16.88		130.0	
		Z	5.71	67.84	16.99		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.80	67.99	17.09	0.46	130.0	± 9.6 %
		Y	5.68	67.66	16.80		130.0	
		Z	5.80	67.87	16.93		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.88	68.27	17.35	0.46	130.0	± 9.6 %
		Y	5.76	67.95	17.07		130.0	
		Z	5.91	68.22	17.22		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	67.69	17.05	0.46	130.0	± 9.6 %
		Y	5.55	67.38	16.78		130.0	
		Z	5.65	67.55	16.88	<u> </u>	130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.77	68.03	17.23	0.46	130.0	± 9.6 %
		Y	5.67	67.75	16.97	[130.0	
		<u>Z</u>	5.76	67.86	17.04		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.54	67.48	16.82	0.46	130.0	± 9.6 %
		Y	5.42	67.14	16.52		130.0	
		Z	5.54	67.37	16.67		130.0	

ES3DV3- SN:3319

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.81	66.46	16.48	0.46	130.0	± 9.6 %
		Y	4.70	66.13	16,17		130.0	
		Z	4.81	66.25	16.27	* ******	130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.03	66.90	16.65	0.46	130.0	±9.6 %
		Y	4.90	66.55	16.34		130.0	
		Z	5.02	66.68	16.44		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.92	66.79	16.52	0.46	130.0	± 9.6 %
		Y	4.79	66.41	16.18		130.0	
40040		Z	4.92	66.57	16.31		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.97	66.94	16.67	0.46	130.0	± 9.6 %
		Y	4.84	66.57	16.34	-	130.0	
10611-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.97	66.72	16.46		130.0	
AAB	90pc duty cycle)		4.89	66.78	16.54	0.46	130.0	± 9.6 %
		Y	4.76	66.39	16.20		130.0	
10612-	IEEE 802.11ac WiFI (20MHz, MCS5,	Z	4.89	66.57	16.33		130.0	
AAB	90pc duty cycle)	X	4.92	66.95	16.59	0.46	130.0	±9.6 %
		Y	4.78	66.55	16.24		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	ZX	4.91	66.73	16.37	0.10	130.0	
AAB	90pc duty cycle)		4.93	66.87	16.50	0.46	130.0	±9.6 %
·····	····	Y	4.79	66.46	16.14		130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7,	ZX	4.93	66.66	16.28	0.40	130.0	
AAB	90pc duty cycle)		4.85	67.03	16.71	0.46	130.0	± 9.6 %
		Y	4.72	66.63	16.36		130.0	
10615-	IEEE 802.11ac WiFI (20MHz, MCS8,	Z	4.85	66.82	16.49		130.0	
AAB	90pc duty cycle)	X	4.90	66.61	16.33	0.46	130.0	±9.6 %
		Y	4.76	66.22	15.98		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	Z X	<u>4.90</u> 5.47	66.40 66.98	16.12 16.66	0.46	130.0 130.0	± 9.6 %
/ / (0)		Y	5.36	66.66	16,38		130.0	
		Z	5.46	66.82	16.30		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.52	67.09	16.68	0.46	130.0	± 9.6 %
		Y	5.42	66.80	16.41		130.0	
•		Z	5.52	66.93	16.49		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	x	5.42	67.18	16.74	0.46	130.0	±9.6 %
		Y	5.31	66.84	16.45		130.0	
		Z	5.41	67.00	16.54		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.45	67.00	16.59	0.46	130.0	± 9.6 %
		Y	5.34	66.68	16.31		130.0	
		Z	5.44	66.82	16.40		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	Х	5.56	67.11	16.69	0.46	130.0	±9.6 %
		Y	5.44	66.75	16.39		130.0	
40004		Z	5.56	66.95	16.51		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.53	67.13	16.81	0.46	130.0	±9.6 %
	4	Y	5.42	66.81	16.54		130.0	
1007-		Z	5,53	66.98	16.63		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.53	67.27	16.87	0.46	130.0	±9.6 %
····		Y	5,43	66.97	16.61		130.0	
		Z	5.52	67.09	16.67		130.0	

ES3DV3-SN:3319

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.42	66.86	16.56	0.46	130.0	±9.6 %
		Y	5.30	66.51	16.26		130.0	
		Z	5.42	66.73	16.39		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.61	67.03	16.70	0.46	130.0	±9.6 %
		Y	5.50	66.72	16.43		130.0	
		Z	5.60	66.86	16.51		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.05	68.19	17.33	0.46	130.0	± 9.6 %
		Y	5.94	67.90	17.07		130.0	
		Z	6.01	67.90	17.08		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.72	66.99	16.57	0.46	130.0	± 9.6 %
		Y	5.63	66.69	16.31		130.0	
		Z	5.71	66.84	16.40		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.99	67.59	16.82	0.46	130.0	± 9.6 %
		Y	5,90	67.32	16.58		130.0	
		Z	5.97	67.39	16.62		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.80	67.20	16.57	0.46	130.0	± 9.6 %
		Y	5.69	66.85	16.29		130.0	
		Z	5.79	67.05	16.40		130.0	<u> </u>
10629- AAB	IEEE 802.11ac WIFi (80MHz, MCS3, 90pc duty cycle)	X	5.88	67.25	16.59	0.46	130.0	± 9.6 %
		Y	5.77	66.92	16.31		130.0	
		Z	5.87	67.12 /	16.43		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.51	69.31	17.62	0.46	130.0	± 9.6 %
		Y	6.37	68.86	17.28		130.0	
		Z	6.46	69.04	17.39		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.31	68.81	17.54	0.46	130.0	± 9.6 %
		Y	6.17	68.39	17.24		130.0	
		Z	6.30	68.62	17.35		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.95	67.61	16.96	0.46	130.0	± 9.6 %
		Y	5.85	67.34	16.73		130.0	
	\\	Z	5,94	67.45	16.78		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.89	67.42	16.71	0.46	130.0	± 9.6 %
		Y	5.75	67.01	16.39		130.0	
		Z	5.89	67.32	16.56		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.85	67.37	16.74	0.46	130.0	± 9.6 %
		Y	5.73	67.02	16.46		130.0	
		Z	5.86	67.27	16.59		130.0	ļ
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5,75	66.78	16.20	0.46	130.0	± 9.6 %
		Y	5.62	66.39	15.89		130.0	
		Z	5.75	66.67	16.05		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.13	67.38	16.66	0.46	130.0	± 9.6 %
		Y	6.05	67.09	16.42	<u> </u>	130.0	
		Z	6.12	67.24	16.50		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.31	67.79	16.85	0.46	130.0	± 9.6 %
		Y	6.21	67.50	16.60		130.0	
		Z	6.29	67.65	16.68		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.31	67.76	16.81	0.46	130.0	± 9.6 %
		Y	6.21	67.47	16.56		130.0	
		Z	6.29	67.60	16.64		130.0	

ES3DV3-- SN:3319

10639-			T	···				
AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.30	67.76	16.86	0.46	130.0	± 9.6 %
		Y	6.20	67.43	16.59		130.0	
40040		Z	6.29	67.63	16.70		130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.34	67.87	16.86	0.46	130.0	± 9.6 %
		Y	6.22	67.50	16.57		130.0	1
		Z	6.33	67.75	16.70		130.0	1
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	Х	6.33	67.58	16.73	0.46	130.0	± 9.6 %
		Y	6.23	67.29	16.48]	130.0	
10010		Z	6.31	67.45	16.57	[130.0	1
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.39	67.88	17.04	0.46	130.0	± 9.6 %
		Y	6.28	67.58	16.79		130.0	
		Z	6.38	67.76	16.88		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.22	67.60	16.81	0.46	130.0	± 9.6 %
••••••		Y	6.12	67.28	16.54		130.0	
		Z	6.21	67.48	16.65		130.0	
10644- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.47	68.34	17.21	0.46	130.0	± 9.6 %
		Y	6.34	67.93	16.89		130.0	
		Z	6.46	68.22	17.05		130.0	1
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.86	69.01	17.48	0.46	130.0	± 9.6 %
		Y	6.84	68.95	17.35		130.0	
		Z	6.77	68.66	17.21		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	39.97	118.78	39.16	9.30	60.0	±9.6 %
		Y	36.64	117.33	38.51		60.0	
		Z	28.19	109.42	36.13	•• • • • • • • • • • • • • • • • • • • •	60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	43.22	121.45	40.07	9.30	60.0	± 9.6 %
		Y	37.61	118.78	39.06	,	60.0	
		Z	29.77	111.44	36.87		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.92	67.44	13.60	0.00	150.0	± 9.6 %
		Y	0.67	63.31	10.51		150.0	
		Z	0.80	64.88	12.09	·····	150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.65	69.66	17.99	2.23	80.0	± 9.6 %
		Y	4.35	68.72	17.32		80.0	
		Z	4.56	68.93	17.55			
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	5.05	68.61	17.89	2.23	80.0 80.0	± 9.6 %
		Y	4.81	67.90	17.37		80.0	
		Z	5.01	68.17	17.57		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.97	68.24	17.87	2.23	80.0	±9.6 %
		TY T	4.75	67.55	17.37		80.0	
		z	4.94	67.85	17.56		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	5.03	68.27	17.91	2.23	80.0	± 9.6 %
		Y	4.81	67.56	17.41		80.0	
10658-	Pulso Mayoform (2001 (= 4000)	Z	4.99	67.90	17.61		80.0	
AAA	Pulse Waveform (200Hz, 10%)	X	13.25	86.83	23.62	10.00	50.0	± 9,6 %
		Y	14.38	88.09	23.44		50.0	
40070		Z	11.47	83.98	22.82		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	55.89	109.63	28.77	6.99	60.0	±9.6 %
		Y	73.21	111.71	28.47		60.0	······

ES3DV3-SN:3319

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	116.44	28.38	3.98	80.0	± 9.6 %
		Y	100.00	113.18	26.58		80.0	
		Z	100.00	116.19	28.39		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	118,35	27.71	2.22	100.0	± 9.6 %
		Y	100.00	112.59	24.89		100.0	
		Z	100.00	116.83	27.13		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	100.00	126.67	29.16	0.97	120.0	± 9.6 %
		Y	100.00	111.31	22.51		120.0	
		Z	100.00	120.40	26.63		120.0	

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-7357_Apr18

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7357
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	April 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			Jeh
Approved by:	Katja Pokovic	Technical Manager	22.0
			Jan 14
			Issued: April 19, 2018
This calibration certificate	e shall not be reproduced except in full	without written approval of the lab	naton

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c)
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d) –

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is ٠ implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW . signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EX3DV4

SN:7357

Calibrated:

Manufactured: February 5, 2015 April 18, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.37	0.48	0.40	± 10.1 %
DCP (mV) ⁸	89.1	99.1	96.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	151.5	±2.7 %
		Y	0.0	0.0	1.0		139.1	
		Z	0.0	0.0	1.0		158.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	Τ4 V⁻²	T5 V⁻¹	Т6
Х	37.91	303.3	40.25	6.413	0.832	4.998	0.00	0.454	1.006
Y	48.33	363.1	36.01	10.58	0.113	5.100	0.00	0.458	1.004
Z	39.38	305.2	38.03	5.76	0.610	5.046	0.00	0.461	1.008

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
64	54.2	0.75	14.92	14.92	14.92	0.00	1.00	± 13.3 %
150	52.3	0.76	13.49	13.49	13.49	0.00	1.00	± 13.3 %
300	45.3	0.87	12.37	12.37	12.37	0.08	1.20	± 13.3 %
450	43.5	0.87	11.17	11.17	11.17	0.14	1.20	± 13.3 %
750	41.9	0.89	10.50	10.50	10.50	0.45	0.85	± 12.0 %
835	41.5	0.90	10.11	10.11	10.11	0.37	0.93	± 12.0 %
1750	40.1	1.37	8.80	8.80	8.80	0.38	0.86	± 12.0 %
1900	40.0	1.40	8.47	8.47	8.47	0.18	0.83	± 12.0 %
2300	39.5	1.67	7.83	7.83	7.83	0.33	0.86	± 12.0 %
2450	39.2	1.80	7.43	7.43	7.43	0.37	0.89	± 12.0 %
2600	39.0	1.96	7.13	7.13	7.13	0.27	0.98	± 12.0 %
5250	35.9	4.71	5.62	5.62	5.62	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.93	4.93	4.93	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.23	5.23	5.23	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

			-		_				
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)	
150	61.9	0.80	12.99	12.99	12.99	0.00	1.00	± 13.3 %	
300	58.2	0.92	12.08	12.08	12.08	0.05	1.20	± 13.3 %	
450	56.7	0.94	11.52	11.52	11.52	0.08	1.20	± 13.3 %	
750	55.5	0.96	10.37	10.37	10.37	0.47	0.85	± 12.0 %	
835	55.2	0.97	10.17	10.17	10.17	0.37	0.93	± 12.0 %	
1750	53.4	1.49	8.43	8.43	8.43	0.37	0.86	± 12.0 %	
1900	53.3	1.52	8.08	8.08	8.08	0.36	0.83	± 12.0 %	
2300	52.9	1.81	7.74	7.74	7.74	0.38	0.85	± 12.0 %	
2450	52.7	1.95	7.60	7.60	7.60	0.35	0.88	± 12.0 %	
2600	52.5	2.16	7.44	7.44	7.44	0.33	0.93	± 12.0 %	
5250	48.9	5.36	4.78	4.78	4.78	0.50	1.80	± 13.1 %	
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.80	± 13.1 %	
5750	48.3	5.94	4.21	4.21	4.21	0.50	1.80	± 13.1 %	

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

April 18, 2018

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	11.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	151.5	± 2,7 %
		Y	0.00	0.00	1.00		139.1	
10010-	SAR Validation (Square, 100ms, 10ms)	Z	0.00	0.00	1.00	40.00	158.4	
CAA	SAR Validation (Square, 100ms, 10ms)	. X	1.67	61.93	7.65	10.00	20.0	±9.6 %
		Y	2.82	69.17	11.50		20.0	
10011-		Z	1.68	62.20	7.72	0.00	20.0	
CAB	UMTS-FDD (WCDMA)	X	0.91	67.36	14.64	0.00	150.0	± 9.6 %
		Y	1.03	67.52	15.32		150.0	
10012-		Z	0.87	67.00	14.33	0.44	150.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.03	63.20	14.83	0.41	150.0	± 9.6 %
·····		Y	1.15	63.79	15.34		150.0	
		Ζ	1.01	63.27	14.81		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	х	4.63	66.39	16.96	1.46	150.0	± 9.6 %
		Y	4.87	66.69	17.19		150.0	
40004		Z	4.64	66.53	16.99		150.0	
10021- D A C	GSM-FDD (TDMA, GMSK)	X	3.67	70.27	12.79	9.39	50.0	± 9.6 %
		Y	100.00	116.17	27.83		50.0	
40000		Z	17.04	87.58	18.77		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	3.48	69.40	12.45	9.57	50.0	± 9.6 %
		Y	100.00	115.39	27.52		50.0	
10024-	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z	8.91	80.25	16.55	0.50	50.0	
DAC	GPRS-FDD (TDIMA, GIMSK, TN 0-1)	×	1.80	66.18	9.84	6.56	60.0	± 9.6 %
		Y	100.00	120.19	28.55		60.0	
10025-		Z X	100.00	103.30	20.82	40.57	60.0	100%
DAC	EDGE-FDD (TDMA, 8PSK, TN 0)		3.42	64.49	22.34	12.57	50.0	± 9.6 %
		Y	6.04	85.62	35.55		50.0	
10026-	EDGE-FDD (TDMA, 8PSK, TN 0-1)	Z X	3.44 6.25	65.04 83.47	22.85 29.08	9.56	50.0	± 9.6 %
DAC						9.56	60.0	±9.0 %
		Y Z	9.24 6.56	95.88 85.41	35.47 30.17		60.0 60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	0.96	63.24	7.67	4.80	80.0	± 9.6 %
DAC						4.00		1 3.0 %
		Y	100.00	125.59	30.06		80.0	
40000		Z	100.00	100.14	18.62	2 66	80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	0.48	60.36	5.50	3.55	100.0	± 9.6 %
		Y	100.00	132.37	32.13	ļ	100.0	
40000		Z	99.97	95.45	15.98	7.00	100.0	100%
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	×	4.19	75.28	24.64	7.80	80.0	± 9.6 %
		Y	5.35	81.78	28.49	<u> </u>	80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	4.26	76.21 63.09	25.31	E 20	80.0 70.0	+06%
CAA					7.76	5.30		± 9.6 %
		Y	100.00	120.14	28.06	 	70.0	
10031-	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Z X	4.93 0.27	76.05 60.00	12.90 3.17	1.88	70.0	± 9.6 %
CAA		Y	100.00	135.00	31.47		100.0	
		Ż	0.26	60.00	3.07		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	27.08	314.20	3.36	1.17	100.0	± 9.6 %
CAA						1.17		1 3.0 /8
		Y	100.00	149.06	35.68		100.0	
		Z	1.21	330.96	55.77		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	х	3.08	73.10	16.00	5.30	70.0	± 9.6 %
		Y	100.00	136.30	37.75		70.0	
		Ζ	7.37	86.92	21.69		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH3)	Х	1.25	65.91	11.39	1.88	100.0	± 9.6 %
		Y	5.27	87.77	22.72		100.0	
		Z	1.70	70.42	13.93		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	0.99	64.64	10.52	1.17	100.0	± 9.6 %
		Y	2.59	77.96	18.88		100.0	
,		Z	1.19	67.26	12.19		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Х	3.48	74.91	16.77	5.30	70.0	± 9.6 %
		Y	100.00	136.90	38.02		70.0	
		Z	11.33	93.27	23.71		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.18	65.50	11.18	1.88	100.0	± 9.6 %
		Y	4.66	86.12	22.16	****	100.0	
		Z	1.56	69.56	13.55		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.00	64.92	10.78	1.17	100.0	± 9.6 %
		Y	2.61	78.41	19.18		100.0	
		Z	1.21	67.70	12.52		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	Х	0.95	64.99	10.40	0.00	150.0	± 9.6 %
		Y	1.84	72.12	15.71		150.0	
		Z	1.02	65.84	10.98		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	Х	1.77	64.37	9.09	7.78	50.0	± 9.6 %
		Y	100.00	113.16	25.71		50.0	
		Z	2.56	68.32	10.93		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.31	133.81	11.51	0.00	150.0	± 9.6 %
		Y	0.00	104.03	5.27		150.0	
		Z	0.33	142.49	0.98		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	4.01	66.51	12.74	13.80	25.0	± 9.6 %
		Y	100.00	110.91	26.95		25.0	
		Z	5.44	70.40	14.40		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	х	3.70	68.56	12.33	10.79	40.0	± 9.6 %
		Υ	100.00	112.50	26.54		40.0	
		Z	5.22	72.87	14.17		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	6.09	76.95	17.81	9.03	50.0	±9.6 %
		Y	100.00	128.62	35.43		50.0	
		Z	13.22	89.10	22.41		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.39	71.63	22.33	6.55	100.0	± 9.6 %
		Y	4.14	76.10	25.11		100.0	
		Z	3.42	72.27	22.83	ļ	100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Х	1.03	63.98	15.22	0.61	110.0	±9.6 %
		Y	1.18	64.90	16.05		110.0	
		Z	1.02	64.18	15.34		110,0	
10060- CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 5.5 Mbps)	X	5.25	93.28	23.11	1.30	110.0	± 9.6 %
		Y	100.00	145.92	38.93		110.0	······
		Z	39.44	123.36	31.22		110.0	

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	1.80	74.31	19.24	2.04	110.0	± 9.6 %
CAB	Mbps)							
		Y	3.02	83.93	24.56		110.0	
10062-		Z	2.14	78.36	21.37		110.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.44	66.41	16.45	0.49	100.0	± 9.6 %
		Y	4.68	66.67	16.57		100.0	
		Z	4.45	66.51	16.42		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.45	66.48	16.52	0.72	100.0	± 9.6 %
		Y	4.69	66.78	16.69		100.0	
		Z	4.46	66.59	16.51		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.70	66.70	16.72	0.86	100.0	± 9.6 %
		Y	4.99	67.05	16.93		100.0	
10005		Z	4.72	66.83	16.73		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.56	66.53	16.77	1.21	100.0	± 9.6 %
		Y	4.85	66.96	17.05		100.0	
10000		Z	4.58	66.69	16.81		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.57	66.51	16.90	1.46	100.0	± 9.6 %
		Y	4.87	66.98	17.22		100.0	
10007		Z	4.60	66.69	16.96		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.86	66.77	17.36	2.04	100.0	± 9.6 %
		Y	5.15	67.13	17.68		100.0	
		Ζ	4.89	66.94	17.44		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	4.88	66.65	17.49	2.55	100.0	± 9.6 %
		Y	5.20	67.19	17.93		100.0	
		Z	4.91	66.87	17.60		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	4.95	66.72	17.70	2.67	100.0	± 9.6 %
		Y	5.28	67.17	18.11		100.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4.99	66.91	17.80		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.71	66.43	17.22	1.99	100.0	± 9.6 %
		Y	4.96	66.77	17.51		100.0	
		Z	4.73	66.59	17.28		100.0	
10072- CAB	IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.67	66.65	17.37	2.30	100.0	± 9.6 %
		Y	4.94	67.10	17.75		100.0	
		Z	4.69	66.85	17.47		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.72	66.79	17.66	2.83	100.0	± 9.6 %
		Y	4.99	67.24	18.08		100.0	
		Z	4.75	67.01	17.79		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.72	66.70	17.78	3.30	100.0	± 9.6 %
		Υ	4.95	67.09	18.23		100.0	
		Z	4.74	66.91	17.92		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.74	66.71	18.01	3.82	90.0	± 9.6 %
		Y	4.98	67.20	18.56		90.0	
		Z	4.76	66.94	18.18		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.77	66.58	18.17	4.15	90.0	± 9.6 %
		Y	4.98	66.93	18.66		90.0	
		Z	4.79	66.78	18.33		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.80	66.66	18.27	4.30	90.0	± 9.6 %
		Y	5.00	66.98	18.75		90.0	
		Z	4.82	66.86	18.43		90.0	1

10082- CAB 10090- DAC	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-	Y Z	0.83	65.94	10.10			
CAB 10090-				00.84	12.49		150.0	
CAB 10090-			0.46	61.34	7.83		150.0	
	DQPSK, Fullrate)	X	0.68	60.00	3.10	4.77	80.0	± 9.6 %
	-	Y	0.78	61.11	4.54		80.0	
		Z	0.72	60.00	2.85		80.0	
	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	1.84	66.30	9.91	6.56	60.0	± 9.6 %
		Y	100.00	120.24	28.59		60.0	
40007		Z	100.00	103.44	20.90		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X Y	1.71	67.90	15.28 15.69	0.00	150.0	± 9.6 %
		Z	1.62	67.70 67.71	15.69		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	X	1.60		15.15	0.00	150.0	100%
CAB		^ Y	1.07	67.85 67.66	15.20	0.00	150.0 150.0	± 9.6 %
		Z	1.64	67.65	15.00		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6.29	83.56	29.10	9.56	60.0	± 9.6 %
DAC		Ŷ	9.34	96.14	35.56	9.50	60.0	1 9.0 %
		z	6.61	85.53	30.21		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	X	2.90	69.76	16.53	0.00	150.0	± 9.6 %
CAD	MHz, QPSK)	Y	3.14	70.37	16.71		150.0	± 3.0 78
		Ż	2.89	69.82	16.39	······	150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.04	67.08	15.83	0.00	150.0	± 9.6 %
		Y	3.24	67.51	15.94		150.0	
		Z	3.03	67.13	15.70		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.15	67.10	15.95	0.00	150.0	± 9.6 %
		Υ	3.34	67.47	16.02		150.0	
		Z	3.13	67.15	15.83		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	4.81	72.04	18.88	3.98	65.0	±9.6 %
		Y	6.41	77.25	21.56		65.0	
		Z	5.14	73.67	19.73		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	5.09	70.84	19.13	3.98	65.0	± 9.6 %
		Y	5.94	73.69	20.83		65.0	
		Z	5.16	71.44	19,51		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	x	4.78	69.37	18.75	3.98	65.0	± 9.6 %
		Y	5.83	73.15	20.89		65.0	
40400		Z	4.90	70.20	19.25		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.51	69.24	16.41	0.00	150.0	± 9.6 %
		Y	2.74	69.60	16.54		150.0	
40400		Z	2.49	69.21	16.24	0.00	150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.68	67.06	15.67	0.00	150.0	± 9.6 %
		Y	2.89	67.36	15.84		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Z X	2.67 1.99	67.07 68.49	15.55 15.84	0.00	150.0 150.0	± 9.6 %
		Y	2.22	68.71	16.15		150.0	
		Z	1.98	68.38	15.68		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.41	68.19	15.80	0.00	150.0	± 9.6 %
		Y	2.61	68.17	16,11		150.0	
		Z	2.40	68.17	15.74		150.0	

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.81	67.12	15.76	0.00	150.0	±9.6 %
		Y	3.02	67.35	15.89		150.0	
		Z	2.80	67.12	15.64		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	x	2.56	68.40	15.97	0.00	150.0	± 9.6 %
		Y	2.76	68.30	16.24		150.0	
		Z	2.55	68.39	15.92		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	x	4.95	66.96	16.54	0.00	150.0	± 9.6 %
		Y	5.12	67.17	16.44		150.0	
		Z	4.92	66.97	16.39		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.23	67.14	16.63	0.00	150.0	± 9.6 %
		Y	5.41	67.31	16.52		150.0	
		Z	5.18	67.06	16.45		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	Х	5.04	67.18	16.57	0.00	150.0	± 9.6 %
		Y	5.22	67.37	16.47		150.0	
		Z	5.01	67.18	16.42		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	х	4.94	66.92	16.53	0.00	150.0	± 9.6 %
		Y	5.09	67.03	16.39		150.0	
		Z	4.91	66.91	16.38		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	Х	5.34	67.47	16.81	0.00	150.0	± 9.6 %
		Y	5.50	67.52	16.63		150.0	
		Z	5.27	67.32	16.58		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.06	67.24	16.61	0.00	150.0	± 9.6 %
		Y	5.20	67.31	16.45		150.0	
		Z	5.01	67.18	16.43		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.17	67.11	15.85	0.00	150.0	± 9.6 %
		Y	3,38	67.48	15.94		150.0	
		Z	3,16	67.15	15.73		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.30	67.28	16.06	0.00	150.0	± 9.6 %
		Y	3.50	67.57	16.11		150.0	
		Z	3.29	67.32	15.94		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	х	1.73	68.17	14.94	0.00	150.0	± 9.6 %
		Y	2.00	68.71	15.82		150.0	
		Z	1.72	68.11	14.89		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	x	2.15	68,15	14.63	0.00	150.0	± 9.6 %
		Y	2.47	68.91	15.82		150.0	
		Z	2.17	68.32	14.76	İ	150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.86	65.26	12.63	0.00	150.0	± 9.6 %
		Y	2.24	66.62	14.22		150.0	
		Z	1.88	65.43	12.77		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	×	0.67	60.16	6.91	0.00	150.0	± 9.6 %
·····		Y	1.22	65.11	11.80		150.0	
		Z	0.71	60.61	7.39		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	×	0.95	60.06	6.44	0.00	150.0	± 9.6 %
		Y	1.65	64.56	10.76		150.0	
		Z	1.07	61.07	7.44		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.99	60.33	6.68	0.00	150.0	± 9.6 %
		Y	1.85	65.94	11.59		150.0	
		Z	1.13	61.55	7.80	I · · · · · · · · · · · · · · · · · · ·	150.0	

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.69	67.13	15.72	0.00	150.0	± 9.6 %
		Y	2.90	67.42	15.88		150.0	
		Z	2.68	67.14	15.60		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	2.82	67.19	15,80	0.00	150.0	± 9.6 %
		Y	3.03	67.40	15.93		150.0	
		Z	2.81	67.19	15.69		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	5.01	74.56	19.93	3.98	65.0	±9.6 %
	***	Y	6.65	79.71	22.70		65.0	
		Z	5.36	76.27	20.86		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	4.60	70.61	18.55	3.98	65.0	± 9.6 %
		Y	5.50	73.80	20.64		65.0	
10150		Z	4.69	71.33	19.06		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	4.95	71.72	19.46	3.98	65.0	± 9.6 %
		Y	5.84	74.66	21.37		65.0	
40.47		Z	5.05	72.49	19.99		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	2.04	68.92	16.11	0.00	150.0	± 9.6 %
		Y	2.27	69.12	16.41		150.0	
10155		Z	2.03	68.83	15.96		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.41	68.23	15.84	0.00	150.0	±9.6 %
		Y	2.61	68.18	16.13		150.0	
40450		Z	2.40	68.21	15.77		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.51	67.60	14.13	0.00	150.0	± 9.6 %
		Y	1.84	68.81	15.61		150.0	
		Z	1.52	67.67	14.19		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	×	1.63	65.15	12.07	0.00	150.0	± 9.6 %
		Y	2.08	67.20	14.25		150.0	
		Ζ	1.66	65.43	12.31		150.0	ļ
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	2.57	68.50	16.04	0.00	150.0	± 9.6 %
		Y	2.77	68.36	16.29		150.0	
		Z	2.56	68.48	15.98		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	1.70	65.38	12.24	0.00	150.0	± 9.6 %
		Y	2,19	67.65	14.54		150.0	
		Z	1.74	65.76	12.53		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.62	68,99	16.41	0.00	150.0	± 9.6 %
		Y	2.74	68.65	16.32		150.0	
10101		Z	2.56	68.70	16.16		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.71	67.15	15.66	0.00	150.0	± 9.6 %
		Y	2.92	67.34	15.86		150.0	
10100		Z	2.70	67.15	15.57		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.82	67.38	15.82	0.00	150.0	± 9.6 %
		Y	3.03	67.49	15.97		150.0	
10166-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	Z X	<u>2.81</u> 3.14	67.37 68.82	15.72 18.96	3.01	150.0 150.0	± 9.6 %
CAE	QPSK)		0.40		40.50		4000	
		Y	3.40	68.62	18.58		150.0	<u> </u>
10107		Z	3.24	69.38	19.21	0.04	150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	3.68	71.26	19.14	3.01	150.0	± 9.6 %
		Y	4.01	70.93	18.84		150.0	
		Z	3.86	71.98	19.46		150.0	

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	4.20	74.21	20.88	3.01	150.0	±9.6 %
		Y	4.39	72.91	20.06		150.0	
		Z	4.45	75,16	21.28		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.49	66.95	18.11	3.01	150.0	± 9.6 %
		Y	2.73	67.59	18.14		150.0	
		Z	2.58	67.69	18.47		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	3.17	72.06	20.27	3.01	150.0	± 9.6 %
		Y	3.45	72.20	20.01		150.0	
		Z	3.40	73.44	20.89		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	2.61	67.98	17.29	3.01	150.0	± 9.6 %
		Y	2.93	68.85	17.54		150.0	
		Z	2.74	68.83	17.69		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.59	76.79	22.90	6.02	65.0	± 9.6 %
		Y	7.70	92.12	29.64		65.0	
		Z	4.50	82.04	25.61		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	5.40	81.69	22.80	6.02	65.0	±9.6 %
		Y	14.31	100.07	30.15		65.0	
		Z	8,60	91.21	26.84		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.41	73.68	19.23	6.02	65.0	± 9.6 %
		Y	12.55	96.17	28.30		65.0	
		Z	5.50	82.57	23.30		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.47	66.66	17.85	3.01	150.0	± 9.6 %
		Y	2.70	67.34	17,92		150.0	
		Z	2.55	67.36	18.19		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	3.18	72.09	20.28	3.01	150.0	± 9.6 %
		Y	3.46	72.22	20.02		150.0	
		Z	3.41	73.46	20.90		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.48	66.79	17.93	3.01	150.0	±9.6 %
		Y	2.72	67.46	18.00		150.0	
		Z	2.57	67.51	18.28		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	3.15	71.92	20.18	3.01	150.0	± 9.6 %
		Y	3.43	72.05	19.92		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	3.38	73.25	20.78		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	2.85	69.85	18.61	3.01	150.0	± 9.6 %
		Y	3.17	70.44	18.65		150.0	
		Z	3.03	70.94	19.12		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	2.61	67.94	17.25	3.01	150.0	± 9.6 %
		Y	2.92	68.79	17.50		150.0	
		Z	2.74	68.78	17.65		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.48	66.77	17.93	3.01	150.0	± 9.6 %
		Y	2.71	67.45	18.00		150.0	
		Z	2.56	67.49	18.28		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.15	71.89	20.17	3.01	150.0	± 9.6 %
		Y	3.42	72.03	19.91		150.0	
		Z	3.37	73.22	20.77		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	2.60	67.92	17.24	3.01	150.0	± 9.6 %
,		Y	2.92	68.77	17.49		150.0	
· · · · ·		Z	2.73	68.75	17.64		150.0	1

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	2.49	66.81	17.95	3.01	150.0	± 9.6 %
		Y	2.72	67.49	18.02		150.0	
		ż	2.57	67.53	18.30		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	3.16	71.97	20.21	3.01	150.0	± 9.6 %
		Y	3.44	72.09	19.94		150.0	
		Ζ	3.39	73.31	20.81		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	Х	2,62	67.98	17.28	3.01	150.0	± 9.6 %
		Y	2.93	68.83	17.52		150.0	
		Z	2.74	68.82	17.67		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	2.50	66.88	18.03	3.01	150.0	±9.6 %
		Y	2,73	67.53	18.08		150.0	
		Z	2,58	67.61	18.38		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	3.26	72.60	20.60	3.01	150.0	± 9.6 %
		Y	3,53	72.62	20.27		150.0	
10105		Z	3.51	74.04	21.24		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	Х	2.67	68.35	17.55	3.01	150.0	± 9.6 %
		Y	2.99	69.18	17.77		150.0	
		Ζ	2.80	69.24	17.97		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	Х	4.32	66.50	16.16	0.00	150.0	± 9.6 %
		Y	4.52	66.59	16.14		150.0	
		Ζ	4.31	66.50	16.05		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.47	66.75	16.31	0.00	150.0	± 9.6 %
		Y	4,69	66.90	16.27		150.0	
		Z	4.46	66.77	16.19		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	Х	4.51	66.78	16.33	0.00	150.0	± 9.6 %
		Y	4.73	66.93	16.28		150.0	
		Z	4.50	66.80	16.21		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.31	66.51	16.16	0.00	150.0	± 9.6 %
		Y	4.52	66.65	16.16		150.0	
		Z	4.30	66.52	16.05		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.48	66.77	16.32	0.00	150.0	± 9.6 %
		Y	4.70	66.92	16.28		150.0	
	····	Z	4.47	66.78	16.20		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.50	66.79	16.33	0.00	150.0	± 9.6 %
		Y	4.73	66.95	16.30		150.0	
		Z	4.49	66.81	16.22		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.26	66.54	16.13	0.00	150.0	± 9.6 %
		Y	4.47	66.66	16.12	1	150.0	
		Z	4.25	66.55	16.01	ļ	150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.47	66.73	16.30	0.00	150.0	± 9.6 %
		Y	4.70	66.89	16.27		150.0	· ······
		Z	4.46	66.74	16.19		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.51	66.73	16.32	0.00	150.0	± 9.6 %
		Y	4.74	66.87	16.28		150.0	
		Ζ	4.51	66.74	16.20		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	4.91	66.89	16.51	0.00	150.0	± 9.6 %
		Y	5.06	67.05	16.39		150.0	1
		Ζ	4.88	66.88	16.36	1	150.0	1

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.21	67.18	16.67	0.00	150.0	± 9.6 %
		Y	5.37	67.24	16.51		150.0	
		Z	5.17	67.14	16.51		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	4.95	66.99	16.48	0.00	150.0	± 9,6 %
		Y	5.11	67.16	16.37		150.0	
		Z	4.91	66.98	16.33		150.0	
10225- CAB	UMTS-FDD (HSPA+)	Х	2.57	65.87	14.82	0.00	150.0	± 9.6 %
		Y	2.79	66.10	15.32		150.0	
		Z	2.57	65.89	14.81		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	5.70	82.73	23.27	6.02	65.0	± 9.6 %
		Y	15.45	101.64	30.73		65.0	
		Z	9.36	92.89	27.50		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.51	81.11	22.01	6.02	65.0	± 9.6 %
		Y	15.16	99.52	29.37		65.0	
		Z	9.33	91.39	26.29		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.37	80.87	24.58	6.02	65.0	± 9.6 %
		Y	8.06	93.39	30.16		65.0	
		Z	5.51	86.54	27.40		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	5.43	81.78	22.83	6.02	65.0	± 9.6 %
		Y	14.43	100.19	30.19		65.0	
		Z	8.67	91.34	26.89		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	5.22	80.18	21.60	6.02	65.0	± 9.6 %
		Y	14.07	98.09	28.85		65.0	
		Z	8.56	89.82	25.70		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	Х	4.21	80.08	24.19	6.02	65.0	± 9.6 %
		Y	7.72	92.42	29.75		65.0	
		Z	5.25	85.50	26.93		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	5.42	81.76	22.83	6.02	65.0	± 9.6 %
		Y	14.40	100.18	30.19		65.0	
		Z	8.65	91.31	26.89		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.21	80.16	21.59	6.02	65.0	± 9.6 %
		Y	14.03	98.05	28.84		65.0	
		Z	8.53	89.78	25.69		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.09	79.41	23.80	6.02	65.0	± 9.6 %
		Y	7.46	91.57	29.34		65.0	
		Z	5.06	84.64	26.49		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.43	81.79	22.84	6.02	65.0	± 9.6 %
		Y	14.42	100.22	30.20		65.0	
		Z	8.66	91.36	26.90		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	5.25	80.28	21.63	6.02	65.0	± 9.6 %
		Y	14,26	98.30	28.91		65.0	
		Z	8.64	89.96	25.74		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.21	80.11	24.20	6.02	65.0	± 9.6 %
		Y	7.73	92.49	29.78		65.0	
		Z	5.25	85.54	26.95		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	5.41	81.74	22.82	6.02	65.0	± 9.6 %
		Y	14.37	100.15	30.18		65.0	T
		Z	8.63	91.28	26.88		65.0	

10000					·····	165		
10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	Х	5.19	80.13	21.58	6.02	65.0	± 9.6 %
		Y	13.97	98.01	28.83	····	65.0	
		Z	8.50	89.73	25.67		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.20	80.08	24.19	6.02	65.0	± 9.6 %
		Y	7.71	92.44	29.76		65.0	
		Z	5.24	85.50	26.94		65.0	1
10241-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	X	6,28	77.75	23.74	6.98	65.0	± 9.6 %
CAA	16-QAM)	Ŷ	7.17	79.66	25.20	0.50	65.0	1 3.0 %
		Z	6.62	79.00				
10242-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	X	5.61	75.51	24.64	0.00	65.0	100%
CAA	64-QAM)				22.71	6.98	65.0	± 9.6 %
		Y	7.01	79.22	24.95		65.0	
40040		Z	6.04	77.21	23.74		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.77	72.80	22,43	6.98	65.0	± 9.6 %
		Y	5.72	75.84	24.40		65.0	
	· ······	Z	4.99	73.88	23.19		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	3.08	66.71	12.88	3.98	65.0	± 9,6 %
		Y	5.65	76.51	19.16		65.0	· · · · · ·
		Z	3.79	70.31	15.20		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	Х	3.05	66.35	12.65	3.98	65.0	± 9.6 %
		Y	5.47	75.72	18.77		65.0	
		Z	3.68	69.62	14.83		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	2.73	68.50	14.10	3.98	65.0	± 9.6 %
		Y	6.90	84.10	22.59		65.0	
		Z	3.38	72.30	16.31		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	3.32	68.16	14.83	3.98	65.0	± 9.6 %
		Y	5.00	75.29	19.75		65.0	
		z	3.63	70.11	16.18		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	3.35	67.83	14.68	3.98	65.0	± 9.6 %
		Y	4.95	74.49	19.36		65.0	
		Ž	3.62	69.55	15.90		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	3.90	73.79	17.79	3.98	65.0	± 9.6 %
		Y	7.87	86.63	24.46		65.0	l
		z	4.87	78.17	20.05		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	4.46	72.43	19.10	3.98	65.0	± 9.6 %
		Y	5.61	76.63	21.92		65.0	
		z	4.70	73.89	20.05		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	4.27	70.46	17.79	3.98	65.0	± 9.6 %
		Y	5.36	74.41	20.57		65.0	
		Z	4.43	71.53	18.56		65.0	l
10252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	X	4.43	76.28		3.98		+0.00/
CAD					20.36	3.90	65.0	± 9.6 %
		Y	7.12	83.67	24.31		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	Z X	5.40 4.54	79.04 70.25	21.81 18.29	3.98	65.0 65.0	± 9.6 %
	16-QAM)		E 07	70.70	00.07			
		Y	5.37	73.18	20.35		65.0	
40054		Z	4.62	70.94	18.80	0.0-0	65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	4.85	71.22	19.07	3.98	65.0	± 9.6 %
5, 15		Y	5.69	74.00	21.02		65.0	
		Z	4.94	71.96	19.60		65.0	

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	4.83	74.07	19.88	3.98	65.0	±9.6 %
		Y	6.20	78.60	22.49		65.0	
		Ż	5.10	75.57	20.75		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	2.29	63.25	9.85	3.98	65.0	± 9.6 %
		Y	4.33	72.34	16.30		65.0	
		Z	2.61	65.28	11.48		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	2.28	62.96	9.60	3.98	65.0	± 9.6 %
		Y	4.16	71.35	15.76		65.0	
		Z	2.56	64.75	11.10		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.96	64.07	10.75	3.98	65.0	± 9.6 %
		Y	4.97	78.32	19.50		65.0	
		Z	2.22	66.21	12.33		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	3.77	69.86	16.44	3.98	65.0	± 9.6 %
		Y	5.26	75.82	20.54		65.0	
		Z	4.07	71.70	17.67		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	3.81	69.66	16.35	3.98	65.0	± 9.6 %
		Y	5.26	75.42	20.36		65.0	
(05-)		Z	4.10	71.41	17.53		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	4.13	74.31	18.63	3.98	65.0	± 9.6 %
		Y	6.91	83.89	23.89		65.0	
······		Z	4.85	77.73	20.46		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	4.45	72.36	19.04	3.98	65.0	±9.6 %
		Y	5.60	76.58	21.88		65.0	
		Z	4.68	73.81	19.99		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	4.26	70.44	17.79	3.98	65.0	±9.6 %
		Y	5.34	74.38	20.56		65.0	
		Z	4.42	71.51	18.55		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	4.75	76.08	20.25	3.98	65.0	± 9.6 %
		Y	7.04	83.44	24.20		65.0	
		Z	5.33	78.79	21.68		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	4.60	70.61	18.56	3.98	65.0	± 9.6 %
		Y	5.50	73.80	20.64		65.0	
		Z	4.69	71.34	19.07		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	4.95	71.71	19.45	3.98	65.0	± 9.6 %
		Y	5.83	74.64	21.36		65.0	
		Z	5.05	72.48	19.97		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	5.01	74.52	19.91	3.98	65.0	± 9.6 %
		Y	6.63	79.66	22.68		65.0	
		Z	5.35	76.22	20.84		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	5.27	70.89	19.25	3.98	65.0	± 9.6 %
		Y	6.07	73.43	20.81		65.0	
		Z	5.33	71.43	19.60		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	5.29	70.58	19.15	3.98	65.0	± 9.6 %
		Y	6.04	72.94	20.64		65.0	
		Z	5.34	71.06	19.47		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	5.17	72.58	19.33	3.98	65.0	± 9.6 %
		Y	6.28	76.09	21.29		65.0	
		Z	5.35	73.62	19.93		65.0	1

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.41	66.43	14.82	0.00	150.0	± 9.6 %
		Y	2.58	66.48	15.24		150.0	
		Z	2.39	66.38	14.76		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.45	67.76	15.04	0.00	150.0	± 9.6 %
		Y	1.61	67.98	15.58		150.0	
		Z	1,42	67.56	14.85		150.0	
10277- CAA	PHS (QPSK)	X	1.74	59.75	5.31	9.03	50,0	± 9.6 %
		Y	1.81	61.19	6.71		50.0	
		Z	1.73	59.88	5.41		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	2.71	64.14	10.09	9.03	50.0	± 9.6 %
		Y	10.58	86.01	20.92		50.0	
		Z	2.95	65.66	11.11		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	2.77	64.34	10.25	9.03	50.0	± 9.6 %
		Y	10.86	86.33	21.10		50.0	
10-5-5-	1	Z	3.03	65.92	11.30		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	0.78	62.91	9.04	0.00	150.0	± 9.6 %
		Y	1.44	68.67	13.91		150.0	
		Z	0.82	63.50	9.52		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	0.44	60.90	7.41	0.00	150.0	± 9.6 %
		Y	0.81	65.70	12.35		150.0	
		Ζ	0,46	61.22	7.73		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.52	62.90	8.81	0.00	150.0	± 9.6 %
		Y	1.08	70.34	14.96		150.0	
		Z	0.54	63.47	9.26		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	0.85	67.98	11.75	0,00	150.0	± 9.6 %
		Y	1.81	77.73	18.47		150.0	
	·	Z	0.93	69.19	12.44		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.59	83.36	20.91	9.03	50.0	± 9.6 %
		Y	13.63	95.28	28.15		50.0	
		Z	12.33	87.48	22.99		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.52	69.36	16.49	0.00	150.0	± 9.6 %
	·	Y	2.75	69.70	16.61		150.0	
		Z	2.51	69.33	16.32		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.02	63.71	10.46	0.00	150.0	±9.6 %
		Y	1.56	67.65	14.07		150.0	
		Z	1.06	64.21	10.86		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	1.41	63.10	9.49	0.00	150.0	± 9.6 %
		Y	2.20	67.48	13.20		150.0	
		Z	1.66	65.04	10.89		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.19	60.99	7.64	0.00	150.0	± 9.6 %
		Y	1.75	63.96	10.73		150.0	
1000		Z	1.30	61.89	8.49		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.40	65.21	17.25	4.17	50.0	± 9.6 %
~		Y	4.79	65.64	17.57		50.0	
		Z	4.51	65.62	17.36		50.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	4.89	66.01	18.10	4.96	50.0	±9.6 %
		Y	5.23	66.10	18.21		50.0	
· · · · ·		Z	4.90	65.76	17.79		50.0	

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	X	4.65	65.68	17.92	4.96	50.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)							
		Y	4.97	65.72	18.04		50.0	
		Z	4.66	65.38	17.59		50.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.43	65.21	17.19	4.17	50.0	± 9.6 %
		Y	4.78	65.59	17.51		50.0	
		Z	4.47	65.30	17.12		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	4.15	67.54	18.96	6.02	35.0	± 9.6 %
		Y	4.30	67.06	19.45		35.0	
	·····	Z	4.22	67.78	19.08		35.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	4.43	66.43	18.72	6.02	35.0	±9.6 %
		Υ	4.66	66.30	19.12		35.0	
		Z	4.49	66.64	18.78		35.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.32	66.52	18.64	6.02	35.0	± 9.6 %
		Y	4.55	66.42	19.07		35.0	
		Z	4.38	66.74	18.71		35.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.30	66.75	18.79	6.02	35.0	± 9.6 %
		Y	4.52	66.60	19.20		35.0	
		Z	4.37	66.98	18.86		35.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	4.46	66.55	18.83	6.02	35.0	± 9.6 %
		Y	4.72	66.54	19.28		35.0	
		Z	4.52	66.77	18.90		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.39	66.51	18.71	6.02	35.0	± 9.6 %
		Y	4.60	66.34	19.08		35.0	
		Z	4.45	66.72	18.77		35.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.88	68.46	16.13	0.00	150.0	± 9.6 %
		Y	3.11	68.97	16.25		150.0	
		Z	2.86	68.50	15.98		150.0	
10313- AAA	iDEN 1:3	X	1.87	66.02	12.37	6.99	70.0	± 9.6 %
		Y	5.52	82.21	20.17		70.0	
		Z	2.06	67.90	13.38		70.0	
10314- AAA	IDEN 1:6	X	2.66	70.48	16.99	10.00	30.0	± 9.6 %
		Y	9.77	95.91	27.98		30.0	
		Z	4.14	77.84	20.07		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.95	63.27	14.86	0.17	150.0	± 9.6 %
		Y	1.06	63.68	15.21		150.0	
		Z	0.93	63.28	14.78		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.35	66.42	16.23	0.17	150.0	±9.6 %
		Y	4.58	66.66	16.32		150.0	
		Z	4.34	66.49	16.17		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.35	66.42	16.23	0.17	150.0	± 9.6 %
		Y	4.58	66.66	16.32	Į	150.0	ļ
		Z	4.34	66.49	16.17		150.0	ļ
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.44	66.78	16.30	0.00	150.0	± 9.6 %
		Y	4.68	66.96	16.27		150.0	
		Z	4.43	66.80	16.17		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.15	66.76	16.42	0.00	150.0	± 9.6 %
		Y	5.39	67.16	16.44		150.0	
		Z	5.17	66.92	16.36	1	150.0	1

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.46	67.17	16.51	0.00	150.0	± 9.6 %
		Y	5.63	67.44	16.43		150.0	· • • • • • • • • • • • • • • • • • • •
		Z	5.43	67.19	16.37		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	0.78	62.91	9.04	0.00	115.0	± 9.6 %
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	0.78	62.91	9.04	0.00	115,0	±9.6%
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	119.25	28.40	0.00	100.0	± 9.6 %
		Y	9.50	91.59	22.98		100.0	
40440		Z	100.00	122.00	29,77		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	×	3.12	77.42	16.90	3.23	80.0	± 9.6 %
	······································	Y	100.00	127.40	32.46		80.0	
		Z	100.00	125.01	30.73		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	х	0.90	62.74	14.48	0.00	150.0	±9.6 %
	······································	Y	1.00	62.96	14.62		150.0	
		Z	0.88	62.66	14.28		150.0	
10416- 	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.32	66.51	16.25	0.00	150.0	± 9.6 %
		Υ	4.52	66.62	16,21		150.0	
		Z	4.30	66.52	16.13		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.32	66.51	16.25	0.00	150.0	± 9.6 %
		Y	4.52	66.62	16.21		150.0	
	·····	Z	4.30	66.52	16.13		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	×	4.31	66.71	16.30	0.00	150.0	± 9.6 %
		Y	4.51	66.79	16.23		150.0	
		Z	4.30	66.71	16.18		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	• X	4.33	66.64	16.29	0.00	150.0	± 9.6 %
		Y	4.53	66.73	16.23		150.0	
		Z	4.32	66.65	16.17		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.44	66.62	16.30	0.00	150.0	±9.6 %
		Y	4.65	66.73	16.25		150.0	
10.102		Z	4.43	66.63	16.18		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.57	66.89	16.39	0.00	150.0	± 9.6 %
		Y	4.81	67.05	16.36		150.0	
40404		Z	4.56	66.90	16.28		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.50	66.84	16.37	0.00	150.0	± 9.6 %
		Y	4.73	67.00	16.33		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	Z X	<u>4.49</u> 5.17	66.86 67.18	16.25 16.65	0.00	150.0 150.0	± 9.6 %
		Y	5.33	67.00	10.51		450.0	
		Z	<u> </u>	67.30	16.51		150.0	
10426-	IEEE 802.11n (HT Greenfield, 90 Mbps,	X	5.13	67.14	16.48	0.00	150.0	1001
AAB	16-QAM)			67.40	16.76	0.00	150.0	± 9.6 %
		Y	5.34	67.33	16.52		150.0	
	<u> </u>	Z	5.16	67.27	16.54		150.0	

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.16	67.07	16.58	0,00	150.0	± 9.6 %
		Y	5.35	67.30	16.51		150.0	
		Z	5.13	67.07	16.44		150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.20	72.13	18.43	0.00	150.0	± 9.6 %
		Y	4.22	70.70	18.10		150.0	
		Z	4.22	72.19	18.46		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	3.93	67.10	16.09	0.00	150.0	± 9.6 %
		Y	4.20	67.18	16.20		150.0	
		Z	3.93	67.10	16.01		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.26	66.93	16.28	0.00	150.0	± 9.6 %
	······································	Y	4.50	67.05	16.28		150.0	
40.400		Z	4.25	66.94	16.17		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.52	66.87	16.39	0.00	150.0	± 9.6 %
		Y	4.75	67.03	16.35		150.0	
10404		Z	4.51	66.89	16.27		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.28	72.84	18.10	0.00	150.0	± 9.6 %
		Y	4.33	71.56	18.07		150.0	
40425		Z	4.34	73.06	18.24		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.96	76.73	16.60	3.23	80.0	± 9.6 %
		Y	100.00	127.17	32,36		80.0	
10117		Z	100.00	124.69	30.58		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.15	66.77	14.81	0.00	150.0	± 9.6 %
		Y	3.49	67.18	15.50		150.0	
		Z	3.17	66.84	14.85		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	3.79	66.88	15.96	0.00	150.0	± 9.6 %
		Y	4.04	66.96	16.06		150.0	
		Z	3.79	66.88	15.87		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.09	66.75	16.17	0.00	150.0	± 9.6 %
		Y	4.31	66.88	16.18		150.0	
		Z	4.08	66.77	16.07		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.31	66.64	16.24	0.00	150.0	± 9.6 %
		Y	4.51	66.80	16.21		150.0	
		Z	4.30	66.66	16.12		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	2.94	66.45	13.98	0.00	150.0	± 9.6 %
		Y	3.38	67.33	15.10		150.0	
1015-		Z	2.98	66.61	14.10		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.17	67.89	16.91	0.00	150.0	± 9.6 %
		Y	6.20	67,84	16.66		150.0	
		Z	6.10	67.86	16.74		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.65	65.21	15.97	0.00	150.0	± 9.6 %
		Y	3.78	65.27	15.92		150.0	
10120		Z	3.63	65.21	15.85		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.63	70.67	16.50	0.00	150.0	± 9.6 %
		Y	3.97	70.83	17.45		150.0	
		Z	3.75	71.23	16.87		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.91	69.28	18,19	0.00	150.0	± 9.6 %
		Y	5.06	68,34	18.09		150.0	
		Z	4.97	69.44	18.31		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	х	0.82	68.91	15, 77	0.00	150.0	± 9.6 %
		Y	0.90	68.29	16.15		150.0	
		Ζ	0.77	68.38	15.37		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	2.32	75.39	17.14	3.29	80.0	± 9.6 %
		Y	100.00	131.59	34.49		80.0	
		Ζ	100.00	129.59	32.92		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	0.76	60.00	7.09	3.23	80.0	± 9.6 %
		Y	4.63	77.57	16.00		80.0	
		Z	0.74	60.00	7.79		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	0.79	60.00	6.50	3.23	80.0	± 9.6 %
		Y	1.49	65.34	10.90		80.0	
10101		Z	0.76	60.00	7.16		80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.48	69.57	14.21	3.23	80.0	± 9.6 %
		Y	100.00	128.72	32.98		80.0	
10/0-		Z	100.00	125.35	30.81		80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.76	60.00	7.02	3.23	80.0	±9.6 %
		Y	2.92	72.75	14.31		80.0	
10.100		Z	0.74	60.00	7.72	A	80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.79	60.00	6.46	3.23	80.0	± 9.6 %
		Y	1.30	63.97	10.25		80.0	
10.10-		Z	0.76	60.00	7.11		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	1.57	70.35	14.56	3.23	80.0	± 9.6 %
		Y	100.00	129.06	33.13		80.0	
		Z	100.00	125.82	31.02		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.76	60.00	7.04	3.23	80.0	± 9.6 %
		Y	3.25	73.90	14.73		80.0	
		Z	0.74	60.00	7.74		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.79	60.00	6.46	3.23	80.0	± 9.6 %
		Y	1.30	64.00	10.26		80.0	
		Z	0.76	60.00	7.11		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	1.56	70.33	14.55	3.23	80.0	± 9.6 %
		Y	100.00	129.11	33.14	-	80.0	
		Z	100.00	125.84	31.01		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	0.76	60.00	7.03	3.23	80.0	± 9.6 %
		Y	3.21	73.75	14.66		80.0	ļ
10.175		Z	0.74	60.00	7.73		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.79	60.00	6.44	3.23	80.0	± 9.6 %
		Y	1.29	63.92	10.21		80.0	
10		Z	0.76	60.00	7.09		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.56	70.28	14.52	3.23	80.0	±9.6 %
		Y	100.00	129.06	33.12		80.0	
10474-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-	Z X	100.00 0.76	125.78 60.00	30.99 7.02	3.23	80.0 80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)			L		ļ		I
		Y	3.17	73.64	14.62		80.0	1
		Z	0.74	60.00	7.73		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.78	60.00	6.45	3.23	80.0	± 9.6 %
		Y	1.29	63.89	10.20		80.0	
		Z	0.76	60.00	7.09		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	0.76	60.00	7.00	3.23	80.0	± 9.6 %
		Y	2.91	72.72	14.27		80.0	
		Z	0.74	60.00	7.70		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.79	60.00	6.43	3.23	80.0	± 9.6 %
		Y	1.28	63.82	10.16		80.0	
		Z	0.76	60.00	7.08		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.36	78.87	19.25	3.23	80.0	±9.6 %
		Y	6.72	85.93	23.37		80.0	
		Ζ	31.53	108.71	28.80		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.01	65.44	11.92	3.23	80.0	± 9.6 %
		Y	7.23	81.86	20.03		80.0	ļ
40404		Z	6.32	79.43	17.87		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.64	62.93	10.36	3.23	80.0	± 9.6 %
		Y	5.72	78.02	18.32		80.0	
40400		Z	3.41	71.49	14.62		80.0	L
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.29	62.41	10.80	2.23	80.0	± 9.6 %
		Y	3.64	76.21	18.93		80.0	
40.400		Z	1.66	65.83	12.91		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.52	61.14	9.55	2.23	80.0	± 9.6 %
		Y	4.09	73.43	17.03		80.0	
		Z	2.32	66.35	12.70		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.52	60.89	9.42	2.23	80.0	± 9.6 %
		Y	3.80	72.18	16.53		80.0	
		Z	2.19	65.41	12.27		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.96	67.14	14.58	2.23	80.0	± 9.6 %
		Y	3.64	76.20	19.95		80.0	
		Z	2.47	70.93	16.63		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.93	63.65	12.21	2.23	80.0	± 9.6 %
		Y	3.34	71.00	17.20		80.0	
		Z	2.25	65.99	13.71		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.95	63.41	12.07	2.23	80.0	± 9.6 %
		Y	3.31	70.45	16.94		80.0	
		Z	2.25	65.61	13.50		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.57	68.84	16.72	2.23	80.0	± 9.6 %
		Y	3.64	73.87	19.67		80.0	
		Z	2.88	71.05	17.92		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.71	66.42	15.54	2.23	80.0	±9.6 %
		Y	3.41	69.51	17.78		80.0	
10100		Z	2.89	67.77	16.40		80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.80	66.35	15.53	2.23	80.0	± 9.6 %
		Y	3.50	69.28	17.68		80.0	
10101		Z	2.97	67.63	16.34		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.93	68.13	16.75	2.23	80.0	± 9.6 %
		Y	3.79	71.78	18.88	ļ	80.0	
10100		Z	3.14	69.61	17.57		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.14	66.26	16.05	2.23	80.0	± 9.6 %
		1	~ - ^	1				
		Y Z	3.72 3.26	68.46 67.14	17.58 16.60		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.20	66.19	16.02	2.23	80.0	±9.6 %
		Υ	3.78	68.30	17.52		80.0	
		Z	3.32	67.03	16.55		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.09	69.16	17.09	2.23	80.0	± 9.6 %
		Y	4.18	73.66	19.49		80.0	
		Z	3.38	70.96	18.01		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.16	66.52	16.26	2.23	80.0	±9.6 %
		Y	3.75	68.86	17.79		80.0	
		Z	3.28	67,44	16.81		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.25	66.39	16.25	2.23	80.0	± 9.6 %
		Y	3.82	68.54	17.67		80.0	
		Z	3.36	67.23	16.76		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	0.98	60.00	8.08	2.23	80.0	± 9.6 %
		Υ	2.67	71.65	16.05		80.0	
		Ζ	0.96	60.00	8.56		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.18	60.00	7.01	2.23	80.0	± 9.6 %
		Y	1.73	63.28	11.10		80.0	
		Z	1.15	60.00	7.42		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.20	60.00	6.87	2.23	80.0	± 9.6 %
		Y	1.65	62.50	10.55		80.0	
		Z	1.17	60.00	7.27		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	2.22	67.95	15.51	2.23	80.0	± 9.6 %
		Y	3.54	74.72	19.65		80.0	
		Z	2.63	70.95	17.16	*****	80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.29	65.10	13.66	2.23	80.0	± 9.6 %
		Y	3.38	70.39	17.41		80.0	
		Z	2.58	67.13	14.94		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	2.32	64.94	13.52	2.23	80.0	± 9.6 %
		Y	3.43	70.21	17.27		80.0	······
		Z	2.61	66.92	14.77		80.0	······································
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.54	68.66	16.62	2.23	80.0	± 9.6 %
		Y	3.60	73.66	19.57		80.0	
		Z	2.84	70.82	17.80		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	х	2.69	66.32	15.48	2.23	80.0	± 9.6 %
		Y	3.40	69.42	17.73		80.0	
		Z	2.87	67.65	16.32		80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.78	66.26	15.46	2.23	80.0	± 9.6 %
		Y	3.48	69.19	17.63		80.0	
1		Z	2.96	67.52	16.27		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.07	69.03	17.01	2.23	80.0	± 9.6 %
		Y	4.15	73.51	19.42		80.0	
		Ζ	3.35	70.80	17.93		80.0	
40507								
10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.15	66.46	16.22	2.23	80.0	± 9.6 %
		X	3.15	66.46 68.80	16.22	2.23	80.0	± 9.6 %

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.24	66.32	16.20	2.23	80.0	± 9.6 %
		Y	3.81	68.47	17.63		80.0	
		Z	3.35	67.15	16.71		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.51	68.36	16.83	2.23	80.0	± 9.6 %
		Y	4.41	71.84	18.68		80,0	
		Z	3.72	69.67	17.51		80.0	
10510- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.65	66.40	16.44	2.23	80.0	± 9.6 %
		Y	4.20	68.42	17.64		80.0	
10511		Z	3.74	67.11	16.83		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.72	66.27	16.42	2.23	80.0	± 9.6 %
		Y	4.25	68.13	17.55		80.0	
		Z	3.81	66.92	16.79		80,0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.53	69.27	17.06	2.23	80.0	± 9.6 %
		Y	4.71	73.81	19.35		80.0	
10542		Z	3.83	70.97	17.89		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.53	66.49	16.47	2.23	80.0	± 9.6 %
		Y	4.09	68.73	17.78		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	3.62 3.58	67.27 66.23	16.91 16.41	2.23	80.0 80.0	± 9.6 %
	Gubiranie=2,0,4,7,0,9)	Y	4.11	68.25	17.62		80.0	
	····	Z	3.67	66.92	16.81		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.86	62.95	14.53	0.00	150.0	± 9.6 %
		Y	0.96	63.14	14.68		150.0	
		Z	0.84	62,85	14.32		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.68	75.09	17.93	0.00	150.0	± 9.6 %
		Y	0.60	70.79	17.39		150.0	
		Z	0.59	73.58	17.02		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.71	65.13	15.13	0.00	150.0	± 9.6 %
		Y	0.81	65.08	15.31		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	0.69 4.31	64.87 66.61	14.81 16.23	0.00	150.0 150.0	± 9.6 %
		Y	4.51	66.70	16.19		150.0	
		Z	4.30	66.61	16.12		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.46	66.79	16.33	0.00	150.0	± 9.6 %
		Y	4.69	66.93	16.31		150.0	
		Z	4.45	66.80	16.22		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.32	66.72	16.24	0.00	150.0	± 9.6 %
		Y	4.55	66.89	16.23		150.0	
10521-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	Z X	4.31 4.25	66.74 66.68	16.13 16.22	0.00	150.0 150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)	Y	4.25	66.88	16.22	0.00	150.0	1.9.0 %
		Z	4.40	66.71	16.11		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.30	66.84	16.33	0.00	150.0	± 9.6 %
		Y	4.54	66.98	16.30		150.0	
		Ż	4.30	66.85	16.22	1	150.0	

10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.22	66.79	16.22	0.00	150.0	± 9.6 %
		Y	4.42	66.85	16.15		150.0	
		Z	4.21	66.79	16.10		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.25	66.78	16.31	0.00	150.0	±9.6 %
		Y	4.48	66.90	16.27		150.0	
		Z	4.24	66.79	16.19		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	Х	4.28	65.85	15.93	0.00	150.0	±9.6 %
		Y	4.47	65.95	15.86		150.0	
		Z	4.27	65.86	15.81		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.41	66.15	16.05	0.00	150.0	± 9.6 %
		Y	4.64	66.31	16.00		150.0	
		Z	4.40	66.17	15.93		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.34	66.11	15.98	0.00	150.0	± 9.6 %
		Y	4.56	66.27	15.95		150.0	
		Z	4.33	66.13	15.87		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.35	66.13	16.02	0.00	150.0	± 9.6 %
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
10529- AAB	IEEE 802.11ac WIFi (20MHz, MCS4, 99pc duty cycle)	Х	4.35	66.13	16.02	0.00	150.0	± 9.6 %
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.32	66.16	16.00	0.00	150.0	± 9.6 %
		Y	4.57	66.39	15.99		150.0	
		Z	4.31	66.19	15.89		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	Х	4.20	66.01	15.92	0.00	150.0	±9.6 %
		Y	4.43	66.24	15.92		150.0	
		Z	4.19	66.04	15.81		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.36	66.21	16.02	0.00	150.0	± 9.6 %
		Y	4.59	66.34	15.97		150.0	
		Z	4.35	66.22	15.90		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.94	66.18	16.13	0.00	150.0	± 9.6 %
		Y	5.11	66.38	16.03		150.0	······································
		Z	4.91	66.20	15.99		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	4.99	66.35	16.21	0.00	150.0	± 9.6 %
		Y	5.18	66.56	16.12		150.0	İ
		Z	4.97	66.36	16.07		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	4.87	66.32	16.17	0.00	150.0	± 9.6 %
		Y	5.05	66.51	16.07		150.0	
		Z	4.85	66.34	16.04		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.94	66.34	16.18	0.00	150.0	± 9.6 %
		Y	5.10	66.48	16.06		150,0	
		Z	4.91	66.31	16.03		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.01	66.30	16.21	0.00	150.0	± 9.6 %
		Y	5.19	66.49	16.11		150.0	
		Z	4.98	66.30	16.06		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.93	66.22	16.18	0.00	150.0	± 9.6 %
		Y	5.13	66.52	16.13		150.0	1
		Z	4.91	66.26	16.06	1	150.0	1

10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	4.90	66.09	16.10	0.00	150.0	± 9.6 %
		Y	5.10	66.38	16.06		150.0	
		z	4.88	66.13	15.98		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.07	66.24	16.19	0.00	150.0	±9.6 %
		Y	5.25	66.45	16.11		150.0	
		Z	5.04	66.26	16.06		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.16	66.37	16.29	0.00	150.0	± 9.6 %
		Y	5.33	66.48	16.14		150.0	
		Z	5.12	66.32	16.12		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.28	66.21	16.10	0.00	150.0	± 9.6 %
		Y	5.42	66.50	16.03		150.0	
		Z	5.25	66.26	15.98		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	Х	5.51	66.84	16.38	0.00	150.0	± 9.6 %
		Y	5.61	66.90	16.18		150.0	
		Z	5.45	66.77	16.19		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.32	66.36	16.14	0.00	150.0	± 9.6 %
		Y	5.48	66.70	16.10		150.0	
105/-		Z	5.29	66.40	16.02		150.0	
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.43	66.58	16.25	0.00	150.0	± 9.6 %
		Y	5.55	66.74	16.11		150.0	
		Z	5.37	66.52	16.07		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.67	67.49	16.67	0.00	150.0	± 9.6 %
		Y	5.79	67.62	16.52		150.0	
		Z	5.59	67.37	16.46		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	Х	5.44	66.73	16.35	0.00	150.0	± 9.6 %
		Y	5.51	66.72	16.12		150.0	
		Z	5.36	66.62	16.14		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.31	66.31	16.10	0.00	150.0	± 9.6 %
		Y	5.52	66.76	16.10		150.0	
		Z	5.30	66.41	15.99		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.28	66.30	16.09	0.00	150.0	± 9.6 %
		Y	5.44	66.57	16.01		150.0	
		Z	5.25	66.34	15.96		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	Х	5.34	66.26	16.10	0.00	150.0	± 9.6 %
		Y	5.52	66.60	16.06		150.0	
		Z	5.31	66.32	15.98		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.72	66.58	16.20	0,00	150.0	± 9.6 %
		Y	5.83	66.86	16.12		150.0	
	······································	Z	5.67	66.61	16.06		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.84	66.90	16.34	0.00	150.0	± 9.6 %
		Y	5.95	67.15	16.24		150.0	
		Z	5.79	66.90	16.19		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	5.87	66.98	16.38	0.00	150.0	± 9.6 %
		Y	5.98	67.20	16.26		150.0	
		Z	5.82	66.99	16.23		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	Х	5.81	66.79	16.30	0.00	150.0	± 9.6 %
		Y	5.94	67.10	16.23		150.0	
		Z	5.77	66.83	16.17	1	150.0	r

10558-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	5.82	66.86	16.35	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)		E 00	07.00	40.00		450.0	
		Y	5.99	67.26	16.33		150.0	
10560-	IEEE 802.11ac WiFi (160MHz, MCS6,	ZX	5.79	66.94	16.24	0.00	150.0	
AAC	99pc duty cycle)		5.84	66.78	16.35	0.00	150.0	± 9.6 %
		Y	5.98	67.11	16.29		150.0	
40504		Z	5.80	66.82	16.22		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.78	66.81	16.39	0.00	150.0	±9.6 %
		Y	5.91	67.08	16.31		150.0	
10500		Z	5.74	66.84	16.26		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.83	66.94	16.46	0.00	150.0	± 9.6 %
		Y	6.02	67.44	16.49		150.0	
40500		Z	5.80	67.03	16.35	0.00	150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	5.98	67.08	16.50	0.00	150.0	± 9.6 %
······		Y	6.21	67.62	16.54		150.0	
40504		Z	5.91	67.01	16.31		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.63	66.62	16.36	0.46	150.0	± 9.6 %
		Y	4.84	66.79	16.36		150.0	
40505		Z	4.61	66.63	16.24		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	4.83	67.05	16.69	0.46	150.0	± 9.6 %
		Y	5.06	67.22	16.67		150.0	
10500		Z	4.82	67.07	16.58		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.66	66.85	16.48	0.46	150.0	± 9.6 %
		Y	4.90	67.07	16.49		150.0	
		Z	4.65	66.88	16.38		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.70	67.27	16.87	0.46	150.0	± 9.6 %
		Y	4.93	67.45	16.84		150.0	
		Z	4.69	67.33	16.78		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.56	66.58	16.20	0.46	150.0	± 9.6 %
		Y	4.81	66.86	16.28		150.0	
		Z	4.55	66.62	16.10		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	Х	4.68	67.48	17.00	0.46	150.0	± 9.6 %
		Y	4.88	67.55	16.91		150.0	
		Z	4.67	67.53	16.91		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	Х	4.69	67.30	16.91	0.46	150.0	± 9.6 %
		Y	4.92	67.39	16.83		150.0	
		Z	4.68	67.31	16.79		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	1.00	63.45	14.91	0.46	130.0	± 9.6 %
		Y	1.13	64.20	15.58		130.0	
		Z	0.98	63.57	14.96		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	Х	1.01	64.01	15.28	0.46	130.0	± 9.6 %
		Y	1.14	64.75	15.94		130.0	
		Z	0.99	64.16	15.34		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.87	85.75	21.98	0.46	130.0	± 9.6 %
		Y	1.92	86.55	24.04		130.0	
		Z	2.25	89.51	23.31		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.08	70.06	18.36	0.46	130.0	± 9.6 %
		Y	1.22	70.33	18.86		130.0	
		Z	1.09	70.58	18.62		130.0	

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.39	66.32	16.32	0.46	130.0	± 9.6 %
	OFDM, 6 Mbps, 90pc duty cycle)		1.00		10.10			
		Y	4.62	66.58	16.43		130.0	
10576-		Z	4.39	66.40	16.27		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 %
		Y	4.65	66.74	16.49		130.0	
		Z	4.42	66.60	16.36		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	± 9.6 %
		Y	4.85	67.03	16.66		130.0	
		Z	4.59	66.86	16.52		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	± 9.6 %
		Y	4.74	67.18	16.75		130.0	
·		Z	4.50	67.02	16.64		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	± 9.6 %
		Y	4.51	66.48	16.08		130.0	
	······	Z	4.24	66.15	15.83		130.0	
10580- AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	± 9.6 %
		Y	4.56	66.53	16.11		130.0	
		Z	4.29	66.22	15.86		130.0	·
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 %
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.17	65.84	15.66	0.46	130.0	± 9.6 %
		Y	4.45	66.25	15.88		130.0	
		Ż	4.18	65.90	15.60		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.39	66.32	16.32	0.46	130.0	± 9.6 %
		Y	4.62	66.58	16.43		130.0	
		z	4.39	66.40	16.27		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 %
		Y	4.65	66.74	16.49		130.0	
		z	4.42	66.60	16.36		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	±9.6 %
		Y	4.85	67.03	16.66		130.0	
		z	4.59	66.86	16.52		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	± 9.6 %
		Y	4.74	67.18	16.75		130.0	
		z	4.50	67.02	16.64		130.0	L
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	±9.6 %
		Y	4.51	66.48	16,08		130.0	
		Z	4.24	66.15	15,83		130.0	L
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	±9.6 %
		Y	4.56	66.53	16.11	,.,	130.0	
		Z	4.29	66.22	15.86		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 %
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.17	65.84	15.66	0.46	130.0	± 9.6 %
	and the second	Y	4.45	66.25	15.88		130.0	
		z	4.18	65.90	15.60			

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.55	66.42	16.46	0.46	130.0	± 9.6 %
		Y Z	4.78 4.55	66.64 66.49	16.53 16.40		130.0 130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	×	4.67	66.72	16.59	0.46	130.0	± 9.6 %
		Y	4.93	66.98	16.66		130.0	
		Z	4.68	66.80	16.53		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.59	66.59	16.43	0.46	130.0	±9.6 %
		Y	4.85	66.88	16.54		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	Z X	4.59 4.64	66.67 66.77	16.38 16.61	0.46	130.0 130.0	± 9.6 %
		Y	4.90	67.05	16.69		130.0	
		Z	4.65	66.86	16.56		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.61	66.75	16.51	0.46	130.0	± 9.6 %
		Y	4.87	67.00	16.59		130.0	
40500		Z	4.61	66.82	16.45		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.54	66.71	16.50	0.46	130.0	± 9.6 %
		Y Z	<u>4.80</u> 4.54	67.00 66.79	16.60 16.44		130.0 130.0	
10597-	IEEE 802.11n (HT Mixed, 20MHz,	x	4.34	66.57	16.34	0.46	130.0	± 9.6 %
AAB	MCS6, 90pc duty cycle)	Y	4.49	66.90	16.48	0.40	130.0	1 5.0 %
		Z	4.49	66.65	16.29		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.48	66.81	16.63	0.46	130.0	± 9.6 %
		Y	4.73	67.12	16.73		130.0	
		Z	4.49	66.91	16.58		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.31	67.13	16.85	0.46	130.0	± 9.6 %
		Y	5.45	67.20	16.74		130.0	
		Z	5.25	67.05	16.69		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.48	67.76	17.14	0.46	130.0	± 9.6 %
		Y Z	5.57 5.39	67.58 67.54	16.91 16.90		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.31	67.28	16.91	0.46	130.0	± 9.6 %
		Y	5.47	67.34	16.80		130.0	
		Z	5.27	67.22	16.76		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.43	67.41	16.89	0.46	130.0	± 9.6 %
		Y	5.56	67.39	16.75		130.0	
10000		Z	5.40	67.36	16.75		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.54	67.82	17.25	0.46	130.0	± 9.6 %
		- Y	5.64	67.67	17.02		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	Z X	<u>5.49</u> 5.42	67.76 67.47	17.09 17.05	0.46	130.0 130.0	± 9.6 %
		Y Z	5.46 5.37	67.19 67.38	16.76 16.88		130.0 130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.43	67.47	17.04	0.46	130.0	± 9.6 %
		Y	5.56	67.49	16.91		130.0	
		Z	5.37	67.38	16,87		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.17	66.77	16.54	0.46	130.0	± 9.6 %
		Y	5.31	66.83	16.45		130.0	
		Z	5.12	66.68	16.37		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.40	65.75	16.09	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)	_						
		Y	4.62	65.97	16.16		130.0	
10600		Z	4.40	65.83	16.04		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.54	66.09	16.24	0.46	130.0	± 9.6 %
		Y	4.80	66.37	16.32		130.0	
10000		Z	4.55	66.18	16.20		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	×	4.43	65.91	16.05	0.46	130.0	± 9.6 %
·····		Y	4.69	66.22	16.16		130.0	
10610-		Z	4.44	66.00	16.00		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.49	66.09	16.23	0.46	130.0	± 9.6 %
		<u> </u>	4.74	66.38	16.32		130.0	
10611-		Z	4.49	66.18	16.19		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.40	65.88	16.06	0.46	130.0	± 9.6 %
		Y	4.66	66.19	16.17		130.0	
10612-	IEEE 802.11ac WiFi (20MHz, MCS5,	Z	4.40	65.97	16.02		130.0	
AAB	90pc duty cycle)	X	4.39	66.01	16.10	0.46	130.0	± 9.6 %
		Y	4.66	66.35	16.22		130.0	
10613-		Z	4.40	66.10	16.06		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.38	65.82	15.94	0.46	130.0	± 9.6 %
		Y	4,67	66.22	16,10		130.0	
10614-		Z	4.39	65.92	15.90		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.35	66.06	16.21	0.46	130.0	± 9.6 %
		Y	4.61	66.40	16.32		130.0	
		Z	4.36	66.17	16.17		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.39	65.69	15.81	0.46	130.0	± 9.6 %
		Y	4.66	66.03	15.96		130.0	
		Z	4.39	65.77	15.76		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.07	66.15	16.34	0.46	130.0	± 9.6 %
·····		Y	5.27	66.44	16.35		130.0	
		Z	5.05	66.21	16.25		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.14	66.37	16.43	0.46	130.0	±9.6 %
		Y	5.34	66.62	16.41		130.0	
		Z	5.12	66.42	16.33		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.03	66.38	16.45	0.46	130.0	± 9.6 %
		Y	5.22	66.62	16.43		130.0	
1001-		Z	5.02	66.45	16.36		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.07	66.24	16.31	0.46	130.0	±9.6 %
		Y	5.24	66.43	16.27		130.0	
10000		Z	5.03	66.23	16.18		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.13	66.23	16.35	0.46	130.0	±9.6 %
		Y	5.33	66.47	16.34		130.0	
40004		Z	5.11	66.25	16.24		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.12	66.28	16.51	0.46	130.0	± 9.6 %
	····	Y	5.33	66.60	16.51		130.0	
		Z	5.11	66.38	16.44		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.11	66.38	16.55	0.46	130.0	± 9.6 %
		Y	5.34	66.76	16.59		130.0	
		Z	5.11	66.50	16.49		130.0	

10624- IEEE AAB 90pc 10625- IEEE AAB 90pc 10626- IEEE AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10628- IEEE AAB 90pc 10630- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (40MHz, MCS8, duty cycle) 802.11ac WiFi (40MHz, MCS9, duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle)	Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z	5.22 4.98 5.20 5.41 5.19 5.30 5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.67 5.40 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67	66.30 65.96 66.20 66.49 66.26 66.37 67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.49	16.24 16.08 16.39 16.30 16.54 16.52 16.28 16.31 16.54 16.54 16.51 16.52 16.31 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16.10	0.46 0.46 0.46 0.46 0.46	130.0 130.0	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAB 90pc 10625- IEEE AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10628- IEEE AAB 90pc 10632- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (40MHz, MCS9, duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle)	Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X	4.98 5.20 5.41 5.19 5.30 5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.60 5.38 5.55 5.67 5.49	65.96 66.20 66.49 66.26 66.37 67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.49	16.08 16.39 16.30 16.54 16.52 16.28 16.31 16.54 16.54 16.51 16.21 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16.10 16.35	0.46	130.0 130.0	± 9.6 % ± 9.6 % ± 9.6 %
AAB 90pc 10625- IEEE AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10628- IEEE AAB 90pc 10630- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (40MHz, MCS9, duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle)	X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z Y Z Y Z X Y Z Y Z Y Z Y Z Y Z Y Z Y Z	5.20 5.41 5.19 5.30 5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.20 66.49 66.26 66.37 67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.49	16.38 16.39 16.30 16.54 16.90 16.52 16.28 16.31 16.21 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16.10 16.35	0.46	130.0 130.0	± 9.6 % ± 9.6 % ± 9.6 %
AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z	5.19 5.30 5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.60 5.38 5.55	66.26 66.37 67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.49 66.49 66.64	16.30 16.54 16.90 16.52 16.28 16.31 16.21 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16.10 16.35	0.46	130.0 130.0	± 9.6 %
AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z Z X	5.30 5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.37 67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.49	16.54 16.90 16.52 16.28 16.31 16.21 16.70 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10626- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS0, duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS3,	Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z Y Z Y Z X	5.75 5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.65 5.40 5.60 5.38 5.55 5.67 5.49	67.41 66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.90 16.52 16.28 16.31 16.21 16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z	5.33 5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.58 66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.49 66.64	16.52 16.28 16.31 16.21 16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	X Y Z X Y Z X Y Z X Y Z X Y Z	5.40 5.57 5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.14 66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.28 16.31 16.21 16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10627- IEEE AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS1, duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Y Z X Y Z X Y Z X Y Z X Y Z	5.57 5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.51 66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.31 16.21 16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc	e duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Z X Y Z X Y Z X Y Z X Y Z	5.38 5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.23 67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.21 16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc	e duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	X Y Z X Y Z X Y Z X Y Z	5.71 5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	67.03 67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.70 16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10628- IEEE AAB 90pc 10629- IEEE AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	e duty cycle) 802.11ac WiFi (80MHz, MCS2, duty cycle) 802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Y Z X Y Z X Y Z Z	5.80 5.65 5.40 5.60 5.38 5.55 5.67 5.49	67.06 66.96 66.15 66.59 66.23 66.49 66.64	16.54 16.54 16.18 16.25 16.10 16.35	0.46	130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Z X Y Z X Y Z Z	5.65 5.40 5.60 5.38 5.55 5.67 5.49	66.96 66.15 66.59 66.23 66.49 66.64	16.54 16.18 16.25 16.10 16.35		130.0 130.0 130.0 130.0	
AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	X Y Z X Y Z	5.40 5.60 5.38 5.55 5.67 5.49	66.15 66.59 66.23 66.49 66.64	16.18 16.25 16.10 16.35		130.0 130.0 130.0	
AAB 90pc 10629- IEEE AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10631- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	802.11ac WiFi (80MHz, MCS3, duty cycle) 802.11ac WiFi (80MHz, MCS4,	Y Z X Y Z	5.60 5.38 5.55 5.67 5.49	66.59 66.23 66.49 66.64	16.25 16.10 16.35		130.0 130.0	
AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS4,	Z X Y Z	5.38 5.55 5.67 5.49	66.23 66.49 66.64	16.10 16.35	0.46	130.0	+96%
AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS4,	X Y Z	5.55 5.67 5.49	66.49 66.64	16.35	0.46		+96%
AAB 90pc 10630- IEEE AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc	duty cycle) 802.11ac WiFi (80MHz, MCS4,	Y Z	5.67 5.49	66.64		0.46	130.0	1 +96%
AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc		Z	5.49		10.00			± 3.0 70
AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc 10633- IEEE AAB 90pc					16.26		130.0	
AAB 90pc 10631- IEEE AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc		X		66.42	16.19	0.40	130.0	
AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc			5.95	67.89	17.05	0.46	130.0	± 9.6 %
AAB 90pc 10632- IEEE AAB 90pc 10633- IEEE AAB 90pc		Y	6.08	68.07	16.98		130.0	
10632- AAB 90pc 10633- AAB 90pc	802.11ac WiFi (80MHz, MCS5, duty cycle)	Z X	5.84 5.77	67.71 67.48	16.83 17.05	0.46	130.0 130.0	± 9.6 %
AAB 90pc 10633- AAB 90pc		Y	5.99	67.89	17.07		130.0	
AAB 90pc 10633- AAB 90pc		Z	5.74	67.53	16.95		130.0	
10633- IEEE AAB 90pc	802.11ac WiFi (80MHz, MCS6, duty cycle)	X	5.72	67.25	16.96	0.46	130.0	± 9,6 %
AAB 90pc		Y	5.77	67.11	16.70		130.0	
AAB 90pc		Z	5.64	67.12	16.77		130.0	
10624	802.11ac WiFi (80MHz, MCS7, duty cycle)	X	5.44	66.28	16.29	0.46	130.0	± 9.6 %
10624		Y	5.66	66.76	16.36		130.0	
10624 1000		Z	5.44	66.43	16.24		130.0	
	802.11ac WiFi (80MHz, MCS8, duty cycle)	X	5.44	66.38	16.39	0.46	130.0	± 9.6 %
		Y	5.64	66,78	16.43		130.0	ļ
10007		Z	5.43	66.48	16.32		130.0	<u> </u>
	802.11ac WiFi (80MHz, MCS9, duty cycle)	X	5.30	65.61	15.72	0.46	130.0	± 9.6 %
		Y	5.53	66.14	15.85		130.0	
40000		Z	5.29	65.70	15.64		130.0	
	802.11ac WiFi (160MHz, MCS0, duty cycle)	X	5.86	66.55	16.40	0.46	130.0	± 9.6 %
		Y	5.98	66.87	16.39		130.0	
	802.11ac WiFi (160MHz, MCS1, duty cycle)	Z X	5.82 6.02	66.61 66.98	16.30 16.61	0.46	130.0 130.0	± 9.6 %
		Y	6.13	67.25	16.56		120.0	
		Z	5.97				130.0	
		X	6.03	67.00 67.01	16.48 16.60	0.46	130.0 130.0	± 9.6 %
	802.11ac WiFi (160MHz, MCS2,	1	6.13	67.22	16 50		420.0	
	802.11ac WiFi (160MHz, MCS2, duty cycle)	Y		1 07.22	16.53 16.46		130.0 130.0	

10639- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	5.96	66.80	16.53	0.46	130.0	± 9.6 %
		Y	6.11	07.47	40.55	<u> </u>	<u> ,</u>	
				67.17	16.55	<u> </u>	130.0	
10640-	IEEE 802.11ac WiFi (160MHz, MCS4,		5.93	66.87	16.44		130.0	
AAC	90pc duty cycle)	X	5.92	66.70	16.42	0.46	130.0	± 9.6 %
		<u> </u>	6.12	67.19	16.50		130.0	
40044		Z	5.91	66.82	16.35		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	Х	6.06	66.91	16.55	0.46	130.0	± 9.6 %
		Y	6.16	67.10	16.47		130.0	
10010		Z	6.01	66.89	16.41		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.04	66.98	16.76	0.46	130.0	± 9.6 %
		Y	6.20	67.33	16.75		130.0	
40040		Z	6.02	67.07	16.68		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	5.90	66.69	16.50	0.46	130.0	± 9.6 %
		Y	6.04	67.03	16.51		130.0	
100/1		Z	5.87	66.78	16.42		130.0	1
10644- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	5.95	66.86	16.60	0.46	130.0	± 9.6 %
		Y	6.19	67.50	16.76		130.0	
		Z	5.94	66.99	16.54		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.44	67.99	17.14	0.46	130.0	± 9.6 %
		Y	6.47	67.94	16.94		130.0	
		Z	6.16	67.33	16.68		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	7.50	90.48	30.44	9.30	60.0	± 9.6 %
		Y	17.43	112.38	39.34		60.0	
		Z	9.26	96.56	33.29		60.0	······
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	Х	6.74	88.72	29.93	9.30	60.0	± 9.6 %
		Y	14.54	108.61	38.31		60.0	<u> </u>
		Ż	8.10	94.14	32.60		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.39	60.00	6.32	0.00	150.0	±9.6 %
		Y	0.67	63.31	10.55		150.0	
		Z	0.38	60.00	6.43		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.10	65.49	15.51	2.23	80.0	± 9.6 %
		Y	3.52	66.85	16.73		80.0	
		Z	3.18	66.07	15.91		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	3.70	65.11	16.04	2.23	80.0	± 9.6 %
		Y	4.03	66.07	16.78		80.0	
		Z	3.73	65.44	16.24		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	3.73	64.77	16.12	2.23	80.0	± 9.6 %
		Y	4.00	65.69	16.76		80.0	
		Z	3.74	65.07	16.28		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	3.81	64.71	16.17	2.23	80.0	±9.6 %
		Y	4.06	65.68	16.79		80.0	
		Z	3.81	65.01	16.32		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	3.06	66.59	11.16	10.00	50.0	± 9.6 %
		Y	100.00	111.68	26.09		50.0	
		Z	3.93	69.81	12.66		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	1.63	63.81	8.65	6.99	60.0	± 9.6 %
-	I	-		ļ	l		I/	l
		Y	100.00	113.13	25.67		60.0	1

10660- AAA	Pulse Waveform (200Hz, 40%)	X	0.57	60.00	5.26	3.98	80.0	± 9.6 %
		Y	100.00	118.24	26.52		80.0	
		Z	0.68	61.70	6.30		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	0.32	60.00	3.83	2.22	100.0	± 9.6 %
		Y	100.00	125.46	28.15		100.0	
		Z	0.29	60.00	3.83		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	7.43	367.15	53.93	0.97	120.0	± 9.6 %
		Y	100.00	135.73	30.13		120.0	
		Z	0.00	228.51	107.76		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

CCREO

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client	PC Test		
	and the second second	1.000	

Certificate No: D750V3-1161_Jul16

Calibration procedure(s) QA CAL-05.v9 Statistics and the state of the stat	Object	D750V3 - SN:11	61 esterentzi elektronikter effektet i trade	(ρn
SC This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)			V	
Science Science This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.		Calibration proce	edure for dipole validation kits abov	/e 700 MHz 🛛 🕅	97
Science Science This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				Exte	97 NV
All calibrations and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	July 13, 2016		η	120
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	This calibration certificate docum The measurements and the unce	ients the traceability to nai artainties with confidence r	tional standards, which realize the physical units probability are given on the following pages and	c of measurements (SI).	5C
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02293) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. 217-02295) Apr-17 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: WM41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 Power sensor HP 8481A SN: 10972 15-Jun-15 (In house check Oct-15) In house check: Oct-16 Power sensor HP 8481A SN: 100972 15-Jun-15 (In house check Oct-15) <					
Power meter NRP SN: 104778 O6-April 6 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-April 6 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-April 6 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. 217-02295) Apr-17 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 Parenter R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Laboratory Technician Signat			$(22 \pm 3)^{-}$	and humidity < 70%.	
Ower meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Spectral Statematic SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. EX3-7349_Jun16) Jun-17 OAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 SR generator R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-15)		ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Ower sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. EX3-7349_Jun16) Jun-17 VAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-16 Recondary Standards ID # Check Date (in house) Scheduled Check rower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) In house check: Oct-16 rower sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02222) In house check: Oct-16 rower sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Jun-15) In house check: Oct-16 retwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 railibrated by: Name Function Signature Signature railibrated by: Katja Pokovic Technical Manager		SN: 104778			
Power sensor NRP-Z91 Reference 20 dB AttenuatorSN: 10324506-Apr-16 (No. 217-02289)Apr-17Reference 20 dB AttenuatorSN: 5058 (20k)05-Apr-16 (No. 217-02292)Apr-17SN: 5058 (20k)05-Apr-16 (No. 217-02295)Apr-17Reference Probe EX3DV4SN: 5047.2 / 0632705-Apr-16 (No. 217-02295)Apr-17SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Recondary StandardsID #Check Date (in house)Scheduled Checkrower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: WY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16RF generator R&S SMT-06SN: US3739058518-Oct-01 (in house check Jun-15)In house check: Oct-16Retwork Analyzer HP 8753ENameFunctionSignaturerealibrated by:Katja PokovicTechnical ManagerSignature		SN: 103244			
Aeference 20 dB Attenuator type-N mismatch combination leference Probe EX3DV4SN: 5058 (20k)05-Apr-16 (No. 217-02292)Apr-17 Apr-17SN: 5047.2 / 06327 VAAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295)Apr-17 Apr-17SN: 5047.2 / 06327 VAAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295)Apr-17 Apr-17SN: 5047.2 / 06327 		SN: 103245			
ype-N mismatch combination leference Probe EX3DV4 DAE4SN: 5047.2 / 06327 SN: 734905-Apr-16 (No. 217-02295) SN: 7349 30-Dec-15 (No. DAE4-601_Dec15)Apr-17 Jun-17 Dec-16iecondary StandardsID #Check Date (in house)Scheduled Checkiecondary StandardsID #Check Date (in house)Scheduled Checkower meter EPM-442A ower sensor HP 8481ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16isover sensor HP 8481A ower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16SN: 10937215-Jun-15 (in house check Jun-15)In house check: Oct-16SN: 100972IF generator R&S SMT-06 letwork Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16NameFunctionSignaturealibrated by:Katja PokovicTechnical ManagerSignature		SN: 5058 (20k)			
In the proved by:SN: 734915-Jun-16 (No. EX3-7349_Jun16)Jun-17JAE4SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Secondary StandardsID #Check Date (in house)Scheduled Checkrower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16rower sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16SN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16SN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16alibrated by:NameFunctionSignaturepproved by:Katja PokovicTechnical ManagerManager		SN: 5047.2 / 06327		•	
DAE4SN: 60130-Dec-15 (No. DAE4-601_Dec15)Dec-16Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: WY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-15)In house check: Oct-16Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16Calibrated by:NameFunctionSignatureCalibrated by:Katja PokovicTechnical ManagerOfficial Manager		SN: 7349		•	
Power meter EPM-442A Power sensor HP 8481ASN: GB37480704 SN: US37292783 SN: US37292783 Power sensor HP 8481ASN: GB37480704 SN: US37292783 O7-Oct-15 (No. 217-02222)In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 SN: 100972 SN: 100972 SN: US37390585 SN: US37390585	AE4	SN: 601		,	
Power meter EPM-442ASN: GB3748070407-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16Power sensor HP 8481ASN: US3739058518-Jun-15 (in house check Jun-15)In house check: Oct-16Power kanalyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16NameFunctionSignaturecalibrated by:Claudio LeublerLaboratory TechnicianSignaturepproved by:Katja PokovicTechnical ManagerMultiple		ID #	Check Date (in house)	Scheduled Check	
Power sensor HP 8481ASN: US3729278307-Oct-15 (No. 217-02222)In house check: Oct-16Power sensor HP 8481ASN: MY4109231707-Oct-15 (No. 217-02223)In house check: Oct-16RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Jun-15)In house check: Oct-16Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-15)In house check: Oct-16Calibrated by:NameFunctionSignatureCalibrated by:Katja PokovicTechnical ManagerOfficial Manager		SN: GB37480704			
Power sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) In house check: Oct-16 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Calibrated by: Name Function Signature Caludio Leubler Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager					
IF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15) In house check: Oct-16 Ietwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Claudio Leubler Laboratory Technician Signature pproved by: Katja Pokovic Technical Manager		SN: MY41092317			
Jetwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-15) In house check: Oct-16 Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Signature upproved by: Katja Pokovic Technical Manager Output		SN: 100972			
Calibrated by: Claudio Leubler Laboratory Technician Signature		SN: US37390585			
Claudio Leubler Laboratory Technician		t i			
e contra a		•	Function	Signaturo	
	letwork Analyzer HP 8753E	Name	Laboratory Technician	Signature	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161_Jul16

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· <u> </u>
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.17 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.53 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 0.9 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω - 4.0 jΩ
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2015

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.33 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 – SN: 1161

July 12, 2017

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2017	Annual	3/8/2018	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2017	Annual	6/14/2018	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	11/15/2016	Annual	11/15/2017	3334
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3319
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Dogo 1 of 4
D750V3 – SN: 1161	07/12/2017	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 23.0 dBm	dBm	(%)	dBm	(10g) W/kg @ 23.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/13/2016	7/12/2017	1.033	1.63	1.65	0.98%	1.08	1.09	1.11%	55.6	54.5	1.1	-0.9	-4.0	3.1	-25.4	-24.8	2.40%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 23.0 dBm		Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(40-) 10/0- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/13/2016	7/12/2017	1.033	1.69	1.75	3.80%	1.11	1.17	5.79%	50.2	48.0	2.2	-4.0	-6.9	2.9	-28.0	-23.9	14.60%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1161	07/12/2017	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D750V3 – SN: 1161	07/12/2017	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Daga 4 of 4
D750V3 – SN: 1161	07/12/2017	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

0108

Client PC Test	n sa an sa an isang ang asa an an an Nga sa kang ang ang ang ang ang ang ang ang ang	Cei	tificate No: D835V2-4d119_Apr18
CALIBRATION C	SERTIFICAT:		
Object	D835V2 - SN:4d	119	
Calibration procedure(s)	ca calustat		
	Calibration proor	dure for dipole validation	kills above 700 MHz BIN 195-101 - 2018
Calibration date:	April 10, 2018		
The measurements and the unce	ertainties with confidence p		physical units of measurements (SI). g pages and are part of the certificate. e (22 \pm 3)°C and humidity < 70%.
Callbration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/0267	/3) Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec	17) Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct	7) Oct-18
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-	16) In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-	•
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-	16) In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-	17) In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technic	· · · · · · · · · · · · · · · · · · ·
Approved by:	Katja Pokovic	Technical Manager	filly
This calibration certificate shall r	not be reproduced except ir	n full without written approval of the	Issued: April 11, 2018

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	++++++++++++++++++++++++++++++++++++++
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	μη μετά το πολογιστικό το πολογιστικό που ποι ποι πολογιστικό που που πολογιστικό που που που που που που που π

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.53 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	······································
SAR measured	250 mW input power	1.57 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.56 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.26 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 0.6 jΩ
Return Loss	- 38.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω - 3.3 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.389 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

DASY5 Validation Report for Head TSL

Date: 10.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.85 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.52 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Calibration Laboratory of Schmid & Partner

PC Test

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1051_Apr18

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	D1750V2 - SN: 1	051	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abc	ove 700 MHz
Calibration date:	April 19, 2018		BN - 05-01-21
			05-01-21
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(d are part of the certificate.
Calibration Equipment used (M&1			5 and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	A pr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	//Her
Approved by:	Katja Pokovic	Technical Manager	Jol H-
	ath anna 1	n full without written approval of the laboratory	Issued: April 19, 2018

ac MI

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω + 2.5 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω + 1.3 jΩ
Return Loss	- 31.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 19, 2010

DASY5 Validation Report for Head TSL

Date: 19.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.3 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.1 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

DASY5 Validation Report for Body TSL

Date: 19.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.30 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.3 W/kg

0 dB = 13.3 W/kg = 11.24 dBW/kg

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Client PC Test

Object	D1900V2 - SN:5	d141	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits abo	ove 700 MHz
Calibration date:	April 12, 2018		BNV 05-01-2
This calibration certificate docum The measurements and the unce	ents the traceability to nat artainties with confidence p	ional standards, which realize the physical un probability are given on the following pages ar	nits of measurements (SI). Ind are part of the certificate.
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 7 0 %.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
ype-N mismatch combination leference Probe EX3DV4	SN: 7349	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Dec-18
ype-N mismatch combination leference Probe EX3DV4			•
ype-N mismatch combination eference Probe EX3DV4 AE4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
ype-N mismatch combination leference Probe EX3DV4 ME4 recondary Standards	SN: 7349 SN: 601	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Dec-18 Oct-18
ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	SN: 7349 SN: 601 ID #	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Dec-18 Oct-18 Scheduled Check
ype-N mismatch combination leference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18
ype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
ype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Rower meter EPM-442A Rower sensor HP 8481A Rower sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
ype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	·····

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	9.55 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	5.05 W/kg	
SAN measureu		0.00 W/Kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 5.9 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω + 7.2 jΩ
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction	1	1.100	
	l)	1.198 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 12.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

DASY5 Validation Report for Body TSL

Date: 12.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.8 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

PC Test

Client

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-882_Feb18

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:88	32	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	100 MHZ BN 03-02-2018
Calibration date:	February 07, 201	8	
The measurements and the uncer	tainties with confidence p ted in the closed Jaborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	fille
This calibration certificate shall no	ot be reproduced except ir	n full without written approval of the laboratory	Issued: February 7, 2018

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω + 1.3 jΩ
Return Loss	- 32.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω + 3.7 jΩ
Return Loss	- 28.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2011

DASY5 Validation Report for Head TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 112.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 25.9 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 21.2 W/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

- Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Clie

Certificate No:	: D2600V2-1004_Apr18
4	
ire for dipole validation kits abo	ve 700 MHz ອາ 05-ເ)-201
al standards, which realize the physical unit ability are gi v en on the following pages and	
acility: environment temperature (22 \pm 3)°C	; and humidity < 70%.
Cal Date (Certificate No.)	Scheduled Calibration
04-Apr-18 (No. 217-02672/02673)	Apr-19
04-Apr-18 (No. 217-02672)	Apr-19
04-Apr-18 (No. 217-02673)	Apr-19
04-Apr-18 (No. 217-02682)	Apr-19
04-Apr-18 (No. 217-02683)	Apr-19
30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Check Date (in house)	Scheduled Check
07-Oct-15 (in house check Oct-16)	In house check: Oct-18
07-Oct-15 (in house check Oct-16)	In house check: Oct-18
07-Oct-15 (in house check Oct-16)	In house check: Oct-18
15-Jun-15 (in house check Oct-16)	In house check: Oct-18
18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Function	Signature
Laboratory Technician	NIELS
Technical Manager	blille
PPD/S333000cccmm	Technical Manager

Issued: April 12, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
	F	······································
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		,

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 5.7 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0 Ω - 3.8 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	A I I I I I I I I I I
	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

DASY5 Validation Report for Head TSL

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.9 W/kg = 13.78 dBW/kg

DASY5 Validation Report for Body TSL

Date: 11.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.19 S/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1057_Jan18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	057	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits be	etween 3-6 GHz
			BN
Calibration date:	January 16, 2018	}	BN 01-25-2018
		onal standards, which realize the physical (robability are given on the following pages a	
All calibrations have been conduct	ted in the closed laborator	y facility: environment lemperature (22 ± 3))°C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Atlenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
	1		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Techniclan	Stillyn
Approved by:	Katja Pokovic	Technical Manager	66165
			Issued: January 18, 2018
This calibration certificate shall no	n pe reproduced except ll	n full without written approval of the laborate	лу,

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service sulsse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.55 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)
	1	

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.15 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.0 Ω - 5.5 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.0 jΩ
Return Loss	- 31.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 6.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω - 3.9 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 1.6 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.6 Ω + 1.1 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	51.8 Ω - 0.4 jΩ
Return Loss	- 34.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.203 ns	Electrical Delay (one direction)	1.203 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5200 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 20.3 % (k=2)
CAD successed over 10 cm ³ (10 s) of Head TCI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.35 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.6 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.76 W/kg

Measurement Conditions (f=5800 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 $ m cm^3$ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 20.3 % (k=2)
SAB averaged over 10 cm ³ (10 g) of Head TSI	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.8 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	1.89 W/kg

DASY5 Validation Report for Head TSL

Date: 11.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 modified; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.54 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.77 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.93 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.41$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.22$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.05 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Maximum value of SAR (measured) = 17.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.53 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.09 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.45 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.14 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.13 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.59$ S/m; $\epsilon r = 36.5$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 5.28$ S/m; $\epsilon r = 35.4$; $\rho = 1000$ kg/m3 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 72.99 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.7 W/kg

SAM Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 73.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 21.9 W/kg

SAM Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.7 W/kg SAM Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 2.44 W/kgMaximum value of SAR (measured) = 23.0 W/kg

SAM Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 72.48 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.3 W/kg

SAM Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.90 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.4 W/kgSAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.35 W/kgMaximum value of SAR (measured) = 21.8 W/kg

SAM Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 5.16 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 11.1 W/kg

SAM Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 21.2 W/kg SAR(1 g) = 5.68 W/kg; SAR(10 g) = 1.89 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1003_Jan18

CALIBRATION CERTIFICATE

Object	D750V3 - SN:100	03	
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	January 15, 2018	3	BN 01-25-2018
		ional standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduct	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Signature Seef Tille
Approved by:	Kalja Pokovic	Technical Manager	fll
			lssued: January 15, 2018
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero dl taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

_

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ	
Return Loss	- 27.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

_ ._ _ . _

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.15 W/kg

DASY5 Validation Report for Head TSL

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Body TSL

Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svízzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D835V2-4d132_Jan18

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d	132	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
			BNV 01-25-2018
Calibration date:	January 15, 2018	3	01-25-2018
The measurements and the uncer	tainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)°	nd are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349 Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
o #1	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	See Alfer
Approved by:	Katja Pokovic	Technical Manager	Alle-
-		· ·	Issued: January 15, 2018
i his calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	<i>I</i> .

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.55 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.39 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.9 jΩ
Return Loss	- 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 5.7 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.41 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
	condition	
SAR measured	250 mW input power	1.58 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.69 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.45 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.96 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	070 1411	
SAR measured	250 mW input power	1.37 W/kg

DASY5 Validation Report for Head TSL

Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.22 W/kg

0 dB = 3.22 W/kg = 5.08 dBW/kg

DASY5 Validation Report for Body TSL

Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.24 W/kg

DASY5 Validation Report for SAM Head

Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.16 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.99 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.19 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.20 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.33 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.04 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.03 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

4

Calibration Laboratory of Schmid & Partner Engineering AG

PC Test

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb18

CALIBRATION CERTIFICATE

rene en 1912, ser son anterior de l'Antonio De Constant de la constant de la constant de la constant de la cons La constant			nin an an an an an an an an an an an an an
Object	D1900V2 - SN:50	1148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz BNV 03-02-2018
Calibration date:	February 07, 201	8	
The measurements and the uncert	tainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Calibration Equipment used (M&TI	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Jel US
This calibration certificate shall no	t be reproduced except ir	n full without written approval of the laboratory	Issued: February 7, 2018

Certificate No: D1900V2-5d148_Feb18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

, .	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.8 jΩ	
Return Loss	- 24.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω + 6.5 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (and direction)	
Electrical Delay (one direction)	1.199 ns
	1.100115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 11, 2011	

DASY5 Validation Report for Head TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 15.3 W/kg

DASY5 Validation Report for Body TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.48 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.4 W/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1237_Aug17

CALIBRATION CERTIFICATE

Obje c t	D5GHzV2 - SN:1	237		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz	PMV 8/27/1
Calibration date:	August 15, 2017			
The measurements and the unce	rtaintles with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°	ed are part of the certificate.	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	n
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	1
Secondary Standards	1D #	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-	18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-	17
Collibrated but	Name	Function	Signature	
Calibrated by:	Johannes Kurikka	Laboratory Technician	Ja la	-
Approved by:	Katja Pokovic	Technical Manager	El 165	-
This calibration certificate shall no	ot be reproduced except in	n full without written approval of the laboratory	Issued: August 16, 20	17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	<u></u>
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 ℃	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg

normalized to 1W

21.4 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.9 Ω - 5.3 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9 Ω + 2.3 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.6 Ω - 0.5 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 4.2 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.2 Ω + 3.0 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.4 Ω + 0.2 jΩ
Return Loss	- 29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 194 ns
Electrical Delay (one direction)	1.194 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

DASY5 Validation Report for Head TSL

Date: 15.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.49 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 4.99 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.11 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Date: 08.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.46 S/m; ϵ_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.93 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.13 S/m; ϵ_r = 46.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.64 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Composition of the Tissue Equivalent Matter												
Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450	5200-	5200-
riequency (Will2)	750	750	055	055	1750	1750	1700	1700	2450	2450	5800	5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)												
Bactericide			0.1	0.1								
DGBE					47	31	44.92	29.44		26.7		
HEC	S	Saa maaa	1	1							Saa maga	
NaCl	2-3	See page	1.45	0.94	0.4	0.2	0.18	0.39	See page 4	0.1	See page	
Sucrose		-	57	44.9							5	
Polysorbate (Tween) 80												20
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		80

Table D-I Composition of the Tissue Equivalent Matter

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	06/06/18 - 06/24/18	Portable Handset			Page 1 of 5
© 201	8 PCTEST Engineering Laboratory, I	Inc.			REV 20.10 M 05/18/2018

2 Composition / Information on ingredients

The Item is composed of	if the following ingredients:
H ₂ O	Water, 35 – 58%
Sucrose	Sugar, white, refined, 40 – 60%
NaCl	Sodium Chloride, 0 – 6%
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), <0.3%
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,
	0.1 – 0.7%
	Relevant for safety; Refer to the respective Safety Data Sheet*.

Figure D-1 Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

chmid i	& Partr	ner Eng	ineerii	ng AG		_			5	p	e	2	a	9	_	-
leughau Phone + nfo@spe	41 44	245 97	00, Fa	x +41	44 245											
Aeasu	urem	ent C	ertif	icate	/ Ma	terial	Test									
tem Na Product Manufa	t No.			M 07			g Liquid (MS 170608-1)	6L750V2)							
		10,000														
Measu				maga	urad	Icina c	alibrated DA	Knroha	-	_	_					
SL UIE	siectric	parar	leters	meas	sureu	using c	and allorated DA	is probe.	-		-	-	-			
Setup			_	-				_	_			_	_	_		
/alidati	ion res	sults w	ere wi	thin ±	2.5%	toward	s the target v	alues of	Met	nanol.		_	_			_
Target	Darre	notore														
Target	param	neters	as def	ined in	the I	EEE 15	28 and IEC	62209 c	ompl	ance sta	indarc	is.				-
argot	Purult					10						-				
Fest C				_	_	_		_	_		_	_			_	_
Ambier	nt		Envir	onmer	nt temi	peratur	(22 ± 3)°C a	ind humi	dity <	70%.						
					is sound		(,							
	mpera	ature	22°C				()									
TSL Te Test Da	empera ate	ature	22°C 20-Ju				()		.,							
	empera ate	ature	22°C						,		_					_
Test Da	empera ate or	ature	22°C 20-Ju CL										_			_
Test Da Operati	empera ate or onal Ir	ature	22°C 20-Ju CL													
Test Da Operation	empera ate or onal Ir ensity	ature	22°C 20-Ju CL tion 1.212	n-17 g/cm	3								_			
Test Da Operate Addition TSL De TSL He	or or onal Ir ensity eat-ca	nforma pacity	22°C 20-Ju CL tion 1.212	n-17 g/cm kJ/(k	³ g*K)											
Test Da Operate Addition TSL De TSL He	empera ate or onal Ir ensity eat-ca Measu	nforma pacity rred	22°C 20-Ju CL 1.212 3.006	g/cm kJ/(k	3 g*K) t	Diff.to	Target [%]	10.0								_
Test Da Operation Addition TSL De TSL He	empera ate or onal Ir ensity eat-ca Measu e'	ature nforma pacity red e"	22°C 20-Ju CL 1.212 3.006 sigma	g/cm kJ/(k Targe eps	₃ g*K) t sigma		Target [%]	10.0								
Test Da Operate Addition TSL De TSL He	empera ate or onal Ir ensity eat-ca Measu	nforma pacity rred	22°C 20-Ju CL 1.212 3.006	g/cm kJ/(k	3 g*K) t	Diff.to ∆-eps	Target [%] Δ-sigma	10.0								
Addition TSL De TSL He TSL He (MHz) 600	empera ate or onal Ir ensity eat-ca Measu e' 57.3	nforma pacity red e" 25.02	22°C 20-Ju CL 1.212 3.006 sigma 0.84	g/cm kJ/(k Targe eps 56.1	3 g*K) t sigma 0.95	Diff.to A-eps 2.2	Target [%] Δ-sigma -12.2	10.0								
Additic TSL De TSL De TSL He f(MHz) 600 625	empera ate or onal Ir ensity eat-ca Measu e' 57.3 57.1	nforma pacity red 25.02 24.67	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86	n-17 g/cm kJ/(k Targe eps 56.1 56.0	3 g*K) t 0.95 0.95	Diff.to Δ-eps 2.2 1.9	Target [%] <u>A-sigma</u> -12.2 -10.1	10.0 % 7.5 % th vitt 2.5 0 0 2.2					* ***			
Addition Addition TSL De TSL He f (MHz) 600 625 650	empera ate or onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8	nforma pacity red 25.02 24.67 24.32	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88	n-17 g/cm kJ/(k Targe eps 56.1 56.0 55.9	3 g*K) t sigma 0.95 0.95 0.96	Diff.to <u>A-eps</u> 2.2 1.9 1.6	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8	10.0 7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2					• •••	•		
Test Da Deration Addition TSL De TSL He (MHz) 600 625 650 675 700 725	empera ate or onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3 56.1	ature pacity red 25.02 24.67 24.32 24.02 23.71 23.48	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95	g/cm kJ/(k Targe eps 56.1 56.0 55.9 55.8 55.7 55.6	3 g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96	Diff.to <u>∆-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8	Target [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5	10.0 5.7.5 0.0 -2.5 -2.5 -2.5 -7.5				•	• •••	++		
Test Da Dperate Additic TSL De TSL He 600 625 650 675 700 725 750	empera ate or ensity eat-ca 67.3 57.1 56.8 56.6 56.3 56.1 55.9	ature pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.25	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97	n-17 g/cm kJ/(k Targe eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5	3 g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96	Diff.to 2-eps 2-2 1.9 1.6 1.3 1.1 0.8 0.6	Target [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7	10.0 7.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2			00 7	50 8	300 850	0.900	950	100
Test Da Dperate Additic TSL De TSL He 600 625 650 675 700 725 750 775	empera ate or ensity eat-ca fr.3 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6	ature pacity rred e" 24.67 24.32 24.02 23.71 23.48 23.25 23.04	22°C 20-Ju CL tion 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99	n-17 g/cm kJ/(k 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4	3 g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96	Diff.to Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3	Target [%] Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9	10.0 5.7.5 0.0 -2.5 -2.5 -2.5 -7.5					300 850 ancy MHz) 900	950	100
Test Da Dperate Additic TSL De TSL He 1 [MHz] 600 625 650 675 700 725 750 775 800	empera ate or ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4	ature pacity rred 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82	22°C 20-Ju CL 1.212 3.006 9.84 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02	n-17 g/cm kJ/(k 56.1 55.9 55.8 55.7 55.6 55.5 55.4 55.3	g*K) sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97	Diff.to ▲-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -3.8 -3.8 -1.5 0.7 2.9 5.0	10.0 5.7.5 0.0 -2.5 -2.5 -2.5 -7.5						900	950	100
Cest Date Additic TSL De FSL He 600 625 650 675 700 725 750 775 800 825	emperate or onal Ir ensity eat-ca 6' 57.3 57.4 56.8 56.6 56.7 55.9 55.4 55.2	nforma pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65	22°C 20-Ju CL 1.212 3.006 9.84 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04	n-17 g/cmi kJ/(ki Targe eps 56.1 56.0 55.9 55.8 55.7 55.6 55.6 55.5 55.4 55.3 55.2	3 g*K) t sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97	Diff.to A-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1	Target [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3	10.0 5.7.5 0.0 -2.5 -2.5 -2.5 -7.5						0.900	950	100
Fest Da Operate Additic FSL De FSL De FSL He (MHz) 600 625 650 675 700 7250 775 800 825 838	empera ate or onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.6 55.9 55.6 55.4 55.4 55.4 55.4	nforma pacity red e" 25.02 24.67 24.32 24.02 23.74 23.25 23.04 22.82 22.65 22.56	22°C 20-Ju CL 1.212 3.006 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05	n-17 g/cmi kJ/(k) Targe eps 56.1 55.9 55.9 55.9 55.5 55.6 55.5 55.4 55.3 55.2 55.2 55.2	3 g*K) t sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.98 0.97 0.988 0.9888 0.9888 0.9888 0.9888 0.98888 0.9888 0.9888 0.9	Diff.to [*] <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3	Target [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -1.5 0.7 2.9 5.0 6.3 6.9	10.0 % 7.5 Åip tip 0.0 - 2.5 - 0 - 7.3 - 10.0	600					900	950	100
Fest Di Dperati Additic SL De TSL He (MHz) 625 650 675 700 725 750 775 800 825 838 855	empera ate or onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 55.6 55.6 55.4 55.4 55.2 55.1 54.9	nforma pacity pacity 24.67 24.32 24.62 23.71 23.48 23.25 23.04 22.85 22.65 22.56 22.56 22.56	22°C 20-Ju CL 1.212 3.006 9.84 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06	n-17 g/cm/ kJ/(k/ 56.0 55.9 55.8 55.7 55.6 55.4 55.2 55.2 55.2 55.2 55.2	3 g*K) t sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.997 0.987 0.997	Diff.to <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.3 -0.4	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5	10.0 % All 10.0 % All 10.0 % All 10.0	600) 900	950	100
Test Di Derati Additic TSL Der TSL Her TSL Her 600 625 650 650 625 650 725 775 800 725 775 800 825 838 850 875	empera ate oor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 55.4 55.9 55.6 55.4 55.5 55.4 55.4 55.4 55.4 55.4	nforma pacity red 24.62 24.67 24.32 24.02 23.71 23.48 23.48 23.48 23.42 23.48 23.42 23.42 23.42 23.42 22.56 22.57 22.34	22°C 20-Ju CL 1.212 3.0066 9.84 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09	g/cm kJ/(k 56.9 55.9 55.6 55.5 55.4 55.2 55.2 55.2 55.2 55.2 55.2	3 g*K) t sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.99 1.02	Diff.to A-eps 22 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.4 -0.4	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7	10.0 3° 7.5 40 30 40 30 40 30 40 40 40 br>40 40 40 40 40 40 40 40 40 40 40 40 40 40	600) 900	950	100
Test Di Additic TSL Def TSL Def ([MHz] 600 625 650 675 700 625 650 675 700 825 838 850 875 900	empera ate or onal Ir ensity eat-ca 57.3 57.4 56.8 56.6 55.4 55.9 55.6 55.4 55.9 55.4 55.2 55.7 54.9 54.7 54.9	nforma pacity 25.02 24.67 24.32 24.67 24.32 23.71 23.48 23.25 23.04 22.82 22.55 22.56 22.47 22.34 22.21	22°C 20-Ju 20-Ju CL 1.212 3.0006 9.84 0.84 0.86 0.90 0.92 0.92 0.92 1.04 1.05 1.06 1.06 1.09 1.11	g/cm kJ/(k 56.0 55.9 55.8 55.7 55.6 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	3 g*K) t sigma 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.98 0.99	Diff.to 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9	Target [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 5.9 5.0 6.3 6.9 7.5 6.7 5.9	10.0 3° 7.5 40 30 40 30 40 30 40 40 40 br>40 40 40 40 40 40 40 40 40 40 40 40 40 40	600					3 900	950	100
Test Di Additic TSL De TSL De TSL He 600 625 650 675 700 725 700 825 838 850 875 900 925	emperate our content of the second se	nforma pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.74 23.44 22.82 22.85 22.25 22.25 22.25 22.247 22.34	22°C 20-Ju 20-J	g/cm kJ/(k/ kJ/(k/ kJ/(k/ s6.0 55.9 55.8 55.9 55.8 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	3 sigma 0,95 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	Diff.to A-eps 22 1.9 1.8 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 -0.7 2.9 5.0 6.3 6.9 -5.6 -7.5 -6.7 5.9 6.9	10.0 3° 7.5 40 30 40 30 40 30 40 40 40 br>40 40 40 40 40 40 40 40 40 40 40 40	0 5 600 600) 900	950	100
Test Di Operati Additic TSL De TSL He 1[MHz] 625 650 625 650 625 650 625 650 770 725 700 725 750 775 800 825 838 850 875 900 925 925	Measure e* 57.3 57.4 56.6 55.4 55.2 55.4 54.3 54.3 54.3	Alure pacity red e° 25.02 24.67 24.32 24.02 24.02 24.62 23.71 23.71 23.48 23.25 23.04 22.85 22.56 22.47 22.85 22.56 22.47 22.34 22.85 22.56 22.47 22.34 22.85 22.56 22.47 22.34 22.85 22.56 22.47 22.85 22.56 22.47 22.85 22.56 22.47 22.85 22.56 22.47 22.85 22.55 22.56 22.47 22.85 22.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	22°C 20-Ju 20-Ju CL 12-12 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.97 0.99 1.02 1.11 1.14	g/cm kJ/(k/ 56.0 55.9 55.8 55.7 55.6 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	g*K) t sigma 0.95 0.96 0.97 0.97 0.97 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 00 0.98 0000000000	Diff.to 22 1.9 1.8 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3 -1.6	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.9 7.5 6.9 7.5 7.9	Conductivity % Conductivity % 2- 0 01- 7-7 - 01- 101- 101- 101-	600 600 0 5 5 0 5 5 0 5 5) 900	950	100
Test Di Dperati Additic TSL De TSL He 600 625 650 625 650 725 775 800 825 838 855 838 855 900 925	emperate our content of the second se	nforma pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.74 23.44 22.82 22.85 22.25 22.25 22.25 22.247 22.34	22°C 20-Ju 20-J	g/cm kJ/(k/ kJ/(k/ kJ/(k/ s6.0 55.9 55.8 55.9 55.8 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	3 sigma 0,95 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	Diff.to A-eps 22 1.9 1.8 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	Target [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 -0.7 2.9 5.0 6.3 6.9 -5.6 -7.5 -6.7 5.9 6.9	10.0 3° 7.5 40 30 40 30 40 30 40 40 40 br>40 40 40 40 40 40 40 40 40 40 40 40	600 600 600) 900	950	100

Figure D-2 750MHz Body Tissue Equivalent Matter

FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
06/06/18 - 06/24/18	Portable Handset			Page 2 of 5
2018 PCTEST Engineering Labora	atory, Inc.			REV 20.10 M 05/18/2018

©

nid & Partner Engineering AG	S	p	P	a
	0	10		6-0

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL750V2)	
Product No.	SL AAH 075 AA (Batch: 170612-4)	
Manufacturer	SPEAG	

g

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Setup Validation

Schr

Validation results were within $\pm 2.5\%$ towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient	Environment temperatur (22 ± 3)°C and humidity < 70%.	
TSL Temperature	22°C	
Test Date	20-Jun-17	
Operator	CL	

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

Figure D-3 750MHz Head Tissue Equivalent Matter

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	06/06/18 - 06/24/18	Portable Handset			Page 3 of 5
© 201	8 PCTEST Engineering Laboratory, I	nc.			REV 20.10 M
© 201	8 PCTEST Engineering Laboratory, I	nc.			REV 20.10 M 05/18/2018

3 Composition / Info The Item is composed of It		
Water	50 - 73 %	
Non-ionic detergents	25 - 50 %	polyoxyethylenesorbitan monolaurate
NaCl	0 - 2%	
Preservative	0.05 - 0.1%	Preventol-D7
Safety relevant ingredients		
CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)- isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5 According to international g marked by symbols.	<50 % guidelines, the pr	polyoxyethylenesorbitan monolaurate oduct is not a dangerous mixture and therefore not required to be

Figure D-4 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Phone	+41 44 peag.co	245 9	700, Fa	ix +41	44 245	9779		S			e		a		g		
Meas	surem	nent	Certi	ficate	/ Ma	terial	Test										
Item N Produc Manuf		Į.		AH 19			Liquid (H 170619-1)	IBBL1900-3	300V3)								
	iremen			s mea:	sured	using ca	librated D	AK probe.	-	_	-	_	_	_	_	_	_
Setup	Valida	ation	uero w	ithin +	2 5%	towards	the terrel	t values of M	athanal	_	_			_	_		_
	t Para			io in 1 ±	2.070	iowaius	ane tangen	values of w	ou la noi.							_	_
Target	l paran	neters	as del	fined in	n the I	EEE 15	28 and IEC	C 62209 com	pliance s	stand	lards.		_	_			_
Test C Ambie	Conditi	ion	Envir	oomer	t term	arahir	22 + 3/00	and humidit	- 709	_	_	_	_	_	_	_	_
TSL T	emper	ature	22°C		n terny	al diul 1	Le TOTU	and number	~ 10%								
Test D Opera			20-Ju CL	in-17													
			-	-										_	_	-	-
	ensity	nform		g/cm	3		_			_			-	_			_
	leat-ca			kJ/(k	g*K)												
(MHz)	Measu	e"	sigma	Target	sigma	Diff.to T A-eps	arget [%] ∆-sigma	10.0						_			_
1900	41.8	12.2	1.3	40.0	1.4	4.5	-8.2	at 7.5									
1950	-41.6	12.3	1.3	40.0	- ±.4	4.0	-4.6	£ 60	-	-		-	-	-	-	-	-
2000	41.4	12.4	1.4	40.0	1.4	3.6	-1.3	5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-	-						
2100	41.1	12.7	1.5	39.8	1.5	3.1	-0.6						-				
2150	40.9	12.8	1,5	39.7	15	2.9	-0,2	G -5.0	-	_	-	_	_	-	Page 1	-	-
2200 2250	40.7 40.6	12,9	1.6 1.6	39.6 39.6	1.6	27	0.2	-7.5									
2300	40.4	13.2	1.7	39.5	17	23	1.1	-10.0	00 2100 23	100 25	00 270	2900	3100	330	0 350	0 3700	390
2350	40.2	13.3	1.7	39.4	1.7	21	1.5				Frequen	cy MH	z				
2400	40,0	13.4	1.8	39.3	1.8	1.8	2,1		_	_		-	_	-	_		_
2500	39.7	13.7	1.9	39.1	1.9	1.3	2.6	-									
2550	39.5	13.7	2.0	39,1	1.9	1.1	2.2	10.0						_			_
2600	39.3 39.1	13.9	2.0	39.0 38.9	2.0	0.8	2.5	2 ⁸ 7.5									
2700	39.0	14.2	21	38.9	2,1	02	2.7		-								-
2750 2800	38.7	14.3	22	38.8	21	-0.2	2.6	Conductivity 22 22-	1	-	-						
2850	38.4	14.5	23	38.7	22	-0.8	2.6		r								
2900	38.2	14.6	2.3	38.6	2.3	-1.0	2.6	-5.0 -	-	-			-	-	-	_	-
2950 3000	38.1	14.7	2.4	38.6	2.3	-1.3	2.6 2.6	-7.5						_	_	_	
3050	37.7	14.8	25	38,4	2,5	-2.0	2.8	19	0 2100 23	100 25	00 2700	2900	3100	330	0 350	0 3700	390
3100	37.5	14.9	2.6	38.4	2.5	-2.3	2.8	1			Freque	ancy M	Hz				
3150 3200	37.3 37.1	15.0	2.6	38.3 38.3	2.6	-2.6	29 29						-	_	_	-	_
3250	37.0	15,1	2.7	38.2	2.7	-3.3	3.0										
3300	36.8	15,2	2.8	38.2	2.7	-3.6	3.1										
3350 3400	36.6	15.3	2.8	38.1 38.0	2.8	-3.9	3.2										
3450	36.3	15.4	3.0	38.0	2.9	-4.5	3.4										
3500	36.1	15.5	3.0	37.9	29	-4.8	3.5										
3550 3600	36.0	15.5	3.1	37.9	3.0	-5.0 -5.3	3.6										
3650	35.7	15.7	3.2	37,8	3.1	-5.6	3.7										
37/00	35.5	15.7	3.2	37,7	3.1	远泉	3.9										
3750	35.4	15.8	3.3 3.4	37.6	3.2	-6.1	3.9										
3800																	

Figure D-5 2.4 GHz Head Tissue Equivalent Matter

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	06/06/18 - 06/24/18	Portable Handset			Page 4 of 5
© 201	8 PCTEST Engineering Laboratory, I	nc.			REV 20.10 M 05/18/2018

2 Composition / Information on ingredients

Figure D-6 Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	0.001.00	uies ci	ginee	ring AG					S	p	е	а	g	
Phone	ausstra +41 44 peag.ci	12459	700, F	ax +41	44 24	5 9779								
Meas	suren	nent	Certi	ficat	e/M	aterial	Test							
Item N Produ	ct No.		SL A	AH 50	ue Sir 2 AG	nulating (Batch:	g Liquid (H 170613-1)	BBL3500-	5800	V5)			_	-
Manuf	acture	r	SPE/	AG	_	_	_	-		_		_	_	_
	ureme ielectri			s mea	sured	using c	alibrated D	AK probe.	_			_	-	_
	Valid tion re		vere w	ithin ±	2.5%	toward	s the target	values of	Metha	anol.				_
Targe	t Para	meter	s											
Target	t paran	neters	as de	fined i	n the	EEE 15	528 and IEC	C 62209 co	mplia	nce stan	dards.	-	_	
Test C Ambie		ion	English	onme	at term	o o co b ve	100 . 0100	and hurs!		100/				_
TSL T		ature	22°C		ni tem	peratur	(22 ± 3)°C	and humid	ity < i	0%.				
Test D Opera	ate		20-Ju CL	un-17										
	-			-	-					_	_			
	onal li	nform			3							_		
TSL D	ensity eat-ca	pacity		5 g/cm 3 kJ/(k)										
_	-		_	_		lesie -		-	_					
[MHz]	Measu e'	e"	sigma	Targe eps	sigma	Diff.to T A-eps	A-sigma	10.0	-				_	_
3400	38.6	15.03	2.84	38.0	2.81	1.5	1.1	₽ 7.5						
3500	38.5	15.00	2.92	37.9	2.91	1,5	0.3	Aprilimed						
3700	38.2	14.96	3.08	37.7	3.12	1.3	-1.2	0.0 Bat	*****		*******	*******		
3800	38.1	14.96	3.16	37.6	3.22	1.4	-1.9	1 -2.5						
3900			3.24		3.32	1.4	-2.5	-5.0	_	_		_		
4000	37.9	14.95	3.33	37.4	3.43	1.5	-2.8	.7.5	1					_
4100	37.9 37.8	14.96	3.41	37.4 37.2	3.53	1.5	-3.3	-7.5 -10.0	1	Sec.1	1.00			
4100 4200	37.9 37.8 37.6	14.96 15,00	3.41 3.50	37.4 37.2 37.1	3.53 3.63	1.5 1.3	-3.3 -3.6	-10.0	100	3900	4400 Freque	4900	5400	5900
4100	37.9 37.8	14.96	3.41	37.4 37.2	3.53	1.5	-3.3	-10.0	00	3900		4900 ancy MHz	5400	5900
4100 4200 4300 4400 4500	37.9 37.8 37.6 37.5 37.4 37.2	14.96 15.00 15.05 15.11 15.18	3.41 3.50 3.60 3.70 3.80	37.4 37.2 37.1 37.0 36.9 36.8	3.53 3.63 3.73 3.84 3.94	1.5 1.3 1.3 1.4 1.1	-3.3 -3.6 -3.5 -3.5 -3.5	-10.0	100	3900			5400	5900
4100 4200 4300 4400	37.9 37.8 37.6 37.5 37.4	14.96 15.00 15.05 15.11	3.41 3.50 3.60 3.70	37.4 37.2 37.1 37.0 36.9	3.53 3.63 3.73 3.84	1.5 1.3 1.3 1.4	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5	-10.0 3	100	3900			5400	5900
4100 4200 4300 4400 4500 4600 4700 4800	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35	3.41 3.50 3.60 3.70 3.80 3.90 4.00 4.10	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.6 36.4	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25	1.5 1.3 1.4 1.1 1.2 1.2 1.0	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4	-10.0 3 10.0 7.5	100	3900			5400	5900
4100 4200 4300 4400 4500 4600 4700 4800 4850	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25 4.30	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4 -3.6	-10.0 3 10.0 7.5 # 5.0	100	3900			5400	5900
4100 4200 4300 4400 4500 4600 4700 4800	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35	3.41 3.50 3.60 3.70 3.80 3.90 4.00 4.10	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.6 36.4	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25	1.5 1.3 1.4 1.1 1.2 1.2 1.0	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4	-10.0 3 10.0 7.5 # 5.0	100	3900			5400	5900
4100 4200 4300 4400 4500 4500 4800 4850 4950 5000	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.7 36.6 36.5	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.19 4.24 4.29	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.2	3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.35 4.40 4.45	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4 -3.6 -3.6 -3.6 -3.6 -3.6	-10.0 3 10.0 7.5 \$ 5.0 41425 0.0 00-25	100	3900			5400	5900
4100 4200 4300 4400 4500 4600 4700 4800 4850 4900 4950 5000 5050	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.7 36.6	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42 15.43	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.19 4.24 4.29 4.34	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.2 36.2	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25 4.30 4.35 4.40 4.45 4.50	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	-10.0 3 10.0 7.5 # 5.0	100	3900			5400	5900
4100 4200 4300 4400 4500 4700 4800 4850 4900 4950 5000 5050 5150	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.8 36.5 36.5 36.5 36.5 36.4 36.3	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42 15.43 15.43 15.46 15.48	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.19 4.24 4.29 4.34 4.39 4.43	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.7	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Frequi	ancy MHz		
4100 4200 4400 4400 4400 4400 4400 4800 48	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.7 36.6 36.5 36.5 36.5 36.4 36.3 36.2	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42 15.43 15.44 15.48 15.48 15.50	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.19 4.24 4.29 4.34 4.39 4.43 4.48	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.2 36.2 36.2 36.2 36.2 36.1 36.0 36.0	3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.66	1.5 1.3 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.7 0.5	-33 -36 -35 -35 -35 -35 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -38 -38 -38	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	400	3900	Freque		5400	5900
4100 4200 4300 4400 4500 4600 4700 4800 4850 4850 4950 5000 5050 5150	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.8 36.5 36.5 36.5 36.5 36.4 36.3	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42 15.43 15.43 15.46 15.48	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.19 4.24 4.29 4.34 4.39 4.43	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 3.94 4.04 4.14 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.7	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4200 4400 4500 4600 4800 4800 4900 4950 5050 5050 5100 5150 5250 5320 5350	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.4 36.2 36.1 36.1 36.1 36.0	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.38 15.39 15.42 15.43 15.43 15.48 15.59 15.53 15.56	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.24 4.29 4.34 4.39 4.43 4.58 4.58 4.63	37.4 37.2 37.1 37.0 36.9 36.8 36.4 36.4 36.3 36.4 36.3 36.2 36.2 36.2 36.2 36.2 36.2 36.0 35.9 35.9 35.8	3,53 3,83 3,84 4,04 4,14 4,25 4,30 4,45 4,40 4,45 4,55 4,60 4,55 4,60 4,71 4,76 4,81	1.5 1.3 1.4 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.7 0.5 0.5	-33 -36 -35 -35 -35 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -36 -38 -38 -38 -38 -37 -37	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4600 4800 4800 4850 5000 5050 5100 5150 5250 5350 5350 5350 5400	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.5 36.5 36.5 36.4 36.3 36.2 36.4 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.1 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2	14.96 15.00 15.05 15.11 15.18 15.24 15.35 15.35 15.38 15.39 15.42 15.43 15.46 15.48 15.69 15.55 15.56 15.56	3.41 3.50 3.60 3.70 3.80 4.00 4.10 4.14 4.24 4.24 4.24 4.24 4.34 4.34 4.34 4.43 4.43	37.4 37.2 37.1 37.0 36.9 36.8 36.4 36.4 36.4 36.4 36.3 36.2 36.2 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.45 4.40 4.45 4.50 4.60 4.66 4.71 4.76 4.81 4.88	1.5 1.3 1.4 1.1 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.4	-33 -36 -35 -35 -35 -35 -35 -35 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4600 4800 4800 4850 4900 5900 5050 5150 5150 5150 5250 5350 5350	37.9 37.8 37.6 37.5 37.4 37.2 37.1 37.0 36.8 36.8 36.8 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.4 36.2 36.1 36.1 36.1 36.0	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.38 15.39 15.42 15.43 15.43 15.48 15.59 15.53 15.56	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.24 4.29 4.34 4.39 4.43 4.58 4.58 4.63	37.4 37.2 37.1 37.0 36.9 36.8 36.4 36.4 36.3 36.4 36.3 36.2 36.2 36.2 36.2 36.2 36.2 36.0 35.9 35.9 35.8	3,53 3,83 3,84 4,04 4,14 4,25 4,30 4,45 4,40 4,45 4,55 4,60 4,55 4,60 4,71 4,76 4,81	1.5 1.3 1.4 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.7 0.5 0.5	-33 -36 -35 -35 -35 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -36 -38 -38 -38 -38 -37 -37	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4500 4800 4850 4850 4950 5050 5050 5150 5250 5350 5350 5400 5450 5550	37.9 37.8 37.6 37.5 37.4 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2	14.96 15.00 15.05 15.11 15.18 15.29 15.35 15.35 15.38 15.38 15.42 15.43 15.46 15.46 15.55 15.56 15.59 15.59 15.59 15.59 15.59 15.59	3.41 3.50 3.80 3.90 4.00 4.10 4.14 4.24 4.29 4.34 4.39 4.33 4.48 4.54 4.58 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63	37.4 37.2 37.1 36.9 36.8 36.7 36.6 36.4 36.4 36.3 36.3 36.3 36.3 36.3	3.53 3.63 3.73 3.84 4.04 4.25 4.30 4.35 4.40 4.45 4.55 4.60 4.55 4.60 4.55 4.60 4.54 4.55 4.60 4.54 4.55 4.54 4.55 4.56 4.55 4.55 4.55	1.5 1.3 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4 0.3	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4800 4800 4800 4850 5050 50	37.9 37.8 37.5 37.5 37.4 37.2 37.4 37.2 37.4 37.2 37.4 37.2 37.4 37.2 37.4 36.8 36.8 36.8 36.8 36.5 36.5 36.5 36.4 36.1 36.0 35.9 35.9 35.6	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.35 15.38 15.39 15.42 15.43 15.46 15.43 15.46 15.55 15.56 15.55 15.56 15.57 15.86	3.41 3.50 3.60 3.70 3.90 4.00 4.10 4.14 4.29 4.34 4.29 4.34 4.39 4.43 4.43 4.43 4.45 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63	37.4 37.2 37.1 37.0 36.9 36.8 36.4 36.3 36.4 36.3 36.2 36.2 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 4.04 4.14 4.25 4.30 4.45 4.40 4.45 4.50 4.60 4.60 4.60 4.60 4.60 4.61 4.81 4.88 4.91 4.96 4.91 5.01	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.7 0.5 0.6 0.5 0.6 0.5 0.4 0.6 0.4	-33 -36 -35 -35 -35 -35 -35 -35 -35 -34 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4400 4500 4850 5000 5000 50	37.9 37.8 37.6 37.5 37.4 37.2 37.4 37.2 37.4 36.8 36.8 36.8 36.8 36.8 36.5 36.4 36.3 36.2 36.5 36.4 36.1 36.0 35.9 35.8 35.5	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.38 15.38 15.38 15.42 15.43 15.48 15.58 15.58 15.56 15.57 15.59 15.57 15.70	3.41 3.50 3.60 3.70 4.00 4.10 4.14 4.19 4.24 4.29 4.43 4.54 4.54 4.54 4.63 4.63 4.63 4.63 4.63 4.83 4.83 4.83 4.83 4.83 4.83 4.98	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.3 36.3 36.3 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 4.04 4.25 4.30 4.45 4.40 4.45 4.55 4.60 4.55 4.60 4.55 4.60 4.54 4.55 4.60 4.54 4.55 4.54 4.55 4.56 4.51 4.56 4.55 4.55 4.55 4.55 4.55 4.55 4.55	1.5 1.3 1.4 1.1 1.2 1.2 1.0 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-3.3 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4400 4800 4800 4800 4900 5000 5150 5000 5150 5250 5550 5550 55	37.9 37.8 37.6 37.5 37.4 37.2 37.4 37.2 37.4 36.8 36.5 36.5 36.5 36.5 36.4 36.3 36.2 36.2 36.2 36.3 36.2 36.3 36.2 35.9 35.9 35.9 35.9 35.8 35.6 35.6 35.6 35.6 35.6 35.5 35.4	14.96 15.00 15.05 16.11 15.18 15.24 15.29 15.35 15.38 15.39 15.42 15.43 15.48 15.48 15.53 15.55 15.55 15.55 15.56 15.68 15.70 15.72 15.72	3.41 3.50 3.60 3.70 3.90 4.00 4.14 4.19 4.24 4.29 4.34 4.29 4.34 4.29 4.34 4.58 4.63 4.63 4.63 4.63 4.63 4.63 4.63 4.63	37.4 37.2 37.1 37.0 36.9 36.8 36.7 36.6 36.4 36.3 36.2 36.2 36.2 36.2 36.2 36.2 36.2	3.53 3.83 3.84 4.04 4.04 4.04 4.25 4.30 4.46 4.40 4.45 4.50 4.46 4.45 4.50 4.60 4.60 4.60 4.61 4.81 4.91 4.96 5.01 5.01 5.02 5.12 5.12	1.5 1.3 1.3 1.4 1.4 1.1 1.2 1.2 1.2 1.2 1.0 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-33 -36 -35 -35 -35 -35 -35 -34 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		
4100 4200 4300 4400 4500 4500 4500 4900 4950 5050 5150 5150 5350 5350 5350 5350 5400 5400 5400 54	37.9 37.8 37.6 37.5 37.4 37.2 37.4 37.2 37.4 36.8 36.8 36.8 36.8 36.8 36.5 36.4 36.3 36.2 36.5 36.4 36.1 36.0 35.9 35.8 35.5	14.96 15.00 15.05 15.11 15.18 15.24 15.29 15.35 15.38 15.38 15.38 15.42 15.43 15.48 15.58 15.58 15.56 15.57 15.59 15.57 15.70	3.41 3.50 3.60 3.70 4.00 4.10 4.14 4.19 4.24 4.29 4.43 4.54 4.54 4.54 4.63 4.63 4.63 4.63 4.63 4.83 4.83 4.83 4.83 4.83 4.83 4.98	37.4 37.2 37.1 37.0 36.9 36.8 36.4 36.4 36.3 36.3 36.2 36.2 36.2 36.2 36.2 36.2	3.53 3.63 3.73 3.84 4.04 4.04 4.14 4.25 4.30 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.4	1.5 1.3 1.3 1.4 1.4 1.1 1.2 1.2 1.2 1.2 1.2 1.2 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-33 -36 -35 -35 -35 -35 -35 -34 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36	-10.0 3 10.0 7.5 % 5.0 444 2.5 5.0 -5.0 -5.0 -5.0 -5.0 -7.5 -10.0	1		Freque	4900		

Figure D-7 5GHz Head Tissue Equivalent Matter

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by:
					Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	06/06/18 - 06/24/18	Portable Handset			Page 5 of 5
© 201	8 PCTEST Engineering Laboratory, I	Inc.			REV 20.10 M
					05/18/2018

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System validation Summary – 1g													
SAR							COND.	PERM.	C	W VALIDATION	1	N	MOD. VALIDATION	1
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
E	750	3/11/2018	3213	ES3DV3	750	Head	0.890	40.788	PASS	PASS	PASS	N/A	N/A	N/A
E	835	3/5/2018	3213	ES3DV3	835	Head	0.925	43.335	PASS	PASS	PASS	GMSK	PASS	N/A
E	1750	3/2/2018	3213	ES3DV3	1750	Head	1.397	38.415	PASS	PASS	PASS	N/A	N/A	N/A
E	1900	5/22/2018	3213	ES3DV3	1900	Head	1.447	38.909	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	10/16/2017	3332	ES3DV3	2450	Head	1.880	38.615	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
G	2600	10/16/2017	3332	ES3DV3	2600	Head	2.051	38.039	PASS	PASS	PASS	TDD	PASS	N/A
Н	5250	1/31/2018	3589	EX3DV4	5250	Head	4.516	36.066	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	1/31/2018	3589	EX3DV4	5600	Head	4.869	35.597	PASS	PASS	PASS	OFDM	N/A	PASS
н	5750	1/31/2018	3589	EX3DV4	5750	Head	5.112	35.351	PASS	PASS	PASS	OFDM	N/A	PASS
J	750	5/24/2018	3347	ES3DV3	750	Body	0.951	55.133	PASS	PASS	PASS	N/A	N/A	N/A
J	835	5/26/2018	3347	ES3DV3	835	Body	0.973	54.458	PASS	PASS	PASS	GMSK	PASS	N/A
1	1750	3/12/2018	3287	ES3DV3	1750	Body	1.462	52.350	PASS	PASS	PASS	N/A	N/A	N/A
1	1900	5/21/2018	3287	ES3DV3	1900	Body	1.575	51.758	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	10/10/2017	3332	ES3DV3	2450	Body	2.040	51.023	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-1 SAR System Validation Summary – 1g

 Table E-2

 SAR System Validation Summary – 10g

SAR							COND.	PERM.	C	W VALIDATION		Ν	NOD. VALIDATION	1
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
1	1750	3/12/2018	3287	ES3DV3	1750	Body	1.462	52.350	PASS	PASS	PASS	N/A	N/A	N/A
I	1900	5/21/2018	3287	ES3DV3	1900	Body	1.575	51.758	PASS	PASS	PASS	GMSK	PASS	N/A
К	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
к	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: A	A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Test Date	es:	DUT Type:			APPENDIX E:
06/06/18 -	- 06/24/18	Portable Handset			Page 1 of 1
2018 PCTEST E	Engineering Laboratory, I	inc.			REV 20.10 M 05/18/2018

C

APPENDIX G: POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

1.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

1.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/06/18 - 06/24/18	Portable Handset			Page 1 of 3
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

1.3 Main Antenna Verification Summary

		Pow	er Measurements (c	lBm)
Mechanism(s)	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)
Hotspot On	UMTS B4	23.86	20.85	
Hotspot On	UMTS B2	23.72	20.74	
Hotspot On	LTE B66	23.71	20.74	
Hotspot On	LTE B4	23.64	20.73	
Hotspot On	LTE B2	23.65	20.45	
Hotspot On	LTE B25	23.55	20.41	
Hotspot On	LTE B7	23.83	19.87	
Hotspot On	LTE B38	23.15	20.12	
Hotspot On	LTE B41	23.61	20.64	
Grip	UMTS B4	23.87	20.84	
Grip	UMTS B2	23.7	20.57	
Grip	LTE B66	23.69	20.69	
Grip	LTE B4	23.45	20.42	
Grip	LTE B2	23.62	20.49	
Grip	LTE B25	23.57	20.22	
Grip	LTE B7	23.82	19.68	
Grip	LTE B38	23.14	20.05	
Grip	LTE B41	23.59	20.71	
Hotspot On, the Grip	UMTS B4	23.85	20.83	20.83
Hotspot On, the Grip	UMTS B2	23.73	20.61	20.55
Hotspot On, the Grip	LTE B66	23.72	20.78	20.72
Hotspot On, the Grip	LTE B4	23.66	20.61	20.56
Hotspot On, the Grip	LTE B2	23.59	20.53	20.53
Hotspot On, the Grip	LTE B25	23.54	20.5	20.48
Hotspot On, the Grip	LTE B7	23.74	19.69	19.58
Hotspot On, the Grip	LTE B38	23.12	20.05	19.97
Hotspot On, the Grip	LTE B41	23.6	20.69	20.68
Grip, the Hotspot On	UMTS B4	23.86	20.87	20.85
Grip, the Hotspot On	UMTS B2	23.74	20.6	20.6
Grip, the Hotspot On	LTE B66	23.71	20.68	20.68
Grip, the Hotspot On	LTE B4	23.63	20.59	20.63
Grip, the Hotspot On	LTE B2	23.62	20.44	20.38
Grip, the Hotspot On	LTE B25	23.55	20.45	20.4
Grip, the Hotspot On	LTE B7	23.71	19.63	19.62
Grip, the Hotspot On	LTE B38	23.2	20.05	20.03
Grip, the Hotspot On	LTE B41	23.64	20.72	20.76

 Table G-1

 Power Measurement Verification for Main Antenna

FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/06/18 - 06/24/18	Portable Handset			Page 2 of 3
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

Mechanism(s)	Exposure Condition	Mode/Band	Distance Meas	urements (mm)	Minimum Distance per
wechanism(s)	Exposure condition	wode/Band	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	12	15	11
Grip	Phablet - Back Side	High	11	14	11
Grip	Phablet - Front Side	Mid	9	12	6
Grip	Phablet - Front Side	High	9	12	6
Grip	Phablet - Bottom Edge	Mid	13	16	13
Grip	Phablet - Bottom Edge	High	13	15	13

 Table G-2

 Distance Measurement Verification for Main Antenna

*Note: Mid band refers to: UMTS B2/4, LTE B2/4/25/66; High band refers to: LTE B7/B38/41

1.4 WIFI Verification Summary

		Conducted Power (dBm)									
Mechanism(s)	Mode/Band	Un-triggered (Max)	Max Allowed Target	Mechanism #1 (Reduced)	Max Allowed Target						
Held-to-Ear	802.11b	18.94	19	15.99	16						
Held-to-Ear	802.11a	16.69	17	12.36	13						
Held-to-Ear	802.11n (5GHz, 20MHz BW)	16.73	17	12.53	13						
Held-to-Ear	802.11ac (20MHz BW)	15.97	17	11.51	13						
Held-to-Ear	802.11n (5GHz, 40MHz BW)	14.45	15	12.58	13						
Held-to-Ear	802.11ac (40MHz BW)	14.42	15	12.56	13						
Held-to-Ear	802.11ac (80MHz BW)	12.73	14	12.37	13						

Table G-3
Power Measurement Verification WIFI

 Table G-4

 Distance Measurement Verification for WIFI

Machanism(s)	Expecting Condition	Mada /Dand	Distance Meas	Minimum Distance per	
Mechanism(s)	Exposure Condition	Mode/Band	Moving Toward	Moving Away	Manufacturer (mm)
Held-to-Ear	Head - Right Cheek	802.11b	64	>85	50
Held-to-Ear	Head - Right Cheek	802.11a	65	>85	50
Held-to-Ear	Head - Left Cheek	802.11b	71	>85	50
Held-to-Ear	Head - Left Cheek	802.11a	70	>85	50

FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
06/06/18 - 06/24/18	Portable Handset			Page 3 of 3
© 2018 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per FCC Guidance, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 – Example of Exclusion Table for SISO Configurations

Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration

FCC ID: A3LSMN960F	IN960F SAR EVALUATION REPORT		SAMSUNG	Reviewed by: Quality Manager
Test Dates: 06/06/18 - 06/24/18	DUT Type: Portable Handset			APPENDIX H Page 1 of 6
8 PCTEST Engineering Laboratory, Inc.				REV 20.05 M 11/15/2017

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by FCC Guidance, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

LTE Downlink Carrier Aggregaton was fully addressed in the original filing. Per FCC Guidance, only combiantions that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M1804040063-01.A3L for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.
- When a device supports LTE capabilities with overlapping transmission frequency ranges, the standalone powers from the band with a larger transmission frequency range can be used to select measurement configurations for the band with the fully covered transmission frequency range.

Base Station Simulator	< →	Wireless Device

Figure 1 SISO CA Power Measurement Setup

FCC ID: A3LSMN960F	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H
06/06/18 - 06/24/18	Portable Handset			Page 2 of 6
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.05 M
				11/15/2017

Figure 2 4x4 DL MIMO CA Power Measurement Setup

1.3 SISO Downlink Carrier Aggregation RF Conducted Powers

1.3.1 Two Component Carrier

©

Table 1 Maximum Output Powers															
					PCC				SCC	:		Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation		PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B7	20	3204	2665.4	24.18	24.19
CA_7A-7A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B7	20	2850	2630	24.25	24.19

Table 2 Reduced Output Powers

						1.0	auoo	u out	Puti	011010						
ſ						PCC						SCC			Power	
										PCC (DL)				SCC (DL)		LTE Single
	Combination	PCC Band	PCC BW	PCC (UL)	PCC (UL)	Modulation	PCC UL#	PCC UL	PCC (DL)	Freq.	SCC Band	SCC BW	SCC (DL)	Frea.	LTE Tx.Power with DL CA	Carrier Tx
	combination	FCC banu	[MHz]	Channel	Freq. [MHz]	wouldtion	RB	RB Offset	Ch.	[MHz]	SCC Ballu	[MHz]	Ch.	[MHz]	Enabled (dBm)	Power
										[IVIII2]				[[11]]2]		(dBm)
[CA_7C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B7	20	2944	2639.4	20.24	20.45
- [CA 7A-7A(1)	LTE B7	10	20800	2505	160AM	1	25	2800	2625	I TE B7	20	3350	2680	20.24	20.45

		CA PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by:
	FCC ID: A3LSMN960F			SAMASONO	Quality Manager
	Test Dates:	DUT Type:			APPENDIX H
	06/06/18 - 06/24/18	Portable Handset			Page 3 of 6
201	3 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M
					11/15/2017

1.4 4x4 Downlink MIMO RF Conduction Powers

This device supports downlink 4x4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

1.4.1 LTE 4x4 DL MIMO Standalone Powers

	Maximum Output Powers												
LTE Band	Bandwidth [MHz]	Channel	Frequency [MHz]	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power [dBm]					
7	15	21375	2562.5	QPSK	1	74	24.18	24.19					

Table 0

Table 4 Reduced Output Powers

LTE Band	Bandwidth [MHz]	Channel	Frequency [MHz]	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power [dBm]
7	10	20800	2505	16QAM	1	25	20.48	20.45

1.4.2 Two Component Carrier

	Maximum Output Powers																
PCC												SCO	:			Power	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation		PCC UL RB Offset			DL Ant. Config.	SCC Band	Bandwidth	SCC (DL) Channel	Frequency	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_[7C] (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4X4 MIMO	LTE B7	20	3204	2665.4	4x4 MIMO	24.22	24.19
CA_[7A]-[7A] (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4X4 MIMO	LTE B7	20	2850	2630	4x4 MIMO	24.35	24.19

Table 5

Table 6
Reduced Output Powers

	Neduced Output I Owers																	
					PCC				SCC				Power					
	Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation		PCC UL RB Offset			DL Ant. Config.	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
	CA_[7C] (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4X4 MIMO	LTE B7	20	2944	2639.4	4x4 MIMO	20.35	20.45
L	CA_[7A]-[7A] (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4X4 MIMO	LTE B7	20	3350	2680	4x4 MIMO	20.41	20.45

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H
	06/06/18 - 06/24/18	Portable Handset			Page 4 of 6
© 201	8 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M
					11/15/2017

1.5 LAA Downlink Carrier Aggregation

This device supports LAA with downlink carrier aggregation only. It uses carrier aggregation in the downlink to combine LTE in the unlicensed spectrum (i.e. LTE Band 46) with LTE in the licensed band (served as PCC). All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive. Due to the wide downlink bandwidth, each Band 46 sub-band, represented by subscripts A, B, C, and D, was evaluated independently. The general test selection and setup procedures described in Section 1.2 were applied.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

1.5.1 SISO LAA Downlink Carrier Aggregation RF Conducted Powers

	Maximum Output Powers																						
	PCC							sco	1			SCO	2			sco	3		Power				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _A	20	47290	5200	-	-	-	-	-	-	-	-	24.23	24.19
CA_7A-46 ₈ A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B468	20	48290	5300		-	-	-	-	-	-	-	24.25	24.19
CA_7A-46 _c A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _C	20	51290	5600		-	-	-	-	-	-	-	24.24	24.19
CA_7A-46 _D A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _D	20	53140	5785	-	-	-	-		-	-	-	24.24	24.19
CA_7A-46 _A C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	-	-	-	-	24.22	24.19
CA_7A-468C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _B	20	48290	5300	LTE B46 _B	20	48488	5319.8	-	-	-	-	24.17	24.19
CA_7A-46 _c C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _c	20	51290	5600	LTE B46 _c	20	51488	5619.8	-	-	-	-	24.16	24.19
CA_7A-46 _b C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _D	20	53140	5785	LTE B46 _D	20	53338	5804.8	-	-	-	-	24.20	24.19
CA_7A-46 _A D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	LTE B46 _A	20	47092	5180.2	24.34	24.19
CA_7A-46 ₈ D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 ₈	20	48290	5300	LTE B46 _B	20	48488	5319.8	LTE B46 _B	20	48092	5280.2	24.32	24.19
CA_7A-46cD (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46c	20	51290	5600	LTE B46c	20	51488	5619.8	LTE B46c	20	51092	5580.2	24.33	24.19
CA_7A-46 _b D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	LTE B46 _D	20	53140	5785	LTE B46 _D	20	53338	5804.8	LTE B46 _D	20	52942	5765.2	24.28	24.19

Table 7

Table 8 Reduced Output Powers

	PCC										SCC	1			SCC	2			SCC	3		Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7A-46 _A A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _A	20	47290	5200	-	-	-	-	-	-	-	-	20.44	20.45
CA_7A-46 ₈ A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 ₈	20	48290	5300	-	-	-	-	-	-	-	-	20.47	20.45
CA_7A-46 _c A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _C	20	51290	5600	-	-	-	-		-	-	-	20.40	20.45
CA_7A-46 _b A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _D	20	53140	5785	-	-	-	-	-	-	-	-	20.49	20.45
CA_7A-46 _A C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	-	-	-	-	20.31	20.45
CA_7A-468C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 ₈	20	48290	5300	LTE B46 ₈	20	48488	5319.8	-	-	-	-	20.32	20.45
CA_7A-46 _c C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _c	20	51290	5600	LTE B46 _c	20	51488	5619.8	-	-	-	-	20.28	20.45
CA_7A-46 _b C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _D	20	53140	5785	LTE B46 _b	20	53338	5804.8	-	-	-	-	20.25	20.45
CA_7A-46 _A D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _A	20	47290	5200	LTE B46 _A	20	47488	5219.8	LTE B46 _A	20	47092	5180.2	20.39	20.45
CA_7A-46 ₈ D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 ₈	20	48290	5300	LTE B46 ₈	20	48488	5319.8	LTE B46 ₈	20	48092	5280.2	20.44	20.45
CA_7A-46cD (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _c	20	51290	5600	LTE B46 _c	20	51488	5619.8	LTE B46 _c	20	51092	5580.2	20.38	20.45
CA_7A-46 _b D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	LTE B46 _D	20	53140	5785	LTE B46 _p	20	53338	5804.8	LTE B46 _D	20	52942	5765.2	20.37	20.45

	FCC ID: A3LSMN960F		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H
	06/06/18 - 06/24/18	Portable Handset			Page 5 of 6
20:	18 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M
					11/15/2017

C

1.5.2 4x4 DL MIMO LAA Downlink Carrier Aggregation RF Conducted Powers

Table 9 Maximum Output Powers																											
					PCC							sco	1				SCC	2				SCC	3			Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_[7A]-46 _A A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	-	-	-	-	-	-	-	-	-	-	24.25	24.19
CA_[7A]-46aA (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _B	20	48290	5300	2x2 MIMO	-	-	-		-	-		-	-	-	24.34	24.19
CA_[7A]-46cA (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO	-	-	-	-	-	-	-	-	-	-	24.28	24.19
CA_[7A]-46 ₀ A (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46p	20	53140	5785	2x2 MIMO		-				-		-	-		24.24	24.19
CA_[7A]-46 _A C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46 _A	20	47488	5219.8	2x2 MIMO	-	-	-	-	-	24.30	24.19
CA_[7A]-46gC (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _B	20	48290	5300	2x2 MIMO	LTE B46 ₈	20	48488	5319.8	2x2 MIMO	-	-	-	-	-	24.33	24.19
CA_[7A]-46cC (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO	LTE B46 _c	20	51488	5619.8	2x2 MIMO						24.31	24.19
CA_[7A]-46 ₀ C (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO	LTE B46 _D	20	53338	5804.8	2x2 MIMO	-	-	-	-	-	24.35	24.19
CA_[7A]-46 _A D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46 _A	20	47488	5219.8	2x2 MIMO	LTE B46 _A	20	47092	5180.2	2x2 MIMO	24.33	24.19
CA_[7A]-46gD (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46p	20	48290	5300	2x2 MIMO	LTE B46a	20	48488	5319.8	2x2 MIMO	LTE B46a	20	48092	5280.2	2x2 MIMO	24.32	24.19
CA_[7A]-46cD (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46c	20	51290	5600	2x2 MIMO	LTE B46c	20	51488	5619.8	2x2 MIMO	LTE B46c	20	51092	5580.2	2x2 MIMO	24.36	24.19
CA_[7A]-46 ₀ D (1)	LTE B7	15	21375	2562.5	QPSK	1	74	3375	2682.5	4x4 MIMO	LTE B46p	20	53140	5785	2x2 MIMO	LTE B46n	20	53338	5804.8	2x2 MIMO	LTE B46n	20	52942	5765.2	2x2 MIMO	24.34	24.19

Table 10 Reduced Output Powers

					PCC							SCC	1				SCC	2				SCC	3			Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	DL Ant. Config.	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_[7A]-46,A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	-	-	-	-		-	-	-		-	20.31	20.45
CA_[7A]-462A (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 ₈	20	48290	5300	2x2 MIMO	-	-	-	-	-	-		-	-		20.28	20.45
CA_[7A]-46cA (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO						-					20.26	20.45
CA_[7A]-46 _p A(1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO									-		20.31	20.45
CA_[7A]-46 _A C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46 _A	20	47488	5219.8	2x2 MIMO	-					20.27	20.45
CA_[7A]-46aC (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 ₈	20	48290	5300	2x2 MIMO	LTE B46s	20	48488	5319.8	2x2 MIMO	-			-	-	20.33	20.45
CA_[7A]-46 _c C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO	LTE B46 _c	20	51488	5619.8	2x2 MIMO	-					20.37	20.45
CA_[7A]-46 _p C (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO	LTE B46 _D	20	53338	5804.8	2x2 MIMO	-	-	-	-	-	20.22	20.45
CA_[7A]-46 _A D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _A	20	47290	5200	2x2 MIMO	LTE B46 _A	20	47488	5219.8	2x2 MIMO	LTE B46 _A	20	47092	5180.2	2x2 MIMO	20.21	20.45
CA_[7A]-46 _p D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _p	20	48290	5300	2x2 MIMO	LTE B46g	20	48488	5319.8	2x2 MIMO	LTE B46g	20	48092	5280.2	2x2 MIMO	20.24	20.45
CA_[7A]-46cD (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _c	20	51290	5600	2x2 MIMO	LTE B46 _c	20	51488	5619.8	2x2 MIMO	LTE B46 _c	20	51092	5580.2	2x2 MIMO	20.27	20.45
CA_[7A]-46 ₀ D (1)	LTE B7	10	20800	2505	16QAM	1	25	2800	2625	4x4 MIMO	LTE B46 _D	20	53140	5785	2x2 MIMO	LTE B46p	20	53338	5804.8	2x2 MIMO	LTE B46 _D	20	52942	5765.2	2x2 MIMO	20.22	20.45

		CTEST		SAMSUNG	Reviewed by:
	FCC ID: A3LSMN960F	SAR EVALUATION REPORT	SAMISONO	Quality Manager	
	Test Dates:	DUT Type:			APPENDIX H
	06/06/18 - 06/24/18	Portable Handset			Page 6 of 6
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.05 M
					11/15/2017

©