

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 7/22/2013-8/28/2013 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1308151632-R1.A3L

FCC ID: A3LSMN900X

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model(s): SM-N900X

Equipment Class	Band & Mode	Tx Frequency	Measured Conducted	SAR		
	24.14 4645		Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	10 gm Extremity (W/kg)
DTS	2.4 GHz WLAN	2412 - 2462 MHz	16.81	0.26	0.18	0.52
DTS	5.8 GHz WLAN	5745 - 5825 MHz	13.17	0.71	< 0.1	0.32
NII	5.2 GHz WLAN	5180 - 5240 MHz	13.27	0.17	0.11	0.39
NII	5.3 GHz WLAN	5260 - 5320 MHz	13.24	0.26	0.10	0.47
NII	5.5 GHz WLAN	5500 - 5700 MHz	13.17	0.70	< 0.1	0.44
DSS/DTS	Bluetooth	2402 - 2480 MHz	9.53		N/A	

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This revised Test Report (S/N: 0Y1308151632-R1.A3L) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 1 of 30

TABLE OF CONTENTS

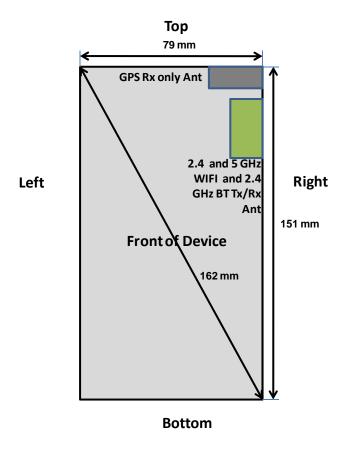
1	DEVICE	UNDER TEST	3			
2	INTRODU	JCTION	7			
3	DOSIME	TRIC ASSESSMENT	8			
4	DEFINITI	ON OF REFERENCE POINTS	9			
5	TEST CC	NFIGURATION POSITIONS FOR HANDSETS	10			
6	RF EXPO	OSURE LIMITS	13			
7	FCC ME	ASUREMENT PROCEDURES	14			
8	RF CONI	DUCTED POWERS	15			
9	SYSTEM	VERIFICATION	18			
10	SAR DATA SUMMARY					
11	SAR ME	ASUREMENT VARIABILITY	24			
12	EQUIPM	ENT LIST	25			
13	MEASUR	REMENT UNCERTAINTIES	26			
14	CONCLU	ISION	28			
15	REFERE	NCES	29			
APPEN	IDIX A:	SAR TEST PLOTS				
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS				
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES				
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS				
APPEN	IDIX E:	SAR SYSTEM VALIDATION				
APPEN	IDIX F:	SAR TEST SETUP PHOTOGRAPHS				

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 2 of 30

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Data	2412 - 2462 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
ANT+	Data	2402 - 2480 MHz


1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

Mode / Ban	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	17.0
TEEE 802.110 (2.4 GHZ)	Nominal	16.5
IEEE 902 11a /2 4 CH3\	Maximum	15.0
IEEE 802.11g (2.4 GHz)	Nominal	14.5
IEEE 003 115 /3 4 CH-/	Maximum	13.5
IEEE 802.11n (2.4 GHz)	Nominal	13.0
IEEE 003 440 /E CU-)	Maximum	13.5
IEEE 802.11a (5 GHz)	Nominal	13.0
IEEE 802.11n 20 MHz	Maximum	13.5
(5 GHz)	Nominal	13.0
IEEE 802.11n 40 MHz (5	Maximum	12.5
GHz)	Nominal	12.0
IEEE 802.11ac 80 MHz	Maximum	11.5
(5 GHz)	Nominal	11.0
Divisto eth	Maximum	10.5
Bluetooth	Nominal	10.0
Dlustooth LF	Maximum	6.0
Bluetooth LE	Nominal	5.5

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 2 1 20
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 3 of 30

1.3 DUT Antenna Locations

Note:

- 1. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.
- 2. Because the diagonal distance of the device is > 160 mm it is considered a "phablet."

Figure 1-1
DUT Antenna Locations

Table 1-1
Extremity Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No
5GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for Extremity SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01 (Extremity).

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 4 of 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 4 of 30

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the specialized battery. The SAR tests were performed with the specialized battery (model: **B800BE**).

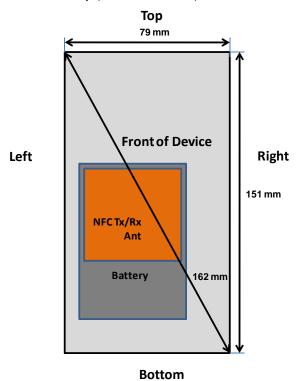


Figure 1-2
NFC Antenna Locations

1.5 Simultaneous Transmission Capabilities

2.4 GHz WLAN and Bluetooth, and 5GHz WLAN share the same antenna path and cannot transmit simultaneously. There are no simultaneous transmission capabilities on this device; therefore no simultaneous transmission was required to be evaluated.

1.6 SAR Test Exclusions Applied

This device does not support network-based voice services but does support VOIP operations. Therefore, this device was evaluated per the procedures outlined in KDB 648474 D04 for handsets.

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(11/10)^* \sqrt{2.441}] = 1.7 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 5 of 30

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth extremity SAR was not required; $[(11/5)^* \sqrt{2.441}] = 3.4 < 7.5$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) No new 5 GHz channels

Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.

1.6 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Phablet Procedures)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)

1.8 Device Serial Numbers

Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

Mode	Head Serial Number	Body-Worn Serial Number	Extremity Serial Number
2.4 GHz WLAN	150BE	15035	13687
5 GHz WLAN	150BE	150BE	150BE

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D C C 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 6 of 30

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for quidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [6]

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 7 -4 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 7 of 30

3.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

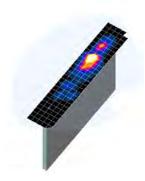


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	Minimum Zoom Scan		
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	, uica- yaica-	72000	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, , , ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

FCC ID: A3LSMN900X	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 0 -f 20
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 8 of 30

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 4-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 4-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

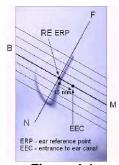


Figure 4-1 Close-Up Side view of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 4-2 Front, back and side view of SAM Twin Phantom

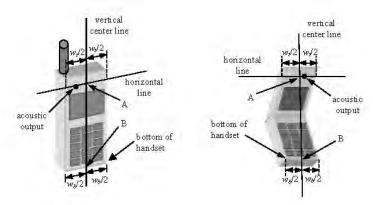


Figure 4-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 0 -4 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 9 of 30

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 5-2).

5.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5-2).

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 40 . (00	
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 10 of 30	

Figure 5-2 Front, Side and Top View of Ear/15° Tilt
Position

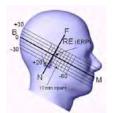


Figure 5-3
Side view w/ relevant markings

5.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

Figure 5-4 Twin SAM Chin20

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Danie 44 of 20
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 11 of 30

5.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5-5). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

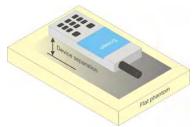


Figure 5-5
Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC minitablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04 v01r01DR04 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required.

FCC ID: A3LSMN900X	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 600
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 12 of 30

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUN	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMN900X		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 100
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 13 of 30

^{2.} The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7 FCC MEASUREMENT PROCEDURES

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

7.2 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n /ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

7.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

7.2.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

Since maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 600
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 14 of 30

WLAN Conducted Powers

Table 8-1 IEEE 802.11b Average RF Power

Freq			802.11b (2.4 GHz) Conducted Power [dBm]					
Mode	1 109	Channel		e [Mbps]				
	[MHz]		1	2	5.5	11		
802.11b	2412	1*	16.81	16.91	17.01	16.99		
802.11b	2437	6*	16.71	16.79	16.89	16.85		
802.11b	2462	11*	16.56	16.64	16.76	16.80		

Table 8-2 IEEE 802.11g Average RF Power

	Freq				802.11g (2.	4 GHz) Condu	cted Power	[dBm]		
Mode	rieq	Channel		Data Rate [Mbps]						
	[MHz]		6	9	12	18	24	36	48	54
802.11g	2412	1	13.82	13.89	13.88	13.86	13.89	13.72	13.89	13.82
802.11g	2437	6	13.81	13.88	13.86	13.81	13.83	13.85	13.92	13.81
802.11g	2462	11	14.38	14.43	14.49	14.40	14.38	14.38	14.41	14.45

Table 8-3 IEEE 802.11n Average RF Power

ieee oozii iii Avorago iti i owoi													
	Freq			802.11n (2.4 GHz) Conducted Power [dBm]									
Mode	1 164	Channel		Data Rate [Mbps]									
	[MHz]		6.5	58	65								
802.11n	2412	1	13.00	13.05	13.04	12.98	12.96	12.99	13.06	13.01			
802.11n	2437	6	12.88	13.01	13.00	12.94	13.01	12.90	13.02	12.99			
802.11n	2462	11	13.29	13.32	13.43	13.36	13.37	13.40	13.40	13.38			

Table 8-4 IEEE 802.11a Average RF Power

	F===				802.11a (5G	Hz) Conduc		r [dBm]				
Mode	Freq	Channel		Data Rate [Mbps]								
	[MHz]		6	9	12	18	24	36	48	54		
802.11a	5180	36*	13.23	13.21	13.30	13.25	13.23	13.18	13.17	13.16		
802.11a	5200	40	13.25	13.23	13.26	13.19	13.18	13.33	13.15	13.19		
802.11a	5220	44	13.27	13.27	13.36	13.17	13.18	13.27	13.18	13.32		
802.11a	5240	48*	13.21	13.22	13.17	13.11	13.21	13.15	13.22	13.26		
802.11a	5260	52*	13.20	13.15	13.24	13.29	13.16	13.11	13.17	13.14		
802.11a	5280	56	13.24	13.23	13.28	13.25	13.14	13.26	13.23	13.29		
802.11a	5300	60	13.19	13.23	13.17	13.23	13.27	13.09	13.26	13.18		
802.11a	5320	64*	13.13	13.05	13.17	13.14	13.21	13.14	13.17	13.12		
802.11a	5500	100	13.17	13.08	13.21	13.15	13.19	13.18	13.25	13.09		
802.11a	5520	104*	13.12	13.12	13.04	13.10	13.14	13.18	13.09	13.05		
802.11a	5540	108	13.09	13.17	13.14	13.13	13.00	13.03	13.08	13.08		
802.11a	5560	112	13.11	13.17	13.14	13.19	13.12	13.02	13.18	13.17		
802.11a	5580	116*	13.04	12.94	13.08	13.07	12.94	13.12	13.12	13.03		
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5660	132	12.99	12.93	13.01	12.95	12.91	13.01	12.98	13.00		
802.11a	5680	136*	13.01	12.96	13.02	13.01	12.94	12.97	12.91	13.04		
802.11a	5700	140	12.94	12.84	12.92	12.84	12.96	12.87	12.95	12.91		
802.11a	5745	149*	13.17	13.19	13.18	13.12	13.10	13.17	13.12	13.15		
802.11a	5765	153	13.04	13.14	13.08	13.15	13.09	13.17	13.13	13.07		
802.11a	5785	157*	13.01	13.01	13.12	13.12	13.09	13.11	13.02	13.09		
802.11a	5805	161*	12.97	13.03	12.97	13.03	13.02	13.04	12.98	13.01		
802.11a	5825	165	12.95	12.96	13.05	12.96	13.05	13.09	13.05	12.96		

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

FCC ID: A3LSMN900X	PCTEST INCIDENCE (IN	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 45 - 600
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset		Page 15 of 30

Table 8-5
IEEE 802.11n Average RF Power – 20 MHz Bandwidth

IEEE 802.11n Average RF Power – 20 MHz Bandwidth										
	Freq			20MF	Iz BW 802.1	1n (5GHz) C	onducted	Power [dl	3m]	
Mode	1 164	Channel				Data Rate [Mbps]			
	[MHz]		6.5	13	19.5	26	39	52	58.5	65
802.11n	5180	36	13.18	13.22	13.17	13.11	13.17	13.12	13.20	13.11
802.11n	5200	40	13.21	13.12	13.13	13.14	13.12	13.22	13.13	13.12
802.11n	5220	44	13.25	13.23	13.22	13.28	13.29	13.18	13.28	13.21
802.11n	5240	48	13.19	13.15	13.20	13.22	13.29	13.30	13.24	13.26
802.11n	5260	52	13.14	13.16	13.10	13.04	13.17	13.08	13.17	13.10
802.11n	5280	56	13.16	13.14	13.13	13.20	13.10	13.06	13.12	13.13
802.11n	5300	60	13.14	13.09	13.18	13.10	13.09	13.07	13.10	13.14
802.11n	5320	64	13.16	13.19	13.13	13.06	13.10	13.19	13.11	13.14
802.11n	5500	100	13.09	12.99	13.04	13.07	13.05	13.07	13.03	13.02
802.11n	5520	104	13.12	13.09	13.06	13.02	13.16	13.07	13.16	13.09
802.11n	5540	108	13.13	13.11	13.12	13.15	13.04	13.12	13.16	13.05
802.11n	5560	112	13.11	13.01	13.01	13.06	13.13	13.14	13.02	13.10
802.11n	5580	116	13.12	13.10	13.12	13.13	13.09	13.03	13.06	13.02
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5660	132	12.99	12.97	12.94	12.99	12.93	13.02	12.91	12.95
802.11n	5680	136	12.88	12.82	13.15	12.77	13.07	12.83	12.77	13.04
802.11n	5700	140	12.91	12.97	12.96	12.91	13.01	12.91	12.93	12.92
802.11n	5745	149	13.08	13.20	13.01	13.07	13.36	13.14	13.18	13.10
802.11n	5765	153	13.03	13.26	13.05	13.15	12.93	13.27	12.91	13.13
802.11n	5785	157	13.02	13.05	13.01	13.02	13.01	13.09	13.07	13.17
802.11n	5805	161	12.93	12.87	13.16	12.93	12.93	12.89	13.17	13.08
802.11n	5825	165	13.01	13.08	13.01	13.07	13.08	13.03	13.10	13.08

Table 8-6
IEEE 802.11n Average RF Power – 40 MHz Bandwidth

	Freq			40MHz BW 802.11n (5GHz) Conducted Power [dBm]								
Mode	i ieq	Channel				Data Rate [Mbps]					
	[MHz]		13.5	27	40.5	54	81	108	121.5	135		
802.11n	5190	38	11.95	11.90	11.99	11.99	11.85	11.85	11.93	11.92		
802.11n	5230	46	12.05	11.97	12.05	12.02	11.97	12.00	12.02	12.00		
802.11n	5270	54	12.01	12.03	11.99	11.99	12.03	12.00	11.94	12.04		
802.11n	5310	62	11.96	11.92	11.89	11.88	11.92	11.99	11.98	11.90		
802.11n	5510	102	11.86	11.77	11.84	11.86	11.97	11.85	11.89	11.97		
802.11n	5550	110	11.78	11.69	11.81	11.82	11.82	11.72	11.69	11.79		
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5670	134	11.55	11.46	11.56	11.59	11.49	11.58	11.53	11.52		
802.11n	5755	151	11.85	11.86	11.69	11.81	11.83	11.85	11.89	11.89		
802.11n	5795	159	11.65	11.93	11.66	11.90	11.74	11.73	11.81	11.79		

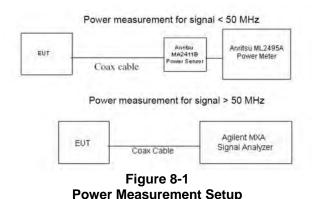

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -4 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 16 of 30

Table 8-7 IEEE 802.11ac Average RF Power - 80 MHz Bandwidth

	Freq			80MHz BW 802.11ac (5GHz) Conducted Power [dBm]								
Mode I	[MHz]	Channel	Data Rate [Mbps]									
	[IVITIZ]		29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390
802.11ac	5210	42	10.90	10.95	11.00	10.91	10.96	10.99	10.99	10.83	10.85	10.95
802.11ac	5290	58	11.13	11.13	11.24	11.11	11.08	11.06	11.11	11.10	11.12	11.17
802.11ac	5530	106	10.78	10.79	10.82	10.86	10.72	10.84	10.74	10.90	10.81	10.81
802.11ac	5775	155	10.94	10.83	10.85	10.92	10.96	11.03	10.98	10.89	10.97	10.93

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg, the reported 1g averaged SAR is <0.8 W/kg and the reported 10 g averaged SAR is < 2.0 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

Reviewed by: PCTEST SAMSUNG FCC ID: A3LSMN900X SAR EVALUATION REPORT Quality Manager **DUT Type:** Document S/N: **Test Dates:** Page 17 of 30 0Y1308151632-R1.A3L 7/22/2013-8/28/2013 Portable Handset

9

SYSTEM VERIFICATION

9.1 Tissue Verification

Table 9-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε
			2401	1.831	38.382	1.758	39.298	4.15%	-2.33%
07/25/2013	2450H	22.9	2450	1.871	37.996	1.800	39.200	3.94%	-3.07%
			2499	1.909	37.908	1.852	39.135	3.08%	-3.14%
			5200	4.704	35.357	4.660	36.000	0.94%	-1.79%
			5220	4.743	35.352	4.680	35.980	1.35%	-1.75%
			5280	4.794	35.279	4.740	35.920	1.14%	-1.78%
			5300	4.811	35.150	4.760	35.900	1.07%	-2.09%
			5500	5.075	34.639	4.965	35.650	2.22%	-2.84%
			5520	5.099	34.716	4.986	35.620	2.27%	-2.54%
			5540	5.105	34.642	5.007	35.590	1.96%	-2.66%
07/25/2013	5200H-5800H	22.3	5560	5.116	34.602	5.028	35.560	1.75%	-2.69%
			5600	5.182	34.384	5.070	35.500	2.21%	-3.14%
			5680	5.252	34.284	5.150	35.420	1.98%	-3.21%
			5745	5.362	34.078	5.215	35.355	2.82%	-3.61%
			5765	5.405	34.021	5.235	35.335	3.25%	-3.72%
			5785	5.404	34.053	5.255	35.315	2.84%	-3.57%
			5800	5.422	33.994	5.270	35.300	2.88%	-3.70%
			5805	5.411	33.993	5.275	35.295	2.58%	-3.69%
			2401	1.944	51.000	1.903	52.765	2.15%	-3.35%
08/28/2013	2450B	22.1	2450	2.005	50.840	1.950	52.700	2.82%	-3.53%
			2499	2.083	50.675	2.019	52.638	3.17%	-3.73%
			2401	1.966	52.854	1.903	52.765	3.31%	0.17%
07/22/2013	2450B	22.6	2450	2.031	52.669	1.950	52.700	4.15%	-0.06%
			2499	2.099	52.471	2.019	52.638	3.96%	-0.32%
			5200	5.505	48.968	5.299	49.014	3.89%	-0.09%
			5220	5.495	48.894	5.323	48.987	3.23%	-0.19%
			5280	5.580	48.936	5.393	48.879	3.47%	0.12%
			5300	5.593	48.806	5.416	48.851	3.27%	-0.09%
			5500	5.816	48.430	5.650	48.580	2.94%	-0.31%
07/22/2013	5200B-5800B	24.0	5520	5.832	48.368	5.673	48.553	2.80%	-0.38%
			5540	5.861	48.331	5.696	48.526	2.90%	-0.40%
			5745	6.197	47.965	5.936	48.248	4.40%	-0.59%
			5765	6.215	47.951	5.959	48.220	4.30%	-0.56%
			5785	6.244	47.942	5.982	48.242	4.38%	-0.62%
			5800	6.296	47.918	6.000	48.200	4.93%	-0.59%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 10 . 100
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 18 of 30

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2
System Verification Results

	System Verification TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
С	2450	HEAD	07/25/2013	23.6	22.7	0.100	719	3022	5.570	52.700	55.700	5.69%
Α	5200	HEAD	07/25/2013	24.2	23.4	0.100	1057	3589	7.410	75.900	74.100	-2.37%
А	5300	HEAD	07/25/2013	24.2	23.4	0.100	1057	3589	7.370	76.900	73.700	-4.16%
Α	5500	HEAD	07/25/2013	24.2	23.5	0.100	1057	3589	7.910	80.100	79.100	-1.25%
Α	5600	HEAD	07/25/2013	24.2	23.5	0.100	1057	3589	7.990	80.400	79.900	-0.62%
А	5800	HEAD	07/25/2013	24.2	23.4	0.100	1057	3589	7.400	76.100	74.000	-2.76%
С	2450	BODY	07/22/2013	23.0	22.6	0.100	719	3022	5.480	51.600	54.800	6.20%
А	5200	BODY	07/22/2013	24.3	23.6	0.100	1057	3589	7.360	75.500	73.600	-2.52%
Α	5300	BODY	07/22/2013	24.3	23.6	0.100	1057	3589	8.000	75.300	80.000	6.24%
Α	5500	BODY	07/22/2013	24.5	23.6	0.100	1057	3589	7.900	80.800	79.000	-2.23%
А	5800	BODY	07/22/2013	24.5	23.6	0.100	1057	3589	7.480	75.100	74.800	-0.40%

SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{10 g} (W/kg)	1 W Target SAR10g (W/kg)	1 W Normalized SAR _{10 g} (W/kg)	Deviation _{10g} (%)
Н	2450	BODY	08/28/2013	22.6	22.4	0.100	797	3318	2.310	23.200	23.100	-0.43%
Α	5200	BODY	07/22/2013	24.3	23.6	0.100	1057	3589	2.080	21.100	20.800	-1.42%
Α	5300	BODY	07/22/2013	24.3	23.6	0.100	1057	3589	2.240	21.100	22.400	6.16%
Α	5500	BODY	07/22/2013	24.5	23.6	0.100	1057	3589	2.190	22.400	21.900	-2.23%
Α	5800	BODY	07/22/2013	24.5	23.6	0.100	1057	3589	2.060	20.700	20.600	-0.48%

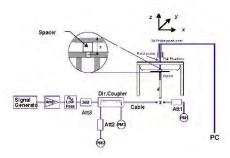


Figure 9-1
System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 . (00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 19 of 30

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1 DTS Head SAR

	DIS Head SAN														
					ME	ASUREN	IENT RE	SULTS							
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Data Rate	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
M Hz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)		(W/kg)	Factor	(W/kg)	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.06	Right	Cheek	150BE	1	1:1	0.085	1.172	0.100	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.04	Right	Tilt	150BE	1	1:1	0.070	1.172	0.082	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	-0.04	Left	Cheek	150BE	1	1:1	0.218	1.172	0.255	A1
2412	1	IEEE 802.11b	DSSS	17.5	16.81	-0.02	Left	Tilt	150BE	1	1:1	0.125	1.172	0.147	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.05	Right	Cheek	150BE	6	1:1	0.211	1.079	0.228	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.20	Right	Tilt	150BE	6	1:1	0.171	1.079	0.185	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.19	Left	Cheek	150BE	6	1:1	0.592	1.079	0.639	
5765	153	IEEE 802.11a	OFDM	13.5	13.04	0.16	Left	Cheek	150BE	6	1:1	0.634	1.112	0.705	A2
5805	161	IEEE 802.11a	OFDM	13.5	12.97	0.14	Left	Cheek	150BE	6	1:1	0.579	1.130	0.654	
5775	155	IEEE 802.11ac	OFDM	11.5	10.94	-0.05	Left	Cheek	150BE	29.3	1:1	0.391	1.138	0.445	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.13	Left	Tilt	150BE	6	1:1	0.445	1.079	0.480	
5765	153	IEEE 802.11a	OFDM	13.5	13.04	0.14	Left	Tilt	150BE	6	1:1	0.449	1.112	0.499	
5805	05 161 IEEE 802.11a OFDM 13.5 12.97 0.20							Tilt	150BE	6	1:1	0.419	1.130	0.473	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									1.6 W	Head /kg (mW/g d over 1 gra	•			

Table 10-2 NII Head SAR

						MEASUR	REMENT RESULTS								
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted	Power Drift	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.	mode	GETVICE	[dBm]	[dBm]	[dB]	olue	Position	Number	(Mbps)	buty Cycle	(W/kg)	Factor	(W/kg)	1101#
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.16	Right	Cheek	150BE	6	1:1	0.028	1.054	0.030	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.19	Right	Tilt	150BE	6	1:1	0.019	1.054	0.020	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.19	Left	Cheek	150BE	6	1:1	0.163	1.054	0.172	
5210	42	IEEE 802.11ac	OFDM	11.5	10.90	-0.17	Left	Cheek	150BE	29.3	1:1	0.126	1.148	0.145	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	-0.02	Left	Tilt	150BE	6	1:1	0.087	1.054	0.092	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	0.18	Right	Cheek	150BE	6	1:1	0.058	1.062	0.062	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	0.11	Right	Tilt	150BE	6	1:1	0.029	1.062	0.031	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	0.20	Left	Cheek	150BE	6	1:1	0.249	1.062	0.264	
5290	58	IEEE 802.11ac	OFDM	11.5	11.13	-0.15	Left	Cheek	150BE	29.3	1:1	0.176	1.089	0.192	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	0.12	Left	Tilt	150BE	6	1:1	0.135	1.062	0.143	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.09	Right	Cheek	150BE	6	1:1	0.149	1.079	0.161	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.14	Right	Tilt	150BE	6	1:1	0.123	1.079	0.133	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.13	Left	Cheek	150BE	6	1:1	0.538	1.079	0.581	
5560	112	IEEE 802.11a	OFDM	13.5	13.11	0.14	Left	Cheek	150BE	6	1:1	0.545	1.094	0.596	
5680	136	IEEE 802.11a	OFDM	13.5	13.01	0.13	Left	Cheek	150BE	6	1:1	0.629	1.119	0.704	A3
5530	106	IEEE 802.11ac	OFDM	11.5	10.78	-0.08	Left	Cheek	150BE	29.3	1:1	0.325	1.180	0.384	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.04	Left	Tilt	150BE	6	1:1	0.339	1.079	0.366	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 20 of 30

10.2 Standalone Body-Worn SAR Data

Table 10-3 DTS Body-Worn SAR

MEASUREMENT RESULTS															
FREQU	ENCY	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power	Power Drift [dB]	Spacing	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz Ch.				rower [dbiii]	[dBm]	լասյ		Number	(Wibbs)		Cycle	(W/kg)	1 actor	(W/kg)	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.05	10 mm	15035	1	back	1:1	0.150	1.172	0.176	A4
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.14	10 mm	150BE	6	back	1:1	0.039	1.079	0.042	A5
5775	155	IEEE 802.11ac	OFDM	11.5	10.94	-0.14	10 mm	150BE	29.3	back	1:1	0.019	1.138	0.022	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Body W/kg (m ged over				

Table 10-4 NII Body-Worn SAR

	Nii Body-Wolli OAK														
					М	EASUREI	MENT RI	ESULTS	3						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.00	10 mm	150BE	6	back	1:1	0.102	1.054	0.108	A6
5210	42	IEEE 802.11ac	OFDM	11.5	10.90	0.14	10 mm	150BE	29.3	back	1:1	0.042	1.148	0.048	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	-0.19	10 mm	150BE	6	back	1:1	0.096	1.062	0.102	
5290	58	IEEE 802.11ac	OFDM	11.5	11.13	0.21	10 mm	150BE	29.3	back	1:1	0.056	1.089	0.061	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	-0.21	10 mm	150BE	6	back	1:1	0.072	1.079	0.078	
5530	5530 106 IEEE 802.11ac OFDM 11.5 10.78 -0.15							150BE	29.3	back	1:1	0.034	1.180	0.040	
		ANSI / IEEE						Body							
	Spatial Peak							1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population						averaged over 1 gram								
	Oncomioned Exposure/General i opulation									410.0	.5 0101	. 3			

FCC ID: A3LSMN900X	PCTEST*	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 . (00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset		Page 21 of 30

10.3 Standalone Hand SAR Data

Table 10-5 WLAN Hand SAR

	WLAN HAND SAR MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (10g)	Scaling	Scaled SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.05	0 mm	13687	1	back	1:1	0.440	1.172	0.516	A7
2412	1	IEEE 802.11b	DSSS	17.5	16.81	-0.08	0 mm	13687	1	front	1:1	0.168	1.172	0.197	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.17	0 mm	13687	1	top	1:1	0.015	1.172	0.018	
2412	1	IEEE 802.11b	DSSS	17.5	16.81	0.03	0 mm	13687	1	right	1:1	0.047	1.172	0.055	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.05	0 mm	150BE	6	back	1:1	0.294	1.079	0.317	
5775	155	IEEE 802.11ac	OFDM	11.5	10.94	0.18	0 mm	150BE	29.3	back	1:1	0.170	1.138	0.193	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.04	0 mm	150BE	6	front	1:1	0.245	1.079	0.264	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	-0.14	0 mm	150BE	6	top	1:1	0.204	1.079	0.220	
5745	149	IEEE 802.11a	OFDM	13.5	13.17	0.11	0 mm	150BE	6	right	1:1	0.221	1.079	0.238	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.14	0 mm	150BE	6	back	1:1	0.372	1.054	0.392	
5210	42	IEEE 802.11ac	OFDM	11.5	10.90	0.19	0 mm	150BE	29.3	back	1:1	0.202	1.148	0.232	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.19	0 mm	150BE	6	front	1:1	0.115	1.054	0.121	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	0.17	0 mm	150BE	6	top	1:1	0.032	1.054	0.034	
5220	44	IEEE 802.11a	OFDM	13.5	13.27	-0.03	0 mm	150BE	6	right	1:1	0.164	1.054	0.173	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	-0.06	0 mm	150BE	6	back	1:1	0.439	1.062	0.466	A8
5290	58	IEEE 802.11ac	OFDM	11.5	11.13	0.19	0 mm	150BE	29.3	back	1:1	0.244	1.089	0.266	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	-0.02	0 mm	150BE	6	front	1:1	0.144	1.062	0.153	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	0.16	0 mm	150BE	6	top	1:1	0.059	1.062	0.063	
5280	56	IEEE 802.11a	OFDM	13.5	13.24	-0.04	0 mm	150BE	6	right	1:1	0.204	1.062	0.217	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	-0.18	0 mm	150BE	6	back	1:1	0.409	1.079	0.441	
5530	106	IEEE 802.11ac	OFDM	11.5	10.78	-0.04	0 mm	150BE	29.3	back	1:1	0.195	1.180	0.230	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.03	0 mm	150BE	6	front	1:1	0.264	1.079	0.285	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	-0.11	0 mm	150BE	6	top	1:1	0.220	1.079	0.237	
5500	100	IEEE 802.11a	OFDM	13.5	13.17	0.08	0 mm	150BE	6	right	1:1	0.197	1.079	0.213	
		ANSI / IEEE	C95.1 1992 Spatial P	2 - SAFETY LIN eak	IIT		Hand 4.0 W/kg (mW/g)								
	Uncontrolled Exposure/General Population						averaged over 10 grams								

10.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery including NFC antenna was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 22 of 30

- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests are not needed when the measured SAR results for a frequency band are less than 0.8 W/kg. Please see Section 11 for variability analysis.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 3. Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 4. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 5. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- 6. Per FCC KDB Publication 648474 D04v01r01, this device is considered a "phablet" since the diagonal distance is 162 mm >160 mm. Therefore, hand SAR tests are required when hotspot mode does not apply or if hotspot 1g SAR>1.2 W/kg. Because wireless router operations are not supported for 2.4 GHz and 5 GHz WLAN Hand, hand SAR was evaluated for both 2.4 GHz and 5 GHz WIFI.

FCC ID: A3LSMN900X	POTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 23 of 30

11 SAR MEASUREMENT VARIABILITY

11.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since the measured SAR results for each frequency band are less than 0.8 W/kg.

11.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 04 . (00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 24 of 30

12 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
Agilent	85070C	Dielectric Probe Kit	2/14/2013	Annual	2/14/2014	MY44300633
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/17/2013	Annual	4/17/2014	3629U00687
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/16/2013	Annual	4/16/2014	JP38020182
Agilent	N9020A	MXA Signal Analyzer	10/9/2012	Annual	10/9/2013	US46470561
Agilent	E5515C	Wireless Communications Test Set	9/24/2012	Annual	9/24/2013	GB43163447
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/16/2013	Annual	4/16/2014	MY45470194
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	CBT	N/A	CBT	21910
Anritsu	MA24106A	USB Power Sensor	8/22/2012	Annual	8/22/2013	1231535
Anritsu	MA24106A	USB Power Sensor	8/22/2012	Annual	8/22/2013	1231538
Anritsu	MA2411B	Pulse Power Sensor	12/5/2012	Annual	12/5/2013	1126066
Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5821
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual	12/17/2013	1204343
						1204419
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual Annual	12/17/2013	
Anritsu	ML2438A	Power Meter	2/14/2013		2/14/2014	98150041
Anritsu	ML2496A	Power Meter	11/28/2012	Annual	11/28/2013	1138001
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122539615
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014497
Fisher Scientific	15-077-960	Thermometer	11/6/2012	Biennial	11/6/2014	122640025
Fisher Scientific	15-078J	Long Stem Thermometer	10/30/2012	Biennial	10/30/2014	122626059
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/10/2012	Annual	10/10/2013	1833460
Gigatronics	8651A	Universal Power Meter	10/10/2012	Annual	10/10/2013	8650319
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
Rohde & Schwarz	SME06	Signal Generator	10/11/2012	Annual	10/11/2013	832026
Rohde & Schwarz	SMIQ03B	Signal Generator	4/17/2013	Annual	4/17/2014	DE27259
Seekonk	NC-100	Torque Wrench (8" lb)	11/29/2011	Triennial	11/29/2014	21053
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
SPEAG	D2450V2	2450 MHz SAR Dipole	8/23/2012	Annual	8/23/2013	719
SPEAG	D2450V2	2450 MHz SAR Dipole	1/8/2013	Annual	1/8/2014	797
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/11/2013	Annual	1/11/2014	1057
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/17/2013	Annual	1/17/2014	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/22/2013	Annual	4/22/2014	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2012	Annual	8/24/2013	1322
SPEAG	ES3DV2	SAR Probe	8/28/2012	Annual	8/28/2013	3022
SPEAG	EX3DV4	SAR Probe	1/17/2013	Annual	1/17/2014	3589
SPEAG	EX3DV3	SAR Probe	4/29/2013	Annual	4/29/2014	3318
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/17/2013	Annual	4/17/2014	B010177
VWR	23226-658	Long Stem Thermometer	3/30/2012	Biennial	3/30/2014	122179874
VWR	36934-158	Wall-Mounted Thermometer	9/30/2011	Biennial	9/30/2013	111859323
VWR	62344-925	Mini-Thermometer N Prior to testing the measurement nat	10/24/2011	Biennial	10/24/2013	111886414

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSMN900X	POTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Danie 05 at 20
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 25 of 30

13 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
	Sec.	(=,			. 5	3	(± %)	(± %)	·
Measurement System							/		
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	oc
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	oc
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time		2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions		3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom		2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	×
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	8
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	oc
Liquid Conductivity - measurement uncertainty		3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values		5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Liquid Permittivity - measurement uncertainty		4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS				12.1	11.7	299			
Expanded Uncertainty k=2							24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 26 of 30

Applicable for frequencies up to 6 GHz.

а	b	С	d	e=	f	g	h =	i=	k
ŭ .			"		•	9			K
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time		0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time		2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions		3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom		2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values		5.0	R	1.73	0.60	0.49	1.7	1.4	×
Liquid Permittivity - measurement uncertainty		4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS			_	12.4	12.0	299			
Expanded Uncertainty k=2							24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 07 of 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 27 of 30

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMN900X	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -4 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 28 of 30

15 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset		Page 29 of 30	
© 2013 PCTEST Engineering Laboratory, Inc.					

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMN900X	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -4 00
0Y1308151632-R1.A3L	7/22/2013-8/28/2013	Portable Handset	Page 30 of 30

APPENDIX A: SAR TEST DATA

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.84 \text{ S/m}; \ \epsilon_r = 38.295; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-25-2013; Ambient Temp: 23.6°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2012
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Left Head, Cheek, Ch 01, 1 Mbps

Area Scan (10x15x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.758 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.526 W/kg

SAR(1 g) = 0.218 W/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5765 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

f=5765 MHz; $\sigma=5.405$ S/m; $\epsilon_{r}^{}=34.021;$ $\rho=1000$ kg/m 3

Phantom section: Left Section

Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.4°C

Probe: EX3DV4 - SN3589; ConvF(3.85, 3.85, 3.85); Calibrated: 1/17/2013;

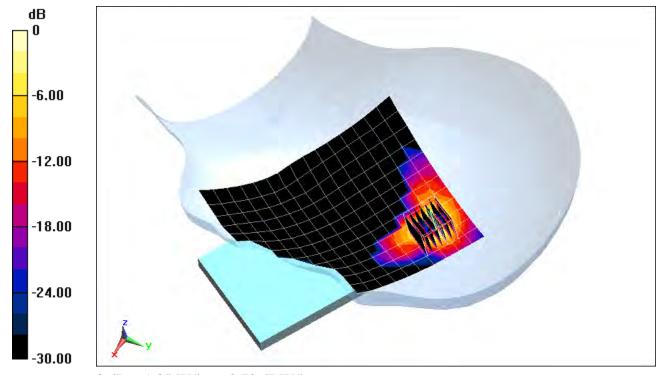
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Main New; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz Left Head, Cheek, Ch 153, 6 Mbps


Area Scan (13x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.971 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 4.31 W/kg

SAR(1 g) = 0.634 W/kg

0 dB = 1.87 W/kg = 2.72 dBW/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

 $f = 5680 \text{ MHz}; \ \sigma = 5.252 \text{ S/m}; \ \epsilon_r = 34.284; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.5°C

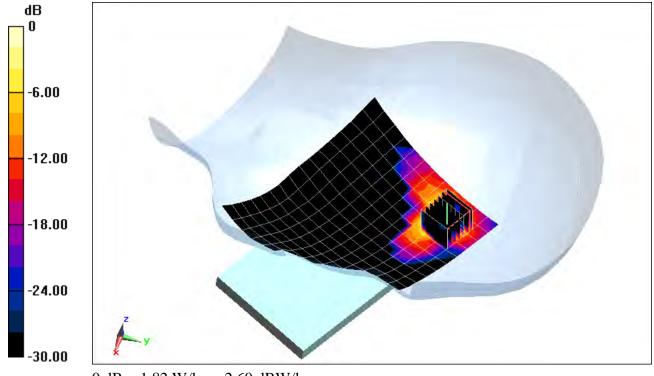
Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main New; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.5-5.7 GHz Left Head, Cheek, Ch 136, 6 Mbps


Area Scan (13x16x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 11.259 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.93 W/kg

SAR(1 g) = 0.629 W/kg

0 dB = 1.82 W/kg = 2.60 dBW/kg

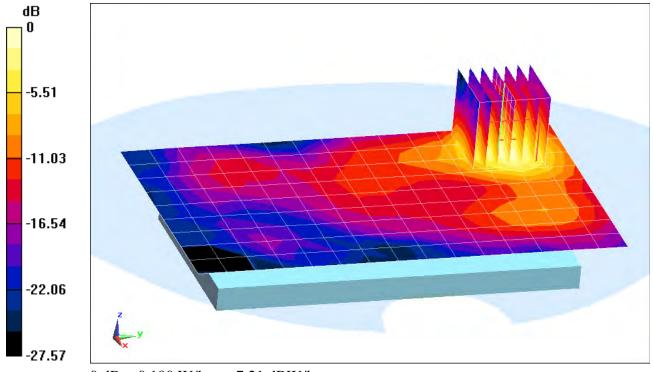
DUT: A3LSMN900X; Type: Portable Handset; Serial: 15035

Communication System: IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.981 \text{ S/m}; \ \epsilon_r = 52.812; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2012
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Body SAR, Ch 01, 1 Mbps, Back Side


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.939 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.150 W/kg

0 dB = 0.190 W/kg = -7.21 dBW/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body Medium parameters used:

f = 5745 MHz; σ = 6.197 S/m; ε_r = 47.965; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013;

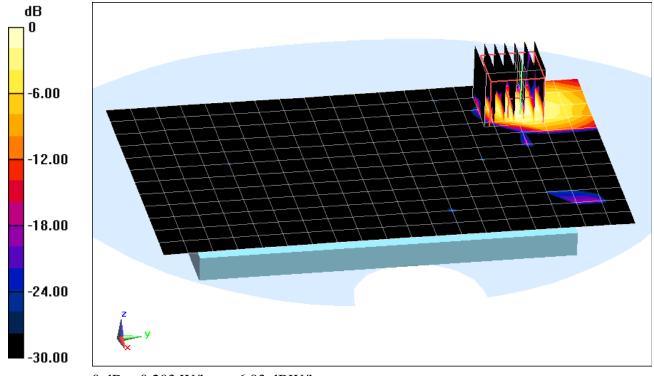
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 149, 6 Mbps, Back Side


Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 2.148 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.573 W/kg

SAR(1 g) = 0.039 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5220 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body Medium parameters used:

f = 5220 MHz; σ = 5.495 S/m; ϵ_r = 48.894; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 24.3°C; Tissue Temp: 23.6°C

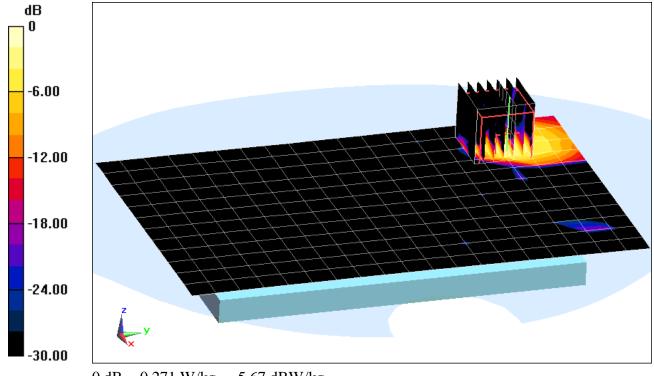
Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.2 GHz, Body SAR, Ch 44, 6 Mbps, Back Side


Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 4.520 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.102 W/kg

0 dB = 0.271 W/kg = -5.67 dBW/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 13687

Communication System: IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.958 \text{ S/m}; \ \epsilon_r = 50.964; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-28-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

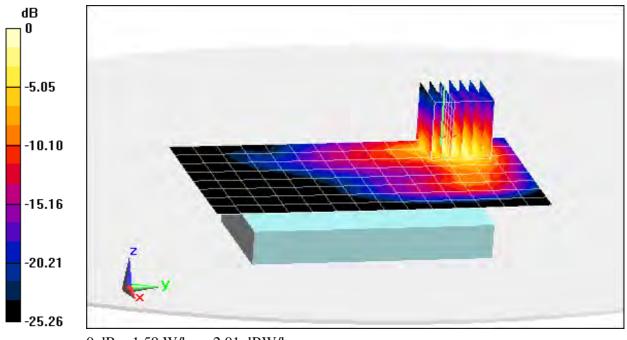
Probe: ES3DV3 - SN3318; ConvF(4.31, 4.31, 4.31); Calibrated: 4/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013

Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Hand Extremity SAR, Ch 01, 1 Mbps, Back Side


Area Scan (9x15x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.442 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(10 g) = 0.44 W/kg

0 dB = 1.59 W/kg = 2.01 dBW/kg

DUT: A3LSMN900X; Type: Portable Handset; Serial: 150BE

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body Medium parameters used:

f = 5280 MHz; σ = 5.58 S/m; ε_r = 48.936; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 07-22-2013; Ambient Temp: 24.3°C; Tissue Temp: 23.6°C

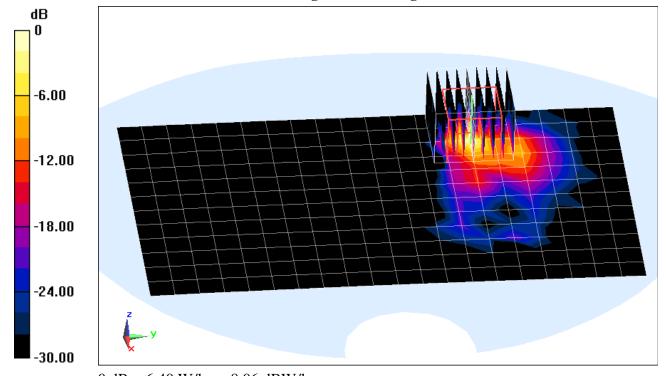
Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.3 GHz, Hand Extremity SAR, Ch 56, 6 Mbps, Back Side


Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 23.103 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(10 g) = 0.439 W/kg

0 dB = 6.40 W/kg = 8.06 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

f = 2450 MHz; σ = 1.871 S/m; ϵ_r = 37.996; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-25-2013; Ambient Temp: 23.6°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012;

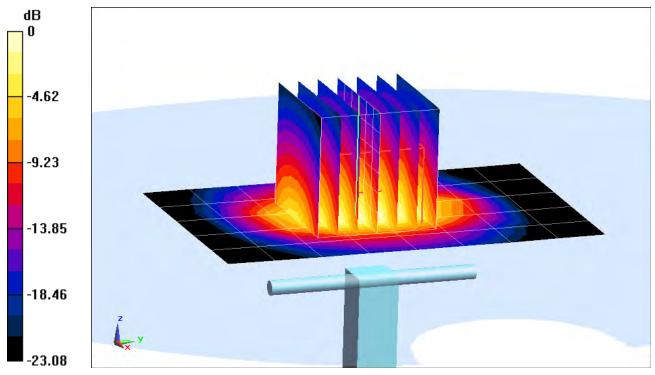
Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 11.4 W/kg

SAR(1 g) = 5.57 W/kg

Deviation = 5.69%

0 dB = 7.09 W/kg = 8.51 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 4.704 \text{ S/m}; \ \epsilon_r = 35.357; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.4°C

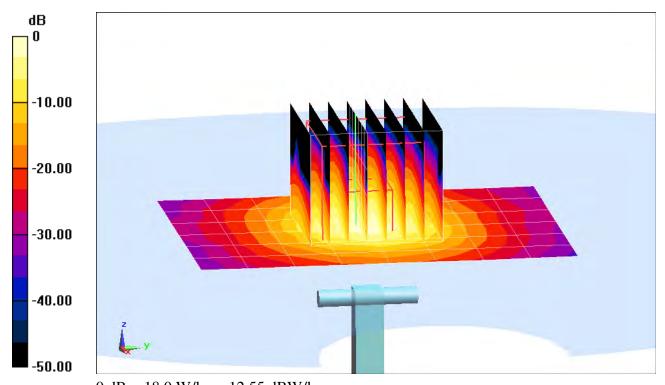
Probe: EX3DV4 - SN3589; ConvF(4.48, 4.48, 4.48); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5200MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.41 W/kg

Deviation = -2.37%

0 dB = 18.0 W/kg = 12.55 dBW/kg

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

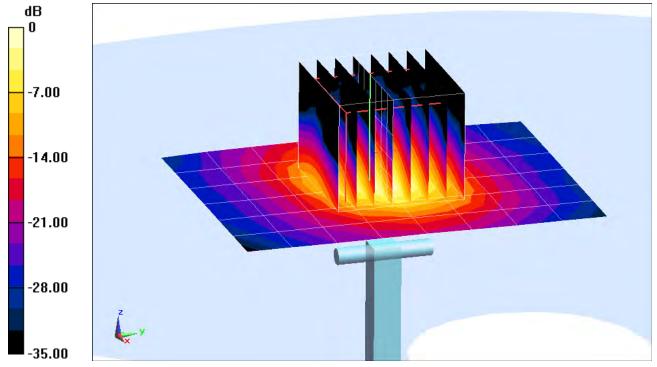
Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: $f = 5300 \text{ MHz}; \ \sigma = 4.811 \text{ S/m}; \ \epsilon_r = 35.15; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.4°C

Probe: EX3DV4 - SN3589; ConvF(4.27, 4.27, 4.27); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5300MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 7.37 W/kgDeviation = -4.16%

0 dB = 17.3 W/kg = 12.38 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.075 \text{ S/m}; \ \epsilon_r = 34.639; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

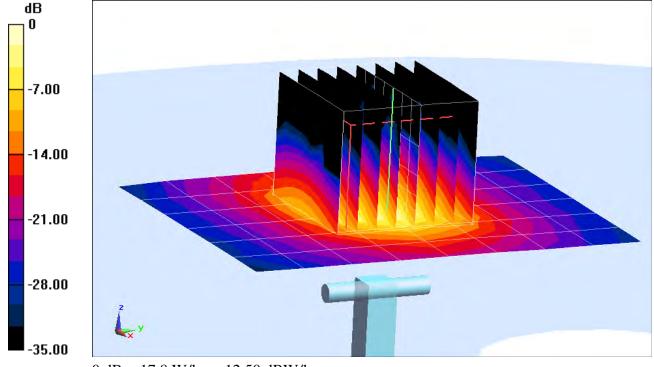
Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN3589; ConvF(4.14, 4.14, 4.14); Calibrated: 1/17/2013; Sensor-Surface: 1 4mm (Mechanical Surface Detection)

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 37.6 W/kg

SAR(1 g) = 7.91 W/kgDeviation = -1.25%

0 dB = 17.8 W/kg = 12.50 dBW/kg

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

f = 5600 MHz; σ = 5.182 S/m; ε_r = 34.384; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.5°C

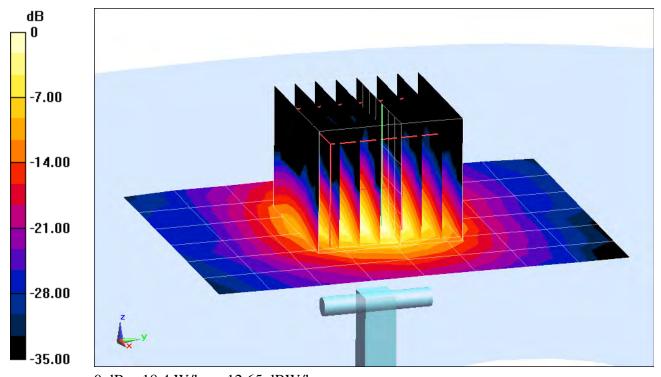
Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5600MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 37.8 W/kg

SAR(1 g) = 7.99 W/kg

Deviation = -0.62%

0 dB = 18.4 W/kg = 12.65 dBW/kg

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1077

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: $f = 5800 \text{ MHz}; \ \sigma = 5.422 \text{ S/m}; \ \epsilon_r = 33.994; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

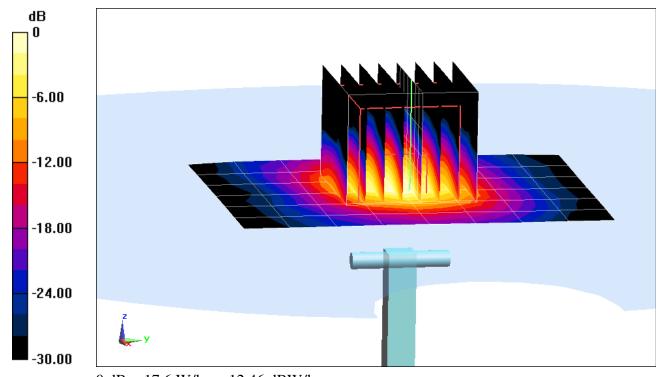
Test Date: 07-25-2013; Ambient Temp: 24.2°C; Tissue Temp: 23.4°C

Probe: EX3DV4 - SN3589; ConvF(3.85, 3.85, 3.85); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 37.7 W/kg

SAR(1 g) = 7.4 W/kg

Deviation = -2.76%

0 dB = 17.6 W/kg = 12.46 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 2.031 S/m; ε_r = 52.669; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(3.97, 3.97, 3.97); Calibrated: 8/28/2012;

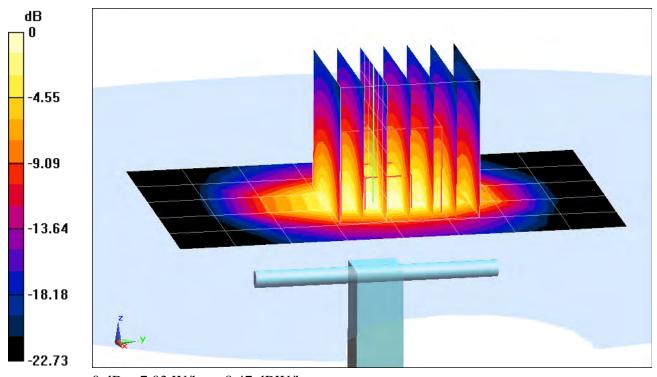
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 5.48 W/kg

Deviation = 6.20%

0 dB = 7.03 W/kg = 8.47 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 2.005 S/m; ε_r = 50.84; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-28-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3318; ConvF(4.31, 4.31, 4.31); Calibrated: 4/29/2013;

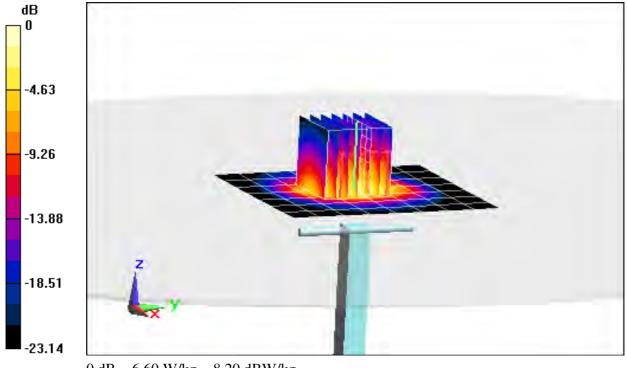
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013

Phantom: ELI left; Type: QDOVA002AA; Serial: TP:1202

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power: 20 dBm (100 mW)

Peak SAR (extrapolated) = 10.6 W/kg

SAR(10 g) = 2.31 W/kg

Deviation: -0.43%

0 dB = 6.60 W/kg = 8.20 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

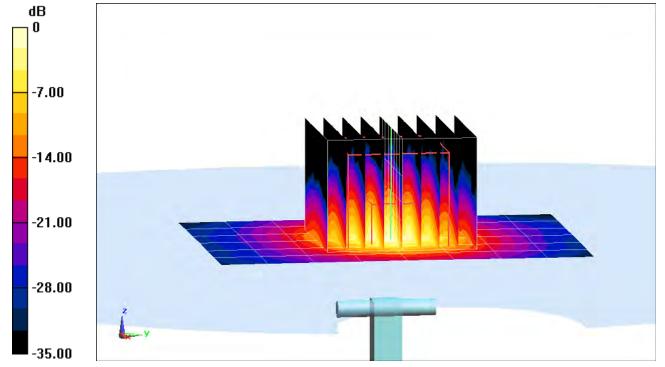
Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 5.505 \text{ S/m}; \ \epsilon_r = 48.968; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 24.3°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/17/2013
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.08 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.08 W/kg Deviation (1g) = -2.52%; Deviation (10g) = -1.42%

0 dB = 18.2 W/kg = 12.60 dBW/kg

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5300 MHz; $\sigma = 5.593$ S/m; $\varepsilon_r = 48.806$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space; 1.0 cm

Test Date: 07-22-2013; Ambient Temp: 24.3°C; Tissue Temp: 23.6°C

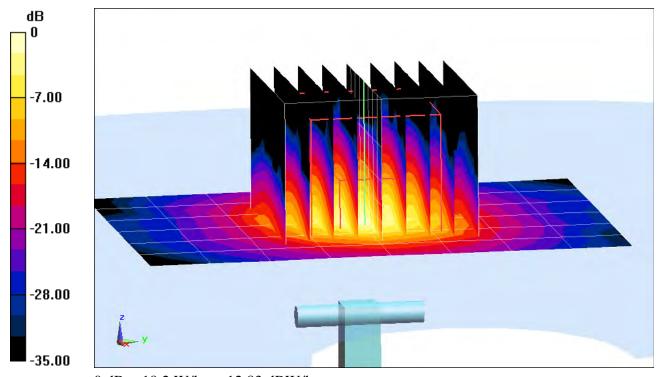
Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5300MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.24 W/kg

Deviation (1g) = 6.24%; Deviation (10g) = 6.16%

0 dB = 19.2 W/kg = 12.83 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.816 \text{ S/m}; \ \epsilon_r = 48.43; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

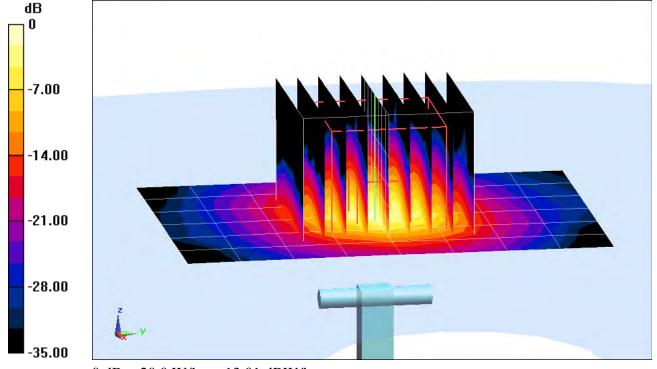
Test Date: 07-22-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3589; ConvF(3.52, 3.52, 3.52); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20 dBm (100 mW) Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.19 W/kg

Deviation (1g) = -2.23%; Deviation (10g) = -2.23%

0 dB = 20.0 W/kg = 13.01 dBW/kg

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5800 \text{ MHz}; \ \sigma = 6.296 \text{ S/m}; \ \epsilon_r = 47.918; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

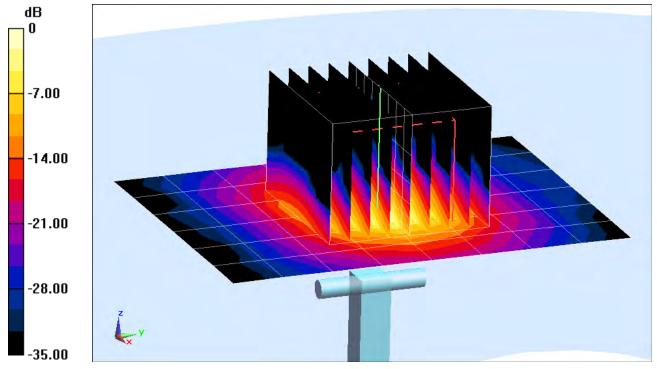
Test Date: 07-22-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/17/2013
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan(9x9x7)/Cube 0:Measurement grid:dx=4mm,dy=4mm,dz=1.4mm=1 tcf gf 'Tc\q306

Input Power = 20 dBm (100 mW)

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.06 W/kg

Deviation (1g) = -0.40%; Deviation (10g) = -0.48%

0 dB = 18.8 W/kg = 12.74 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-719_Aug12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 719

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 23, 2012

10th

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
			i
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Israe El-Laong
Approved by:	Katja Pokovic	Technical Manager	Alle.

Issued: August 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719 Aug12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719 Aug12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	AL 44444	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.4 \Omega + 3.8 j\Omega$
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.7 \Omega + 5.9 j\Omega$
Return Loss	- 24.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

Date: 23.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

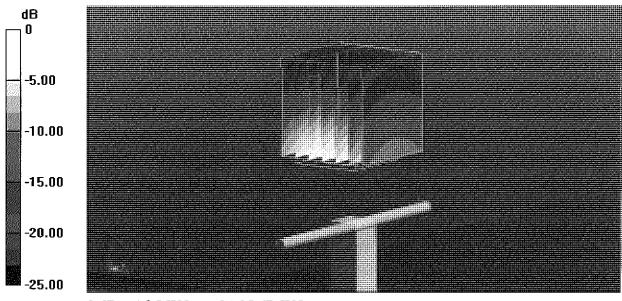
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

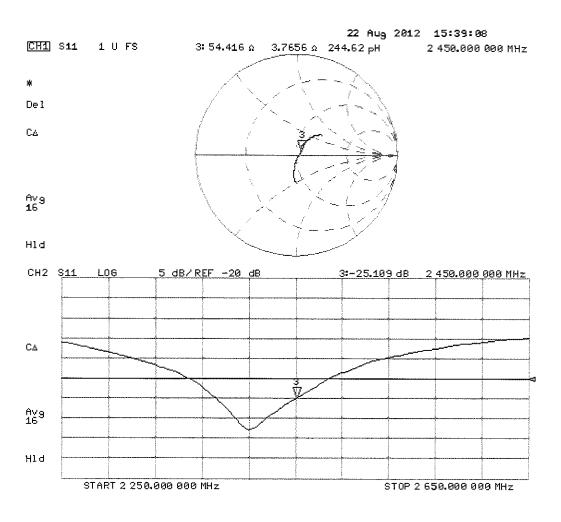
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.219 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.633 mW/g


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.19 mW/g

Maximum value of SAR (measured) = 16.5 W/kg

0 dB = 16.5 W/kg = 24.35 dB W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

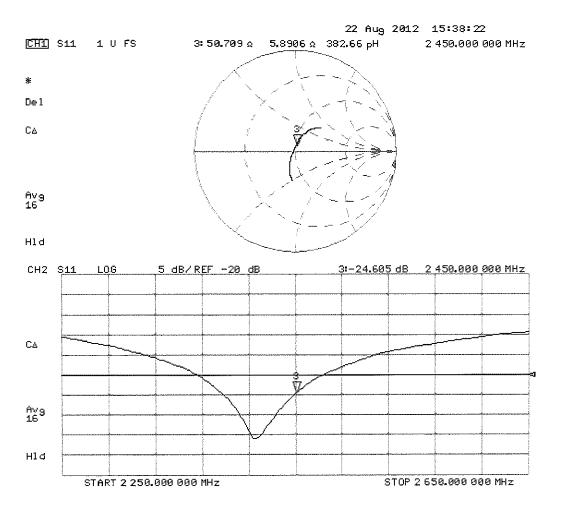
DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.970 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.692 mW/g


SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 24.66 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D5GHzV2-1057_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1057

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 11, 2013

12/2/2

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Iran Unaoues
Approved by:	Katja Pokovic	Technical Manager	ICHA)

Issued: January 11, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

Certificate No: D5GHzV2-1057_Jan13

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	A 14 14 14	

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.79 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2. 17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.55 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.5 Ω - 9.8 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.5 Ω - 4.5 jΩ
Return Loss	- 26.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$50.6~\Omega$ - $5.8~\mathrm{j}\Omega$
Return Loss	- 24.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 3.8 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω - 4.4 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 7.9 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 3.2 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.2 Ω - 4.8 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω - 2.1 jΩ
Return Loss	- 27.9 dB

Certificate No: D5GHzV2-1057_Jan13 Page 9 of 16

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.3 Ω - 2.9 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Certificate No: D5GHzV2-1057_Jan13 Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 11.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ S/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.6$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.79$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$

kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.09$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.671 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.473 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.735 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

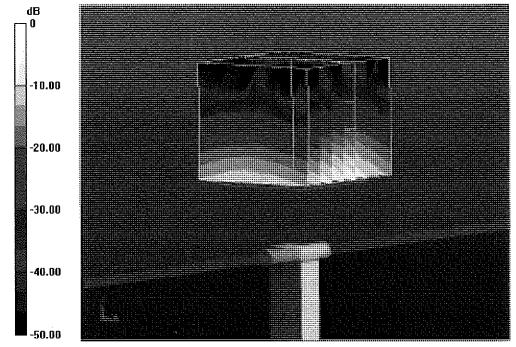
Reference Value = 63.848 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.3 W/kg

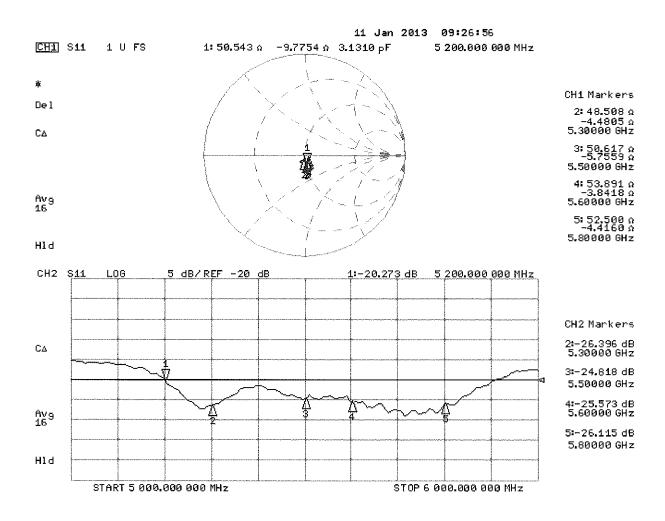
Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.467 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.3 W/kg


SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.55$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.81$ S/m; $\epsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\epsilon_r = 46.3$; $\rho = 1000$

kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21 \text{ S/m}$; $\varepsilon_r = 46$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.074 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.924 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.561 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: D5GHzV2-1057_Jan13

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

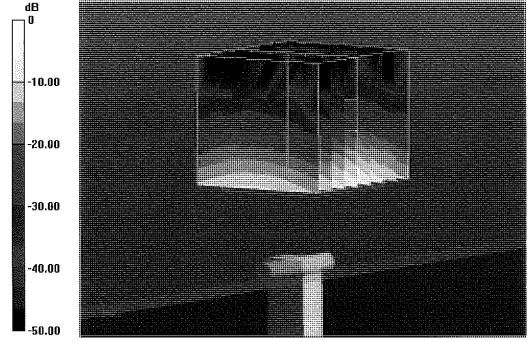
Reference Value = 58.884 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 36.3 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.25 W/kg

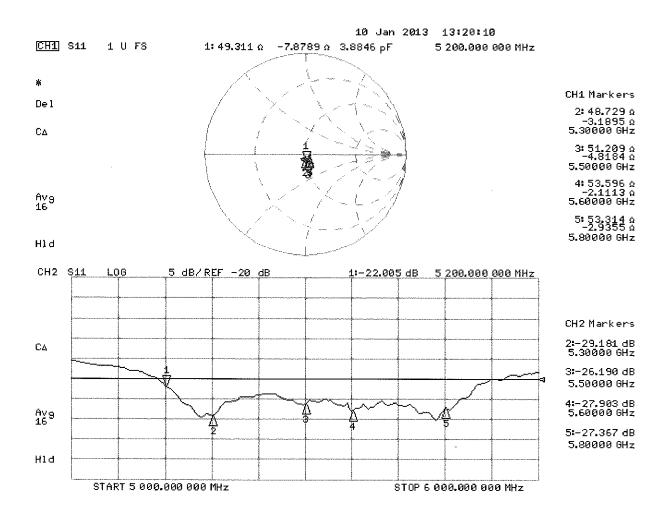
Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.753 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 35.6 W/kg


SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3022_Aug12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

ES3DV2 - SN:3022 Object

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure(s)

Calibration procedure for dosimetric E-field probes

Calibration date:

August 28, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: August 28, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3022_Aug12 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3022_Aug12 Page 2 of 11

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003

Calibrated:

August 28, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV2-SN:3022

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.00	1.04	0.99	± 10.1 %
DCP (mV) ^B	98.3	99.5	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^t (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	133.3	±2.7 %
			Y	0.00	0.00	1.00	140.3	
			Z	0.00	0.00	1.00	178.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV2-SN:3022 August 28, 2012

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Calibration Parameter Determined in Head Tissue Simulating Media

		<u> </u>							
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
750	41.9	0.89	6.30	6.30	6.30	0.30	1.72	± 12.0 %	
835	41.5	0.90	6.03	6.03	6.03	0.35	1.63	± 12.0 %	
1750	40.1	1.37	5.07	5.07	5.07	0.32	1.89	± 12.0 %	
1900	40.0	1.40	4.86	4.86	4.86	0.40	1.57	± 12.0 %	
2450	39.2	1.80	4.23	4.23	4.23	0.59	1.44	± 12.0 %	
2600	39.0	1.96	4.10	4.10	4.10	0.67	1.37	± 12.0 %	

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

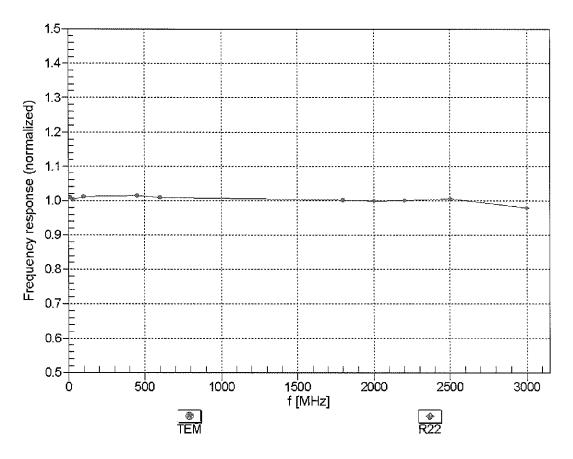
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV2-- SN:3022 August 28, 2012

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Calibration Parameter Determined in Body Tissue Simulating Media

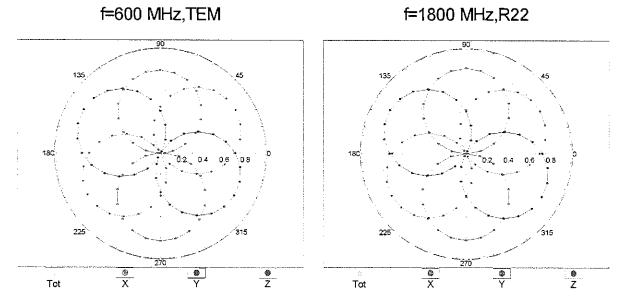
			-		•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.07	6.07	6.07	0.23	2.09	± 12.0 %
835	55.2	0.97	6.02	6.02	6.02	0.47	1.44	± 12.0 %
1750	53.4	1.49	4.70	4.70	4.70	0.46	1.55	± 12.0 %
1900	53.3	1.52	4.43	4.43	4.43	0.36	1.87	± 12.0 %
2450	52.7	1.95	3.97	3.97	3.97	0.65	1.06	± 12.0 %
2600	52.5	2.16	3.80	3.80	3.80	0.54	0.75	± 12.0 %

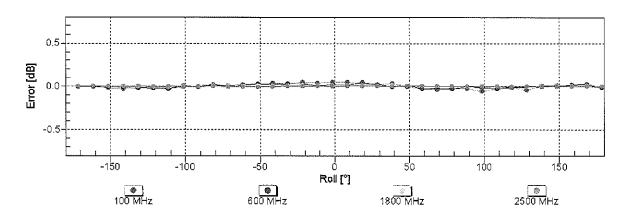

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

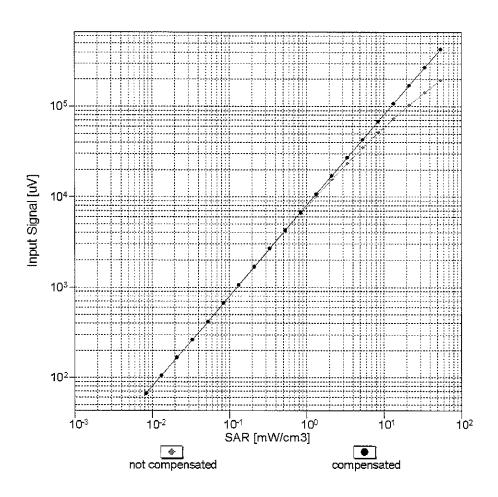
Frequency Response of E-Field

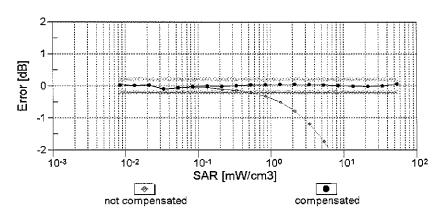

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

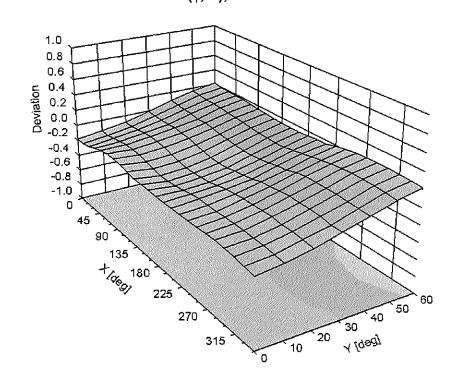
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

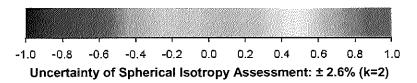

(γ), σ



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ES3DV2- SN:3022 August 28, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz

ES3DV2-SN:3022

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Other Probe Parameters

Certificate No: ES3-3022_Aug12

Sensor Arrangement	Triangular
Connector Angle (°)	98.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: EX3-3589_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3589

Calibration procedure(s)

QA DAL-01 98, QA 044-14 93 QA 041-23 94 DA 041-25 94

Calibration procedure for desimetric E-field probes

Calibration date:

January 17, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Signature Function Name Calibrated by: Jeton Kastrati Laboratory Technician Technical Manager Katja Pokovic Approved by:

Issued: January 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3589_Jan13

Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMy v z tissue simulating liquid

NORMx,y,z

sensitivity in free space sensitivity in TSL / NORMx,y,z

ConvF DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

Certificate No: EX3-3589 Jan13

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 - SN:3589

January 17, 2013

Probe EX3DV4

SN:3589

Calibrated:

Manufactured: March 30, 2006 January 17, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.46	0.40	0.40	± 10.1 %
DCP (mV) ^B	100.5	103.8	99.6	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k≕2)
0	CW	Х	0.0	0.0	1.0	0.00	165.8	±3.3 %
		Y	0.0	0.0	1.0		134.3	
		Z	0.0	0.0	1.0		140.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3589 January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.70	8.70	8.70	0.39	0.96	± 12.0 %
835	41.5	0.90	8.40	8.40	8.40	0.52	0.74	± 12.0 %
1750	40.1	1.37	7.34	7.34	7.34	0.45	0.93	± 12.0 %
1900	40.0	1.40	7.09	7.09	7.09	0.80	0.65	± 12.0 %
2450	39.2	1.80	6.37	6.37	6.37	0.39	0.97	± 12.0 %
2600	39.0	1.96	6.19	6.19	6.19	0.30	1.12	± 12.0 %
5200	36.0	4.66	4.48	4.48	4,48	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.27	4.27	4.27	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.14	4.14	4.14	0.50	1.80	± 13.1 %
5600	35.5	5.07	3.81	3.81	3.81	0.55	1.80	± 13.1 %
5800	35.3	5.27	3.85	3.85	3.85	0.55	1.80	± 13.1 %

Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

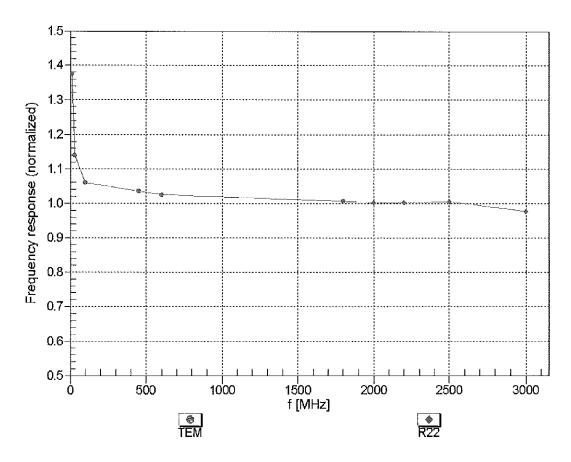
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3589

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Calibration Parameter Determined in Body Tissue Simulating Media

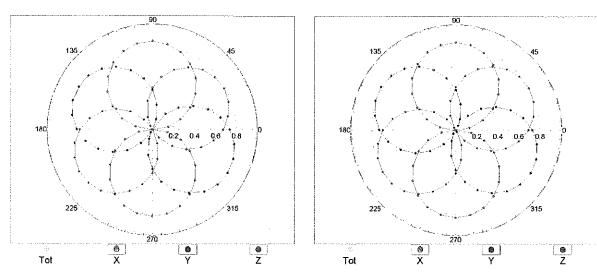

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.59	8.59	8.59	0.49	0.86	± 12.0 %
835	55.2	0.97	8.43	8.43	8.43	0.38	1.05	± 12.0 %
1750	53.4	1.49	7.87	7.87	7.87	0.44	0.89	± 12.0 %
1900	53.3	1.52	7.46	7.46	7.46	0.58	0.75	± 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.68	6.68	6.68	0.80	0.50	± 12.0 %
5200	49.0	5.30	3.99	3.99	3.99	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.81	3.81	3.81	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.52	3.52	3.52	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.32	3.32	3.32	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.66	3.66	3.66	0.60	1.90	± 13.1 %

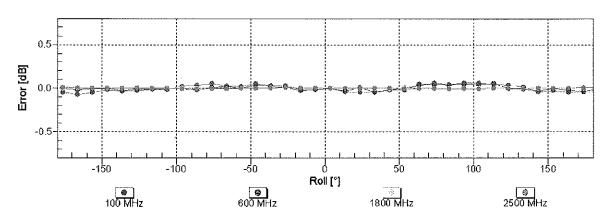
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

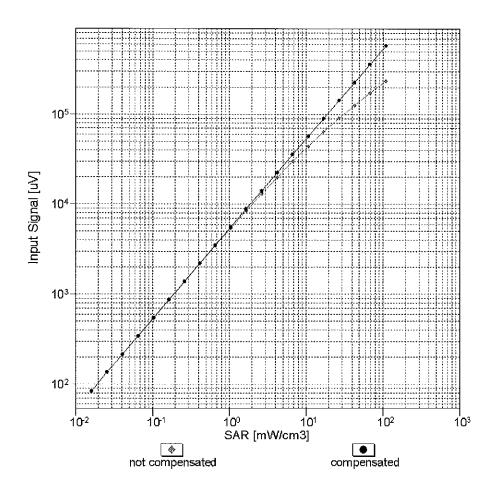
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

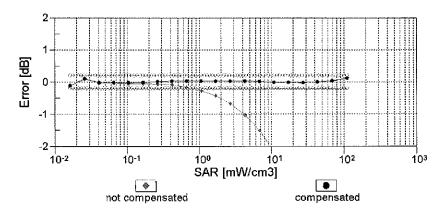



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

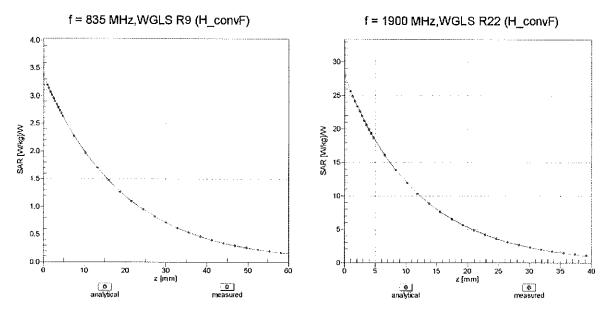
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

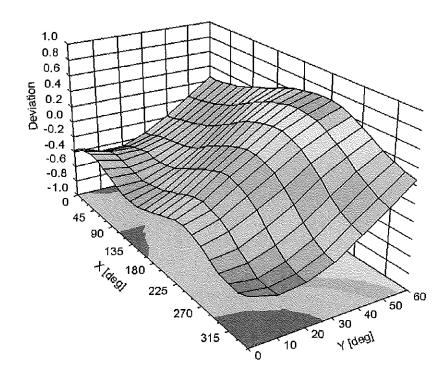
f=600 MHz,TEM

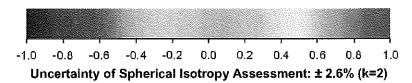

f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-26.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3318_Apr13

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3318

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

April 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3318

Manufactured: January 10, 2012

Calibrated:

April 29, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k≃2)
Norm (μV/(V/m) ²) ^A	1.15	0.92	1.29	± 10.1 %
DCP (mV) ^B	102.6	105.4	100.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.6	±3.5 %
		Υ	0.0	0.0	1.0		133.8	
		Z	0.0	0.0	1.0		154.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3318_Apr13

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.59	6.59	6.59	0.25	2.12	± 12.0 %
850	41.5	0.92	6.33	6.33	6.33	0.57	1.25	± 12.0 %
1900	40.0	1.40	5.22	5.22	5.22	0.79	1.25	± 12.0 %
2450	39.2	1.80	4.59	4.59	4.59	0.80	1.30	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

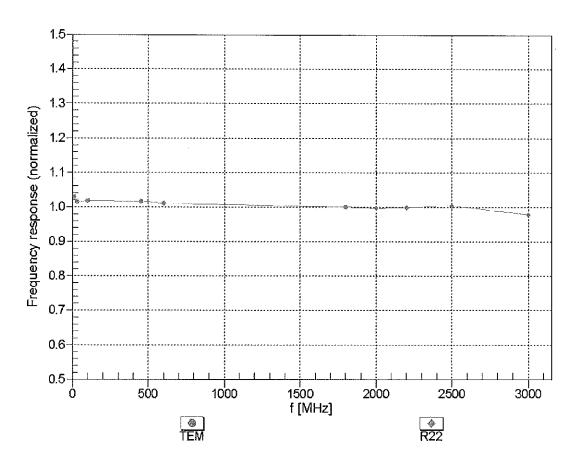
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Calibration Parameter Determined in Body Tissue Simulating Media

			_		_			
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.35	6.35	6.35	0.53	1.42	± 12.0 %
850	55.2	0.99	6.21	6.21	6.21	0.57	1.38	± 12.0 %
1900	53.3	1.52	4.79	4.79	4.79	0.46	1.77	± 12.0 %
2450	52.7	1.95	4.31	4.31	4.31	0.80	1.09	± 12.0 %

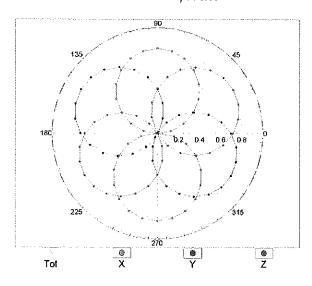

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

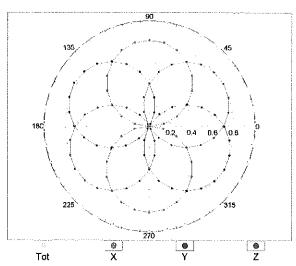
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if figuid compensation formula is applied to

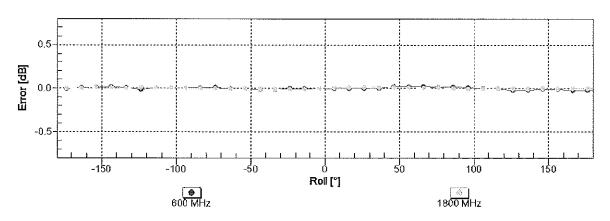
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

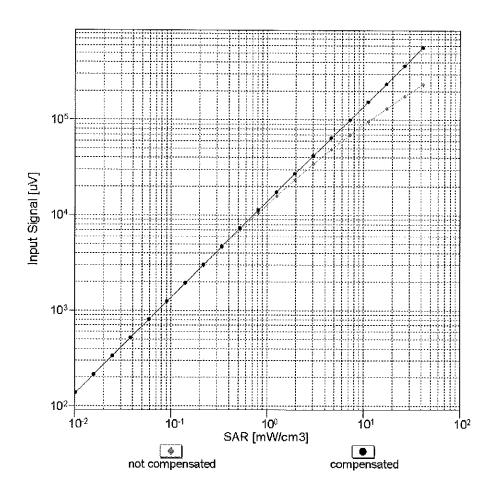


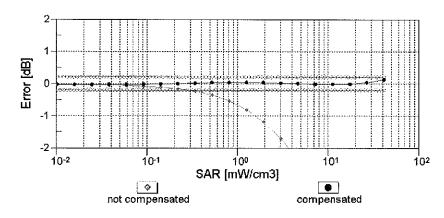

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

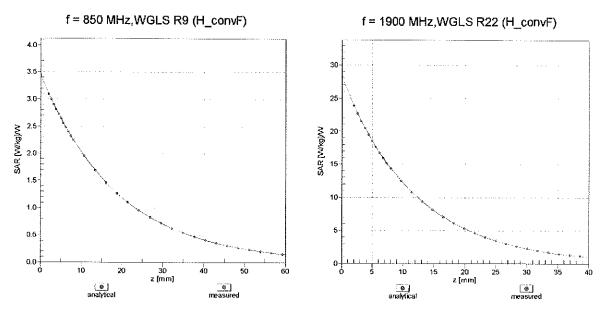
f=600 MHz,TEM

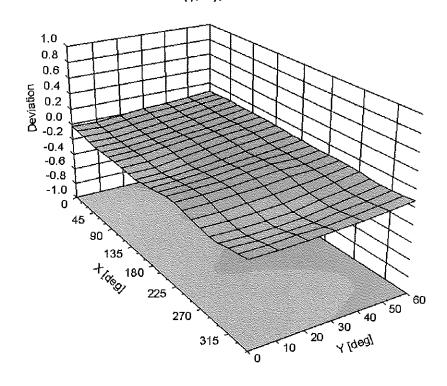
f=1800 MHz,R22

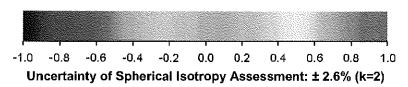




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3318

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-103.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3318
Place of Assessment:	Zurich
Date of Assessment:	June 19, 2013
Probe Calibration Date:	April 29, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3318

Conversion factor (± standard deviation)

 $1750 \pm 50 \text{ MHz}$

ConvF

 $5.59 \pm 7\%$

 $\varepsilon_r = 40.1 \pm 5\%$

 $\sigma = 1.37 \pm 5\%$ mho/m

(head tissue)

 $1750 \pm 50 \text{ MHz}$

ConvF

 $5.22\pm7\%$

 $\varepsilon_r = 53.4 \pm 5\%$

 $\sigma = 1.49 \pm 5\%$ mho/m

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

S

Certificate No: D2450V2-797 Jan13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 08, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature

Calibrated by:

Israe El-Naoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Jan13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-797_Jan13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 3.1 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.1 Ω + 4.9 jΩ
Return Loss	- 26.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG			
Manufactured on	January 24, 2006			

Certificate No: D2450V2-797_Jan13 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

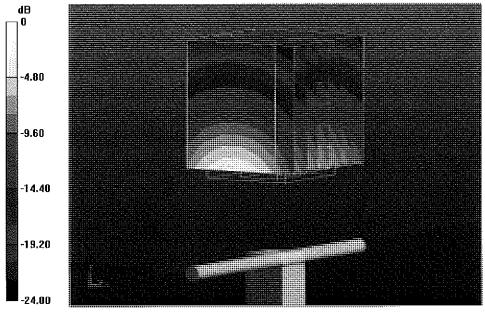
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

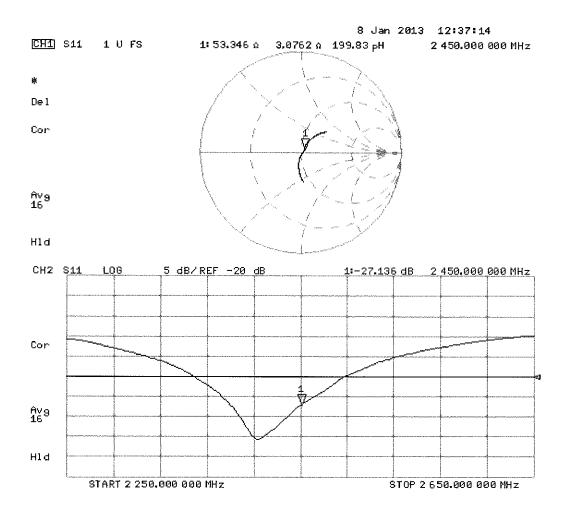
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.154 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

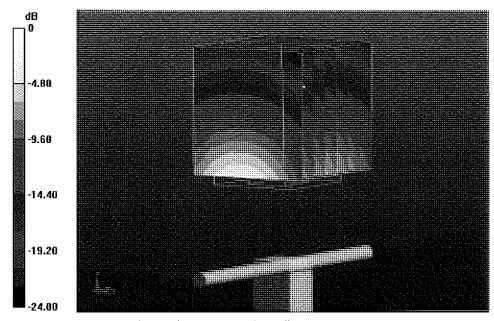
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

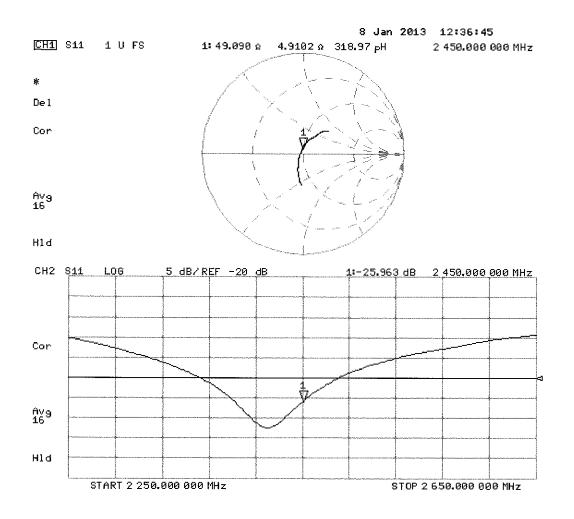
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.935 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg

Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Impedance Measurement Plot for Body TSL

APPENDIX 8: SAR T=GGI 9 GD97 = =75 H=CBG

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I Composition of the Tissue Equivalent Matter

Frequency (MHz)	2450	2450	5200-5800	5200-5800
Tissue	Head	Body	Head	Body
Ingredients (% by weight)				
DGBE		26.7		
NaCl	See Page D2	0.1	See Page	
Polysorbate (Tween) 80	See Fage D2		D3	20
Water		73.2		80

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D: Page 1 of 3
07/22/13 - 08/28/2013	Portable Handset			1 age 1 01 3

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

H20 Water, 52 - 75%

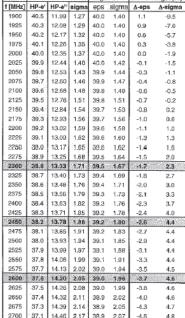
C8H18O3 Diethylene glycol monobutyl ether (DGBE), 25 – 48%

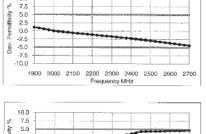
(CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)

Relevant for safety; Refer to the respective Safety Data Sheet*.

Sodium Chloride, <1.0% NaCl

Figure D-1


Composition of 2.4 GHz Head Tissue Equivalent Matter


Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL 2450)
Product No.	SL AAH 245 BA (Charge: 120112-4)
Manufacturer	SPEAG C-
	*
Measurement N	00100
TSL dielectric pa	rameters measured using calibrated OCP probe (type DAK).
Target Paramet	ers v
Target Paramet	
	ers rs as defined in the IEEE 1528 and IEC 62209 compliance standards.
Target paramete	
Target paramete	rs as defined in the IEEE 1528 and IEC 62209 compliance standards.
Target paramete Test Condition Ambient Condition	rs as defined in the IEEE 1528 and IEC 62209 compliance standards. In 22°C; 30% humidity
Target paramete	rs as defined in the IEEE 1528 and IEC 62209 compliance standards. In 22°C; 30% humidity
Target paramete Test Condition Ambient Condition TSL Temperatur Test Date	rs as defined in the IEEE 1528 and IEC 62209 compliance standards. n 22°C; 30% humidity 23°C 18-Jan-12
Target paramete Test Condition Ambient Condition TSL Temperatur	rs as defined in the IEEE 1528 and IEC 62209 compliance standards. n 22°C; 30% humidity 23°C 18-Jan-12
Target paramete Test Condition Ambient Condition TSL Temperatur Test Date	rs as defined in the IEEE 1528 and IEC 62209 compliance standards. In 22°C; 30% humidity 23°C 18-Jan-12 mation

Results										
	Measu			Targe			arget [%]			
f [MHz]	HP-e	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma			
1900	40.5	11.99	1.27	40.0	1.40	1.1	-9.5			

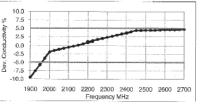


Figure D-2 2.4 GHz Head Tissue Equivalent Matter

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by:
	V *MG(MHH (M) (ARGKAT (N) CM)			Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
07/22/13 - 08/28/2013	Portable Handset			Page 2 of 3

APPENDIX 9: G5F'SYSTEM V5 @=85H=CB

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-I SAR System Validation Summary

	OAR System Validation Summary																	
SAR	p.					COND.	PERM.	. CW VALIDATION			MOD. VALIDATION							
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	-	TYPE PROBE CAL. POINT		-	PROBE CAL. POINT	I DROBE CAL DOINT		(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
С	2450	11/9/2012	3022	ES3DV2	2450	Head	1.874	38.23	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5200	1/24/2013	3589	EX3DV4	5200	Head	4.659	35.55	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5300	1/24/2013	3589	EX3DV4	5300	Head	4.800	35.40	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5500	1/24/2013	3589	EX3DV4	5500	Head	5.004	34.83	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5600	1/24/2013	3589	EX3DV4	5600	Head	5.112	34.61	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5800	1/24/2013	3589	EX3DV4	5800	Head	5.392	34.17	PASS	PASS	PASS	OFDM	N/A	PASS				
С	2450	11/8/2012	3022	ES3DV2	2450	Body	2.038	51.10	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5200	1/23/2013	3589	EX3DV4	5200	Body	5.292	47.85	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5300	1/23/2013	3589	EX3DV4	5300	Body	5.477	47.47	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5500	1/23/2013	3589	EX3DV4	5500	Body	5.729	47.03	PASS	PASS	PASS	OFDM	N/A	PASS				
Α	5800	1/23/2013	3589	EX3DV4	5800	Body	6.233	46.20	PASS	PASS	PASS	OFDM	N/A	PASS				

Table E-II
SAR System Validation Summary - Extremity SAR Considerations

SAR	CAD								COND.	PERM.		CW VALIDATIC	N	M	IOD. VALIDATI	ON
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR		
Н	2450	6/21/2013	3318	ES3DV3	2450	Body	2.006	51.66	PASS	PASS	PASS	OFDM	N/A	PASS		
Α	5200	4/11/2013	3589	EX3DV4	5200	Body	5.268	48.58	PASS	PASS	PASS	OFDM	N/A	PASS		
Α	5300	4/11/2013	3589	EX3DV4	5300	Body	5.405	48.31	PASS	PASS	PASS	OFDM	N/A	PASS		
Α	5500	4/11/2013	3589	EX3DV4	5500	Body	5.729	47.03	PASS	PASS	PASS	OFDM	N/A	PASS		
Α	5800	4/11/2013	3589	EX3DV4	5800	Body	6.160	47.11	PASS	PASS	PASS	OFDM	N/A	PASS		

NOTE: All measurements were performed using probes calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID: A3LSMN900X	PCTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
7/22/2013-8/28/2013	Portable Handset			Page 1 of 1