

$\begin{aligned} & \text { 10112- } \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 100\% RB, } 10 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	2.99	67.52	16.03	0.00	150.0	± 9.6 \%
		Y	3.01	67.67	16.15		150.0	
		Z	3.06	67.16	15.86		150.0	
$\begin{aligned} & 10113- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.77	68.89	16.50	0.00	150.0	± 9.6 \%
		Y	2.78	68.97	16.58		150.0	
		Z	2.81	68.06	16.24		150.0	
$\begin{aligned} & \hline 10114- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.09	67.23	16.55	0.00	150.0	± 9.6 \%
		Y	5.10	67.28	16.60		150.0	
		Z	5.19	67.11	16.46		150.0	
$\begin{aligned} & 10115- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.34	67.29	16.58	0.00	150.0	± 9.6 \%
		Y	5.35	67.33	16.63		150.0	
		Z	5.51	67.33	16.58		150.0	
$\begin{aligned} & 10116- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.18	67.42	16.57	0.00	150.0	± 9.6 \%
		Y	5.19	67.47	16.62		150.0	
		Z	5.30	67.34	16.50		150.0	
$\begin{aligned} & 10117- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.06	67.11	16.50	0.00	150.0	± 9.6 \%
		Y	5.07	67.16	16.56		150.0	
		Z	5.16	66.99	16.42		150.0	
$\begin{aligned} & 10118- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.42	67.49	16.69	0.00	150.0	± 9.6 \%
		Y	5.44	67.54	16.74		150.0	
		Z	5.60	67.55	16.70		150.0	
$\begin{aligned} & 10119- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 135 Mbps, 64QAM)	X	5.16	67.38	16.56	0.00	150.0	± 9.6 \%
		Y	5.17	67.43	16.62		150.0	
		Z	5.27	67.27	16.48		150.0	
$10140-$ CAC	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16$-QAM)	X	3.34	67.53	16.06	0.00	150.0	± 9.6 \%
		Y	3.37	67.68	16.18		150.0	
		Z	3.42	67.31	15.91		150.0	
10141 . CAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 100\% RB, } 15 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \\ & \hline \end{aligned}$	X	3.47	67.67	16.25	0.00	150.0	± 9.6 \%
		Y	3.49	67.79	16.35		150.0	
		Z	3.55	67.42	16.09		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$		X	1.97	69.09	15.95	0.00	150.0	± 9.6 \%
		Y	2.03	69.63	16.28		150.0	
		Z	2.02	68.20	15.69		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM)	X	2.49	69.65	15.98	0.00	150.0	± 9.6 \%
		Y	2.52	69.83	16.12		150.0	
		Z	2.51	68.62	15.86		150.0	
10144- CAD	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & 64-\mathrm{OAM}) \end{aligned}$	X	2.16	66.67	13.99	0.00	150.0	± 9.6 \%
		Y	2.21	66.99	14.22		150.0	
		Z	2.30	66.43	14.30		150.0	
$\begin{aligned} & 10145- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	1.07	64.11	10.67	0.00	150.0	± 9.6 \%
		Y	1.11	64.57	11.01		150.0	
		Z	1.31	65.51	12.40		150.0	
$\begin{aligned} & 10146- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16$-QAM)	X	1.34	62.65	9.02	0.00	150.0	± 9.6 \%
		Y	1.43	63.27	9.42		150.0	
		Z	2.01	66.35	12.18		150.0	
$\begin{aligned} & 10147- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	1.45	63.47	9.57	0.00	150.0	± 9.6 \%
		Y	1.57	64.27	10.06		150.0	
		Z	2.34	68.34	13.28		150.0	

$\begin{aligned} & 10149- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	2.87	67.55	16.01	0.00	150.0	± 9.6 \%
		Y	2.90	67.73	16.15		150.0	
$\begin{aligned} & 10150- \\ & \text { CAC } \end{aligned}$		Z	2.95	67.22	15.84		150.0	
	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	3.00	67.58	16.08	0.00	150.0	± 9.6 \%
		Y	3.02	67.73	16.20		150.0	
$\overline{10151-}$CAC		Z	3.07	67.21	15.90		150.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	5.65	76.57	21.08	3.98	65.0	± 9.6 \%
		Y	6.17	78.83	22.29		65.0	
$\begin{aligned} & 10152- \\ & \text { CAC } \end{aligned}$		Z	6.35	77.82	21.74		65.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	4.98	71.84	19.37	3.98	65.0	± 9.6 \%
		Y	5.18	73.09	20.20		65.0	
$\begin{aligned} & 10153- \\ & \text { CAC } \end{aligned}$		Z	5.53	73.00	20.11		65.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	5.35	72.93	20.23	3.98	65.0	± 9.6 \%
		Y	5.53	74.06	20.99		65.0	
		Z	5.88	73.94	20.90		65.0	
$\begin{array}{\|l\|} \hline 10154- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	2.24	69.40	16.63	0.00	150.0	± 9.6 \%
		Y	2.29	69.81	16.88		150.0	
		Z	2.29	68.69	16.27		150.0	
$\begin{aligned} & 10155- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.62	68.74	16.38	0.00	150.0	± 9.6 \%
		Y	2.64	68.87	16.49		150.0	
		Z	2.65	67.91	16.11		150.0	
$\begin{aligned} & 10156- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	1.81	69.21	15.68	0.00	150.0	± 9.6 \%
		Y	1.88	69.80	16.04		$\overline{150.0}$	
		Z	1.87	68.31	15.53		150.0	
$\begin{aligned} & 10157- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	2.01	67.27	13.98	0.00	150.0	± 9.6 \%
		Y	2.06	67.66	14.24		150.0	
		Z	2.13	67.00	14.37		150.0	
$\begin{aligned} & 10158- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	2.78	68.97	16.55	0.00	150.0	± 9.6 \%
		Y	2.79	69.05	16.63		150.0	
		Z	2.81	68.12	16.28		150.0	
$\begin{aligned} & 10159- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	2.12	67.76	14.27	0.00	150.0	± 9.6 \%
		Y	2.17	68.10	14.50		150.0	
		Z	2.25	67.49	14.68		150.0	
$\begin{aligned} & 10160- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	2.73	68.96	16.55	0.00	150.0	± 9.6 \%
		Y	2.78	69.27	16.76		150.0	
		Z	2.78	68.34	16.22		150.0	
10161 CAC	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	2.89	67.56	16.00	0.00	150.0	± 9.6 \%
		Y	2.92	67.72	16.12		150.0	
		Z	2.97	67.14	15.84		150.0	
$\begin{aligned} & 10162- \\ & \text { CAC } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	3.00	67.76	16.13	0.00	150.0	± 9.6 \%
		Y	3.03	67.89	16.24		150.0	
		Z	3.08	67.27	15.94		150.0	
$\begin{aligned} & 10166- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	3.29	68.55	18.62	3.01	150.0	± 9.6 \%
		Y	3.39	69.14	19.00		150.0	
		Z	3.56	68.77	18.74		150.0	
$\begin{aligned} & 10167- \\ & \text { CAD } \end{aligned}$	16-QAM) (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	3.85	70.83	18.84	3.01	150.0	± 9.6 \%
		Y	4.06	71.87	19.39		150.0	
		Z	4.27	71.19	19.04		150.0	

$\begin{aligned} & 10168- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50\% RB, 1.4 MHz , 64-QAM)	X	4.31	73.34	20.36	3.01	150.0	± 9.6 \%
		Y	4.51	74.19	20.77		150.0	
		Z	4.72	73.40	20.38		150.0	
$\begin{aligned} & 10169- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	2.65	67.07	17.95	3.01	150.0	± 9.6 \%
		Y	2.76	67.90	18.46		150.0	
		Z	2.95	68.18	18.47		150.0	
$\begin{aligned} & 10170- \\ & \mathrm{CAC} \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , 16-QAM)	X	3.35	71.83	19.98	3.01	150.0	± 9.6 \%
		Y	3.58	73.08	20.56		150.0	
		Z	3.90	73.37	20.58		150.0	
$10171-$ AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.80	68.11	17.24	3.01	150.0	± 9.6 \%
		Y	3.01	69.49	17.99		150.0	
		Z	3.23	69.44	17.85		150.0	
10172- CAC	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.65	76.31	22.99	6.02	65.0	± 9.6 \%
		Y	5.48	85.89	27.40		65.0	
		Z	5.55	83.03	25.87		65.0	
$\begin{aligned} & \hline 10173- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	6.66	85.15	24.55	6.02	65.0	± 9.6 \%
		Y	10.56	95.03	28.43		65.0	
		Z	12.26	94.72	28.10		65.0	
10174- CAC	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	4.93	79.32	21.92	6.02	65.0	± 9.6 \%
		Y	8.98	90.91	26.48		65.0	
		Z	8.81	87.78	25.30		65.0	
$\begin{aligned} & 10175- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	2.62	66.79	17.70	3.01	150.0	± 9.6 \%
		Y	2.73	67.64	18.24		150.0	
		Z	2.91	67.87	18.21		150.0	
$\begin{aligned} & 10176- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.35	71.86	19.99	3.01	150.0	± 9.6 \%
		Y	3.58	73.10	20.58		150.0	
		Z	3.90	73.39	20.59		150.0	
$\begin{aligned} & 10177- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.64	66.92	17.79	3.01	150.0	± 9.6 \%
		Y	2.75	67.76	18.31		150.0	
		Z	2.94	68.03	18.32		150.0	
$\begin{aligned} & 10178- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	3.33	71.68	19.88	3.01	150.0	± 9.6 \%
		Y	3.56	72.95	20.49		150.0	
		Z	3.86	73.15	20.45		150.0	
$\begin{aligned} & \text { 10179- } \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.04	69.83	18.46	3.01	150.0	± 9.6 \%
		Y	3.27	71.21	19.16		150.0	
		Z	3.53	71.24	19.06		150.0	
$\begin{aligned} & 10180- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64QAM)	X	2.79	68.06	17.20	3.01	150.0	± 9.6 \%
		Y	3.00	69.44	17.95		150.0	
		Z	3.23	69.37	17.80		150.0	
$10181-$ CAC	$\text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}$ QPSK)	X	2.64	66.91	17.79	3.01	150.0	± 9.6 \%
		Y	2.74	67.75	18.31		150.0	
		Z	2.93	68.01	18.31		150.0	
$\begin{aligned} & 10182- \\ & \text { CAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.32	71.66	19.87	3.01	150.0	± 9.6 \%
		Y	3.55	72.93	20.48		150.0	
		Z	3.85	73.13	20.44		150.0	
$\begin{aligned} & 10183- \\ & A A B \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}_{1} \\ & \text { 64-QAM) } \end{aligned}$	X	2.79	68.04	17.19	3.01	150.0	± 9.6 \%
		Y	3.00	69.42	17.94		150.0	
		Z	3.22	69.35	17.79		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.65	66.95	17.81	3.01	150.0	$\pm 9.6 \%$
		Y	2.75	67.79	18.33		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$		Z	2.95	68.05	18.33		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 16QAM)	X	3.34	71.72	19.91	3.01	150.0	± 9.6 \%
		Y	3.57	72.99	20.51		150.0	
		Z	3.87	73.20	20.48		150.0	
10186-$A A D$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64QAM)	X	2.80	68.09	17.22	3.01	150.0	± 9.6 \%
		Y	3.01	69.48	17.97		150.0	
		Z	3.23	69.41	17.82		150.0	
$\begin{aligned} & 10187- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	2.66	67.00	17.88	3.01	150.0	± 9.6 \%
		Y	2.76	67.84	18.40		150.0	
		Z	2.95	68.09	18.39		150.0	
$\begin{array}{\|l\|} \hline 10188- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM)	X	3.43	72.31	20.28	3.01	150.0	± 9.6 \%
		Y	3.66	73.53	20.84		150.0	
		Z	4.00	73.86	20.87		150.0	
$\begin{array}{\|l} \hline 10189- \\ \text { AAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	2.85	68.45	17.48	3.01	150.0	± 9.6 \%
		Y	3.07	69.84	18.22		150.0	
		Z	3.30	69.81	18.09		150.0	
$\begin{aligned} & 10193- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.48	66.73	16.24	0.00	150.0	± 9.6 \%
		Y	4.49	66.78	16.30		150.0	
		Z	4.58	66.49	16.16		150.0	
$\begin{aligned} & 10194- \\ & \text { CAB } \end{aligned}$	$\begin{aligned} & \text { IEEE 802.11n (HT Greenfield, } 39 \mathrm{Mbps} \text {, } \\ & \text { 16-QAM) } \\ & \hline \end{aligned}$	X	4.63	67.01	16.37	0.00	150.0	± 9.6 \%
		Y	4.65	67.06	16.43		150.0	
		Z	4.76	66.82	16.28		150.0	
$\begin{aligned} & 10195- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.67	67.04	16.38	0.00	150.0	± 9.6 \%
		Y	4.69	67.09	16.44		150.0	
		Z	-4.80	66.85	16.30		150.0	
$\begin{aligned} & 10196- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.47	66.77	16.24	0.00	150.0	$\pm 9.6 \%$
		Y	4.48	66.82	16.30		150.0	
		Z	4.59	66.56	16.19		150.0	
$\begin{aligned} & \hline 10197- \\ & \text { CAB } \end{aligned}$	TEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.64	67.02	16.38	0.00	150.0	± 9.6 \%
		Y	4.66	67.08	16.44		150.0	
$\begin{aligned} & 10198- \\ & \text { CAB } \end{aligned}$		Z	4.78	66.84	16.30		150.0	
	QAM)	X	4.67	67.05	16.39	0.00	150.0	± 9.6 \%
		Y	4.68	67.10	16.45		150.0	
$\begin{aligned} & 10219- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$		Z	4.81	66.86	16.31		150.0	
	BPSK)	X	4.42	66.79	16.21	0.00	150.0	$\pm 9.6 \%$
		Y	4.44	66.84	16.27		150.0	
$\begin{aligned} & 10220- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$		Z	4.54	66.57	16.15		150.0	
	TEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.64	66.99	16.36	0.00	150.0	± 9.6 \%
		Y	4.65	67.04	16.42		150.0	
		Z	4.77	66.82	16.29		150.0	
$\begin{aligned} & 10221- \\ & \text { CAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.68	66.98	16.38	0.00	150.0	± 9.6 \%
		Y	4.69	67.03	16.44		150.0	
$\begin{aligned} & 10222- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$		Z	4.81	66.80	16.30		150.0	
	IEEE 802.11n (HT Mixed, 15 Mbps ,	X	5.03	67.11	16.49	0.00	150.0	± 9.6 \%
		Y	5.04	67.15	16.55		150.0	
		Z	5.14	67.00	16.41		150.0	

July 17, 2017

$\begin{aligned} & 10223- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.33	67.33	16.62	0.00	150.0	± 9.6 \%
		Y	5.34	67.38	16.68		150.0	
		Z	5.45	67.21	16.54		150.0	
$\begin{aligned} & \hline 10224- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	5.07	67.22	16.48	0.00	150.0	± 9.6 \%
		Y	5.09	67.26	16.53		150.0	
		Z	5.18	67.11	16.40		150.0	
$\begin{aligned} & 10225- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	UMTS-FDD (HSPA+)	X	2.76	66.33	15.32	0.00	150.0	± 9.6 \%
		Y	2.78	66.46	15.44		150.0	
		Z	2.85	65.93	15.34		150.0	
$\begin{aligned} & 10226- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM). } \end{aligned}$	X	7.05	86.26	25.03	6.02	65.0	± 9.6 \%
		Y	11.33	96.43	28.97		65.0	
		Z	13.18	96.17	28.66		65.0	
$\begin{aligned} & 10227- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	7.07	85.23	24.04	6.02	65.0	± 9.6 \%
		Y	11.45	95.09	27.83		65.0	
		Z	12.76	94.16	27.40		65.0	
$\begin{aligned} & 10228- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	4.84	82.15	25.37	6.02	65.0	± 9.6 \%
		Y	6.17	88.64	28.46		65.0	
		Z	7.76	90.12	28.51		65.0	
$\begin{aligned} & 10229- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16QAM)	X	6.71	85.26	24.59	6.02	65.0	± 9.6 \%
		Y	10.65	95.13	28.47		65.0	
		Z	12.36	94.84	28.14		65.0	
$\begin{aligned} & 10230- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	6.68	84.20	23.61	6.02	65.0	± 9.6 \%
		Y	10.65	93.73	27.33		65.0	
		Z	11.94	92.89	26.92		65.0	
$\begin{aligned} & 10231- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK)	X	4.67	81.40	24.99	6.02	65.0	± 9.6 \%
		Y	5.94	87.77	28.07		65.0	
		Z	7.43	89.17	28.10		65.0	
$\begin{aligned} & 10232- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	6.69	85.24	24.58	6.02	65.0	± 9.6 \%
		Y	10.63	95.12	28.47		65.0	
		Z	12.34	94.82	28.14		65.0	
$\begin{array}{\|l} \hline 10233- \\ \text { CAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-$ QAM)	X	6.66	84.17	23.60	6.02	65.0	± 9.6 \%
		Y	10.62	93.69	27.32		65.0	
		Z	11.91	92.86	26.91		65.0	
$\begin{array}{\|l} \hline 10234- \\ \text { CAC } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	4.54	80.75	24.63	6.02	65.0	± 9.6 \%
		Y	5.76	87.05	27.69		65.0	
		Z	7.17	88.32	27.68		65.0	
$\begin{aligned} & 10235- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	6.69	85.26	24.59	6.02	65.0	± 9.6 \%
		Y	10.64	95.16	28.48		65.0	
		Z	12.35	94.85	28.15		65.0	
$\begin{aligned} & 10236- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	6.73	84.30	23.64	6.02	65.0	± 9.6 \%
		Y	10.78	93.91	27.38		65.0	
		Z	12.05	93.03	26.96		65.0	
$\begin{aligned} & 10237- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	4.67	81.42	25.00	6.02	65.0	± 9.6 \%
		Y	5.94	87.83	28.10		65.0	
		Z	7.43	89.21	28.12		65.0	
$\begin{aligned} & 10238- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	6.68	85.21	24.57	6.02	65.0	± 9.6 \%
		Y	10.60	95.09	28.46		65.0	
		Z	12.31	94.79	28.13		65.0	

$\begin{aligned} & 10239- \\ & \mathrm{CAC} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 . \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	6.64	84.13	23.58	6.02	65.0	± 9.6 \%
		Y	10.57	93.64	27.30		65.0	
$\begin{aligned} & 10240- \\ & \text { CAC } \end{aligned}$		Z	11.87	92.82	26.90		65.0	
	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	4.66	81.38	24.99	6.02	65.0	± 9.6 \%
		Y	5.92	87.78	28.08		65.0	
		Z	7.41	89.16	28.10		65.0	
$\begin{aligned} & 10241- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	6.49	77.69	23.88	6.98	65.0	± 9.6 \%
		Y	7.06	80.22	25.34		65.0	
		Z	7.33	78.75	24.61		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 64-QAM)	X	5.69	74.96	22.63	6.98	65.0	± 9.6 \%
		Y	6.72	79.20	24.84		65.0	
		Z	6.48	76.10	23.39		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	5.22	73.93	23.04	6.98	65.0	± 9.6 \%
		Y	5.37	75.23	24.06		65.0	
		Z	5.30	72.76	22.72		65.0	
$\begin{aligned} & 10244- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM)	X	4.03	70.70	15.63	3.98	65.0	± 9.6 \%
		Y	4.63	73.27	17.01		65.0	
		Z	5.80	76.12	19.17		65.0	
$\begin{array}{\|l\|} \hline 10245- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM)	X	3.94	70.12	15.32	3.98	65.0	± 9.6 \%
		Y	4.47	72.48	16.60		65.0	
		Z	5.67	75.49	18.85		65.0	
$\begin{aligned} & 10246- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 3 MHz, QPSK)	X	4.17	75.16	18.15	3.98	65.0	± 9.6 \%
		Y	5.29	79.64	20.23		65.0	
		Z	5.81	80.17	21.10		65.0	
$\begin{aligned} & 10247- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.10	71.58	17.29	3.98	65.0	± 9.6 \%
		Y	4.43	73.43	18.37		65.0	
		Z	4.92	74.07	19.21		65.0	
$\begin{aligned} & 10248- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	4.07	70.96	16.98	3.98	65.0	± 9.6 \%
		Y	4.37	72.65	17.99		65.0	
		Z	4.90	73.42	18.88		65.0	
$\begin{aligned} & 10249- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	5.33	79.24	20.92	3.98	65.0	± 9.6 \%
		Y	6.73	84.01	23.05		65.0	
		Z	6.62	82.34	22.76		65.0	
$\begin{aligned} & 10250- \\ & \text { CAC } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.99	74.32	20.40	3.98	65.0	± 9.6 \%
		Y	5.24	75.79	21.30		65.0	
$\begin{aligned} & 10251- \\ & \text { CAC } \end{aligned}$		Z	5.59	75.60	21.35		65.0	
	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	4.75	72.14	19.02	3.98	65.0	± 9.6 \%
		Y	4.99	73.56	19.92		65.0	
$\begin{aligned} & 10252- \\ & \text { CAC } \end{aligned}$		Z	5.35	73.44	20.02		65.0	
	$\begin{aligned} & \text { QPSKK) } \\ & \text { QPI } \end{aligned}$	X	5.62	79.05	22.01	3.98	65.0	± 9.6 \%
		Y	6.48	82.42	23.65		65.0	
$\begin{aligned} & 10253- \\ & \text { CAC } \end{aligned}$		Z	6.49	80.72	22.96		65.0	
	$\underset{\text { 16-QAM) }}{ }$	X	4.91	71.43	19.12	3.98	65.0	± 9.6 \%
		Y	5.09	72.60	19.93		65.0	
		Z	5.40	72.41	19.86		65.0	
$\begin{aligned} & 10254- \\ & \text { CAC } \\ & \hline \end{aligned}$	64-RAM) (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$,	X	5.23	72.40	19.88	3.98	65.0	± 9.6 \%
		Y	5.41	73.49	20.63		65.0	
		Z	5.73	73.30	20.57		65.0	

July 17, 2017

$\begin{aligned} & 10255- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 15 MHz , QPSK)	X	5.37	75.82	20.95	3.98	65.0	± 9.6 \%
		Y	5.81	77.90	22.11		65.0	
		Z	5.98	76.90	21.60		65.0	
$\begin{aligned} & \text { 10256- } \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.95	66.44	12.43	3.98	65.0	± 9.6 \%
		Y	3.25	68.14	13.47		65.0	
		Z	4.63	72.57	16.66		65.0	
$\begin{aligned} & 10257- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, 100\% RB, } 1.4 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \\ & \hline \end{aligned}$	X	2.90	65.89	12.05	3.98	65.0	± 9.6 \%
		Y	3.14	67.36	12.98		65.0	
		Z	4.49	71.73	16.18		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, \mathrm{QPSK}$)	X	2.90	69.51	14.64	3.98	65.0	± 9.6 \%
		\bar{Y}	3.44	72.54	16.25		65.0	
		Z	4.52	75.89	18.60		65.0	
$\begin{aligned} & 10259- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	4.46	72.72	18.47	3.98	65.0	± 9.6 \%
		Y	4.78	74.47	19.50		65.0	
		Z	5.19	74.62	19.97		65.0	
$\begin{aligned} & 10260- \\ & \mathrm{CAB} \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM)	X	4.49	72.43	18.33	3.98	65.0	$\pm 9.6 \%$
		Y	4.79	74.08	19.32		65.0	
		Z	5.22	74.34	19.84		65.0	
$\begin{aligned} & 10261- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	5.17	78.27	21.02	3.98	65.0	± 9.6 \%
		Y	6.16	82.12	22.85		65.0	
		Z	6.14	80.53	22.44		65.0	
$\begin{aligned} & 10262- \\ & \text { CAC } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.98	74.25	20.35	3.98	65.0	± 9.6 \%
		Y	5.23	75.73	21.26		65.0	
		Z	5.58	75.55	21.31		65.0	
$\begin{aligned} & 10263- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 5 \text { MHz } \\ & \text { 64-QAM) } \end{aligned}$	X	4.74	72.12	19.01	3.98	65.0	± 9.6 \%
		Y	4.98	73.53	19.91		65.0	
		Z	5.34	73.42	20.01		65.0	
$\begin{aligned} & 10264- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \\ & \text { QPSK) } \end{aligned}$	X	5.56	78.83	21.90	3.98	65.0	$\pm 9.6 \%$
		Y	6.41	82.18	23.54		65.0	
		Z	6.42	80.51	22.86		65.0	
$\begin{aligned} & 10265- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 16$-QAM)	X	4.98	71.84	19.37	3.98	65.0	± 9.6 \%
		Y	5.18	73.09	20.20		65.0	
		Z	5.53	73.00	20.12		65.0	
$\begin{aligned} & 10266- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & M H z, 64-Q A M) \end{aligned}$	X	5.34	72.91	20.22	3.98	65.0	± 9.6 \%
		Y	5.53	74.04	20.98		65.0	
		Z	5.88	73.92	20.89		65.0	
$\begin{aligned} & 10267- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, \mathrm{QPSK}$)	X	5.64	76.53	21.06	3.98	65.0	± 9.6 \%
		Y	6.16	78.78	22.27		65.0	
		Z	6.34	77.78	21.72		65.0	
$\begin{aligned} & 10268- \\ & \mathrm{CAC} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	5.63	71.94	19.85	3.98	65.0	± 9.6 \%
		Y	5.78	72.88	20.51		65.0	
		Z	6.14	72.88	20.41		65.0	
$\begin{aligned} & 10269- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM)	X	5.64	71.57	19.72	3.98	65.0	± 9.6 \%
		Y	5.77	72.45	20.36		65.0	
		Z	6.12	72.44	20.27		65.0	
$\begin{aligned} & 10270- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	5.66	74.09	20.17	3.98	65.0	± 9.6 \%
		Y	5.94	75.48	21.01		65.0	
		Z	6.22	75.05	20.69		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.58	66.84	15.32	0.00	150.0	± 9.6 \%
		Y	2.61	67.05	15.49		150.0	
$\begin{aligned} & 10275- \\ & \text { CAB } \end{aligned}$		Z	2.61	66.19	15.19		150.0	
	UMTS-FDD (HSUPA, Sublest 5, 3GPP Rel8.4)	X	1.62	68.33	15.81	0.00	150.0	± 9.6 \%
		Y	1.68	69.01	16.23		150.0	
10277-CAA		Z	1.61	67.33	15.34		150.0	
	PHS (QPSK)	X	1.71	60.26	5.85	9.03	50.0	± 9.6 \%
		Y	1.46	60.00	5.35		50.0	
$\begin{aligned} & 10278- \\ & \mathrm{CAA} \end{aligned}$		Z	2.08	61.87	7.57		50.0	
	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	3.48	68.77	13.21	9.03	50.0	± 9.6 \%
		Y	3.86	71.42	14.38		50.0	
$\begin{array}{\|l\|} \hline 10279- \\ \text { CAA } \\ \hline \end{array}$		Z	7.61	81.06	19.61		50.0	
	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	3.59	69.09	13.42	9.03	50.0	± 9.6 \%
		Y	4.03	71.88	14.65		50.0	
		Z	7.80	81.31	19.76		50.0	
$\begin{aligned} & 10290- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	1.38	68.75	13.54	0.00	150.0	± 9.6 \%
		Y	1.49	69.81	14.11		150.0	
		Z	1.48	68.40	14.11		150.0	
$10291-$	CDMA2000, RC3, SO55, Full Rate	X	0.81	66.18	12.25	0.00	150.0	± 9.6 \%
		Y	0.88	67.15	12.85		150.0	
$\begin{aligned} & 10292- \\ & \text { AAB } \end{aligned}$		Z	0.85	65.51	12.62		150.0	
	CDMA2000, RC3, SO32, Full Rate	X	1.25	72.63	15.60	0.00	150.0	± 9.6 \%
		Y	1.48	75.02	16.70		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	1.05	69.24	14.85		150.0	
	CDMA2000, RC3, SO3, Full Rate	X	3.55	87.18	21.36	0.00	150.0	± 9.6 \%
		Y	4.57	90.90	22.67		150.0	
$\begin{aligned} & \text { 10295- } \\ & \text { AAB } \end{aligned}$		Z	1.55	74.98	17.80		150.0	
	CDMA2000, RC1, SO3, 1/8th Rate 25 fr .	X	10.90	87.79	24.10	9.03	50.0	± 9.6 \%
		Y	17.38	97.96	27.91		50.0	
$\begin{aligned} & 10297- \\ & \mathrm{AAB} \end{aligned}$		Z	9.27	86.92	25.25		50.0	
	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	2.71	69.84	16.83	0.00	150.0	± 9.6 \%
		Y	2.77	70.21	17.06		150.0	
$\begin{aligned} & \hline 10298- \\ & \text { AAC } \end{aligned}$		Z	2.77	69.29	16.46		150.0	
	QPSK)	X	1.47	67.49	13.62	0.00	150.0	± 9.6 \%
		Y	1.54	68.13	14.02		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	1.61	67.49	14.26		150.0	
	16-QAM)	X	1.91	66.04	11.93	0.00	150.0	± 9.6 \%
		Y	2.08	67.06	12.49		150.0	
$\begin{aligned} & 10300- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	2.55	68.88	14.29		150.0	
	$\begin{aligned} & \text { LIE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	1.52	62.84	9.56	0.00	150.0	$\pm 9.6 \%$
		Y	1.60	63.32	9.89		150.0	
10301-AAA		Z	2.01	64.97	11.67		150.0	
	10 MHz, QPSK, PUSC)	X	4.49	64.94	17.15	4.17	50.0	± 9.6 \%
		Y	4.51	65.12	17.33		50.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.77	65.09	17.35		50.0	
	IEEE 802.16 e WiMAX ($29: 18,5 \mathrm{~ms}$, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	X	4.98	65.58	17.87	4.96	50.0	± 9.6 \%
		Y	5.02	65.83	18.08		50.0	
		Z	5.23	65.61	18.00		50.0	

July 17, 2017

$\begin{aligned} & 10303- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	4.72	65.17	17.66	4.96	50.0	± 9.6 \%
		Y	4.76	65.39	17.86		50.0	
		Z	4.98	65.24	17.83		50.0	
$\begin{aligned} & \text { 10304- } \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.56	65.16	17.23	4.17	50.0	$\pm 9.6 \%$
		Y	4.60	65.38	17.42		50.0	
		Z	4.79	65.14	17.34		50.0	
$\begin{aligned} & 10305- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (31:15, 10 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	4.06	66.26	18.68	6.02	35.0	± 9.6 \%
		Y	3.98	66.05	18.73		35.0	
		Z	4.32	66.47	19.19		35.0	
10306-AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	4.43	65.65	18.52	6.02	35.0	± 9.6 \%
		Y	4.40	65.62	18.63		35.0	
		Z	4.69	65.80	18.88		35.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.31	65.69	18.43	6.02	35.0	± 9.6 \%
		Y	4.27	65.62	18.52		35.0	
		Z	4.59	65.95	18.85		35.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.28	65.86	18.56	6.02	35.0	± 9.6 \%
		Y	4.24	65.78	18.65		35.0	
		Z	4.55	66.08	18.95		35.0	
$\begin{aligned} & 10309- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{AMC} 2 \times 3,18$ symbols)	X	4.47	65.79	18.63	6.02	35.0	± 9.6 \%
		Y	4.44	65.78	18.76		35.0	
		Z	4.75	66.03	19.03		35.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	4.38	65.69	18.49	6.02	35.0	± 9.6 \%
		Y	4.34	65.63	18.59		35.0	
		Z	4.64	65.84	18.85		35.0	
$\begin{array}{\|l} \hline 10311- \\ \text { AAB } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	3.08	69.08	16.47	0.00	150.0	± 9.6 \%
		Y	3.14	69.40	16.66		150.0	
		Z	3.12	68.62	16.13		150.0	
$\begin{array}{\|l} \hline 10313- \\ \text { AAA } \\ \hline \end{array}$	iDEN 1:3	X	2.89	72.65	16.29	6.99	70.0	$\pm 9.6 \%$
		Y	4.19	78.79	18.89		70.0	
		Z	4.02	76.71	18.18		70.0	
10314-AAA	iDEN 1:6	X	5.30	83.78	23.47	10.00	30.0	± 9.6 \%
		Y	6.55	89.94	26.15		30.0	
		Z	6.97	88.50	25.50		30.0	
$\begin{aligned} & 10315- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.08	63.77	15.30	0.17	150.0	± 9.6 \%
		Y	1.10	64.11	15.62		150.0	
		Z	1.08	63.32	14.99		150.0	
$\begin{aligned} & 10316- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps, $96 p \mathrm{c}$ duty cycle)	X	4.51	66.68	16.32	0.17	150.0	± 9.6 \%
		Y	4.53	66.78	16.42		150.0	
		Z	4.64	66.54	16.30		150.0	
$\begin{aligned} & 10317- \\ & A A B \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.51	66.68	16.32	0.17	150.0	± 9.6 \%
		Y	4.53	66.78	16.42		150.0	
		Z	4.64	66.54	16.30		150.0	
$\begin{aligned} & 10400- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.61	67.03	16.35	0.00	150.0	± 9.6 \%
		Y	4.63	67.11	16.42		150.0	
		Z	4.76	66.86	16.27		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.34	67.18	16.51	0.00	150.0	± 9.6 \%
		Y	5.36	67.26	16.59		150.0	
		Z	5.46	67.09	16.45		150.0	

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.30	67.32	16.58	0.00	150.0	± 9.6 \%
		Y	5.31	67.37	16.64		150.0	
		Z	5.44	67.28	16.54		150.0	
10430-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.41	72.30	18.78	0.00	150.0	± 9.6 \%
		Y	4.28	71.61	18.44		150.0	
		Z	4.35	70.84	18.35		150.0	
10431-AAA	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	4.12	67.35	16.27	0.00	150.0	± 9.6 \%
		Y	4.14	67.43	16.34		150.0	
		Z	4.27	67.06	16.22		150.0	
10432-AAA	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1)	X	4.43	67.18	16.37	0.00	150.0	± 9.6 \%
		Y	4.45	67.24	16.44		150.0	
		Z	4.58	66.95	16.29		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1)	X	4.69	67.13	16.45	0.00	150.0	± 9.6 \%
		Y	4.70	67.18	16.51		150.0	
		Z	4.82	66.95	16.37		150.0	
$\begin{aligned} & \hline 10434- \\ & \text { AAA } \\ & \hline \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.58	73.43	18.77	0.00	150.0	± 9.6 \%
		Y	4.41	72.61	18.39		150.0	
		Z	4.46	71.72	18.35		150.0	
$\begin{aligned} & 10435- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.84	90.24	22.26	3.23	80.0	± 9.6 \%
		Y	100.00	126.90	32.00		80.0	
		Z	100.00	125.48	31.98		80.0	
10447-AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.40	67.35	15.41	0.00	150.0	± 9.6 \%
		Y	3.42	67.47	15.52		150.0	
		Z	3.56	67.03	15.56		150.0	
$\begin{aligned} & 10448- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	3.98	67.14	16.14	0.00	150.0	± 9.6 \%
		Y	4.00	67.22	16.21		150.0	
		Z	4.11	66.83	16.08		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	4.26	67.02	16.27	0.00	150.0	± 9.6 \%
		Y	4.28	67.08	16.34		150.0	
		Z	4.38	66.77	16.19		150.0	
$\begin{aligned} & 10450- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.47	66.91	16.31	0.00	150.0	± 9.6 \%
		Y	4.48	66.96	16.37		150.0	
		Z	4.58	66.71	16.22		150.0	
$\begin{aligned} & 10451- \\ & \text { AAA } \\ & \hline \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44\%)	X	3.25	67.38	14.88	0.00	150.0	± 9.6 \%
		Y	3.28	67.53	15.01		150.0	
		Z	3.46	67.22	15.21		150.0	
10456AAA	IEEE 802.11ac WiFl (160 MHz , 64-QAM, 99pc duty cycle)	X	6.22	67.99	16.81	0.00	150.0	± 9.6 \%
		Y	6.22	68.02	16.86		150.0	
		Z	6.28	67.84	16.71		150.0	
10457AAA	UMTS-FDD (DC-HSDPA)	X	3.78	65.43	16.02	0.00	150.0	± 9.6 \%
		Y	3.79	65.48	16.08		150.0	
		Z	3.83	65.16	15.92		150.0	
10458AAA	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 2 \\ & \text { carriers) } \end{aligned}$	X	3.02	66.44	14.01	0.00	150.0	± 9.6 \%
		Y	3.06	66.64	14.18		150.0	
		Z	3.28	66.54	14.63		150.0	
10459AAA	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 3 \\ & \text { carriers) } \end{aligned}$	X	4.18	65.23	15.36	0.00	150.0	± 9.6 \%
		Y	4.18	65.21	15.41		150.0	
		Z	4.47	65.25	15.75		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	0.93	68.87	16.62	0.00	150.0	± 9.6 \%
		Y	1.00	70.16	17.38		150.0	
		Z	0.88	67.06	15.60		150.0	
$\begin{aligned} & 10461- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.32	84.19	21.37	3.29	80.0	± 9.6 \%
		Y	46.98	120.39	31.74		80.0	
		Z	70.92	123.84	32.55		80.0	
$\begin{aligned} & 10462- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.93	61.17	8.92	3.23	80.0	± 9.6 \%
		Y	1.50	66.22	11.48		80.0	
		Z	4.18	75.74	15.77		80.0	
$\begin{aligned} & 10463- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.74	3.23	80.0	± 9.6 \%
		Y	0.90	60.95	8.47		80.0	
		Z	1.89	66.55	11.77		80.0	
$\begin{aligned} & \text { 10464- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.27	79.79	19.27	3.23	80.0	± 9.6 \%
		Y	44.63	117.13	30.10		80.0	
		Z	63.16	119.86	30.88		80.0	
$\begin{array}{\|l} 10465- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 16$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.88	60.65	8.58	3.23	80.0	± 9.6 \%
		Y	1.28	64.64	10.73		80.0	
		Z	2.98	72.01	14.38		80.0	
$\begin{aligned} & 10466- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, $64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.69	3.23	80.0	± 9.6 \%
		Y	0.85	60.44	8.16		80.0	
		Z	1.66	65.17	11.12		80.0	
$\begin{aligned} & 10467 \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.54	80.96	19.70	3.23	80.0	± 9.6 \%
		Y	60.93	121.68	31.18		80.0	
		Z	84.88	124.19	31.89		80.0	
$\begin{aligned} & 1046 \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.89	60.80	8.68	3.23	80.0	± 9.6 \%
		Y	1.33	65.06	10.94		80.0	
		Z	3.21	72.86	14.71		80.0	
AAB	QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.69	3.23	80.0	± 9.6 \%
		Y	0.85	60.46	8.17		80.0	
		Z	1.66	65.20	11.14		80.0	
AAB	$\text { QPSK, UL Subframe }=2,3,4,7,8,9 \text {) }$	X	3.54	80.99	19.71	3.23	80.0	± 9.6 \%
		Y	63.11	122.20	31.29		80.0	
		Z	86.48	124.48	31.95		80.0	
AAB	$\text { QAM, UL Subframe }=2,3,4,7,8,9 \text {) }$	X	0.88	60.76	8.65	3.23	80.0	± 9.6 \%
		Y	1.32	64.98	10.89		80.0	
		Z	3.18	72.76	14.66		80.0	
AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 64- QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.68	3.23	80.0	± 9.6 \%
		Y	0.84	60.42	8.13		80.0	
		$\frac{\mathrm{Z}}{\mathrm{X}}$	1.65	65.15	11.10		80.0	
AAB	$\text { QPSK, UL Subframe }=2,3,4,7,8,9 \text {) }$	X	3.52	80.93	19.68	3.23	80.0	± 9.6 \%
		Y	62.71	122.07	31.26		80.0	
		Z	85.93	124.36	31.91		80.0	
AAB	QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.88	60.74	8.64	3.23	80.0	± 9.6 \%
		Y	1.31	64.94	10.87		80.0	
		Z	3.15	72.67	14.63		80.0	
AAB	QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.68	3.23	80.0	± 9.6 \%
		Y	0.84	60.40	8.12		80.0	
		Z	1.64	65.11	11.08		80.0	

$\begin{aligned} & 10477- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.87	60.61	8.55	3.23	80.0	± 9.6 \%
		Y	1.27	64.59	10.69		80.0	
		Z	2.97	71.99	14.36		80.0	
$\begin{array}{\|l\|} \hline 10478- \\ \text { AAB } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	7.67	3.23	80.0	± 9.6 \%
		Y	0.84	60.37	8.09		80.0	
		Z	1.63	65.04	11.04		80.0	
10479AAA	LTE-TDD (SC-FDMA, 50\% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.53	79.52	20.39	3.23	80.0	± 9.6 \%
		Y	7.80	88.47	23.78		80.0	
		Z	5.78	82.49	22.28		80.0	
$\begin{aligned} & \hline 10480- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.53	72.09	15.68	3.23	80.0	± 9.6 \%
		Y	6.36	79.96	18.76		80.0	
		Z	6.52	79.72	19.55		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.81	68.83	13.98	3.23	80.0	± 9.6 \%
		Y	4.53	74.98	16.60		80.0	
		Z	5.48	76.73	18.13		80.0	
$\begin{aligned} & 10482- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.20	68.90	15.09	2.23	80.0	± 9.6 \%
		Y	2.93	73.22	17.16		80.0	
		Z	2.97	72.34	17.43		80.0	
$\begin{aligned} & 10483- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.35	65.97	12.90	2.23	80.0	± 9.6 \%
		Y	3.02	69.40	14.64		80.0	
		Z	4.23	73.30	17.24		80.0	
10484-AAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.28	65.32	12.60	2.23	80.0	± 9.6 \%
		Y	2.83	68.32	14.18		80.0	
		Z	3.99	72.23	16.81		80.0	
$\begin{array}{\|l\|} \hline 10485- \\ \text { AAB } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.68	71.36	17.35	2.23	80.0	± 9.6 \%
		Y	3.27	74.89	19.08		80.0	
		Z	3.17	72.95	18.56		80.0	
$\begin{aligned} & 10486- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.64	67.61	15.00	2.23	80.0	± 9.6 \%
		Y	2.99	69.69	16.14		80.0	
		Z	3.15	69.34	16.51		80.0	
10487-AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.64	67.21	14.79	2.23	80.0	± 9.6 \%
		Y	2.96	69.13	15.87		80.0	
		Z	3.15	68.96	16.33		80.0	
$\begin{aligned} & 10488- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.00	70.76	18.02	2.23	80.0	± 9.6 \%
		Y	3.34	72.92	19.20		80.0	
		Z	3.42	71.88	18.69		80.0	
$\begin{aligned} & 10489- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.07	67.95	16.69	2.23	80.0	± 9.6 \%
		Y	3.24	69.09	17.42		80.0	
		Z	3.37	68.53	17.27		80.0	
10490-AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.16	67.82	16.63	2.23	80.0	± 9.6 \%
		Y	3.32	68.90	17.33		80.0	
		Z	3.47	68.38	17.21		80.0	
$\begin{aligned} & 10491- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK, UL Subframe=2,3,4,7,8,9)	X	3.29	69.57	17.67	2.23	80.0	± 9.6 \%
		Y	3.53	71.04	18.54		80.0	
		Z	3.67	70.46	18.17		80.0	
$\begin{aligned} & 10492- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.43	67.31	16.78	2.23	80.0	± 9.6 \%
		Y	3.55	68.11	17.34		80.0	
		Z	3.72	67.80	17.20		80.0	

10493- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.50	67.21	16.74	2.23	80.0	± 9.6 \%
		Y	3.62	67.97	17.27		80.0	
$\begin{aligned} & 10494- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	3.79	67.69	17.16		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.52	70.87	18.10	2.23	80.0	± 9.6 \%
		Y	3.84	72.64	19.08		80.0	
10495-AAB		Z	3.98	72.03	18.67		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.45	67.59	16.97	2.23	80.0	± 9.6 \%
		Y	3.58	68.42	17.54		80.0	
$\begin{aligned} & 10496- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	3.75	68.20	17.40		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.54	67.39	16.91	2.23	80.0	± 9.6 \%
		Y	3.65	68.15	17.44		80.0	
$\begin{aligned} & 10497- \\ & \text { AAA } \end{aligned}$		Z	3.83	67.94	17.32		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.43	63.58	11.40	2.23	80.0	± 9.6 \%
		Y	1.80	66.67	13.09		80.0	
10498- AAA		Z	2.27	68.74	14.99		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.24	60.00	8.33	2.23	80.0	± 9.6 \%
		Y	1.23	60.00	8.51		80.0	
10499- AAA		Z	1.81	63.14	11.27		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	1.26	60.00	8.18	2.23	80.0	± 9.6 \%
		Y	1.24	60.00	8.34		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \end{aligned}$		Z	1.76	62.56	10.83		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.78	70.93	17.56	2.23	80.0	± 9.6 \%
		Y	3.23	73.75	19.01		80.0	
$\begin{aligned} & 10501- \\ & \text { AAA } \end{aligned}$		Z	3.21	72.13	18.47		80.0	
	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, 100\% RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM. UL Subframe }=3348 \mathrm{al} \end{aligned}$ $\text { 16-QAM, UL Subframe }=2,3,4,7,8,9)$	X	2.86	67.97	15.75	2.23	80.0	± 9.6 \%
		Y	3.13	69.65	16.71		80.0	
$\begin{aligned} & 10502- \\ & \text { AAA } \end{aligned}$		Z	3.25	69.01	16.80		80.0	
	64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.90	67.83	15.61	2.23	80.0	± 9.6 \%
		Y	3.18	69.45	16.55		80.0	
$\begin{aligned} & 10503- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	3.31	68.90	16.69		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.96	70.56	17.92	2.23	80.0	$\pm 9.6 \%$
		Y	3.29	72.71	19.10		80.0	
$\begin{aligned} & 10504- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	3.38	71.68	18.59		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.05	67.84	16.62	2.23	80.0	± 9.6 \%
		Y	3.22	69.00	17.36		80.0	
		Z	3.35	68.44	17.21		80.0	
$\begin{aligned} & 10505- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.14	67.73	16.57	2.23	80.0	± 9.6 \%
		Y	3.31	68.81	17.27		80.0	
		Z	3.45	68.28	17.16		80.0	
$\begin{aligned} & 10506- \\ & \text { AAB } \end{aligned}$	$\text { MHz, QPSK, UL Subframe }=2,3,4,7,8,9)$	X	3.49	70.73	18.03	2.23	80.0	± 9.6 \%
		Y	3.81	72.49	19.00		80.0	
$\begin{aligned} & 10507- \\ & \text { AAB } \end{aligned}$		Z	3.95	71.88	18.59		80.0	
	$\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.44	67.53	16.93	2.23	80.0	$\pm 9.6 \%$
		Y	3.56	68.36	17.50		80.0	
		Z	3.73	68.13	17.36		80.0	

$\begin{aligned} & 10508- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.53	67.32	16.87	2.23	80.0	± 9.6 \%
		Y	3.64	68.08	17.40		80.0	
		Z	3.82	67.87	17.27		80.0	
$\begin{aligned} & 10509- \\ & A A B \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.90	69.82	17.65	2.23	80.0	± 9.6 \%
		Y	4.14	71.06	18.38		80.0	
		Z	4.30	70.72	18.09		80.0	
$\begin{aligned} & 10510- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.92	67.34	16.97	2.23	80.0	± 9.6 \%
		Y	4.03	67.99	17.44		80.0	
		Z	4.22	67.93	17.34		80.0	
$\begin{array}{\|l} \hline 10511- \\ \text { AAB } \end{array}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.99	67.15	16.93	2.23	80.0	± 9.6 \%
		Y	4.09	67.75	17.36		80.0	
		Z	4.28	67.68	17.27		80.0	
$\begin{aligned} & \hline 10512- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.00	71.09	18.05	2.23	80.0	± 9.6 \%
		Y	4.33	72.71	18.93		80.0	
		Z	4.49	72.31	18.60		80.0	
$\begin{aligned} & \text { 10513- } \\ & \mathrm{AAB} \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.80	67.50	17.05	2.23	80.0	± 9.6 \%
		Y	3.92	68.21	17.54		80.0	
		Z	4.11	68.20	17.45		80.0	
$\begin{aligned} & 10514- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.85	67.16	16.95	2.23	80.0	± 9.6 \%
		Y	3.95	67.80	17.41		80.0	
		Z	4.13	67.78	17.32		80.0	
$\begin{aligned} & 10515- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.99	63.41	14.95	0.00	150.0	± 9.6 \%
		Y	1.00	63.71	15.22		150.0	
		Z	0.98	62.80	14.50		150.0	
$\begin{aligned} & 10516- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duly cycle)	X	0.63	71.18	17.99	0.00	150.0	± 9.6 \%
		Y	0.75	74.25	19.60		150.0	
		Z	0.56	68.07	16.15		150.0	
$\begin{array}{\|l\|} \hline 10517- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duly cycle)	X	0.84	65.39	15.66	0.00	150.0	± 9.6 \%
		Y	0.87	66.03	16.14		150.0	
		Z	0.82	64.43	14.97		150.0	
$\begin{aligned} & \text { 10518- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.47	66.84	16.30	0.00	150.0	± 9.6 \%
		Y	4.48	66.90	16.36		150.0	
		Z	4.58	66.60	16.20		150.0	
$\begin{aligned} & \hline 10519- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.63	67.03	16.39	0.00	150.0	± 9.6 \%
		Y	4.64	67.09	16.46		150.0	
		Z	4.77	66.85	16.33		150.0	
$\begin{aligned} & \text { 10520- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.49	66.98	16.32	0.00	150.0	± 9.6 \%
		Y	4.50	67.04	16.38		150.0	
		Z	4.62	66.81	16.25		150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.42	66.97	16.30	0.00	150.0	± 9.6 \%
		Y	4.43	67.03	16.37		150.0	
		Z	4.55	66.80	16.23		150.0	
$\begin{aligned} & \text { 10522- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.48	67.10	16.40	0.00	150.0	± 9.6 \%
		Y	4.49	67.16	16.47		150.0	
		Z	4.61	66.88	16.31		150.0	

$\begin{aligned} & 10523- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.38	67.02	16.28	0.00	150.0	± 9.6 \%
		Y	4.40	67.08	16.35		150.0	
10524-AAA		Z	4.49	66.74	16.15		150.0	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.42	67.02	16.37	0.00	150.0	± 9.6 \%
		Y	4.44	67.08	16.44		150.0	
10525-AAA		Z	4.56	66.80	16.28		150.0	
	IEEE 802.11ac WiFi (20MHz, MCSO, 99pc duty cycle)	X	4.44	66.11	15.98	0.00	150.0	± 9.6 \%
		Y	4.45	66.16	16.04		150.0	
$\begin{aligned} & 10526- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.54	65.84	15.87		150.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, $99 p \mathrm{duty}$ cycle)	X	4.58	66.42	16.11	0.00	150.0	± 9.6 \%
		Y	4.59	66.48	16.17		150.0	
$\begin{aligned} & 10527- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.71	66.22	16.01		150.0	
	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.51	66.39	16.05	0.00	150.0	± 9.6 \%
		Y	4.52	66.45	16.12		150.0	
$\begin{aligned} & 10528- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.63	66.17	15.95		150.0	
	IEEE 802.11ac WiFi (20 MHz , MCS3, 99 pc duty cycle)	X	4.52	66.40	16.08	0.00	150.0	± 9.6 \%
		Y	4.54	66.46	16.15		150.0	
		Z	4.65	66.19	15.99		150.0	
$\begin{aligned} & 10529- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.52	66.40	16.08	0.00	150.0	± 9.6 \%
		Y	4.54	66.46	16.15		150.0	
		Z	4.65	66.19	15.99		150.0	
$\begin{aligned} & 10531- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.50	66.46	16.08	0.00	150.0	± 9.6 \%
		Y	4.51	66.53	16.14		150.0	
		Z	4.64	66.30	16.00		150.0	
$\begin{aligned} & 10532- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.37	66.32	16.01	0.00	150.0	± 9.6 \%
		Y	4.39	66.39	16.08		150.0	
		\underline{Z}	4.50	66.15	15.93		150.0	
$\begin{aligned} & 10533- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.53	66.48	16.08	0.00	150.0	± 9.6 \%
		Y	4.54	66.54	16.15		150.0	
		Z	4.66	66.23	15.97		150.0	
$\begin{aligned} & 10534- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40 MHz , MCSO, 99pc duty cycle)	X	5.07	66.45	16.14	0.00	150.0	± 9.6 \%
		Y	5.09	66.50	16.19		150.0	
		Z	5.19	66.33	16.06		150.0	
$\begin{aligned} & \text { 10535- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.13	66.62	16.22	0.00	150.0	± 9.6 \%
		Y	5.14	66.67	16.27		150.0	
		Z	5.25	66.51	16.14		150.0	
$\begin{aligned} & \text { 10536- } \\ & \text { AAA } \end{aligned}$	99pc duty cycle)	X	5.01	66.59	16.19	0.00	150.0	± 9.6 \%
		Y	5.03	66.64	16.24		150.0	
		Z	5.12	66.45	16.09		150.0	
$\begin{aligned} & \text { 10537- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.07	66.55	16.17	0.00	150.0	$\pm 9.6 \%$
		Y	5.08	66.59	16.22		150.0	
$\begin{aligned} & \text { 10538- } \\ & \text { AAA } \end{aligned}$		Z	5.18	66.42	16.08		150.0	
	99pc duty cycle)	X	5.14	66.54	16.20	0.00	150.0	± 9.6 \%
		Y	5.15	66.59	16.25		150.0	
		Z	5.27	66.46	16.14		150.0	
$10540-$AAA	99pc duty cycle)	X	5.07	66.52	16.21	0.00	150.0	± 9.6 \%
		Y	5.08	66.57	16.26		150.0	
		Z	5.20	66.47	16.16		150.0	

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.05	66.41	16.14	0.00	150.0	± 9.6 \%
		Y	5.06	66.46	16.20		150.0	
		Z	5.17	66.33	16.08		150.0	
10542-AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99 pc duty cycle)	X	5.21	66.51	16.21	0.00	150.0	± 9.6 \%
		Y	5.22	66.55	16.26		150.0	
		Z	5.33	66.41	16.13		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.27	66.52	16.24	0.00	150.0	± 9.6 \%
		Y	5.28	66.56	16.29		150.0	
		Z	5.41	66.45	16.18		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCSO, 99pc duty cycle)	X	5.40	66.53	16.13	0.00	150.0	± 9.6 \%
		Y	5.42	66.58	16.18		150.0	
		Z	5.49	66.45	16.06		150.0	
$\begin{aligned} & 10545- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 99 pc duty cycle)	X	5.59	66.98	16.30	0.00	150.0	± 9.6 \%
		Y	5.60	67.03	16.36		150.0	
		Z	5.69	66.88	16.22		150.0	
$\begin{aligned} & \text { 10546- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duly cycle)	X	5.45	66.68	16.17	0.00	150.0	± 9.6 \%
		Y	5.46	66.73	16.22		150.0	
		Z	5.56	66.67	16.13		150.0	
$\begin{aligned} & 10547- \\ & A A A \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 99 pc duty cycle)	X	5.52	66.76	16.20	0.00	150.0	± 9.6 \%
		Y	5.53	66.80	16.25		150.0	
		Z	5.63	66.71	16.14		150.0	
$\begin{aligned} & 10548- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.72	67.56	16.57	0.00	150.0	± 9.6 \%
		Y	5.74	67.62	16.64		150.0	
		Z	5.92	67.73	16.62		150.0	
$\begin{array}{\|l\|} \hline 10550- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.50	66.81	16.24	0.00	150.0	± 9.6 \%
		Y	5.51	66.85	16.30		150.0	
		Z	5.59	66.68	16.14		150.0	
10551-AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.47	66.72	16.16	0.00	150.0	± 9.6 \%
		Y	5.48	66.77	16.22		150.0	
		Z	5.59	66.72	16.13		150.0	
10552-AAA	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 8$, 99pc duty cycle)	X	5.41	66.62	16.12	0.00	150.0	± 9.6 \%
		Y	5.42	66.66	16.16		150.0	
		Z	5.50	66.51	16.03		150.0	
10553-AAA	IEEE 802.11ac WiFi (80 MHz , MCS9, 99 pc duty cycle)	X	5.48	66.60	16.14	0.00	150.0	± 9.6 \%
		Y	5.49	66.65	16.19		150.0	
		Z	5.59	66.56	16.08		150.0	
10554-AAA	IEEE 1602.11ac WiFi (160 MHz , MCS0, 99pc duty cycle)	X	5.82	66.88	16.21	0.00	150.0	± 9.6 \%
		Y	5.83	66.92	16.26		150.0	
		Z	5.90	66.82	16.15		150.0	
$\begin{aligned} & 10555- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE $1602.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}$, MCS1, 99 pc duty cycle)	X	5.94	67.15	16.33	0.00	150.0	± 9.6 \%
		Y	5.95	67.20	16.38		150.0	
		Z	6.03	67.13	16.28		150.0	
$\begin{aligned} & 10556- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 1602.11ac WiFi (160MHz, MCS2, 99 pc duly cycle)	X	5.96	67.23	16.36	0.00	150.0	± 9.6 \%
		Y	5.98	67.27	16.41		150.0	
		Z	6.05	67.17	16.30		150.0	
$10557-$ AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	5.92	67.10	16.31	0.00	150.0	± 9.6 \%
		Y	5.93	67.14	16.36		150.0	
		Z	6.02	67.08	16.27		150.0	

July 17, 2017

$\begin{array}{\|l} \hline 10558- \\ \text { AAA } \\ \hline \end{array}$	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	5.96	67.24	16.39	0.00	150.0	± 9.6 \%
		Y	5.97	67.29	16.45		150.0	
$\begin{aligned} & 10560- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	6.07	67.25	16.37		150.0	
	IEEE 1602.11 ac WiFi (160 MHz , MCS6, 99pc duty cycle)	X	5.95	67.10	16.36	0.00	150.0	± 9.6 \%
		Y	5.97	67.14	16.41		150.0	
$10561-$AAA		Z	6.06	67.09	16.33		150.0	
	IEEE 1602.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7$,	X	5.89	67.09	16.39	0.00	150.0	± 9.6 \%
		Y	5.90	67.14	16.45		150.0	
10562AAA		Z	5.99	67.06	16.35		150.0	
	IEEE 1602.11ac WiFi (160MHz, MCS8, 99 pc duty cycle)	X	5.97	67.34	16.52	0.00	150.0	± 9.6 \%
		Y	5.98	67.39	16.57		150.0	
10563-AAA		Z	6.12	67.47	16.55		150.0	
	IEEE 1602.11 ac WiFi (160 MHz , MCS9, 99pc duty cycle)	X	6.05	67.24	16.43	0.00	150.0	± 9.6 \%
		Y	6.06	67.29	16.49		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	6.41	67.91	16.73		150.0	
	OFDM, 9 Mbps, $99 p$ duly cycle)	X	4.78	66.85	16.41	0.46	150.0	± 9.6 \%
		Y	4.80	66.93	16.49		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.91	66.67	16.35		150.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 99pc duty cycle)	X	4.99	67.29	16.74	0.46	150.0	± 9.6 \%
		Y	5.01	67.35	16.80		150.0	
$\begin{aligned} & \text { 10566- } \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.14	67.15	16.69		150.0	
	lEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 99 \mathrm{pc}$ duly cycle)	X	4.83	67.11	16.54	0.46	150.0	± 9.6 \%
		Y	4.84	67.18	16.62		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.98	66.99	16.50		150.0	
	OFDM, 24 Mbps, 99 pc duly cycle)	X	4.87	67.55	16.94	0.46	150.0	± 9.6 \%
		Y	4.87	67.57	16.98		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.01	67.40	16.87		150.0	
	OFDM 36 Mbps 29 .4 duty (DScl	X	4.73	66.85	16.28	0.46	150.0	± 9.6 \%
		Y	4.75	66.97	16.39		150.0	
$\begin{aligned} & 10569- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.88	66.73	16.25		150.0	
	OFDM, 48 Mbps , 99 pc duty cycle)	X	4.84	67.72	17.05	0.46	150.0	± 9.6 \%
		Y	4.85	67.73	17.08		150.0	
$10570-$AAA		Z	4.96	67.48	16.93		150.0	
	OFDM, 54 Mbps, $99 p \mathrm{c}$ duty cycle)	X	4.86	67.53	16.95	0.46	150.0	± 9.6 \%
		Y	4.87	67.55	16.99		150.0	
$\begin{aligned} & 10571- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	$\frac{5.00}{113}$	67.32	16.86		150.0	
	Mbps, 90pc duty cycle)	X	1.13	63.98	15.42	0.46	130.0	± 9.6 \%
		Y	1.15	64.46	15.85		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$		$\frac{Z}{X}$	1.15	63.75	15.28		130.0	
	Mbps, 90pc duty cycle)	X	1.14	64.53	15.78	0.46	130.0	$\pm 9.6 \%$
		Y	1.16	65.03	16.22		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \end{aligned}$		$\frac{Z}{X}$	1.16	64.27	15.61		130.0	
	Mbps, 90pc duty cycle)	X	1.37	80.51	21.92	0.46	130.0	± 9.6 \%
		Y	2.18	89.24	25.44		130.0	
10574-AAA		Z	1.24	77.68	20.60		130.0	
	Mbps, 90pc duly cycle)	X	1.21	70.03	18.74	0.46	130.0	± 9.6 \%
		Y	1.26	70.93	19.36		130.0	
		Z	1.21	69.23	18.24		130.0	

July 17, 2017

$\begin{aligned} & 10575- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 90 pc duty cycle)	X	4.55	66.59	16.41	0.46	130.0	± 9.6 \%
		Y	4.57	66.69	16.52		130.0	
		Z	4.69	66.45	16.40		130.0	
10576-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps, 90 pc duty cycle)	X	4.58	66.78	16.50	0.46	130.0	± 9.6 \%
		Y	4.60	66.87	16.60		130.0	
		Z	4.71	66.62	16.47		130.0	
10577- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 90 \mathrm{pc}$ duly cycle)	X	4.76	67.04	16.65	0.46	130.0	± 9.6 \%
		Y	4.78	67.12	16.75		130.0	
		Z	4.92	66.93	16.65		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.67	67.21	16.78	0.46	130.0	± 9.6 \%
		Y	4.68	67.27	16.85		130.0	
		Z	4.82	67.09	16.76		130.0	
10579- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90 pc duty cycle)	X	4.41	66.37	16.00	0.46	130.0	± 9.6 \%
		Y	4.44	66.52	16.15		130.0	
		Z	4.58	66.34	16.04		130.0	
10580-$A A A$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $36 \mathrm{Mbps}_{\text {, }} 90 \mathrm{pc}$ duty cycle)	X	4.45	66.43	16.02	0.46	130.0	± 9.6 \%
		Y	4.49	66.59	16.18		130.0	
		Z	4.62	66.36	16.05		130.0	
$\begin{aligned} & \text { 10581- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, 90 pc duty cycle)	X	4.57	67.26	16.72	0.46	130.0	± 9.6 \%
		Y	4.58	67.33	16.82		130.0	
		Z	4.71	67.12	16.69		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps, 90 pc duty cycle)	X	4.34	66.11	15.76	0.46	130.0	± 9.6 \%
		Y	4.38	66.30	15.94		130.0	
		Z	4.52	66.09	15.82		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.55	66.59	16.41	0.46	130.0	± 9.6 \%
		Y	4.57	66.69	16.52		130.0	
		Z	4.69	66.45	16.40		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.58	66.78	16.50	0.46	130.0	± 9.6 \%
		Y	4.60	66.87	16.60		130.0	
		Z	4.71	66.62.	16.47		130.0	
10585-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duly cycle)	X	4.76	67.04	16.65	0.46	130.0	± 9.6 \%
		Y	4.78	67.12	16.75		130.0	
		Z	4.92	66.93	16.65		130.0	
10586-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90 pc duly cycle)	X	4.67	67.21	16.78	0.46	130.0	± 9.6 \%
		Y	4.68	67.27	16.85		130.0	
		Z	4.82	67.09	16.76		130.0	
$10587-$AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duly cycle)	X	4.41	66.37	16.00	0.46	130.0	± 9.6 \%
		Y	4.44	66.52	16.15		130.0	
		Z	4.58	66.34	16.04		130.0	
10588-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.45	66.43	16.02	0.46	130.0	± 9.6 \%
		Y	4.49	66.59	16.18		130.0	
		Z	4.62	66.36	16.05		130.0	
10589-AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.57	67.26	16.72	0.46	130.0	± 9.6 \%
		Y	4.58	67.33	16.82		130.0	
		Z	4.71	67.12	16.69		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.34	66.11	15.76	0.46	130.0	± 9.6 \%
		Y	4.38	66.30	15.94		130.0	
		Z	4.52	66.09	15.82		130.0	

$\begin{aligned} & 10591- \\ & \text { AAA } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCSO, 90pc duty cycle)	X	4.71	66.67	16.53	0.46	130.0	± 9.6 \%
		Y	4.73	66.75	16.62		130.0	
$\begin{aligned} & 10592- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.84	66.53	16.51		130.0	
	IEEE 802.11 n (HT Mixed, 20MHz, MCS1, 90pc duly cycle)	X	4.84	66.99	16.66	0.46	130.0	± 9.6 \%
		Y	4.86	67.07	16.75		130.0	
$\begin{aligned} & 10593- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.00	66.87	16.64		130.0	
	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.76	66.86	16.52	0.46	130.0	± 9.6 \%
		Y	4.78	66.96	16.62		130.0	
$\begin{aligned} & 10594- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.92	66.77	16.52		130.0	
	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.82	67.05	16.69	0.46	130.0	± 9.6 \%
		Y	4.84	67.13	16.78		130.0	
$\begin{aligned} & 10595- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.97	66.94	16.68		130.0	
	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.78	67.01	16.59	0.46	130.0	± 9.6 \%
		Y	4.80	67.10	16.69		130.0	
		Z	4.94	66.89	16.57		130.0	
$\begin{aligned} & 10596- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCS5, 90pc duty cycle)	X	4.71	66.98	16.58	0.46	130.0	± 9.6 \%
		Y	4.73	67.08	16.69		130.0	
		Z	4.87	66.88	16.57		130.0	
$\begin{aligned} & 10597- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.66	66.85	16.44	0.46	130.0	± 9.6 \%
		Y	4.69	66.96	16.56		130.0	
		Z	4.82	66.78	16.45		130.0	
$\begin{aligned} & \text { 10598- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.65	67.11	16.73	0.46	130.0	± 9.6 \%
		Y	4.67	67.18	16.81		130.0	
		Z	4.81	67.03	16.73		130.0	
$\begin{aligned} & \text { 10599- } \\ & \text { AAA } \\ & \hline \end{aligned}$	MCSO, 90 pc duly cycle)	X	5.39	67.16	16.75	0.46	130.0	$\pm 9.6 \%$
		Y	5.40	67.23	16.84		130.0	
$\begin{aligned} & 10600- \\ & \text { AAA } \end{aligned}$		Z	5.52	67.11	16.73		130.0	
	IEEE 802.11 n (RT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.51	67.57	16.93	0.46	130.0	± 9.6 \%
		Y	5.53	67.67	17.03		130.0	
$\begin{aligned} & \text { 10601- } \\ & \text { AAA } \end{aligned}$		Z	5.67	67.58	16.94		130.0	
	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.40	67.32	16.82	0.46	130.0	± 9.6 \%
		Y	5.42	67.41	16.92		130.0	
$\begin{aligned} & 10602- \\ & \text { AAA } \end{aligned}$		Z	5.55	67.30	16.82		130.0	
	MCS3, 90pc duly cycle)	X	5.53	67.48	16.82	0.46	130.0	± 9.6 \%
		Y	5.55	67.58	16.92		130.0	
$\begin{aligned} & 10603- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.64	67.31	16.73		130.0	
	MCS4, 90pc duty cycle) 11 n (HT Mixed, 40 MHz ,	X	5.60	67.77	17.10	0.46	130.0	± 9.6 \%
		Y	5.62	67.84	17.19		130.0	
10604- AAA		Z	5.72	67.63	17.03		130.0	
	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.48	67.44	16.92	0.46	130.0	± 9.6 \%
		Y	5.50	67.51	17.01		130.0	
$\begin{aligned} & 10605- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.52	67.07	16.74		130.0	
	MCS6, 90 po duty cycle)	X	5.51	67.48	16.93	0.46	130.0	± 9.6 \%
		Y	5.53	67.59	17.04		130.0	
10606AAA		Z	5.64	67.42	16.91		130.0	
	TEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.24	66.77	16.43	0.46	130.0	± 9.6 \%
		Y	5.27	66.88	16.54		130.0	
		Z	5.39	66.79	16.45		130.0	

July 17, 2017

$\begin{aligned} & \text { 10607- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 90 pc duty cycle)	X	4.56	66.02	16.17	0.46	130.0	± 9.6 \%
		Y	4.58	66.11	16.27		130.0	
		Z	4.68	65.84	16.13		130.0	
$\begin{aligned} & \text { 10608- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCS1, 90 pc duly cycle)	X	4.71	66.38	16.33	0.46	130.0	± 9.6 \%
		Y	4.74	66.48	16.43		130.0	
		Z	4.87	66.25	16.30		130.0	
$\begin{array}{\|l} \hline 10609- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.60	66.21	16.15	0.46	130.0	± 9.6 \%
		Y	4.63	66.32	16.26		130.0	
		Z	4.75	66.09	16.13		130.0	
$\begin{aligned} & 10610- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.66	66.38	16.32	0.46	130.0	± 9.6 \%
		Y	4.68	66.48	16.42		130.0	
		Z	4.81	66.25	16.30		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90 pc duty cycle)	X	4.57	66.17	16.16	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.28	16.27		130.0	
		Z	4.72	66.06	16.14		130.0	
$\begin{aligned} & 10612- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.57	66.31	16.20	0.46	130.0	± 9.6 \%
		Y	4.59	66.44	16.32		130.0	
		Z	4.73	66.20	16.18		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.56	66.14	16.05	0.46	130.0	± 9.6 \%
		Y	4.59	66.27	16.18		130.0	
		Z	4.73	66.09	16.06		130.0	
$\begin{aligned} & 10614- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.53	66.39	16.32	0.46	130.0	± 9.6 \%
		Y	4.55	66.47	16.42		130.0	
		Z	4.68	66.29	16.31		130.0	
$\begin{aligned} & 10615- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 90 pc duty cycle)	X	4.56	65.98	15.91	0.46	130.0	± 9.6 \%
		Y	4.59	66.13	16.05		130.0	
		Z	4.72	65.87	15.91		130.0	
$\begin{aligned} & \text { 10616- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS0, 90 pc duty cycle)	X	5.20	66.41	16.36	0.46	130.0	± 9.6 \%
		Y	5.22	66.48	16.45		130.0	
		Z	5.34	66.37	16.34		130.0	
$\begin{aligned} & 10617- \\ & \text { AAA } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duly cycle)	X	5.27	66.60	16.43	0.46	130.0	± 9.6 \%
		Y	5.29	66.69	16.53		130.0	
		Z	5.41	66.54	16.40		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.17	66.64	16.47	0.46	130.0	± 9.6 \%
		Y	5.19	66.72	16.55		130.0	
		Z	5.29	66.54	16.42		130.0	
10619AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	5.17	66.40	16.28	0.46	130.0	± 9.6 \%
		Y	5.19	66.49	16.38		130.0	
		Z	5.31	66.37	16.27		130.0	
$10620-$ AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90 pc duly cycle)	X	5.25	66.42	16.34	0.46	130.0	± 9.6 \%
		Y	5.27	66.52	16.44		130.0	
		Z	5.40	66.41	16.34		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duly cycle)	X	5.27	66.59	16.55	0.46	130.0	± 9.6 \%
		Y	5.28	66.65	16.62		130.0	
		Z	5.40	66.53	16.52		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duly cycle)	X	5.27	66.70	16.60	0.46	130.0	± 9.6 \%
		Y	5.28	66.78	16.68		130.0	
		Z	5.41	66.70	16.60		130.0	

July 17, 2017

$\begin{aligned} & \text { 10623- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duly cycle)	X	5.14	66.21	16.21	0.46	130.0	± 9.6 \%
			5.16	66.31	16.32		130.0	
$\begin{aligned} & 10624- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	5.28	66.20	16.22		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)		5.34	66.45	16.40	0.46	130.0	± 9.6 \%
		Y	5.36	66.54	16.49		130.0	
		Z	5.48	66.42	16.39		130.0	
$\begin{aligned} & \text { 10625- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.55	66.97	16.72	0.46	130.0	± 9.6 \%
		Y	5.57	67.07	16.81		130.0	
10626- AAA		Z	5.88	67.48	16.97		130.0	
	IEEE 802.11ac WiFi $(80 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	5.53	66.46	16.32	0.46	130.0	± 9.6 \%
		Y	5.54	66.54	16.40		130.0	
		Z	5.63	66.43	16.30		130.0	
$\begin{aligned} & 10627- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duly cycle)	X	5.77	67.07	16.59	0.46	130.0	± 9.6 \%
		Y	5.79	67.16	16.68		130.0	
		Z	5.88	67.02	16.56		130.0	
$\begin{aligned} & 10628- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duly cycle)	X	5.53	66.46	16.22	0.46	130.0	± 9.6 \%
		Y	5.55	66.56	16.32		130.0	
		Z	5.67	66.54	16.25		130.0	
$\begin{aligned} & \text { 10629- } \\ & \text { AAA } \\ & \hline \end{aligned}$	90 pc duty cycle) 解	X	5.62	66.57	16.27	0.46	130.0	± 9.6 \%
		Y	5.64	66.67	16.37		130.0	
$\begin{aligned} & 10630- \\ & \text { AAA } \end{aligned}$		Z	5.76	66.64	16.29		130.0	
	$90 \mathrm{pc} \text { duty cycle) }$	X	5.96	67.80	16.88	0.46	130.0	± 9.6 \%
		Y	5.98	67.92	17.00		130.0	
		Z	6.25	68.26	17.09		130.0	
$\begin{aligned} & 10631- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	5.89	67.74	17.06	0.46	130.0	± 9.6 \%
		Y	5.91	67.78	17.11		130.0	
10632- AAA		Z	6.11	67.97	17.16		130.0	
	(80 MHz , MCS6, 90 pc duty cycle)	X	5.75	67.20	16.81	0.46	130.0	± 9.6 \%
		Y	5.76	67.24	16.86		130.0	
$\begin{aligned} & \text { 10633- } \\ & \text { AAA } \end{aligned}$		Z	5.85	67.08	16.73		130.0	
	90 pc duty cycle)	X	5.60	66.69	16.37	0.46	130.0	± 9.6 \%
		Y	5.62	66.77	16.45		130.0	
$10634-$ AAA		Z	5.73	66.69	16.36		130.0	
	IEEE 802.11ac WiFi (80MHz, MCS8, 90 pc duty cycle)	X	5.58	66.71	16.44	0.46	130.0	± 9.6 \%
		Y	5.60	66.78	16.51		130.0	
10635-AAA		Z	5.72	66.73	16.44		130.0	
	90 pc duty cycle)	X	5.44	65.95	15.77	0.46	130.0	± 9.6 \%
		Y	5.47	66.09	15.91		130.0	
$\begin{array}{\|l\|} \hline 10636- \\ \text { AAA } \\ \hline \end{array}$		Z	5.60	66.05	15.82		130.0	
	90 pc duty cycle)	X	5.96	66.83	16.41	0.46	130.0	± 9.6 \%
		Y	5.97	66.90	16.49		130.0	
$10637$$\mathrm{AAA}$		Z	6.05	66.82	16.40		130.0	
	90pc duty cycle)	X	6.10	67.19	16.58	0.46	130.0	$\pm 9.6 \%$
		Y	6.12	67.27	16.66		130.0	
		Z	6.21	67.21	16.58		130.0	
$\begin{aligned} & 10638- \\ & \text { AAA } \\ & \hline \end{aligned}$	90 pc duty cycle)	X	6.10	67.17	16.54	0.46	130.0	± 9.6 \%
		Y	6.12	67.25	16.63		130.0	
		Z	6.21	67.17	16.54		130.0	

July 17, 2017

10639- AAA	IEEE 1602.11ac WiFi (160 MHz , MCS3, 90 pc duty cycle)	X	6.07	67.09	16.55	0.46	130.0	± 9.6 \%
		Y	6.09	67.17	16.63		130.0	
		Z	6.19	67.14	16.56		130.0	
$10640-$ AAA	IEEE 1602.11 ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	6.06	67.06	16.47	0.46	130.0	± 9.6 \%
		Y	6.08	67.16	16.57		130.0	
		Z	6.19	67.15	16.51		130.0	
$10641-$ AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.13	67.06	16.49	0.46	130.0	± 9.6 \%
		Y	6.15	67.15	16.59		130.0	
		Z	6.23	67.02	16.46		130.0	
$\begin{aligned} & 10642- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 1602.11 ac WiFi (160 MHz , MCS6, 90 pc duty cycle)	X	6.16	67.29	16.78	0.46	130.0	± 9.6 \%
		Y	6.17	67.34	16.84		130.0	
		Z	6.28	67.31	16.78		130.0	
$\begin{aligned} & \text { 10643- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 1602.11 ac WiFi (160 MHz , MCS7, 90 pc duty cycle)	X	6.00	66.97	16.51	0.46	130.0	± 9.6 \%
		Y	6.02	67.06	16.61		130.0	
		Z	6.11	66.97	16.50		130.0	
$\begin{aligned} & \text { 10644- } \\ & \text { AAA } \end{aligned}$	IEEE 1602.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.09	67.26	16.67	0.46	130.0	± 9.6 \%
		Y	6.12	67.36	16.77		130.0	
		Z	6.29	67.52	16.80		130.0	
$\begin{aligned} & 10645- \\ & \text { AAA } \end{aligned}$	IEEE 1602.11ac WiFi (160 MHz , MCS9, 90 pc duly cycle)	X	6.23	67.33	16.67	0.46	130.0	± 9.6 \%
		Y	6.26	67.42	16.77		130.0	
		Z	6.72	68.38	17.18		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	7.97	91.85	31.39	9.30	60.0	± 9.6 \%
		Y	11.74	104.28	36.86		60.0	
		Z	11.88	99.49	34.28		60.0	
$\begin{array}{\|l\|} \hline 10647- \\ \mathrm{AAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	7.13	89.84	30.79	9.30	60.0	± 9.6 \%
		Y	9.93	100.75	35.82		60.0	
		Z	10.62	97.47	33.72		60.0	
10648-	CDMA2000 (1x Advanced)	X	0.64	63.39	10.24	0.00	150.0	± 9.6 \%
		Y	0.67	63.88	10.62		150.0	
		Z	0.72	63.48	11.02		150.0	

[^0]Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
\mathbf{S} Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Client PCTest

Cerificate No: ES3-3319. Mar18

CALIBRATION CERTIFICATE

Object	ES3DV3 - SN:3319	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	
Calibration date:	March 13, 2018	

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660 Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Issued: March 15, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
NORMx,y,z
ConvF
DCP
CF
A, B, C, D
Polarization φ
Polarization ϑ

```
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORM \(x, y, z\) diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters \(\varphi\) rotation around probe axis \(\vartheta\) rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., \(\vartheta=0\) is normal to probe axis
Connector Angle information used in DASY system to align probe sensor \(X\) to the robot coordinate system
```


Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM(f) $x, y, z=$ NORM M, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe ES3DV3

SN:3319

Manufactured: January 10, 2012
Calibrated: \quad March 13,2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	1.08	1.05	1.12	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	104.0	103.0	104.0	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{~} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}^{\mathbf{E}}$ $\mathbf{(k = 2)}$
0	CW	X	0.0	0.0	1.0	0.00	197.9	$\pm 3.8 \%$
		Y	0.0	0.0	$\mathbf{1 . 0}$		198.2	
		Z	0.0	0.0	1.0		200.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s} . \mathbf{V}^{-1}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T} 4$ $\mathbf{V}^{-\mathbf{2}}$	$\mathbf{T} 5$ \mathbf{V}^{-1}	$\mathbf{T 6}$
X	60.52	430.8	35.08	29.64	3.011	5.10	0.615	0.538	1.010
Y	55.79	400.8	35.48	29.01	2.492	5.10	0.600	0.518	1.009
Z	63.98	455.3	34.93	29.72	3.442	5.10	0.679	0.571	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^1]
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\mathrm{C}}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Unc } \\ (\mathrm{k}=2) \end{gathered}$
750	41.9	0.89	6.70	6.70	6.70	0.80	1.21	$\pm 12.0 \%$
835	41.5	0.90	6.44	6.44	6.44	0.80	1.17	$\pm 12.0 \%$
1750	40.1	1.37	5.49	5.49	5.49	0.65	1.43	$\pm 12.0 \%$
1900	40.0	1.40	5.29	5.29	5.29	0.76	1.30	± 12.0 \%
2300	39.5	1.67	5.06	5.06	5.06	0.72	1.29	$\pm 12.0 \%$
2450	39.2	1.80	4.71	4.71	4.71	0.77	1.30	± 12.0 \%
2600	39.0	1.96	4.55	4.55	4.55	0.80	1.31	$\pm 12.0 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{\sigma} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
750	55.5	0.96	6.32	6.32	6.32	0.65	1.26	$\pm 12.0 \%$
835	55.2	0.97	6.20	6.20	6.20	0.80	1.14	$\pm 12.0 \%$
1750	53.4	1.49	5.05	5.05	5.05	0.76	1.27	$\pm 12.0 \%$
1900	53.3	1.52	4.84	4.84	4.84	0.55	1.56	$\pm 12.0 \%$
2300	52.9	1.81	4.63	4.63	4.63	0.80	1.30	$\pm 12.0 \%$
2450	52.7	1.95	4.51	4.51	4.51	0.80	1.25	$\pm 12.0 \%$
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.20	$\pm 12.0 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncerlainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (E and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of Enfield: $\pm 6.3 \%(k=2)$

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

$\mathrm{f}=600 \mathrm{MHz}$,TEM

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22$

Uncertainty of Axial Isotropy Assessment: $\pm \mathbf{0 . 5 \%}(\mathrm{k}=2$)

Dynamic Range f(SAR head $)$
 (TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\mathbf{\pm 0 . 6 \%}$ ($\mathbf{k = 2}$)

Conversion Factor Assessment

Error (ϕ, ϑ), f=900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	60.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$		C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \operatorname{Max}^{\text {Unc }} \\ & (\mathrm{k}=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	197.9	$\pm 3.8 \%$
		Y	0.00	0.00	1.00		198.2	
		Z	0.00	0.00	1.00		200.6	
$\begin{aligned} & 10010- \\ & \text { CAA } \end{aligned}$	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	X	9.56	81.28	19.98	10.00	25.0	$\pm 9.6 \%$
		Y	8.09	78.70	18.35		25.0	
		Z	8.70	79.52	19.57		25.0	
$\begin{aligned} & 10011- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (WCDMA)	X	1.34	72.37	18.08	0.00	150.0	± 9.6 \%
		Y	0.99	67.12	14.82		150.0	
		Z	1.12	68.87	16.00		150.0	
$\begin{aligned} & 10012- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.37	66.58	17.00	0.41	150.0	$\pm 9.6 \%$
		Y	1.25	64.92	15.59		150.0	
		Z	1.32	65.58	16.11		150.0	
$\begin{aligned} & 10013- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	5.18	67.48	17.64	1.46	150.0	± 9.6 \%
		Y	5.08	67.20	17.36		150.0	
		Z	5.20	67.32	17.47		150.0	
$10021-$ DAC	GSM-FDD (TDMA, GMSK)	X	20.40	95.52	26.57	9.39	50.0	± 9.6 \%
		Y	29.46	101.11	27.60		50.0	
		Z	14.66	89.52	24.83		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	18.37	93.61	26.02	9.57	50.0	± 9.6 \%
		Y	24.41	97.95	26.72		50.0	
		Z	13.84	88.39	24.49		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	119.56	31.31	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	117.39	29.93		60.0	
		Z	47.21	108.31	28.71		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	21.09	108.48	41.18	12.57	50.0	± 9.6 \%
		Y	17.11	102.80	38.82		50.0	
		Z	18.44	103.12	38.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	21.59	105.09	36.25	9.56	60.0	± 9.6 \%
		Y	18.95	102.20	35.03		60.0	
		Z	18.49	100.22	34.38		60.0	
10027DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.49	29.83	4.80	80.0	$\pm 9.6 \%$
		Y	100.00	115.83	28.28		80.0	
		Z	100.00	118.30	29.89		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.84	29.14	3.55	100.0	$\pm 9.6 \%$
		Y	100.00	115.36	27.25		100.0	
		Z	100.00	118.10	28.92		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	15.08	97.16	32.49	7.80	80.0	$\pm 9.6 \%$
		Y	12.90	93.80	31.06		80.0	
		Z	13.60	93.82	31.09		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	118.11	30.01	5.30	70.0	$\pm 9.6 \%$
		Y	100.00	115.58	28.50		70.0	
		Z	100.00	118.16	30.20		70.0	
10031CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	121.01	28.44	1.88	100.0	± 9.6 \%
		Y	100.00	114.03	25.11		100.0	
		Z	100.00	118.73	27.54		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	127.26	29.88	1.17	100.0	± 9.6 \%
		Y	100.00	114.89	24.38		100.0	
		Z	100.00	122.11	27.79		100.0	
$\begin{aligned} & 10033- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	21.21	99.84	27.91	5.30	70.0	± 9.6 \%
		Y	19.09	97.43	26.61		70.0	
		Z	13.98	92.26	25.56		70.0	
$\begin{aligned} & 10034- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	14.93	98.23	25.94	1.88	100.0	$\pm 9.6 \%$
		Y	7.46	86.71	21.62		100.0	
		Z	7.45	87.10	22.42		100.0	
$\begin{aligned} & 10035- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH5)	X	7.98	90.77	23.49	1.17	100.0	± 9.6 \%
		Y	3.97	79.58	18.90		100.0	
		Z	4.48	81.52	20.27		100.0	
$\begin{aligned} & 10036- \\ & \mathrm{CAA} \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	26.12	103.52	29.04	5.30	70.0	± 9.6 \%
		Y	24.16	101.42	27.84		70.0	
		Z	15.99	94.67	26.38		70.0	
$\begin{aligned} & 10037- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	14.25	97.55	25.70	1.88	100.0	± 9.6 \%
		Y	7.04	85.92	21.32		100.0	
		Z	7.24	86.72	22.25		100.0	
$\begin{aligned} & 10038- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	8.53	92.07	23.99	1.17	100.0	± 9.6 \%
		Y	4.13	80.37	19.27		100.0	
		Z	4.65	82.31	20.62		100.0	
$\begin{aligned} & 10039- \\ & \text { CAB } \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	2.96	79.09	19.43	0.00	150.0	$\pm 9.6 \%$
		Y	1.75	71.10	15.36		150.0	
		Z	2.10	73.23	16.92		150.0	
$\begin{aligned} & 10042- \\ & \mathrm{CAB} \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, Pl/4DQPSK, Halfrate)	X	53.77	109.05	28.70	7.78	50.0	± 9.6 \%
		Y	79.10	112.95	28.86		50.0	
		Z	23.46	96.42	25.41		50.0	
$\begin{aligned} & 10044- \\ & \text { CAA } \end{aligned}$	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	123.18	1.26	0.00	150.0	± 9.6 \%
		Y	0.02	127.84	0.07		150.0	
		Z	0.00	110.77	4.52		150.0	
$\begin{aligned} & 10048- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	11.41	83.11	24.20	13.80	25.0	± 9.6 \%
		Y	12.66	85.48	24.49		25.0	
		Z	10.45	80.79	23.56		25.0	
$\begin{aligned} & 10049 \text { - } \\ & \text { CAA } \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	13.41	87.55	24.40	10.79	40.0	± 9.6 \%
		Y	15.25	89.77	24.55		40.0	
		Z	11.61	84.53	23.55		40.0	
$\begin{aligned} & 10056- \\ & \text { CAA } \end{aligned}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	13.37	87.98	25.03	9.03	50.0	± 9.6 \%
		Y	13.72	88.51	24.74		50.0	
		Z	11.72	85.02	24.05		50.0	
$\begin{aligned} & 10058- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	11.14	91.28	29.72	6.55	100.0	± 9.6 \%
		Y	9.52	87.98	28.26		100.0	
		Z	10.41	88.91	28.62		100.0	
$\begin{aligned} & 10059- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.60	69.38	18.31	0.61	110.0	± 9.6 \%
		Y	1.43	67.15	16.67		110.0	
		Z	1.53	67.97	17.25		110.0	
$\begin{aligned} & 10060- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	133.15	34.60	1.30	110.0	$\pm 9.6 \%$
		Y	100.00	128.63	32.36		110.0	
		Z	100.00	130.16	33.31		110.0	

$\begin{aligned} & 10061- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	24.68	111.64	31.63	2.04	110.0	± 9.6 \%
		Y	11.26	97.49	27.04		110.0	
		Z	10.95	96.57	26.98		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.90	67.24	16.94	0.49	100.0	± 9.6 \%
		Y	4.79	66.94	16.63		100.0	
		Z	4.90	67.05	16.74		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.95	67.42	17.09	0.72	100.0	± 9.6 \%
		Y	4.84	67.10	16.77		100.0	
		Z	4.95	67.23	16.89		100.0	
10064CAC	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 12 Mbps)	X	5.28	67.75	17.35	0.86	100.0	± 9.6 \%
		Y	5.16	67.43	17.04		100.0	
		Z	5.30	67.59	17.17		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps)	X	5.19	67.81	17.53	1.21	100.0	$\pm 9.6 \%$
		Y	5.07	67.47	17.22		100.0	
		Z	5.21	67.65	17.35		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.25	67.95	17.76	1.46	100.0	$\pm 9.6 \%$
		Y	5.12	67.61	17.44		100.0	
		Z	5.27	67.80	17.59		100.0	
$\begin{aligned} & 10067- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36	X	5.57	68.10	18.21	2.04	100.0	$\pm 9.6 \%$
		Y	5.44	67.80	17.92		100.0	
		Z	5.60	67.97	18.05		100.0	
10068- CAC	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 48 Mbps)	X	5.73	68.50	18.60	2.55	100.0	$\pm 9.6 \%$
		Y	5.58	68.13	18.28		100.0	
		Z	5.77	68.41	18.46		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 54 Mbps)	X	5.81	68.43	18.78	2.67	100.0	± 9.6 \%
		Y	5.66	68.09	18.46		100.0	
		Z	5.84	68.33	18.64		100.0	
$\begin{aligned} & 10071- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.34	67.73	18.04	1.99	100.0	$\pm 9.6 \%$
		Y	5.22	67.44	17.75		100.0	
		Z	5.35	67.60	17.87		100.0	
$\begin{aligned} & \hline 10072- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.42	68.35	18.39	2.30	100.0	$\pm 9.6 \%$
		Y	5.29	68.00	18.07		100.0	
		Z	5.44	68.21	18.22		100.0	
$\begin{aligned} & 10073- \\ & C A B \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.57	68.74	18.83	2.83	100.0	± 9.6 \%
		Y	5.42	68.36	18.50		100.0	
		Z	5.60	68.62	18.66		100.0	
$\begin{array}{\|l\|} \hline 10074- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.61	68.84	19.10	3.30	100.0	± 9.6 \%
		Y	5.46	68.44	18.75		100.0	
		Z	5.65	68.74	18.95		100.0	
$\begin{aligned} & 10075- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.79	69.40	19.63	3.82	90.0	± 9.6 \%
		Y	5.61	68.91	19.24		90.0	
		Z	5.85	69.35	19.51		90.0	
$\begin{array}{\|l} \hline 10076- \\ \mathrm{CAB} \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.80	69.20	19.75	4.15	90.0	± 9.6 \%
		Y	5.64	68.73	19.37		90.0	
		Z	5.86	69.15	19.63		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.84	69.30	19.86	4.30	90.0	$\pm 9.6 \%$
		Y	5.68	68.82	19.47		90.0	
		Z	5.90	69.25	19.74		90.0	

$\begin{aligned} & 10081- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	1.29	72.14	16.36	0.00	150.0	± 9.6 \%
		Y	0.81	65.51	12.24		150.0	
		Z	0.99	67.68	14.05		150.0	
$\begin{aligned} & 10082- \\ & \text { CAB } \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Fullrate)	X	2.36	64.73	9.48	4.77	80.0	$\pm 9.6 \%$
		Y	1.97	63.15	8.18		80.0	
		Z	2.45	64.78	9.67		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	119.65	31.37	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	117.49	29.99		60.0	
		Z	45.52	107.81	28.61		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	2.00	69.44	16.95	0.00	150.0	± 9.6 \%
		Y	1.78	67.32	15.42		150.0	
		Z	1.87	67.93	15.97		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.97	69.46	16.95	0.00	150.0	± 9.6 \%
		Y	1.74	67.28	15.38		150.0	
		Z	1.84	67.91	15.95		150.0	
$\begin{array}{\|l} \hline 10099- \\ \text { DAC } \\ \hline \end{array}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	21.45	104.88	36.18	9.56	60.0	$\pm 9.6 \%$
		Y	18.89	102.07	34.98		60.0	
		Z	18.39	100.05	34.32		60.0	
$\begin{aligned} & 10100- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	3.55	72.46	17.74	0.00	150.0	± 9.6 \%
		Y	3.14	70.29	16.48		150.0	
		Z	3.35	71.19	16.95		150.0	
$\begin{aligned} & 10101- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.45	68.62	16.57	0.00	150.0	$\pm 9.6 \%$
		Y	3.26	67.61	15.85		150.0	
		Z	3.39	68.08	16.14		150.0	
$\begin{aligned} & 10102- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHz, 64-QAM) } \end{aligned}$	X	3.54	68.46	16.61	0.00	150.0	$\pm 9.6 \%$
		Y	3.37	67.56	15.95		150.0	
		Z	3.49	67.97	16.20		150.0	
$\begin{aligned} & 10103- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	8.98	78.82	21.57	3.98	65.0	$\pm 9.6 \%$
		Y	8.50	78.15	21.17		65.0	
		Z	8.60	77.58	20.95		65.0	
$\begin{aligned} & 10104- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	8.85	77.44	21.89	3.98	65.0	± 9.6 \%
		Y	8.45	76.83	21.49		65.0	
		Z	8.72	76.72	21.48		65.0	
$\begin{aligned} & 10105- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \text { MHZ, } 64-Q A M) \end{aligned}$	X	8.33	76.23	21.66	3.98	65.0	$\pm 9.6 \%$
		Y	7.79	75.22	21.09		65.0	
		Z	7.71	74.28	20.69		65.0	
10108-CAE	LTE-FDD (SC-FDMA, 100\% RB, 10 MHz, QPSK)	X	3.11	71.64	17.59	0.00	150.0	± 9.6 \%
		Y	2.75	69.54	16.32		150.0	
		Z	2.95	70.37	16.78		150.0	
10109CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16-\mathrm{QAM} \text {) } \end{aligned}$	X	3.12	68.50	16.56	0.00	150.0	$\pm 9.6 \%$
		Y	2.92	67.41	15.75		150.0	
		Z	3.06	67.87	16.07		150.0	
10110-CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	2.56	70.84	17.38	0.00	150.0	$\pm 9.6 \%$
		Y	2.24	68.61	15.94		150.0	
		Z	2.42	69.44	16.48		150.0	
10111 CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, $16-\mathrm{QAM})$	X	2.84	69.29	16.96	0.00	150.0	± 9.6 \%
		Y	2.62	68.02	15.99		150.0	
		Z	2.75	68.36	16.33		150.0	

10112- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	3.23	68.35	16.55	0.00	150.0	± 9.6 \%
		Y	3.05	67.38	15.81		150.0	
		Z	3.18	67.77	16.10		150.0	
$\begin{aligned} & 10113- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.98	69.28	17.01	0.00	150.0	± 9.6 \%
		Y	2.77	68.14	16.13		150.0	
		Z	2.90	68.40	16.43		150.0	
$\begin{aligned} & 10114- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.25	67.55	16.67	0.00	150.0	$\pm 9.6 \%$
		Y	5.16	67.27	16.41		150.0	
		Z	5.23	67.36	16.47		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.62	67.87	16.84	0.00	150.0	± 9.6 \%
		Y	5.53	67.61	16.59		150.0	
		Z	5.61	67.68	16.64		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.38	67.84	16.74	0.00	150.0	± 9.6 \%
		Y	5.28	67.54	16.47		150.0	
		Z	5.37	67.64	16.53		150.0	
10117CAC	IEEE 802.11 n (HT Mixed, 13.5 Mbps , BPSK)	X	5.26	67.57	16.70	0.00	150.0	± 9.6 \%
		Y	5.15	67.22	16.40		150.0	
		Z	5.24	67.39	16.51		150.0	
$\begin{array}{\|l} \hline 10118- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.70	68.05	16.94	0.00	150.0	$\pm 9.6 \%$
		Y	5.61	67.82	16.70		150.0	
		Z	5.67	67.81	16.71		150.0	
10119CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.36	67.79	16.73	0.00	150.0	± 9.6 \%
		Y	5.26	67.48	16.45		150.0	
		Z	5.34	67.59	16.52		150.0	
$\begin{aligned} & 10140- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	3.59	68.46	16.53	0.00	150.0	± 9.6 \%
		Y	3.41	67.56	15.87		150.0	
		Z	3.54	67.97	16.13		150.0	
$\begin{aligned} & 10141- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.70	68.46	16.65	0.00	150.0	± 9.6 \%
		Y	3.53	67.64	16.03		150.0	
		Z	3.65	67.99	16.26		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , QPSK)	X	2.36	71.08	17.31	0.00	150.0	$\pm 9.6 \%$
		Y	2.01	68.49	15.62		150.0	
		Z	2.20	69.37	16.30		150.0	
$\begin{aligned} & 10143- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM)	X	2.76	70.34	17.00	0.00	150.0	$\pm 9.6 \%$
		Y	2.47	68.62	15.73		150.0	
		Z	2.62	69.02	16.23		150.0	
$\begin{aligned} & 10144- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	2.54	68.16	15.50	0.00	150.0	$\pm 9.6 \%$
		Y	2.28	66.60	14.27		150.0	
		Z	2.46	67.23	14.93		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, \mathrm{QPSK}$)	X	1.75	69.86	15.18	0.00	150.0	± 9.6 \%
		Y	1.29	65.55	12.27		150.0	
		Z	1.55	67.61	14.05		150.0	
10146-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	4.07	76.05	17.30	0.00	150.0	$\pm 9.6 \%$
		Y	2.52	69.20	13.62		150.0	
		Z	3.50	73.50	16.33		150.0	
$\begin{aligned} & \hline 10147- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	5.72	80.95	19.32	0.00	150.0	± 9.6 \%
		Y	3.13	72.10	15.05		150.0	
		Z	4.43	76.91	17.88		150.0	

$\begin{aligned} & 10149- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$,	X	3.13	68.56	16.60	0.00	150.0	± 9.6 \%
		Y	2.93	67.47	15.80		150.0	
		Z	3.07	67.93	16.12		150.0	
$\begin{array}{\|l} \hline 10150- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM)	X	3.24	68.40	16.59	0.00	150.0	± 9.6 \%
		Y	3.05	67.43	15.85		150.0	
		Z	3.18	67.82	16.13		150.0	
$\begin{aligned} & 10151- \\ & \mathrm{CAD} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	9.59	81.21	22.61	3.98	65.0	± 9.6 \%
		Y	9.21	80.79	22.27		65.0	
		Z	9.05	79.62	21.87		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \end{aligned}$	\qquad 16-QAM)	X	8.53	77.77	21.82	3.98	65.0	± 9.6 \%
		Y	8.07	77.03	21.32		65.0	
		Z	8.36	76.93	21.37		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM)	X	8.87	78.41	22.41	3.98	65.0	± 9.6 \%
		Y	8.48	77.88	22.02		65.0	
		Z	8.68	77.54	21.94		65.0	
$\begin{aligned} & 10154- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	2.63	71.34	17.67	0.00	150.0	± 9.6 \%
		Y	2.29	69.04	16.21		150.0	
		Z	2.48	69.88	16.75		150.0	
10155- CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.84	69.30	16.97	0.00	150.0	± 9.6 \%
		Y	2.62	68.03	16.00		150.0	
		Z	2.75	68.36	16.34		150.0	
$\begin{aligned} & 10156- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.26	71.67	17.44	0.00	150.0	$\pm 9.6 \%$
		Y	1.86	68.59	15.46		150.0	
		Z	2.07	69.64	16.29		150.0	
10157-CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	2.42	69.16	15.83	0.00	150.0	$\pm 9.6 \%$
		Y	2.11	67.12	14.31		150.0	
		Z	2.30	67.87	15.10		150.0	
10158-CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	2.99	69.33	17.05	0.00	150.0	± 9.6 \%
		Y	2.78	68.20	16.17		150.0	
		Z	2.90	68.44	16.46		150.0	
10159CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.55	69.60	16.11	0.00	150.0	± 9.6 \%
		Y	2.22	67.56	14.60		150.0	
		Z	2.41	68.28	15.37		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	3.02	70.16	17.19	0.00	150.0	± 9.6 \%
		Y	2.77	68.66	16.17		150.0	
		Z	2.91	69.14	16.50		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	3.13	68.32	16.54	0.00	150.0	$\pm 9.6 \%$
		Y	2.95	67.34	15.78		150.0	
		Z	3.07	67.70	16.08		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	3.23	68.35	16.60	0.00	150.0	± 9.6 \%
		Y	3.06	67.45	15.88		150.0	
		Z	3.18	67.74	16.14		150.0	
$\begin{aligned} & 10166- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	4.02	71.10	20.08	3.01	150.0	$\pm 9.6 \%$
		Y	3.79	70.19	19.37		150.0	
		Z	4.03	70.69	19.72		150.0	
$\begin{aligned} & 10167- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	5.24	74.71	20.79	3.01	150.0	$\pm 9.6 \%$
		Y	4.82	73.39	19.92		150.0	
		Z	5.25	74.14	20.39		150.0	

$\begin{aligned} & 10168- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.76	76.76	21.96	3.01	150.0	± 9.6 \%
		Y	5.36	75.66	21.24		150.0	
		Z	5.73	75.99	21.47		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	3.69	72.72	20.82	3.01	150.0	± 9.6 \%
		Y	3.33	70.78	19.63		150.0	
		Z	3.78	72.61	20.53		150.0	
$\begin{aligned} & 10170- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.76	80.54	23.62	3.01	150.0	± 9.6 \%
		Y	4.94	77.74	22.22		150.0	
		Z	5.83	79.90	23.09		150.0	
$10171 \text { - }$ AAD	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	4.61	75.69	20.76	3.01	150.0	± 9.6 \%
		Y	3.94	72.92	19.25		150.0	
		Z	4.70	75.28	20.35		150.0	
$\begin{aligned} & 10172- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	36.99	114.19	35.08	6.02	65.0	± 9.6 \%
		Y	22.97	105.21	32.24		65.0	
		Z	26.68	106.36	32.56		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	41.01	110.69	32.32	6.02	65.0	± 9.6 \%
		Y	35.83	108.35	31.36		65.0	
		Z	28.00	102.66	29.85		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	30.73	104.07	29.95	6.02	65.0	± 9.6 \%
		Y	27.27	102.14	29.08		65.0	
		Z	22.20	97.35	27.81		65.0	
10175- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.64	72.35	20.56	3.01	150.0	$\pm 9.6 \%$
		Y	3.28	70.42	19.36		150.0	
		Z	3.72	72.25	20.28		150.0	
10176- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.77	80.56	23.63	3.01	150.0	± 9.6 \%
		Y	4.95	77.76	22.23		150.0	
		Z	5.84	79.92	23.10		150.0	
10177- CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	3.67	72.53	20.66	3.01	150.0	$\pm 9.6 \%$
		Y	3.31	70.60	19.46		150.0	
		Z	3.76	72.42	20.38		150.0	
$\begin{aligned} & 10178- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	5.68	80.23	23.47	3.01	150.0	± 9.6 \%
		Y	4.88	77.46	22.08		150.0	
		Z	5.74	79.60	22.95		150.0	
10179- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	5.14	77.96	22.04	3.01	150.0	$\pm 9.6 \%$
		Y	4.38	75.13	20.57		150.0	
		Z	5.21	77.41	21.56		150.0	
$\begin{aligned} & 10180- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	4.59	75.59	20.70	3.01	150.0	$\pm 9.6 \%$
		Y	3.92	72.83	19.19		150.0	
		Z	4.68	75.18	20.29		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.66	72.51	20.66	3.01	150.0	± 9.6 \%
		Y	3.30	70.58	19.46		150.0	
		Z	3.75	72.41	20.37		150.0	
$\begin{aligned} & 10182- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	5.67	80.21	23.46	3.01	150.0	$\pm 9.6 \%$
		Y	4.87	77.43	22.07		150.0	
		Z	5.73	79.57	22.94		150.0	
10183- AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.58	75.56	20.68	3.01	150.0	± 9.6 \%
		Y	3.92	72.80	19,18		150.0	
		Z	4.67	75.15	20.27		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , QPSK)	X	3.68	72.56	20.68	3.01	150.0	± 9.6 \%
		Y	3.32	70.63	19.48		150.0	
		Z	3.77	72.45	20.39		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16QAM)	X	5.70	80.29	23.50	3.01	150.0	$\pm 9.6 \%$
		Y	4.90	77.51	22.11		150.0	
		Z	5.76	79.65	22.97		150.0	
$\begin{aligned} & 10186- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64QAM)	X	4.61	75.64	20.72	3.01	150.0	± 9.6 \%
		Y	3.94	72.88	19.21		150.0	
		Z	4.69	75.23	20.31		150.0	
$\begin{array}{\|l} \hline 10187- \\ \text { CAE } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.69	72.61	20.73	3.01	150.0	± 9.6 \%
		Y	3.33	70.68	19.54		150.0	
		Z	3.77	72.50	20.44		150.0	
10188-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz}, \\ & \text { 16-QAM) } \end{aligned}$	X	5.93	81.11	23.91	3.01	150.0	± 9.6 \%
		Y	5.09	78.33	22.53		150.0	
		Z	5.99	80.44	23.37		150.0	
10189- AAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.73	76.16	21.02	3.01	150.0	± 9.6 \%
		Y	4.04	73.37	19.51		150.0	
		Z	4.82	75.73	20.60		150.0	
10193-CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.67	66.99	16.47	0.00	150.0	± 9.6 \%
		Y	4.56	66.66	16.13		150.0	
		Z	4.66	66.78	16.26		150.0	
$\begin{aligned} & 10194- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.87	67.36	16.58	0.00	150.0	± 9.6 \%
		Y	4.75	67.00	16.25		150.0	
		Z	4.87	67.15	16.37		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.1 1n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.91	67.37	16.59	0.00	150.0	$\pm 9.6 \%$
		Y	4.79	67.03	16.27		150.0	
		Z	4.91	67.16	16.38		150.0	
$10196$$\mathrm{CAC}$	IEEE 802.11 n (HT Mixed, 6.5 Mbps , BPSK)	X	4.69	67.10	16.51	0.00	150.0	$\pm 9.6 \%$
		Y	4.58	66.74	16.16		150.0	
		Z	4.69	66.88	16.30		150.0	
$\begin{array}{\|l} \hline 10197- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.89	67.38	16.59	0.00	150.0	± 9.6 \%
		Y	4.77	67.03	16.26		150.0	
		Z	4.88	67.17	16.38		150.0	
10198-CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.92	67.39	16.60	0.00	150.0	± 9.6 \%
		Y	4.80	67.05	16.28		150.0	
		Z	4.91	67.18	16.39		150.0	
$\begin{array}{\|l} \hline 10219- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.64	67.11	16.47	0.00	150.0	± 9.6 \%
		Y	4.53	66.75	16.12		150.0	
		Z	4.64	66.90	16.26		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11 n (HT Mixed, 43.3 Mbps , 16QAM)	X	4.88	67.37	16.59	0.00	150.0	± 9.6 \%
		Y	4.76	67.01	16.26		150.0	
		Z	4.88	67.17	16.38		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.92	67.32	16.59	0.00	150.0	± 9.6 \%
		Y	4.80	66.98	16.27		150.0	
		Z	4.92	67.11	16.38		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	5.23	67.59	16.70	0.00	150.0	± 9.6 \%
		Y	5.12	67.23	16.39		150.0	
		Z	5.22	67.42	16.51		150.0	

$10223-$ CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.61	67.92	16.89	0.00	150.0	$\pm 9.6 \%$
		Y	5.46	67.48	16.54		150.0	
$10224-$								
CAC	lEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.61	67.78	16.72		150.0	
		Y	5.17	67.68	16.67	0.00	150.0	$\pm 9.6 \%$
$10225-$ CAB	UMTS-FDD (HSPA+)	Z	5.27	67.52	16.37		16.48	

$\begin{aligned} & 10239- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	31.24	104.44	30.08	6.02	65.0	± 9.6 \%
		Y	28.46	102.92	29.32		65.0	
		Z	22.74	97.82	27.96		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	42.83	117.47	36.01	6.02	65.0	± 9.6 \%
		Y	31.56	111.62	34.09		65.0	
		Z	28.94	108.32	33.17		65.0	
$\begin{aligned} & 10241- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	13.21	88.13	28.12	6.98	65.0	± 9.6 \%
		Y	12.19	86.75	27.34		65.0	
		Z	12.93	86.92	27.56		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 64-QAM)	X	11.82	85.64	27.08	6.98	65.0	± 9.6 \%
		Y	11.88	86.18	27.05		65.0	
		Z	11.71	84.70	26.62		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	9.69	83.18	27.04	6.98	65.0	± 9.6 \%
		Y	8.48	80.58	25.71		65.0	
		Z	9.71	82.55	26.66		65.0	
$\begin{aligned} & 10244- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM)	X	10.16	81.71	21.73	3.98	65.0	$\pm 9.6 \%$
		Y	9.31	80.28	20.70		65.0	
		Z	9.66	80.44	21.31		65.0	
$\begin{aligned} & \hline 10245- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM)	X	9.99	81.19	21.49	3.98	65.0	± 9.6 \%
		Y	9.12	79.71	20.44		65.0	
		Z	9.56	80.04	21.12		65.0	
$\begin{aligned} & 10246- \\ & C A B \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	10.26	84.67	22.74	3.98	65.0	± 9.6 \%
		Y	9.22	82.91	21.64		65.0	
		Z	9.02	82.03	21.79		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	8.13	78.66	21.05	3.98	65.0	± 9.6 \%
		Y	7.56	77.60	20.25		65.0	
		Z	7.81	77.51	20.59		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	8.10	78.15	20.84	3.98	65.0	± 9.6 \%
		Y	7.50	77.03	20.01		65.0	
		Z	7.84	77.14	20.44		65.0	
$\begin{aligned} & 10249- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	11.10	86.20	23.88	3.98	65.0	± 9.6 \%
		Y	10.38	85.15	23.14		65.0	
		Z	9.69	83.27	22.77		65.0	
$\begin{aligned} & 10250- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$,	X	8.90	80.26	22.85	3.98	65.0	$\pm 9.6 \%$
		Y	8.50	79.72	22.41		65.0	
		Z	8.55	78.98	22.26		65.0	
$\begin{aligned} & 10251- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	$\pm 9.6 \%$
		Y	7.97	77.44	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
$\begin{aligned} & 10252- \\ & C A D \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	10.55	84.69	23.95	3.98	65.0	± 9.6 \%
		Y	10.10	84.18	23.52		65.0	
		Z	9.56	82.30	22.95		65.0	
$\begin{aligned} & 10253- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	8.29	77.16	21.61	3.98	65.0	± 9.6 \%
		Y	7.87	76.45	21.11		65.0	
		Z	8.15	76.38	21.20		65.0	
$\begin{aligned} & 10254- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$,	X	8.65	77.83	22.17	3.98	65.0	± 9.6 \%
		Y	8.27	77.28	21.75		65.0	
		Z	8.49	77.01	21.74		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	X	9.28	80.86	22.71	3.98	65.0	± 9.6 \%
		Y	8.89	80.40	22.35		65.0	
		Z	8.80	79.34	21.99		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	9.13	79.62	20.18	3.98	65.0	± 9.6 \%
		Y	7.96	77.38	18.74		65.0	
		Z	8.84	78.74	19.97		65.0	
$\begin{aligned} & 10257- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 1.4$ $\mathrm{MHz}, 64-\mathrm{QAM})$	X	8.90	78.86	19.81	3.98	65.0	± 9.6 \%
		Y	7.73	76.58	18.34		65.0	
		Z	8.71	78.17	19.67		65.0	
$\begin{aligned} & \text { 10258- } \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	8.90	81.94	21.19	3.98	65.0	± 9.6 \%
		Y	7.60	79.37	19.69		65.0	
		Z	8.10	80.01	20.54		65.0	
$\begin{aligned} & 10259- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.43	79.20	21.67	3.98	65.0	± 9.6 \%
		Y	7.92	78.34	21.01		65.0	
		Z	8.11	78.01	21.17		65.0	
$\begin{aligned} & 10260- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 3 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	8.43	78.91	21.57	3.98	65.0	± 9.6 \%
		Y	7.92	78.05	20.91		65.0	
		Z	8.14	77.80	21.11		65.0	
$\begin{aligned} & 10261- \\ & \mathrm{CAB} \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$,, , ${ }^{\text {QPSK }}$ (X	10.44	84.93	23.72	3.98	65.0	± 9.6 \%
		Y	9.81	84.03	23.07		65.0	
		Z	9.35	82.40	22.71		65.0	
$\begin{aligned} & 10262- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM)	X	8.89	80.23	22.82	3.98	65.0	± 9.6 \%
		Y	8.49	79.67	22.37		65.0	
		Z	8.55	78.95	22.23		65.0	
$\begin{aligned} & \text { 10263- } \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	8.43	78.18	21.77	3.98	65.0	± 9.6 \%
		Y	7.96	77.43	21.21		65.0	
		Z	8.21	77.20	21.30		65.0	
$\begin{aligned} & 10264- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK)	X	10.49	84.56	23.88	3.98	65.0	± 9.6 \%
		Y	10.02	84.01	23.44		65.0	
		Z	9.51	82.19	22.89		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	8.52	77.77	21.82	3.98	65.0	$\pm 9.6 \%$
		Y	8.07	77.03	21.32		65.0	
		Z	8.36	76.93	21.38		65.0	
$\begin{aligned} & 10266- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-Q A M) \end{aligned}$	X	8.87	78.41	22.40	3.98	65.0	± 9.6 \%
		Y	8.48	77.88	22.01		65.0	
		Z	8.68	77.54	21.94		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 $\mathrm{MHz}, ~ Q P S K$)	X	9.58	81.18	22.60	3.98	65.0	± 9.6 \%
		Y	9.19	80.75	22.26		65.0	
		Z	9.04	79.59	21.85		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & M H z, 16-Q A M) \\ & \hline \end{aligned}$	X	8.91	77.09	21.88	3.98	65.0	± 9.6 \%
		Y	8.54	76.56	21.51		65.0	
		Z	8.80	76.43	21.50		65.0	
$\begin{aligned} & 10269- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	8.82	76.67	21.78	3.98	65.0	± 9.6 \%
		Y	8.46	76.15	21.41		65.0	
		Z	8.73	76.06	21.42		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	8.97	78.33	21.62	3.98	65.0	± 9.6 \%
		Y	8.64	77.97	21.34		65.0	
		Z	8.71	77.32	21.10		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.72	67.23	15.95	0.00	150.0	± 9.6 \%
		Y	2.57	66.31	15.13		150.0	
		Z	2.65	66.56	15.46		150.0	
$\begin{aligned} & 10275- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.89	70.77	17.26	0.00	150.0	± 9.6 \%
		Y	1.58	67.67	15.25		150.0	
		Z	1.72	68.75	16.01		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	6.00	70.47	14.76	9.03	50.0	± 9.6 \%
		Y	5.21	68.57	13.21		50.0	
		Z	6.28	70.88	15.27		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	9.55	80.33	21.17	9.03	50.0	± 9.6 \%
		Y	8.72	78.79	19.97		50.0	
		Z	9.29	79.51	21.06		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	9.72	80.54	21.26	9.03	50.0	$\pm 9.6 \%$
		Y	8.86	78.97	20.05		50.0	
		Z	9.46	79.72	21.15		50.0	
$\begin{aligned} & 10290- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	2.18	74.40	17.31	0.00	150.0	$\pm 9.6 \%$
		Y	1.44	68.27	13.81		150.0	
		Z	1.72	70.30	15.40		150.0	
$\begin{aligned} & \text { 10291- } \\ & A A B \\ & \hline \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	1.24	71.68	16.15	0.00	150.0	± 9.6 \%
		Y	0.80	65.30	12.12		150.0	
		Z	0.97	67.39	13.90		150.0	
$\begin{aligned} & 10292- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	2.10	80.68	20.23	0.00	150.0	± 9.6 \%
		Y	0.98	68.86	14.25		150.0	
		Z	1.23	71.77	16.34		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	4.35	92.52	24.81	0.00	150.0	± 9.6 \%
		Y	1.43	74.29	17.12		150.0	
		Z	1.75	77.17	19.08		150.0	
$\begin{aligned} & \hline 10295- \\ & A A B \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr .	X	11.19	84.61	24.64	9.03	50.0	± 9.6 \%
		Y	11.12	84.62	24.20		50.0	
		Z	10.33	82.52	23.91		50.0	
$\begin{aligned} & 10297- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	3.13	71.75	17.66	0.00	150.0	± 9.6 \%
		Y	2.77	69.64	16.38		150.0	
		Z	2.96	70.46	16.84		150.0	
$\begin{aligned} & 10298- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	2.07	71.56	16.68	0.00	150.0	± 9.6 \%
		Y	1.59	67.63	14.15		150.0	
		Z	1.84	69.13	15.41		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.44	77.05	18.50	0.00	150.0	$\pm 9.6 \%$
		Y	3.17	71.89	15.69		150.0	
		Z	3.89	74.52	17.46		150.0	
$\begin{aligned} & 10300- \\ & A A C \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.98	70.18	14.87	0.00	150.0	$\pm 9.6 \%$
		Y	2.33	66.80	12.64		150.0	
		Z	2.88	69.22	14.45		150.0	
$\begin{aligned} & 10301- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10MHZ, QPSK, PUSC)	X	5.88	68.71	19.12	4.17	80.0	± 9.6 \%
		Y	5.67	68.35	18.79		80.0	
		Z	5.96	68.70	19.05		80.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	X	6.49	69.93	20.23	4.96	80.0	$\pm 9.6 \%$
		Y	6.06	68.48	19.24		80.0	
		Z	6.58	69.96	20.17		80.0	

10303- AAA	IEEE 802.16 e WiMAX ($31: 15,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	6.38	70.18	20.37	4.96	80.0	± 9.6 \%
		Y	5.90	68.52	19.27		80.0	
		Z	6.49	70.27	20.35		80.0	
$\begin{aligned} & 10304- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5 ms , 10MHz, 64QAM, PUSC)	X	5.94	69.20	19.41	4.17	80.0	± 9.6 \%
		Y	5.55	67.84	18.48		80.0	
		Z	6.02	69.19	19.33		80.0	
10305- AAA	IEEE 802.16 e WiMAX ($31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	8.63	79.84	25.16	6.02	50.0	$\pm 9.6 \%$
		Y	8.50	80.74	25.49		50.0	
		Z	9.07	80.51	25.38		50.0	
10306- AAA	IEEE 802.16 e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbols)	X	7.19	74.26	22.98	6.02	50.0	± 9.6 \%
		Y	6.24	70.98	21.03		50.0	
		Z	7.44	74.65	23.11		50.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX ($29: 18$, 10ms, 10 MHz, QPSK, PUSC, 18 symbols)	X	7.43	75.32	23.26	6.02	50.0	$\pm 9.6 \%$
		Y	7.08	75.34	23.24		50.0	
		Z	7.71	75.76	23.39		50.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \end{aligned}$	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC}$)	X	7.56	75.95	23.55	6.02	50.0	± 9.6 \%
		Y	7.22	76.07	23.58		50.0	
		Z	7.85	76.40	23.68		50.0	
$\begin{aligned} & 10309- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	7.34	74.67	23.20	6.02	50.0	$\pm 9.6 \%$
		Y	6.34	71.28	21.21		50.0	
		Z	7.59	75.05	23.31		50.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16 e WiMAX (29:18, 10 ms , 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	7.26	74.63	23.05	6.02	50.0	± 9.6 \%
		Y	6.24	71.19	21.04		50.0	
		Z	7.51	75.03	23.17		50.0	
10311- AAC	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \text { MHz, QPSK) } \end{aligned}$	X	3.50	70.87	17.20	0.00	150.0	$\pm 9.6 \%$
		Y	3.12	68.92	16.05		150.0	
		Z	3.32	69.72	16.47		150.0	
10313- AAA	iDEN 1:3	X	8.27	79.76	19.38	6.99	70.0	± 9.6 \%
		Y	7.09	77.48	18.12		70.0	
		Z	7.27	77.42	18.52		70.0	
$\begin{aligned} & \text { 10314- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IDEN 1:6	X	10.52	85.41	23.73	10.00	30.0	$\pm 9.6 \%$
		Y	9.80	84.47	23.05		30.0	
		Z	8.56	81.26	22.24		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.21	66.04	16.76	0.17	150.0	± 9.6 \%
		Y	1.11	64.36	15.28		150.0	
		Z	1.16	64.99	15.81		150.0	
10316- $A A B$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.78	67.20	16.69	0.17	150.0	$\pm 9.6 \%$
		Y	4.67	66.87	16.36		150.0	
		Z	4.78	67.00	16.48		150.0	
$\begin{aligned} & 10317- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.78	67.20	16.69	0.17	150.0	± 9.6 \%
		Y	4.67	66.87	16.36		150.0	
		Z	4.78	67.00	16.48		150.0	
$\begin{aligned} & \hline 10400- \\ & \text { AAD } \end{aligned}$	IEEE 802.11 ac WiFi (20 MHz , 64-QAM, 99pc duty cycle)	X	4.88	67.44	16.59	0.00	150.0	± 9.6 \%
		Y	4.75	67.07	16.25		150.0	
		Z	4.88	67.23	16.38		150.0	
$\begin{aligned} & \hline 10401- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.52	67.51	16.67	0.00	150.0	± 9.6 \%
		Y	5.43	67.26	16.42		150.0	
		Z	5.50	67.29	16.46		150.0	

$\begin{aligned} & 10402- \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.81	67.99	16.74	0.00	150.0	± 9.6 \%
		Y	5.71	67.67	16.46		150.0	
		Z	5.80	67.83	16.56		150.0	
10403-AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.18	74.40	17.31	0.00	115.0	± 9.6 \%
		Y	1.44	68.27	13.81		115.0	
		Z	1.72	70.30	15.40		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.18	74.40	17.31	0.00	115.0	$\pm 9.6 \%$
		Y	1.44	68.27	13.81		115.0	
		Z	1.72	70.30	15.40		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CDMA2000, RC3, SO32, SCH0, Full } \\ & \text { Rate } \end{aligned}$	X	100.00	125.34	32.57	0.00	100.0	$\pm 9.6 \%$
		Y	100.00	122.30	30.90		100.0	
		Z	100.00	123.59	31.86		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	100.00	121.08	31.14	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	119.39	30.03		80.0	
		Z	100.00	119.84	30.69		80.0	
$\begin{array}{\|l} \hline 10415- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.04	64.21	15.75	0.00	150.0	± 9.6 \%
		Y	0.96	62.81	14.37		150.0	
		Z	1.00	63.31	14.86		150.0	
$\begin{aligned} & 10416- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps, 99 pc duty cycle)	X	4.68	67.03	16.52	0.00	150.0	± 9.6 \%
		Y	4.57	66.70	16.19		150.0	
		Z	4.67	66.81	16.30		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.68	67.03	16.52	0.00	150.0	± 9.6 \%
		Y	4.57	66.70	16.19		150.0	
		Z	4.67	66.81	16.30		150.0	
10418-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99 pc duty cycle, Long preambule)	X	4.66	67.18	16.53	0.00	150.0	± 9.6 \%
		Y	4.55	66.84	16.19		150.0	
		Z	4.65	66.94	16.30		150.0	
10419- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 99pc duty cycle, Short preambule)	X	4.69	67.13	16.53	0.00	150.0	± 9.6 \%
		Y	4.58	66.80	16.20		150.0	
		Z	4.68	66.91	16.31		150.0	
10422-AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps , BPSK)	X	4.81	67.13	16.54	0.00	150.0	± 9.6 \%
		Y	4.70	66.81	16.22		150.0	
		Z	4.80	66.92	16.33		150.0	
$\begin{aligned} & 10423- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.01	67.51	16.68	0.00	150.0	± 9.6 \%
		Y	4.89	67.16	16.35		150.0	
		Z	5.01	67.31	16.47		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.1 1 n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.92	67.45	16.65	0.00	150.0	± 9.6 \%
		Y	4.80	67.10	16.32		150.0	
		Z	4.92	67.24	16.43		150.0	
$\begin{aligned} & 10425- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	X	5.50	67.77	16.79	0.00	150.0	± 9.6 \%
		Y	5.41	67.50	16.53		150.0	
		Z	5.49	67.58	16.59		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.51	67.80	16.80	0.00	150.0	$\pm 9.6 \%$
		Y	5.41	67.51	16.53		150.0	
		Z	5.50	67.62	16.60		150.0	

$\begin{aligned} & 10427- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.53	67.79	16.79	0.00	150.0	± 9.6 \%
		Y	5.42	67.48	16.51		150.0	
		Z	5.52	67.63	16.61		150.0	
$10430-$	LTE-FDD (OFDMA, 5 MHz , E-TM 3.1)	X	4.38	70.70	18.40	0.00	150.0	± 9.6 \%
		Y	4.25	70.46	18.05		150.0	
		Z	4.31	70.02	17.98		150.0	
$\begin{aligned} & 10431- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	4.42	67.67	16.62	0.00	150.0	± 9.6 \%
		Y	4.27	67.23	16.20		150.0	
		Z	4.41	67.37	16.37		150.0	
$\begin{aligned} & 10432- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1)	X	4.70	67.52	16.63	0.00	150.0	± 9.6 \%
		Y	4.57	67.13	16.26		150.0	
		Z	4.70	67.28	16.40		150.0	
$\begin{aligned} & 10433- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, $20 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	X	4.94	67.50	16.67	0.00	150.0	± 9.6 \%
		Y	4.82	67.14	16.34		150.0	
		Z	4.94	67.29	16.46		150.0	
$\begin{aligned} & \text { 10434- } \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.49	71.52	18.43	0.00	150.0	± 9.6 \%
		Y	4.34	71.22	18.01		150.0	
		Z	4.39	70.68	17.96		150.0	
$\begin{array}{\|l} \hline 10435- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	120.92	31.06	3.23	80.0	± 9.6 \%
		Y	100.00	119.22	29.95		80.0	
		Z	100.00	119.70	30.62		80.0	
10447-AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.75	67.86	16.21	0.00	150.0	± 9.6 \%
		Y	3.56	67.20	15.57		150.0	
		Z	3.73	67.41	15.90		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	4.24	67.45	16.49	0.00	150.0	$\pm 9.6 \%$
		Y	4.10	67.00	16.05		150.0	
		Z	4.22	67.14	16.23		150.0	
10449AAB	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	4.49	67.35	16.53	0.00	150.0	$\pm 9.6 \%$
		Y	4.37	66.95	16.16		150.0	
		Z	4.48	67.09	16.30		150.0	
$\begin{aligned} & \hline 10450- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.67	67.26	16.53	0.00	150.0	± 9.6 \%
		Y	4.56	66.89	16.18		150.0	
		Z	4.66	67.04	16.31		150.0	
10451- AAA	W-CDMA (BS Test Model 1,64 DPCH, Clipping 44\%)	X	3.69	68.21	15.98	0.00	150.0	$\pm 9.6 \%$
		Y	3.47	67.39	15.23		150.0	
		Z	3.66	67.69	15.67		150.0	
$\begin{array}{\|l\|} \hline 10456- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.36	68.35	16.93	0.00	150.0	± 9.6 \%
		Y	6.27	68.07	16.69		150.0	
		Z	6.35	68.21	16.77		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.86	65.66	16.26	0.00	150.0	± 9.6 \%
		Y	3.78	65.32	15.90		150.0	
		Z	3.84	65.45	16.04		150.0	
$\begin{array}{\|l\|} \hline 10458- \\ \text { AAA } \\ \hline \end{array}$	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	4.10	70.68	17.90	0.00	150.0	± 9.6 \%
		Y	3.95	70.36	17.40		150.0	
		Z	3.98	69.73	17.40		150.0	
$\begin{array}{\|l} \hline 10459- \\ \text { AAA } \\ \hline \end{array}$	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.16	67.87	18.15	0.00	150.0	± 9.6 \%
		Y	5.08	67.96	18.01		150.0	
		Z	5.12	67.39	17.86		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.21	74.36	19.56	0.00	150.0	$\pm 9.6 \%$
		Y	0.84	67.73	15.53		150.0	
		Z	0.96	69.69	16.87		150.0	
10461-$A A A$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	124.72	32.88	3.29	80.0	± 9.6 \%
		Y	100.00	122.71	31.63		80.0	
		Z	100.00	122.27	31.89		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.81	26.22	3.23	80.0	± 9.6 \%
		Y	100.00	107.68	24.48		80.0	
		Z	100.00	109.58	25.81		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	108.02	24.88	3.23	80.0	± 9.6 \%
		Y	17.57	87.04	18.79		80.0	
		Z	57.71	101.03	23.21		80.0	
10464 AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	122.99	31.92	3.23	80.0	± 9.6 \%
		Y	100.00	120.66	30.52		80.0	
		Z	100.00	120.59	30.96		80.0	
$10465-$ AAA	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.36	26.00	3.23	80.0	± 9.6 \%
		Y	69.93	103.37	23.39		80.0	
		Z	100.00	109.17	25.60		80.0	
$\begin{aligned} & \text { 10466- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.59	24.67	3.23	80.0	± 9.6 \%
		Y	10.32	81.39	17.12		80.0	
		Z	32.56	94.43	21.51		80.0	
10467-AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.18	32.01	3.23	80.0	± 9.6 \%
		Y	100.00	120.88	30.62		80.0	
		Z	100.00	120.77	31.04		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.50	26.06	3.23	80.0	± 9.6 \%
		Y	95.55	106.84	24.20		80.0	
		Z	100.00	109.30	25.66		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.60	24.67	3.23	80.0	± 9.6 \%
		Y	10.51	81.58	17.17		80.0	
		Z	33.51	94.76	21.58		80.0	
10470-AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.21	32.02	3.23	80.0	± 9.6 \%
		Y	100.00	120.90	30.62		80.0	
		Z	100.00	120.79	31.05		80.0	
$\begin{aligned} & 10471- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , $16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.46	26.04	3.23	80.0	$\pm 9.6 \%$
		Y	94.56	106.68	24.14		80.0	
		Z	100.00	109.26	25.63		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.56	24.64	3.23	80.0	$\pm 9.6 \%$
		Y	10.43	81.48	17.13		80.0	
		Z	33.64	94.78	21.58		80.0	
10473-AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	123.19	32.00	3.23	80.0	± 9.6 \%
		Y	100.00	120.87	30.61		80.0	
		Z	100.00	120.77	31.03		80.0	
$\begin{aligned} & 10474- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.47	26.04	3.23	80.0	$\pm 9.6 \%$
		Y	92.06	106.40	24.08		80.0	
		Z	100.00	109.26	25.64		80.0	
$\begin{aligned} & 10475- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.57	24.65	3.23	80.0	± 9.6 \%
		Y	10.30	81.37	17.09		80.0	
		Z	33.12	94.61	21.54		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	110.32	25.97	3.23	80.0	± 9.6 \%
		Y	73.47	103.85	23.47		80.0	
		Z	100.00	109.13	25.57		80.0	
10478AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	100.00	107.52	24.63	3.23	80.0	± 9.6 \%
		Y	10.13	81.17	17.03		80.0	$\pm 9.6 \%$
10479-AAA		Z	32.56	94.40	21.47		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	23.24	102.02	28.60	3.23	80.0	
		Y	17.72	96.96	26.53		80.0	± 9.6 \%
10480- AAA		Z	12.62	91.31	25.32		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	23.79	96.38	25.31	3.23	80.0	
		Y	16.50	90.35	22.90		80.0	± 9.6 \%
10481-AAA		Z	13.56	87.65	22.71		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	19.64	92.74	23.93	3.23	80.0	
		Y	13.10	86.39	21.35		80.0	± 9.6 \%
10482-AAA		Z	12.05	85.29	21.66		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	8.49	84.69	22.05	2.23	80.0	
		Y	5.66	78.52	19.36		80.0	± 9.6 \%
$\begin{aligned} & \text { 10483- } \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	6.07	79.11	20.05		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.70	86.22	22.45	2.23	80.0	
		Y	8.73	81.47	20.24		80.0	± 9.6 \%
10484- AAA		Z	8.71	81.39	20.85		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	10.50	84.41	21.86	2.23	80.0	
		Y	7.92	79.90	19.71		80.0	
$10485-$$\mathrm{AAC}$		Z	8.18	80.26	20.46		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	8.12	84.44	22.68	2.23	80.0	
		Y	5.95	79.56	20.54		80.0	± 9.6 \%
10486-AAC		Z	6.24	79.61	20.83		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.60	75.72	19.25	2.23	80.0	
		Y	4.71	73.16	17.81		80.0	± 9.6 \%
		Z	5.00	73.46	18.29		80.0	
$\begin{aligned} & 10487- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.48	75.06	18.99	2.23	80.0	
		Y	4.65	72.64	17.60		80.0	± 9.6 \%
		Z	4.96	73.01	18.11		80.0	
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.06	80.88	21.92	2.23	80.0	
		Y	5.70	77.55	20.40		80.0	± 9.6 \%
		Z	6.08	77.77	20.57		80.0	
$\begin{aligned} & 10489- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16 -QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.31	73.88	19.45	2.23	80.0	
		Y	4.75	72.25	18.50		80.0	± 9.6 \%
		Z	5.02	72.44	18.71		80.0	
$10490-$ AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.32	73.40	19.28	2.23	80.0	
		Y	4.80	71.92	18.39		80.0	
		Z	5.07	72.08	18.60		80.0	± 9.6 \%
10491- AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.29	77.08	20.62	2.23	80.0	
		Y	5.44	74.84	19.51		80.0	
		Z	5.78	75.12	19.66		80.0	
$\begin{array}{\|l\|} \hline 10492- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.38	72.26	19.03	2.23	80.0	$\pm 9.6 \%$
		Y	4.95	71.03	18.29		80.0	
		Z	5.22	71.29	18.47		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.41	71.97	18.93	2.23	80.0	$\pm 9.6 \%$
		Y	4.99	70.82	18.22		80.0	
		Z	5.27	71.06	18.40		80.0	
$\begin{aligned} & 10494- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.26	79.46	21.31	2.23	80.0	± 9.6 \%
		Y	6.08	76.70	20.04		80.0	
		Z	6.47	77.03	20.19		80.0	
$\begin{aligned} & 10495- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.52	72.92	19.28	2.23	80.0	± 9.6 \%
		Y	5.04	71.57	18.51		80.0	
		Z	5.33	71.88	18.69		80.0	
10496-AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.51	72.36	19.10	2.23	80.0	± 9.6 \%
		Y	5.07	71.15	18.38		80.0	
		Z	5.35	71.43	18.55		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.84	81.16	20.14	2.23	80.0	± 9.6 \%
		Y	4.18	74.07	16.91		80.0	
		Z	4.97	76.21	18.38		80.0	
$\begin{aligned} & \text { 10498- } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	4.23	71.63	15.72	2.23	80.0	$\pm 9.6 \%$
		Y	2.88	66.72	12.99		80.0	
		Z	3.81	69.89	15.10		80.0	
$\begin{aligned} & \text { 10499- } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.07	70.79	15.25	2.23	80.0	$\pm 9.6 \%$
		Y	2.78	66.03	12.55		80.0	
		Z	3.73	69.33	14.75		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.25	82.07	22.09	2.23	80.0	± 9.6 \%
		Y	5.64	78.16	20.30		80.0	
		Z	5.95	78.24	20.53		80.0	
$\begin{array}{\|l} \hline 10501- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.43	74.78	19.24	2.23	80.0	± 9.6 \%
		Y	4.72	72.72	18.04		80.0	
		Z	4.99	72.91	18.39		80.0	
$\begin{aligned} & 10502- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.43	74.40	19.05	2.23	80.0	± 9.6 \%
		Y	4.75	72.45	17.89		80,0	
		Z	5.01	72.63	18.25		80.0	
$\begin{aligned} & 10503- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.96	80.64	21.82	2.23	80.0	± 9.6 \%
		Y	5.62	77.31	20.29		80.0	
		Z	6.00	77.58	20.48		80.0	
$\begin{aligned} & 10504- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.28	73.79	19.40	2.23	80.0	± 9.6 \%
		Y	4.72	72.15	18.44		80.0	
		Z	5.00	72.37	18.67		80.0	
$\begin{array}{\|l\|} \hline 10505- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.30	73.31	19.23	2.23	80.0	± 9.6 \%
		Y	4.78	71.81	18.34		80.0	
		Z	5.05	72.00	18.55		80.0	
$\begin{aligned} & 10506- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.19	79.29	21.23	2.23	80.0	$\pm 9.6 \%$
		Y	6.02	76.53	19.97		80.0	
		Z	6.42	76.89	20.13		80.0	
$\begin{aligned} & 10507- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.49	72.85	19.25	2.23	80.0	± 9.6 \%
		Y	5.02	71.50	18.47		80.0	
		Z	5.31	71.82	18.66		80.0	

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	5.49	72.29	19.06	2.23	80.0	± 9.6 \%
		Y	5.05	71.07	18.34		80.0	
		Z	5.33	71.37	18.52		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	6.71	76.12	20.06	2.23	80.0	$\pm 9.6 \%$
		Y	5.94	74.25	19.13		80.0	
		Z	6.28	74.57	19.27		80.0	
$10510-$ AAC	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.84	71.95	18.94	2.23	80.0	± 9.6 \%
		Y	5.42	70.86	18.30		80.0	
		Z	5.71	71.20	18.47		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.82	71.51	18.81	2.23	80.0	± 9.6 \%
		Y	5.44	70.51	18.21		80.0	
		Z	5.71	70.83	18.37		80.0	
10512- $A A C$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	7.61	78.80	20.90	2.23	80.0	± 9.6 \%
		Y	6.48	76.29	19.75		80.0	
		Z	6.88	76.71	19.92		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.82	72.58	19.18	2.23	80.0	$\pm 9.6 \%$
		Y	5.36	71.33	18.47		80.0	
		Z	5.67	71.74	18.66		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.73	71.89	18.96	2.23	80.0	± 9.6 \%
		Y	5.32	70.77	18.31		80.0	
		Z	5.61	71.15	18.49		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.00	64.53	15.90	0.00	150.0	± 9.6 \%
		Y	0.92	62.98	14.41		150.0	
		Z	0.96	63.54	14.94		150.0	
$\begin{aligned} & 10516- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	1.68	91.06	26.34	0.00	150.0	± 9.6 \%
		Y	0.55	69.99	16.34		150.0	
		Z	0.73	74.56	19.01		150.0	
$\begin{aligned} & 10517- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.92	68.12	17.45	0.00	150.0	± 9.6 \%
		Y	0.77	64.83	14.89		150.0	
		Z	0.84	65.95	15.79		150.0	
$\begin{aligned} & 10518- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.67	67.12	16.50	0.00	150.0	± 9.6 \%
		Y	4.56	66.77	16.17		150.0	
		Z	4.66	66.89	16.28		150.0	
$\begin{aligned} & 10519- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 12 Mbps, 99pc duty cycle)	X	4.89	67.40	16.64	0.00	150.0	± 9.6 \%
		Y	4.77	67.04	16.30		150.0	
		Z	4.89	67.19	16.43		150.0	
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFI 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.74	67.39	16.57	0.00	150.0	± 9.6 \%
		Y	4.61	67.01	16.22		150.0	
		Z	4.74	67.17	16.35		150.0	
$\begin{aligned} & 10521- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.67	67.41	16.56	0.00	150.0	$\pm 9.6 \%$
		Y	4.55	67.00	16.20		150.0	
		Z	4.67	67.18	16.34		150.0	
10522- AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.72	67.39	16.60	0.00	150.0	± 9.6 \%
		Y	4.60	67.04	16.27		150.0	
		Z	4.71	67.14	16.36		150.0	

$\begin{aligned} & 10523- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 48 Mbps, 99pc duty cycle)	X	4.59	67.29	16.46	0.00	150.0	± 9.6 \%
		Y	4.47	66.91	16.11		150.0	
		Z	4.58	67.04	16.22		150.0	
$\begin{array}{\|l\|} \hline 10524- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.67	67.35	16.59	0.00	150.0	± 9.6 \%
		Y	4.55	66.98	16.24		150.0	
		Z	4.67	67.11	16.36		150.0	
$\begin{aligned} & 10525- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 99pc duty cycle)	X	4.63	66.37	16.17	0.00	150.0	± 9.6 \%
		Y	4.52	66.01	15.83		150.0	
		Z	4.62	66.13	15.94		150.0	
$\begin{aligned} & \hline 10526- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.83	66.78	16.32	0.00	150.0	± 9.6 \%
		Y	4.70	66.40	15.97		150.0	
		Z	4.82	66.54	16.09		150.0	
$\begin{aligned} & \hline 10527- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99 pc duty cycle)	X	4.75	66.76	16.27	0.00	150.0	$\pm 9.6 \%$
		Y	4.62	66.36	15.92		150.0	
		Z	4.74	66.51	16.04		150.0	
$\begin{aligned} & 10528- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 99 pc duty cycle)	X	4.77	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.64	66.38	15.95		150.0	
		Z	4.76	66.54	16.08		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.77	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.64	66.38	15.95		150.0	
		Z	4.76	66.54	16.08		150.0	
$\begin{aligned} & 10531- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.78	66.93	16.34	0.00	150.0	± 9.6 \%
		Y	4.64	66.50	15.97		150.0	
		Z	4.77	66.69	16.10		150.0	
$\begin{aligned} & 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99 pc duty cycle)	X	4.63	66.80	16.29	0.00	150.0	± 9.6 \%
		Y	4.49	66.35	15.90		150.0	
		Z	4.62	66.56	16.05		150.0	
$\begin{array}{\|l\|} \hline 10533- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99 pc duty cycle)	X	4.78	66.80	16.29	0.00	150.0	± 9.6 \%
		Y	4.65	66.41	15.94		150.0	
		Z	4.77	66.55	16.05		150.0	
$\begin{aligned} & 10534- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{ac} \mathrm{WiFi} \mathrm{(40MHz}, \mathrm{MCSO}$, 99pc duty cycle)	X	5.28	66.88	16.33	0.00	150.0	$\pm 9.6 \%$
		Y	5.17	66.53	16.03		150.0	
		Z	5.27	66.70	16.13		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40 MHz , MCS1, 99 pc duty cycle)	X	5.35	67.03	16.39	0.00	150.0	± 9.6 \%
		Y	5.24	66.69	16.10		150.0	
		Z	5.34	66.84	16.18		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.22	67.03	16.37	0.00	150.0	± 9.6 \%
		Y	5.10	66.65	16.06		150.0	
		Z	5.21	66.83	16.16		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.29	67.00	16.36	0.00	150.0	$\pm 9.6 \%$
		Y	5.17	66.63	16.05		150.0	
		Z	5.27	66.80	16.15		150.0	
$\begin{aligned} & 10538- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99 pc duty cycle)	X	5.40	67.06	16.43	0.00	150.0	± 9.6 \%
		Y	5.27	66.69	16.12		150.0	
		Z	5.39	66.88	16.23		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99 pc duty cycle)	X	5.30	67.01	16.42	0.00	150.0	$\pm 9.6 \%$
		Y	5.19	66.66	16.12		150.0	
		Z	5.29	66.82	16.22		150.0	

$\begin{aligned} & \hline 10541- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS7, 99pc duty cycle)	X	5.28	66.90	16.36	0.00	150.0	± 9.6 \%
		Y	5.16	66.53	16.05		150.0	
		Z	5.27	66.74	16.17		150.0	
$\begin{aligned} & \text { 10542- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.43	66.95	16.40	0.00	150.0	± 9.6 \%
		Y	5.32	66.61	16.11		150.0	
		Z	5.42	66.77	16.20		150.0	
$\begin{array}{\|l\|} \hline 10543- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.51	66.95	16.41	0.00	150.0	± 9.6 \%
		Y	5.40	66.65	16.14		150.0	
		Z	5.51	66.78	16.22		150.0	
$\begin{aligned} & 10544- \\ & \text { AAB } \end{aligned}$	IEEE 802,11ac WiFi ($80 \mathrm{MHZ}, \mathrm{MCSO}$, 99pc duty cycle)	X	5.56	66.97	16.30	0.00	150.0	± 9.6 \%
		Y	5.46	66.64	16.02		150.0	
		Z	5.54	66.80	16.11		150.0	
$\begin{aligned} & \text { 10545- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS1, 99pc duty cycle)	X	5.78	67.41	16.46	0.00	150.0	± 9.6 \%
		Y	5.68	67.09	16.19		150.0	
		Z	5.76	67.21	16.25		150.0	
$\begin{aligned} & \text { 10546- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.66	67.27	16.41	0.00	150.0	± 9.6 \%
		Y	5.55	66.90	16.11		150.0	
		Z	5.65	67.10	16.22		150.0	
$\begin{aligned} & \text { 10547- } \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS3, 99 pc duty cycle)	X	5.75	67.34	16.43	0.00	150.0	± 9.6 \%
		Y	5.64	66.99	16.14		150.0	
		Z	5.73	67.16	16.24		150.0	
$\begin{aligned} & \hline 10548- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS4, 99pc duty cycle)	X	6.10	68.57	17.02	0.00	150.0	± 9.6 \%
		Y	5.97	68.15	16.70		150.0	
		Z	6.06	68.30	16.78		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.68	67.21	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.57	66.88	16.11		150.0	
		Z	5.66	67.04	16.20		150.0	
$\begin{aligned} & \text { 10551- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 99 pc duty cycle)	X	5.70	67.30	16.39	0.00	150.0	± 9.6 \%
		Y	5.58	66.93	16.09		150.0	
		Z	5.68	67.15	16.21		150.0	
$\begin{aligned} & 10552- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 8$, 99pc duty cycle)	X	5.59	67.05	16.28	0.00	150.0	± 9.6 \%
		Y	5.48	66.70	15.99		150.0	
		Z	5.58	66.90	16.10		150.0	
$\begin{aligned} & \text { 10553- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.69	67.10	16.33	0.00	150.0	± 9.6 \%
		Y	5.57	66.76	16.05		150.0	
		Z	5.67	66.95	16.15		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCSO, 99pc duty cycle)	X	5.97	67.34	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.87	67.02	16.12		150.0	
		Z	5.94	67.19	16.21		150.0	
10555- AAC	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS}$, 99pc duty cycle)	X	6.12	67.69	16.53	0.00	150.0	± 9.6 \%
		Y	6.01	67.35	16.26		150.0	
		Z	6.10	67.54	16.36		150.0	
$\begin{aligned} & \hline 10556- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.13	67.71	16.53	0.00	150.0	± 9.6 \%
		Y	6.03	67.38	16.27		150.0	
		Z	6.11	67.54	16.35		150.0	
$\begin{aligned} & 10557- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 99pc duty cycle)	X	6.12	67.66	16.53	0.00	150.0	± 9.6 \%
		Y	6.00	67.31	16.25		150.0	
		Z	6.10	67.52	16.36		150.0	

$\begin{aligned} & 10558- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS4, 99pc duty cycle)	X	6.18	67.86	16.65	0.00	150.0	± 9.6 \%
		Y	6.06	67.49	16.36		150.0	
		Z	6.16	67.71	16.47		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS6, $99 p c$ duty cycle)	X	6.16	67.67	16.59	0.00	150.0	± 9.6 \%
		Y	6.05	67.32	16.31		150.0	
		Z	6.15	67.54	16.42		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 99 pc duty cycle)	X	6.08	67.64	16.61	0.00	150.0	$\pm 9.6 \%$
		Y	5.97	67.29	16.33		150.0	
		Z	6.06	67.49	16.44		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS8, 99 pc duty cycle)	X	6.25	68.16	16.88	0.00	150.0	± 9.6 \%
		Y	6.13	67.77	16.57		150.0	
		Z	6.23	68.01	16.70		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99 pc duty cycle)	X	6.60	68.73	17.10	0.00	150.0	$\pm 9.6 \%$
		Y	6.50	68.45	16.86		150.0	
		Z	6.53	68.43	16.86		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	5.01	67.24	16.68	0.46	150.0	$\pm 9.6 \%$
		Y	4.90	66.90	16.36		150.0	
		Z	5.01	67.05	16.49		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 99 p \mathrm{c}$ duty cycle)	X	5.27	67.70	16.99	0.46	150.0	± 9.6 \%
		Y	5.15	67.37	16.68		150.0	
		Z	5.27	67.52	16.80		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	5.11	67.60	16.84	0.46	150.0	± 9.6 \%
		Y	4.98	67.23	16.50		150.0	
		Z	5.11	67.41	16.64		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $24 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	5.13	67.96	17.16	0.46	150.0	$\pm 9.6 \%$
		Y	5.01	67.61	16.84		150.0	
		Z	5.13	67.75	16.95		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 99pc duty cycle)	X	5.02	67.36	16.62	0.46	150.0	$\pm 9.6 \%$
		Y	4.90	67.01	16.28		150.0	
		Z	5.02	67.16	16.41		150.0	
10569AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 99 pc duty cycle)	X	5.07	67.97	17.18	0.46	150.0	$\pm 9.6 \%$
		Y	4.96	67.67	16.89		150.0	
		Z	5.06	67.76	16.96		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99 pc duty cycle)	X	5.11	67.83	17.12	0.46	150.0	± 9.6 \%
		Y	5.00	67.52	16.83		150.0	
		Z	5.11	67.61	16.91		150.0	
$10571-$AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90 pc duty cycle)	X	1.43	67.78	17.55	0.46	130.0	$\pm 9.6 \%$
		Y	1.29	65.83	16.01		130.0	
		Z	1.37	66.57	16.56		130.0	
$10572-$AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.47	68.62	18.01	0.46	130.0	± 9.6 \%
		Y	1.32	66.50	16.39		130.0	
		Z	1.40	67.26	16.95		130.0	
$\begin{array}{\|l\|} \hline 10573- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	147.77	39.50	0.46	130.0	$\pm 9.6 \%$
		Y	5.11	95.86	25,26		130.0	
		Z	11.46	108.94	29.46		130.0	
$\begin{aligned} & \text { 10574- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90 pc duty cycle)	X	2.11	79.07	22.64	0.46	130.0	$\pm 9.6 \%$
		Y	1.59	73.49	19.59		130.0	
		Z	1.75	74.78	20.34		130.0	

10575- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 \%
		Y	4.72	66.80	16.47		130.0	
		Z	4.83	66.93	16.59		130.0	
10576- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps , 90 pc duty cycle)	X	4.86	67.28	16.85	0.46	130.0	± 9.6 \%
		Y	4.75	66.95	16.53		130.0	
		Z	4.86	67.08	16.65		130.0	
10577- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	5.09	67.60	17.02	0.46	130.0	± 9.6 \%
		Y	4.97	67.26	16.71		130.0	
		Z	5.10	67.41	16.83		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.43	16.80		130.0	
		Z	4.99	67.57	16.91		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	± 9.6 \%
		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $36 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.81	67.17	16.53	0.46	130.0	± 9.6 \%
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
10581- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 \%
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps, 90 pc duty cycle)	X	4.73	66.96	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.53	15.94		130.0	
		Z	4.73	66.78	16.14		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.84	67.12	16.79	0.46	130.0	± 9.6 \%
		Y	4.72	66.80	16.47		130.0	
		Z	4.83	66.93	16.59		130.0	
$\begin{aligned} & 10584- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.86	67.28	16.85	0.46	130.0	± 9.6 \%
		Y	4.75	66.95	16.53		130.0	
		Z	4.86	67.08	16.65		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.09	67.60	17.02	0.46	130.0	± 9.6 \%
		Y	4.97	67.26	16.71		130.0	
		Z	5.10	67.41	16.83		130.0	
10586- $A A B$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 18 Mbps, 90pc duty cycle)	X	4.99	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.43	16.80		130.0	
		Z	4.99	67.57	16.91		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.77	67.19	16.53	0.46	130.0	$\pm 9.6 \%$
		Y	4.64	66.77	16.15		130.0	
		Z	4.78	67.01	16.33		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 36 Mbps, 90pc duty cycle)	X	4.81	67.17	16.53	0.46	130.0	$\pm 9.6 \%$
		Y	4.68	66.78	16.16		130.0	
		Z	4.82	66.97	16.32		130.0	
$\begin{aligned} & 10589- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.90	67.87	17.09	0.46	130.0	± 9.6 \%
		Y	4.77	67.49	16.75		130.0	
		Z	4.90	67.66	16.87		130.0	
$\begin{aligned} & 10590- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.73	66.96	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.53	15.94		130.0	
		Z	4.73	66.78	16.14		130.0	

$\begin{aligned} & 10591- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS0,90pc duty cycle)	X	4.98	67.15	16.87	0.46	130.0	± 9.6 \%
		Y	4.87	66.85	16.57		130.0	
		Z	4.98	66.97	16.68		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.15	67.50	16.99	0.46	130.0	± 9.6 \%
		Y	5.04	67.19	16.69		130.0	
		Z	5.16	67.32	16.80		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS2, 90pe duty cycle)	X	5.09	67.46	16.91	0.46	130.0	± 9.6 \%
		Y	4.96	67.12	16.59		130.0	
		Z	5.09	67.29	16.72		130.0	
$\begin{array}{\|l\|} \hline 10594- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.14	67.60	17.04	0.46	130.0	± 9.6 \%
		Y	5.02	67.28	16.73		130.0	
		Z	5.14	67.42	16.84		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.11	67.58	16.95	0.46	130.0	± 9.6 \%
		Y	4.99	67.24	16.64		130.0	
		Z	5.12	67.40	16.76		130.0	
$\begin{aligned} & 10596 \ldots \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.05	67.59	16.96	0.46	130.0	± 9.6 \%
		Y	4.93	67.24	16.64		130.0	
		Z	5.06	67.40	16.76		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.00	67.53	16.87	0.46	130.0	$\pm 9.6 \%$
		Y	4.88	67.16	16.53		130.0	
		Z	5.01	67.35	16.68		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.98	67.77	17.12	0.46	130.0	± 9.6 \%
		Y	4.86	67.40	16.79		130.0	
		Z	4.99	67.58	16.92		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCSO, 90pc duty cycle)	X	5.65	67.74	17.05	0.46	130.0	± 9.6 \%
		Y	5.54	67.42	16.77		130.0	
		Z	5.65	67.58	16.87		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	5.86	68.37	17.35	0.46	130.0	± 9.6 \%
		Y	5.74	68.03	17.05		130.0	
		Z	5.87	68.25	17.19		130.0	
$\begin{aligned} & 10601- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.71	67.99	17.17	0.46	130.0	± 9.6 \%
		Y	5.59	67.67	16.88		130.0	
		Z	5.71	67.84	16.99		130.0	
$\begin{aligned} & 10602- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90 pc duty cycle)	X	5.80	67.99	17.09	0.46	130.0	$\pm 9.6 \%$
		Y	5.68	67.66	16.80		130.0	
$\begin{array}{\|l\|} \hline 10603- \\ \text { AAB } \\ \hline \end{array}$		Z	5.80	67.87	16.93		130.0	
	IEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	X	5.88	68.27	17.35	0.46	130.0	$\pm 9.6 \%$
		Y	5.76	67.95	17.07		130.0	
		Z	5.91	68.22	17.22		130.0	
$\begin{aligned} & 10604- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.65	67.69	17.05	0.46	130.0	$\pm 9.6 \%$
		Y	5.55	67.38	16.78		130.0	
		Z	5.65	67.55	16.88		130.0	
$\begin{array}{\|l\|} \hline 10605- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.77	68.03	17.23	0.46	130.0	± 9.6 \%
		Y	5.67	67.75	16.97		130.0	
		Z	5.76	67.86	17.04		130.0	
$\begin{aligned} & \hline 10606-1 \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.54	67.48	16.82	0.46	130.0	± 9.6 \%
		Y	5.42	67.14	16.52		130.0	
		Z	5.54	67.37	16.67		130.0	

$\begin{aligned} & 10607- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 90 pc duty cycle)	X	4.81	66.46	16.48	0.46	130.0	± 9.6 \%
		Y	4.70	66.13	16.17		130.0	
$\begin{aligned} & 10608- \\ & A A B \\ & \hline \end{aligned}$		Z	4.81	66.25	16.27		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	5.03	66.90	16.65	0.46	130.0	± 9.6 \%
		Y	4.90	66.55	16.34		130.0	
		Z	5.02	66.68	16.44		130.0	
$\begin{aligned} & 10609- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.92	66.79	16.52	0.46	130.0	± 9.6 \%
		Y	4.79	66.41	16.18		130.0	
		Z	4.92	66.57	16.31		130.0	
10610-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.97	66.94	16.67	0.46	130.0	± 9.6 \%
		Y	4.84	66.57	16.34		130.0	
		Z	4.97	66.72	16.46		130.0	
10611- AAB	IEEE 802.11ac WiFi (20 MHz , MCS4, 90 pc duty cycle)	X	4.89	66.78	16.54	0.46	130.0	± 9.6 \%
		Y	4.76	66.39	16.20		130.0	
		Z	4.89	66.57	16.33		130.0	
10612-AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.92	66.95	16.59	0.46	130.0	$\pm 9.6 \%$
		Y	4.78	66.55	16.24		130.0	
		Z	4.91	66.73	16.37		130.0	
$\begin{array}{\|l} \hline 10613- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.93	66.87	16.50	0.46	130.0	± 9.6 \%
		Y	4.79	66.46	16.14		130.0	
		Z	4.93	66.66	16.28		130.0	
10614-$A A B$	IEEE 802.11ac WiFi (20 MHz , MCS7, 90pc duty cycle)	X	4.85	67.03	16.71	0.46	130.0	± 9.6 \%
		Y	4.72	66.63	16.36		130.0	
		Z	4.85	66.82	16.49		130.0	
$\begin{aligned} & \text { 10615- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 90 pc duty cycle)	X	4.90	66.61	16.33	0.46	130.0	± 9.6 \%
		Y	4.76	66.22	15.98		130.0	
		Z	4.90	66.40	16.12		130.0	
$\begin{array}{\|l} \hline 10616- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	5.47	66.98	16.66	0.46	130.0	± 9.6 \%
		Y	5.36	66.66	16.38		130.0	
		Z	5.46	66.82	16.47		130.0	
$\begin{array}{\|l\|} \hline 10617- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.52	67.09	16.68	0.46	130.0	$\pm 9.6 \%$
		Y	5.42	66.80	16.41		130.0	
		Z	5.52	66.93	16.49		130.0	
$\begin{array}{\|l} 10618- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.42	67.18	16.74	0.46	130.0	± 9.6 \%
		Y	5.31	66.84	16.45		130.0	
		2	5.41	67.00	16.54		130.0	
$\begin{aligned} & \hline 10619- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	5.45	67.00	16.59	0.46	130.0	± 9.6 \%
		Y	5.34	66.68	16.31		130.0	
		Z	5.44	66.82	16.40		130.0	
$\begin{aligned} & \hline 10620- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 90 pc duty cycle)	X	5.56	67.11	16.69	0.46	130.0	$\pm 9.6 \%$
		Y	5.44	66.75	16.39		130.0	
		Z	5.56	66.95	16.51		130.0	
$\begin{aligned} & 10621- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.53	67.13	16.81	0.46	130.0	± 9.6 \%
		Y	5.42	66.81	16.54		130.0	
		Z	5.53	66.98	16.63		130.0	
10622-AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.53	67.27	16.87	0.46	130.0	± 9.6 \%
		Y	5.43	66.97	16.61		130.0	
		Z	5.52	67.09	16.67		130.0	

$\begin{aligned} & 10623- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	5.42	66.86	16.56	0.46	130.0	± 9.6 \%
		Y	5.30	66.51	16.26		130.0	
		Z	5.42	66.73	16.39		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.61	67.03	16.70	0.46	130.0	± 9.6 \%
		Y	5.50	66.72	16.43		130.0	
		Z	5.60	66.86	16.51		130.0	
$\begin{aligned} & 10625- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	6.05	68.19	17.33	0.46	130.0	± 9.6 \%
		Y	5.94	67.90	17.07		130.0	
		Z	6.01	67.90	17.08		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90 pc duty cycle)	X	5.72	66.99	16.57	0.46	130.0	$\pm 9.6 \%$
		Y	5.63	66.69	16.31		130.0	
		Z	5.71	66.84	16.40		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.99	67.59	16.82	0.46	130.0	± 9.6 \%
		Y	5.90	67.32	16.58		130.0	
		Z	5.97	67.39	16.62		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS2, 90 pc duty cycle)	X	5.80	67.20	16.57	0.46	130.0	± 9.6 \%
		Y	5.69	66.85	16.29		130.0	
		Z	5.79	67.05	16.40		130.0	
$\begin{aligned} & 10629- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.1 1ac WiFi (80 MHz , MCS3, 90 pc duty cycle)	X	5.88	67.25	16.59	0.46	130.0	$\pm 9.6 \%$
		Y	5.77	66.92	16.31		130.0	
		Z	5.87	67.12 '	16.43		130.0	
$\begin{aligned} & \text { 10630- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	6.51	69.31	17.62	0.46	130.0	± 9.6 \%
		Y	6.37	68.86	17.28		130.0	
		Z	6.46	69.04	17.39		130.0	
$\begin{aligned} & 10631- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	6.31	68.81	17.54	0.46	130.0	± 9.6 \%
		Y	6.17	68.39	17.24		130.0	
		Z	6.30	68.62	17.35		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.95	67.61	16.96	0.46	130.0	± 9.6 \%
		Y	5.85	67.34	16.73		130.0	
		Z	5.94	67.45	16.78		130.0	
$\begin{aligned} & 10633- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 90 pc duty cycle)	X	5.89	67.42	16.71	0.46	130.0	± 9.6 \%
		Y	5.75	67.01	16.39		130.0	
		Z	5.89	67.32	16.56		130.0	
$\begin{array}{\|l\|} \hline 10634- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS8, 90 pc duty cycle)	X	5.85	67.37	16.74	0.46	130.0	± 9.6 \%
		Y	5.73	67.02	16.46		130.0	
		Z	5.86	67.27	16.59		130.0	
$\begin{aligned} & 10635- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	5.75	66.78	16.20	0.46	130.0	± 9.6 \%
		Y	5.62	66.39	15.89		130.0	
		Z	5.75	66.67	16.05		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 90 pc duty cycle)	X	6.13	67.38	16.66	0.46	130.0	$\pm 9.6 \%$
		Y	6.05	67.09	16.42		130.0	
		Z	6.12	67.24	16.50		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS1, 90 pc duty cycle)	X	6.31	67.79	16.85	0.46	130.0	± 9.6 \%
		Y	6.21	67.50	16.60		130.0	
		Z	6.29	67.65	16.68		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.1 fac WiFi (160 MHz , MCS2, 90 pc duty cycle)	X	6.31	67.76	16.81	0.46	130.0	± 9.6 \%
		Y	6.21	67.47	16.56		130.0	
		Z	6.29	67.60	16.64		130.0	

$\begin{array}{\|l} \hline 10639- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160MHz, MCS3, 90 pc duty cycle)	X	6.30	67.76	16.86	0.46	130.0	± 9.6 \%
		Y	6.20	67.43	16.59		130.0	
$\begin{aligned} & 10640- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	6.29	67.63	16.70		130.0	
	IEEE 802.1 1ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	6.34	67.87	16.86	0.46	130.0	± 9.6 \%
		Y	6.22	67.50	16.57		130.0	
$\begin{aligned} & 10641- \\ & \text { AAC } \end{aligned}$		Z	6.33	67.75	16.70		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS5, 90 pc duty cycle)	X	6.33	67.58	16.73	0.46	130.0	± 9.6 \%
		Y	6.23	67.29	16.48		130.0	
10642- AAC		Z	6.31	67.45	16.57		130.0	
	IEEE 802.11ac WiFi (160 MHz , MCS6, 90 pc duty cycle)	X	6.39	67.88	17.04	0.46	130.0	± 9.6 \%
		Y	6.28	67.58	16.79		130.0	
10643- AAC		Z	6.38	67.76	16.88		130.0	
	IEEE 802.11ac WiFi (160 MHz , MCS7, 90pc duty cycle)	X	6.22	67.60	16.81	0.46	130.0	± 9.6 \%
		Y	6.12	67.28	16.54		130.0	
		Z	6.21	67.48	16.65		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.47	68.34	17.21	0.46	130.0	± 9.6 \%
		Y	6.34	67.93	16.89		130.0	
		Z	6.46	68.22	17.05		130.0	
$\begin{array}{\|l} \hline 10645- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 90pe duty cycle)	X	6.86	69.01	17.48	0.46	130.0	± 9.6 \%
		Y	6.84	68.95	17.35		130.0	
		Z	6.77	68.66	17.21		130.0	
$\begin{aligned} & \hline 10646- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,7$)	X	39.97	118.78	39.16	9.30	60.0	± 9.6 \%
		Y	36.64	117.33	38.51		60.0	
		Z	28.19	109.42	36.13		60.0	
10647AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	43.22	121.45	40.07	9.30	60.0	± 9.6 \%
		Y	37.61	118.78	39.06		60.0	
		Z	29.77	111.44	36.87		60.0	
10648AAA	CDMA2000 (1x Advanced)	X	0.92	67.44	13.60	0.00	150.0	± 9.6 \%
		Y	0.67	63.31	10.51		150.0	
		Z	0.80	64.88	12.09		150.0	
$\begin{array}{\|l\|} \hline 10652- \\ \mathrm{AAB} \\ \hline \end{array}$	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	4.65	69.66	17.99	2.23	80.0	± 9.6 \%
		Y	4.35	68.72	17.32		80.0	
		Z	4.56	68.93	17.55		80.0	
$\begin{aligned} & 10653- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	5.05	68.61	17.89	2.23	80.0	$\pm 9.6 \%$
		Y	4.81	67.90	17.37		80.0	
		Z	5.01	68.17	17.57		80.0	
10654-AAB	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	4.97	68.24	17.87	2.23	80.0	± 9.6 \%
		Y	4.75	67.55	17.37		80.0	
		Z	4.94	67.85	17.56		80.0	
$\begin{aligned} & 10655- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44\%)	X	5.03	68.27	17.91	2.23	80.0	± 9.6 \%
		Y	4.81	67.56	17.41		80.0	
		Z	4.99	67.90	17.61		80.0	
10658-AAA	Pulse Waveform (200Hz, 10\%)	X	13.25	86.83	23.62	10.00	50.0	± 9.6 \%
		Y	14.38	88.09	23.44		50.0	
		Z	11.47	83.98	22.82		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \\ & \hline \end{aligned}$	Pulse Waveform (200Hz, 20\%)	X	55.89	109.63	28.77	6.99	60.0	± 9.6 \%
		Y	73.21	111.71	28.47		60.0	
		Z	23.49	96.54	25.38		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	100.00	116.44	28.38	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	113.18	26.58		80.0	
		Z	100.00	116.19	28.39		80.0	
$10661-$ AAA	Pulse Waveform $(200 \mathrm{~Hz}, 60 \%)$	X	100.00	118.35	27.71	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	112.59	24.89		100.0	
		Z	100.00	116.83	27.13		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	100.00	126.67	29.16	0.97	120.0	$\pm 9.6 \%$
		Y	100.00	111.31	22.51		120.0	
		Z	100.00	120.40	26.63		120.0	

[^2]Calibration Laboratory of Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client PCTest
Certificate No: EX3-7357 Apr18

CALIBRATION CERTIFICATE

Object
EX3DV4 - SN:7357

Calibration procedure(s)

Calibration date:

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Apil 18, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
		Check Date (in house)	
Secondary Standards	ID	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585		

Calibrated by: \quad Claudio Leubler,

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzeriand

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORM x, y, z
ConvF
DCP
CF
A, B, C, D
Polarization φ
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORM x, y, z diode compression point crest factor ($1 /$ duty_cycle) of the RF signal modulation dependent linearization parameters φ rotation around probe axis
Polarization $\vartheta \quad \vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $9=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M x, y, z *$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy ($3 D$ deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EX3DV4

SN:7357

Manufactured: February 5, 2015
Calibrated:
April 18, 2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.37	0.48	0.40	$\pm 10.1 \%$
DCP $(\mathrm{mV})^{\mathrm{B}}$	89.1	99.1	96.4	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \boldsymbol{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}^{\mathbf{E}}$ $(\mathbf{k}=\mathbf{2})$
0	CW	X	0.0	0.0	1.0	0.00	151.5	$\pm 2.7 \%$
		\mathbf{Y}	0.0	0.0	1.0		139.1	
		Z	0.0	0.0	1.0		158.4	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s} . \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	37.91	303.3	40.25	6.413	0.832	4.998	0.00	0.454	1.006
Y	48.33	363.1	36.01	10.58	0.113	5.100	0.00	0.458	1.004
Z	39.38	305.2	38.03	5.76	0.610	5.046	0.00	0.461	1.008

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^3]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Unc } \\ (k=2) \end{gathered}$
64	54.2	0.75	14.92	14.92	14.92	0.00	1.00	$\pm 13.3 \%$
150	52.3	0.76	13.49	13.49	13.49	0.00	1.00	$\pm 13.3 \%$
300	45.3	0.87	12.37	12.37	12.37	0.08	1.20	$\pm 13.3 \%$
450	43.5	0.87	11.17	11.17	11.17	0.14	1.20	$\pm 13.3 \%$
750	41.9	0.89	10.50	10.50	10.50	0.45	0.85	$\pm 12.0 \%$
835	41.5	0.90	10.11	10.11	10.11	0.37	0.93	$\pm 12.0 \%$
1750	40.1	1.37	8.80	8.80	8.80	0.38	0.86	$\pm 12.0 \%$
1900	40.0	1.40	8.47	8.47	8.47	0.18	0.83	$\pm 12.0 \%$
2300	39.5	1.67	7.83	7.83	7.83	0.33	0.86	± 12.0 \%
2450	39.2	1.80	7.43	7.43	7.43	0.37	0.89	$\pm 12.0 \%$
2600	39.0	1.96	7.13	7.13	7.13	0.27	0.98	$\pm 12.0 \%$
5250	35.9	4.71	5.62	5.62	5.62	0.35	1.80	± 13.1 \%
5600	35.5	5.07	4.93	4.93	4.93	0.40	1.80	± 13.1 \%
5750	35.4	5.22	5.23	5.23	5.23	0.40	1.80	± 13.1 \%

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (E and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (E and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{G} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Unc } \\ & (k=2) \end{aligned}$
150	61.9	0.80	12.99	12.99	12.99	0.00	1.00	$\pm 13.3 \%$
300	58.2	0.92	12.08	12.08	12.08	0.05	1.20	± 13.3 \%
450	56.7	0.94	11.52	11.52	11.52	0.08	1.20	$\pm 13.3 \%$
750	55.5	0.96	10.37	10.37	10.37	0.47	0.85	$\pm 12.0 \%$
835	55.2	0.97	10.17	10.17	10.17	0.37	0.93	± 12.0 \%
1750	53.4	1.49	8.43	8.43	8.43	0.37	0.86	$\pm 12.0 \%$
1900	53.3	1.52	8.08	8.08	8.08	0.36	0.83	$\pm 12.0 \%$
2300	52.9	1.81	7.74	7.74	7.74	0.38	0.85	± 12.0 \%
2450	52.7	1.95	7.60	7.60	7.60	0.35	0.88	$\pm 12.0 \%$
2600	52.5	2.16	7.44	7.44	7.44	0.33	0.93	± 12.0 \%
5250	48.9	5.36	4.78	4.78	4.78	0.50	1.80	± 13.1 \%
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.80	± 13.1 \%
5750	48.3	5.94	4.21	4.21	4.21	0.50	1.80	$\pm 13.1 \%$

[^4]
Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%(k=2)$

Receiving Pattern $(\phi), \vartheta=0^{\circ}$

Dynamic Range $f\left(S_{\text {A }}^{\text {head }}\right.$) (TEM cell, $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}(\mathbf{k = 2)}$

Conversion Factor Assessment

Error $(\phi, \vartheta), \mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7357

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$)	11.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\underset{d B \cup \mu v}{B}$	C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \text { VR } \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \operatorname{Unc}^{E} \\ & (k=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	151.5	$\pm 2.7 \%$
		Y	0.00	0.00	1.00		139.1	
		Z	0.00	0.00	1.00		158.4	
$\begin{aligned} & 10010- \\ & \text { CAA } \end{aligned}$	SAR Validation (Square, 100 $\mathrm{ms}, 10 \mathrm{~ms}$)	X	1.67	61.93	7.65	10.00	20.0	± 9.6 \%
		Y	2.82	69.17	11.50		20.0	
		Z	1.68	62.20	7.72		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	0.91	67.36	14.64	0.00	150.0	± 9.6 \%
		Y	1.03	67.52	15.32		150.0	
		Z	0.87	67.00	14.33		150.0	
$\begin{aligned} & 10012- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.03	63.20	14.83	0.41	150.0	$\pm 9.6 \%$
		Y	1.15	63.79	15.34		150.0	
		Z	1.01	63.27	14.81		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	4.63	66.39	16.96	1.46	150.0	± 9.6 \%
		Y	4.87	66.69	17.19		150.0	
		Z	4.64	66.53	16.99		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	3.67	70.27	12.79	9.39	50.0	± 9.6 \%
		Y	100.00	116.17	27.83		50.0	
		Z	17.04	87.58	18.77		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	3.48	69.40	12.45	9.57	50.0	± 9.6 \%
		Y	100.00	115.39	27.52		50.0	
		Z	8.91	80.25	16.55		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	1.80	66.18	9.84	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	120.19	28.55		60.0	
		Z	100.00	103.30	20.82		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.42	64.49	22.34	12.57	50.0	± 9.6 \%
		Y	6.04	85.62	35.55		50.0	
		Z	3.44	65.04	22.85		50.0	
$\begin{aligned} & \hline 10026- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	6.25	83.47	29.08	9.56	60.0	± 9.6 \%
		Y	9.24	95.88	35.47		60.0	
		Z	6.56	85.41	30.17		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	0.96	63.24	7.67	4.80	80.0	± 9.6 \%
		Y	100.00	125.59	30.06		80.0	
		Z	100.00	100.14	18.62		80.0	
$\begin{array}{\|l} \hline 10028- \\ \text { DAC } \\ \hline \end{array}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	0.48	60.36	5.50	3.55	100.0	± 9.6 \%
		Y	100.00	132.37	32.13		100.0	
		Z	99.97	95.45	15.98		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	4.19	75.28	24.64	7.80	80.0	± 9.6 \%
		Y	5.35	81.78	28.49		80.0	
		Z	4.26	76.21	25.31		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	1.09	63.09	7.76	5.30	70.0	± 9.6 \%
		Y	100.00	120.14	28.06		70.0	
		Z	4.93	76.05	12.90		70.0	
$\begin{aligned} & 10031- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.27	60.00	3.17	1.88	100.0	± 9.6 \%
		Y	100.00	135.00	31.47		100.0	
		Z	0.26	60.00	3.07		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	27.08	314.20	3.36	1.17	100.0	± 9.6 \%
		Y	100.00	149.06	35.68		100.0	
		Z	1.21	330.96	55.77		100.0	
$\begin{aligned} & 10033- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH1)	X	3.08	73.10	16.00	5.30	70.0	± 9.6 \%
		Y	100.00	136.30	37.75		70.0	
		Z	7.37	86.92	21.69		70.0	
$\begin{array}{\|l\|} \hline 10034- \\ \text { CAA } \\ \hline \end{array}$	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH3)	X	1.25	65.91	11.39	1.88	100.0	$\pm 9.6 \%$
		Y	5.27	87.77	22.72		100.0	
		Z	1.70	70.42	13.93		100.0	
10035-CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH5)	X	0.99	64.64	10.52	1.17	100.0	± 9.6 \%
		Y	2.59	77.96	18.88		100.0	
		Z	1.19	67.26	12.19		100.0	
$\begin{aligned} & 10036- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	3.48	74.91	16.77	5.30	70.0	± 9.6 \%
		Y	100.00	136.90	38.02		70.0	
		Z	11.33	93.27	23.71		70.0	
$\begin{array}{\|l\|} \hline 10037- \\ \text { CAA } \\ \hline \end{array}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.18	65.50	11.18	1.88	100.0	± 9.6 \%
		Y	4.66	86.12	22.16		100.0	
		Z	1.56	69.56	13.55		100.0	
$10038-$CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	1.00	64.92	10.78	1.17	100.0	$\pm 9.6 \%$
		Y	2.61	78.41	19.18		100.0	
		Z	1.21	67.70	12.52		100.0	
$\begin{aligned} & 10039- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	0.95	64.99	10.40	0.00	150.0	± 9.6 \%
		Y	1.84	72.12	15.71		150.0	
		Z	1.02	65.84	10.98		150.0	
$\begin{aligned} & 10042- \\ & \text { CAB } \\ & \hline \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Halfrate)	X	1.77	64.37	9.09	7.78	50.0	± 9.6 \%
		Y	100.00	113.16	25.71		50.0	
		Z	2.56	68.32	10.93		50.0	
10044-CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.31	133.81	11.51	0.00	150.0	± 9.6 \%
		Y	0.00	104.03	5.27		150.0	
		Z	0.33	142.49	0.98		150.0	
$\begin{aligned} & \text { 10048- } \\ & \text { CAA } \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	4.01	66.51	12.74	13.80	25.0	$\pm 9.6 \%$
		Y	100.00	110.91	26.95		25.0	
		Z	5.44	70.40	14.40		25.0	
$\begin{array}{\|l} \hline 10049- \\ \text { CAA } \\ \hline \end{array}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	3.70	68.56	12.33	10.79	40.0	± 9.6 \%
		Y	100.00	112.50	26.54		40.0	
		Z	5.22	72.87	14.17		40.0	
$\begin{array}{\|l\|} \hline 10056- \\ \text { CAA } \\ \hline \end{array}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	6.09	76.95	17.81	9.03	50.0	± 9.6 \%
		Y	100.00	128.62	35.43		50.0	
		Z	13.22	89.10	22.41		50.0	
$\begin{array}{\|l\|} \hline 10058- \\ \text { DAC } \\ \hline \end{array}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	3.39	71.63	22.33	6.55	100.0	± 9.6 \%
		Y	4.14	76.10	25.11		100.0	
		Z	3.42	72.27	22.83		100.0	
$\begin{aligned} & 10059- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.03	63.98	15.22	0.61	110.0	$\pm 9.6 \%$
		Y	1.18	64.90	16.05		110.0	
		Z	1.02	64.18	15.34		110.0	
$\begin{aligned} & 10060- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	5.25	93.28	23.11	1.30	110.0	± 9.6 \%
		Y	100.00	145.92	38.93		110.0	
		Z	39.44	123.36	31.22		110.0	

$\begin{aligned} & 10061- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.80	74.31	19.24	2.04	110.0	$\pm 9.6 \%$
		Y	3.02	83.93	24.56		110.0	
		Z	2.14	78.36	21.37		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6	X	4.44	66.41	16.45	0.49	100.0	$\pm 9.6 \%$
		Y	4.68	66.67	16.57		100.0	
		Z	4.45	66.51	16.42		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.45	66.48	16.52	0.72	100.0	$\pm 9.6 \%$
		Y	4.69	66.78	16.69		100.0	
		Z	4.46	66.59	16.51		100.0	
$\begin{aligned} & 10064- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.70	66.70	16.72	0.86	100.0	$\pm 9.6 \%$
		Y	4.99	67.05	16.93		100.0	
		Z	4.72	66.83	16.73		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.56	66.53	16.77	1.21	100.0	$\pm 9.6 \%$
		Y	4.85	66.96	17.05		100.0	
		Z	4.58	66.69	16.81		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 24 Mbps)	X	4.57	66.51	16.90	1.46	100.0	$\pm 9.6 \%$
		Y	4.87	66.98	17.22		100.0	
		Z	4.60	66.69	16.96		100.0	
$\begin{aligned} & 10067- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	4.86	66.77	17.36	2.04	100.0	± 9.6 \%
		Y	5.15	67.13	17.68		100.0	
		Z	4.89	66.94	17.44		100.0	
$\begin{aligned} & 10068- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 48 Mbps)	X	4.88	66.65	17.49	2.55	100.0	± 9.6 \%
		Y	5.20	67.19	17.93		100.0	
		Z	4.91	66.87	17.60		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFI 5 GHz (OFDM, 54 Mbps)	X	4.95	66.72	17.70	2.67	100.0	$\pm 9.6 \%$
		Y	5.28	67.17	18.11		100.0	
		Z	4.99	66.91	17.80		100.0	
$\begin{aligned} & 10071- \\ & C A B \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.71	66.43	17.22	1.99	100.0	± 9.6 \%
		Y	4.96	66.77	17.51		100.0	
		Z	4.73	66.59	17.28		100.0	
$\begin{aligned} & 10072- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.67	66.65	17.37	2.30	100.0	± 9.6 \%
		Y	4.94	67.10	17.75		100.0	
		Z	4.69	66.85	17.47		100.0	
$\begin{aligned} & 10073- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.72	66.79	17.66	2.83	100.0	± 9.6 \%
		Y	4.99	67.24	18.08		100.0	
		Z	4.75	67.01	17.79		100.0	
$\begin{aligned} & 10074- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.72	66.70	17.78	3.30	100.0	± 9.6 \%
		Y	4.95	67.09	18.23		100.0	
		Z	4.74	66.91	17.92		100.0	
$\begin{aligned} & 10075- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.74	66.71	18.01	3.82	90.0	± 9.6 \%
		Y	4.98	67.20	18,56		90.0	
		Z	4.76	66.94	18.18		90.0	
$\begin{aligned} & 10076- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.77	66.58	18.17	4.15	90.0	± 9.6 \%
		Y	4.98	66.93	18.66		90.0	
		Z	4.79	66.78	18.33		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.80	66.66	18.27	4.30	90.0	± 9.6 \%
		Y	5.00	66.98	18.75		90.0	
		Z	4.82	66.86	18.43		90.0	

$\begin{aligned} & 10081- \\ & \text { CAB } \\ & \hline \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	0.45	61.00	7.50	0.00	150.0	± 9.6 \%
		Y	0.83	65.94	12.49		150.0	
		Z	0.46	61.34	7.83		150.0	
$\begin{aligned} & 10082- \\ & \mathrm{CAB} \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, PI/4DQPSK, Fullrate)	X	0.68	60.00	3.10	4.77	80.0	$\pm 9.6 \%$
		Y	0.78	61.11	4.54		80.0	
		Z	0.72	60.00	2.85		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	1.84	66.30	9.91	6.56	60.0	± 9.6 \%
		Y	100.00	120,24	28.59		60.0	
		Z	100.00	103.44	20.90		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	1.71	67.90	15.28	0.00	150.0	$\pm 9.6 \%$
		Y	1.82	67.70	15.69		150.0	
		Z	1.68	67.71	15.15		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.67	67.85	15.26	0.00	150.0	$\pm 9.6 \%$
		Y	1.79	67.66	15.66		150.0	
		Z	1.64	67.65	15.11		150.0	
$\begin{aligned} & \text { 10099- } \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6.29	83.56	29.10	9.56	60.0	± 9.6 \%
		Y	9.34	96.14	35.56		60.0	
		Z	6.61	85.53	30.21		60.0	
$\begin{aligned} & 10100- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	2.90	69.76	16.53	0.00	150.0	$\pm 9.6 \%$
		Y	3.14	70.37	16.71		150.0	
		Z	2.89	69.82	16.39		150.0	
$\begin{aligned} & 10101- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 20$ $\mathrm{MHz}, 16-\mathrm{QAM})$	X	3.04	67.08	15.83	0.00	150.0	$\pm 9.6 \%$
		Y	3.24	67.51	15.94		150.0	
		Z	3.03	67.13	15.70		150.0	
$\begin{aligned} & 10102- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	3.15	67.10	15.95	0.00	150.0	$\pm 9.6 \%$
		Y	3.34	67.47	16.02		150.0	
		Z	3.13	67.15	15.83		150.0	
$\begin{aligned} & 10103- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, \mathrm{QPSK}$)	X	4.81	72.04	18.88	3.98	65.0	$\pm 9.6 \%$
		Y	6.41	77.25	21.56		65.0	
		Z	5.14	73.67	19.73		65.0	
$\begin{aligned} & 10104- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 20 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	5.09	70.84	19.13	3.98	65.0	$\pm 9.6 \%$
		Y	5.94	73.69	20.83		65.0	
		Z	5.16	71.44	19.51		65.0	
$\begin{aligned} & 10105- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20$ $\mathrm{MHz}, 64-\mathrm{QAM})$	X	4.78	69.37	18.75	3.98	65.0	$\pm 9.6 \%$
		Y	5.83	73.15	20.89		65.0	
		Z	4.90	70.20	19.25		65.0	
$\begin{aligned} & 10108- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.51	69.24	16.41	0.00	150.0	$\pm 9.6 \%$
		Y	2.74	69.60	16.54		150.0	
		Z	2.49	69.21	16.24		150.0	
$\begin{aligned} & 10109- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 10$ $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.68	67.06	15.67	0.00	150.0	$\pm 9.6 \%$
		Y	2.89	67.36	15.84		150.0	
		Z	2.67	67.07	15.55		150.0	
$\begin{aligned} & 10110- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	1.99	68.49	15.84	0.00	150.0	± 9.6 \%
		Y	2.22	68.71	16.15		150.0	
		Z	1.98	68.38	15.68		150.0	
$\begin{aligned} & 10111- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM)	X	2.41	68.19	15.80	0.00	150.0	$\pm 9.6 \%$
		Y	2.61	68.17	16.11		150.0	
		Z	2.40	68.17	15.74		150.0	

April 18, 2018

10112CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	2.81	67.12	15.76	0.00	150.0	± 9.6 \%
		Y	3.02	67.35	15.89		150.0	
		Z	2.80	67.12	15.64		150.0	
$\begin{aligned} & 10113- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.56	68.40	15.97	0.00	150.0	$\pm 9.6 \%$
		Y	2.76	68.30	16.24		150.0	
		Z	2.55	68.39	15.92		150.0	
10114-CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.95	66.96	16.54	0.00	150.0	$\pm 9.6 \%$
		Y	5.12	67.17	16.44		150.0	
		Z	4.92	66.97	16.39		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.23	67.14	16.63	0.00	150.0	± 9.6 \%
		Y	5.41	67.31	16.52		150.0	
		Z	5.18	67.06	16.45		150.0	
$\begin{aligned} & \text { 10116- } \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	5.04	67.18	16.57	0.00	150.0	± 9.6 \%
		Y	5.22	67.37	16.47		150.0	
		Z	5.01	67.18	16.42		150.0	
10117CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps , BPSK)	X	4.94	66.92	16.53	0.00	150.0	± 9.6 \%
		Y	5.09	67.03	16.39		150.0	
		Z	4.91	66.91	16.38		150.0	
10118CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.34	67.47	16.81	0.00	150.0	$\pm 9.6 \%$
		Y	5.50	67.52	16.63		150.0	
		Z	5.27	67.32	16.58		150.0	
10119-CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.06	67.24	16.61	0.00	150.0	± 9.6 \%
		Y	5.20	67.31	16.45		150.0	
		Z	5.01	67.18	16.43		150.0	
$\begin{aligned} & 10140- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.17	67.11	15.85	0.00	150.0	± 9.6 \%
		Y	3.38	67.48	15.94		150.0	
		Z	3.16	67.15	15.73		150.0	
$\begin{aligned} & \hline 10141- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	3.30	67.28	16.06	0.00	150.0	± 9.6 \%
		Y	3.50	67.57	16.11		150.0	
		Z	3.29	67.32	15.94		150.0	
$\begin{aligned} & 10142- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	1.73	68.17	14.94	0.00	150.0	± 9.6 \%
		Y	2.00	68.71	15.82		150.0	
		Z	1.72	68.11	14.89		150.0	
$\begin{aligned} & \hline 10143- \\ & \text { CAD } \\ & \hline \end{aligned}$		X	2.15	68.15	14.63	0.00	150.0	± 9.6 \%
		Y	2.47	68.91	15.82		150.0	
		Z	2.17	68.32	14.76		150.0	
$\begin{array}{\|l\|} \hline 10144- \\ \text { CAD } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	1.86	65.26	12.63	0.00	150.0	± 9.6 \%
		Y	2.24	66.62	14.22		150.0	
		Z	1.88	65.43	12.77		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	0.67	60.16	6.91	0.00	150.0	± 9.6 \%
		Y	1.22	65.11	11.80		150.0	
		Z	0.71	60.61	7.39		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHZ}, 16-\mathrm{QAM}$)	X	0.95	60.06	6.44	0.00	150.0	± 9.6 \%
		Y	1.65	64.56	10.76		150.0	
		Z	1.07	61.07	7.44		150.0	
10147-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 64-\mathrm{QAM} \text {) } \end{aligned}$	X	0.99	60.33	6.68	0.00	150.0	± 9.6 \%
		Y	1.85	65.94	11.59		150.0	
		Z	1.13	61.55	7.80		150.0	

$\begin{aligned} & \hline 10149- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	2.69	67.13	15.72	0.00	150.0	± 9.6 \%
		Y	2.90	67.42	15.88		150.0	
		Z	2.68	67.14	15.60		150.0	
$\begin{aligned} & 10150- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	2.82	67.19	15.80	0.00	150.0	± 9.6 \%
		Y	3.03	67.40	15.93		150.0	
		Z	2.81	67.19	15.69		150.0	
$\begin{aligned} & 10151 \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	5.01	74.56	19.93	3.98	65.0	± 9.6 \%
		Y	6.65	79.71	22.70		65.0	
		Z	5.36	76.27	20.86		65.0	
$\begin{aligned} & 10152- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	4.60	70.61	18.55	3.98	65.0	$\pm 9.6 \%$
		Y	5.50	73.80	20.64		65.0	
		Z	4.69	71.33	19.06		65.0	
$\begin{aligned} & 10153- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	4.95	71.72	19.46	3.98	65.0	± 9.6 \%
		Y	5.84	74.66	21.37		65.0	
		Z	5.05	72.49	19.99		65.0	
$10154-$CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	2.04	68.92	16.11	0.00	150.0	± 9.6 \%
		Y	2.27	69.12	16.41		150.0	
		Z	2.03	68.83	15.96		150.0	
10155- CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.41	68.23	15.84	0.00	150.0	± 9.6 \%
		Y	2.61	68.18	16.13		150.0	
		Z	2.40	68.21	15.77		150.0	
10156-CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	1.51	67.60	14.13	0.00	150.0	± 9.6 \%
		Y	1.84	68.81	15.61		150.0	
		Z	1.52	67.67	14.19		150.0	
10157CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	1.63	65.15	12.07	0.00	150.0	± 9.6 \%
		Y	2.08	67.20	14.25		150.0	
		Z	1.66	65.43	12.31		150.0	
$\begin{aligned} & 10158-1 \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM)	X	2.57	68.50	16.04	0.00	150.0	± 9.6 \%
		Y	2.77	68.36	16.29		150.0	
		Z	2.56	68.48	15.98		150.0	
$\begin{aligned} & 10159- \\ & \mathrm{CAE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	1.70	65.38	12.24	0.00	150.0	± 9.6 \%
		Y	2.19	67.65	14.54		150.0	
		Z	1.74	65.76	12.53		150.0	
$\begin{aligned} & 10160- \\ & \text { CAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	X	2.62	68.99	16.41	0.00	150.0	± 9.6 \%
		Y	2.74	68.65	16.32		150.0	
		Z	2.56	68.70	16.16		150.0	
$\begin{aligned} & 10161- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	2.71	67.15	15.66	0.00	150.0	± 9.6 \%
		Y	2.92	67.34	15.86		150.0	
		Z	2.70	67.15	15.57		150.0	
$\begin{aligned} & 10162- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 64-QAM)	X	2.82	67.38	15.82	0.00	150.0	$\pm 9.6 \%$
		Y	3.03	67.49	15.97		150.0	
		Z	2.81	67.37	15.72		150.0	
$\begin{aligned} & 10166- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	3.14	68.82	18.96	3.01	150.0	± 9.6 \%
		Y	3.40	68.62	18.58		150.0	
		Z	3.24	69.38	19.21		150.0	
$\begin{aligned} & 10167- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM)	X	3.68	71.26	19.14	3.01	150.0	± 9.6 \%
		Y	4.01	70.93	18.84		150.0	
		Z	3.86	71.98	19.46		150.0	

April 18, 2018

$\begin{aligned} & 10168- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM)	X	4.20	74.21	20.88	3.01	150.0	± 9.6 \%
		Y	4.39	72.91	20.06		150.0	
		Z	4.45	75.16	21.28		150.0	
$\begin{aligned} & 10169- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	2.49	66.95	18.11	3.01	150.0	$\pm 9.6 \%$
		Y	2.73	67.59	18.14		150.0	
		Z	2.58	67.69	18.47		150.0	
$\begin{aligned} & \text { 10170- } \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.17	72.06	20.27	3.01	150.0	± 9.6 \%
		Y	3.45	72,20	20.01		150.0	
		Z	3.40	73.44	20.89		150.0	
$\begin{aligned} & 10171- \\ & \text { AAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.61	67.98	17.29	3.01	150.0	± 9.6 \%
		Y	2.93	68.85	17.54		150.0	
		Z	2.74	68.83	17.69		150.0	
$\begin{aligned} & 10172- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.59	76.79	22.90	6.02	65.0	± 9.6 \%
		Y	7.70	92.12	29.64		65.0	
		Z	4.50	82.04	25.61		65.0	
$\begin{aligned} & 10173- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.40	81.69	22.80	6.02	65.0	± 9.6 \%
		Y	14.31	100.07	30.15		65.0	
		Z	8.60	91.21	26.84		65.0	
$\begin{aligned} & 10174- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.41	73.68	19.23	6.02	65.0	± 9.6 \%
		Y	12.55	96.17	28.30		65.0	
		Z	5.50	82.57	23.30		65.0	
10175-CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	2.47	66.66	17.85	3.01	150.0	$\pm 9.6 \%$
		Y	2.70	67.34	17.92		150.0	
		Z	2.55	67.36	18.19		150.0	
10176-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.18	72.09	20.28	3.01	150.0	$\pm 9.6 \%$
		Y	3.46	72.22	20.02		150.0	
		Z	3.41	73.46	20.90		150.0	
$\begin{aligned} & 10177- \\ & \mathrm{CAG} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.48	66.79	17.93	3.01	150.0	$\pm 9.6 \%$
		Y	2.72	67.46	18.00		150.0	
		Z	2.57	67.51	18.28		150.0	
$\begin{aligned} & 10178- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16QAM)	X	3.15	71.92	20.18	3.01	150.0	$\pm 9.6 \%$
		Y	3.43	72.05	19.92		150.0	
		Z	3.38	73.25	20.78		150.0	
10179-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.85	69.85	18.61	3.01	150.0	$\pm 9.6 \%$
		Y	3.17	70.44	18.65		150.0	
		Z	3.03	70.94	19.12		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	2.61	67.94	17.25	3.01	150.0	$\pm 9.6 \%$
		Y	2.92	68.79	17.50		150.0	
		Z	2.74	68.78	17.65		150.0	
$\begin{aligned} & 10181- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	2.48	66.77	17.93	3.01	150.0	± 9.6 \%
		Y	2.71	67.45	18.00		150.0	
		Z	2.56	67.49	18.28		150.0	
$\begin{aligned} & 10182- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , 16-QAM)	X	3.15	71.89	20.17	3.01	150.0	± 9.6 \%
		Y	3.42	72.03	19.91		150.0	
		Z	3.37	73.22	20.77		150.0	
$\begin{aligned} & 10183- \\ & \text { AAC } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.60	67.92	17.24	3.01	150.0	$\pm 9.6 \%$
		Y	2.92	68.77	17.49		150.0	
		Z	2.73	68.75	17.64		150.0	

$\begin{aligned} & 10184- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.49	66.81	17.95	3.01	150.0	± 9.6 \%
		Y	2.72	67.49	18.02		150.0	
		Z	2.57	67.53	18.30		150.0	
$\begin{aligned} & 10185- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 16QAM)	X	3.16	71.97	20.21	3.01	150.0	$\pm 9.6 \%$
		Y	3.44	72.09	19.94		150.0	
		Z	3.39	73.31	20.81		150.0	
10186-AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	2.62	67.98	17.28	3.01	150.0	$\pm 9.6 \%$
		Y	2.93	68.83	17.52		150.0	
		Z	2.74	68.82	17.67		150.0	
10187-CAE	LTE-FDD (SC-FDMA, 1RB, 1.4 MHz, QPSK)	X	2.50	66.88	18.03	3.01	150.0	± 9.6 \%
		Y	2.73	67.53	18.08		150.0	
		Z	2.58	67.61	18.38		150.0	
$\begin{aligned} & 10188- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1RB, 1.4 MHz, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.26	72.60	20.60	3.01	150.0	± 9.6 \%
		Y	3.53	72.62	20.27		150.0	
		Z	3.51	74.04	21.24		150.0	
$10189-$$\mathrm{AAE}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, 1 RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.67	68.35	17.55	3.01	150.0	± 9.6 \%
		Y	2.99	69.18	17.77		150.0	
		Z	2.80	69.24	17.97		150.0	
10193-CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.32	66.50	16.16	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.59	16.14		150.0	
		Z	4.31	66.50	16.05		150.0	
$\begin{array}{\|l\|} \hline 10194- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11 n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.47	66.75	16.31	0.00	150.0	$\pm 9.6 \%$
		Y	4.69	66.90	16.27		150.0	
		Z	4.46	66.77	16.19		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.51	66.78	16.33	0.00	150.0	± 9.6 \%
		Y	4.73	66.93	16.28		150.0	
		Z	4.50	66.80	16.21		150.0	
10196"CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.31	66.51	16.16	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.65	16.16		150.0	
		Z	4.30	66.52	16.05		150.0	
$\begin{aligned} & 10197- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps, 16QAM)	X	4.48	66.77	16.32	0.00	150.0	$\pm 9.6 \%$
		Y	4.70	66.92	16.28		150.0	
		Z	4.47	66.78	16.20		150.0	
$\begin{aligned} & 10198- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps , 64QAM)	X	4.50	66.79	16.33	0.00	150.0	$\pm 9.6 \%$
		Y	4.73	66.95	16.30		150.0	
		Z	4.49	66.81	16.22		150.0	
$\begin{aligned} & 10219- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.26	66.54	16.13	0.00	150.0	± 9.6 \%
		Y	4.47	66.66	16.12		150.0	
		Z	4.25	66.55	16.01		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.47	66.73	16.30	0.00	150.0	± 9.6 \%
		Y	4.70	66.89	16.27		150.0	
		Z	4.46	66.74	16.19		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.51	66.73	16.32	0.00	150.0	± 9.6 \%
		Y	4.74	66.87	16.28		150.0	
		Z	4.51	66.74	16.20		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	4.91	66.89	16.51	0.00	150.0	± 9.6 \%
		Y	5.06	67.05	16.39		150.0	
		Z	4.88	66.88	16.36		150.0	

April 18, 2018

$\begin{aligned} & 10223- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.21	67.18	16.67	0.00	150.0	± 9.6 \%
		Y	5.37	67.24	16.51		150.0	
		Z	5.17	67.14	16.51		150.0	
$\begin{array}{\|l\|} \hline 10224- \\ \text { CAC } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	4.95	66.99	16.48	0.00	150.0	± 9.6 \%
		Y	5.11	67.16	16.37		150.0	
		Z	4.91	66.98	16.33		150.0	
$\begin{array}{\|l} \hline 10225- \\ \mathrm{CAB} \\ \hline \end{array}$	UMTS-FDD (HSPA+)	X	2.57	65.87	14.82	0.00	150.0	± 9.6 \%
		Y	2.79	66.10	15.32		150.0	
		Z	2.57	65.89	14.81		150.0	
$\begin{aligned} & \text { 10226- } \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.70	82.73	23.27	6.02	65.0	± 9.6 \%
		Y	15.45	101.64	30.73		65.0	
		Z	9.36	92.89	27.50		65.0	
$\begin{array}{\|l\|} \hline 10227- \\ \text { CAA } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & 64-\mathrm{QAM} \text {) } \end{aligned}$	X	5.51	81.11	22.01	6.02	65.0	± 9.6 \%
		Y	15.16	99.52	29.37		65.0	
		Z	9.33	91.39	26.29		65.0	
$\begin{array}{\|l} \hline 10228- \\ \text { CAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	4.37	80.87	24.58	6.02	65.0	$\pm 9.6 \%$
		Y	8.06	93.39	30.16		65.0	
		Z	5.51	86.54	27.40		65.0	
$\begin{aligned} & 10229- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16 QAM)	X	5.43	81.78	22.83	6.02	65.0	± 9.6 \%
		Y	14.43	100.19	30.19		65.0	
		Z	8.67	91.34	26.89		65.0	
$\begin{array}{\|l} \hline 10230- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	5.22	80.18	21.60	6.02	65.0	$\pm 9.6 \%$
		Y	14.07	98.09	28.85		65.0	
		Z	8.56	89.82	25.70		65.0	
$\begin{aligned} & 10231- \\ & \text { CAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	4.21	80.08	24.19	6.02	65.0	± 9.6 \%
		Y	7.72	92.42	29.75		65.0	
		Z	5.25	85.50	26.93		65.0	
$\begin{array}{\|l} \hline 10232- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	5.42	81.76	22.83	6.02	65.0	± 9.6 \%
		Y	14.40	100.18	30.19		65.0	
		Z	8.65	91.31	26.89		65.0	
$\begin{aligned} & 10233- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64QAM)	X	5.21	80.16	21.59	6.02	65.0	± 9.6 \%
		Y	14.03	98.05	28.84		65.0	
		Z	8.53	89.78	25.69		65.0	
$\begin{aligned} & 10234- \\ & \text { CAD } \\ & \hline \end{aligned}$	```lome-TDD (SC-FDMA, 1 RB, 5 MHz,```	X	4.09	79.41	23.80	6.02	65.0	± 9.6 \%
		Y	7.46	91.57	29.34		65.0	
		Z	5.06	84.64	26.49		65.0	
$\begin{aligned} & 10235- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.43	81.79	22.84	6.02	65.0	± 9.6 \%
		Y	14.42	100.22	30.20		65.0	
		Z	8.66	91.36	26.90		65.0	
$\begin{aligned} & 10236- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	5.25	80.28	21.63	6.02	65.0	± 9.6 \%
		Y	14.26	98.30	28.91		65.0	
		Z	8.64	89.96	25.74		65.0	
$\begin{aligned} & 10237- \\ & \text { CAD } \\ & \hline \end{aligned}$	```L.TE-TDD (SC-FDMA, 1RB, 10 MHz, QPSK)```	X	4.21	80.11	24.20	6.02	65.0	± 9.6 \%
		Y	7.73	92.49	29.78		65.0	
		Z	5.25	85.54	26.95		65.0	
$\begin{aligned} & 10238- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.41	81.74	22.82	6.02	65.0	± 9.6 \%
		Y	14.37	100.15	30.18		65.0	
		Z	8.63	91.28	26.88		65.0	

$\begin{aligned} & 10239- \\ & \text { CAD } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.19	80.13	21.58	6.02	65.0	± 9.6 \%
		Y	13.97	98.01	28.83		65.0	
		Z	8.50	89.73	25.67		65.0	
$\begin{aligned} & 10240- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	4.20	80.08	24.19	6.02	65.0	± 9.6 \%
		Y	7.71	92.44	29.76		65.0	
		Z	5.24	85.50	26.94		65.0	
10241 CAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	6.28	77.75	23.74	6.98	65.0	$\pm 9.6 \%$
		Y	7.17	79.66	25.20		65.0	
		Z	6.62	79.11	24.64		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 1.4 MHz, 64-QAM)	X	5.61	75.51	22.71	6.98	65.0	± 9.6 \%
		Y	7.01	79.22	24.95		65.0	
		Z	6.04	77.21	23.74		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	X	4.77	72.80	22.43	6.98	65.0	± 9.6 \%
		Y	5.72	75.84	24.40		65.0	
		Z	4.99	73.88	23.19		65.0	
$\begin{aligned} & 10244- \\ & \mathrm{CAB} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.08	66.71	12.88	3.98	65.0	± 9.6 \%
		Y	5.65	76.51	19.16		65.0	
		Z	3.79	70.31	15.20		65.0	
$\begin{array}{\|l\|} \hline 10245- \\ \text { CAB } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.05	66.35	12.65	3.98	65.0	± 9.6 \%
		Y	5.47	75.72	18.77		65.0	
		Z	3.68	69.62	14.83		65.0	
$\begin{aligned} & 10246- \\ & \text { CAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	2.73	68.50	14.10	3.98	65.0	± 9.6 \%
		Y	6.90	84.10	22.59		65.0	
		Z	3.38	72.30	16.31		65.0	
$\begin{aligned} & 10247- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	3.32	68.16	14.83	3.98	65.0	± 9.6 \%
		Y	5.00	75.29	19.75		65.0	
		Z	3.63	70.11	16.18		65.0	
$\begin{aligned} & 10248- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	3.35	67.83	14.68	3.98	65.0	± 9.6 \%
		Y	4.95	74.49	19.36		65.0	
		Z	3.62	69.55	15.90		65.0	
$\begin{aligned} & 10249- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	3.90	73.79	17.79	3.98	65.0	± 9.6 \%
		Y	7.87	86.63	24.46		65.0	
		Z	4.87	78.17	20.05		65.0	
$\begin{aligned} & 10250- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHZ}$,,$~$ 16-QAM)	X	4.46	72.43	19.10	3.98	65.0	± 9.6 \%
		Y	5.61	76.63	21.92		65.0	
		Z	4.70	73.89	20.05		65.0	
$\begin{array}{\|l} \hline 10251- \\ \text { CAD } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	4.27	70.46	17.79	3.98	65.0	$\pm 9.6 \%$
		Y	5.36	74.41	20.57		65.0	
		Z	4.43	71.53	18.56		65.0	
$\begin{aligned} & 10252- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	4.80	76.28	20.36	3.98	65.0	± 9.6 \%
		Y	7.12	83.67	24.31		65.0	
		Z	5.40	79.04	21.81		65.0	
$\begin{array}{\|l\|} \hline 10253- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM)	X	4.54	70.25	18.29	3.98	65.0	± 9.6 \%
		Y	5.37	73.18	20.35		65.0	
		Z	4.62	70.94	18.80		65.0	
$\begin{aligned} & \text { 10254- } \\ & \hline \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	4.85	71.22	19.07	3.98	65.0	± 9.6 \%
		Y	5.69	74.00	21.02		65.0	
		Z	4.94	71.96	19.60		65.0	

$\begin{aligned} & 10255- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	4.83	74.07	19.88	3.98	65.0	± 9.6 \%
		Y	6.20	78.60	22.49		65.0	
		Z	5.10	75.57	20.75		65.0	
$\begin{aligned} & 10256- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.29	63.25	9.85	3.98	65.0	± 9.6 \%
		Y	4.33	72.34	16.30		65.0	
		Z	2.61	65.28	11.48		65.0	
10257-CAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	2.28	62.96	9.60	3.98	65.0	$\pm 9.6 \%$
		Y	4.16	71.35	15.76		65.0	
		Z	2.56	64.75	11.10		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	1.96	64.07	10.75	3.98	65.0	± 9.6 \%
		Y	4.97	78.32	19.50		65.0	
		Z	2.22	66.21	12.33		65.0	
$\begin{array}{\|l} \hline 10259- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM)	X	3.77	69.86	16.44	3.98	65.0	± 9.6 \%
		Y	5.26	75.82	20.54		65.0	
		Z	4.07	71.70	17.67		65.0	
$\begin{array}{\|l} \hline 10260- \\ \mathrm{CAB} \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	3.81	69.66	16.35	3.98	65.0	± 9.6 \%
		Y	5.26	75.42	20.36		65.0	
		Z	4.10	71.41	17.53		65.0	
10261-CAB	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	4.13	74.31	18.63	3.98	65.0	± 9.6 \%
		Y	6.91	83.89	23.89		65.0	
		Z	4.85	77.73	20.46		65.0	
$\begin{array}{\|l} \hline 10262- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 16-QAM)	X	4.45	72.36	19.04	3.98	65.0	± 9.6 \%
		Y	5.60	76.58	21.88		65.0	
		Z	4.68	73.81	19.99		65.0	
$\begin{array}{\|l} \hline 10263- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	4.26	70.44	17.79	3.98	65.0	± 9.6 \%
		Y	5.34	74.38	20.56		65.0	
		Z	4.42	71.51	18.55		65.0	
$\begin{array}{\|l\|} \hline 10264- \\ \text { CAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	4.75	76.08	20.25	3.98	65.0	$\pm 9.6 \%$
		Y	7.04	83.44	24.20		65.0	
		Z	5.33	78.79	21.68		65.0	
$\begin{aligned} & 10265- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	4.60	70.61	18.56	3.98	65.0	± 9.6 \%
		Y	5.50	73.80	20.64		65.0	
		Z	4.69	71.34	19.07		65.0	
$\begin{aligned} & \text { 10266- } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-Q A M) \end{aligned}$	X	4.95	71.71	19.45	3.98	65.0	± 9.6 \%
		Y	5.83	74.64	21.36		65.0	
		Z	5.05	72.48	19.97		65.0	
$\begin{aligned} & 10267- \\ & \text { CAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \text { MHz, QPSK) } \end{aligned}$	X	5.01	74.52	19.91	3.98	65.0	± 9.6 \%
		Y	6.63	79.66	22.68		65.0	
		Z	5.35	76.22	20.84		65.0	
$\begin{aligned} & 10268- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16$-QAM)	X	5.27	70.89	19.25	3.98	65.0	± 9.6 \%
		Y	6.07	73.43	20.81		65.0	
		Z	5.33	71.43	19.60		65.0	
$\begin{aligned} & \hline 10269- \\ & \text { CAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 64$-QAM)	X	5.29	70.58	19.15	3.98	65.0	± 9.6 \%
		Y	6.04	72.94	20.64		65.0	
		Z	5.34	71.06	19.47		65.0	
$\begin{aligned} & 10270- \\ & \text { CAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK	X	5.17	72.58	19.33	3.98	65.0	$\pm 9.6 \%$
		Y	6.28	76.09	21.29		65.0	
		Z	5.35	73.62	19.93		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.41	66.43	14.82	0.00	150.0	$\pm 9.6 \%$
		Y	2.58	66.48	15.24		150.0	
		Z	2.39	66.38	14.76		150.0	
$\begin{aligned} & 10275- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.45	67.76	15.04	0.00	150.0	± 9.6 \%
		Y	1.61	67.98	15.58		150.0	
		Z	1.42	67.56	14.85		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	1.74	59.75	5.31	9.03	50.0	± 9.6 \%
		Y	1.81	61.19	6.71		50.0	
		Z	1.73	59.88	5.41		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	2.71	64.14	10.09	9.03	50.0	± 9.6 \%
		Y	10.58	86.01	20.92		50.0	
		Z	2.95	65.66	11.11		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	2.77	64.34	10.25	9.03	50.0	± 9.6 \%
		Y	10.86	86.33	21.10		50.0	
		Z	3.03	65.92	11.30		50.0	
$\begin{aligned} & 10290- \\ & \mathrm{AAB} \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	0.78	62.91	9.04	0.00	150.0	± 9.6 \%
		Y	1.44	68.67	13.91		150.0	
		Z	0.82	63.50	9.52		150.0	
$\begin{aligned} & 10291- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	0.44	60.90	7.41	0.00	150.0	$\pm 9.6 \%$
		Y	0.81	65.70	12.35		150.0	
		Z	0.46	61.22	7.73		150.0	
$\begin{aligned} & 10292- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	0.52	62.90	8.81	0.00	150.0	$\pm 9.6 \%$
		Y	1.08	70.34	14.96		150.0	
		Z	0.54	63.47	9.26		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	0.85	67.98	11.75	0.00	150.0	± 9.6 \%
		Y	1.81	77.73	18.47		150.0	
		Z	0.93	69.19	12.44		150.0	
$\begin{aligned} & 10295- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.59	83.36	20.91	9.03	50.0	$\pm 9.6 \%$
		Y	13.63	95.28	28.15		50.0	
		Z	12.33	87.48	22.99		50.0	
$\begin{aligned} & 10297- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	2.52	69.36	16.49	0.00	150.0	$\pm 9.6 \%$
		Y	2.75	69.70	16.61		150.0	
		Z	2.51	69.33	16.32		150.0	
$\begin{aligned} & 10298- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	1.02	63.71	10.46	0.00	150.0	$\pm 9.6 \%$
		Y	1.56	67.65	14.07		150.0	
		Z	1.06	64.21	10.86		150.0	
$\begin{aligned} & 10299- \\ & \text { AAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	1.41	63.10	9.49	0.00	150.0	$\pm 9.6 \%$
		Y	2.20	67.48	13.20		150.0	
		Z	1.66	65.04	10.89		150.0	
$\begin{aligned} & 10300- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	1.19	60.99	7.64	0.00	150.0	± 9.6 \%
		Y	1.75	63.96	10.73		150.0	
		Z	1.30	61.89	8.49		150.0	
$\begin{aligned} & 10301- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5 ms , 10 MHz, QPSK, PUSC)	X	4.40	65.21	17.25	4.17	50.0	$\pm 9.6 \%$
		Y	4.79	65.64	17.57		50.0	
		Z	4.51	65.62	17.36		50.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz , QPSK, PUSC, 3 CTRL symbols)	X	4.89	66.01	18.10	4.96	50.0	± 9.6 \%
		Y	5.23	66.10	18.21		50.0	
		Z	4.90	65.76	17.79		50.0	

$10303-$ AAA	IEEE 802.16 e WIMAX ($31: 15,5 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.65	65.68	17.92	4.96	50.0	± 9.6 \%
		Y	4.97	65.72	18.04		50.0	
		Z	4.66	65.38	17.59		50.0	
10304- AAA	IEEE 802.16e WiMAX ($29: 18$, 5 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.43	65.21	17.19	4.17	50.0	$\pm 9.6 \%$
		Y	4.78	65.59	17.51		50.0	
		Z	4.47	65.30	17.12		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	4.15	67.54	18.96	6.02	35.0	$\pm 9.6 \%$
		Y	4.30	67.06	19.45		35.0	
		Z	4.22	67.78	19.08		35.0	
$\begin{aligned} & 10306- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbols)	X	4.43	66.43	18.72	6.02	35.0	± 9.6 \%
		Y	4.66	66.30	19.12		35.0	
		Z	4.49	66.64	18.78		35.0	
10307- AAA	IEEE 802.16 e WiMAX ($29: 18,10 \mathrm{~ms}$, 10 MHz, QPSK, PUSC, 18 symbols)	X	4.32	66.52	18.64	6.02	35.0	$\pm 9.6 \%$
		Y	4.55	66.42	19.07		35.0	
		Z	4.38	66.74	18.71		35.0	
$\begin{aligned} & \text { 10308- } \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.30	66.75	18.79	6.02	35.0	± 9.6 \%
		Y	4.52	66.60	19.20		35.0	
		Z	4.37	66.98	18.86		35.0	
10309- AAA	IEEE 802.16 e WiMAX $(29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	4.46	66.55	18.83	6.02	35.0	± 9.6 \%
		Y	4.72	66.54	19.28		35.0	
		Z	4.52	66.77	18.90		35.0	
$\begin{array}{\|l} \hline 10310- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz, QPSK, AMC $2 \times 3,18$ symbols)	X	4.39	66.51	18.71	6.02	35.0	$\pm 9.6 \%$
		Y	4.60	66.34	19.08		35.0	
		Z	4.45	66.72	18.77		35.0	
10311" AAC	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	2.88	68.46	16.13	0.00	150.0	± 9.6 \%
		Y	3.11	68.97	16.25		150.0	
		Z	2.86	68.50	15.98		150.0	
10313-	IDEN 1:3	X	1.87	66.02	12.37	6.99	70.0	± 9.6 \%
		Y	5.52	82.21	20.17		70.0	
		Z	2.06	67.90	13.38		70.0	
$\begin{aligned} & \text { 10314- } \\ & \text { AAA } \end{aligned}$	iDEN 1:6	X	2.66	70.48	16.99	10.00	30.0	± 9.6 \%
		Y	9.77	95.91	27.98		30.0	
		Z	4.14	77.84	20.07		30.0	
$\begin{aligned} & 10315- \\ & \text { AAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.95	63.27	14.86	0.17	150.0	± 9.6 \%
		Y	1.06	63.68	15.21		150.0	
		Z	0.93	63.28	14.78		150.0	
$\begin{aligned} & 10316- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	X	4.35	66.42	16.23	0.17	150.0	± 9.6 \%
		Y	4.58	66.66	16.32		150.0	
		Z	4.34	66.49	16.17		150.0	
$\begin{aligned} & 10317- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.35	66.42	16.23	0.17	150.0	± 9.6 \%
		Y	4.58	66.66	16.32		150.0	
		Z	4.34	66.49	16.17		150.0	
$\begin{aligned} & 10400- \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.44	66.78	16.30	0.00	150.0	± 9.6 \%
		Y	4.68	66.96	16.27		150.0	
		Z	4.43	66.80	16.17		150.0	
$\begin{aligned} & 10401 ~ \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99 pc duty cycle)	X	5.15	66.76	16.42	0.00	150.0	± 9.6 \%
		Y	5.39	67.16	16.44		150.0	
		Z	5.17	66.92	16.36		150.0	

$\begin{aligned} & \text { 10402- } \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, $99 p \mathrm{c}$ duty cycle)	X	5.46	67.17	16.51	0.00	150.0	± 9.6 \%
		Y	5.63	67.44	16.43		150.0	
		Z	5.43	67.19	16.37		150.0	
$\begin{aligned} & 10403- \\ & A A B \end{aligned}$	CDMA2000 (1xEV-DO, Rev. 0)	X	0.78	62.91	9.04	0.00	115.0	± 9.6 \%
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
$\begin{aligned} & 10404- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. A)	X	0.78	62.91	9.04	0.00	115.0	$\pm 9.6 \%$
		Y	1.44	68.67	13.91		115.0	
		Z	0.82	63.50	9.52		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	119.25	28.40	0.00	100.0	± 9.6 \%
		Y	9.50	91.59	22.98		100.0	
		Z	100.00	122.00	29,77		100.0	
$\begin{aligned} & 10410- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	3.12	77.42	16.90	3.23	80.0	± 9.6 \%
		Y	100.00	127.40	32.46		80.0	
		Z	100.00	125.01	30.73		80.0	
10415-AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, $99 p$ duty cycle)	X	0.90	62.74	14.48	0.00	150.0	± 9.6 \%
		Y	1.00	62.96	14.62		150.0	
		Z	0.88	62.66	14.28		150.0	
10416AAA	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.32	66.51	16.25	0.00	150.0	± 9.6 \%
		Y	4.52	66.62	16.21		150.0	
		Z	4.30	66.52	16.13		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.32	66.51	16.25	0.00	150.0	$\pm 9.6 \%$
		Y	4.52	66.62	16.21		150.0	
		Z	4.30	66.52	16.13		150.0	
$10418-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle, Long preambule)	X	4.31	66.71	16.30	0.00	150.0	± 9.6 \%
		Y	4.51	66.79	16.23		150.0	
		Z	4.30	66.71	16.18		150.0	
$10419-$AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99 pc duty cycle, Short preambule)	X	4.33	66.64	16.29	0.00	150.0	$\pm 9.6 \%$
		Y	4.53	66.73	16.23		150.0	
		Z	4.32	66.65	16.17		150.0	
10422-AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.44	66.62	16.30	0.00	150.0	± 9.6 \%
		Y	4.65	66.73	16.25		150.0	
		Z	4.43	66.63	16.18		150.0	
$10423-$ AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.57	66.89	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	4.81	67.05	16.36		150.0	
		Z	4.56	66.90	16.28		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64 -QAM)	X	4.50	66.84	16.37	0.00	150.0	± 9.6 \%
		Y	4.73	67.00	16.33		150.0	
		Z	4.49	66.86	16.25		150.0	
$\begin{aligned} & 10425- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	X	5.17	67.18	16.65	0.00	150.0	± 9.6 \%
		Y	5.33	67.30	16.51		150.0	
		Z	5.13	67.14	16.48		150.0	
$\begin{aligned} & 10426- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.23	67.40	16.76	0.00	150.0	± 9.6 \%
		Y	5.34	67.33	16.52		150.0	
		Z	5.16	67.27	16.54		150.0	

$\begin{aligned} & 10427- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.16	67.07	16.58	0,00	150.0	± 9.6 \%
		Y	5.35	67.30	16.51		150.0	
		Z	5.13	67.07	16.44		150.0	
$\begin{aligned} & 10430- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 5 MHz , E-TM 3.1)	X	4.20	72.13	18.43	0.00	150.0	± 9.6 \%
		Y	4.22	70.70	18.10		150.0	
		Z	4.22	72.19	18.46		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	X	3.93	67.10	16.09	0.00	150.0	$\pm 9.6 \%$
		Y	4.20	67.18	16.20		150.0	
		Z	3.93	67.10	16.01		150.0	
$\begin{aligned} & 10432- \\ & A A B \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, $15 \mathrm{MHz}, \mathrm{E}$-TM 3.1)	X	4.26	66.93	16.28	0.00	150.0	± 9.6 \%
		Y	4.50	67.05	16.28		150.0	
		Z	4.25	66.94	16.17		150.0	
10433- $A A B$	LTE-FDD (OFDMA, $20 \mathrm{MHz}, \mathrm{E}$-TM 3.1)	X	4.52	66.87	16.39	0.00	150.0	± 9.6 \%
		Y	4.75	67.03	16.35		150.0	
		Z	4.51	66.89	16.27		150.0	
$\begin{aligned} & 10434- \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.28	72.84	18.10	0.00	150.0	± 9.6 \%
		Y	4.33	71.56	18.07		150.0	
		Z	4.34	73.06	18.24		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.96	76.73	16.60	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	127.17	32.36		80.0	
		Z	100.00	124.69	30.58		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.15	66.77	14.81	0.00	150.0	$\pm 9.6 \%$
		Y	3.49	67.18	15.50		150.0	
		Z	3.17	66.84	14.85		150.0	
$\begin{aligned} & 10448- \\ & A A B \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	3.79	66.88	15.96	0.00	150.0	± 9.6 \%
		Y	4.04	66.96	16.06		150.0	
		Z	3.79	66.88	15.87		150.0	
$\begin{aligned} & \text { 10449- } \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	4.09	66.75	16.17	0.00	150.0	± 9.6 \%
		Y	4.31	66.88	16.18		150.0	
		Z	4.08	66.77	16.07		150.0	
$\begin{aligned} & 10450- \\ & \text { AAB } \end{aligned}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.31	66.64	16.24	0.00	150.0	$\pm 9.6 \%$
		Y	4.51	66.80	16.21		150.0	
		Z	4.30	66.66	16.12		150.0	
$\begin{aligned} & 10451- \\ & \text { AAA } \\ & \hline \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44\%)	X	2.94	66.45	13.98	0.00	150.0	$\pm 9.6 \%$
		Y	3.38	67.33	15.10		150.0	
		Z	2.98	66.61	14.10		150.0	
$\begin{aligned} & 10456- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, 64$-QAM, 99 pc duty cycle)	X	6.17	67.89	16.91	0.00	150.0	± 9.6 \%
		Y	6.20	67.84	16.66		150.0	
		Z	6.10	67.86	16.74		150.0	
10457 AAA	UMTS-FDD (DC-HSDPA)	X	3.65	65.21	15.97	0.00	150.0	$\pm 9.6 \%$
		Y	3.78	65.27	15.92		150.0	
		Z	3.63	65.21	15.85		150.0	
$\begin{array}{\|l\|} \hline 10458- \\ \text { AAA } \\ \hline \end{array}$	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev, B, } 2 \\ & \text { carriers) } \end{aligned}$	X	3.63	70.67	16.50	0.00	150.0	$\pm 9.6 \%$
		Y	3.97	70.83	17.45		150.0	
		Z	3.75	71.23	16.87		150.0	
$\begin{aligned} & \text { 10459- } \\ & \text { AAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 3 \\ & \text { carriers) } \end{aligned}$	X	4.91	69.28	18.19	0.00	150.0	± 9.6 \%
		Y	5.06	68.34	18.09		150.0	
		Z	4.97	69.44	18.31		150.0	

$10460-$ AAA	UMTS-FDD (WCDMA, AMR)	X	0.82	68.91	15.77	0.00	150.0	± 9.6 \%
		Y	0.90	68.29	16.15		150.0	
		Z	0.77	68.38	15.37		150.0	
10461AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.32	75.39	17.14	3.29	80.0	± 9.6 \%
		Y	100.00	131.59	34.49		80.0	
		Z	100.00	129.59	32.92		80.0	
$\begin{array}{\|l} \hline 10462- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.09	3.23	80.0	± 9.6 \%
		Y	4.63	77.57	16.00		80.0	
		Z	0.74	60.00	7.79		80.0	
10463-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.50	3.23	80.0	± 9.6 \%
		Y	1.49	65.34	10.90		80.0	
		Z	0.76	60.00	7.16		80.0	
$10464-$AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.48	69.57	14.21	3.23	80.0	± 9.6 \%
		Y	100.00	128.72	32.98		80.0	
		Z	100.00	125.35	30.81		80.0	
$\begin{aligned} & 10465- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.02	3.23	80.0	± 9.6 \%
		Y	2.92	72.75	14.31		80.0	
		Z	0.74	60.00	7.72		80.0	
$\begin{aligned} & 10466- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.46	3.23	80.0	$\pm 9.6 \%$
		Y	1.30	63.97	10.25		80.0	
		Z	0.76	60.00	7.11		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL. Subframe $=2,3,4,7,8,9$)	X	1.57	70.35	14.56	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	129.06	33.13		80.0	
		Z	100.00	125.82	31.02		80.0	
$\begin{aligned} & 10468- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.04	3.23	80.0	$\pm 9.6 \%$
		Y	3.25	73.90	14.73		80.0	
		Z	0.74	60.00	7.74		80.0	
$\begin{aligned} & 10469- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.46	3.23	80.0	± 9.6 \%
		Y	1.30	64.00	10.26		80.0	
		Z	0.76	60.00	7.11		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.56	70.33	14.55	3.23	80.0	± 9.6 \%
		Y	100.00	129.11	33.14		80.0	
		Z	100.00	125.84	31.01		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 16 QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.03	3.23	80.0	± 9.6 \%
		Y	3.21	73.75	14.66		80.0	
		Z	0.74	60.00	7.73		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.44	3.23	80.0	± 9.6 \%
		Y	1.29	63.92	10.21		80.0	
		Z	0.76	60.00	7.09		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.56	70.28	14.52	3.23	80.0	± 9.6 \%
		Y	100.00	129.06	33.12		80.0	
		Z	100.00	125.78	30.99		80.0	
$\begin{aligned} & \hline 10474- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 16 QAM, UL. Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.02	3.23	80.0	$\pm 9.6 \%$
		Y	3.17	73.64	14.62		80.0	
		Z	0.74	60.00	7.73		80.0	
$10475-$ AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.78	60.00	6.45	3.23	80.0	± 9.6 \%
		Y	1.29	63.89	10.20		80.0	
		Z	0.76	60.00	7.09		80.0	

10477 AAC	LTE-TDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, 16$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.76	60.00	7.00	3.23	80.0	$\pm 9.6 \%$
		Y	2.91	72.72	14.27		80.0	
		Z	0.74	60.00	7.70		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.79	60.00	6.43	3.23	80.0	± 9.6 \%
		Y	1.28	63.82	10.16		80.0	
		Z	0.76	60.00	7.08		80.0	± 9.6 \%
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.36	78.87	19.25	3.23	80.0	
		Y	6.72	85.93	23.37		80.0	
10480-AAA		Z	31.53	108.71	28.80		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.01	65.44	11.92	3.23	80.0	
		Y	7.23	81.86	20.03		80.0	$\pm 9.6 \%$
10481- AAA		Z	6.32	79.43	17.87		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.64	62.93	10.36	3.23	80.0	
		Y	5.72	78.02	18.32		80.0	± 9.6 \%
10482- AAA		Z	3.41	71.49	14.62		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.29	62.41	10.80	2.23	80.0	
		Y	3.64	76.21	18.93		80.0	± 9.6 \%
10483-AAA		Z	1.66	65.83	12.91		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.52	61.14	9.55	2.23	80.0	
		Y	4.09	73.43	17.03		80.0	± 9.6 \%
		Z	2.32	66.35	12.70		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.52	60.89	9.42	2.23	80.0	
		Y	3.80	72.18	16.53		80.0	± 9.6 \%
10485-$A A C$		Z	2.19	65.41	12.27		80.0	
	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.96	67.14	14.58	2.23 .	80.0	
		Y	3.64	76.20	19.95		80.0	± 9.6 \%
		Z	2.47	70.93	16.63		80.0	
$\begin{aligned} & 10486- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.93	63.65	12.21	2.23	80.0	
		Y	3.34	71.00	17.20		80.0	± 9.6 \%
		Z	2.25	65.99	13.71		80.0	
$\begin{array}{\|l\|} \hline 10487- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.95	63.41	12.07	2.23	80.0	
		Y	3.31	70.45	16.94		80.0	
		Z	2.25	65.61	13.50		80.0	± 9.6 \%
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.57	68.84	16.72	2.23	80.0	
		Y	3.64	73.87	19.67		80.0	± 9.6 \%
		Z	2.88	71.05	17.92		80.0	
10489- $A A C$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16 -QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.71	66.42	15.54	2.23	80.0	
		Y	3.41	69.51	17.78		80.0	
		Z	2.89	67.77	16.40		80.0	± 9.6 \%
$\begin{aligned} & \hline 10490- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.80	66.35	15.53	2.23	80.0	
		Y	3.50	69.28	17.68		80.0	
		Z	2.97	67.63	16.34		80.0	± 9.6 \%
$10491 \text { - }$ AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.93	68.13	16.75	2.23	80.0	
		Y	3.79	71.78	18.88		80.0	
		Z	3.14	69.61	17.57		80.0	
10492-AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.14	66.26	16.05	2.23	80.0	± 9.6 \%
		Y	3.72	68.46	17.58		80.0	
		Z	3.26	67.14	16.60		80.0	

$\begin{array}{\|l\|} \hline 10493- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.20	66.19	16.02	2.23	80.0	± 9.6 \%
		Y	3.78	68.30	17.52		80.0	
		Z	3.32	67.03	16.55		80.0	
$\begin{array}{\|l} \hline 10494- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.09	69.16	17.09	2.23	80.0	± 9.6 \%
		Y	4.18	73.66	19.49		80.0	
		Z	3.38	70.96	18.01		80.0	
10495-AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.16	66.52	16.26	2.23	80.0	± 9.6 \%
		Y	3.75	68.86	17.79		80.0	
		Z	3.28	67.44	16.81		80.0	
10496-AAC	L.TE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL. Subframe $=2,3,4,7,8,9$)	X	3.25	66.39	16.25	2.23	80.0	$\pm 9.6 \%$
		Y	3.82	68.54	17.67		80.0	
		Z	3.36	67.23	16.76		80.0	
10497AAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	0.98	60.00	8.08	2.23	80.0	± 9.6 \%
		Y	2.67	71.65	16.05		80.0	
		Z	0.96	60.00	8.56		80.0	
$\begin{aligned} & 10498- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.18	60.00	7.01	2.23	80.0	$\pm 9.6 \%$
		Y	1.73	63.28	11.10		80.0	
		Z	1.15	60.00	7.42		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.20	60.00	6.87	2.23	80.0	$\pm 9.6 \%$
		Y	1.65	62.50	10.55		80.0	
		Z	1.17	60.00	7.27		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.22	67.95	15.51	2.23	80.0	± 9.6 \%
		Y	3.54	74.72	19.65		80.0	
		Z	2.63	70.95	17.16		80.0	
$\begin{aligned} & \text { 10501- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM, UL. Subframe $=2,3,4,7,8,9$)	X	2.29	65.10	13.66	2.23	80.0	± 9.6 \%
		Y	3.38	70.39	17.41		80.0	
		Z	2.58	67.13	14.94		80.0	
$\begin{aligned} & \text { 10502~ } \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.32	64.94	13.52	2.23	80.0	$\pm 9.6 \%$
		Y	3.43	70.21	17.27		80.0	
		Z	2.61	66.92	14.77		80.0	
10503- AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.54	68.66	16.62	2.23	80.0	± 9.6 \%
		Y	3.60	73.66	19.57		80.0	
		Z	2.84	70.82	17.80		80.0	
10504-$A A C$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.69	66.32	15.48	2.23	80.0	± 9.6 \%
		Y	3.40	69.42	17.73		80.0	
		Z	2.87	67.65	16.32		80.0	
$\begin{aligned} & 10505- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.78	66.26	15.46	2.23	80.0	± 9.6 \%
		Y	3.48	69.19	17.63		80.0	
		Z	2.96	67.52	16.27		80.0	
$\begin{array}{\|l} \hline 10506- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.07	69.03	17.01	2.23	80.0	± 9.6 \%
		Y	4.15	73.51	19.42		80.0	
		Z	3.35	70.80	17.93		80.0	
$\begin{aligned} & 10507- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.15	66.46	16.22	2.23	80.0	± 9.6 \%
		Y	3.73	68.80	17.76		80.0	
		Z	3.26	67.37	16.77		80.0	

April 18, 2018

$\begin{aligned} & 10508- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.24	66.32	16.20	2.23	80.0	± 9.6 \%
		Y	3.81	68.47	17.63		80.0	
		Z	3.35	67.15	16.71		80.0	
$\begin{aligned} & 10509- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.51	68.36	16.83	2.23	80.0	$\pm 9.6 \%$
		Y	4.41	71.84	18.68		80.0	
10510- AAC		Z	3.72	69.67	17.51		80.0	± 9.6 \%
	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.65	66.40	16.44	2.23	80.0	
		Y	4.20	68.42	17.64		80.0	± 9.6 \%
10511- AAC		Z	3.74	67.11	16.83		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.72	66.27	16.42	2.23	80.0	
		Y	4.25	68.13	17.55		80.0	± 9.6 \%
10512- AAC		Z	3.81	66.92	16.79		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.53	69.27	17.06	2.23	80.0	
		Y	4.71	73.81	19.35		80.0	± 9.6 \%
10513- AAC		Z	3.83	70.97	17.89		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.53	66.49	16.47	2.23	80.0	
		Y	4.09	68.73	17.78		80.0	± 9.6 \%
$\begin{aligned} & 10514- \\ & \text { AAC } \end{aligned}$		Z	3.62	67.27	16.91		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.58	66.23	16.41	2.23	80.0	
		Y	4.11	68.25	17.62		80.0	± 9.6 \%
		Z	3.67	66.92	16.81		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.86	62.95	14.53	0.00	150.0	
		Y	0.96	63.14	14.68		150.0	± 9.6 \%
		2	0.84	62.85	14.32		150.0	
$\begin{array}{\|l} \text { 10516- } \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.68	75.09	17.93	0.00	150.0	
		Y	0.60	70.79	17.39		150.0	± 9.6 \%
		Z	0.59	73.58	17.02		150.0	
10517- $A A A$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.71	65.13	15.13	0.00	150.0	
		Y	0.81	65.08	15.31		150.0	
$\begin{aligned} & 10518- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	0.69	64.87	14.81		150.0	± 9.6 \%
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.31	66.61	16.23	0.00	150.0	
		Y	4.51	66.70	16.19		150.0	± 9.6 \%
		Z	4.30	66.61	16.12		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.46	66.79	16.33	0.00	150.0	
		Y	4.69	66.93	16.31		150.0	
		Z	4.45	66.80	16.22		150.0	± 9.6 \%
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.32	66.72	16.24	0.00	150.0	
		Y	4.55	66.89	16.23		150.0	
		Z	4.31	66.74	16.13		150.0	± 9.6 \%
$\begin{aligned} & 10521- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.25	66.68	16.22	0.00	150.0	
		Y	4.48	66.88	16.21		150.0	
		Z	4.24	66.71	16.11		150.0	
$\begin{aligned} & 10522- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.30	66.84	16.33	0.00	150.0	± 9.6 \%
		Y	4.54	66.98	16.30		150.0	
		Z	4.30	66.85	16.22		150.0	

$\begin{aligned} & 10523- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.22	66.79	16.22	0.00	150.0	± 9.6 \%
		Y	4.42	66.85	16.15		150.0	
		Z	4.21	66.79	16.10		150.0	
$\begin{aligned} & 10524- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.25	66.78	16.31	0.00	150.0	± 9.6 \%
		Y	4.48	66.90	16.27		150.0	
		Z	4.24	66.79	16.19		150.0	
$\begin{aligned} & 10525- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.28	65.85	15.93	0.00	150.0	± 9.6 \%
		Y	4.47	65.95	15.86		150.0	
		Z	4.27	65.86	15.81		150.0	
$\begin{aligned} & 10526- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	4.41	66.15	16.05	0.00	150.0	$\pm 9.6 \%$
		Y	4.64	66.31	16.00		150.0	
		Z	4.40	66.17	15.93		150.0	
$\begin{aligned} & 10527- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99 pc duty cycle)	X	4.34	66.11	15.98	0.00	150.0	± 9.6 \%
		Y	4.56	66.27	15.95		150.0	
		Z	4.33	66.13	15.87		150.0	
$\begin{aligned} & 10528- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11 ac WiFi $(20 \mathrm{MHz}, \mathrm{MCS} 3$, 99pc duty cycle)	X	4.35	66.13	16.02	0.00	150.0	$\pm 9.6 \%$
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.35	66.13	16.02	0.00	150.0	± 9.6 \%
		Y	4.58	66.29	15.98		150.0	
		Z	4.34	66.15	15.90		150.0	
$\begin{aligned} & 10531- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, $99 p c$ duty cycle)	X	4.32	66.16	16.00	0.00	150.0	$\pm 9.6 \%$
		Y	4.57	66.39	15.99		150.0	
		Z	4.31	66.19	15.89		150.0	
$\begin{aligned} & 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.20	66.01	15.92	0.00	150.0	$\pm 9.6 \%$
		Y	4.43	66.24	15.92		150.0	
		Z	4.19	66.04	15.81		150.0	
$\begin{aligned} & \hline 10533- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.36	66.21	16.02	0.00	150.0	$\pm 9.6 \%$
		Y	4.59	66.34	15.97		150.0	
		Z	4.35	66.22	15.90		150.0	
$\begin{aligned} & 10534- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS0, 99 pc duty cycle)	X	4.94	66.18	16.13	0.00	150.0	$\pm 9.6 \%$
		Y	5.11	66.38	16.03		150.0	
		Z	4.91	66.20	15.99		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99 pc duty cycle)	X	4.99	66.35	16.21	0.00	150.0	$\pm 9.6 \%$
		Y	5.18	66.56	16.12		150.0	
		Z	4.97	66.36	16.07		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99 pc duty cycle)	X	4.87	66.32	16.17	0.00	150.0	± 9.6 \%
		Y	5.05	66.51	16.07		150.0	
		Z	4.85	66.34	16.04		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS} 3$, 99 pc duty cycle)	X	4.94	66.34	16.18	0.00	150.0	$\pm 9.6 \%$
		Y	5.10	66.48	16.06		150.0	
		Z	4.91	66.31	16.03		150.0	
$\begin{aligned} & 10538- \\ & A A B \\ & \hline \end{aligned}$	```IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)```	X	5.01	66.30	16.21	0.00	150.0	± 9.6 \%
		Y	5.19	66.49	16.11		150.0	
		Z	4.98	66.30	16.06		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.93	66.22	16.18	0.00	150.0	± 9.6 \%
		Y	5.13	66.52	16.13		150.0	
		Z	4.91	66.26	16.06		150.0	

April 18, 2018

$\begin{aligned} & 10541- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	4.90	66.09	16.10	0.00	150.0	± 9.6 \%
		Y	5.10	66.38	16.06		150.0	
		Z	4.88	66.13	15.98		150.0	
$\begin{aligned} & \hline 10542- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 99 pc duty cycle)	X	5.07	66.24	16.19	0.00	150.0	± 9.6 \%
		Y	5.25	66.45	16.11		150.0	
		Z	5.04	66.26	16.06		150.0	
$\begin{aligned} & \text { 10543- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.16	66.37	16.29	0.00	150.0	± 9.6 \%
		Y	5.33	66.48	16.14		150.0	
		Z	5.12	66.32	16.12		150.0	
$\begin{aligned} & \hline 10544- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 99 pc duty cycle)	X	5.28	66.21	16.10	0.00	150.0	$\pm 9.6 \%$
		Y	5.42	66.50	16.03		150.0	
		Z	5.25	66.26	15.98		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac Wifi (80 MHz , MCS1. 99pc duty cycle)	X	5.51	66.84	16.38	0.00	150.0	± 9.6 \%
		Y	5.61	66.90	16.18		150.0	
		Z	5.45	66.77	16.19		150.0	
$\begin{array}{\|l\|} \hline 10546- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (80 MHz , MCS2, 99 pc duty cycle)	X	5.32	66.36	16.14	0.00	150.0	± 9.6 \%
		Y	5.48	66.70	16.10		150.0	
		Z	5.29	66.40	16.02		150.0	
$\begin{array}{\|l\|} \hline 10547- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11ac WiFi (80 MHz , MCS3, 99pc duty cycle)	X	5.43	66.58	16.25	0.00	150.0	± 9.6 \%
		Y	5.55	66.74	16.11		150.0	
		Z	5.37	66.52	16.07		150.0	
$\begin{aligned} & 10548- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, $99 p \mathrm{duty}$ cycle)	X	5.67	67.49	16.67	0.00	150.0	± 9.6 \%
		Y	5.79	67.62	16.52		150.0	
		Z	5.59	67.37	16.46		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.44	66.73	16.35	0.00	150.0	± 9.6 \%
		Y	5.51	66.72	16.12		150.0	
		Z	5.36	66.62	16.14		150.0	
$\begin{aligned} & 10551- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS7, 99pc duty cycle)	X	5.31	66.31	16.10	0.00	150.0	$\pm 9.6 \%$
		Y	5.52	66.76	16.10		150.0	
		Z	5.30	66.41	15.99		150.0	
$\begin{aligned} & \hline 10552- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.28	66.30	16.09	0.00	150.0	± 9.6 \%
		Y	5.44	66.57	16.01		150.0	
		Z	5.25	66.34	15.96		150.0	
$\begin{aligned} & 10553- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.34	66.26	16.10	0.00	150.0	± 9.6 \%
		Y	5.52	66.60	16.06		150.0	
		Z	5.31	66.32	15.98		150.0	
10554- AAC	IEEE 802.11ac WiFi (160 MHz , MCS0, 99pc duty cycle)	X	5.72	66.58	16.20	0.00	150.0	$\pm 9.6 \%$
		Y	5.83	66.86	16.12		150.0	
		Z	5.67	66.61	16.06		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.84	66.90	16.34	0.00	150.0	± 9.6 \%
		Y	5.95	67.15	16.24		150.0	
		Z	5.79	66.90	16.19		150.0	
$\begin{aligned} & \text { 10556- } \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 99pc duty cycle)	X	5.87	66.98	16.38	0.00	150.0	± 9.6 \%
		Y	5.98	67.20	16.26		150.0	
		Z	5.82	66.99	16.23		150.0	
10557- AAC	IEEE 802.11ac WiFi (160 MHz , MCS3, 99pc duty cycle)	X	5.81	66.79	16.30	0.00	150.0	± 9.6 \%
		Y	5.94	67.10	16.23		150.0	
		Z	5.77	66.83	16.17		150.0	

$\begin{aligned} & 10558- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 4$, $99 p \mathrm{duty}$ cycle)	X	5.82	66.86	16.35	0.00	150.0	± 9.6 \%
		Y	5.99	67.26	16.33		150.0	
		Z	5.79	66.94	16.24		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 99 pc duty cycle)	X	5.84	66.78	16.35	0.00	150.0	± 9.6 \%
		Y	5.98	67.11	16.29		150.0	
		Z	5.80	66.82	16.22		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS7, 99pc duty cycle)	X	5.78	66.81	16.39	0.00	150.0	$\pm 9.6 \%$
		Y	5.91	67.08	16.31		150.0	
		Z	5.74	66.84	16.26		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.83	66.94	16.46	0.00	150.0	$\pm 9.6 \%$
		Y	6.02	67.44	16.49		150.0	
		Z	5.80	67.03	16.35		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99pc duty cycle)	X	5.98	67.08	16.50	0.00	150.0	$\pm 9.6 \%$
		Y	6.21	67.62	16.54		150.0	
		Z	5.91	67.01	16.31		150.0	
$\begin{aligned} & \text { 10564- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.63	66.62	16.36	0.46	150.0	± 9.6 \%
		Y	4.84	66.79	16.36		150.0	
		Z	4.61	66.63	16.24		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.83	67.05	16.69	0.46	150.0	$\pm 9.6 \%$
		Y	5.06	67.22	16.67		150.0	
		Z	4.82	67.07	16.58		150.0	
$\begin{aligned} & \text { 10566- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	4.66	66.85	16.48	0.46	150.0	± 9.6 \%
		Y	4.90	67.07	16.49		150.0	
		Z	4.65	66.88	16.38		150.0	
$\begin{aligned} & 10567 \text { - } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, $99 p \mathrm{duty}$ cycle)	X	4.70	67.27	16.87	0.46	150.0	$\pm 9.6 \%$
		Y	4.93	67.45	16.84		150.0	
		Z	4.69	67.33	16.78		150.0	
$\begin{aligned} & \text { 10568- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 99 pc duty cycle)	X	4.56	66.58	16.20	0.46	150.0	$\pm 9.6 \%$
		Y	4.81	66.86	16.28		150.0	
		Z	4.55	66.62	16.10		150.0	
$\begin{aligned} & \text { 10569- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.68	67.48	17.00	0.46	150.0	± 9.6 \%
		Y	4.88	67.55	16.91		150.0	
		Z	4.67	67.53	16.91		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99 pc duty cycle)	X	4.69	67.30	16.91	0.46	150.0	$\pm 9.6 \%$
		Y	4.92	67.39	16.83		150.0	
		Z	4.68	67.31	16.79		150.0	
$\begin{aligned} & 10571- \\ & \mathrm{AAA} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.00	63.45	14.91	0.46	130.0	$\pm 9.6 \%$
		Y	1.13	64.20	15.58		130.0	
		Z	0.98	63.57	14.96		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.01	64.01	15.28	0.46	130.0	$\pm 9.6 \%$
		Y	1.14	64.75	15.94		130.0	
		Z	0.99	64.16	15.34		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.87	85.75	21.98	0.46	130.0	$\pm 9.6 \%$
		Y	1.92	86.55	24.04		130.0	
		Z	2.25	89.51	23.31		130.0	
$\begin{aligned} & 10574- \\ & \mathrm{AAA} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.08	70.06	18.36	0.46	130.0	$\pm 9.6 \%$
		Y	1.22	70.33	18.86		130.0	
		Z	1.09	70.58	18.62		130.0	

April 18, 2018

$\begin{aligned} & 10575- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.39	66.32	16.32	0.46	130.0	± 9.6 \%
		Y	4.62	66.58	16.43		130.0	
		Z	4.39	66.40	16.27		130.0	
10576AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps, 90 pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 \%
		Y	4.65	66.74	16.49		130.0	
		Z	4.42	66.60	16.36		130.0	
10577-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	± 9.6 \%
		Y	4.85	67.03	16.66		130.0	
		Z	4.59	66.86	16.52		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 90 pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	± 9.6 \%
		Y	4.74	67.18	16.75		130.0	
		Z	4.50	67.02	16.64		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90 pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	± 9.6 \%
		Y	4.51	66.48	16.08		130.0	
		Z	4.24	66.15	15.83		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 90 pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	$\pm 9.6 \%$
		Y	4.56	66.53	16.11		130.0	
		Z	4.29	66.22	15.86		130.0	
$10581-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, 90 pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 \%
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.17	65.84	15.66	0.46	130.0	± 9.6 \%
		Y	4.45	66.25	15.88		130.0	
		Z	4.18	65.90	15.60		130.0	
$\begin{aligned} & \text { 10583- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6 Mbps, 90 pc duty cycle)	X	4.39	66.32	16.32	0.46	130.0	± 9.6 \%
		Y	4.62	66.58	16.43		130.0	
		Z	4.39	66.40	16.27		130.0	
$\begin{array}{\|l\|} \hline 10584- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.42	66.53	16.41	0.46	130.0	± 9.6 \%
		Y	4.65	66.74	16.49		130.0	
		Z	4.42	66.60	16.36		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90 pc duty cycle)	X	4.59	66.78	16.57	0.46	130.0	± 9.6 \%
		Y	4.85	67.03	16.66		130.0	
		Z	4.59	66.86	16.52		130.0	
$\begin{array}{\|l\|} \hline 10586- \\ A A B \\ \hline \end{array}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.49	66.94	16.68	0.46	130.0	$\pm 9.6 \%$
		Y	4.74	67.18	16.75		130.0	
		Z	4.50	67.02	16.64		130.0	
$\begin{aligned} & \hline 10587- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.24	66.07	15.88	0.46	130.0	± 9.6 \%
		Y	4.51	66.48	16.08		130.0	
		Z	4.24	66.15	15.83		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.28	66.14	15.91	0.46	130.0	$\pm 9.6 \%$
		Y	4.56	66.53	16.11		130.0	
		Z	4.29	66.22	15.86		130.0	
$\begin{aligned} & 10589-1 \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	4.40	66.99	16.63	0.46	130.0	± 9.6 \%
		Y	4.64	67.22	16.70		130.0	
		Z	4.40	67.08	16.59		130.0	
$\begin{aligned} & \hline 10590- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.17	65.84	15.66	0.46	130.0	$\pm 9.6 \%$
		Y	4.45	66.25	15.88		130.0	
		Z	4.18	65.90	15.60		130.0	

$\begin{aligned} & 10591- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90 pc duty cycle)	X	4.55	66.42	16.46	0.46	130.0	± 9.6 \%
		Y	4.78	66.64	16.53		130.0	
		Z	4.55	66.49	16.40		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS1, 90pc duty cycle)	X	4.67	66.72	16.59	0.46	130.0	± 9.6 \%
		Y	4.93	66.98	16.66		130.0	
		Z	4.68	66.80	16.53		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.59	66.59	16.43	0.46	130.0	± 9.6 \%
		Y	4.85	66.88	16.54		130.0	
		Z	4.59	66.67	16.38		130.0	
$\begin{aligned} & 10594- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.64	66.77	16.61	0.46	130.0	± 9.6 \%
		Y	4.90	67.05	16.69		130.0	
		Z	4.65	66.86	16.56		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.61	66.75	16.51	0.46	130.0	± 9.6 \%
		Y	4.87	67.00	16.59		130.0	
		Z	4.61	66.82	16.45		130.0	
$\begin{aligned} & 10596- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.54	66.71	16.50	0.46	130.0	± 9.6 \%
		Y	4.80	67.00	16.60		130.0	
		Z	4.54	66.79	16.44		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.49	66.57	16.34	0.46	130.0	$\pm 9.6 \%$
		Y	4.75	66.90	16.48		130.0	
		Z	4.49	66.65	16.29		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS7, 90pc duty cycle)	X	4.48	66.81	16.63	0.46	130.0	± 9.6 \%
		Y	4.73	67.12	16.73		130.0	
		Z	4.49	66.91	16.58		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS0, 90pc duty cycle)	X	5.31	67.13	16.85	0.46	130.0	$\pm 9.6 \%$
		Y	5.45	67.20	16.74		130.0	
		Z	5.25	67.05	16.69		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	5.48	67.76	17.14	0.46	130.0	$\pm 9.6 \%$
		Y	5.57	67.58	16.91		130.0	
		Z	5.39	67.54	16.90		130.0	
$\begin{aligned} & 10601- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.31	67.28	16.91	0.46	130.0	$\pm 9.6 \%$
		Y	5.47	67.34	16.80		130.0	
		Z	5.27	67.22	16.76		130.0	
$\begin{aligned} & 10602- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS3, 90pc duty cycle)	X	5.43	67.41	16.89	0.46	130.0	$\pm 9.6 \%$
		Y	5.56	67.39	16.75		130.0	
		Z	5.40	67.36	16.75		130.0	
$\begin{aligned} & 10603- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	X	5.54	67.82	17.25	0.46	130.0	$\pm 9.6 \%$
		Y	5.64	67.67	17.02		130.0	
		Z	5.49	67.76	17.09		130.0	
$\begin{aligned} & 10604- \\ & A A B \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS5, 90pe duty cycle)	X	5.42	67.47	17.05	0.46	130.0	± 9.6 \%
		Y	5.46	67.19	16.76		130.0	
		Z	5.37	67.38	16.88		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS6, 90pc duty cycle)	X	5.43	67.47	17.04	0.46	130.0	$\pm 9.6 \%$
		Y	5.56	67.49	16.91		130.0	
		Z	5.37	67.38	16.87		130.0	
$\begin{aligned} & 10606- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.17	66.77	16.54	0.46	130.0	± 9.6 \%
		Y	5.31	66.83	16.45		130.0	
		Z	5.12	66.68	16.37		130.0	

$10607-$ AAB	IEEE 802.11ac WiFi (20MHz, MCSO, 90 pc duty cycle)	X	4.40	65.75	16.09	0.46	130.0	± 9.6 \%
		Y	4.62	65.97	16.16		130.0	
$\begin{aligned} & 10608- \\ & \text { AAB } \end{aligned}$		Z	4.40	65.83	16.04		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	4.54	66.09	16.24	0.46	130.0	± 9.6 \%
		Y	4.80	66.37	16.32		130.0	
$\begin{aligned} & 10609- \\ & \text { AAB } \end{aligned}$		Z	4.55	66.18	16.20		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.43	65.91	16.05	0.46	130.0	± 9.6 \%
		Y	4.69	66.22	16.16		130.0	
		Z	4.44	66.00	16.00		130.0	
$\begin{aligned} & 10610- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS3}$, 90 pc duty cycle)	X	4.49	66.09	16.23	0.46	130.0	± 9.6 \%
		Y	4.74	66.38	16.32		130.0	
		Z	4.49	66.18	16.19		130.0	
$\begin{aligned} & 10611- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 4$, 90pc duty cycle)	X	4.40	65.88	16.06	0.46	130.0	± 9.6 \%
		Y	4.66	66.19	16.17		130.0	
		Z	4.40	65.97	16.02		130.0	
10612-AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.39	66.01	16.10	0.46	130.0	± 9.6 \%
		Y	4.66	66.35	16.22		130.0	
		Z	4.40	66.10	16.06		130.0	
10613-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.38	65.82	15.94	0.46	130.0	± 9.6 \%
		Y	4.67	66.22	16.10		130.0	
		Z	4.39	65.92	15.90		130.0	
10614-$A A B$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.35	66.06	16.21	0.46	130.0	± 9.6 \%
		Y	4.61	66.40	16.32		130.0	
		Z	4.36	66.17	16.17		130.0	
10615AAB	IEEE 802.11ac WiFi (20 MHz , MCS8, 90 pc duty cycle)	X	4.39	65.69	15.81	0.46	130.0	± 9.6 \%
		Y	4.66	66.03	15.96		130.0	
		Z	4.39	65.77	15.76		130.0	
$\begin{aligned} & 10616- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($40 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	5.07	66.15	16.34	0.46	130.0	± 9.6 \%
		Y	5.27	66.44	16.35		130.0	
		Z	5.05	66.21	16.25		130.0	
$\begin{aligned} & 10617- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	5.14	66.37	16.43	0.46	130.0	± 9.6 \%
		Y	5.34	66.62	16.41		130.0	
		Z	5.12	66.42	16.33		130.0	
$\begin{aligned} & 10618- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	5.03	66.38	16.45	0.46	130.0	± 9.6 \%
		Y	5.22	66.62	16.43		130.0	
		Z	5.02	66.45	16.36		130.0	
$\begin{aligned} & 10619- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS} 3$, 90 pc duty cycle)	X	5.07	66.24	16.31	0.46	130.0	$\pm 9.6 \%$
		Y	5.24	66.43	16.27		130.0	
		Z	5.03	66.23	16.18		130.0	
$\begin{array}{\|l\|} \hline 10620- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40 MHz , MCS4, 90 pc duty cycle)	X	5.13	66.23	16.35	0.46	130.0	± 9.6 \%
		Y	5.33	66.47	16.34		130.0	
		Z	5.11	66.25	16.24		130.0	
$\begin{aligned} & 10621- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duty cycle)	X	5.12	66.28	16.51	0.46	130.0	± 9.6 \%
		Y	5.33	66.60	16.51		130.0	
		Z	5.11	66.38	16.44		130.0	
$\begin{aligned} & 10622- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.11	66.38	16.55	0.46	130.0	± 9.6 \%
		Y	5.34	66.76	16.59		130.0	
		Z	5.11	66.50	16.49		130.0	

$\begin{aligned} & 10623- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS7, 90 pc duty cycle)	X	4.99	65.86	16.14	0.46	130.0	$\pm 9.6 \%$
		Y	5.22	66.30	16.24		130.0	
		Z	4.98	65.96	16.08		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.20	66.20	16.38	0.46	130.0	$\pm 9.6 \%$
		Y	5.41	66.49	16.39		130.0	
		Z	5.19	66.26	16.30		130.0	
$\begin{aligned} & 10625- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.30	66.37	16.54	0.46	130.0	± 9.6 \%
		Y	5.75	67.41	16.90		130.0	
		Z	5.33	66.58	16.52		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90 pc duty cycle)	X	5.40	66.14	16.28	0.46	130.0	$\pm 9.6 \%$
		Y	5.57	66.51	16.31		130.0	
		Z	5.38	66.23	16.21		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.71	67.03	16.70	0.46	130.0	± 9.6 \%
		Y	5.80	67.06	16.54		130.0	
		Z	5.65	66.96	16.54		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	5.40	66.15	16.18	0.46	130.0	± 9.6 \%
		Y	5.60	66.59	16.25		130.0	
		Z	5.38	66.23	16.10		130.0	
$\begin{aligned} & 10629- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.55	66.49	16.35	0.46	130.0	$\pm 9.6 \%$
		Y	5.67	66.64	16.26		130.0	
		Z	5.49	66.42	16.19		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (80 MHz , MCS4, 90 pc duty cycle)	X	5.95	67.89	17.05	0.46	130.0	± 9.6 \%
		Y	6.08	68.07	16.98		130.0	
		Z	5.84	67.71	16.83		130.0	
$\begin{aligned} & 10631- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	5.77	67.48	17.05	0.46	130.0	± 9.6 \%
		Y	5.99	67.89	17.07		130.0	
		Z	5.74	67.53	16.95		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.72	67.25	16.96	0.46	130.0	± 9.6 \%
		Y	5.77	67.11	16.70		130.0	
		Z	5.64	67.12	16.77		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS7. 90 pc duty cycle)	X	5.44	66.28	16.29	0.46	130.0	± 9.6 \%
		Y	5.66	66.76	16.36		130.0	
		Z	5.44	66.43	16.24		130.0	
$\begin{aligned} & 10634- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS8, 90 pc duty cycle)	X	5.44	66.38	16.39	0.46	130.0	$\pm 9.6 \%$
		Y	5.64	66.78	16.43		130.0	
		Z	5.43	66.48	16.32		130.0	
$\begin{aligned} & 10635- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.30	65.61	15.72	0.46	130.0	± 9.6 \%
		Y	5.53	66.14	15.85		130.0	
		Z	5.29	65.70	15.64		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCSO, 90pc duty cycle)	X	5.86	66.55	16.40	0.46	130.0	$\pm 9.6 \%$
		Y	5.98	66.87	16.39		130.0	
		Z	5.82	66.61	16.30		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 1$, 90 pc duty cycle)	X	6.02	66.98	16.61	0.46	130.0	± 9.6 \%
		Y	6.13	67.25	16.56		130.0	
		Z	5.97	67.00	16.48		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 90 pc duty cycle)	X	6.03	67.01	16.60	0.46	130.0	$\pm 9.6 \%$
		Y	6.13	67.22	16.53		130.0	
		Z	5.97	67.00	16.46		130.0	

$\begin{array}{\|l\|} \hline 10639- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 90 pc duty cycle)	X	5.96	66.80	16.53	0.46	130.0	± 9.6 \%
		Y	6.11	67.17	16.55		130.0	
		Z	5.93	66.87	16.44		130.0	
$\begin{aligned} & 10640- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	5.92	66.70	16.42	0.46	130.0	± 9.6 \%
		Y	6.12	67.19	16.50		130.0	
		Z	5.91	66.82	16.35		130.0	
$10641-$ AAC	IEEE 802.11ac WiFi (160 MHz , MCS5, 90 pc duty cycle)	X	6.06	66.91	16.55	0.46	130.0	± 9.6 \%
		Y	6.16	67.10	16.47		130.0	
		Z	6.01	66.89	16.41		130.0	
$\begin{aligned} & 10642- \\ & \text { AAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IEEE } 802.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}, \mathrm{MCS} 6 \text {, } \\ & 90 \mathrm{pc} \text { duty cycle) } \end{aligned}$	X	6.04	66.98	16.76	0.46	130.0	± 9.6 \%
		Y	6.20	67.33	16.75		130.0	
		Z	6.02	67.07	16.68		130.0	
10643- AAC	IEEE 802.11ac WiFi (160 MHz , MCS7, 90 pc duty cycle)	X	5.90	66.69	16.50	0.46	130.0	± 9.6 \%
		Y	6.04	67.03	16.51		130.0	
		Z	5.87	66.78	16.42		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (160 MHz , MCS8, 90 pc duty cycle)	X	5.95	66.86	16.60	0.46	130.0	± 9.6 \%
		Y	6.19	67.50	16.76		130.0	
		Z	5.94	66.99	16.54		130.0	
$\begin{aligned} & 10645- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 90 pc duty cycle)	X	6.44	67.99	17.14	0.46	130.0	± 9.6 \%
		Y	6.47	67.94	16.94		130.0	
		Z	6.16	67.33	16.68		130.0	
$\begin{aligned} & 10646- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	7.50	90.48	30.44	9.30	60.0	± 9.6 \%
		Y	17.43	112.38	39.34		60.0	
		Z	9.26	96.56	33.29		60.0	
10647-$A A C$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	6.74	88.72	29.93	9.30	60.0	± 9.6 \%
		Y	14.54	108.61	38.31		60.0	
		Z	8.10	94.14	32.60		60.0	
$\begin{aligned} & \text { 10648- } \\ & \text { AAA } \\ & \hline \end{aligned}$	CDMA2000 (1x Advanced)	X	0.39	60.00	6.32	0.00	150.0	± 9.6 \%
		Y	0.67	63.31	10.55		150.0	
		Z	0.38	60.00	6.43		150.0	
$\begin{aligned} & 10652- \\ & \mathrm{A} A \mathrm{~B} \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 5 MHz , E-TM 3.1, Clipping 44\%)	X	3.10	65.49	15.51	2.23	80.0	± 9.6 \%
		Y	3.52	66.85	16.73		80.0	
		Z	3.18	66.07	15.91		80.0	
10653-AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44\%)	X	3.70	65.11	16.04	2.23	80.0	± 9.6 \%
		Y	4.03	66.07	16.78		80.0	
		Z	3.73	65.44	16.24		80.0	
$\begin{array}{\|l\|} \hline 10654- \\ \text { AAB } \\ \hline \end{array}$	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	3.73	64.77	16.12	2.23	80.0	± 9.6 \%
		Y	4.00	65.69	16.76		80.0	
		Z	3.74	65.07	16.28		80.0	
$10655-$$\mathrm{AAB}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	3.81	64.71	16.17	2.23	80.0	± 9.6 \%
		Y	4.06	65.68	16.79		80.0	
		Z	3.81	65.01	16.32		80.0	
$\begin{array}{\|l\|} \hline 10658- \\ \text { AAA } \\ \hline \end{array}$	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	3.06	66.59	11.16	10.00	50.0	± 9.6 \%
		Y	100.00	111.68	26.09		50.0	
		Z	3.93	69.81	12.66		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \\ & \hline \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	X	1.63	63.81	8.65	6.99	60.0	± 9.6 \%
		Y	100.00	113.13	25.67		60.0	
		Z	2.52	68.36	10.82		60.0	

10660- AAA	Pulse Waveform (200Hz, 40\%)	X	0.57	60.00	5.26	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	118.24	26.52		80.0	
		Z	0.68	61.70	6.30		80.0	
$10661-$ AAA	Pulse Waveform (200Hz, 60\%)	X	0.32	60.00	3.83	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	125.46	28.15		100.0	
		Z	0.29	60.00	3.83		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	7.43	367.15	53.93	0.97	120.0	$\pm 9.6 \%$
		Y	100.00	135.73	30.13		120.0	

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the fieid value.

APPENDIX D:SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

1) The network analyzer and probe system was configured and calibrated.
2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
3) The complex admittance with respect to the probe aperture was measured
4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$
Y=\frac{j 2 \omega \varepsilon_{r} \varepsilon_{0}}{[\ln (b / a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos \phi^{\prime} \frac{\exp \left[-j \omega r\left(\mu_{0} \varepsilon_{r}^{\prime} \varepsilon_{0}\right)^{1 / 2}\right]}{r} d \phi^{\prime} d \rho^{\prime} d \rho
$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^{2}=\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \phi^{\prime}, \omega$ is the angular frequency, and $j=\sqrt{-1}$.

Table D-I
Composition of the Tissue Equivalent Matter

Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450	5200-5800	5200-5800
Tissue	Head	Body										
Ingredients (\% by weight)												
Bactericide	See page 2-3	See page 2	0.1	0.1					See page 4		See page 5	
DGBE					47	31	44.92	29.44		26.7		
HEC			1	1								
NaCl			1.45	0.94	0.4	0.2	0.18	0.39		0.1		
Sucrose			57	44.9								
Polysorbate (Tween) 80												20
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		80

FCC ID: A3LSMN9600	CVPTEST	SAR EVALUATION REPORT	snmsump	Approved by: Quality Manager
Test Dates: 06/18/18-07/09/18	DUT Type: Portable Handset			APPENDIX D: Page 1 of 5
18 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.11 \mathrm{M} \\ 06 / 19 / 2018 \end{array}$

2 Composition / Information on ingredients The Item is composed of the following ingredients:	
$\mathrm{H}_{2} \mathrm{O}$	Water, 35-58\%
Sucrose	Sugar, white, refined, $40-60 \%$
NaCl	Sodium Chloride, 0-6\%
Hydroxyethyl-cellulose	Medium Viscosity (CAS\# 9004-62-0), <0.3\%
Preventol-D7	Preservative: aqueous preparation, (CAS\# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.7\% Relevant for safety; Refer to the respective Safety Data Sheet ${ }^{*}$

Figure D-1
Composition of 750 MHz Head and Body Tissue Equivalent Matter
Note: 750 MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-2
750MHz Body Tissue Equivalent Matter

FCC ID: A3LSMN9600	CVCTEST	SAR EVALUATION REPORT	snmsunp	Approved by: Quality Manager
Test Dates: $06 / 18 / 18-07 / 09 / 18$	DUT Type: Portable Handset			APPENDIX D: Page 2 of 5
2018 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 20.11 \mathrm{M} \\ 06 / 19 / 2018 \end{array}$

Schmid \& Partner Engineering AG	S	C	2	C

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +4144245 9700, Fax +41 442459779
info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Product No. Manufacturer	Head Tissue Simulating Liquid (HSL750V2) SL AAH 075 AA (Batch: 170612-4) SPEAG
Measurement Method	
TSL dielectric parameters measured using calibrated DAK probe.	
Setup Validation	
Validation results were within $\pm 2.5 \%$ towards the target values of Methanol.	
Target Parameters	
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.	
Test Condition	
Ambient TSL Temperature Test Date Operator	Environment temperatur $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$. $22^{\circ} \mathrm{C}$ 20-Jun-17 CL

Figure D-3
750MHz Head Tissue Equivalent Matter

| FCC ID: A3LSMN9600 | SAR EVALUATION REPORT | Approved by: |
| :--- | :--- | :--- | :---: |
| Test Dates: | DUT Type: | Quality Manager |
| 06/18/18 - 07/09/18 | Portable Handset | APPENDIX D: |
| 2018 PCTEST Engineering Laboratory, Inc. | Page 3 of 5 | |

Water	$50-73 \%$	
Non-ionic detergents	25-50\%	polyoxyethylenesorbitan monolaurate
NaCl	0-2\%	
Preservative	0.05-0.1\%	Preventol-D7
Safety relevant ingredients:		
CAS-No. 55965-84-9	<0.1 \%	aqueous preparation, containing 5 -chloro-2-methyl-3(2H). isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50\%	polyoxyethylenesorbitan monolaurate

According to international guidelines, the product is not a dangerous mixture and therefore not required to be marked by symbols.

Figure D-4
Composition of 2.4 GHz Head Tissue Equivalent Matter
Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-5
2.4 GHz Head Tissue Equivalent Matter

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water	$50-65 \%$
Mineral oil	$10-30 \%$
Emulsifiers	$8-25 \%$
Sodium salt	$0-1.5 \%$

Figure D-6
Composition of 5 GHz Head Tissue Equivalent Matter
Note: 5 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Figure D-7
5GHz Head Tissue Equivalent Matter

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-1
SAR System Validation Summary - 1g

$\begin{gathered} \hline \text { SAR } \\ \text { SYSTEM } \\ \# \\ \hline \end{gathered}$	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE CAL. POINT		COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
							(σ)	(عr)	SENSITIVITY	$\begin{aligned} & \text { PROBE } \\ & \text { LINEARITY } \\ & \hline \end{aligned}$	PROBE ISOTROPY	$\begin{aligned} & \text { MOD. } \\ & \text { TYPE } \end{aligned}$	DUTY FACTOR	PAR
E	750	3/11/2018	3213	ES3DV3	750	Head	0.890	40.788	PASS	PASS	PASS	N/A	N/A	N/A
E	835	3/5/2018	3213	ES3DV3	835	Head	0.925	43.335	PASS	PASS	PASS	GMSK	PASS	N/A
G	1750	8/31/2017	3332	ES3DV3	1750	Head	1.395	38.864	PASS	PASS	PASS	N/A	N/A	N/A
E	1900	5/22/2018	3213	ES3DV3	1900	Head	1.447	38.909	PASS	PASS	PASS	GMSK	PASS	N/A
G	2450	10/16/2017	3332	ES3DV3	2450	Head	1.880	38.615	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
G	2600	10/16/2017	3332	ES3DV3	2600	Head	2.051	38.039	PASS	PASS	PASS	TDD	PASS	N/A
H	5250	1/31/2018	3589	EX3DV4	5250	Head	4.516	36.066	PASS	PASS	PASS	OFDM	N/A	PASS
H	5600	1/31/2018	3589	EX3DV4	5600	Head	4.869	35.597	PASS	PASS	PASS	OFDM	N/A	PASS
H	5750	1/31/2018	3589	EX3DV4	5750	Head	5.112	35.351	PASS	PASS	PASS	OFDM	N/A	PASS
J	750	6/25/2018	3914	EX3DV4	750	Body	0.987	53.645	PASS	PASS	PASS	N/A	N/A	N/A
J	835	3/4/2018	3914	EX3DV4	835	Body	0.998	52.865	PASS	PASS	PASS	GMSK	PASS	N/A
G	1750	8/31/2017	3332	ES3DV3	1750	Body	1.532	51.024	PASS	PASS	PASS	N/A	N/A	N/A
1	1900	6/18/2018	7406	EX3DV4	1900	Body	1.575	51.579	PASS	PASS	PASS	GMSK	PASS	N/A
H	2450	9/7/2017	7410	EX3DV4	2450	Body	2.043	51.520	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-2
SAR System Validation Summary - 10g

$\begin{array}{\|c\|} \hline \text { SAR } \\ \text { SYSTEM } \\ \# \\ \hline \end{array}$	FREQ. [MHz]	DATE	PROBESN	PROBE TYPE	PROBE CAL. POINT		COND.	PERM.	CW VALIDATION			MOD. VALIDATION		
							(σ)	(हr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD.	DUTY FACTOR	PAR
G	1750	8/31/2017	3332	ES3DV3	1750	Body	1.532	51.024	PASS	PASS	PASS	N/A	N/A	N/A
1	1900	6/18/2018	7406	EX3DV4	1900	Body	1.575	51.579	PASS	PASS	PASS	GMSK	PASS	N/A
K	2450	4/3/2018	3319	ES3DV3	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	ES3DV3	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
D	5250	6/11/2018	7357	EX3DV4	5250	Body	5.529	48.096	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	6/11/2018	7357	EX3DV4	5600	Body	6.007	47.521	PASS	PASS	PASS	OFDM	N/A	PASS
D	5750	6/11/2018	7357	EX3DV4	5750	Body	6.214	47.275	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

| FCC ID: A3LSMN9600 | SAR EVALUATION REPORT | Approved by: |
| :--- | :--- | :--- | :---: |
| Test Dates: | DUT Type: | |
| 06/18/18 - 07/09/18 | Portable Handset | Quality Manager |
| © 2018 PCTEST Engineering Laboratory, Inc. | Page 1 of 1 | |

APPENDIX G: POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

1.1 Power Verification Procedure

The power verification was performed according to the following procedure:

1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

1.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
3. Steps 1 and 2 were repeated for all relevant frequency bands.
4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

| FCC ID: A3LSMN9600 | ReTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :---: | :---: |
| Quality Manager | | | |

1.3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

Mechanism(s)	Mode/Band	Conducted Power (dBm)		
		Un-triggered (Max)	Mechanism \#1 (Reduced)	Mechanism \#2 (Reduced)
Hotspot On	GSM 1900	29.69	26.43	
Hotspot On	UMTS B4	24.52	19.54	
Hotspot On	UMTS B2	24.42	19.41	
Hotspot On	LTE B4	24.71	19.87	
Hotspot On	LTE B66	24.76	19.93	
Hotspot On	LTE B25	23.25	19.73	
Hotspot On	LTE B2	24.33	19.84	
Hotspot On	LTE B41 PC3	23.82	19.76	
Hotspot On	LTE B41 PC2	26.72	19.71	
Grip	UMTS B4	24.55	21.01	
Grip	UMTS B2	24.4	20.38	
Grip	LTE B4	24.73	20.89	
Grip	LTE B66	24.77	20.9	
Grip	LTE B25	23.22	20.24	
Grip	LTE B2	24.28	20.36	
Grip	LTE B41 PC3	23.82	22.71	
Grip	LTE B41 PC2	26.72	22.68	
Hotspot On, then Grip	UMTS B4	24.55	19.52	19.51
Hotspot On, then Grip	UMTS B2	24.39	19.42	19.38
Hotspot On, then Grip	LTE B4	24.68	19.92	19.9
Hotspot On, then Grip	LTE B66	24.76	19.89	19.91
Hotspot On, then Grip	LTE B25	23.27	19.74	19.78
Hotspot On, then Grip	LTE B2	24.35	19.82	19.85
Hotspot On, then Grip	LTE B41 PC3	23.86	19.73	19.69
Hotspot On, then Grip	LTE B41 PC2	26.77	19.69	19.65
Grip, then Hotspot On	UMTS B4	24.52	20.99	19.52
Grip, then Hotspot On	UMTS B2	24.44	20.39	19.37
Grip, then Hotspot On	LTE B4	24.75	20.9	19.89
Grip, then Hotspot On	LTE B66	24.76	20.97	19.95
Grip, then Hotspot On	LTE B25	23.26	20.24	19.79
Grip, then Hotspot On	LTE B2	24.34	20.31	19.84
Grip, then Hotspot On	LTE B41 PC3	23.81	22.74	19.71
Grip, then Hotspot On	LTE B41 PC2	26.74	22.71	19.63

Table G-2
Distance Measurement Verification for Main Antenna

Mechanism(s)	Test Condition	Band	Distance Measurements (mm)		Minimum Distance per Manufacturer (mm)
			12	15	
Grip	Phablet - Back Side	High	12	14	6
Grip	Phablet - Front Side	Mid	10	14	
Grip	Phablet - Front Side	High	10	13	11
Grip	Phablet - Bottom Edge	Mid	12	17	
Grip	Phablet - Bottom Edge	High	12	17	

*Note: Mid band refers to: UMTS B2/4, LTE B2/4/25/66; High band refers to: LTE B41

| FCC ID: A3LSMN9600 | COTEST | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :---: | :---: |
| Quality Manager | | | |

1.4 WIFI Verification Summary

Table G-3
Power Measurement Verification WIFI

Mechanism(s)	Mode/Band	Conducted Power (dBm) (Max)	Mechanism \#1 (Reduced)
		20.28	15.31
Held-to-Ear	802.11 g	17.57	15.87
Held-to-Ear	$802.11 \mathrm{n}(2.4 \mathrm{GHz})$	17.25	15.91
Held-to-Ear	802.11 a	17.92	13.06
Held-to-Ear	$802.11 \mathrm{n}(5 \mathrm{GHz}, 20 \mathrm{MHz} \mathrm{BW})$	17.46	13.78
Held-to-Ear	$802.11 \mathrm{ac}(20 \mathrm{MHz} \mathrm{BW})$	17.28	13.54
Held-to-Ear	$802.11 \mathrm{n}(5 \mathrm{GHz}, 40 \mathrm{MHz} \mathrm{BW})$	16.74	13.81
Held-to-Ear	$802.11 \mathrm{ac}(40 \mathrm{MHz} \mathrm{BW})$	16.65	13.78
Held-to-Ear	$802.11 \mathrm{ac}(80 \mathrm{MHz} \mathrm{BW})$	15.32	13.74

Table G-4
Distance Measurement Verification for WIFI

Mechanism(s)	Test Condition	Band	Distance Measurements (mm)		Minimum Distance per Manufacturer (mm)
			Moving Toward	Moving Away	
	2.4 GHz	68	>83		
Held-to-Ear	Head - Right Cheek	5 GHz	68	>83	
Held-to-Ear	Head - Left Cheek	2.4 GHz	61	>83	5
Held-to-Ear	Head - Left Cheek	5 GHz	62	>83	

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4×4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 - Example of Exclusion Table for SISO Configurations

Table 2 - Example of Exclusion Table for 4x4 Downlink MIMO Configurations

Note: [CC] indicates component carrier with 4×4 DL MIMO antenna configuration

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

LTE Downlink Carrier Aggregaton was fully addressed in the original filing. Per FCC Guidance, only combinations that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M1804300090-01.A3L for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.
- When a device supports LTE capabilities with overlapping transmission frequency ranges, the standalone powers from the band with a larger transmission frequency range can be used to select measurement configurations for the band with the fully covered transmission frequency range.

Figure 1
DL CA Power Measurement Setup

FCC ID: A3LSMN9600	ECTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Test Dates:	DUT Type:	APPENDIX H:	
O6/18/18 - 07/09/18	Portable Handset		Page 2 of 6

Figure 2
DL CA with DL 4x4 MIMO Power Measurement Setup

FCC ID: A3LSMN9600	SAR EVALUATION REPORT	Reviewed by:	
Quality Manager			
Test Dates:	DUT Type:	APPENDIX H:	
O6/18/18 - 07/09/18	Portable Handset		Page 3 of 6
2018 PCTEST Engineering Laboratory, Inc.	REV 20.05 M		

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 41 as PCC

Table 1
Reduced Output Powers - Hotspot Mode Active

	PCC									scc1				sccz				Scc 3				Power	
com	Pcc and		cc(u) ch.		Mod.		$\begin{gathered} \text { PCCU RB } \\ \text { OHfset } \end{gathered}$	$\begin{gathered} \text { Pcc (OU) } \\ \text { Chanel } \end{gathered}$		scc bar		$\begin{array}{\|c\|c\|} \hline \text { sct (OU) } \\ \text { Chanel } \end{array}$		scc	$\left\lvert\, \begin{aligned} & \text { scc sw } \\ & \text { [MMH2] } \end{aligned}\right.$	$\operatorname{scc}(0)$ Channel		scc and	$\begin{gathered} \text { SCC BW } \\ {[\mathrm{MHz}]} \end{gathered}$	$\mathrm{scC}(0)$ Chanel	$\begin{gathered} \text { SCC (DL) Freq. } \\ {[\mathrm{MHz}]} \end{gathered}$		
CA, 414.414 (1)	TIE841	20	4105	2365	640	1	0	41055	236	LTE891	20	39750	206									2018	20.20
CA.414-41C	$L^{\text {LIE B }}$	${ }^{20}$	41055	23665	G20am	1	0	41055	23665	LIE841	${ }^{20}$	${ }^{39998}$	${ }^{2255.8}$		${ }^{20}$	${ }^{39750}$	${ }^{2066}$					${ }_{2025}^{2025}$	
${ }_{\text {Ca, } 410}$	$\frac{\text { LTE } 811}{\text { LTE } 81}$	$\frac{20}{20}$	41055 4005	${ }_{2}^{26365}$	6дая八	$\frac{1}{1}$	\bigcirc	$\frac{41055}{4055}$	${ }^{26365}$	$\frac{\text { LTE } 81}{\text { LTE } 81}$	$\stackrel{20}{20}$	${ }_{4}^{40837}$	${ }^{2616.7}{ }^{2616.7}$	$L_{\text {LIE } 81}^{\text {LTE } 41}$	${ }_{20}^{20}$	40659 3750	${ }_{2506}^{2596}$					20.28 2024 022	$\xrightarrow{2020} 20$
CA 416.41 C		20	4105	2635		1			${ }^{26365}$	LTE841	20		22616		20								
Ca, 415		20	41055	26365	баоам	+	0	41055	23635	LiE	${ }_{20}$	4085	20616	${ }^{178884}$	20	4065	25969	$\underline{16889}$	20	4046	257	20.25	20.20

1.3.2 LTE Band 41 PC2 as PCC

Table 2
Reduced Output Powers - Hotspot Mode Active

Combination	PCC									${ }_{\text {sccl }}$				scc 2				scc^{3}				Power	
	PCCBand	$\begin{gathered} \text { PCC BW } \\ {[\mathrm{MHzz]}} \end{gathered}$	PCC(Uu) ch.	$\left\|\begin{array}{c} \text { Prc (UL) } \\ \text { Frea. [MHz] } \end{array}\right\|$	Mod.	$\left\|\begin{array}{c} \mathrm{PCCULH} \\ \mathrm{RB} \end{array}\right\|$	$\begin{gathered} \text { PCCUL RB } \\ \text { Offset } \end{gathered}$	$\mathrm{PCC}(\mathrm{OL})$ Chanel	$\left\|\begin{array}{c} \text { Pcc (DLL) } \\ \text { Freq. } \\ \text { MHz } 2] \end{array}\right\|$	scc Band	$\begin{gathered} \mathrm{scc} \mathrm{Bw} \\ {[\mathrm{MHzz]}} \end{gathered}$	Scc (D)	$\left\|\begin{array}{c} \operatorname{scc}(D L) \\ \text { Freq. [MHz] } \end{array}\right\|$	Scc Band	$\begin{gathered} \mathrm{scc} \mathrm{BW} \\ {[\mathrm{MHz} \mathrm{c}]} \end{gathered}$	$\mathrm{scc}(\mathrm{DL})$ Channel	$\left\|\begin{array}{c} \operatorname{scc}(\mathrm{DLL}) \\ \text { freq. } \mathrm{MHz}] \end{array}\right\|$	scc Band	$\begin{gathered} \mathrm{scc} \mathrm{Bw} \\ {[\mathrm{MHz}]} \end{gathered}$	scc (Du) Channet	$\underset{[\mathrm{MHz]}}{\mathrm{ScC}(\mathrm{DL}) \text { Freq. }}$		$\begin{array}{\|c\|} \hline \text { LTE Single } \\ \text { Carriel } \mathrm{Tx} \\ \text { Power }(\mathrm{dBm}) \end{array}$
CA.41A-41A (1)	LTE 841 PC2	20	41490	2680	640AM	1	0	41990	2680	LTE $441 \mathrm{PC2}$	20	39750	2506									20.53	20.60
CA_41A-41C	LTE B41 PC2	20	41490	2680	640 AM	1	0	41990	2680	LTE 841PC2	20	39948	2525.8	LTE B41PC2	20	39750	2506	20.59	20.60
CA_41D	LTE E41 PC2	20	41990	2680	640am	1	0	41490	2680	LTE 841 PC2	20	41292	2660.2	LTE B41 PC2	20	41094	2640.4	.	.	.	-	20.53	20.60
CA_41-41A	LTE B41 PC2	20	41990	2680	6409M	1	0	41990	2680	LTE B41 PC2	20	41292	2660.2	LTE B41 PC2	20	39750	2506	.	.	\cdot	.	20.53	20.60
CA_41c-41C	LTE E41 PC2	20	41990	2680	640AM	1	0	41490	2680	LTE 841 PC2	20	41292	2660.2	LTE B41PC2	20	39948	2525.8	LTE 841 PC2	20	39750	2506	20.57	20.60
CA_41E	LTE E41 PC2	20	41490	2680	640am	1	0	41990	2680	LTE 841 PC 2	20	41292	2660.2	LTE B41 PC2	20	41094	2640.4	LTE E41 PC2	20	40896	2620.6	20.58	20.60

| FCC ID: A3LSMN9600 | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :---: |
| Quality Manager | | |
| Test Dates: | DUT Type: | APPENDIX H: |
| 06/18/18 - 07/09/18 | Portable Handset | Page 4 of 6 |

1.4 DL CA with DL 4x4 MIMO RF Conduction Powers

This device supports downlink 4×4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4×4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4×4 DL MIMO inactive. Additionally, SAR for 4×4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4×4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4×4 MIMO Downlink and downlink carrier aggregation inactive.

1.4.1 LTE 4x4 MIMO DL Standalone Powers

Table 3
Reduced Output Powers - Hotspot Mode Active

LTE	Bandwidth [MHz]	Channel	Frequency [MHz]	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power [dBm]	Target Power [dBm]
41	20	41055	2636.5	64QAM	1	0	20.26	20.20	20.0
41 PC2	20	41490	2680	64QAM	1	0	20.61	20.60	20.0

| FCC ID: A3LSMN9600 | SAR EVALUATION REPORT | Reviewed by: |
| :--- | :--- | :--- | :---: |
| Quality Manager | | |
| Test Dates: | DUT Type: | APPENDIX H: |
| O6/18/18 - 07/09/18 | Portable Handset | Page 5 of 6 |

1.4.2 LTE Band 41 as PCC

Table 4
Reduced Output Powers - Hotspot Mode Active

	pcc										scc1					scce					scc 3					Power	
Combination	PCC Band		(val ch.		mod.	$\underset{\mathrm{RB}}{\mathrm{PcCCLH}}$	$\left.\begin{gathered} \mathrm{rccul} \\ \text { R } \mathrm{ctset} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \mathrm{pcc} \\ \mathrm{Pcu}) \\ \text { ch. } \end{array}\right\|$		diant.	scc anand	$\begin{gathered} \mathrm{scc} \text { sw } \\ {[\mathrm{MHz2})} \end{gathered}$	(0) ch.		diant.	scc and	$\left\lvert\, \begin{aligned} & \mathrm{scc} \mathrm{Bw} \\ & {[\mathrm{MHz} \mathrm{c})} \end{aligned}\right.$	(scc ch.		diant.	ScC Band		(0) $\begin{gathered}\text { scc } \\ \text { (0) ch. }\end{gathered}$		diant		
	LTE 81	$\frac{20}{20}$	41055	26635	${ }_{\text {LGAOAM }}$	1	0	${ }_{4}^{41055}$	$\frac{2365}{2655}$	L4xamIMO		20	37850	$\frac{2506}{2506}$	222xMMO											$\frac{2023}{2023}$	$\frac{2020}{2020}$
	${ }_{\text {LTE } 81}$ LTE 81	$\frac{20}{20}$	${ }_{4}^{41055}$	${ }^{26365}$		1	\bigcirc	${ }_{4}^{41055}$	${ }^{26365}$	(4xamMO	${ }_{\text {LTE }}^{\text {LTE } 81}$	${ }_{20}^{20}$	39750	${ }_{2506}^{2506}$	4xa MIMO											${ }^{20.22}$	${ }_{2020}^{20.20}$
CA[414]-41C	LIE 84	${ }^{20}$	4105	26365	боадМ	1	0	${ }^{41055}$	2366.5	4xamMO	LTE B41	${ }^{20}$	3998	2555.8	2x2MMO	${ }_{\text {LTE E41 }}$	${ }^{20}$	39750	${ }^{2506}$	$22 \times$ MMO						${ }^{20.22}$	${ }^{20.20}$
CA.41A-[414]	LTE 841	20	41055	2836.5	${ }^{\text {64a9M }}$	1	0	41055	23665	$2 \times 2 \mathrm{MmO}$	LTEEA1	${ }^{20}$	39998	${ }^{2525.8}$	$4 \times 4 \times \mathrm{MmO}$	LTEE41	${ }_{20}^{20}$	39750	2506	4xamMO						${ }_{20.24}^{2024}$	20.20
CA [441]-[41]	LTE 841	20	41055	23635	69a9M	1	0	41055	26365	4xamimo	$\underline{T z E 41}$	20	39948	2555.8	4xamimo	LTE 641	20	39750	2506	4xammo						20.20	20.20
	${ }_{\text {LTE }}^{\text {LIE } 81}$	${ }_{20}^{20}$	${ }_{4}^{41055}$	${ }_{26365}^{26365}$	${ }_{6}^{\text {6адая }}$	1	\bigcirc	${ }_{4}^{41055}$	${ }_{\text {2636.5 }}^{26365}$			${ }_{20}^{20}$	${ }_{\text {a }}^{40857}$	${ }_{2}^{2616.7}{ }^{2616.7}$	${ }_{\text {axam }}^{\text {4xam }}$	${ }_{\text {Lite }}^{\text {Lit } 841}$	${ }_{20}^{20}$	40959	${ }_{2}^{2506}$	4xaMMO						$\underset{20.11}{20.19}$	$\xrightarrow{20.20}$2020
CA [1416-41A	LTE 81	20	41055	26365	6аasM	1	,	41055	2636.5	4xamimo	LTE 81	20	40857	26167	$4 \times 4 \mathrm{MmO}$	LTE 841	20	39750	2506	222 MmO						20.21	20.20
CA [4419][\|41A]	LIE B41	20	4105	26365	6809M	1	0	41055	23635	4xa M1MO	LTE 84	20	40857	26167	4xa M1M0	LEE841	20	39750	2506	4xamMO						20.21	20.20
Ca, [14C]-41C	LIE 841	20	${ }_{4}^{41055}$	26365	G6asM	1	0	41055	2363.5	$2 \times 2 \mathrm{MmO}$	LTE841	20		2266	$2 \times 2 \mathrm{MmO}$	LIE E41	${ }^{20}$	33948		4xaMmO	LIE 841	${ }^{20}$	39750	2506	4xamino	${ }^{20.22}$	20.20
Ca, /41/-414	LIE 841								26365																2ximimo		20

1.4.3 LTE Band 41 PC2 as PCC

Table 5
Reduced Output Powers - Hotspot Mode Active

Combination	PCC										scc1										scC					Power	
	PCC Band		$\left\|\begin{array}{c} \mathrm{PcCc} \\ (\mathrm{UL}) \mathrm{Ch} \end{array}\right\|$	$\left.\begin{gathered} \text { Pcc (ULL } \\ \text { Freq } \\ {[M H z]} \end{gathered} \right\rvert\,$	Mod.	$\left\|\begin{array}{c} \mathrm{PCCULH} \\ \mathrm{RB} \end{array}\right\|$	$\left\|\begin{array}{c} \text { Pccut } \\ \text { RB } \\ \text { Rffset } \end{array}\right\|$	$\left\|\begin{array}{c} \text { pcc } \\ (\mathrm{OLO}) \mathrm{ch} \end{array}\right\|$	$\begin{gathered} \text { PCC (DL) } \\ \text { Freq. }[\mathrm{MHz}] \end{gathered}$	DLAnt. Config	scce Band	$\left.\begin{array}{\|c} \mathrm{sccsw} \\ \text { [MHz] } \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \mathrm{scc} \\ (\mathrm{OLO}) \mathrm{ch} \end{array}\right\|$	$\left.\begin{gathered} \operatorname{scc}(D) \\ \text { freq } \\ {[M H z]} \end{gathered} \right\rvert\,$	DLAnt. Confige Config.	ScC Band		$\left\|\begin{array}{c} \text { scc } \\ (101) \text { ch. } \end{array}\right\|$	$\begin{gathered} \mathrm{scc}(\mathrm{DLL} \\ \left.\begin{array}{c} \text { Freq. } \\ \text { (MH2] } \end{array}\right) \end{gathered}$	ol Ant. Config.	SCC Band	$\left.\begin{array}{c} \mathrm{sccsw} \\ {[\mathrm{MHz]}} \end{array}\right)$	$\left\lvert\, \begin{gathered} \mathrm{scc} \\ (\mathrm{OL}) \mathrm{ch} . \end{gathered}\right.$	$\left.\begin{gathered} \mathrm{scc}(\mathrm{DLL} \\ \text { Freq } \\ {[\mathrm{MHz]}} \end{gathered} \right\rvert\,$	DLAAnt. Confie.		$\left.\begin{gathered} \text { LTE Single } \\ \text { Carrier Tx } \\ \text { Power (dBm) } \end{gathered} \right\rvert\,$
CA $\ 41 \mathrm{~A}-41 \mathrm{~A}(1)$	LTE B41 PC2	20	41490	2680	б4aAM	1	0	4190	2680	4xa MIMO	LTE B41 PC2	20	39750	2506	2x2 M1M0				20.62	20.60
CA [414A] [41AA] (1)	LTE B41 PC2	20	41490	2680	64aAM	1	0	4190	2680	4x4 M1Mo	LTE B41PC2	20	39750	2506	4x4 M1M0	-	.	-	-	-	-	.	.	.	-	20.62	20.60
CA $_$[14] -41A (1)	LTE B41 PC2	20	41490	2680	64aAM	1	0	41990	2680	$2 \times 2 \mathrm{MmO}$	LTE B41 PC2	20	39750	2506	4×4 M1M0	-	.	-	.	-	-	20.61	20.60
CA $[414] \cdot 41 \mathrm{C}$	LTE B41 PC2	20	41490	2680	64aAM	1	0	4199	2680	4×4 M1MO	LTE B41 PC2	20	39948	2525.8	2x2 M1MO	LTE B41 PC2	20	39750	2506	2x2 M1MO	-	.	-	.	.	20.59	20.60
CA_41A-[41C]	LTE B41 PC2	20	41490	2680	64AAM	1	0	41490	2680	$2 \times 2 \mathrm{M1M0}$	LTE B41 PC2	20	39948	2525.8	4×4 M1MO	LTE B41 PC2	20	39750	2506	4×4 MIMO	.	.	-	.	.	20.60	20.60
CA_[41A]-[41C]	LTE B41 PC2	20	41490	2680	64AAM	1	0	41490	2680	4x4 M1M0	LTE B41 PC2	20	39948	2525.8	4×4 M1MO	LTE B41 PC2	20	39750	2506	4х4 M1M0	-	.		.	.	20.59	20.60
CA_[410]	LTe b41PC2	20	41490	2680	640am	1	0	41490	2680	4x4 M1M0	LTE B41 PC2	20	41292	2660.2	4×4 M1MO	LTe b41 PC2	20	41094	2640.4	4х4 М1M0	-	.	-	.	-	20.58	20.60
CA_41-[414A]	LTE B41 PC2	20	41990	2680	640am	1	0	41490	2680	2×2 M1M0	LTE B41 PC2	20	41292	2660.2	2x2 M1mo	LTe b41 PC2	20	39750	2506	4х4 Мıмо	-	20.59	20.60
CA $[414]$-41A	LTE B41 PC2	20	41990	2680	64AAM	1	0	4190	2680	$4 \times 4 \mathrm{MIMO}$	LTE B41 PC2	20	41292	2660.2	4×4 M1MO	LTE B41 PC2	20	39750	2506	2x2 M1M0	\cdot	.	-	.	.	20.62	20.60
CA_[41C]-[41A]	LTE B41 PC2	20	41990	2680	640am	1	0	41490	2680	4×4 $\mathrm{MIMO}^{\text {a }}$	LTE B41PC2	20	41292	2660.2	4x4 M1M0	LTE B41 PC2	20	39750	2506	4х4 М1м0	-	-	-	.	-	20.58	20.60
CA [414]-41C	LTE B41 PC2	20	41990	2680	640AM	1	0	4190	2680	2×2 M1M0	LTE B41 PC2	20	41292	2660.2	2x2 M1M0	LTE B41 PC2	20	39948	2525.8	4х4 М1МО	LTE B41 PC2	20	39750	2506	4x4 MIMO	20.64	20.60
CA_ 141 C -41C	LTE B41 PC2	20	41490	2680	640AM	1	0	41490	2680	4x4 M1mo	LTE B41 PC2	20	41292	2660.2	4×4 M1M0	LTE B41 PC2	20	3998	2525.8	2x2 M1M0	LTE E41 PC2	20	39750	2506	2x2 M1M0	20.64	20.60

[^0]: ${ }^{E}$ Uncertainly is determined using the max. deviation from linear response applying reclangular distribution and is expressed for the square of the field value.

[^1]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6)
 ${ }^{B}$ Numerical linearization parameter: uncertainty not required.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^2]: ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^3]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6)
 ${ }^{8}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^4]: ${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

