

Plot 7-114. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)

Plot 7-115. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 01 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 91 of 260	
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0	

ıy

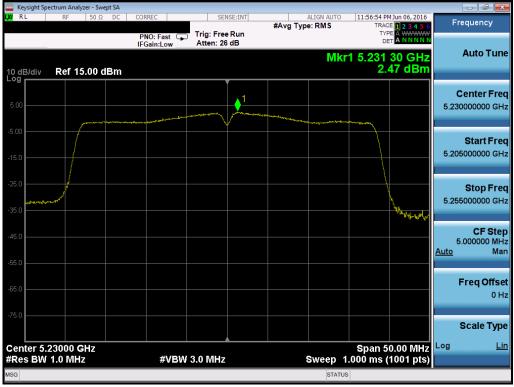
Plot 7-117. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 92 of 260
© 2017 PCTEST Engineering Lab	oratory Inc	•		V40

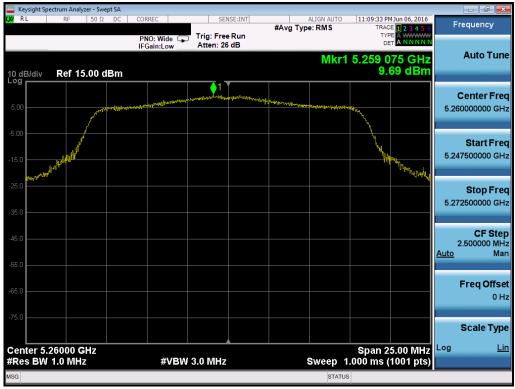
Plot 7-118. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)



Plot 7-119. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 02 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 93 of 260	
© 2017 PCTEST Engineering Lab	oratory. Inc.			V 4.0	

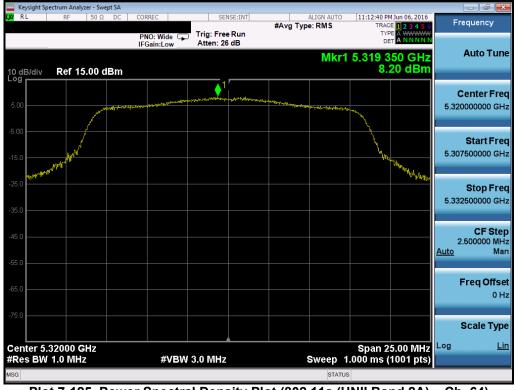
٦gi ٦g гy,


Plot 7-121. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 94 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Faye 94 01 200
© 0047 DOTEOT En alia a alia a la d				1/ 1.0

RL	RF	Analyzer - Sv 50 Ω		CORREC	SE	NSE:INT		ALIGN AUTO		M Jun 07, 2016	Frequency
				PNO: Fast C	Trig: Fre Atten: 20		#Аvg Тур	e: RMS	TY	CE 1 2 3 4 5 6 PE A WWWW T A N N N N N	
) dB/	/div Re	f 15.00	dBm					M	(r1 5.20 -1.	7 7 GHz 78 dBm	Auto Tu
°^g 											Center Fr 5.210000000 G
.00 -		- mangemplut	Anternitine	MMMM And Marked and And	akilenteta killenteta killenteta killenteta killenteta killenteta killenteta killenteta killenteta killenteta k	la contraction of the second o	atalat-type atom	Norwit-geographicski	faller altrillaller of		Start Fr 5.160000000 G
5.0 -	a sile										Stop Fr 5.260000000 G
5.0 - 5.0 -	ntentin tu									· Montrached	CF St 10.000000 M <u>Auto</u> M
5.0 -											Freq Offs 0
5.0											Scale Ty
	er 5.2100 BW 1.0 I			#VB	N 3.0 MHz			Sweep 1	Span 1 .000 ms (00.0 MHz 1001 pts)	Log
G								STATUS	5		

Plot 7-122. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)


Plot 7-123. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 95 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 95 01 200
© 2017 DOTECT Engineering Lak	anatam (Inc			1/40

Reysignt Sp	ectrum Analyz RF	er - swej 50 Ω		CORREC			SENSE:INT		ALIGN AUTO		M Jun 06, 2016	-	
				PNO: W	Vide 🗔		Free Run	#Avg Ty	be:RMS	TRAC	E 1 2 3 4 5 6 E A WWWW A NNNNN	Fr	equency
				IFGain:		Atte	n: 26 dB						Auto Tun
I0 dB/div	Ref 15	.00 d	Bm						MKr1	5.280 8 9.	800 GHz 07 dBm		
							1	_				C	enter Fre
5.00		1 North	e jąch oktora	and the second	and the second second second			and the second sec	**************************************	all a		5.28	000000 GH
-5.00	/	/											
-15.0	all									W.	44	5.26	Start Fre 7500000 GH
-10.0	- Martin										Above alever all all		
-25.0													Stop Fre
-35.0												5.29	2500000 GH
													CF Ste
45.0												2 Auto	.500000 MH Ma
-55.0												Auto	INC
-65.0												1	Freq Offs
-03:0													0 H
75.0													T
													Scale Typ
	28000 G 1.0 MHz				#VBW	3.0 N	ЛНz		Sweep 1	Span 2 .000 m <u>s (</u>	5.00 MHz 1001 pts)	Log	L
ISG									STATUS				

Plot 7-124. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-125. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 06 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 96 of 260
© 2017 PCTEST Engineering Lab	oratory Inc	•		V40

Plot 7-126. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

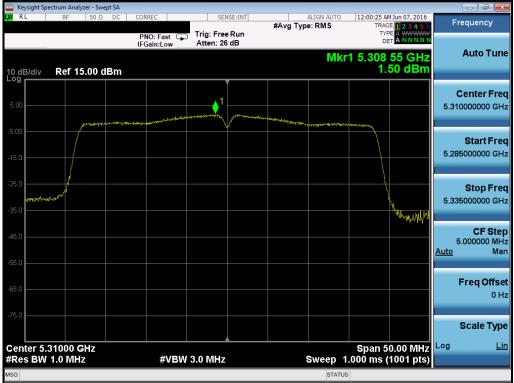
Plot 7-127. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 07 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 97 of 260		
© 2017 PCTEST Engineering Lab	© 2017 PCTEST Engineering Laboratory, Inc.					

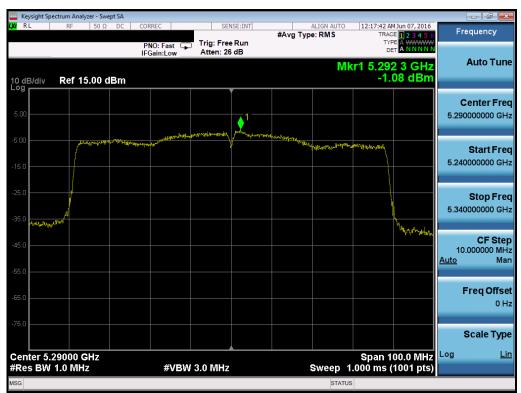
١g

	ectrum Analyzer											
L <mark>XI</mark> RL	RF	50Ω DC	C CORR	EC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		4 Jun 06, 2016 E 1 2 3 4 5 6	F	equency
			PNC IFGa): Wide 😱 ain:Low	Trig: Free Atten: 26		• //		TYP			
10 dB/div Log	Ref 15.0	00 dBn	n					Mkr1	5.320 8 6.	96 dBm		Auto Tune
						♦ ¹						Center Freq
5.00		Marine Conner		And the second second				a	-me y		5.32	0000000 GHz
-5.00	/								L V		5.30	Start Freq 7500000 GHz
-15.0	www.									Kohlunu and a start and a start a star		
-35.0											5.33	Stop Freq 2500000 GHz
												CF Step
-45.0											Auto 2	.500000 MHz Man
-55.0												Freq Offset
-65.0												0 Hz
-75.0												Scale Type
Center 5. #Res BW	.32000 GH	z		#VBW	3.0 MHz			Sween 1	Span 2 1.000 ms (5.00 MHz	Log	Lin
MSG	10 10112				0.0-11112			STATU		roor pts)		

Plot 7-128. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)



Plot 7-129. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 98 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset	łandset	
© 2017 PCTEST Engineering Lat	oratory. Inc.			V 4.0

PC ngın ering i ory,

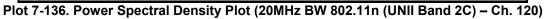

Plot 7-130. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

Plot 7-131. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 00 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 99 of 260	
© 2017 PCTEST Engineering Lat	poratory. Inc.			V 4.0	

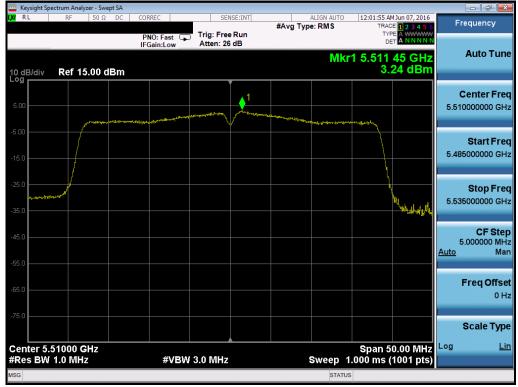
Plot 7-133. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

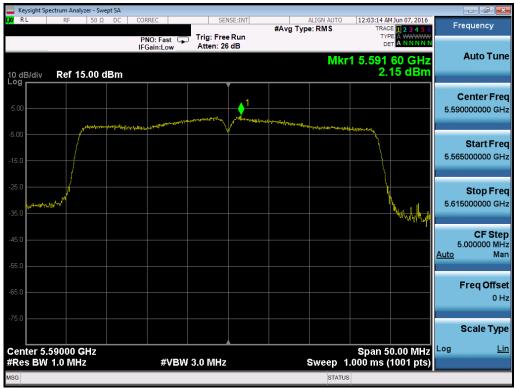
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 100 of 260
© 2017 PCTEST Engineering Lat	oratory. Inc.			V 4.0



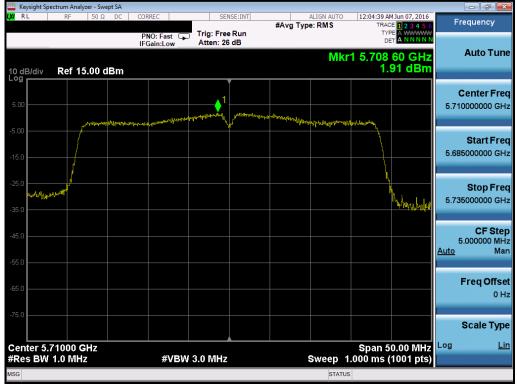

Plot 7-135. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

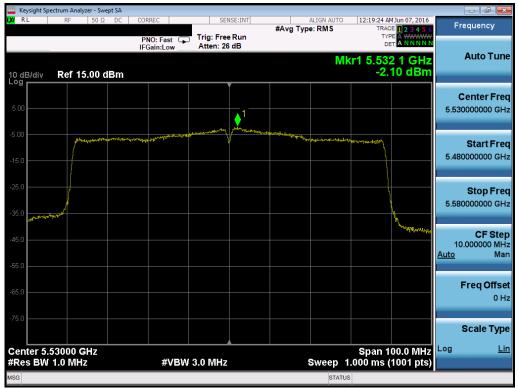
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 101 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 101 of 260
© 0047 DOTEOT Ex site s site a Lak	e e mede ma a la c			1/40



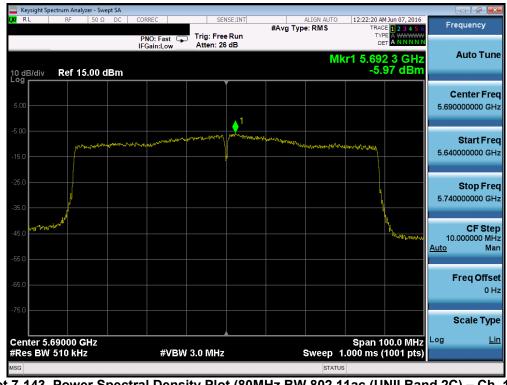

Plot 7-137. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	ISUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 102 of 260
© 2017 DOTECT Engineering Lak	anatam (Inc			V 4.0




Plot 7-139. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 102 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 103 of 260
© 0047 DOTEOT Ex site s site a Lak	e e mede ma a la e			1/40


Plot 7-141. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 104 of 260
© 2017 PCTEST Engineering Lat	oratory. Inc.			V 4.0

Plot 7-142. Power Spectral Density Plot (80MHz BW 802.11n (UNII Band 2C) – Ch. 122)


Plot 7-143. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 105 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 105 of 260
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/500kHz]	Margin [dB]	Pass / Fail
	5745	149	а	6	5.95	30.0	-24.05	Pass
	5785	157	а	6	5.75	30.0	-24.25	Pass
	5825	165	а	6	5.69	30.0	-24.31	Pass
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	6.16	30.0	-23.84	Pass
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	5.19	30.0	-24.81	Pass
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	5.17	30.0	-24.83	Pass
	5755	151	n (40MHz)	13.5/15 (MCS0)	0.04	30.0	-29.96	Pass
	5795	159	n (40MHz)	13.5/15 (MCS0)	-0.37	30.0	-30.37	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-2.57	30.0	-32.57	Pass

Table 7-20. Band 3 Conducted Power Spectral Density Measurements

Plot 7-144. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 106 of 260
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0

Keysight S RL	pectrum Analyz RF			00005			0.51	uor aut			111.00.01		_	
KL	K⊧	50 Ω	DC	CORRE				NSE:INT	#Avg T	ALIGN AUTO	TRA	PM Jun 06, 2016 ACE 1 2 3 4 5 6	F	requency
					Wide ⊂ n:Low		ig: Free tten: 26				T) [
										Mkr1	5.784	475 GHz		Auto Tun
0 dB/div og	Ref 15	.00 d	Bm								5	.75 dBm		
							<u> </u>							Center Fre
5.00						www		man	Strange					5000000 GH
		, mark		and any services	And and a second				and the first of the state	in a contraction of the second	mon			
5.00		/												Start Fre
15.0		/									N		5.77	2500000 GI
13.0	Ward Ward										- Villey	high reactions		
25.0	JANY .											and the second		Stop Fre
													5.79	7500000 GH
35.0														
														CF Ste
45.0														2.500000 MI
55.0													<u>Auto</u>	Ma
														F == = 0#=
65.0														Freq Offs
75.0														Scale Typ
	.78500 G									0	Span 2	25.00 MHz (1001 pts)	Log	L
Res BM	/ 510 kHz				#VB	W 3.0	MHz			sweep 1	.000 ms	(1001 pts)		

Plot 7-146. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

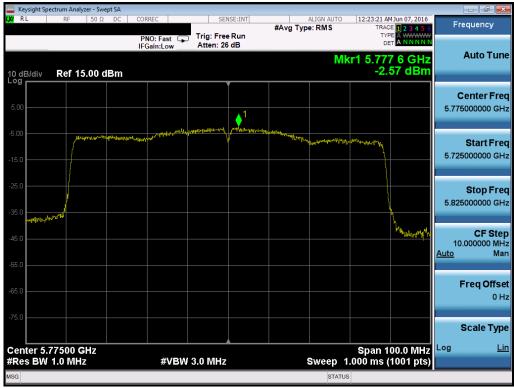
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 107 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 107 01 200
© 2017 DOTECT Engineering Lak	anatami laa			1/40


Plot 7-148. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 109 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 108 of 260
© 2017 PCTEST Engineering Lat	poratory Inc	·		V/10

RL	Spectrum Analyz RF	50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	11:51:42 PM Jun 06, 2016	Frequency
			PNO: Wide ◯ IFGain:Low	Trig: Free Run Atten: 26 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	
0 dB/div	Ref 15	.00 dBm			Mkr1	5.825 650 GHz 5.17 dBm	Auto Tur
°g		proven approved	an a		Mary Control of the south of th	+	Center Fre 5.825000000 GH
5.0							Start Fre 5.812500000 GF
5.0 							Stop Fr 5.837500000 Gi
5.0							CF Ste 2.500000 Mi <u>Auto</u> M
5.0							Freq Offs
5.0							Scale Ty
	5.82500 G V 510 kHz		#VB	N 3.0 MHz	Sweep 1	Span 25.00 MHz I.000 ms (1001 pts)	Log <u>L</u>
G					STATU		

Plot 7-149. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-150. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 109 of 260	

Plot 7-152. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	UNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 110 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 110 of 260	

Summed MIMO Power S	pectral Density	/ Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]		Summed MIMO Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.95	6.80	9.40	11.0	-1.60	Pass
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.81	6.42	9.14	11.0	-1.86	Pass
d 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	6.53	7.48	10.04	11.0	-0.96	Pass
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	2.03	2.61	5.34	11.0	-5.66	Pass
_	5230	46	n (40MHz)	13.5/15 (MCS0)	2.27	2.47	5.38	11.0	-5.62	Pass
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	0.15	-1.78	2.30	11.0	-8.70	Pass
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.83	6.58	9.72	11.0	-1.28	Pass
4	5280	56	n (20MHz)	6.5/7.2 (MCS0)	6.88	6.75	9.83	11.0	-1.17	Pass
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	6.80	6.96	9.89	11.0	-1.11	Pass
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	2.56	2.42	5.50	11.0	-5.50	Pass
	5310	62	n (40MHz)	13.5/15 (MCS0)	2.01	1.50	4.77	11.0	-6.23	Pass
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-0.83	-1.08	2.06	11.0	-8.94	Pass
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.92	6.63	9.79	11.0	-1.21	Pass
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	6.87	6.30	9.60	11.0	-1.40	Pass
2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.35	6.12	9.24	11.0	-1.76	Pass
Band	5510	102	n (40MHz)	13.5/15 (MCS0)	2.34	3.24	5.82	11.0	-5.18	Pass
Ba	5590	118	n (40MHz)	13.5/15 (MCS0)	1.16	2.15	4.69	11.0	-6.31	Pass
	5710	142	n (40MHz)	13.5/15 (MCS0)	2.35	1.91	5.14	11.0	-5.86	Pass
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-0.48	-2.10	1.80	11.0	-9.20	Pass

Table 7-21. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenn-1 Power Density [dBm]	-		Max Permissible Power Density [dBm/500kHz]	Margin	Pass / Fail
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	6.45	6.16	9.32	30.0	-20.68	Pass
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	5.72	5.19	8.48	30.0	-21.52	Pass
9	5825	165	n (20MHz)	6.5/7.2 (MCS0)	4.98	5.17	8.09	30.0	-21.91	Pass
Ban	5755	151	n (40MHz)	13.5/15 (MCS0)	-0.20	0.04	2.93	30.0	-27.07	Pass
_	5795	159	n (40MHz)	13.5/15 (MCS0)	-0.50	-0.37	2.58	30.0	-27.42	Pass
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-1.35	-2.57	1.10	30.0	-28.90	Pass

Table 7-22. Band 3 MIMO Conducted Power Spectral Density Measurements

Note:

Per KDB 662911 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz the average conducted power spectral density was measured to be 5.95 dBm for Antenna-1 and 6.80 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(5.95 dBm + 6.80 dBm) = (3.93 mW + 4.79 mW) = 8.72 mW = 9.40 dBm

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 111 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 111 of 260	
© 2017 PCTEST Engineering Laboratory Inc.					

Frequency Stability 7.6 §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,180,000,000	Hz
CHANNEL:	36	
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)			
100 %	3.80	+ 20 (Ref)	5,180,000,128	128	0.00000247			
100 %		- 30	5,179,999,956	-44	-0.0000085			
100 %		- 20	5,180,000,048	48	0.00000093			
100 %		- 10	5,180,000,067	67	0.00000129			
100 %		0	5,179,999,766	-234	-0.00000452			
100 %		+ 10	5,179,999,809	-191	-0.00000369			
100 %		+ 20	5,179,999,951	-49	-0.00000095			
100 %		+ 30	5,180,000,081	81	0.00000156			
100 %		+ 40	5,180,000,216	216	0.00000417			
100 %		+ 50	5,180,000,080	80	0.00000154			
BATT. ENDPOINT	3.40	+ 20	5,179,999,953	-47	-0.00000091			
Table 7-23	Table 7-23. Frequency Stability Measurements for UNII Band 1 (Ch. 36)							

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 112 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 112 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

ng

Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,260,000,000	Hz
CHANNEL:	52	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)			
100 %	3.80	+ 20 (Ref)	5,259,999,727	-273	-0.00000519			
100 %		- 30	5,259,999,795	-205	-0.00000390			
100 %		- 20	5,259,999,821	-179	-0.00000340			
100 %		- 10	5,260,000,175	175	0.00000333			
100 %		0	5,259,999,592	-408	-0.00000776			
100 %		+ 10	5,260,000,002	2	0.00000004			
100 %		+ 20	5,259,999,991	-9	-0.00000017			
100 %		+ 30	5,260,000,331	331	0.00000629			
100 %		+ 40	5,260,000,363	363	0.00000690			
100 %		+ 50	5,260,000,013	13	0.00000025			
BATT. ENDPOINT	3.40	+ 20	5,259,999,971	-29	-0.00000055			
Table 7-24	Table 7-24. Frequency Stability Measurements for UNII Band 2A (Ch. 52)							

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 112 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 113 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

05/16/2016

Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,500,000,000	Hz
CHANNEL:	100	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)	
100 %	3.80	+ 20 (Ref)	5,500,000,002	2	0.00000004	
100 %		- 30	5,499,999,709	-291	-0.00000529	
100 %		- 20	5,500,000,067	67	0.00000122	
100 %		- 10	5,499,999,957	-43	-0.00000078	
100 %		0	5,500,000,156	156	0.00000284	
100 %		+ 10	5,500,000,021	21	0.0000038	
100 %		+ 20	5,500,000,008	8	0.00000015	
100 %		+ 30	5,499,999,750	-250	-0.00000455	
100 %		+ 40	5,499,999,684	-316	-0.00000575	
100 %		+ 50	5,500,000,001	1	0.00000002	
BATT. ENDPOINT	3.40	+ 20	5,499,999,893	-107	-0.00000195	
Table 7-25. Frequency Stability Measurements for UNII Band 2C (Ch. 100)						

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 114 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 114 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

Frequency Stability <u>§15.407(g)</u>

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

OPERATING FREQUENCY:	5,745,000,000	Hz
CHANNEL:	149	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)	
100 %	3.80	+ 20 (Ref)	5,744,999,912	-88	-0.00000153	
100 %		- 30	5,745,000,012	12	0.00000021	
100 %		- 20	5,744,999,863	-137	-0.00000238	
100 %		- 10	5,745,000,454	454	0.00000790	
100 %		0	5,744,999,957	-43	-0.00000075	
100 %		+ 10	5,745,000,067	67	0.00000117	
100 %		+ 20	5,744,999,967	-33	-0.00000057	
100 %		+ 30	5,744,999,911	-89	-0.00000155	
100 %		+ 40	5,744,999,980	-20	-0.00000035	
100 %		+ 50	5,744,999,563	-437	-0.00000761	
BATT. ENDPOINT	3.40	+ 20	5,744,999,914	-86	-0.00000150	
Table 7-26. Frequency Stability Measurements for UNII Band 3 (Ch. 149)						

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 115 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 115 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

ing

Radiated Spurious Emission Measurements – Above 1GHz 7.7 §15.407(b.1)(b.6) §15.205 §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-27 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-27. Radiated Limits

Test Procedures Used

KDB 789033 D02 v01r02 - Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 116 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 116 of 260
© 2017 PCTEST Engineering Lat	oratory. Inc.			V 4.0

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

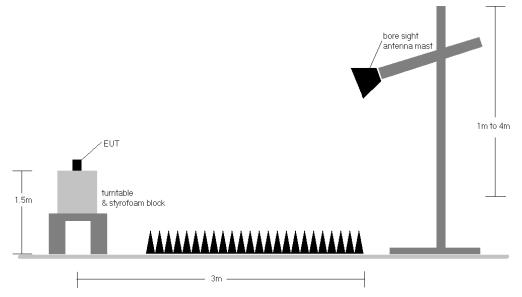


Figure 7-5. Test Instrument & Measurement Setup

Test Notes

- All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01r02 Section G.
- 2. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-27.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 6-11. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 117 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 117 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

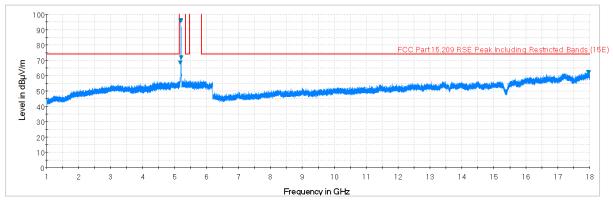
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 9. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 10. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

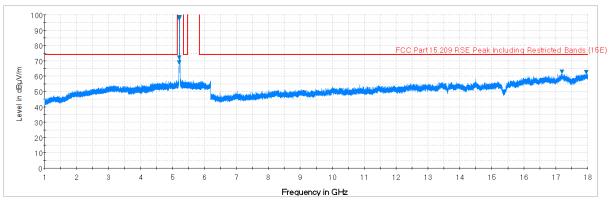
Determining Spurious Emissions Levels

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBµV/m] Limit [dBµV/m]

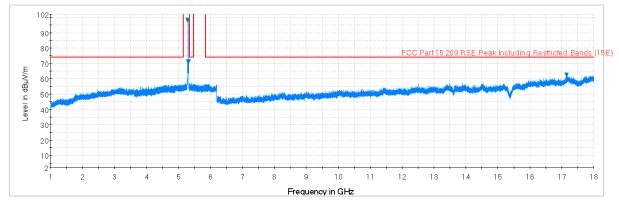
Radiated Band Edge Measurement Offset

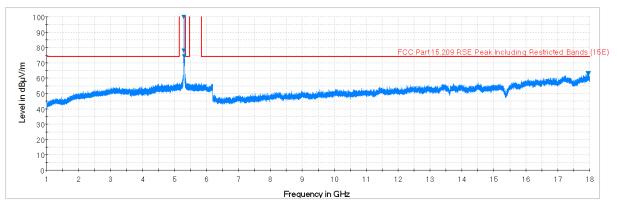

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

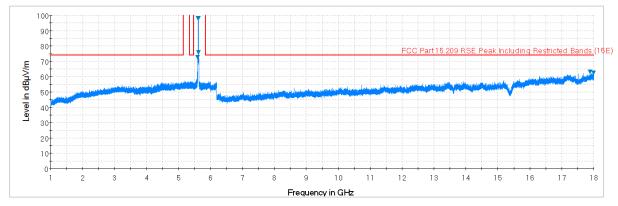

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 119 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 118 of 260
© 2017 PCTEST Engineering Laboratory. Inc.				

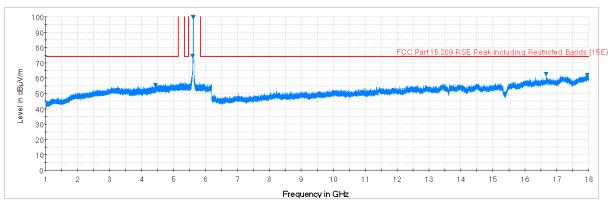
7.7.1 Antenna-1 Radiated Spurious Emission Measurements


Plot 7-153. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

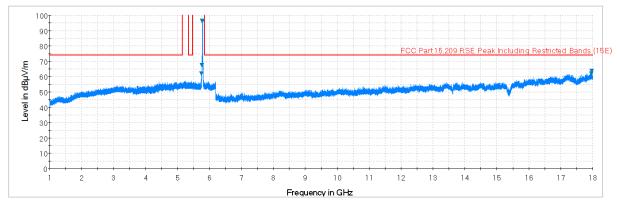

Plot 7-154. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

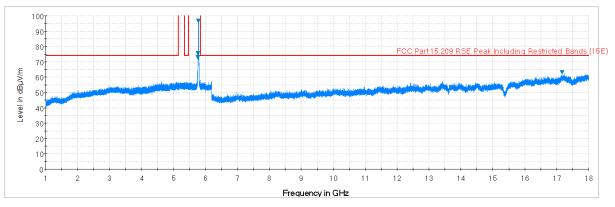
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 110 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 119 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Plot 7-155. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)


Plot 7-156. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

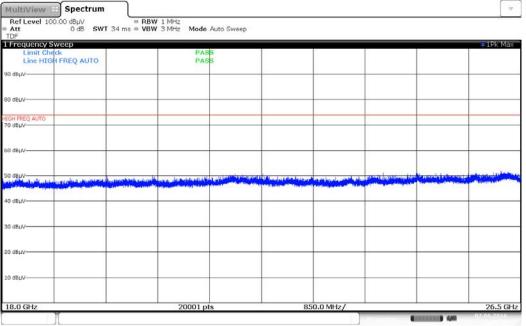
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 120 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

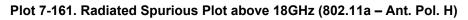

Plot 7-157. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. H)


Plot 7-158. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

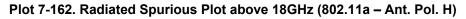
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 121 of 260		
© 2017 PCTEST Engineering Laboratory, Inc.						

Plot 7-159. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. H)



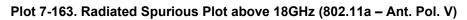

Plot 7-160. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 122 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 122 01 200		
© 2017 PCTEST Engineering Laboratory, Inc.						

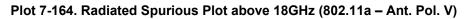


Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

Ref Level 100.00 dBµV	 RBW 1 MHz 					
Att 0 dB SWT 54 DF	ms • VBW 3 MHz Mode A	uto Sweep				
Frequency Sweep						1Pk Max
Limit Check	PASS					
Line HIGH FREQ AUTO	PASS					
dBµV						
dBµV						
H FREQ AUTO						
dBµV				-		
					and the state of the	
and the first of the second	and the state of the last state of the installed in the state of the s	and a second	id and line likeland			The profession of the second
dBµV						
dBuV-						
dBµV						
19						
dBuV						
			1.35 GHz/			



FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Degra 102 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 123 of 260		
© 2017 PCTEST Engineering Laboratory, Inc.						



Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

Att 0 dB SWT	= RBW 1 M	Hz Hz Mode Auto Swee	- 11				
DF	34 ms = VBW 3 M	Hz Mode Auto Swee	p				
Frequency Sweep		PASS					1Pk Max
Line HIGH FREQ AUTO		PASS					
dBµV				-			
dBuV		1					-
H FREQ AUTO							
dBµV							
dBuV		an and an inclusion of the state of the	in a fair and a state of the st	and a second second second	and the second second	terrel a terretario	Standbard and state
		or a state back of sectors in the state of the sector is the sector of t	the second s	and the second design of the s			
dBuV-							
dBuV							
dBµV			_				
dBµV							
				50.0 MHz/			26.5 Gł

DF Frequency Sweep			1Pk Max
Limit Check	PASS		THE MO
Line HIGH FREQ AUTO	PASS		
) dBµV			
a aptiv			
dBuV-			
H FREQ AUTO			
dBuV			
d8µV			
وريابة فالفرد بعالاته ساديب ودوحا والدواف الفطاريع وال	and a superior of the ball of the stand	in the second	and the second second second
dBuV			
dBuV			
dBµV-			
dBµV			
6.5 GHz	28001 pts	1.35 GHz/	40.0 Gł

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 124 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 124 01 200		
© 2017 PCTEST Engineering Laboratory, Inc.						

Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	-	-	-98.77	48.08	0.00	56.31	68.20	-11.89
*	15540.00	Average	Н	-	-	-109.94	53.35	0.00	50.41	53.98	-3.57
*	15540.00	Peak	Н	-	-	-98.31	53.35	0.00	62.04	73.98	-11.94
*	20720.00	Average	Н	-	-	-107.90	44.39	-9.54	33.94	53.98	-20.04
*	20720.00	Peak	Н	-	-	-95.40	44.39	-9.54	46.44	73.98	-27.54
	25900.00	Peak	Н	-	-	-93.98	45.11	-9.54	48.59	68.20	-19.61

Table 7-28. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
	10400.00	Peak	н	-	-	-98.77	48.05	0.00	56.28	68.20	-11.92	
*	15600.00	Average	Н	-	-	-110.33	53.44	0.00	50.10	53.98	-3.88	
*	15600.00	Peak	Н	-	-	-99.13	53.44	0.00	61.30	73.98	-12.68	
*	20800.00	Average	Н	-	-	-112.85	44.39	-9.54	29.00	53.98	-24.98	
*	20800.00	Peak	Н	-	-	-100.94	44.39	-9.54	40.91	73.98	-33.07	
	26000.00	Peak	н	-	-	-99.77	45.12	-9.54	42.80	68.20	-25.40	
	Table 7-29 Padiated Measurements											

Table 7-29. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 125 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 125 of 260		
© 2017 PCTEST Engineering Laboratory Inc						

802.11a
6 Mbps
1 & 3 Meters
5240MHz
48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	-	-	-98.80	48.21	0.00	56.41	68.20	-11.79
*	15720.00	Average	Н	-	-	-110.18	53.84	0.00	50.66	53.98	-3.32
*	15720.00	Peak	Н	-	-	-98.26	53.84	0.00	62.58	73.98	-11.40
*	20960.00	Average	Н	-	-	-112.44	44.31	-9.54	29.33	53.98	-24.65
*	20960.00	Peak	н	-	-	-97.29	44.31	-9.54	44.48	73.98	-29.50
	26200.00	Peak	Н	-	-	-98.87	45.01	-9.54	43.60	68.20	-24.60

Table 7-30. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5240MHz	
48	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-99.51	48.21	0.00	55.70	68.20	-12.50
*	15720.00	Average	Н	-	-	-110.31	53.84	0.00	50.53	53.98	-3.45
*	15720.00	Peak	н	-	-	-98.96	53.84	0.00	61.88	73.98	-12.10
*	20960.00	Average	н	-	-	-112.76	44.31	-9.54	29.01	53.98	-24.97
*	20960.00	Peak	н	-	-	-99.48	44.31	-9.54	42.29	73.98	-31.69
	26200.00	Peak	н	-	-	-101.31	45.01	-9.54	41.16	68.20	-27.04

Table 7-31. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 126 of 260		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset	andset			
© 2017 PCTEST Engineering Laboratory Inc.						

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5260MHz		
Channel:	52		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	-	-	-100.10	48.22	0.00	55.12	68.20	-13.08
*	15780.00	Average	Н	-	-	-110.94	53.85	0.00	49.91	53.98	-4.07
*	15780.00	Peak	н	-	-	-99.10	53.85	0.00	61.75	73.98	-12.23
*	21040.00	Average	н	-	-	-112.28	44.29	-9.54	29.47	53.98	-24.51
*	21040.00	Peak	н	-	-	-97.22	44.29	-9.54	44.53	73.98	-29.45
	26300.00	Peak	Н	-	-	-98.64	45.00	-9.54	43.82	68.20	-24.38

Table 7-32. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5280MHz
56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	-	-	-98.98	48.18	0.00	56.20	68.20	-12.00
*	15840.00	Average	Н	-	-	-110.57	53.94	0.00	50.36	53.98	-3.62
*	15840.00	Peak	Н	-	-	-98.65	53.94	0.00	62.28	73.98	-11.70
*	21120.00	Average	Н	-	-	-112.42	44.27	-9.54	29.31	53.98	-24.67
*	21120.00	Peak	Н	-	-	-97.96	44.27	-9.54	43.77	73.98	-30.21
	26400.00	Peak	Н	-	-	-99.15	45.02	-9.54	43.33	68.20	-24.87

Table 7-33. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Degra 107 of 060		
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 127 of 260		
© 2017 PCTEST Engineering Laboratory Inc						

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5320MHz
Channel:	64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	-	-	-109.51	48.11	0.00	45.59	53.98	-8.39
*	10640.00	Peak	н	-	-	-99.09	48.11	0.00	56.01	73.98	-17.97
*	15960.00	Average	Н	-	-	-110.65	54.57	0.00	50.92	53.98	-3.06
*	15960.00	Peak	Н	-	-	-97.30	54.57	0.00	64.27	73.98	-9.71
*	21280.00	Average	Н	-	-	-112.50	44.26	-9.54	29.22	53.98	-24.76
*	21280.00	Peak	н	-	-	-97.98	44.26	-9.54	43.74	73.98	-30.24
	26600.00	Peak	Н	-	-	-101.06	47.61	-9.54	44.01	68.20	-24.19

Table 7-34. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10640.00	Average	н	-	-	-110.39	48.11	0.00	44.71	53.98	-9.27
*	10640.00	Peak	Н	-	-	-98.22	48.11	0.00	56.88	73.98	-17.10
*	15960.00	Average	Н	-	-	-110.62	54.57	0.00	50.95	53.98	-3.03
*	15960.00	Peak	Н	-	-	-97.08	54.57	0.00	64.49	73.98	-9.49
*	21280.00	Average	Н	-	-	-112.74	44.26	-9.54	28.98	53.98	-25.00
	21280.00	Peak	Н	-	-	-98.25	44.26	-9.54	43.47	73.98	-30.51
	26600.00	Peak	н	-	-	-101.34	47.61	-9.54	43.73	68.20	-24.47

Table 7-35. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 060
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 128 of 260
© 2017 DCTEST Engineering Lat	poratory Inc			V/40

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	н	-	-	-109.15	49.03	0.00	46.88	53.98	-7.10
*	11000.00	Peak	Н	-	-	-99.19	49.03	0.00	56.84	73.98	-17.14
	16500.00	Peak	Н	-	-	-97.16	55.10	0.00	64.93	68.20	-3.27
	22000.00	Peak	н	-	-	-101.40	44.50	-9.54	40.56	68.20	-27.64
	27500.00	Peak	Н	-	-	-101.24	47.97	-9.54	44.19	68.20	-24.01

Table 7-36. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5600MHz
120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	Н	-	-	-111.16	49.29	0.00	45.13	53.98	-8.85
*	11200.00	Peak	Н	-	-	-99.93	49.29	0.00	56.36	73.98	-17.62
	16800.00	Peak	Н	-	-	-98.89	57.02	0.00	65.13	68.20	-3.07
*	22400.00	Average	Н	-	-	-113.18	44.56	-9.54	28.84	53.98	-25.14
*	22400.00	Peak	Н	-	-	-98.48	44.56	-9.54	43.54	73.98	-30.44
	28000.00	Peak	н	-	-	-103.11	48.08	-9.54	42.43	68.20	-25.77

Table 7-37. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset	Page 129 of 260	
© 2017 PCTEST Engineering Lab		V 4.0		

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	-	-	-110.71	49.74	0.00	46.03	53.98	-7.95
*	11440.00	Peak	Н	-	-	-99.95	49.74	0.00	56.79	73.98	-17.19
	17160.00	Peak	н	-	-	-99.15	57.13	0.00	64.99	68.20	-3.21
*	22880.00	Average	н	-	-	-112.85	44.56	-9.54	29.16	53.98	-24.82
*	22880.00	Peak	н	-	-	-98.53	44.56	-9.54	43.48	73.98	-30.50
	28600.00	Peak	Н	-	-	-102.78	48.32	-9.54	43.00	68.20	-25.20

Table 7-38. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5720MHz	
144	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	Н	-	-	-111.37	49.74	0.00	45.37	53.98	-8.61
*	11440.00	Peak	Н	-	-	-98.61	49.74	0.00	58.13	73.98	-15.85
	17160.00	Peak	Н	-	-	-99.69	57.13	0.00	64.45	68.20	-3.75
*	22880.00	Average	Н	-	-	-112.99	44.56	-9.54	29.02	53.98	-24.96
*	22880.00	Peak	Н	-	-	-98.55	44.56	-9.54	43.46	73.98	-30.52
	28600.00	Peak	Н	-	-	-102.18	48.32	-9.54	43.60	68.20	-24.60

Table 7-39. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR	PCTEST	FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 130 of 260	
© 2017 PCTEST Engineering La	poratory Inc			V 4 0	

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5745MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	-	-	-111.12	50.05	0.00	45.94	53.98	-8.04
*	11490.00	Peak	Н	-	-	-100.22	50.05	0.00	56.84	73.98	-17.14
	17235.00	Peak	н	-	-	-99.28	57.47	0.00	65.18	68.20	-3.02
*	22980.00	Average	н	-	-	-113.29	44.68	-9.54	28.85	53.98	-25.13
*	22980.00	Peak	н	-	-	-98.75	44.68	-9.54	43.39	73.98	-30.59
	28725.00	Peak	Н	-	-	-102.55	48.26	-9.54	43.17	68.20	-25.03

Table 7-40. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5785MHz
157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-109.88	50.28	0.00	47.39	53.98	-6.59
*	11570.00	Peak	Н	-	-	-97.57	50.28	0.00	59.70	73.98	-14.28
	17355.00	Peak	н	-	-	-98.49	56.61	0.00	65.12	68.20	-3.08
	23140.00	Peak	Н	-	-	-98.79	44.75	-9.54	43.42	68.20	-24.78
	28925.00	Peak	Н	-	-	-103.19	48.29	-9.54	42.56	68.20	-25.64

Table 7-41. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 260				
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset	Page 131 of 260					
© 2017 PCTEST Engineering Laboratory, Inc.								

802.11a
6 Mbps
1 & 3 Meters
5825MHz
165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-110.03	50.40	0.00	47.37	53.98	-6.61
*	11650.00	Peak	Н	-	-	-100.28	50.40	0.00	57.12	73.98	-16.86
	17475.00	Peak	Н	-	-	-98.03	56.18	0.00	65.16	68.20	-3.04
	23300.00	Peak	Н	-	-	-98.56	44.75	-9.54	43.64	68.20	-24.56
	29125.00	Peak	Н	-	-	-103.05	48.28	-9.54	42.69	68.20	-25.51

Table 7-42. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

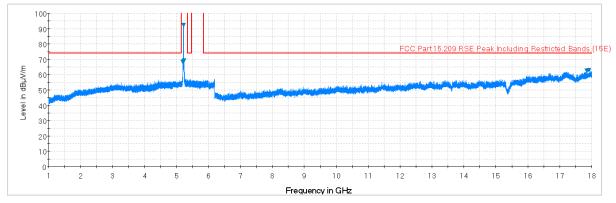
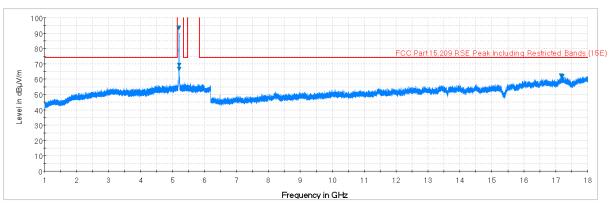
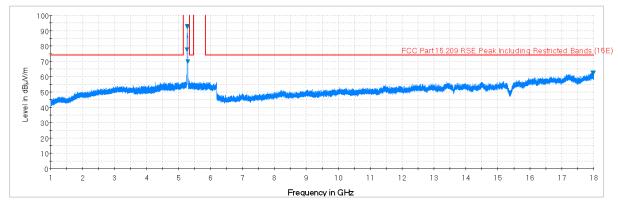
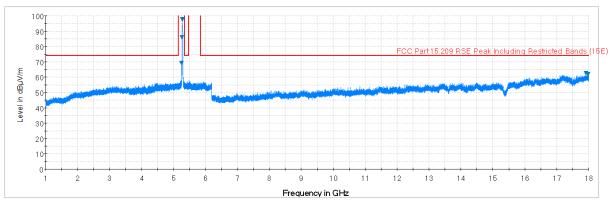

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	-	-	-109.47	50.40	0.00	47.93	53.98	-6.05
*	11650.00	Peak	Н	-	-	-97.62	50.40	0.00	59.78	73.98	-14.20
	17475.00	Peak	Н	-	-	-98.06	56.18	0.00	65.13	68.20	-3.07
	23300.00	Peak	Н	-	-	-98.85	44.74	-9.54	43.35	68.20	-24.85
	29125.00	Peak	н	-	-	-102.96	48.28	-9.54	42.78	68.20	-25.42

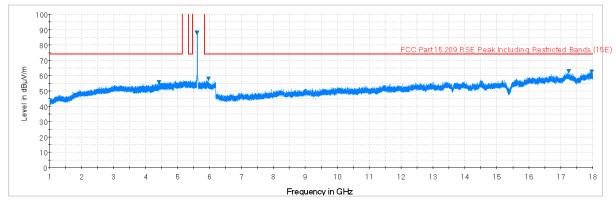
Table 7-43. Radiated Measurements with WCP

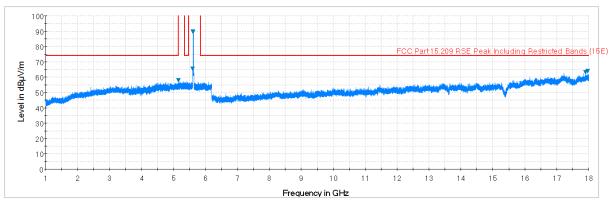

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 122 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset	Page 132 of 260	
© 2017 PCTEST Engineering Lat	poratory Inc			V 4 0


Plot 7-165. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

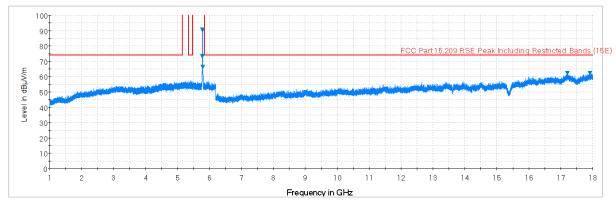

Plot 7-166. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

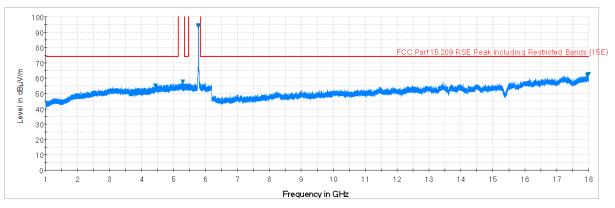
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 122 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 133 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					


Plot 7-167. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)


Plot 7-168. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)

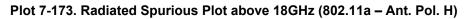
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 124 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 134 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					


Plot 7-169. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. H)

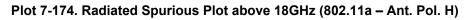

Plot 7-170. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 125 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 135 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Plot 7-171. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. H)

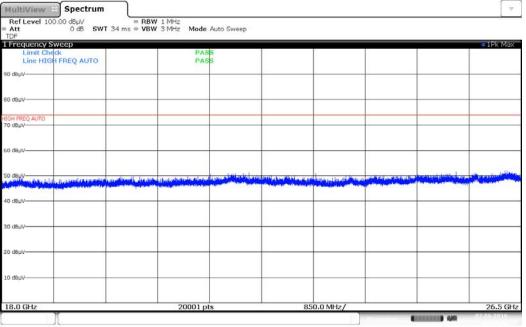

Plot 7-172. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

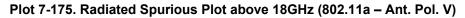
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 126 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 136 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

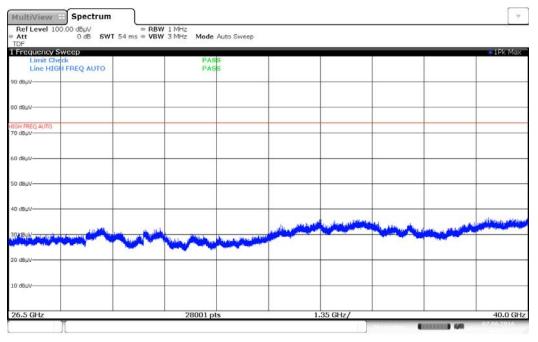


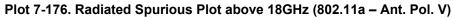
Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

RefLevel 100.00 dBµV Att 0 dB SW DF	= RBW T 34 ms = VBW	1 MHz 3 MHz Mode	Auto Sweep			
Frequency Sweep						1Pk Max
Limit Check Line HIGH FREQ AUTO		PAS				
dBµV						
dBuV						
H FREQ AUTO dBuV						
dahn						
					and the second second	1.4144
dBuV	In the strength of the	in the second states	A B A B A B A B A B A B A B A B A B A B	alling and a state		and the second sec
dBuV-						
dBuV-						
dBµV						
1						
dBµV						


DF				
Frequency Sweep	0.4.00			1Pk Max
Line HIGH FREQ AUTO	PASS			
i dBµV				
dBuV-		_		
H FREQ AUTO				
dBµV				
top of the state o	والمتعادين والمحمد ومحمد والملحان والمحمد	the support the second s	and she all a dealer south a first of the process with	فدون والمستور المعطال ال
the state of the second st				all sold find a sea third a same of
dBuV-				
dBuV				
dBµV				
dBµV				
		1.35 GHz/		




FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 127 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 137 of 260
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0



Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 138 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 136 01 200
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0

Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5180MHz		
Channel:	36		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	-	-	-99.75	48.08	0.00	55.33	68.20	-12.87
*	15540.00	Average	Н	-	-	-109.66	53.35	0.00	50.69	53.98	-3.29
*	15540.00	Peak	Н	-	-	-98.46	53.35	0.00	61.89	73.98	-12.09
*	20720.00	Average	Н	-	-	-113.23	44.39	-9.54	28.61	53.98	-25.37
*	20720.00	Peak	Н	-	-	-98.76	44.39	-9.54	43.08	73.98	-30.90
	25900.00	Peak	Н	-	-	-101.01	45.11	-9.54	41.56	68.20	-26.64

Table 7-44. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-101.63	48.05	0.00	53.42	68.20	-14.78
*	15600.00	Average	Н	-	-	-110.23	53.44	0.00	50.20	53.98	-3.78
*	15600.00	Peak	н	-	-	-98.41	53.44	0.00	62.02	73.98	-11.96
*	20800.00	Average	Н	-	-	-112.65	44.39	-9.54	29.20	53.98	-24.78
*	20800.00	Peak	Н	-	-	-97.86	44.39	-9.54	43.99	73.98	-29.99
	26000.00	Peak	н	-	-	-100.74	45.12	-9.54	41.83	68.20	-26.37

Table 7-45. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Degra 120 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 139 of 260			
© 2017 PCTEST Engineering Laboratory Inc.							

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6 Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5240MHz			
Channel:	48			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-100.10	48.21	0.00	55.11	68.20	-13.09
*	15720.00	Average	Н	-	-	-109.93	53.84	0.00	50.91	53.98	-3.07
*	15720.00	Peak	Н	-	-	-97.38	53.84	0.00	63.46	73.98	-10.52
*	20960.00	Average	Н	-	-	-112.76	44.31	-9.54	29.01	53.98	-24.97
*	20960.00	Peak	н	-	-	-98.34	44.31	-9.54	43.43	73.98	-30.55
	26200.00	Peak	Н	-	-	-100.19	45.01	-9.54	42.28	68.20	-25.92

Table 7-46. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6 Mbps	
1 & 3 Meters	
5240MHz	
48	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	-	-	-99.97	48.21	0.00	55.24	68.20	-12.96
*	15720.00	Average	н	-	-	-110.04	53.84	0.00	50.80	53.98	-3.18
*	15720.00	Peak	н	-	-	-95.93	53.84	0.00	64.91	73.98	-9.07
*	20960.00	Average	н	-	-	-112.53	44.31	-9.54	29.24	53.98	-24.74
*	20960.00	Peak	н	-	-	-97.81	44.31	-9.54	43.96	73.98	-30.02
	26200.00	Peak	н	-	-	-101.07	45.01	-9.54	41.40	68.20	-26.80

Table 7-47. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	2016 Portable Handset		Page 140 of 260
© 2017 PCTEST Engineering Lat	poratory Inc	•		V 4 0

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6 Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5260MHz			
Channel:	52			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	Н	-	-	-99.83	48.22	0.00	55.39	68.20	-12.81
*	15780.00	Average	Н	-	-	-110.56	53.85	0.00	50.29	53.98	-3.69
*	15780.00	Peak	н	-	-	-101.42	53.85	0.00	59.43	73.98	-14.55
*	21040.00	Average	н	-	-	-112.64	44.29	-9.54	29.11	53.98	-24.87
*	21040.00	Peak	н	-	-	-97.44	44.29	-9.54	44.31	73.98	-29.67
	26300.00	Peak	Н	-	-	-99.60	45.00	-9.54	42.85	68.20	-25.35

Table 7-48. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5280MHz
56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	-	-	-99.24	48.18	0.00	55.94	68.20	-12.26
*	15840.00	Average	н	-	-	-110.00	53.94	0.00	50.93	53.98	-3.05
*	15840.00	Peak	н	-	-	-98.46	53.94	0.00	62.47	73.98	-11.51
*	21120.00	Average	н	-	-	-113.14	44.28	-9.54	28.59	53.98	-25.39
*	21120.00	Peak	н	-	-	-97.34	44.28	-9.54	44.39	73.98	-29.59
	26400.00	Peak	Н	-	-	-99.15	45.02	-9.54	43.33	68.20	-24.87

Table 7-49. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 141 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	28/2016, 7/14/2016 Portable Handset					
© 2017 PCTEST Engineering Lat	oratory Inc	•		V 4 0			

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5320MHz		
Channel:	64		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	-	-	-110.75	48.11	0.00	44.35	53.98	-9.63
*	10640.00	Peak	н	-	-	-99.45	48.11	0.00	55.65	73.98	-18.33
*	15960.00	Average	Н	-	-	-110.68	54.57	0.00	50.89	53.98	-3.09
*	15960.00	Peak	н	-	-	-98.66	54.57	0.00	62.91	73.98	-11.07
*	21280.00	Average	Н	-	-	-113.12	44.26	-9.54	28.60	53.98	-25.38
*	21280.00	Peak	н	-	-	-98.05	44.26	-9.54	43.67	73.98	-30.31
	26600.00	Peak	Н	-	-	-100.45	47.61	-9.54	44.61	68.20	-23.59

Table 7-50. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: <u>1 & 3 Meters</u> Operating Frequency: Channel:

802.11a 6 Mbps 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10640.00	Average	н	-	-	-110.80	48.11	0.00	44.30	53.98	-9.68
*	10640.00	Peak	Н	-	-	-101.01	48.11	0.00	54.09	73.98	-19.89
*	15960.00	Average	Н	-	-	-110.63	54.57	0.00	50.94	53.98	-3.04
*	15960.00	Peak	Н	-	-	-98.85	54.57	0.00	62.72	73.98	-11.26
*	21280.00	Average	Н	-	-	-113.04	44.26	-9.54	28.68	53.98	-25.30
	21280.00	Peak	Н	-	-	-97.35	44.26	-9.54	44.37	73.98	-29.61
	26600.00	Peak	н	-	-	-100.91	47.61	-9.54	44.15	68.20	-24.05

Table 7-51. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Daga 142 of 260				
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016		Page 142 of 260					
© 2017 PCTEST Engineering Laboratory Inc.								

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5500MHz		
Channel:	100		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	н	-	-	-110.03	49.03	0.00	46.00	53.98	-7.98
*	11000.00	Peak	Н	-	-	-98.16	49.03	0.00	57.87	73.98	-16.11
	16500.00	Peak	Н	-	-	-98.60	55.10	0.00	63.49	68.20	-4.71
	22000.00	Peak	н	-	-	-100.37	44.50	-9.54	41.59	68.20	-26.61
	27500.00	Peak	н	-	-	-102.48	47.97	-9.54	42.95	68.20	-25.25

Table 7-52. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5600MHz
120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	Н	-	-	-110.71	49.29	0.00	45.58	53.98	-8.40
*	11200.00	Peak	Н	-	-	-97.88	49.29	0.00	58.41	73.98	-15.57
	16800.00	Peak	Н	-	-	-99.22	57.02	0.00	64.80	68.20	-3.40
*	22400.00	Average	н	-	-	-113.12	44.56	-9.54	28.90	53.98	-25.08
*	22400.00	Peak	Н	-	-	-98.69	44.56	-9.54	43.33	73.98	-30.65
	28000.00	Peak	н	-	-	-102.10	48.08	-9.54	43.44	68.20	-24.76

Table 7-53. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dega 142 of 260				
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 143 of 260				
© 2017 PCTEST Engineering Laboratory, Inc.								

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	Н	-	-	-109.08	49.74	0.00	47.66	53.98	-6.32
*	11440.00	Peak	Н	-	-	-98.86	49.74	0.00	57.88	73.98	-16.10
	17160.00	Peak	н	-	-	-100.47	57.13	0.00	63.67	68.20	-4.53
*	22880.00	Average	н	-	-	-112.81	44.56	-9.54	29.20	53.98	-24.78
*	22880.00	Peak	н	-	-	-98.30	44.56	-9.54	43.71	73.98	-30.27
	28600.00	Peak	Н	-	-	-102.91	48.32	-9.54	42.87	68.20	-25.33

Table 7-54. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5720MHz
144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	-	-	-110.02	49.74	0.00	46.72	53.98	-7.26
*	11440.00	Peak	Н	-	-	-98.27	49.74	0.00	58.47	73.98	-15.51
	17160.00	Peak	Н	-	-	-99.68	57.13	0.00	64.46	68.20	-3.74
*	22880.00	Average	Н	-	-	-113.18	44.56	-9.54	28.83	53.98	-25.15
*	22880.00	Peak	н	-	-	-98.73	44.56	-9.54	43.29	73.98	-30.69
	28600.00	Peak	Н	-	-	-102.93	48.32	-9.54	42.85	68.20	-25.35

Table 7-55. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 144 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 144 of 260
© 2017 PCTEST Engineering Lat	oratory Inc			V 4 0

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5745MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	-	-	-109.91	50.05	0.00	47.15	53.98	-6.83
*	11490.00	Peak	Н	-	-	-98.37	50.05	0.00	58.69	73.98	-15.29
	17235.00	Peak	н	-	-	-98.23	56.39	0.00	65.15	68.20	-3.05
*	22980.00	Average	н	-	-	-113.04	44.69	-9.54	29.11	53.98	-24.87
*	22980.00	Peak	н	-	-	-98.79	44.69	-9.54	43.36	73.98	-30.62
	28725.00	Peak	Н	-	-	-121.24	48.27	-9.54	24.49	68.20	-43.71

Table 7-56. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	-	-	-110.40	50.28	0.00	46.87	53.98	-7.11
*	11570.00	Peak	Н	-	-	-99.08	50.28	0.00	58.19	73.98	-15.79
	17355.00	Peak	Н	-	-	-97.18	55.26	0.00	65.08	68.20	-3.12
	23140.00	Peak	Н	-	-	-98.82	44.75	-9.54	43.39	68.20	-24.81
	28925.00	Peak	Н	-	-	-102.49	48.29	-9.54	43.26	68.20	-24.94

Table 7-57. Radiated Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:		Dega 145 of 260					
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 145 of 260					
© 2017 PCTEST Engineering Laboratory, Inc.									

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5825MHz
Channel:	165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-109.87	50.40	0.00	47.53	53.98	-6.45
*	11650.00	Peak	Н	-	-	-98.75	50.40	0.00	58.65	73.98	-15.33
	17475.00	Peak	Н	-	-	-98.60	56.77	0.00	65.18	68.20	-3.02
	23300.00	Peak	Н	-	-	-98.82	44.74	-9.54	43.38	68.20	-24.82
	29125.00	Peak	н	-	-	-103.15	48.28	-9.54	42.59	68.20	-25.61

Table 7-58. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

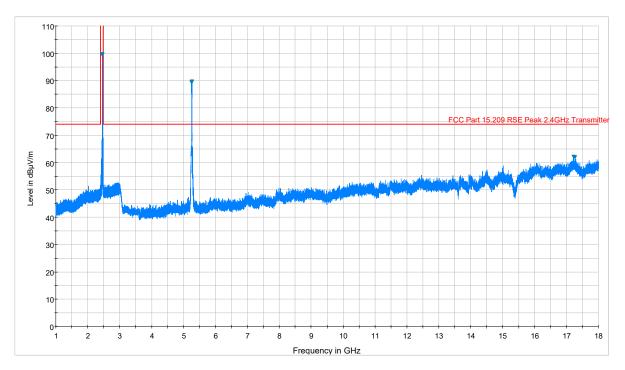
802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	Н	-	-	-109.08	50.40	0.00	48.32	53.98	-5.66
*	11650.00	Peak	Н	-	-	-97.87	50.40	0.00	59.53	73.98	-14.45
	17475.00	Peak	Н	-	-	-98.59	56.77	0.00	65.19	68.20	-3.01
	23300.00	Peak	Н	-	-	-98.84	44.74	-9.54	43.36	68.20	-24.84
	29125.00	Peak	Н	-	-	-102.99	48.28	-9.54	42.75	68.20	-25.45

Table 7-59. Radiated Measurements with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 146 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 146 of 260			
© 2017 PCTEST Engineering Laboratory. Inc.							

ering I ngin ory,

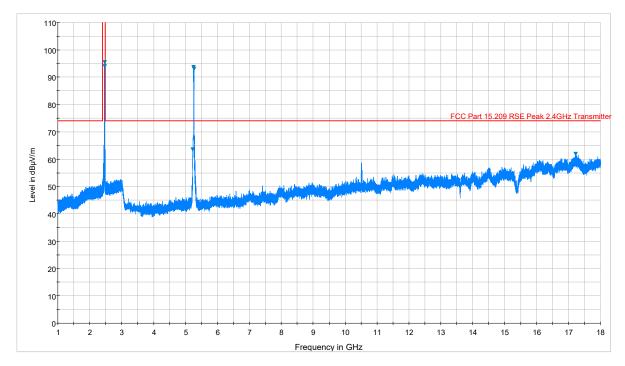


7.7.3 Simultaneous Transmission Radiated Spurious Emissions Measurements (Above 1GHz)

<u>§15.209</u>

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	2
Channel	11	52
Operating Frequency(MHz)	2462	5260
Data Rate (Mbps)	1	6
Mode	802.11b	802.11a

Table 7-60. Simultaneous Transmission Config-1



Plot 7-177. Radiated Spurious Plot above 1GHz (Simultaneous Transmission Config-1, Ant. Pol. H)

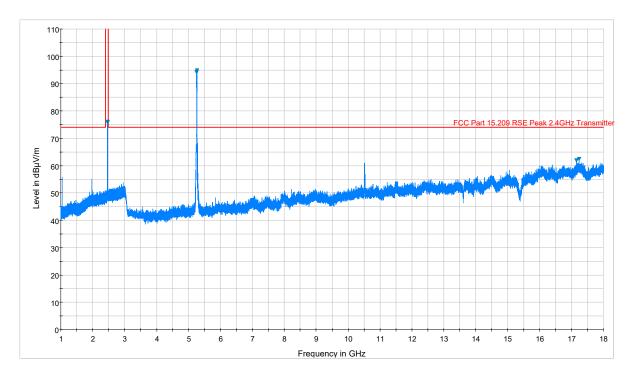
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N: Test Dates:		EUT Type:		Dega 147 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 147 of 260			
© 2017 PCTEST Engineering Laboratory, Inc.							

٦g

Plot 7-178. Radiated Spurious Plot above 1GHz (Simultaneous Transmission Config-1, Ant. Pol. V)

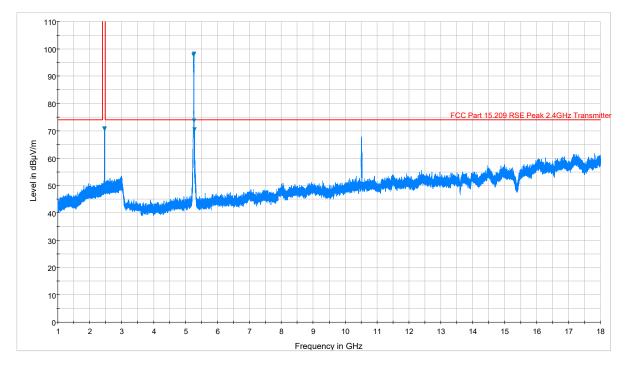
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 149 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 148 of 260			
© 2017 PCTEST Engineering Lab	© 2017 PCTEST Engineering Laboratory, Inc.						

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	3137.00	Peak	Н	-	-	-99.22	43.10	0.00	50.87	68.20	-17.33
*	4924.00	Average	н	-	-	-110.95	49.92	0.00	45.97	53.98	-8.01
*	4924.00	Peak	н	-	-	-98.15	49.92	0.00	58.77	73.98	-15.21
	5936.00	Peak	н	-	-	-99.70	43.74	0.00	51.04	68.20	-17.16
*	8059.00	Peak	н	-	-	-111.61	45.22	0.00	40.62	53.98	-13.36
*	8059.00	Peak	Н	-	-	-98.87	45.22	0.00	53.36	73.98	-20.62
	8735.00	Peak	Н	-	-	-99.90	45.22	0.00	52.33	68.20	-15.87
*	10520.00	Average	н	-	-	-111.77	48.35	0.00	43.59	53.98	-10.39
*	10520.00	Peak	н	-	-	-99.11	50.64	0.00	58.52	73.98	-15.45


 Table 7-61. Radiated Measurements Simultaneous Transmission Config-1

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Page 149 of 260				
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 149 01 200				
© 2017 PCTEST Engineering Lab	© 2017 PCTEST Engineering Laboratory, Inc.							

Description	5 GHz Emission	2.4 GHz Emission
Antenna	1	2
Channel	52	11
Operating Frequency(MHz)	5260	2462
Data Rate (Mbps)	6	1
Mode	802.11a	802.11b

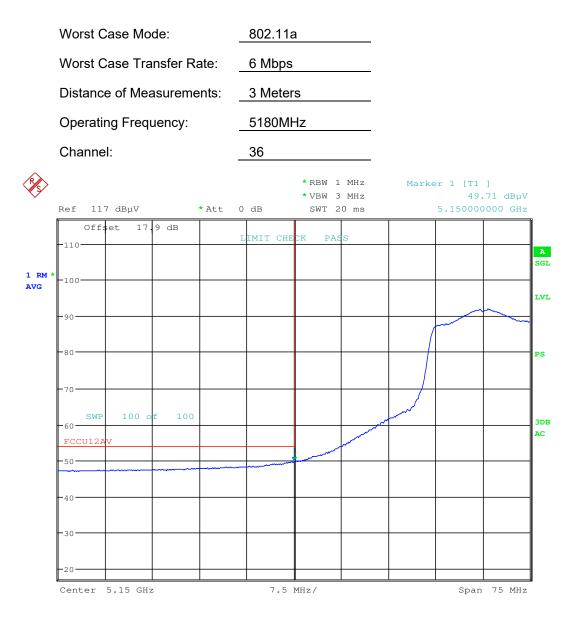

 Table 7-62. Simultaneous Transmission Config-2

Plot 7-179. Radiated Spurious Plot above 1GHz (Simultaneous Transmission Config-2, Ant. Pol. H)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 150 of 260			
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 150 of 260			
© 2017 PCTEST Engineering Laboratory, Inc.							

Plot 7-180. Radiated Spurious Plot above 1GHz (Simultaneous Transmission Config-2, Ant. Pol. V)

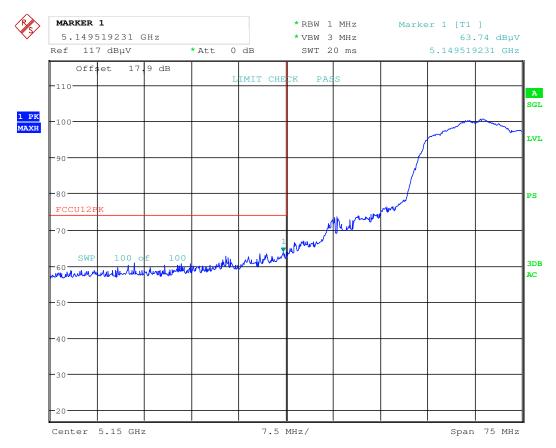
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 151 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 151 of 260
© 2017 PCTEST Engineering Lab		V 4.0		



	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	1992.00	Peak	Н	-	-	-99.79	43.10	0.00	50.30	68.20	-17.90
	3137.00	Peak	Н	-	-	-99.08	43.10	0.00	51.01	68.20	-17.19
*	4924.00	Peak	н	-	-	-110.54	49.92	0.00	46.38	53.98	-7.60
*	4924.00	Average	н	-	-	-99.01	49.92	0.00	57.91	73.98	-16.07
	5936.00	Peak	н	-	-	-98.78	43.74	0.00	51.96	68.20	-16.24
*	8059.00	Peak	Н	-	-	-111.78	45.22	0.00	40.45	53.98	-13.53
*	8059.00	Peak	Н	-	-	-100.17	45.22	0.00	52.06	73.98	-21.92
	8735.00	Peak	Н	-	-	-99.73	45.22	0.00	52.50	68.20	-15.70
*	10520.00	Average	н	-	-	-111.98	48.35	0.00	43.38	53.98	-10.60
*	10520.00	Peak	н	-	-	-96.76	50.64	0.00	60.87	68.20	-7.33

Table 7-63. Radiated Measurements Simultaneous Transmission Config-2

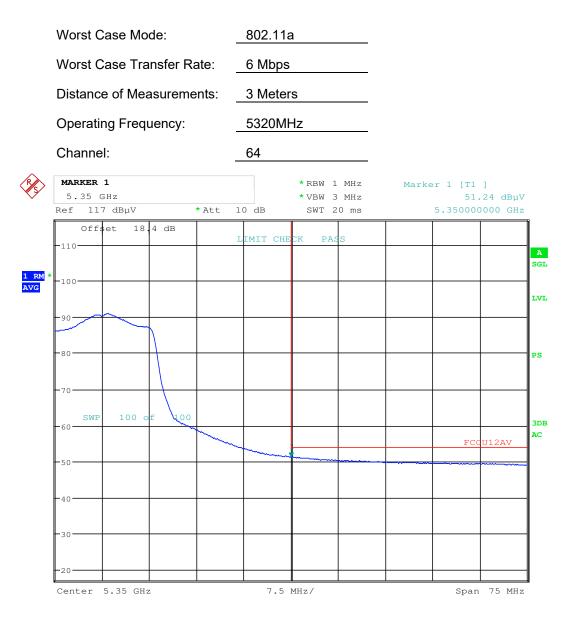
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 152 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 152 of 260
© 2017 PCTEST Engineering Lab	oratory, Inc.			V 4.0



Date: 5.JUN.2016 13:54:59

Plot 7-181. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

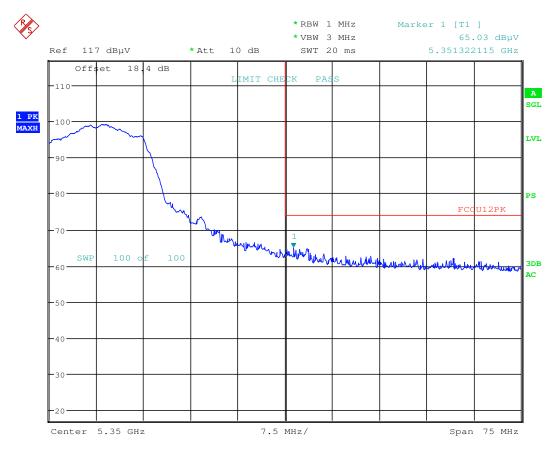
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 152 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 153 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 5.JUN.2016 13:56:07

Plot 7-182. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

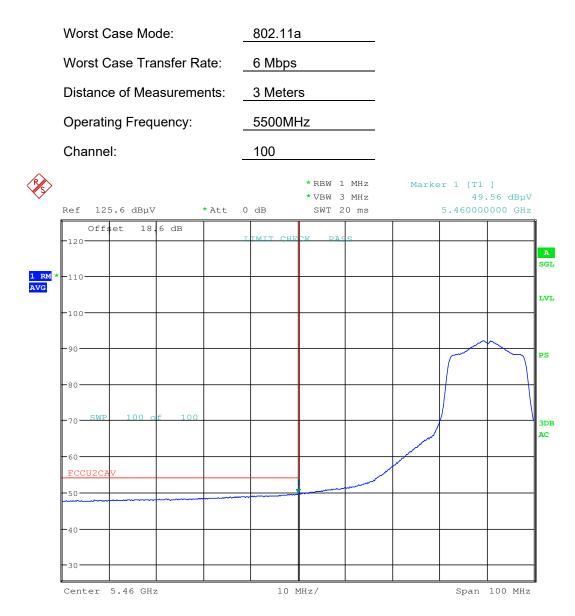
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 154 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 154 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 5.JUN.2016 14:59:54

Plot 7-183. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

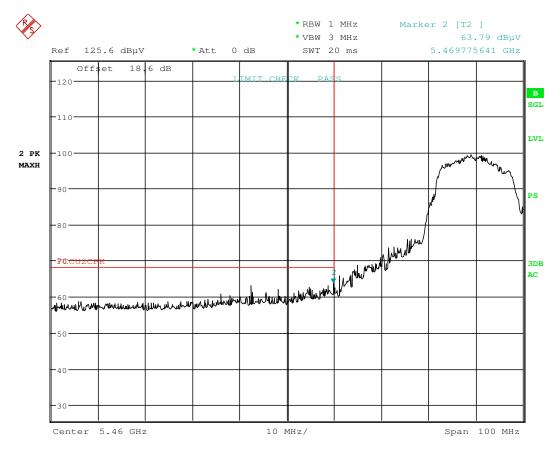
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 155 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 155 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Euboratory, mo.



Date: 5.JUN.2016 15:04:16

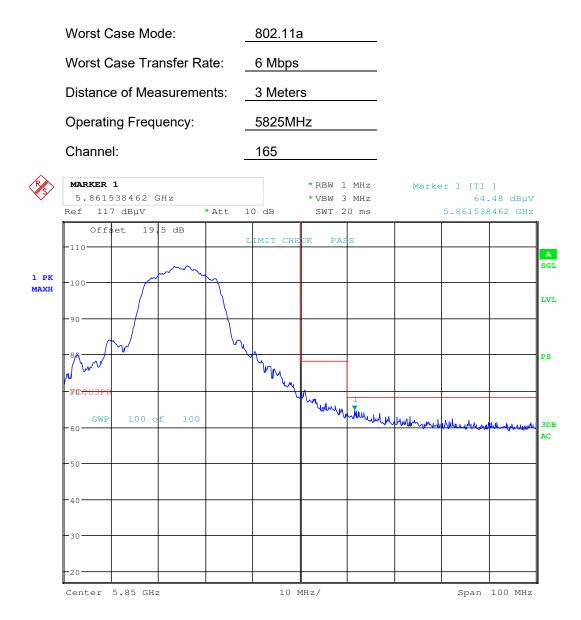
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 156 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 156 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 10.JUN.2016 18:29:38

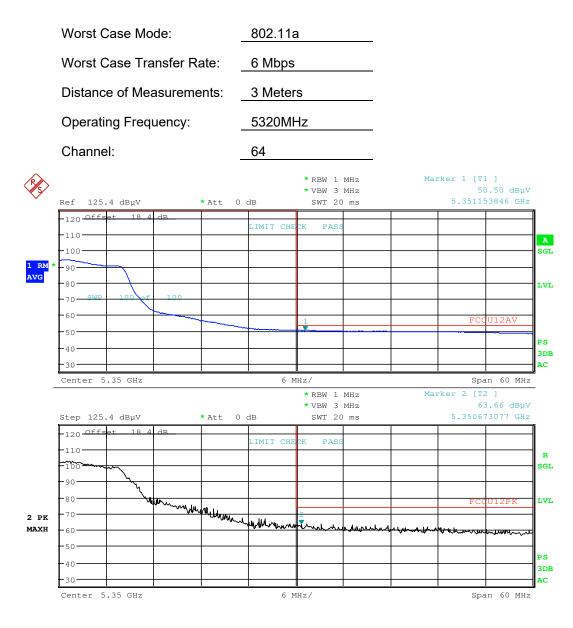
Plot 7-185. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 157 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 157 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 10.JUN.2016 02:06:18

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 159 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 158 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

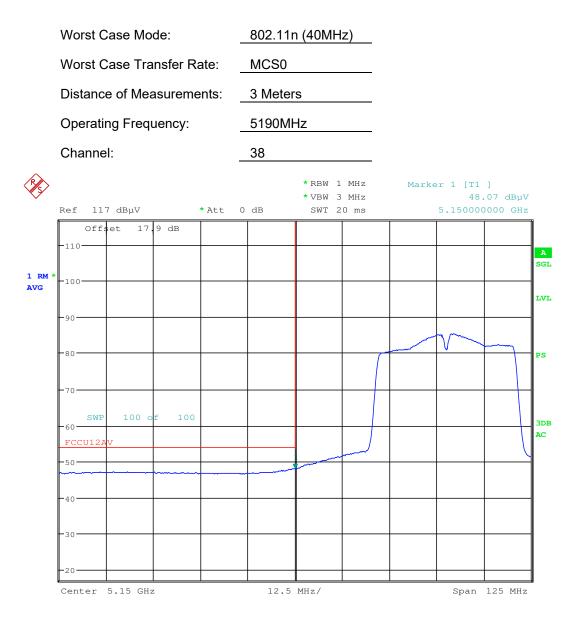
ngin ering L ory



Date: 5.JUN.2016 16:53:15

Plot 7-187. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

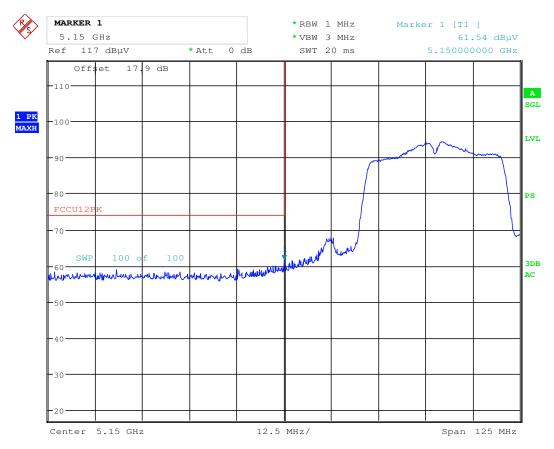
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 150 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 159 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 18.JUN.2016 19:23:04

Plot 7-188. Radiated Restricted Band Edge Plot with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 160 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 160 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

05/16/2016


Date: 5.JUN.2016 14:09:15

Plot 7-189. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 161 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 161 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

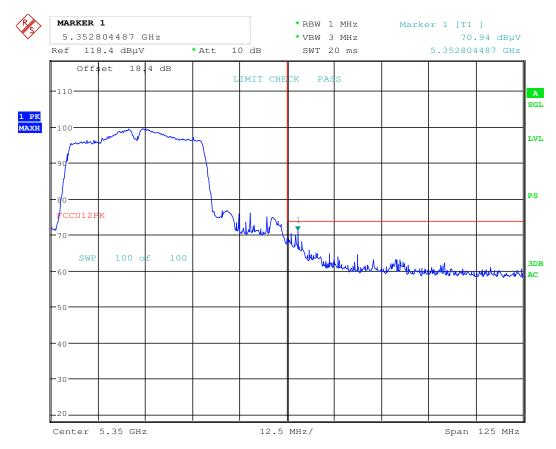
05/16/2016

Date: 5.JUN.2016 14:10:12

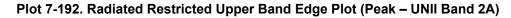
Plot 7-190. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 162 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 162 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

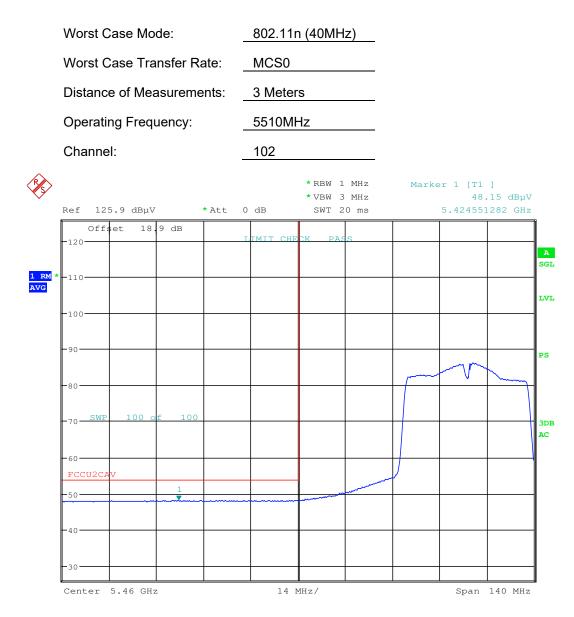
.....


Worst	t Case	Mode	:		802.11	In (40MHz	<u>z)</u>					
Worst	Worst Case Transfer Rate: Distance of Measurements: Operating Frequency:		MCS0									
Dista			3 Mete	ers								
Opera			5310N	1Hz								
Chan	nel:				62							
5.35	MARKER 1 5.35 GHz Ref 105.4 dBµV *Att		10 dB	* RBW 10 * VBW 30 SWT 20	0 kHz	Ма	rker 1 5.3	42] .66 dBµV 0000 GHz			
0:	ffset	18.4	dB					СН	PWR	51	.46 dBµV	
1 *-90												s
												L
-80												
-70												Р
-60												-
_ ₅₀ S	WP 10) <u>0 of</u>	100									3 A
40	render man	·····	mm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	he	~~~~~~	~~~~~		-
-30												_
-20												-
-10												-

Date: 5.JUN.2016 15:37:28

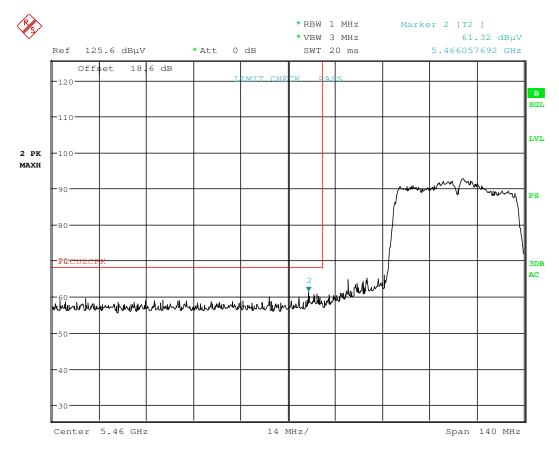

Plot 7-191. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 163 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 103 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 5.JUN.2016 15:38:42

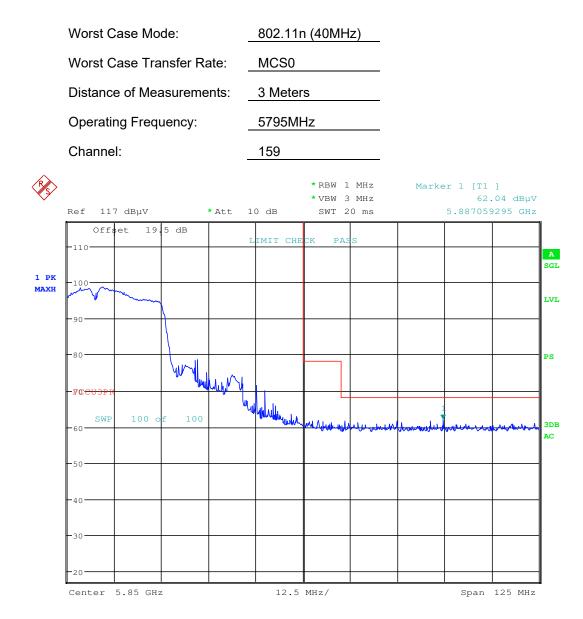
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 164 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 164 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 10.JUN.2016 18:31:56

Plot 7-193. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

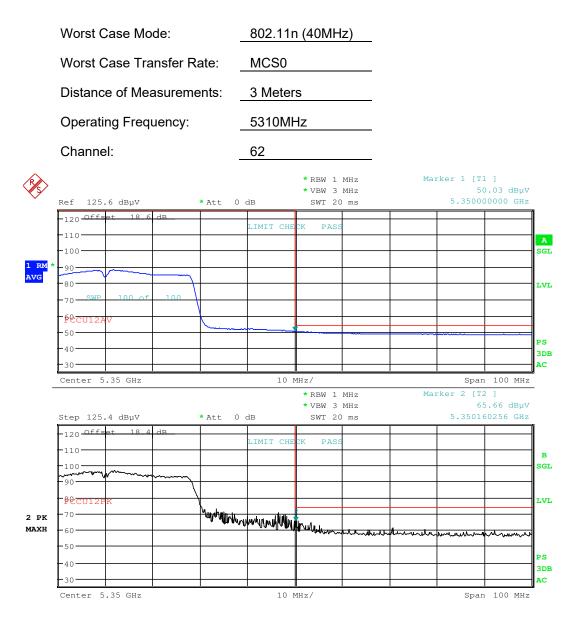
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 165 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 105 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 10.JUN.2016 02:07:34

Plot 7-194. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 166 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 166 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

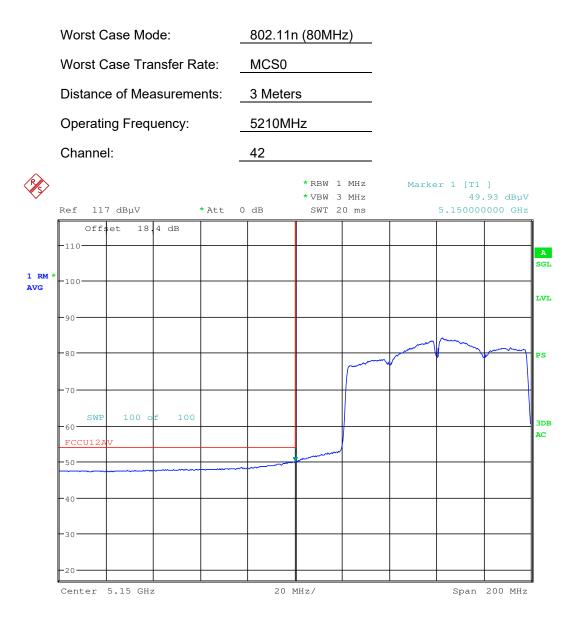
ngineering L tory



Date: 5.JUN.2016 16:56:01

Plot 7-195. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

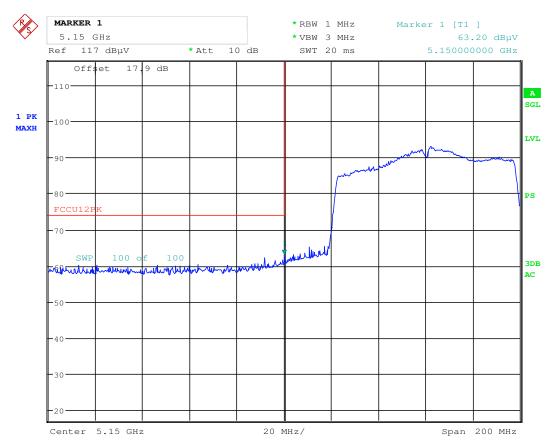
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 167 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 167 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 18.JUN.2016 19:25:23

Plot 7-196. Radiated Restricted Band Edge Plot with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 169 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 168 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

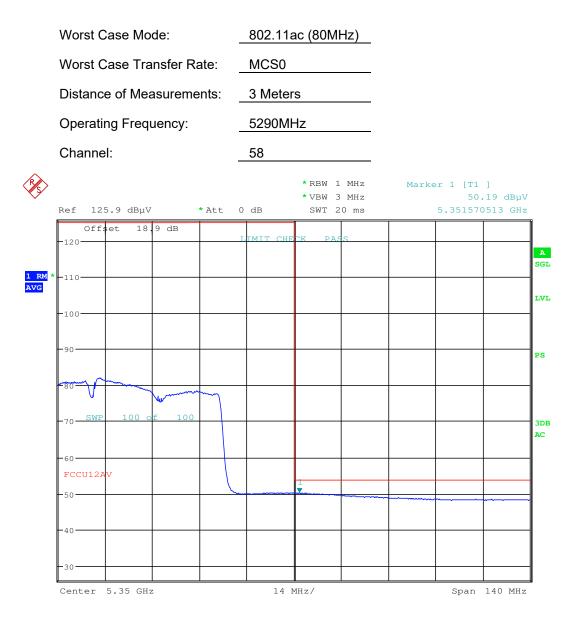
......


Date: 5.JUN.2016 14:26:16

Plot 7-197. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 160 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 169 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

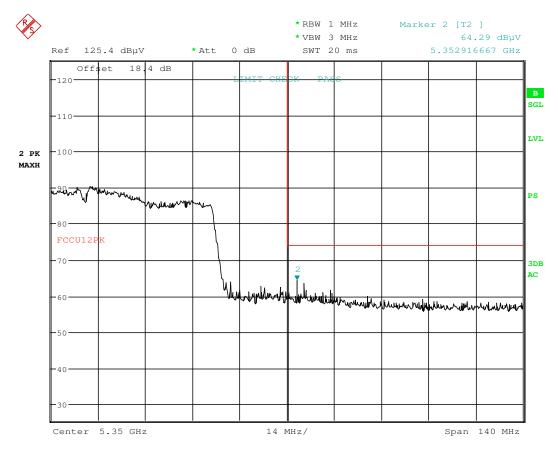
05/16/2016



Date: 5.JUN.2016 14:28:33

Plot 7-198. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

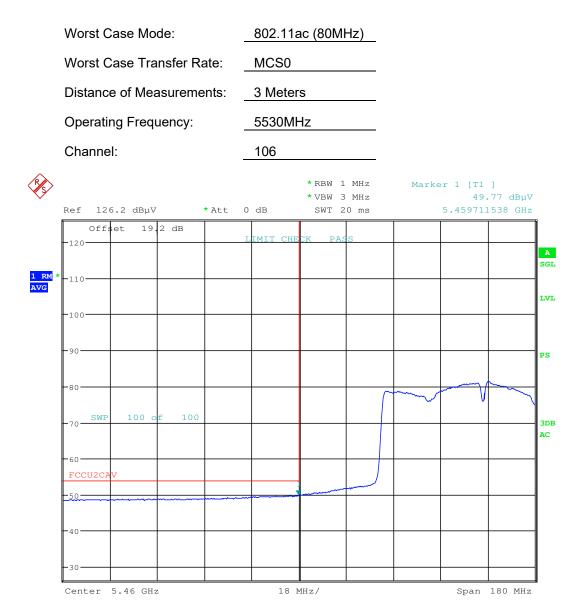
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 170 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 170 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 10.JUN.2016 02:18:45

Plot 7-199. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

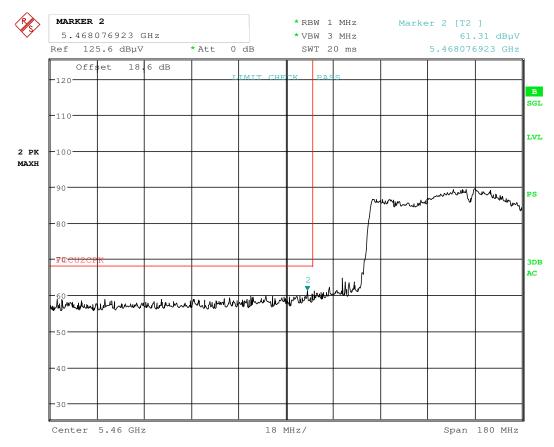
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 171 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 1/101200
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 10.JUN.2016 02:18:57

Plot 7-200. Radiated Restricted Upper Band Edge Plot (Peak - UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 172 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 172 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 10.JUN.2016 02:13:34

Plot 7-201. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

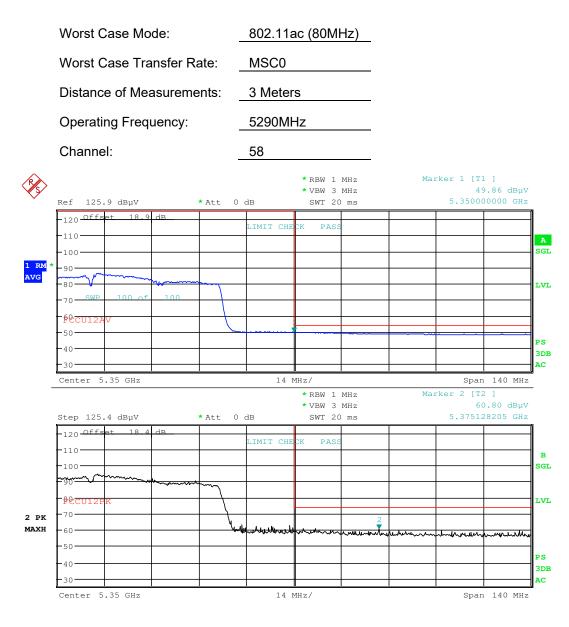
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 172 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 173 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

05/16/2016

Date: 10.JUN.2016 02:15:22

Plot 7-202. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

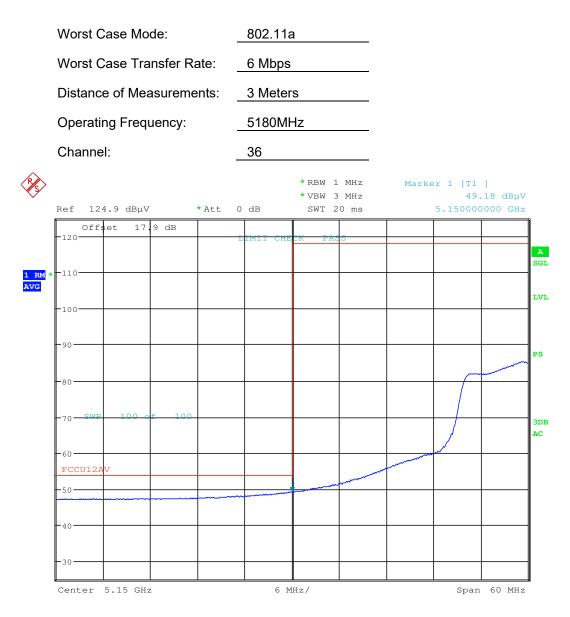
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 174 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 174 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 5.JUN.2016 16:59:27

Plot 7-203. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

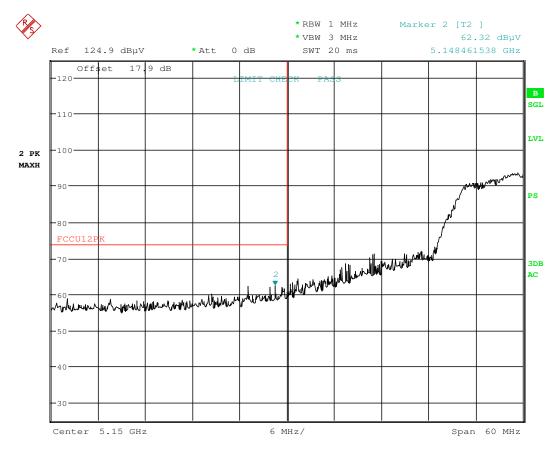
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 175 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 175 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 18.JUN.2016 19:28:59

Plot 7-204. Radiated Restricted Band Edge Plot with WCP

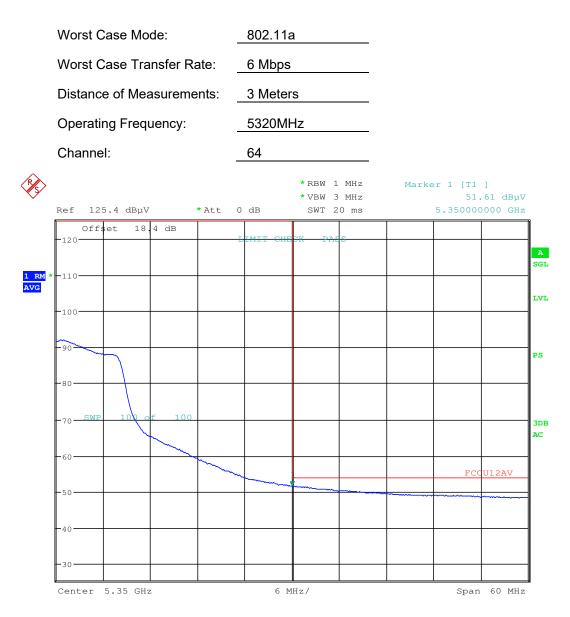
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 176 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 176 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016


Date: 6.JUN.2016 18:53:38

Plot 7-205. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 177 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 177 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

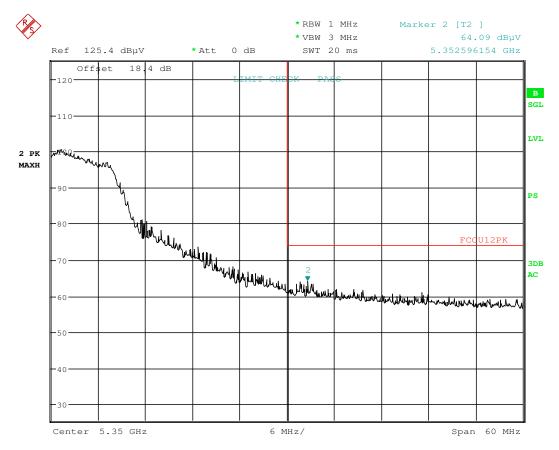
05/16/2016


Date: 6.JUN.2016 18:53:51

Plot 7-206. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 179 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 178 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

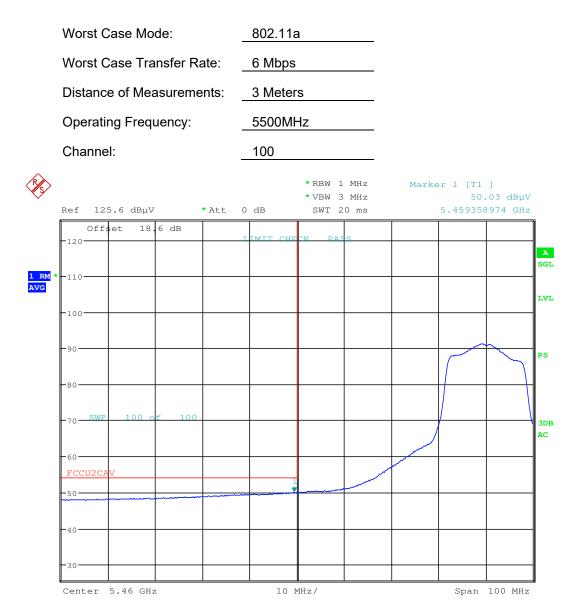
tory


Date: 6.JUN.2016 19:07:19

Plot 7-207. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

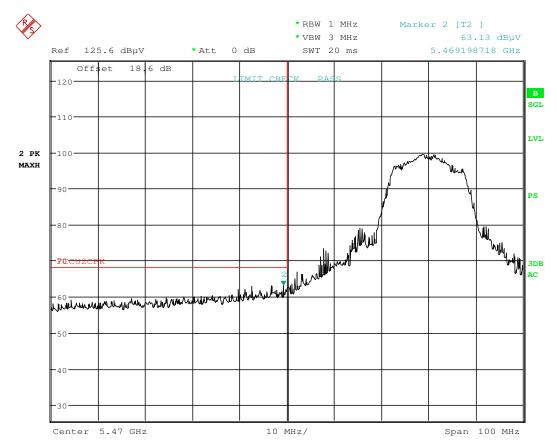
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 179 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 179 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				

aboratory, mo.



Date: 6.JUN.2016 19:07:41

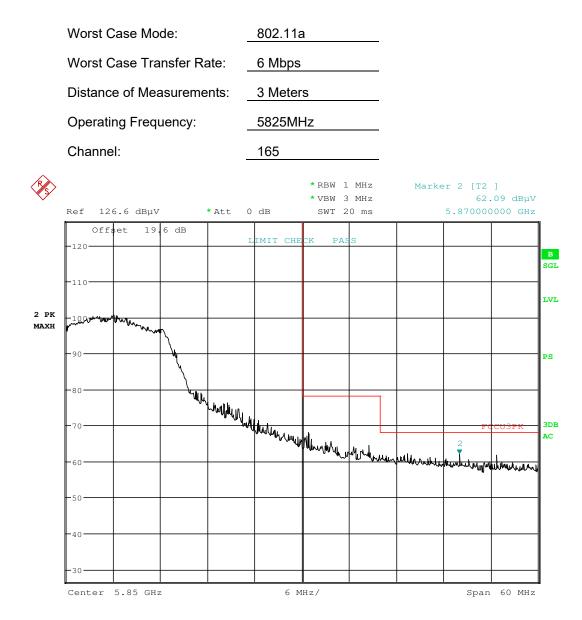
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 190 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 180 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 19:55:51

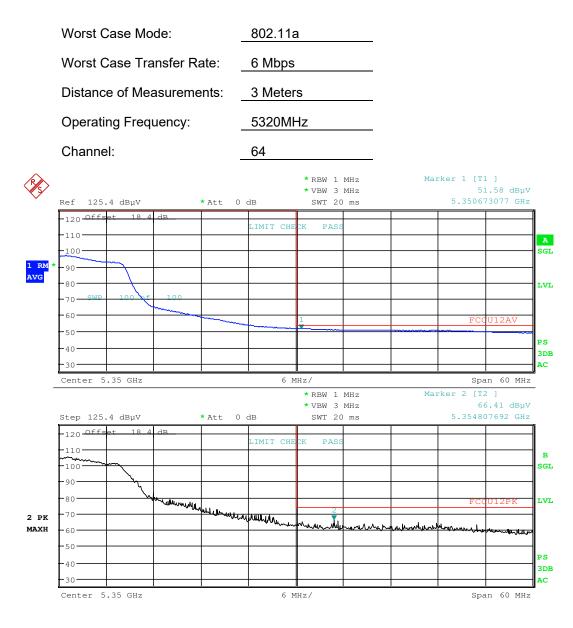
Plot 7-209. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 191 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 181 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 19:55:37

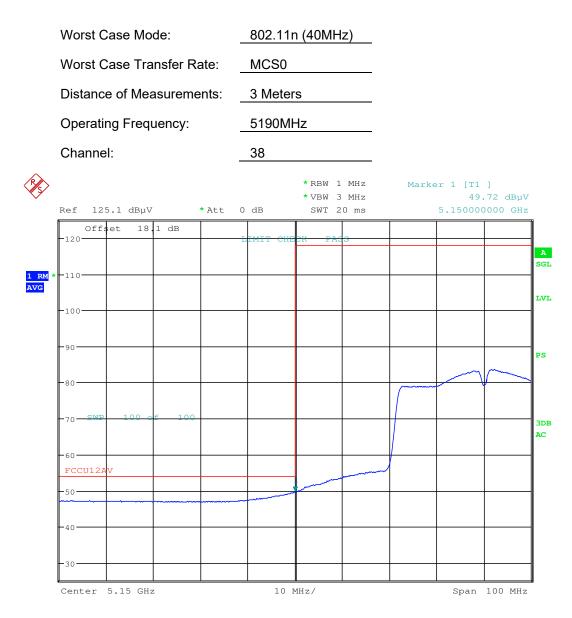
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 192 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 182 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 20:02:18

Plot 7-211. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

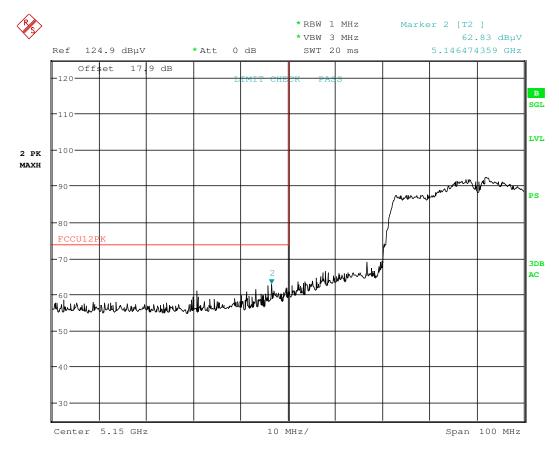
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 192 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 183 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 18.JUN.2016 19:35:32

Plot 7-212. Radiated Restricted Band Edge Plot with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 184 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 164 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				

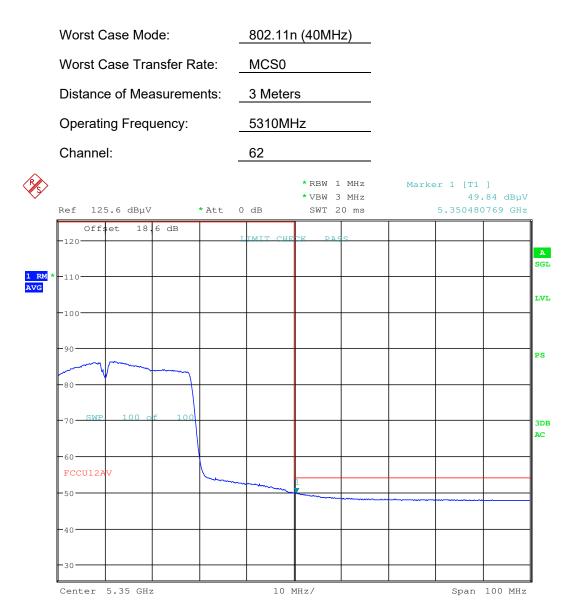
aboratory, mo.


Date: 6.JUN.2016 20:53:18

Plot 7-213. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 195 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 185 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

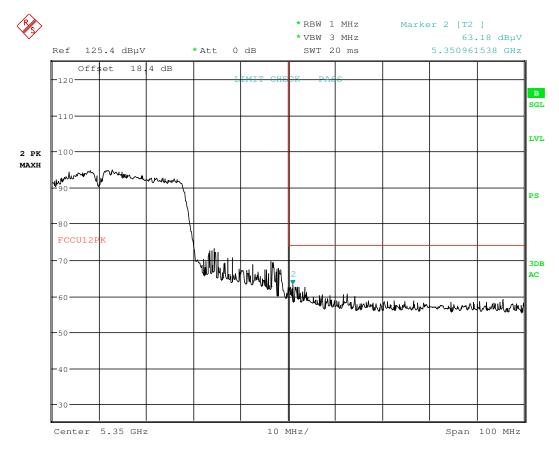
05/16/2016



Date: 6.JUN.2016 20:53:30

Plot 7-214. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

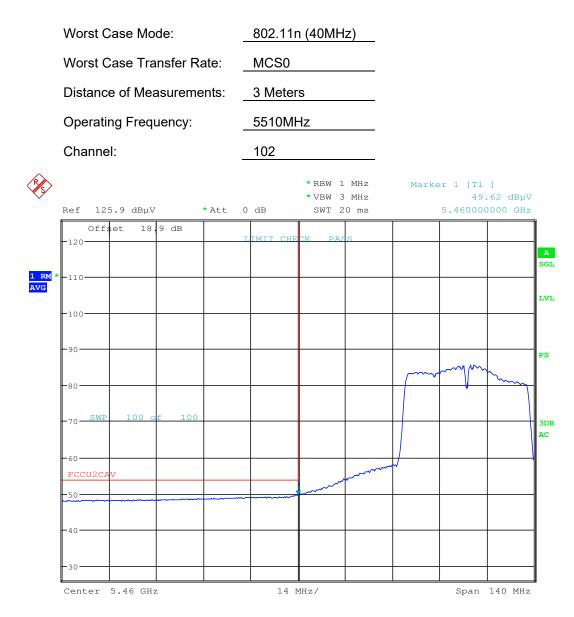
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 196 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 186 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 20:58:35

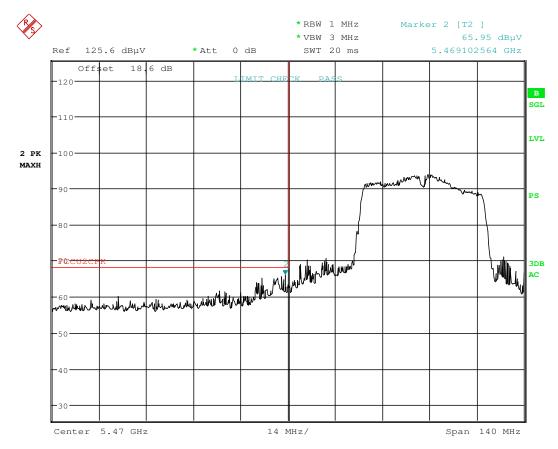
Plot 7-215. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 187 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 107 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 20:58:50

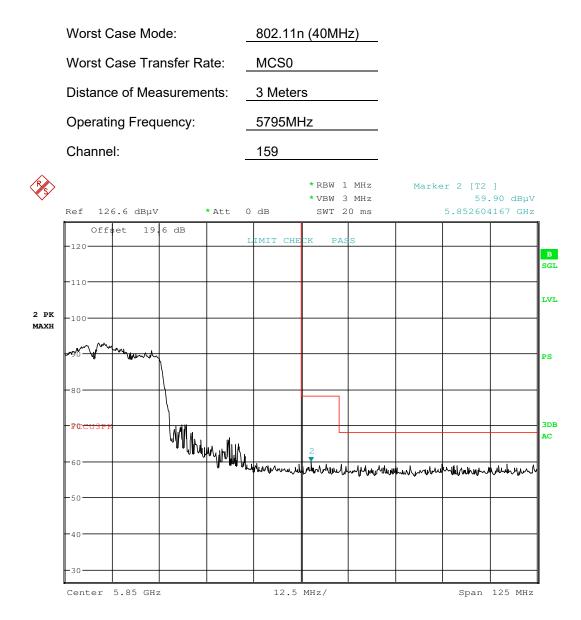
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 199 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 188 of 260
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	


Date: 6.JUN.2016 21:04:18

Plot 7-217. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

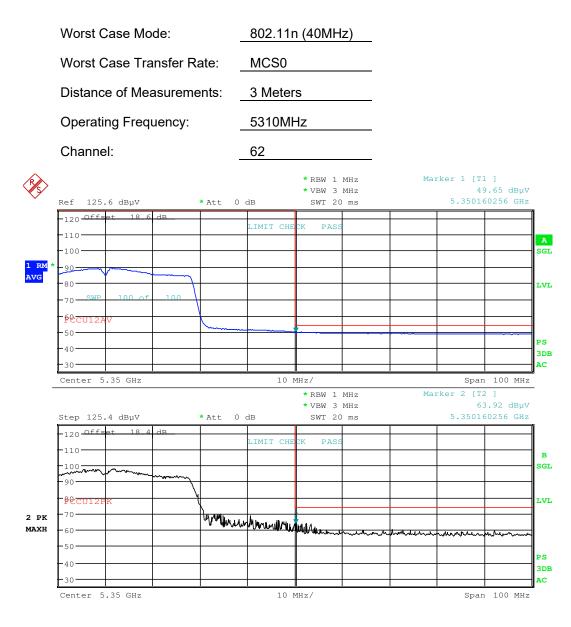
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 190 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 189 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

05/16/2016



Date: 6.JUN.2016 21:04:40

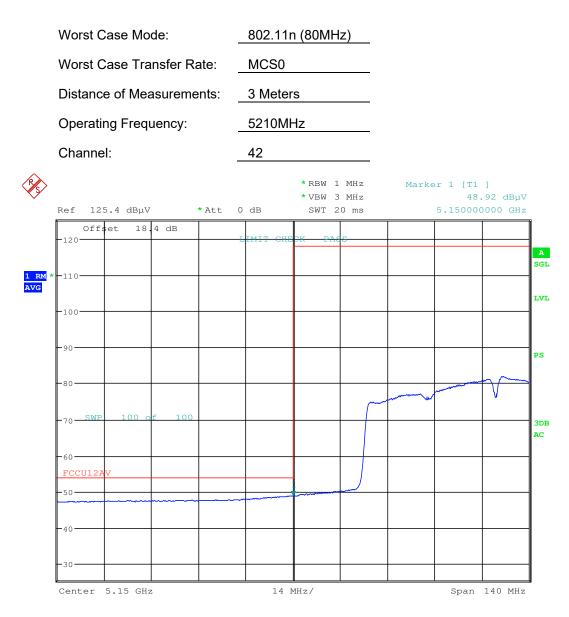
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 190 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 6.JUN.2016 21:20:36

Plot 7-219. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 101 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 191 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

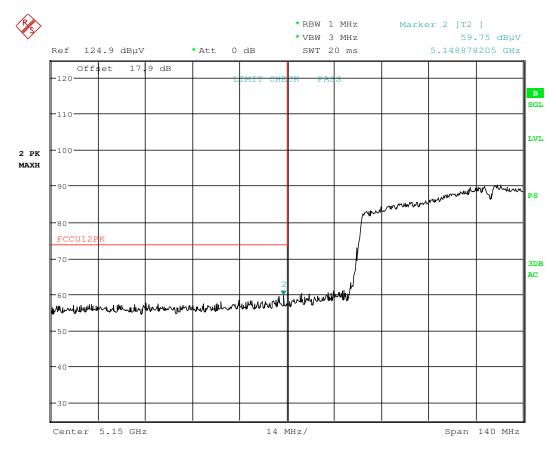
05/16/2016



Date: 18.JUN.2016 19:43:24

Plot 7-220. Radiated Restricted Band Edge Plot with WCP

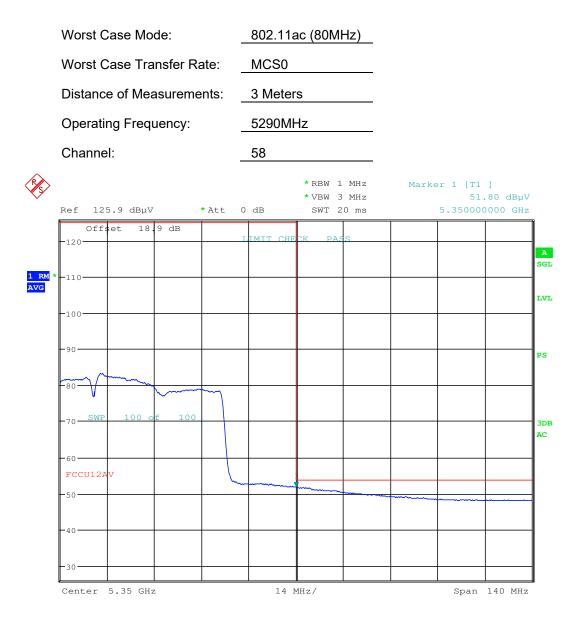
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 192 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 192 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 6.JUN.2016 21:28:59

Plot 7-221. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 193 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

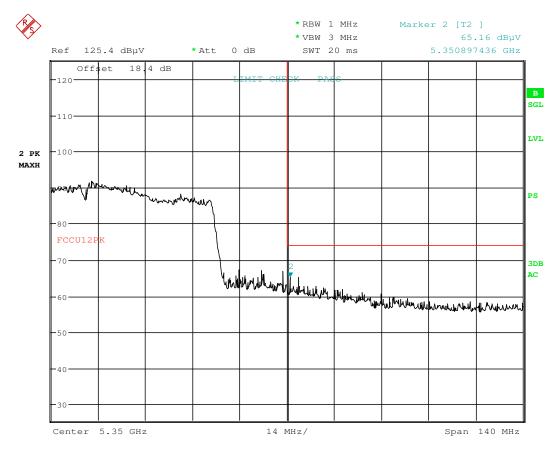
05/16/2016


Date: 6.JUN.2016 21:29:09

Plot 7-222. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 104 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 194 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

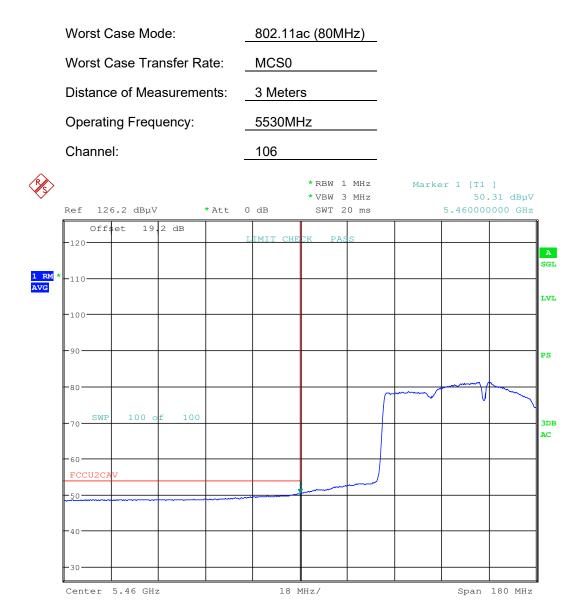
Engineering Laboratory, Inc.



Date: 6.JUN.2016 21:34:11

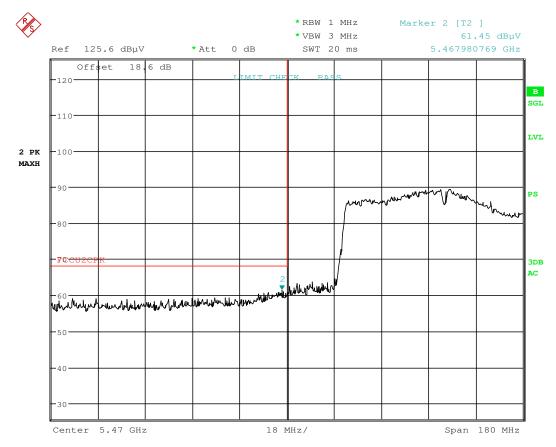
Plot 7-223. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 195 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 195 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 21:34:20

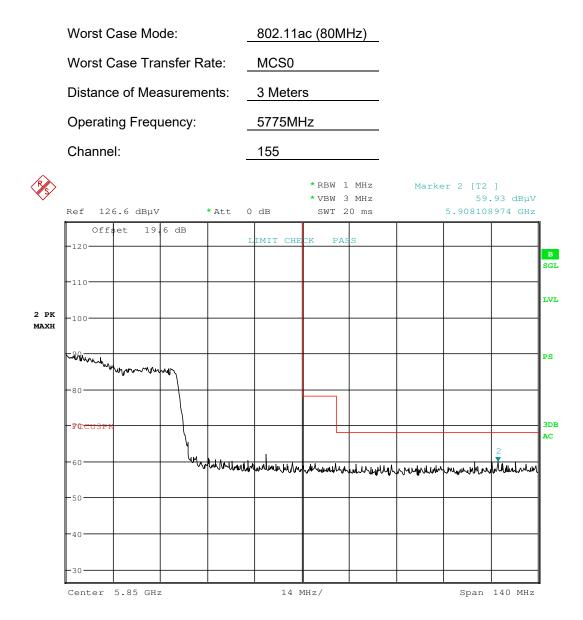
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 196 of 260
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	



Date: 6.JUN.2016 21:39:24

Plot 7-225. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

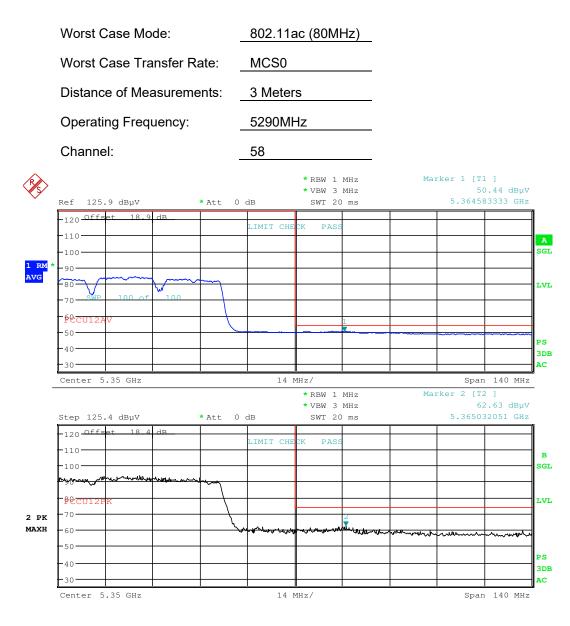
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 107 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 197 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 6.JUN.2016 21:39:43

Plot 7-226. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

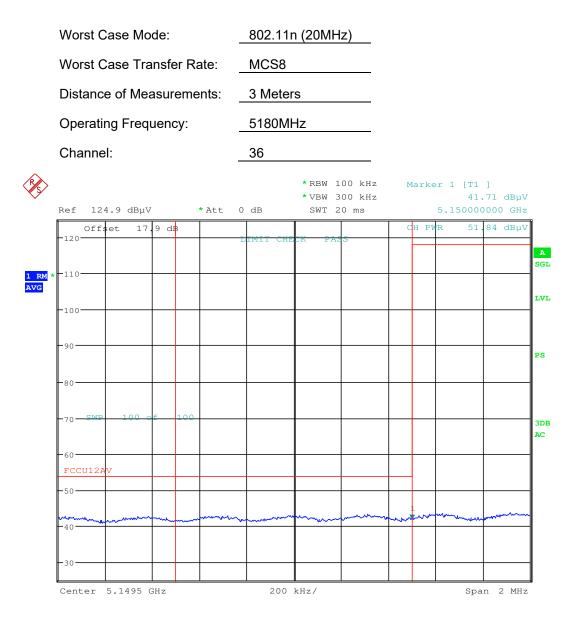
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 109 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 198 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 6.JUN.2016 21:55:07

Plot 7-227. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 199 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 199 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				

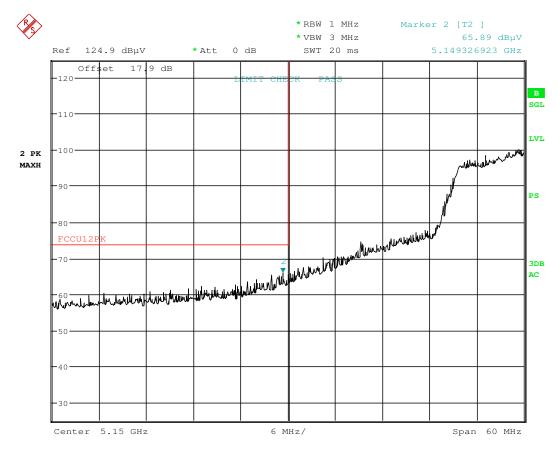
Antenna-2 WCP Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 18.JUN.2016 19:44:55

Plot 7-228. Radiated Restricted Band Edge Plot with WCP

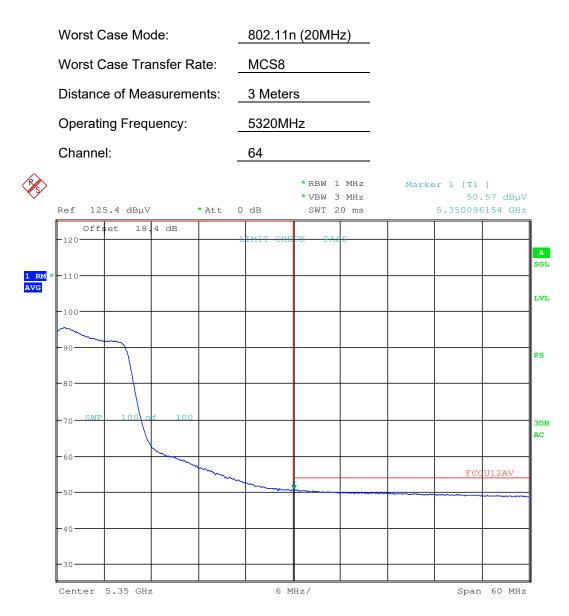
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 200 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 200 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 6.JUN.2016 22:43:34

Plot 7-229. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

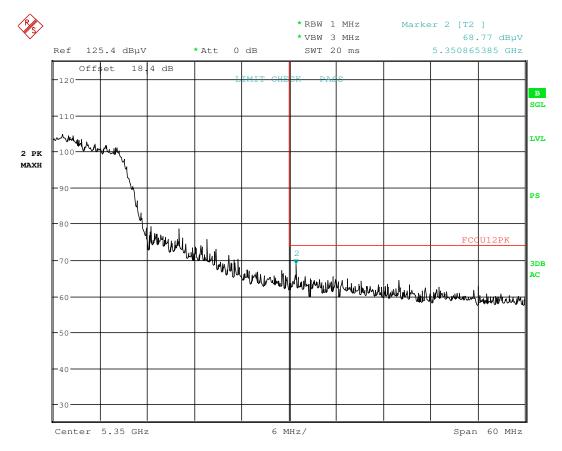
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 201 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 201 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 6.JUN.2016 22:43:46

Plot 7-230. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 202 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 202 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

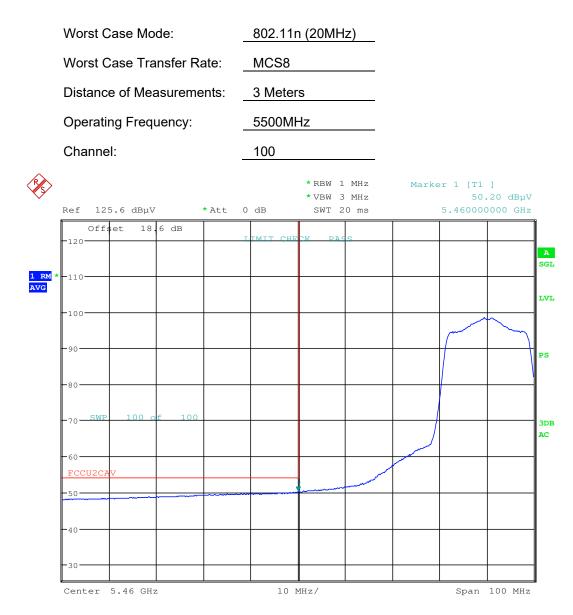
ST Engineering Laboratory, Inc.



Date: 6.JUN.2016 23:04:25

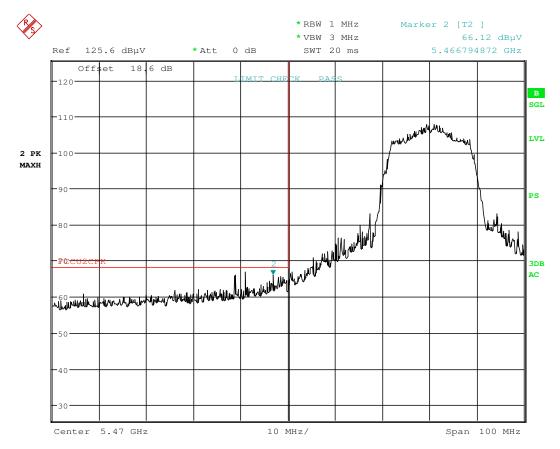
Plot 7-231. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 202 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 203 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016


Date: 6.JUN.2016 23:05:18

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 204 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 204 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

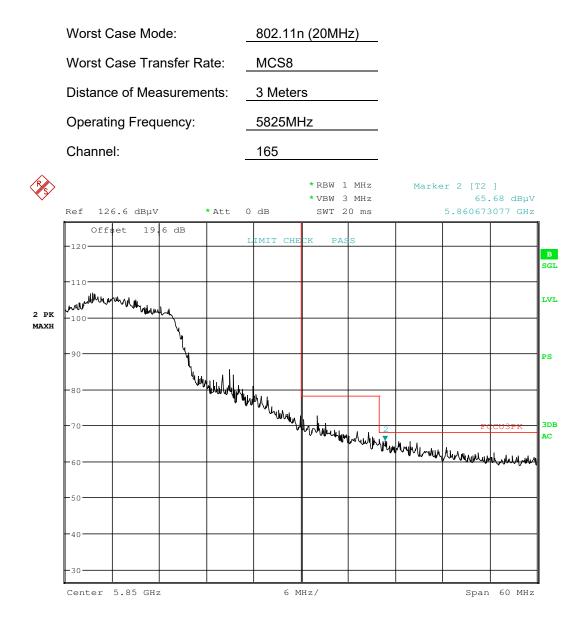
ngir ering i огу



Date: 6.JUN.2016 23:15:17

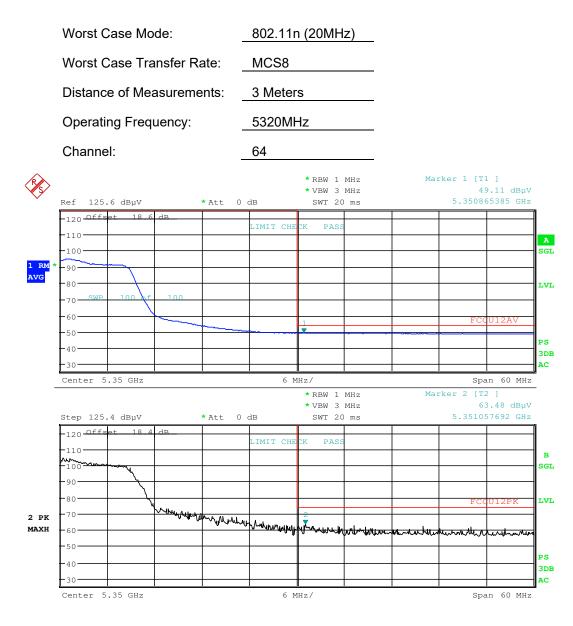
Plot 7-233. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 205 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 205 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Date: 6.JUN.2016 23:15:41

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 206 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 206 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

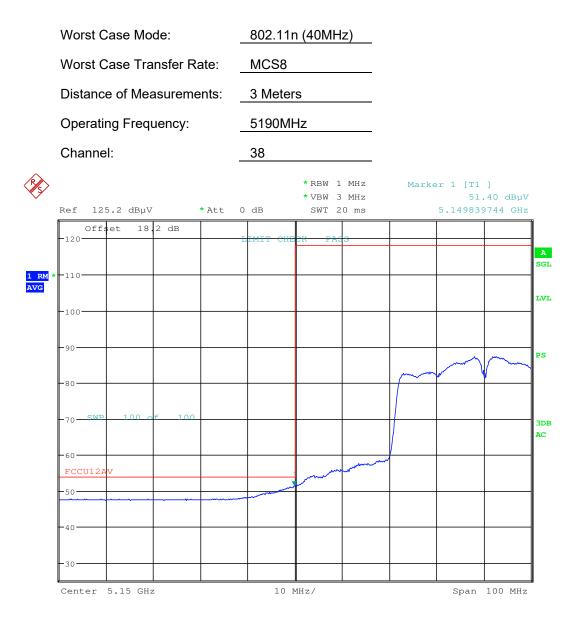
ngir ering L ory



Date: 6.JUN.2016 23:26:07

Plot 7-235. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

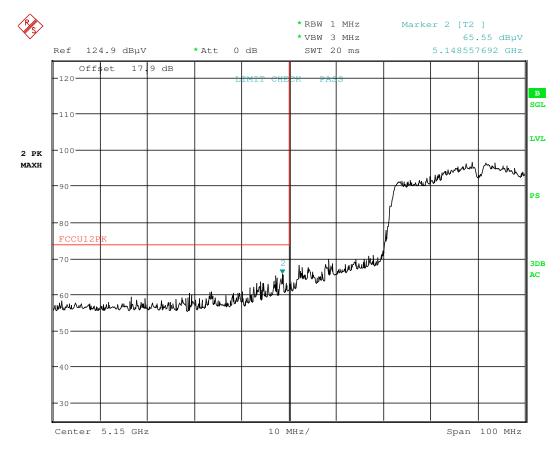
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 207 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 207 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 18.JUN.2016 19:52:33

Plot 7-236. Radiated Restricted Band Edge Plot with WCP

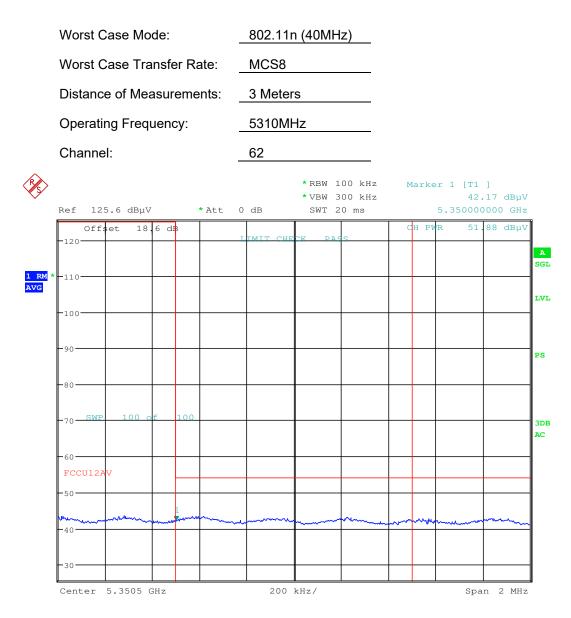
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 208 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 206 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 7.JUN.2016 00:07:38

Plot 7-237. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

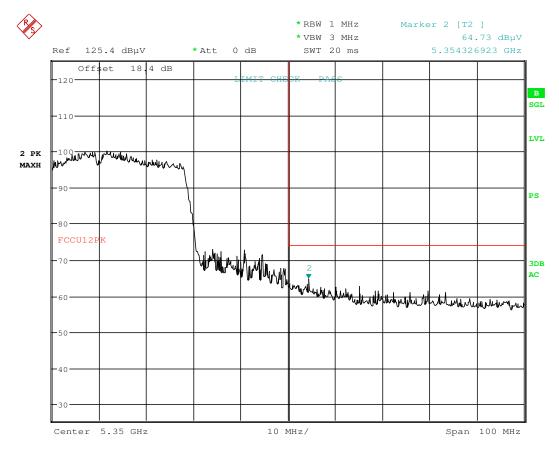
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 200 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 209 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 7.JUN.2016 00:07:53

Plot 7-238. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 210 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 210 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

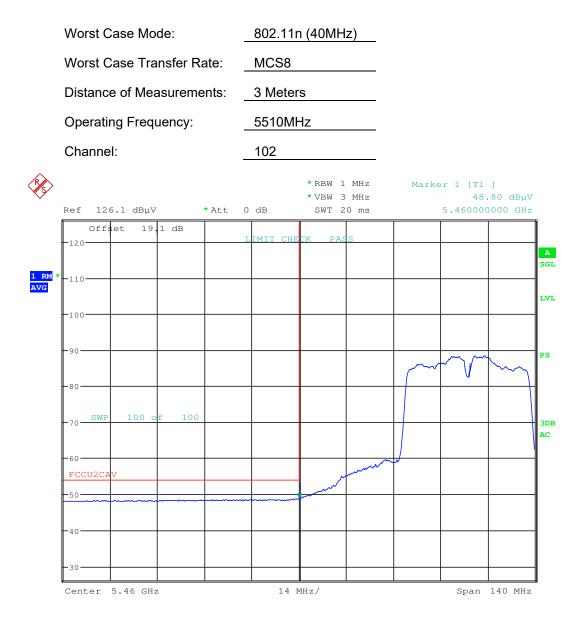
ering L ory



Date: 7.JUN.2016 00:16:05

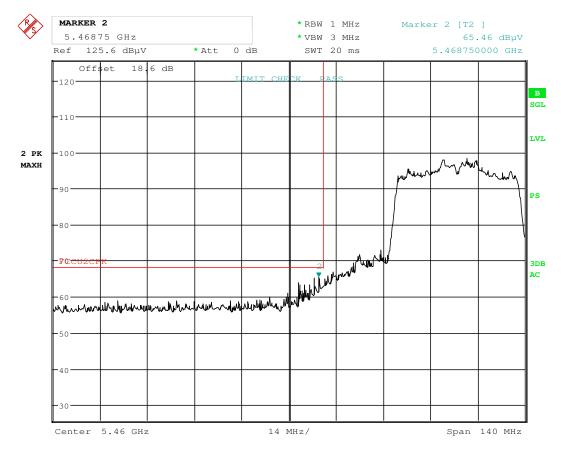
Plot 7-239. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 211 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 211 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 7.JUN.2016 00:16:20

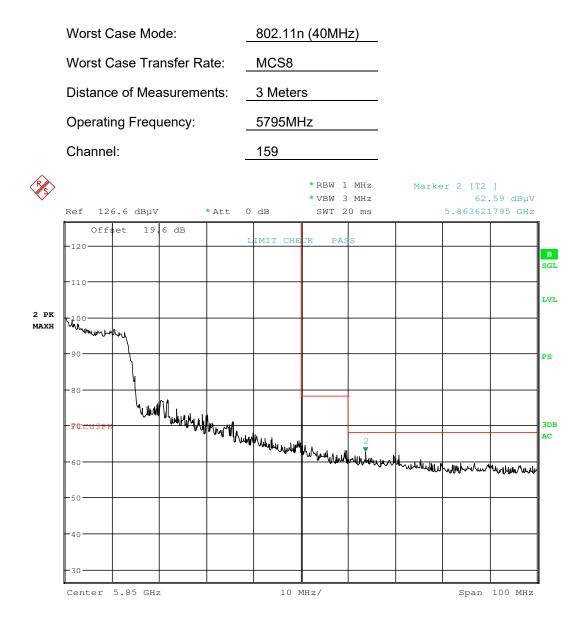
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 212 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 212 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 10.JUN.2016 18:40:19

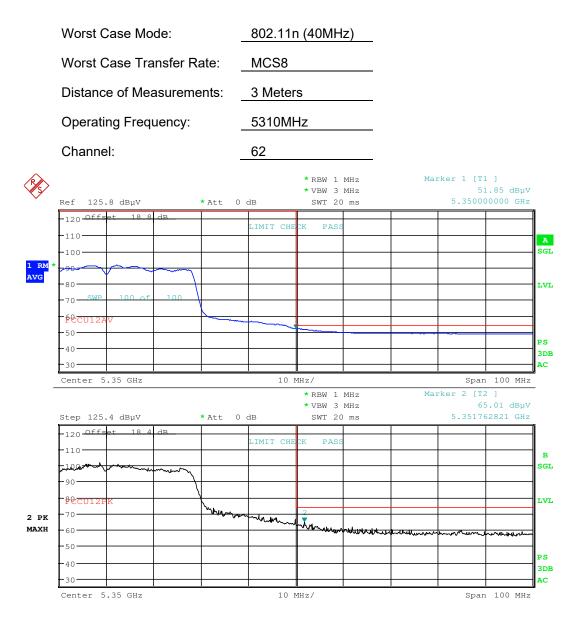
Plot 7-241. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 213 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 213 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016



Date: 10.JUN.2016 18:40:49

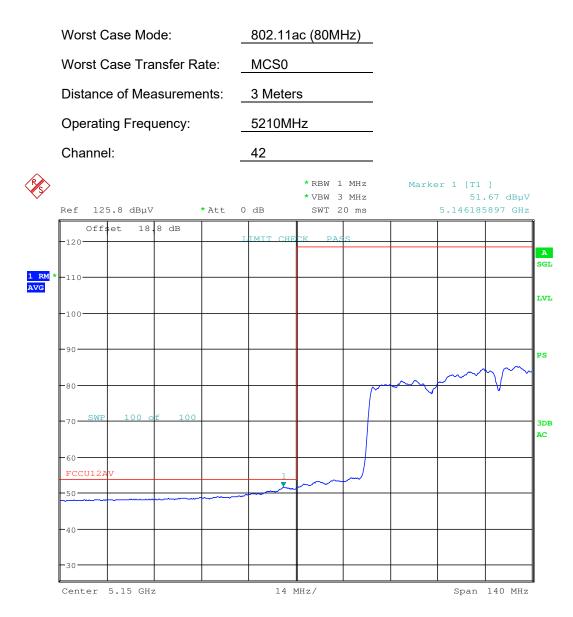
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 214 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 214 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 7.JUN.2016 00:38:00

Plot 7-243. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

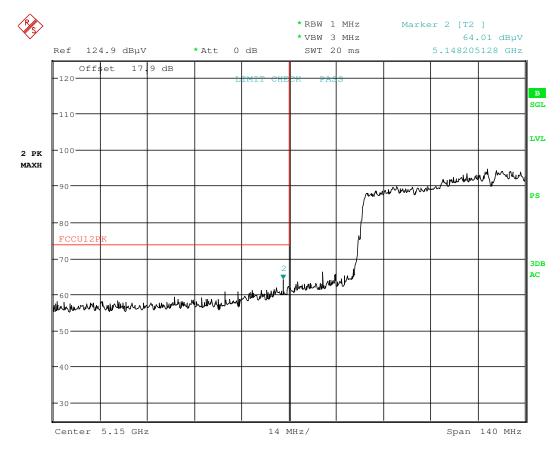
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 215 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Faye 2 15 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 18.JUN.2016 19:53:32

Plot 7-244. Radiated Restricted Band Edge Plot with WCP

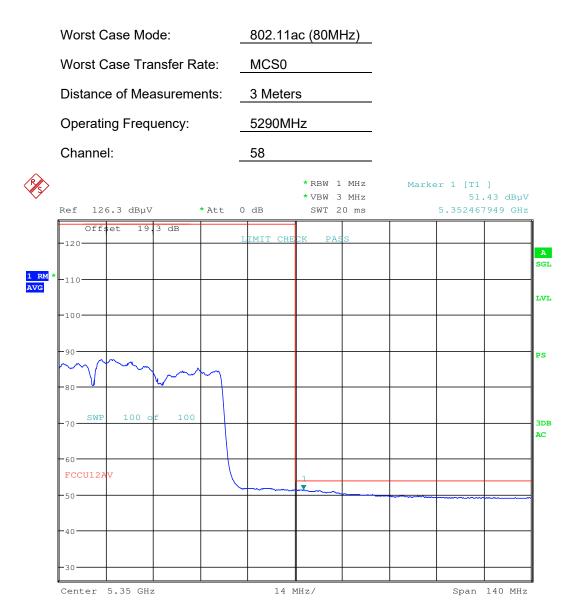
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 216 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 216 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				



Date: 7.JUN.2016 00:48:25

Plot 7-245. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

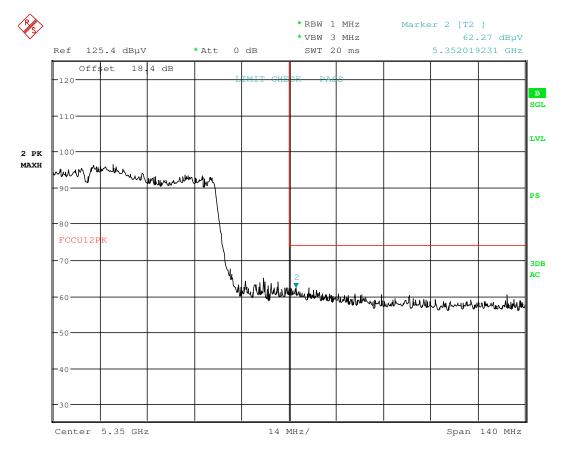
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 217 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 217 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


Date: 7.JUN.2016 00:48:41

Plot 7-246. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 219 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 218 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

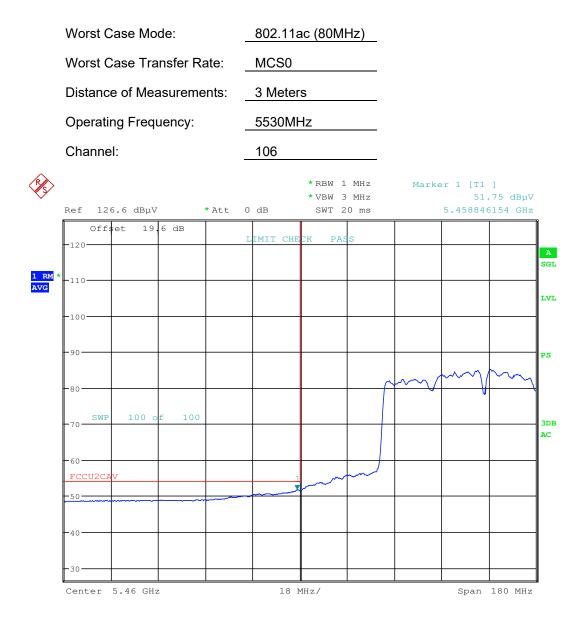
ering L ory



Date: 7.JUN.2016 00:57:18

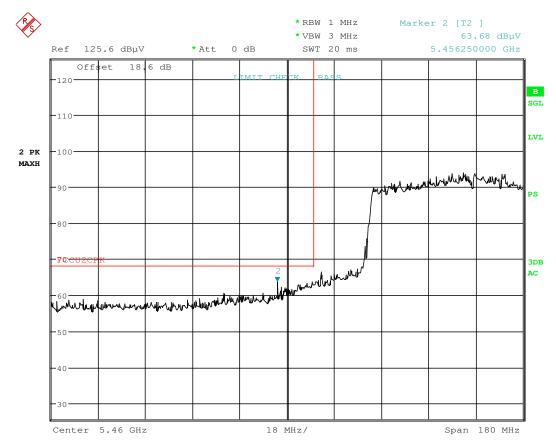
Plot 7-247. Radiated Restricted Upper Band Edge Plot (Average - UNII Band 2A)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 210 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 219 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0 05/16/2016



Date: 7.JUN.2016 00:57:33

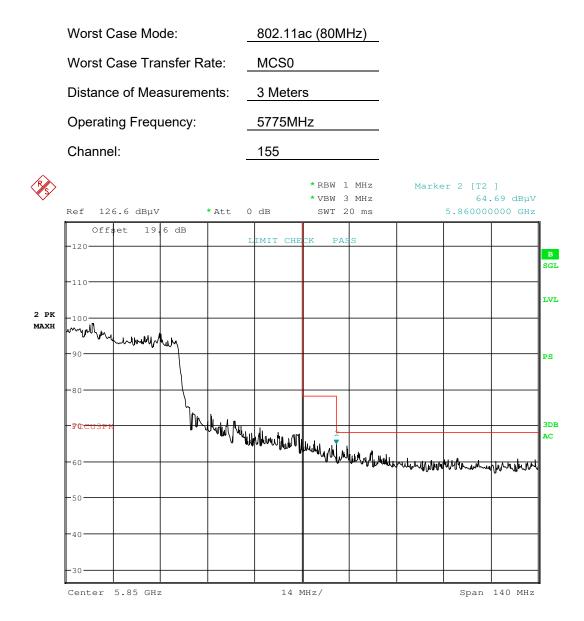
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 220 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 220 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 10.JUN.2016 18:44:39

Plot 7-249. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

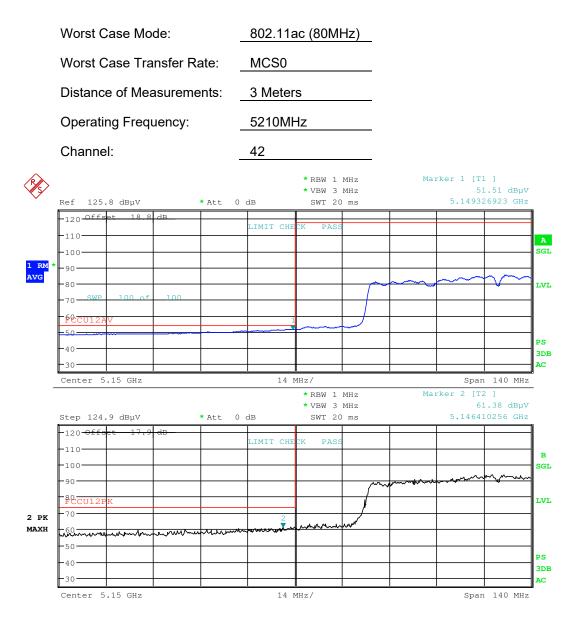
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 221 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 221 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 10.JUN.2016 18:44:52

Plot 7-250. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 222 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 222 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0



Date: 7.JUN.2016 01:34:41

Plot 7-251. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 222 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 223 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Date: 18.JUN.2016 20:03:57

Plot 7-252. Radiated Restricted Band Edge Plot with WCP

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 224 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 224 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-64 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

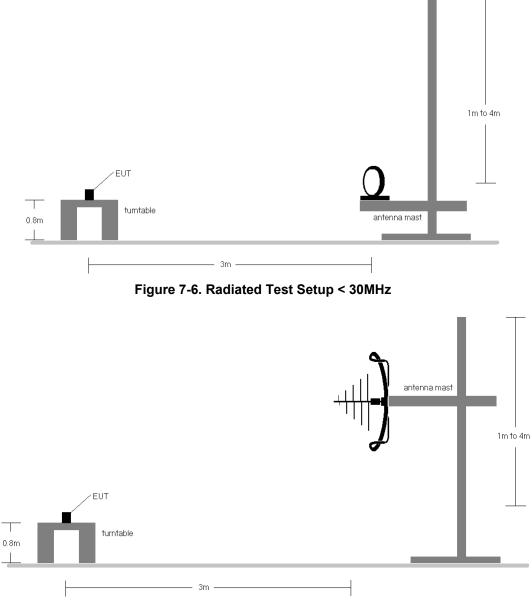
Table 7-64. Radiated Limits

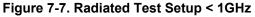
Test Procedures Used

ANSI C63.4-2014

Test Settings

Quasi-Peak Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

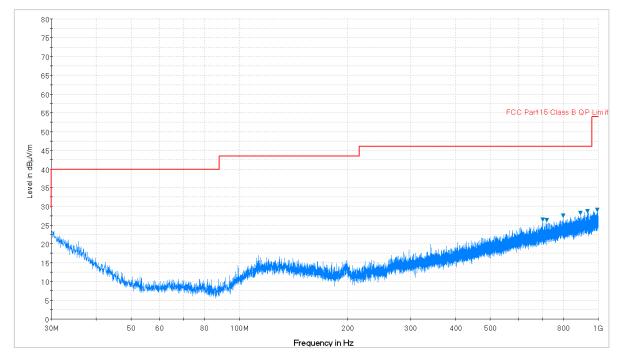

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 225 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Faye 225 01 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	

Test Setup

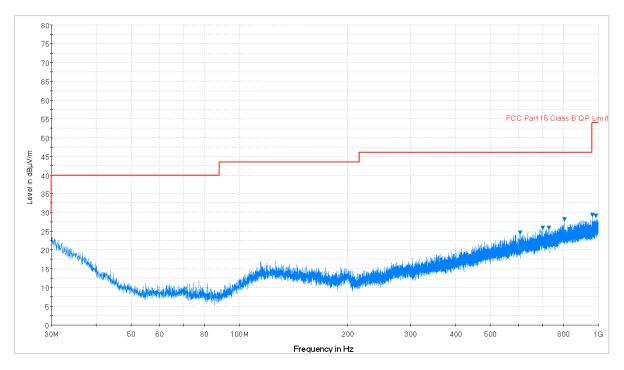
The EUT and measurement equipment were set up as shown in the diagrams below.

Test Notes

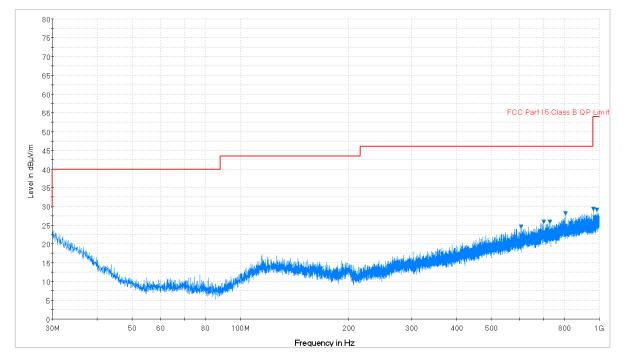
- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-64.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 226 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 220 01 200
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	

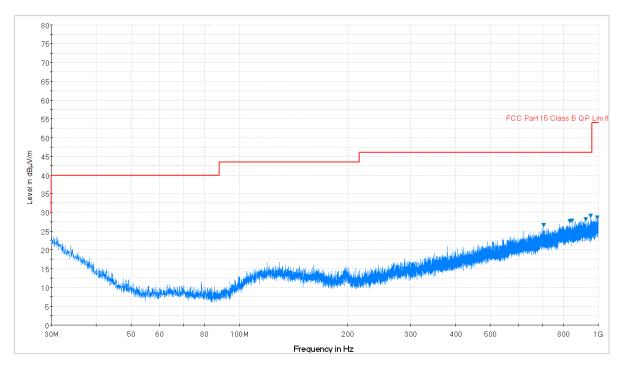
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 227 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 227 of 260
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	

Antenna-1 Radiated Spurious Emissions Measurements (Below 1GHz) <u>§15.209</u>


Plot 7-253. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-254. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)


FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 220 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 228 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Antenna-2 Radiated Spurious Emissions Measurements (Below 1GHz) <u>§15.209</u>

Plot 7-255. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)

Plot 7-256. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 220 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 229 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

7.9 Line-Conducted Test Data §15.407

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-65. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

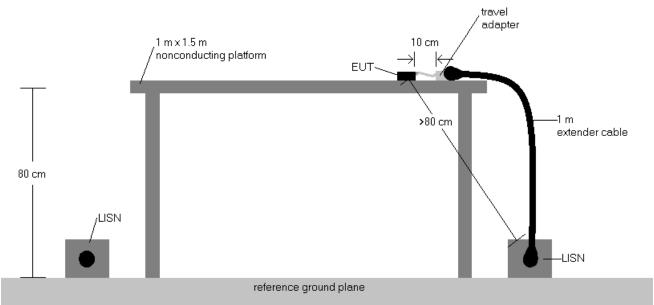
Test Settings

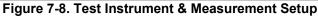
Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

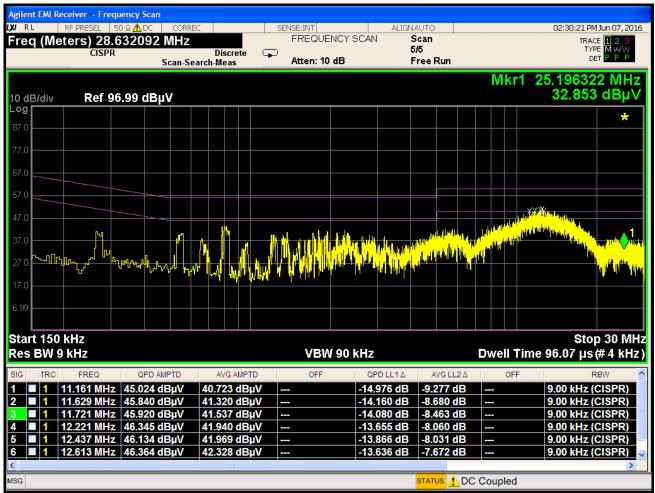

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 220 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 230 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				


2017 PCTEST Engineering Laboratory, Inc.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

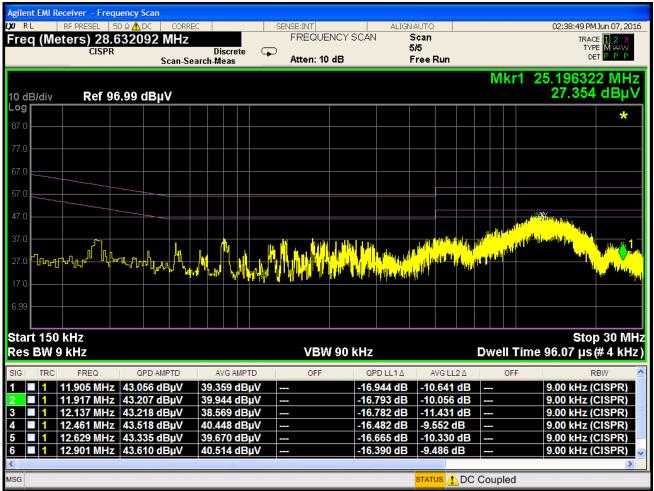
Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 221 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 231 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Solutory, mo.

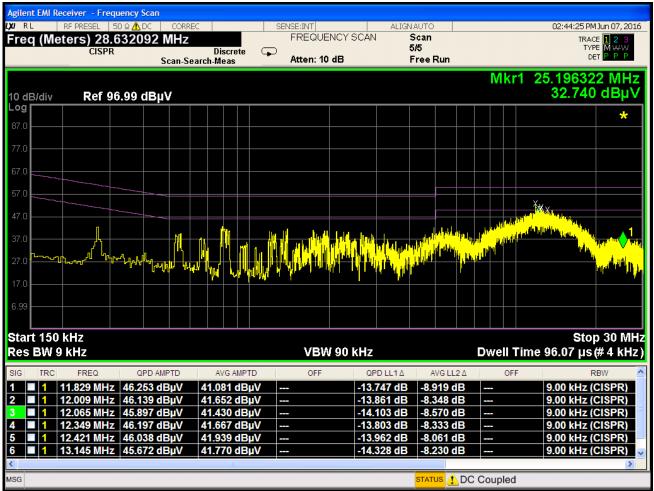
Line-Conducted Test Data §15.407



Plot 7-257. Line Conducted Plot with 802.11a UNII Band 1 (L1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 222 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 232 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

Line-Conducted Test Data §15.407



Plot 7-258. Line Conducted Plot with 802.11a UNII Band 1 (N)

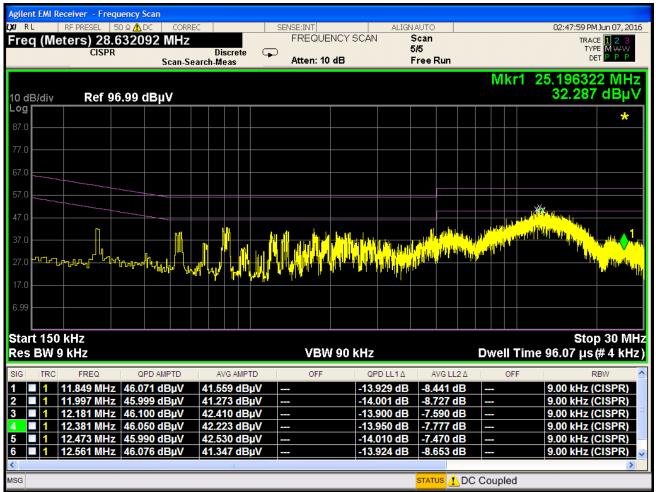
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 222 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 233 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Line-Conducted Test Data §15.407

Plot 7-259. Line Conducted Plot with 802.11a UNII Band 2A (L1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 234 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset			
© 2017 PCTEST Engineering Laboratory, Inc.					

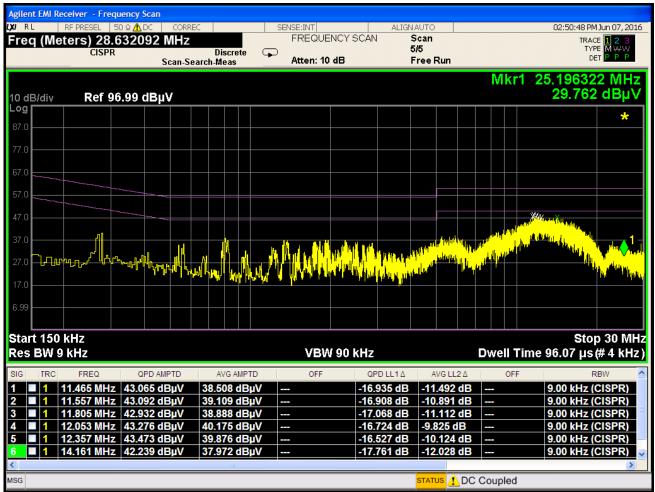
Line-Conducted Test Data §15.407



Plot 7-260. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 225 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 235 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

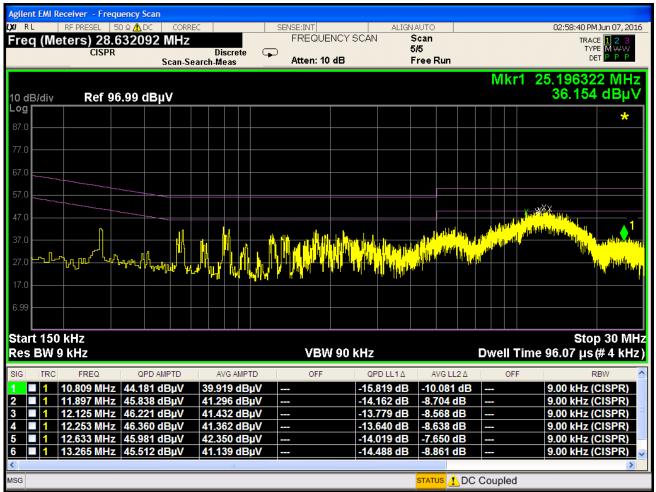
Line-Conducted Test Data §15.407



Plot 7-261. Line Conducted Plot with 802.11a UNII Band 2C (L1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 226 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 236 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Line-Conducted Test Data §15.407



Plot 7-262. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 227 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 237 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Line-Conducted Test Data <u>§15.407</u>

Plot 7-263. Line Conducted Plot with 802.11a UNII Band 3 (L1)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 222 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 238 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Line-Conducted Test Data §15.407

Plot 7-264. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 220 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 239 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMN935KOR** is in compliance with Part 15E of the FCC Rules.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 240 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 240 01 200	
© 2017 PCTEST Engineering Laboratory, Inc.					

APPENDIX A. 802.11A DUAL TX

A.1 Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER M	ODE (TX)		-		
15.407 (a.1)	Maximum Conducted Output Power	< 250mW (23.98dBm) (5150-5250MHz) < 250mW (5250-5350MHz) < 250mW (5470-5725MHz) < 1W (30dBm) (5725-5850MHz)		PASS	Section A.2
15.407 (a.1), (5)	Maximum Power Spectral Density	< 11 dBm/MHz (5150-5250MHz, 5250- 5350MHz, 5470-5725MHz) < 30 dBm/500kHz (5725-5850MHz)	CONDUCTED	PASS	Section A.3
15.205, 15.407(b.1),(5),(6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		PASS	Section A.4

Notes:

Table A.1-1. Summary of Test Results

- 1) This device employs dual transmission in 802.11a and 802.11g modes using Cyclic Delay Diversity. For all test cases, the device was set to transmit from both antennas simultaneously. The data in this section demonstrates compliance to the dual-transmission requirements specified in KDB 662911 v02r01.
- 2) All data found in this section is compiled from plots found in the main body of this test report.
- Since this device is able to transmit the same data through both of its antennas in a given symbol period, then, by the definition specified in KDB 662911 v02r01 Section F)1), the transmission symbols are correlated.
- 4) Since two antennas are supported in this device and a minimum of N_{ss} = 1 antenna can operate at any given time, the maximum array gain for two correlated signals is 10log₁₀(N_{ant}/N_{ss}) = 3dB, where N_{ss} is the number of spatial streams and N_{ant} is the total number of antennas.
- 5) For conducted spurious emissions, per KDB 662911 v02r01 Section E)3)b), the emissions on each individual output complied with its corresponding relative limit for that output, so additional testing was not required for dual transmission operation.

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 241 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 241 of 260	
© 2017 PCTEST Engineering Laboratory. Inc.					

A.2 Output Power Measurement §15.247(b.3)

Test Overview

Using the "Measure and Sum" technique, the measured conducted power values were summed in linear power units then converted back to dBm. Original measured values are found in Section 7.4 of this report.

Freq [MHz]	Channel	5GHz (201	5GHz (20MHz) Conducted Power [dBm]				
		ANT1	ANT2	MIMO			
5180	36	12.48	11.93	15.22	AVG		
5120	40	12.34	11.75	15.07	AVG		
5220	44	12.53	11.88	15.23	AVG		
5240	48	12.63	11.69	15.20	AVG		
5260	52	13.35	14.70	17.09	AVG		
5280	56	14.09	13.69	16.90	AVG		
5300	60	14.22	14.67	17.46	AVG		
5320	64	14.17	14.40	17.30	AVG		
5500	100	14.23	14.02	17.14	AVG		
5600	120	13.96	13.74	16.86	AVG		
5620	124	13.91	13.70	16.82	AVG		
5720	144	13.81	13.55	16.69	AVG		
5745	149	14.19	13.12	16.70	AVG		
5765	153	14.11	13.01	16.61	AVG		
5785	157	14.07	13.05	16.60	AVG		
5805	161	13.87	12.84	16.40	AVG		
5825	165	14.11	12.92	16.57	AVG		

 Table A2-1. Dual Tx 802.11a-mode Conducted Output Power Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 242 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 242 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Power Spectral Density A.3 <u>§15.247(e)</u>

Test Overview

Using the "Measure and Sum" technique, the measured conducted power density values were summed in linear power units then converted back to dBm.

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Antenna-1 Power Density	Antenna- 2 Power Density	Summed MIMO Power	Max Permissible Power Density [dBm/MHz]	Margin [dB]	Pass / Fail
-	5180	36	a (20MHz)	6	3.27	3.58	6.44	11.0	-4.56	Pass
Band	5200	40	a (20MHz)	6	3.40	3.30	6.36	11.0	-4.64	Pass
ä	5240	48	a (20MHz)	6	3.43	3.43	6.44	11.0	-4.56	Pass
2A	5260	52	a (20MHz)	6	2.98	3.59	6.30	11.0	-4.70	Pass
Band	5280	56	a (20MHz)	6	2.73	3.88	6.35	11.0	-4.65	Pass
Ba	5320	64	a (20MHz)	6	4.90	5.70	8.33	11.0	-2.67	Pass
2C	5500	100	a (20MHz)	6	5.11	5.46	8.30	11.0	-2.70	Pass
Band	5600	120	a (20MHz)	6	4.58	5.22	7.92	11.0	-3.08	Pass
Ba	5720	144	a (20MHz)	6	4.07	4.63	7.37	11.0	-3.63	Pass

Table A3-3.802.11a Dual Tx Conducted Power Density Measurements

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 242 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 243 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.					

Antenna-1 Power Spectral Density Measurements

Plot A3-3. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot A3-4. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 245 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 245 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot A3-5. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 56)

Plot A3-6. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 246 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 246 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot A3-7. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 100)

Plot A3-8. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 247 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 247 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot A3-9. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 249 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 248 of 260
© 2017 PCTEST Engineering Laboratory, Inc.			V 4.0	

Antenna-2 Power Spectral Density Measurementss

Plot A3-11. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 240 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 249 of 260
© 2017 PCTEST Engineering Laboratory Inc.				

Plot A3-12. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot 0 A3-13. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 250 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 250 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

٦g лу

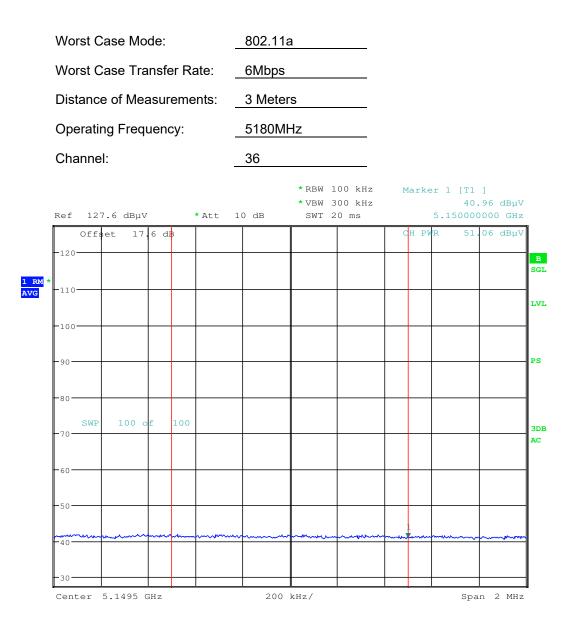
Plot A3-14. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 56)

Plot A3-15. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 251 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 251 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Plot A3-17. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

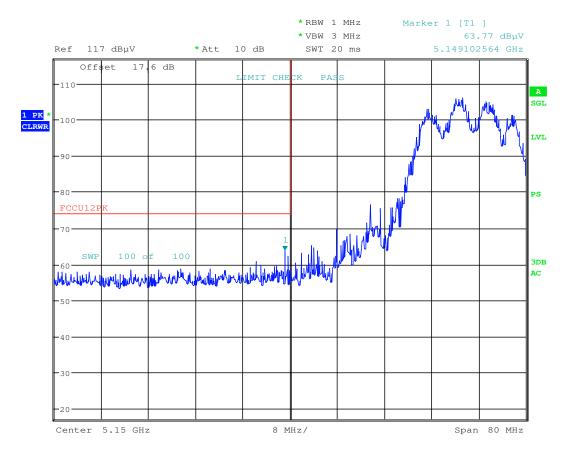
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 252 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 252 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0


Plot A3-18. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 144)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 252 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 253 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

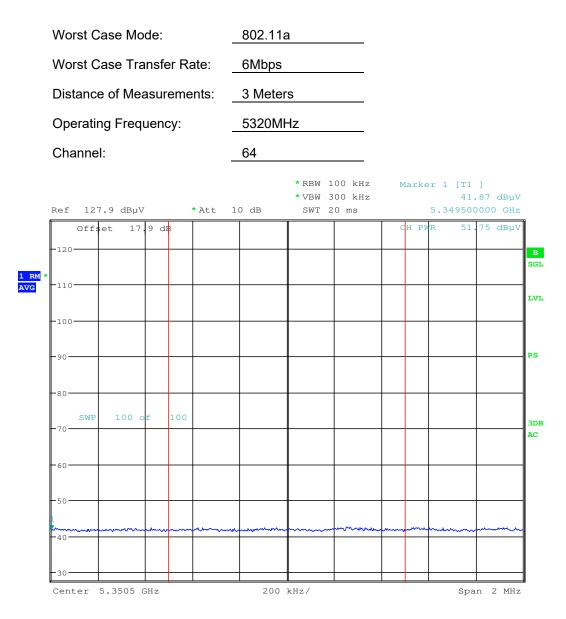
A.4 Dual Tx Radiated Restricted Band Edge Measurements §15.205 §15.209

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting on both outputs in 802.11a mode.


Date: 27.JUN.2016 13:00:53

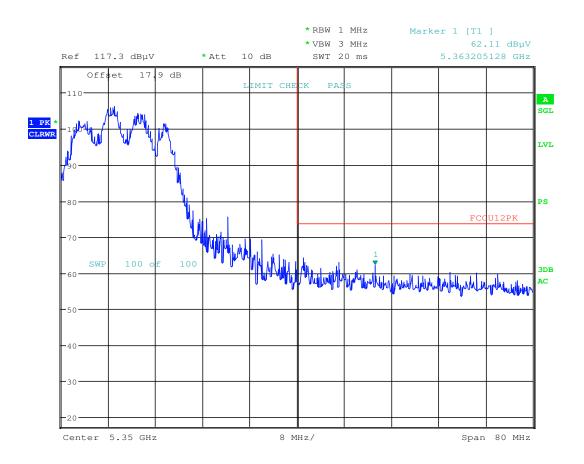
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 254 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Fage 254 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 27.JUN.2016 13:01:54

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 255 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 255 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 27.JUN.2016 13:08:27

Plot A.4-3. Radiated Restricted Upper Band Edge Plot (Average - UNII Band 2A)

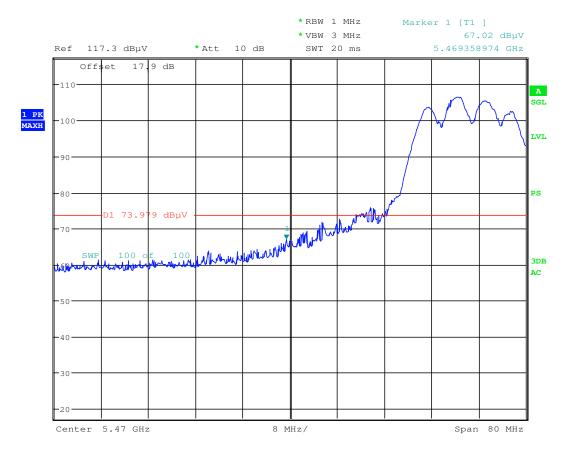
FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 256 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 256 of 260
© 2017 PCTEST Engineering Laboratory, Inc.				

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 27.JUN.2016 13:08:52

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 257 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 257 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0	

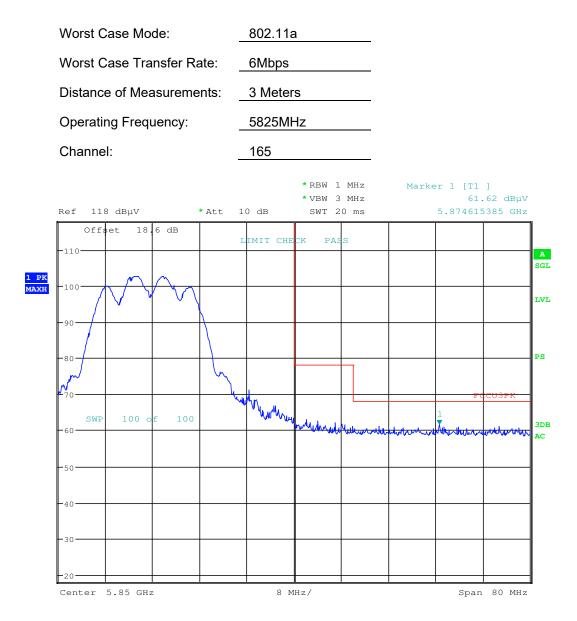
Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 27.JUN.2016 13:26:24

Plot A.4-5. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 259 of 260	
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 258 of 260	
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0	

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209


Date: 27.JUN.2016 13:27:06

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 259 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		Page 259 01 200
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

Dual Tx Radiated Restricted Band Edge Measurements §15.407(b.1)(b.2) §15.205 §15.209

Date: 27.JUN.2016 13:32:05

Plot A.4-7. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: A3LSMN935KOR		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 260 of 260
1M1703230122-05.A3L	6/1 - 6/28/2016, 7/14/2016	Portable Handset		
© 2017 PCTEST Engineering Laboratory, Inc.				V 4.0

05/16/2016